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ABSTRACT 

IMPLEMENTATION OF A THREE-DIMENSIONAL 
NON-INTRUSIVE PARTICLE TRACKING SYSTEM 

by 
Vivek Gupta 

A Three-Dimensional Non-Intrusive Particle Tracking System has been developed 

at NJIT's Particle Technology Center to provide experimental results for validating 

theories being developed in the field of Particle Technology. The system utilizes the 

principle of magnetic induction between several high-frequency miniature transmitters 

mounted inside a sphere and a set of receiving loop antennae mounted outside the 

experimental apparatus. Basic theories and algorithms for the tracking system have 

already been developed. The focus of this thesis is to make the tracking system more 

accurate, reliable and user-friendly and to apply it to the study of vibrated beds and chute 

flows. Various techniques to reduce errors in solution and to reduce multiple solutions in 

orientations are discussed and implemented. Some experimental results of tracking in a 

vibrated bed of particles are also presented. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Dry particulates or bulk solids composed of particles of different sizes are frequently 

encountered in industries. Automatic processing and handling systems like chutes, 

hoppers and vibrated beds are widely used for handling such material but their design is 

often far from optimum because the behavior of granular materials in flow is not very well 

understood. A great amount of research is being done in the field of particle technology 

to remedy this situation. Much progress has been made in numerical simulations and 

theoretical investigations as well as practical experimentation. Furthermore, experimental 

studies are required in order to validate theories and computer simulations. 

A particular phenomenon of interest is vibratory size segregation which is 

frequently encountered in industry and is generally problematic as it counteracts mixing 

processes. For this reason, vibratory size segregation is an area of extensive research. 

Though discussion of this phenomenon in details is beyond the scope of this thesis, it can 

be mentioned that the phenomenon is manifest as the tendency of the larger particles in a 

granular mixture to rise to the top. There are various theories proposed to explain such 

behavior [I, 2, 3, 4], however, it appears that no single theory can fully explain it. 

Detailed experimental measurements such as particle translation and rotations should 

provide good insight into the underlying phenomenon. To our knowledge, continuous 

tracking of three dimensional trajectory (translations and rotations) of a particle 

undergoing segregation has never been reported before. Therefore, the three-dimensional, 
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non-intrusive particle tracking technique can be a very useful diagnostic tool for studying 

size segregation in vibrated beds. 

In the past, researchers have employed various techniques for the study of 

particulate flows. Many of the techniques like fiber optic probes and radio pills are 

intrusive in nature, and hence influence the flow. Others, such as photo-optics, X-rays 

ultrasound, magnetic tracers, nuclear magnetic resonance etc., though non-intrusive in 

nature, suffer from some of the drawbacks of high cost, potential health risks, limited 

accuracy, small experimental space, time averaged measurements and inability to resolve 

orientation. Dave et al. [5] have provided a background on these techniques and their 

relative advantages and disadvantages. 

A system capable of non-intrusively tracking the motion of an individual particle in 

a three-dimensional flow has been developed at the Particle Technology Center at New 

Jersey Institute of Technology. The system is based on the principle of magnetic induction 

coupling and has advantages over other systems as it is non-intrusive, low cost, free of 

health risks and resolves true three dimensional motion in real-time. Theoretical aspects 

of this system are discussed in Dave and Bukiet [6]. The method involves tracking a 

sphere containing three small transmitters, associated electronic circuitry and a power 

supply, as it moves through the flow space. These embedded transmitters induce voltages 

in the array of receiving loop antennae surrounding the flow space. 

Given the position and orientation of the transmitting sphere, it is possible to 

calculate the voltages induced in the antennae by electromagnetic theory as discussed by 

Dave et al. [4] and Ashok [7]. The system of non-linear equations modeling these 
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voltages are referred to as the forward model. The inverse problem of calculating the 

position and orientation of the transmitting sphere from the induced voltages is referred to 

as backward solution. Since a closed form solution to the forward model equations can 

not be found, numerical techniques are employed to solve this over determined system of 

highly complex and non-linear equations (Dave and Bukiet [6]). Systematic errors are 

introduced in the solution due to imperfections in the equipment and approximations in the 

theoretical model. These errors were previously studied by Volcy [10] who proposed a 

27-point correction scheme for reducing them. The errors, evident in the form of 

inaccuracies in the solution and multiple solutions in orientation, are discussed in Chapters 

Three, Four and Five. 

1.2 Research Objectives 

The main objectives of this research are to improve the 'Solution Algorithm' to improve 

the accuracy and reliability of the tracking system by reducing the errors in the results and 

the multiple solutions in orientations and to apply the tracking system to the 'Vibrated 

Beds' experiment. 

As part of these objectives, the development of an efficient Data Acquisition 

System (DAS) for the 'Chute Flows' experiments, development and implementation of 

algorithms for smoothing of results and calculation of linear as well as angular velocities 

are also undertaken. Also it is proposed to make the tracking system more flexible and 

user friendly by improving the user interface and developing a single solution system 

capable of handling multiple setups. 
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1.3 Outline of Remaining Chapters 

Chapter Two presents an overview of the Three-Dimensional Non-Intrusive Particle 

Tracking System, its components and operation. In Chapter Three, an experimental study 

of 27-point correction scheme and model-reality voltage plots are presented, while in 

Chapter Four an empirical equation is proposed to replace the 27-point correction scheme. 

Chapter Five focuses on the problem of multiple solutions in orientations and describes the 

techniques used for reducing them. Chapter Six presents some experimental results 

obtained from the vibrated bed experiments and Chapter Seven discusses data smoothing 

and velocity calculation techniques. Chapter Eight summarizes the accomplishments of 

this research, draws conclusions based on current results and outlines directions for future 

work. 



CHAPTER 2 

AN OVERVIEW OF THE TRACKING SYSTEM 

The tracking system consists of three main parts: 1) the transmitter assembly and 

associated electronics, 2) the data acquisition system and, 3) the signal processing codes. 

In what follows, we will discuss the various aspects of this system. Section 2.1 discusses 

the basic principles of the technique while Section 2.2 describes the signal processing 

algorithm. Section 2.3 focuses on the hardware aspects, including the transmitter 

assembly, the data acquisition system and recent progress made in the transmitter 

electronics and the DAS. Applications of the tracking system to inclined chute flows and 

vibrated beds are discussed in Chapter Six. 

2.1 Basic Concepts 

Consider a small loop of wire carrying a sinusoidal current I = l0  sin (cot), where w is the 

frequency. This loop behaves like a small magnetic dipole, and has a magnetic field 

around it. If another loop is placed anywhere in this magnetic field, then there is a 

corresponding voltage induced within it. 	This is known as the principle of 

electromagnetic induction. The strength of the induced voltage depends on the relative 

position and orientation of the second loop. The current carrying loop is the transmitter, 

and the loop in which voltage is induced is the receiving antenna. 

