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ABSTRACT 

DEVELOPMENT OF A FIBER OPTIC 
POLARIMETRIC SENSOR FOR CONCRETE 

by 
Insang Lee 

Development of a fiber optic sensor for embedment in cementitious composites 

and measurement of displacements associated with the opening of microcracks is 

described. The sensor can be employed as a transducer for measurement of crack tip 

opening displacements during fracture tests. A polarization maintaining fiber is used as 

the sensing element, and transduction mechanism is similar to those of other polarimetric 

type based sensors. However, the deformation resolving power of the sensor is increased 

by way of increasing the effective length of the optical fiber. This is done by winding the 

optical fiber into a coil. A direct relationship between the number of loops in the coil and 

sensitivity of measurements is obtained. A calibration procedure is developed by which 

the optical signal is converted to displacements. The sensor was employed in a series of 

fracture tests. Experiments involved embedment of the optical fiber in concrete beams. 

Specimens were center edge notched, and the fiber coil sensors were embedded at the tip 

of the notch. This arrangement allowed for direct measurement of displacements 

associated with the opening of microcracks at the crack tip. Experimental results are 

presented, and crack tip opening displacement(CTOD) results are compared with crack 

opening displacements(COD) measured by conventional transducers at the crack mouth. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Cracking is among the important parameters that directly influence the structural design 

and durability of structure. Many fracture mechanics models have been proposed in recent 

years to account for the nonlinear behavior of concrete elements[1]. Nonlinear 

characteristics of fracture in concrete are associated with the microcracking zone 

(process zone) in front of the crack tip[2]. 

Most fracture models represent the fracture process zone with a damage band or 

a band of crack closing pressure which depends on the crack opening displacement, i.e. 

the post-peak stress-displacement relationship. The accuracy of these models relies 

significantly on the selected post-peak stress-displacement relationship. One parameter of 

significant importance in determining fracture properties is crack tip opening 

displacement (CTOD). For instance, crack extension or fracture may be assumed to 

occur when the crack opening displacement exceeds a critical value. 

To date, experimental determination of CTOD has been an impossibility. For 

these reasons researchers have resorted to measurement of crack mouth opening 

displacement (COD) on a notched or precracked specimen by linear variable 

displacement transducers (LVDT) or clip gauge extensometers. It is logical to assume that 

the crack mouth opening displacements measured in this way should be larger than the 

real displacements at the crack tip. This is due to the fact that in comparison with CTOD, 
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COD represents displacements at distances further away from the neutral axis of the 

beam. Furthermore, COD values are more representative of global displacements rather 

than deformations specific to the formation of process zone in cementitious composites. 

For these reasons, attempts have been made to determine CTOD from measurement of 

surface deformations using laser speckle interferometry[3]. 

These studies indicated the localized nature of microcracking at the crack tip, and 

the need for characterization of displacements in terms of the opening of rnicrocracks 

within the process zone. Therefore, the sensor developed in the present study offers 

sufficient sensitivity for this purpose. 

1.2 Objective 

The objective of the research presented here is to develop, calibrate and test an embedded 

optical fiber CTOD sensor for applications in fracture mechanics studies of cementitious 

composites. 	Among the important characteristics of optical fibers are small size, 

geometric adaptability, and the ability to act as the sensor as well as the signal path. 

These are important attributes, especially in considerations for design of practicable 

embedded sensors in concrete and other cementitious composites. 

In general, fiber optic sensors are categorized into various types depending on the 

application and transduction mechanism employed for discernment of material 

deformations. A brief discussion pertaining to various types of fiber optic sensors will be 

given in the background section of this thesis. It is important to note that development of 

a suitable CTOD sensor for concrete requires sufficient sensitivity for measurement of 
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deformations, economy in terms of sensor complexity, instrumentation, and practicality 

and ease of installation during placement of fresh concrete. The sensor described herein 

was designed based on the above-mentioned considerations. A calibration technique is 

developed for conversion of optical signals to corresponding displacements. The 

capability of the fiber optic sensor in terms of sensitivity and resolution power for 

measurement of CTOD is demonstrated through experiments with single edge notched 

concrete beams under three point bending conditions. 