It is difficult to find a convenient form for the voltage induced because of the large 

area of the receiving loop (Dave and Bukiet [6]). This problem is circumvented by using 

the principle of reciprocity (Van Valkenburg [8]) which allows an interchange of the 

sinusoidal current and induced voltage, if the area of the transmitting loop is very small. 

5 
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Accordingly, an induced voltage in the transmitting coil can be computed by assuming that 

the current I = /0  sin(ωt) is flowing in the receiving loop (which is much larger than the 

small transmitting coil). Then through the principle of reciprocity, this can be transformed 

into the actual induced voltage in the receiver loop. 

2.2 Signal Processing Codes 

Based on the principle of electromagnetic induction and assumption of perfect reciprocity, 

the voltage induced in transmitting coil can be theoretically computed if the physical 

position and orientation of the transmitting coil is known with respect to the antenna. This 

formulation is referred to as the Forward Model. Using the Forward Model and numerical 

techniques, the position and orientation of the transmitter can be computed if the induced 

voltages are known. This computation is referred to as the Backward Solution. 

2.2.1 Forward Model 

The location of the tracking sphere, specified by the spatial location of its center (x, y, z) 

and its orientation represented by a set of RPY (Roll, Pitch and Yaw) rotations, (a, 	y) 

relative to a fixed set of axes, is denoted by X = (x, y, z, a, ,β y) Given the location of 

the tracking sphere X, then 	the voltage induced in receiver i due to transmitter j can be 

expressed as, 
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If there are p receivers and q transmitters, then there are n7 = p x q equations in six 

position variables X. This model is a system of complex and highly nonlinear equations. 

For a given value of X, determination of v6  is called the Forward Solution. 

Figure 2A Transmitting Coil and Receiving Antenna 

The forward model development is based on Fig. 2.1, where the transmitter is 

depicted as a small circular loop and the receiving antenna is a rectangular loop of 

dimensions 21 x 2a. For the sake of brevity, only the final formulae of the forward model 

are presented. Details of this model are discussed in [5, 7, 9, 10]. The resultant magnetic 

flux density B is given by, 

where, 

is the permeability of the transmission medium (air) 
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Ii is the current in transmitter i (i = 1, 2, 3,...) 

Rk  , cos ϕk , θk = parameters describing relative position and orientation of the 

transmitter with respect to the receiving antenna. 

The voltage induced in the receiver is the inner product of B with the area vector 

of the transmitter A and can be written as, 

Here, x, y, z, are the position coordinates of the transmitter in a coordinate system 

fixed to the receiving loop antenna. 

Computation of voltages using the forward model requires the position and 

orientation of the transmitter in (or relative to) the antenna coordinate system. These 

computations, involving homogenous RPY coordinate transformations based on Paul [11]  

were implemented by Agrawal [9]. In brief, the calculations are, 

Matrix gTs  describes how the transmitter i (i = 1, 2, 3; for three transmitters) is positioned 

and oriented in the coordinate system of antenna j (j = 1, 2, 3, 	 m; the number of 

antennae). The actual packaging of three transmitters in the sphere results in a deviation 

from perfect orthogonality of the transmitting cores, resulting in deviation of measured 

voltages from those predicted by the forward model. This deviation is taken into account 

by appending a correction matrix to g Ts  in equation (2.5). 

Thus, the forward model can predict induced voltages, given the position and 

orientation of the transmitters. 	In the real experiments, the sphere's position and 
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orientation are unknown while the voltages are known. Therefore, the objective is to 

predict the position and orientation of the transmitters from these induced antennae 

voltages. This is done by considering equation (2.1) as an over determined system of m 

non-linear equations in X. The determination of X is called the backward solution and the 

method is described in the next section. 

2.2.2 Backward Solution 

A closed form solution to these non-linear equations (2.1) cannot be found. Hence, we 

use numerical techniques to solve for x. In theory, only six equations are needed to solve 

for six unknowns. However, in practice, due to noise problems, low signals at certain 

positions and orientations, and the inherent non-linearity of the system, we use a larger 

number of equations. This requires solution of an over determined system of highly 

complex and non-linear equations. 

The forward model equations are given in units of volts, while the actual measured 

signals from data acquisition are in arbitrary unit of counts. Therefore the counts must be 

scaled down to the actual voltage in volts. This is done by a calibration process described 

in Section 3.2. A flexible jig onto which the tracking sphere is mounted is used to obtain 

the data for calibration prior to experiments (and also to conduct controlled trajectory 

experiments). This jig permits independent control and adjustment of values of x, y, z, a, 

/3 and y when conducting the calibration procedure. 
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The idea of the backward solution is to find a solution X that minimizes the 

difference or residual between the measured values of voltage at actual X (i.e. Xactual) and 

those predicted by the m model equations. The residual R is given by, 

where, 

= (V  model —V  mesd) 

V model = voltage computed at X by forward model and 

V  mesd = voltage scanned by data acquisition system at Xactual 

To minimize equation (2.6), the inverse or backward solution algorithm uses the 

lmdif routine from MINPACK [12], which is More's [13] implementation of the 

Levenberg-Marquardt algorithm. A detailed discussion on the choice and implementation 

of the Lavenberg-Maquardt algorithm as the solution scheme can be found in Dave et al. 

[5] and Dave and Bukiet [6]. Figure 2.2 shows a flow chart of the backward algorithm. 

An initial guess X is provided as input to the voltage model. Based on this X, each 

transmitter's position and orientation is determined in each antenna's coordinate system by 

coordinate transformations. Using the forward model given by equations (2.2 - 2.4), a 

theoretical voltage array V model is computed. A similar measured voltage array V mesd is 

also obtained from the data acquisition system readings by calibration. An error voltage 

array EV is then calculated as the absolute difference between the theoretical and 

measured voltages. The magnitude of this error voltage array is, 
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To compute the solution that minimizes R, Imdif (as shown in the circular loop in 

Fig. 2.2) iteratively changes X to reduce ||EV|| until it falls within the acceptable range. 

Figure 2.2 Flow Chart of Backward Algorithm 
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The algorithm also uses a perturbation technique to improve the accuracy of the 

solutions. This involves providing initial guesses for position and orientation at a data 

point. From the resulting solutions for the particular data point, the one having lowest 

value is selected as the best solution. Perturbation techniques are employed to 

improve the robustness of the algorithm and prevent the solution from straying. The 

details can be found in [5, 7, 10]. 

Systematic errors are introduced in the model due to imperfections in equipment 

and approximations of the theoretical model. These have been minimized by adding an 

empirical extension, called 27 point correction scheme, proposed by Volcy [10] and 

implemented by Agrawal [9], to the theoretical model that is discussed in Chapter Three. 

2.3 Hardware Development 

Successful implementation of the tracking system is contingent on the ability to 

successfully build, integrate and "tune" the electrical, mechanical and computer hardware 

needed. Over a period of time, various alternative configurations have been studied, 

simulated and evaluated to attain the optimal configuration. Prior to conducting tracking 

experiments on the actual chute (to be described later), experiments are carried out on a 

model chute to perfect the electronic circuitry as well as the signal processing code. 

2.3.1 Experimental Setups 

The tracking system has been implemented for three experimental setups: 1) Model-chute, 

2) Chute and 3) Vibrated Cylinder. Since the particle tracking technique is based on the 
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principle of electromagnetic induction, all the setups are fabricated using radio transparent 

material, e.g., acrylic. The flow areas of interest are surrounded by loop antennae. 

The model-chute of dimensions 40"X20"X20" is made of radio transparent acrylic 

and is mounted with 7 antennae as shown in Fig. 2.3. The dotted rectangles in the figure 

represent the antennae. The numbers in parentheses show the sequencing of antennae, 

while the label (i.e. X, Y or Z) gives the direction of the normal to the plane of the 

antenna. Antennae dimensions are given in Table 2.1. Since the dimensions and aspect 

ratio of antennae play an important role in the solution process, a detailed study of the 

antennae configurations has been conducted by Patel [14]. 

Figure 2.3 Model-chute with Antennae 

The actual inclined chute is 10 feet long with a variable inclination angle from zero 

to 25 degrees. It has an adjustable width from 5 inches to 14.5 inches, and a flexible sluice 

entrance gate that can open from 0 to 9 inches. Further details on the chute can be found 
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in Zhang [15]. The entire volume of the chute is made accessible to the tracking sphere by 

using 27 antennae surrounding the flow region. Details of antennae dimensions and 

number are given in Table 2.1. The sequencing of the antennae is the same as shown in 

Fig. 2.3. In this setup, the transmitting sphere is used to measure the trajectory of the 

center of a sphere during chute flow experiments involving similar solid spheres. 

The vibrated cylindrical bed, shown in Fig. 2.4, is 4.5 inches in diameter and its 

floor can be vibrated from 6 Hz to 1000 Hz (the range being used is 10 Hz to 30 Hz), with 

an amplitude of up to 0.25 inch. The 1 inch transmitting particle can be tracked in this 

vibrated bed (consisting of spheres of variable diameters) by six surrounding loop 

antennae of dimensions given in Table 2.1. 

Figure 2.4 Vibrated Bed Setup 
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Table 2.1 Antennae Specification for the Three Setups 

Setup Total Number 
of Antennae 

Number of 
antennae 

Dimensions 

Model-Chute 7 
X - Antennae 3 20" X 20" 
Y - Antennae 2 20" X 40" 

Z - Antennae 2 20" X 40" 

Chute 27 
X - Antennae 11 24" X 24"  
Y - Antennae 8 24" X 32" 

Z - Antennae 8 24" X 32" 

Vibrated Bed 6 
X - Antennae 2 6" X 6" 

Y - Antennae 2 6" X 10" 

Z - Antennae 2 6" X 10" 

2.3.2 The Tracking Sphere and Transmitters 

The tracking particle is fabricated from a I" high density polyethylene sphere typical of 

those used in the chute flow experiments. A sphere is cut into two halves which are bored 

hollow and threaded to fit a cylindrical collar. Packaged within the sphere are three 

oscillators (broadcasting at 2 MHz, 3.65 MHz, and 4.4 MHz), the associated electronic 

circuitry and batteries. These particular frequencies are chosen in order to avoid 

interference from standard radio broadcast and radio communication frequencies and also 

to avoid harmonics. 

In the initial stages of the project, a single transmitter was used for particle 

tracking. Although this had the advantages of being easy to fabricate while consuming 

less power, it had a major disadvantage. When the transmitter axis was parallel to the 

plane of an antenna, results were highly inaccurate due to low signal to noise to ratio. 

Furthermore, due to symmetry of the voltages, if the transmitter was rotated about its own 

axis, voltage readings in all three antennae do not change (see Fig. 2.5). Such a rotation 
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of the transmitter, (and hence of the particle within which it is embedded), cannot be 

detected by the signal processing software. 

Figure 2.5 Orthogonality Effect 
(Adapted from Agrawal [9]) 

To overcome these problems, a three-transmitter system was designed and 

fabricated by Troiano [16]. The three transmitter core is shown in Fig. 2.6. The ferrite 

cross acts as the core of two transmitters, and the third transmitter coil is wound around 

these two using the flat ferrite of first two transmitters as its core material. Thus, the 

fields of all the three transmitters are mutually orthogonal. The surface mount devices that 

are part of the transmitters are mounted on printed circuit boards. 
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Figure 2.6 The Three-Transmitter Core 

The power supply is obtained from two Ni-Cd batteries (Eveready OverTime No. 

386) of 1.5V each, located on either end of the transmitter assembly. Fig. 2.7 shows that 

the relation between battery voltage and the DAS reading is linear in nature. Fig. 2.8 

shows the variation of the battery voltage over its life. Evidently the battery has an 

effective life of less than 20 minutes. Also, the battery is unstable at the start and end of 

its life. Therefore, it is important to avoid these periods for taking readings. To increase 

the battery life, it is important to switch off the transmitter when it is not in use. This can 

be either be done by using either a mechanical or an electronic switch. An optical switch 

was developed by Ren [17] for this purpose. When the transmitter is in ambient light the 

optical switch is ON while in dark the switch turn OFF after a 10 to 15 second delay. 
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Figure 2.7 Relation of Battery Voltage to DAS Reading (Ren [17]) 

Figure 2.8 Variation of Battery Voltage (Count) over its Life (Ren [17]) 

2.3.3 The Data Acquisition System (DAS) 

The Data Acquisition System has been developed by Troiano [16] and Ren [17]. It 

consists of the receiving antennae, multiplexers, amplifiers and A/D converters. On the 
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model-chute there are 7 antennae while the actual chute has 27 antennae. All the antennae 

consist of uniform hook up wires and have individual pre-amplifiers physically located 

within a few inches of its terminals. The antennae multiplexers and detecting boards are 

connected to pre-amplifier outputs with twisted pairs of wires to minimize stray pick up 

and distributed capacity. Current in the antennae is kept to a minimum so that the pre-

amplifier input impedance is high, while output impedance is low so that the twisted pair 

capacity has little or no effect upon the amplitude of the output signal. 