1.3 Background 

Transmission of light through optical fibers can be explained by the Snell's law and the 

concept of total internal reflection[4]. According to Figure 1.1, as indicated by the 

refractive index, n, when light travels from the fiber core that has a high refractive index 

into the cladding with a lower index, the lightwave totally reflects back to the core. 

Figure 1.1 Propagation of a light ray in an optical fiber. 
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Depending on the diameter, and the refractive indices of the core and cladding, 

optical fibers may either carry only one(single-mode), or many modes(multi-mode) of the 

lightwave. Typical single-mode fibers have a core, cladding, and protective jacket 

diameters of respectively 50, 125, and 250 microns. Multi-mode fibers require a larger 

core diameter for allowing the propagation of various modes through the length. The 

core, cladding, and jacket diameters in typical multi-mode fibers are 50, 125, 250 microns 

respectively. Multi-mode fibers are easier to work with due to larger core diameters for 

coupling the light into and out of them. 

1.4 Fiber Optic Sensor Types 

Fiber optic sensors have been classified in a number of different ways[5]. For instance, 

they can be categorized based on the application, or the transduction mechanism. These 

classifications are diagrammatically depicted in Figure 1.2. 

Figure 1.2 Classification of fiber optic sensors. 
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Distributed sensors make full use of optical fibers, in that each element of the 

optical fiber is used for both measurement and data transmission purposes. A time of 

flight measurement along the optical fiber will determine locations and values of physical 

perturbations along the entire length of fiber. These sensors are most appropriate for large 

structure applications, due to their multi-point measurement capabilities. Localized fiber 

optic sensors determine the physical perturbation over a specific segment of the optical 

fiber, and are similar in that sense to conventional strain or tenperature gauges. 

Sensing based on intensity modulation pertains to light intensity losses that are 

associated with straining of optical fibers along any portion of their length. Sensors taking 

advantage of this phenomenon are termed as the intensity or amplitude type sensors. The 

advantage of intensity type sensors are the simplicity of construction, and the 

compatibility with multi-mode fiber technology. 

Spectrometric sensors are widely employed in sensing of chemical reactions, and 

remote monitoring of contaminants in ground water. The transduction mechanism in 

these types of sensors is based on the changes in the wavelength of light to the physical 

perturbation of interest. An example of such sensors for measuring strains are Bragg 

grating type fibers (Morey et al. 1989). Introduction of Bragg gratings into fibers can be 

achieved by either external or internal manipulations. These sensors are intended for use 

only as a localized fiber optic sensor. The optical instrumentation for Bragg type sensors 

are highly intricate, as they require sensitive monochrometers for detecting the minute 

changes in the wavelength of light. However, they are highly sensitive, and very reliable 

for measurement of strain. 
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Phase sensors cover a broad range of optical phenomena for sensing purposes. A 

number of different configurations can be employed for measuring the change in the 

phase of light by an interferometric sensor. Interferometric sensors are highly sensitive for 

measuring strains. However, they require interference of light from two identically similar 

fibers, one of which is used as reference arm, for measuring the shifts in phase. An 

exception to a two arm interferometric sensor is a single fiber FabryPerot type sensor 

(Claus et al. 1993). In a FabryPerot type sensor, the fiber is manipulated in such a way so 

as to form two parallel partial mirrors, perpendicular to the axis of the fiber. The 

interference of the reflected signals which are formed in the cavity by the two partial 

mirrors create the interference pattern. FabryPerot sensor is only capable of providing 

localized measurements at the cavity formed by the two partial mirrors. 

Another class of phase sensors take advantage of the polarization characteristics 

of light for transduction. These types of sensors are termed as polarimetric(Nanni et 

al.1991). Fringe shifts due to external perturbations in Polarization Maintaining(PM) 

fibers are caused by the interference of two mutually perpendicular polarized waves. The 

advantage in using a PM fiber for polarimetric transduction is that unlike their 

interferometric counterparts, only one fiber is needed for sensing the physical 

perturbation. Therefore, from practical application point of view, polarimetric sensors 

offer similar simplicities as the ones offered by the intensity sensors. Polarimetric sensors 

are much more sensitive than the intensity type. The sensitivity of polarimetric sensors is 

dependent on the polarization characteristics of the fiber, such as birefringent, and the 

beat length. Theoretically, polarimetric fiber sensors can be made as sensitive as the 
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interferometric types. However, the birefringence of the currently available PM fibers are 

not sufficient enough for optimum sensitivity. 

1.5 Fiber Optic Sensors in Concrete 

To date, only a limited number of studies report research activities pertaining to the 

application of fiber optic sensors in conjunction with testing or condition monitoring of 

concrete(Ansari et al.1991,92,93). The idea of using optical fibers for measuring 

temperature differentials due to exothermic processes in concrete has been already tested 

in Japan. Shimizu corporation employed fiber optic sensors for measurement of 

temperature differentials during construction of a tunnel(Photonics Spectra, 1990). In 

their application, a large number of sensors were employed in order to acquire 

temperature differentials throughout the tunnel. This was due to the effect that their 

sensors were of localized type, and each sensor was only able to achieve measurements at 

one single point. Their results had compared well with thermocouple measurements. 

Shimizu corporation's report indicated that the employment of localized sensor was not 

practical, and for practical applications in construction a distributed fiber optic sensor had 

to be developed. 

Another type of sensor for studying the properties of concrete was developed by 

Ansari(1991). This sensor was employed for the detection of air bubbles and 

measurement of air content in fresh concrete during the construction. The sensor 

developed by Ansari was of intensity type, and the air bubble detection methodology was 

based on the sensor response to the refractive indices of air and concrete. 
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Rossi et al. (1989) employed an intensity type multi-mode fiber for detection of 

cracks in large concrete structures[6]. In his application, he had to remove the fiber 

coating in order for the crack opening displacements to produce sufficient effects in the 

fiber. The method was applied in monitoring the development of cracks at different 

locations within the shell of a motorway tunnel. The crack detection method was based on 

monitoring the drops in the intensity of the light output. The major disadvantage in using 

this technology was the extreme fragility of the uncoated optical fiber. Rossi's 

embedment technique involved protection of fibers by metallic tubes which were 

sequentially removed after pouring and casting operations. Shukla et al. (1993) employed 

MachZehnder(one kind of a phase sensor), and FabryPerot type sensors in the 

determination of stress intensity factors in single edge notch(SEN) laboratory specimens. 

Although, their work did not involve concrete, their results showed excellent correlation 

with theory. 

Nanni et al.(1991) employed a polarimetric sensor for the measurement of 

compressive stresses and strains in concrete[]. Nanni's work involved the use of a PM 

fiber which was embedded perpendicular to the direction of applied load. Their research 

results were especially interesting, since they considered the effect of interface shear 

transfer in between the fiber and the matrix for the interpretation of the optical signal. 

Sirkis et al.(1993) developed a general mechanism approach for the interpretation of the 

optical signal, and its relationship with interfacial strains. His work can be applied to 

concrete through proper modifications to his formulations. 

Huston, Fuhr, and Ambrose(1993) developed a vibration detection technique by 

statistical manipulation of speckle patterns generated at the output end of the optical fiber. 
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In conjunction with condition monitoring of structures, they embedded fiber optic cables 

throughout a medical building facility in Burlington Vermont. Huston et al's report on 

intensity modulated sensors indicate that the intensity type sensors may not be sensitive 

enough for measurements of structural changes in concrete. Maher and Navy(1993) 

employed Bragg grating optical fiber(FOBG) sensors for the measurement of strain in 

large reinforced concrete beams. In their experiments, they attached the optical fiber to 

the reinforcement, and then embedded the reinforcement in a 110 by 12 inch, 10 ft long 

beam. Their research results indicated the FOBG sensors are extremely sensitive for the 

measurement of strains in reinforced concrete elements. 