Signals picked up by an antenna are filtered through demodulator boards, fed to a 

pin on the data acquisition card and then stored on a personal computer. A channel is 

defined as the flow path of a signal from a transmitter (emitting at a given frequency) to 

the equivalent signal (counts) on the hard disk of PC. The signal path is given by: 

receiving antenna 	demodulator boards -4 input pin on data acquisition card. 

Fig. 2.9 shows a schematic of the DAS. The left-dashed block, labeled Antenna 

System, represents sixteen antennae that receive signals from the tracking sphere. Up to 

sixteen antennae can be read in this setup. The middle dashed block labeled Antenna 

Multiplexing and Detection has three subparts- Multiplexer, Clock circuitry and 

Demodulator Boards. The multiplexer is used to sequentially select each antenna to be 

read. The clock generates pulses that are fed to the counter and a variable duty clock. 

The counter controls the switching of multiplexer between antennae. 
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Figure 2.9 Data Acquisition System Schematic 

At a given instant, only one antenna is connected to all three demodulator boards, 

built for each of the 3 frequencies. While the signal induced in an antenna may be positive 

or negative, only its magnitude is output from the demodulator board. This signal goes to 

the input pin the of the data acquisition card on the PC. After a delay for transient 

response of the boards, a data ready signal is sent to PC through variable duty clock. This 

triggers the scanning cycle for scanning sixteen antennae at 2.0, 3.65 and 4.4 MHz 

frequencies in succession. 
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Figure 2.10 Block Diagram of the New Data Acquisition System for Chute 

A double buffering technique is used to increase the speed of data acquisition. 

Data in binary form is stored at a very fast rate in the virtual memory of PC during data 

acquisition. Later, it is transferred in ASCII format to the hard disk. The rate of data 

acquisition is 463 data sets/second on a 66 MHz Pentium and 208 data sets/second on a 

25 MHz 486 PC. Each set consists of all three frequency readings of sixteen antennae. A 

switching circuit has been developed for handling the 27 antennae on the actual flow chute 

since the DAS can manage only 16 antennae. A block diagram of the new Data 

Acquisition System for Chute developed by Ren [17] is shown in Fig. 2.10. 

Twenty-seven antennae are used in the chute system with fourteen antennae in the 

top section and fourteen in the bottom section, one X-antenna being common to both. In 

the main DAS board there are two binary controlled 16 channel multiplexers. The chute 

DAS is divided into two sections in order to save switching time and to acquire more 
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relevant information. When the transmitting particle is in the top section, readings are 

obtained only from antennae 1 to 14. The switching circuit, consisting of a 2 channel 

multiplexer, a comparator and a timer, monitors the signal in sixth X-antenna (common to 

both the top and bottom section) and compares its signal to a preset level. When the 

transmitter crosses the X-6 antenna, the switching circuit switches to bottom section and 

the readings are now obtained from antenna 14 to 27. The timer maintains the switched 

state for 10 to 20 seconds and then resets to top section. 

A much simpler DAS system, similar to that shown in Fig. 2.9, is used for the 

vibration experiment. 

In the following chapters, all the results, except where noted, are obtained from the 

model-chute setup. 



CHAPTER 3 

STUDY OF THE 27-POINT SCHEME 

3.1 Errors in the Tracking System 

Errors are always present in any physical measurement and can be classified into two main 

types: random errors and systematic errors. Random errors are unpredictable fluctuations 

that creep into any measurement and are self-normalizing over a period of time. Therefore 

random errors are also referred to as noise. Systematic errors, on the other hand, are 

introduced due to imperfections in the equipment and/or operator errors in taking 

measurements. The systematic errors are not self-normalizing and tend to accumulate and 

bias the readings. Volcy [10] studied the systematic errors in detail and found that these 

are introduced due to various reasons such as: 

— The field of the transmitter is not perfectly symmetrical 

— The amplifier and data acquisition boards are not perfectly linear 

— Magnetic coupling exists between antennae 

— Higher order terms are neglected in the derivation of the model 

— Principle of reciprocity is violated when the transmitter is very near the antenna 

To correct these systematic errors, Volcy [10] proposed various correction 

schemes consisting of empirical extensions to the voltage model in the form of three-

dimensional correction maps. Agrawal [9] implemented this 27-point correction scheme. 

The aim here is to demonstrate effectiveness of the 27-point correction scheme and select 

an effective reference point for the correction map. Section 3.2 discusses the basic 

concepts and implementation of the 27-point correction scheme in brief and explains the 

23 
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nomenclature adopted throughout the remaining sections of this chapter. Sections 3.3 

presents model-reality voltage plots while Section 3.4 discusses the effectiveness of the 

27-point correction scheme and choice of reference point. 

3.2 The 27-Point Correction Scheme 

Recall that (Section 2.2.2) the forward model equations are given in units of volts, while 

the actual measured signals from data acquisition are in arbitrary unit of counts. Therefore 

the counts must be scaled down to the actual voltage in volts. This is done by a process 

called calibration. For the purpose of calibration, voltage readings in units of counts are 

obtained from the DAS at predecided points called the calibration points. The forward 

model is also used to compute the voltage at the calibration points. A scaling factor is 

then obtained by taking a ratio of these two values. Thus, 

Such a scaling factor is obtained for each antenna-transmitter pair. For example, 

the model chute setup with 7 antennae has 21 scaling factors when 3 transmitters are used. 

This approach assumes that the scaling factors remain constant throughout the 

experimental space. However, it is observed that, in reality the scaling factors vary 

significantly over the experimental space. This can be attributed to the presence of 

systematic errors as discussed in Section 3.1. Volcy [10] has proposed to vary the scaling 

factors for every antenna-transmitter pair over the experimental space by creating an 

empirical correction map and interpolating correction to scaling factors. 
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A correction map is then created by using the scaling factors at the 27 points in the 

octant. A correction factor is a correction applied to the theoretical (forward model) 

voltage to compensate for the systematic errors in the actual voltage. Interpolation 

functions are set up between these 27 points to find the correction factor at any point in 

the experimental space. The interpolation functions make use of the symmetry of voltages 

about the antennae planes and can be summarized as, 

where, 

c.f. = correction factor 

Ψ

= interpolation function for calculating the correction factor 

(x, y, z, a, j5 	= position and orientation of transmitter in local antenna 

coordinates. 

Further details about the interpolation functions and implementation of the 27-

point correction scheme can be found in Agrawal [9]. The corrective effect of the 

correction scheme is demonstrated by means of model-reality plots described in the 

following sections. 



Figure 3.2 The 27 Nodes in an Octant 

The 27-point map needs to be set up only once for each antennae configuration. 

But prior to conducting an experiment, the correction map must be scaled to take care of 

the environmental changes, electronic drift, change in transmitter voltage and other such 

factors that might cause an overall scaling of the correction map. One of the 27 points is 

used as the reference point and scaling factor is found at this point using equation (3.1). 

This scaling factor is compared to that obtained while setting up the 27-point map and a 

constant correction is applied to the scaling factors obtained previously at all the 27 

points. This correction is equal to the ratio of new and old scaling factors at the reference 

point The three points along the axis of the antenna are considered as possible candidates 

for choice as reference points. These points, shown in Figure 3.2, are [000], [001] and 

[002]. Model-reality and error plots are generated in the following sections to show the 

27 
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effectiveness of the 27-point correction scheme and to choose one of the three points as 

the reference point. 

3.3 Model-Reality Plots 

The purpose of making model-reality plots is to compare the theoretical voltages given by 

the forward model to the actual voltages (obtained from the counts) given by the data 

acquisition system. Three trajectories (called Type I, Type II and Type III) are chosen 

along the central planes of the antenna for making the model-reality plots and are 

described in Sections 3.3.1, 3.3.2 and 3.3.3. Voltage readings (in counts) at these points 

are collected using the data acquisition system. These readings are converted to volts by 

using one of the points [000], [001] or [002] as the calibration point. Voltages (in volts) 

at these points are also given by the forward model since the positions along the trajectory 

are known. The plot of actual voltages obtained from the data acquisition system and the 

voltages predicted by the forward model, is called the model-reality plot. 

Since it is necessary to demonstrate the effectiveness of the 27-point correction 

scheme, and also choose one of the three points, [000], [001] and [002] as a reference 

point, there are six possible combinations of the conditions. The plots can be created with 

or without the 27-point correction scheme for each of the three points as the reference 

point. An error plot can also be plotted using the data for these six plots. Thus, each type 

of "model-reality plot set" consists of six model-reality plots and one error plot. In this 

and the following sections, an antenna of dimensions 20" X 20" is used to generate the 

model-reality plots. For this antenna, point [000], [001] and [002] are respectively 0", 5" 
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and 10" away from the plane of the antenna. One complete set of model-reality plots of 

Type I, II and III generated using a new transmitter (currently being used for experimental 

work) is presented and explained in this chapter. Another set generated using the old 

transmitter (used for the initial investigation by Agrawal [9]) is presented in Appendix A. 

All the plots in this chapter have been scaled up by a factor of 106  for better visualization. 

3.3.1 Model-Reality Plots: Type I 

The model-reality plots of Type I, hereby referred to as M-R (I), are generated using a 

trajectory normal to the plane of the antenna as shown in Figure 3.3. The z-axis of the 

antenna (in antenna coordinate system) and the axis of the transmitter are kept coincident 

and the distance between the transmitter and the antenna is increased from 0" to 20" at 

0.5" increments. 

Figure 3.3 Trajectory for M-R (I) 
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The collected data is used to generate the six model-reality plots. The collected 

data, converted to volts by calibration, gives rise to the "actual" voltage series. The 

"model" voltages are generated by the forward model with or without 27-point correction, 

using either of the three points as the reference point. Figures 3.4 through 3.9 are 

representative of the model-reality plots of Type I. Fig. 3.10 is the plot of errors, that is 

deviation of the model voltage from the actual for various conditions, as a percentage of 

maximum voltage. Careful observation of the error plots in Fig. 3.10 reveals that 

consistently lower errors are obtained on using 27-point correction with either point [000] 

or [002] as the reference point. 

Figure 3.4 M-R (I) no 27-point correction, reference point [000] 
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Figure 3.5 M-R (I) using 27-point correction, reference point [000] 

Figure 3.6 M-R (I) no 27-point correction, reference point [001] 
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Figure 3.7 M-R (I) using 27-point correction, reference point [001] 

Figure 3.8 M-R (I) no 27-point correction, reference point [002] 
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Figure 3.9 M-R (I) using 27-point correction, reference point [002] 

Figure 3.10 Error Plots for M-R (I) 

"0", "1" and "2" stand for the cases of using 27-point correction with [000], 
[001] and [002] as reference points respectively. "O_no", "1_no" and "2_no" are 
the corresponding cases without using 27-point correction. 
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3.3.2 Model-Reality Plots: Type II 

The model-reality plots of Type II, also referred to as M-R (II), are generated using a 

trajectory in the plane of an antenna as shown in Figure 3.11. The transmitter is moved in 

the plane of the antenna with the z-axis of the antenna (in antenna coordinate system) and 

the axis of the transmitter parallel. The distance between the z-axis of the antenna and the 

transmitter is varied from -5" to 5" in 0.5" increments. 

Figure 3.11 Trajectory for M-R (II) 

The collected data is used to generate the six model-reality plots. The collected 

data, converted to volts by calibration, gives rise to the "actual" voltage series. The 

"model" voltages are generated by the forward model with or without 27-point correction, 

using either of the three points as reference point. Figures 3.12 to 3.17 are representative 

of the model-reality plots of Type II. Fig. 3.18 is the plot of errors, that is deviation of the 

model voltage from the actual for various conditions, as a percentage of maximum 
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voltage. Careful observation of error plots (Fig. 3.18) shows that using 27-point 

correction with either point [000] or [002] as the reference point results in least errors. 

Figure 3.12 M-R (II) no 27-point correction, reference point [000] 

Figure 3.13 M-R (II) using 27-point correction, reference point [000] 
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Figure 3.14 M-R (II) no 27-point correction, reference point [001] 

Figure 3.15 M-R (II) using 27-point correction, reference point [001] 
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Figure 3.16 M-R (II) no 27-point Correction, reference point [002] 

Figure 3.17 M-R (II) using 27-point correction, reference point [002] 
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Figure 3.18 Error Plots for M-R (II) 

"0", "1" and "2" stand for the cases of using 27-point correction with [000], 
[001] and [002] as reference points respectively. "0_no", "1_no" and "2_no" are 
the corresponding cases without using 27-point correction. 