The European community has been more aggressive in the employment of fiber 

optic sensors in large scale structural monitoring operations[8,9]. For instance, 

Caussignac et al.(1992) has developed a load measuring sensor using multi-mode optical 

fiber. The optical fiber sensor is embedded inside elastomeric bearings fitted between the 

bridge deck and support. The light intensity loss is calibrated against the magnitude of the 

load. Hoist and Habe(1992) developed an optomechanical arrangement for measuring the 

displacement of span joints in a concrete dam. Wolff and Miesseler(1992) employed 

intensity type sensors for monitoring deformations, and a number of chemical sensors for 

the detection of corrosion in Schiessbergstrasse prestressed concrete bridge. 



CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Theory of the System 

The sensor developed herein employs a high birefringent (Hi-Bi) optical fiber for sensing 

of strains and deformations. Hi-Bi fibers possess properties similar to those of 

birefringent materials employed in photoelasticity[ 1 0]. These fibers divide a circularly 

polarized light entering them into two modes along the two orthogonal axes (principal 

axes) of the optical fiber. Lightwave exiting the output of the fiber will also be circularly 

polarized (Figure 2.1). 

Figure 2.1 Basic principle for a polarimetric sensor. 

The intensity of light at the output end of the fiber is of the form[11, 12] 

10 
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where I is the intensity of light in arbitrary unit, and ϕ is the relative phase retardation, 

and as it will be shown, it is related to the length, and optical properties of the fiber.. In 

the absence of strains and/or other perturbations, the exiting light will have a constant 

output. 

External perturbations such as deformations along the length of the optical fiber will 

cause interference of the two modes resulting in a change in the relative phase retardation 

by the amount ∆ϕ. The output intensity will have a sinusoidal shape, and in time domain, 

the period of this sinusoidal waveform is termed as a fringe. Frequency of the fringe 

pattern depends on the magnitude of the applied strain, and allows for development of a 

strain or deformation sensor through calibration. The relative phase retardation ϕ is 

related to the propagation constant, 13, and the original length of the fiber, l0 (gauge 

length), through the following relationship: 

propagating through the fiber, and nx,ny  are the refractive indices of the principal axes, 

respectively: Therefore, if ∆l0 is the elongation applied to the fiber, then the change in 

phase is 

where ∆ϕ = phase change due to external perturbations. 

The first term of Equation (2.3) represents the physical change of length produced by the 

strain. The second term, the change in 0 due to a change in ,β results from two effects: 

the strain-optics effect whereby the strain changes the refractive index of the fiber, and a 
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waveguide mode dispersion effect due to a change in fiber diameter, a, produced by 

longitudinal strain: 

(2.4) can be dropped due to the fact that it is very small in comparison with the first term. 

This is due to the fact that the change in the diameter of the optical fiber will be very 

small, and therefore the change in /3 with respect to a is minute. Thus Equation (2.3) 

becomes: 

Defining 7. as the amount of strain required to produce 27r phase shift (one fringe), and 

after omitting the intermediate steps, the change in phase due to strain can be expressed 

as: 
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Equation (2.7) provides the fundamental relationship between deformation and the 

number of fringes resulting from it. Since this relationship is linear, it is possible to 

develop a calibration constant relating the number of fringes to deformations. 

2.2 Crack Tip Opening Displacement Sensor 

Sensitivity of the fiber optic sensor described in the preceding section is directly 

I 
proportional to the gauge length ,l0, of the Hi-Bi fiber[l I, 13]. Other terms in Equation 

(2.7), i.e., λ, and B are constants that depend on the wavelength of laser and optical 

properties of the fiber. 

In comparison with the effect of Al, variations in optical properties (X. and B) do 

not influence the number of fringes, N, in a significant manner. Since Al = ɛl0, for a 

number of optical fibers subjected to the same level of strain intensity, longer gauge 

lengths (l0) produce larger deformations. 

According to Equation (2.7), this will in turn increases the number of fringes, and 

therefore the resolving power of the sensor for the given strain level. Displacements 

associated with microcracking in concrete are in the order of few micrometers. 

As shown in Figure 2.2(a), cracking is a localized phenomenon, and deformations 

associated with microccracking in concrete specimens occur over a very short length of 

the optical fiber (few millimeters). Therefore, the Hi-Bi optical fiber, as described above 

does not provide sufficient resolution for measurement of crack tip opening 

displacements. 

However, it is possible to produce a very sensitive CTOD transducer by 

increasing the gauge length of the optical fiber through the specific coil arrangement 



14 

shown in Figure 2.2(b). In this configuration, the optical fiber coil is embedded in 

concrete on the plane perpendicular to the direction of crack opening displacements at 

the notch tip. The gauge length, l0 , is chosen by the circular bend diameter, and the 

number of loops in the coil. If n represents the number of loops in the coil, and r is the 

diameter of the circular bend then l0 = n(2πr) 

Sensitivity of the transducer can be most efficiently increased by increasing the 

number of loops in the coil. This arrangement does not produce a bulky transducer, since 

optical fibers are extremely thin (typically 200 micron in diameter). 

Figure 2.2 Geometric relationship between a crack 
and an embedded optical fiber. 



CHAPTER 3 

EXPERIMENTAL PROCEDURE 

3.1 Experimental Investigation 

The experimental program was designed for evaluation of the fiber optic CTOD 

transducer. Experiments involved testing standard three-point-bend center-edge-notched 

concrete beams. Typical beam dimensions and the geometry of embedded optical fiber 

with respect to the notch tip are given in Figure 3.1. 

Determination of the number of loops, n, in the fiber optic coil was based on 

experiments with three different sensors, each with a different n. A calibration procedure 

was developed in order to determine the calibration constant relating the number of 

fringes corresponding to a unit displacement. 

3.2 Specimen Preparation 

Specimens were made with the mix proportions of : 1.0:1.1:0.35:0.1(cement:sand:coarse 

aggregate:water:silica fume by weight). Type III cement meeting ASTM SPEC C-150 

was used to get high early strength. The sand conforming with ASTM C33 was used. 

The F.M(Fineness Modulus) was 2.79 and absorption was measured at 0.5%. 

Coarse aggregate having F.M 6.43 was utilized. A superplasticizer at 2.2 liter per 220 lb. 

of (cement + silica fume)was added at the end of mixing to obtain workability. Specimen 

dimension was 3x3x20 inch. Specimen were cast in plexiglas molds. 

After casting, the specimens were cured in the fog room(100% relative humidity) 

for two weeks. All specimens were air dried for couple of days before testing. Also some 

15 
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cylinders were cast in order to obtain the compressive strength(f ) and the modulus of 

elasticity(E) of the concrete. 

Figure 3.1 Typical beam dimensions and location of the embedded 
optical fiber in concrete. 

3.3 Calibration 

Correlation between displacements and the corresponding fringes is accomplished by 

way of calibration. The calibration constant, a, as given in Equation (2.8) can be found 

from a plot of N versus Al. The configuration shown in Figure 3.2 corresponds to the 
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calibration process, and for simplicity it does not include the laser and polarization optics. 

Accordingly, the crack tip opening displacements through the thickness of a specimen 

are simulated by the separation of cylinder halves. Crack opening displacements along 

the crack profile in concrete are not uniform mainly due to aggregate interlock. Therefore, 

the calibration similitude presented in this study corresponds to an average CTOD value 

along the crack profile. 

The calibration process involves using portland cement paste for affixing the fiber 

optics around two cylinder halves of diameter 1.32 in. Polarization optics at the optical 

input and output will be explained in the following section of this thesis. A motorized 

micrometer positioner separates the cylinder halves, and an LVDT measures the 

separation. The cement paste coating employed for affixing the optical fiber to the 

calibration cylinder prevents slippage and simulates bonding of the fiber in concrete. 