3.3.3 Model-Reality Plots: Type III 

The model-reality plots of Type III, also referred to as M-R (III), are generated by 

rotating the transmitter 180°  about the Y-axis of the antenna as shown in Figure 3.19. In 

the antenna system, this is a rotation such that the transmitter axis and antenna Z-axis, 

which are initially orthogonal, become parallel and coincident and then are orthogonal 

again as the transmitter completes a rotation of 180 degrees. Thus, the angle between the 

z-axis of the antenna and the transmitter axis is varied from -90°  to 90 in 10 increments. 
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Figure 3.19 Trajectory for M-R (III) 

The collected data is used to generate the six model-reality plots. The collected 

data, converted to volts by calibration, gives rise to the "actual" voltage series. The 

"model" voltages are generated by the forward model with or without 27-point correction, 

using either of the three points as the reference point. Figures 3.20 through 3.26 are 

representative of the model-reality plots of Type III. Fig. 3.27 is the plot of errors, that is 

deviation of the model voltage from the actual for various conditions, as a percentage of 

maximum voltage. Careful observation of the error plots in Fig. 3.26 shows that 

consistently lower errors are obtained when 27-point correction is used with either point 

[000] or [002] as the reference point. 
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Figure 3.20 M-R (III) no 27-point correction, reference point [000] 

Figure 3.21 M-R (III) using 27-point correction, reference point [000] 
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Figure 3.22 M-R (III) no 27-point correction, reference point [001] 

Figure 3.23 M-R (III) using 27-point correction, reference point [001] 
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Figure 3.24 M-R (III) no 27-point correction, reference point [002] 

Figure 3.25 M-R (III) using 27-point correction, reference point [002] 
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Figure 3.26 Error Plots for M-R (III) 

"0", "1" and "2" stand for the cases of using 27-point correction with [000], 
[001] and [002] as reference points respectively. "O_no", "1_no" and "2_no" are 
the corresponding cases without using 27-point correction. 

3.4 Conclusions of the 27-Point Study 

As shown in previous sections as well as in Appendix A, the 27-point correction scheme is 

effective in correcting the theoretical voltages. and the theoretical voltages modified using 

the 27-point correction scheme effectively model the actual voltage map. The maximum 

errors between the theoretical and actual voltages are reduced on using the 27-point 

correction scheme and lie between 2% to 5% of the maximum voltage. 

The error ranges obtained depend on the choice of reference point. It is observed 

that least errors are obtained by using either point [000] or point [002] as the reference 

point. The errors and error profiles obtained for both of these points are almost identical. 

Therefore the final selection of the reference point is based on practical considerations. 
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In general, for any antenna, reference point [000] lies in the plane or close to the 

plane of the antenna and might not be accessible easily in every experimental setup. On 

the other hand, point [002] lies farthest away from the antenna and is generally in the 

experimental space and therefore very easily accessible. Also, selection of point [002] will 

also lead to a reduction in the number of setups to be made for calibrating all the antennae. 

This is because the reference point [002] of adjacent antennae are normally common and 

readings for them can be taken in a single calibration setup. The number of calibration 

setups required for chute experiment using point [000] will be 84 (28 antennae X 3 

transmitters). These are reduced to just 48 if reference point [002] is used as the reference 

point. For the vibrated bed experiment, the number of calibration setups can be reduced 

from 18 to just 4 and even the jig required for calibration can be made simple. Taking all 

these factors into consideration, reference point [002] is chosen as the reference point. 

Thus it can be concluded that 27-point correction scheme with reference point 

[002] as the reference point reduces the systematic errors in the voltages by effectively 

modifying the theoretical voltages. 



CHAPTER 4 

AN EQUATION TO REPLACE THE 27-POINT SCHEME 

4.1 Need for an Equation 

A detailed study of the 27-point correction scheme for reducing systematic errors 

introduced in the tracking solution was presented in Chapter 3. The scheme is effective in 

minimizing the errors but it suffers from some disadvantages. The 27-point map has to be 

set up individually for every distinct tracking setup. This involves deciding the physical 

limits of the experimental space requiring correction (based on the antenna size, inter-

antenna spacing and antenna configuration), and taking voltage readings at all of the 27 

points of an octant of this space. This is so because the effectiveness of the 27-point 

scheme depends on the proper choice of the 27 points, and the accuracy with which 

voltage readings are taken at these points. 

Also, if large antennae are used, 27 nodes may not be enough to model the non-

linearity of scaling factors. In such cases a higher number of nodes may be required and 

the interpolation function will have to be modified accordingly. Also, the 27-point scheme 

is implemented for a single transmitter and the correction is assumed to be same for all 

three transmitters (Agrawal [9]). 

In order to minimize these disadvantages, it is proposed to formulate an equation 

to replace the 27-point correction scheme. The proposed correction equation is the same 

for all systems and also eliminates the laborious task of determining the 27 points and 

taking accurate voltage readings for setting up the map. 
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4.2 The Proposed Equation 

A careful study of the model-reality plots shows that the errors in the voltages depend not 

only on the position of the transmitter but also on its orientation. Dave [18] suggested 

that it could be possible to model the systematic errors by investigating the non-linear 

nature of the errors and by intuitively adding a small quadratic or higher order term to the 

voltage equation stated in Section 2.2.1. Recall that the theoretical voltage (Vth,) induced 

in a receiving loop antenna by a transmitting coil is given by, 

where, 

B = the resultant magnetic flux density 

A= the area vector of the transmitting coil 

N = number of turns in the transmitting coil 

ω

 = 27r times the frequency of oscillation 

cosa, cosβ , cosy= direction cosines of transmitter axis in antenna coordinate 

system 

This voltage model assumes that the field of the transmitter is perfectly 

symmetrical, and the amplifier and data acquisition boards are perfectly linear. It also 

assumes that the principle of reciprocity is valid throughout the experimental space. As a 

consequence, the theoretical voltage map obtained using this model is symmetrical over 

the antenna while in practice this is not the case. The systematic errors in voltages can be 
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compensated by adding a correction factor Vc to the theoretical voltage Vth. Then, the 

new compensated model voltage V will be given by, 

where V. is the correction added to the theoretical voltage. 

The objective here is to find this correction factor Vc. There are two approaches to 

this problem: analytical and intuitive. The analytical approach involves an in depth 

mathematical analysis of the voltage model and derivation of higher order terms by 

techniques such as Taylor series expansion or from the physics of the problem. The 

coefficients can then be determined by minimization of errors from a large set of 

experimental data points. In the intuitive approach adopted here, experience and insight in 

using the voltage model is employed to analyze various model-reality voltage plots and 

suggest intuitively an equation correction. Three types of model-reality plots (explained in 

Section 3.3) are used for this purpose. 

It was observed that the correction equation appears to require quadratic or higher 

order terms. Therefore, various equations with quadratic, cubic and higher order terms 

were developed and corresponding model-reality plots were generated. After a careful 

study of all the model-reality plots, equation (4.4) was selected as the correction equation. 