A data acquisition board is employed for receiving the optical fringe (Figure 3.3), 

as well as data transmitted by the LVDT due to the separation of the cylinder halves 

(Figure 3.4). As shown in Figure 3.5, the calibration constant, a, can be obtained by 

calculating the slope of the line relating the number of fringes to displacements. Data 

presented in Figure 3.3, 3.4, 3.5 corresponds to the fiber coil with 7 loops ( n = 7 ). 

Figure 3.6, 3.7, 3.8 depict calibration data for the fiber coil with 5 loops ( n = 5 ), and 

another set of experiments were also performed with a fiber coil consisting of only 3 

coils(Figure 3.9, 3.10, 3.1 1). The sensor with n=7 provided sufficient sensitivity. As 

shown in Figure 3.12, the sensitivity of the sensor(calibration constant) is directly related 

to the number of loops in the optical fiber coil. The linear correlation depicted in Figure 

3.12 provides a useful tool for design of coil sensors. 



18 

Figure 3.2 Calibration setup. 

3.4 Testing Procedure 

The experimental setup consisted of optical system, testing machine, and data acquisition. 

The optical system consisted of a 633 nano-meter laser source, two quarter-wave plates, 

two plane-polarizers, two fiber adapters for connecting the polarization maintaining fiber 

to the quarter-wave plates, a photo detector, and the signal amplifier. 

The polarized beam from the polarizer was changed into circularly polarized light 

through the quarter-wave plate. The polarization maintaining fiber was connected to the 

quarter-wave plate via the fiber connector. Hi-Bi optical fibers were used. The output 

signal passed through the second quarter-wave plate and analyzer. The optical signal 

emerging from the optical system propagated into the photo detector. The optical signal 

was converted into electrical signal at the photo detector. And then this signal was 

amplified at the amplifier. 
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Three point bend tests were performed in a closed loop testing system under 

constant COD rate in order for the crack to grow in a controlled manner. Das-1600 

interface board was used for data acquisition. Figure 3.13 represent testing setup. Data 

included the fiber optic signal, the COD from the LVDT, and load signal from test control 

system. Data was saved in the computer for data analysis. He-Ne laser was turned on at 

least one hour prior to the experiment for the laser to reach its stabilized power level. 
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Figure 3.3 Output of fiber optic coil sensor for n=7. 
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Figure 3.4 Output of LVDT for n=7. 
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Figure 3.5 Displacement vs. fringe number for n=7. 
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Figure 3.6 Output of fiber optic coil sensor for n=5. 
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Figure 3.7 Output of LVDT for n=5. 
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Figure 3.8 Displacement vs. fringe number for n=5. 
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Figure 3.9 Output of fiber optic coil sensor for n=3. 
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Figure 3.10 Output of LVDT for n=3. 
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Figure 3.11 Displacement vs. fringe number for n=3. 
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Figure 3.12 Calibration constant vs. number of loops in the fiber coil. 
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Figure 3.13 Experimental setup and control system. 



CHAPTER 4 

RESULTS, ANALYSIS AND DISCUSSION 

4.1 Stress - Strain Curve 

A number of concrete cylinders were cast with beams in order to determine the standard 

28 days compressive strength of the concrete. The cylinder tests were performed on an 

MTS 815 closed-loop servo-controlled testing machine with a capacity of 1 million lbf. 

This machine can test cylinders by using circumferential strain feedback control to get 

full stress-strain curve. Constant rate of strain was used in the present study experiments, 

due to the fact that our testing machine is very stiff and capable of controlling the tests 

under axial control for high strength concrete. The closed-loop system was controlled by 

personal computer. Data also was acquired by this computer[10]. A feedback signal 

representing some experimental condition was generated by a transducer and compared 

with the program signal which represented the desired condition. The difference between 

these two signal was then used to regulate the servo-valve, which moved the actuator 

piston to a position minimizing the error signal. 

Three 4in x 6in cylinders were tested. The specimens were cast in plastic molds 

and nodded in three separate layers. The molds were stripped after 24 hr, and then placed 

in fog room for 2 weeks. Cylinders were capped with sulfur capping compound 1 day 

before testing. Compressive strength was 7000psi. Figure 4.1 represent the typical stress-

strain curve. 
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Figure 4.1 Stress-strain curve. 
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4.2 Results and Discussion 

A total of 9 beams, 3 beams for each n=3, 5, 7, were tested. Test results are given in 

Figures 4.2 through 4.16. Figure 4.17 depicts typical results obtained from a beam test. 

The results in Figure 4.17 consist of the applied load, and the fiber optics (CTOD) data in 

the form of optical fringe. The increase in fringe frequency in Figure 4.17 is indicative of 

increase in CTOD rate during the cracking process. This data indicates that the CTOD 

rate does not increase in a linear manner, even though, the three point bend tests were 

performed in a closed loop testing, system under constant COD rate. The sharp increase 

in fringe frequency occurs half way down in the descending branch of the load-time 

diagram. These results also indicate nonlinear behavior of CTOD with time. One 

explanation for this stems from inadequate stiffness of the testing machine employed with 

these experiments. It is also perceived that the half way point in the descending branch of 

the load-time diagram may correspond to the point were the microcracking region at the 

tip has formed into a macrocrack. If this is the case, then the visibility of the macrocrack 

which usually occurs at peak is only a surface phenomenon. 

Load, COD, and CTOD data are plotted in Figure 4.18. As shown in this figure, 

the relationship between the crack displacements (COD and CTOD) and time are 

nonlinear. The plot of CTOD versus COD in Figure 4.19 indicates that the relationship 

between the two displacements is linear, and it is possible to use this relationship in 

fracture models. Load versus COD and CTOD data in. Figure 4. 20 are plotted on the 

same graph for comparison. COD values are much larger than CTOD results mainly due 

to being further away from the neutral axis (by 1.5 inch). Most fracture models have 
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employed a critical COD value in the modeling. Relationships such as the one given in 

Figure 4.19 can be employed to examine the validity of such models. 

4.3 Conclusions 

An optical fiber sensor is developed that can be embedded within cementitious 

composites for the measurement of crack tip opening displacements. A calibration 

technique was developed for conversion of optical data to the displacements associated 

with the opening of microcracks. Calibration results indicated that sensitivity of 

measurements is directly dependent on the number of fiber loops within the sensor coil. 

By using the present coil geometry, experiments with concrete beams indicated 

displacement resolving powers as small as 5 microns. Fiber optic data suggest that the 

crack tip opening displacements are much smaller than the traditionally measured 

displacements at the crack mouth. The relationship between CTOD and COD was found 

to be linear. The frequency of optical fringes provided a new tool for measurement of 

crack growth rate. Fringe frequency data suggest that the steady state crack growth occurs 

after peak load, and at loads as large as the peak value. 
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Figure 4.2 Time vs. COD for n=3. 
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Figure 4.3 Time vs. load for n=3. 
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Figure 4.4 Time vs. intensity for n=3. 
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Figure 4.5 COD vs. load for n=3. 
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Figure 4.6 Fringe number vs. COD for n=3. 
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Figure 4.7 Time vs. COD for n=5. 
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Figure 4.8 Time vs. load for n=5. 
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Figure 4.9 Time vs. intensity for n=5. 
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Figure 4.10 COD vs. load for n=5. 
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Figure 4.11 Fringe number vs. COD for n=5. 
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Figure 4.12 Time vs. COD for n=7. 
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Figure 4.13 Time vs. load for n=7. 
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Figure 4.14 Time vs. intensity for n=7. 
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Figure 4.15 COD vs. load for n=7. 
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Figure 4.16 Fringe number vs. COD for n=7. 
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Figure 4.17 Load vs. CTOD(fringe) data for a beam test. 
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Figure 4.18 Load, COD, and CTOD data acquired from a beam test. 
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Figure 4.19 Linear relationship between CTOD and COD. 
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Figure 4.20 COD and CTOD vs. load. 
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