Since N w and A are constant for a given transmitter, the term (-NωA) can be combined 

into a single constant k. Then the correction equation is given by, 
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Effectively, the equation (4.4) adds a 15% quadratic and a 0.15% cubic behavior 

to the theoretical voltage to give the model voltage. 

4.3 Testing of the Equation 

In order to test the correction Vc, experiments are conducted in all the three setups - the 

model-chute, inclined chute and vibrated bed. The data collected is processed using the 

27-point correction scheme (with point [002] as the reference point), and then by using 

the correction equation. The results are presented in the following pages. 

Figures 4.1 to 4.3 are obtained for the model-chute setup. The data used for these 

plots is the same as that used for generating the model-reality plots in Section 3.3. Here 

an additional series representing voltages obtained after implementing the correction 

equation is also presented alongside the series for actual voltages and theoretical voltages 

after applying the 27-point correction (with point [002] as the reference point). An 

additional set of plots using the data of model-reality plots in Appendix A is presented in 

Appendix B. The nomenclature for the figures is same as that in Chapter 3. 

It is observed that the series for voltage with 27-point correction and the series for 

voltage with equation correction are almost identical. Hence, it can be said that the 

corrections added by the correction equation are in good agreement with those added by 

the 27-point correction scheme. 
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Figure 4.1 M-R (I) using equation correction 
(Using data of Figure 3.9) 

Figure 4.2 M-R (II) using equation correction 
(Using data of Figure 3.17) 
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Figure 4.3 M-R (III) using equation correction 

(Using data of Figure 3.25) 

Figures 4.4 through 4.15 are obtained from the data collected from the top half of 

inclined chute. The global x, y and z coordinates of the transmitting sphere remain 

constant at (x = 41", y = 12", z = 15") and there is no rotation about x-axis i.e.(a = 00). 

The sphere is then rotated first about the global z-axis (y) and then about the global y-axis 

(β   ). The data thus gathered is processed in two ways to predict the trajectory, that is, 

with the 27-point correction scheme and with the correction equation. Both sets of results 

have been presented here. The results shown in Figures 4.4 to 4.9 are obtained using the 

27-point correction scheme (i.e. without using the equation correction) while those shown 

in Figures 4.10 to 4.15 are obtained using the correction equation. The maximum and 

mean errors in the results as well as the standard deviations are given below each plot. 
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Figure 4.4 X plot, without correction equation 
(maximum error = 1.63", mean error = 0.36", standard deviation = 0.30") 

Figure 4.5 Y plot, without correction equation 
(maximum error = 0.30", mean error = 0.11", standard deviation = 0.07") 
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Figure 4.6 Z plot, without correction equation 
(maximum error = 0.53", mean error = 0.32", standard deviation = 0.12") 

Figure 4.7 a plot, without correction equation 

(maximum error = 24.84°, mean error = 4.24°, standard deviation = 4.69°) 
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Figure 4.8 y plot, without correction equation 

(maximum error = 3.02°, mean error = 1.44°, standard deviation = 0.88°) 

Figure 4.9 ᵦ  plot, without correction equation 

(maximum error = 20.48°, mean error = 2.18°, standard deviation = 4.06°) 
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A sudden glitch is observed in the plots for x, y, a and ᵦ  at data point 21 even 

when 27-point correction is used. Such glitches were also observed previously by 

Agrawal [9]. These could be due to asymmetry of the voltage map or an anomaly in the 

27-point map. When the correction equation is used instead of the 27-point correction 

scheme, the glitch is no longer observed in any of the plots. The results obtained at other 

points are the same as (or better than) those obtained using the 27-point correction 

scheme. This implies that the correction equation is able to model the errors in the voltage 

map more accurately than the 27-point scheme. The results obtained by using the 

correction equation are presented in Figures 4.10 to 4.15. 

Figure 4.10 X plot, using correction equation 
(maximum error = 0.55", mean error = 0.32", standard deviation = 0.12") 
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Figure 4.11 Y plot, using correction equation 
(maximum error = 0.29", mean error = 0.09", standard deviation = 0.07") 

Figure 4.12 Z plot, using correction equation 
(maximum error = 0.56", mean error = 0.32", standard deviation = 0.11") 
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Figure 4.13 a plot, using correction equation 

(maximum error = 5.50°, mean error = 3.06°, standard deviation = 1.24°) 

Figure 4.14 y plot, using correction equation 

(maximum error = 2.83°, mean error = 1.47°, standard deviation = 0.88°) 
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Figure 4.15 ᵦ  plot, using correction equation 

(maximum error = 3.18°, mean error = 1.38°, standard deviation = 0.96°) 

The model-reality plots for the vibrated bed setup are shown in Figures 4.17 and 

4.18. The trajectory for both the plots is similar in nature. The z-axis of the antenna (in 

antenna coordinate system) and the axis of the transmitter are kept coincident and the 

distance between the transmitter and the antenna is increased as shown in Figure 4.16. 

Figure 4.16 Trajectory for vibrated bed model-reality plots 
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Figure 4.17 is the model reality plot for the antenna of size 6"X6". Here the 

distance between the transmitter and antenna is increased from 1.5" to 8.5" at 0.5" 

increments. 

Figure 4.17 Model-Reality plot for vibrated bed: 6"X6" antenna 

Figure 4.18 is the model reality plot for the antenna of size 6"X10". Here the 

distance between the transmitter and antenna is increased from 1.5" to 8.5" at 0.5" 

increments. 

Due to small size of the vibrated bed experimental setup, it is extremely difficult to 

take voltage reading for setting up the 27-point correction scheme. It is observed that 

there is a very good agreement between the theoretical and the actual voltages throughout 

the usable extent of the antenna. There is a deviation of model voltages from the actual 

voltages near the antenna plane. This could be because near the plane of the antenna, the 
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area of the transmitting loop is not negligible compared to that of the antenna. This 

results in the principle of reciprocity becoming invalid near the antenna plane. These 

deviations are minimized (almost eliminated) when the correction equation is used to 

modify the theoretical voltages. 

Figure 4.18 Model-Reality plot for vibrated bed: 6"X10" antenna 

From all the above plots it can be concluded that the correction equation is an 

accurate modeling of the systematic errors and provides a better alternative to the 27-

point scheme. The correction equation can also be used to correct the theoretical voltage 

in cases such as vibration cell, where it is extremely difficult to accurately setup the 27-

point scheme. 



CHAPTER 5 

MULTIPLE SOLUTIONS IN ORIENTATIONS 

Sometimes it is observed that the results obtained are correct in positions but not in 

angles. A careful analysis of such solutions reveals that in most of the cases although the 

angles are very different, they have almost same direction cosines. Such solutions are 

called "multiple solutions in orientations". 

The forward model predicts theoretical voltages based on the direction cosines of 

transmitter axis in antenna coordinate system. The direction cosines are functions of a, ᵦ  

and y, however, a given set of direction cosines does not correspond to a unique set of 

angles (a, ,8, y). In other words, in certain cases, different sets of angles (a, ,β y) can 

result in almost equal direction cosines values and hence almost equal theoretical voltages. 

Hence, the "multiple solutions in orientations" are the angular solutions that are apparently 

very different from the actual solution but have almost the same direction cosines as the 

correct solution. 

In this chapter two techniques for minimizing the multiple solutions in orientations 

are presented. Section 5.1 discusses a solution re-extraction scheme while Section 5.2 

presents a different representation of angles called equivalent angle-axis representation. 

5.1 Solution Re-extraction 

A majority of the multiple solutions in orientations are of the type mentioned by Agrawal 

[9] and reproduced in Table 5.1. It is observed from the table that the predicted angles 

differ by multiples of 90°. For example, the predicted a =247°  is approximately the actual 

a = 70°  + 2(90°), predicted /3 = 196°  is approximately the actual /3 = 6(90°) - 345°. 
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Though it is possible to correct all the multiple solutions in orientations by examining each 

solution, no generic equation is found for eliminating these multiple solutions. Hence, the 

source of the multiple solutions, i.e. the solution algorithm is closely examined. 

Table 5.1 Multiple solutions in orientations (Agrawal [9]) 

Actual (degree) Predicted (degree) 
X Y Z a 13 y X Y  Z a y 

6.3 2.8 6.4 0 345 30 6.1 3.2 6.5 174 193 211 

12.3 6.0 8.1 70 345 30 12.1 6.1 7.9 247 196 213 

14.0 7.0 8.6 90 345 30 13.8 6.7 8.2 267 197 212 
14.8 7.5 8.8 100 345 30 15.3 7.8 8.9 260 16 208 

The backward solution algorithm employs a perturbation technique for calculating 

the positions and orientations from the voltages. This involves individually perturbing 

each of the unknowns x, y, z, a, and y about initial guesses to converge to a solution 

where the residuals are minimum as discussed in Section 2.2. Due to the random nature of 

the perturbation technique and periodicity of trigonometric functions, often the algorithm 

converges to an angular solution that is different from the expected solution but has the 

same direction cosines. 

A solution re-extraction scheme is developed and used to map these solutions into 

the interval [-180°, 180°] for post-processing and better visualization of results. The 

solution given by the backward algorithm is used to calculate the global to transmitter 

transformation matrix, T given by equation (5.1). A simple and easy to use representation 

of the transformation matrix T is given by equation (5.2). 
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The angles can be re-extracted from this matrix using the atan2(sin, cos) function 

as shown in equations (5.3), (5.4) and (5.5). Since the atan2 function takes both the sine 

and the cosine of the angle as its arguments, information about the sign of the angle is 

preserved and a unique value in the interval [-180◦, 1801 is found. 

Results obtained after re-extracting the actual and the predicted angles shown in 

Table 5.1 are presented in Table 5.2. The results, except for the last one, no longer exhibit 

multiple solutions in orientations. 

Table 51 Table 5.1 after solution re-extraction 

Actual (degree) Predicted (degree) 

X Y Z a ᵦy X Y Z a ᵦ  y 

6.3 2.8 6.4 0 -15 30 6.1 3.2 6.5 -6 -13 31 

12.3 6.0 8.1 70 -15 30 12.1 6.1 7.9 67 -16 33 

14.0 7.0 8.6 90 -15 30 13.8 6.7 8.2 87 -17 32 

14.8 7.5 8.8 100 -15 30 15.3 7.8 8.9 -100 16 -152 
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The solution re-extraction process results in a marked improvement in visualization 

of results that is evident from Figures 5.1 and 5.2. Both of these plots are for the same 

experiment. The transmitting sphere was allowed to roll down an inclined plane with the 

rotation taking place about the y-axis. 

rotation /3 is shown here. 

Only the parameter under consideration i.e. the 

Figure 5.1 Rotation before solution re-extraction 

Figure 5.2 Rotation ᵦ  after solution re-extraction 
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5.2 Equivalent Angle-Axis Representation 

There are various methods of representing rotations in three dimensions. We have 

adopted the Roll-Pitch-Yaw or RPY convention as explained by Paul [11] for calculating 

the rotations. According to the RPY convention, the frrst rotation a is about the x-axis, 

followed by a rotation /3 about y-axis and then a rotation 7 about the z-axis. 

Figure 5.3 The equivalent angle-axis representation 

In this section another representation of rotations, the equivalent angle-axis 

representation as explained by Craig [19] and Paul [11] is introduced. Using this 

convention, it is possible to represent any angular transformation as a rotation about an 

equivalent axis. Thus the rotations a about x-axis, ᵦ  about y-axis and y about z-axis can 

be converted to an equivalent rotation 8 about an axis k with unit vectors kx, k,, and kz as 

shown in Figure 5.3. The corresponding transformation matrix is given by equation (5.6). 

The procedure for converting the angles a, /3 and y into an equivalent rotation θ about an 

axis with unit vectors kx, ky, kz is detailed in Appendix C. 
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The equivalent angle-axis representation is helpful in visualizing the results and 

also converts orientation data into a form that is more helpful for generating animations 

from the obtained results. 

An interesting application of this representation is to check whether the errors in 

the orientations even after solution re-extraction are in fact multiple solutions. This is 

demonstrated by the series of plots, Figures 5.4 through 5.13. This experiment was 

conducted in the vibrated bed setup using the calibration jig by moving the transmitter in x 

direction, keeping y, z, a, f.3 and y fixed. Figures 5.4 through 5.9 are the results obtained 

from this straight run experiment. 

Figure 5.4 Straight run: X plot 
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Figure 5.5 Straight run: Y plot 

Figure 5.6 Straight run: Z plot 
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Figure 5.7 Straight run: a plot 

Figure 5.8 Straight run: /3 plot 
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Figure 5.9 Straight run: y plot 

There is a very good agreement between the actual and predicted values of x, y, z 

and ,β but very large errors are seen in a and y These surprisingly large errors in a and y 

are similar in nature and magnitude and hence they might be interdependent. 

When the angles are converted to the equivalent angle-axis representation, no such 

large errors are observed in either the axis or the equivalent angle of rotation as seen in 

Figures 5.10 to 5.13. This indicates that the errors in a and y are certainly a case of 

multiple solution in orientations. Though the equivalent angle-axis representation of 

angles proves that these errors were a case of multiple solutions, the nature and cause of 

these multiple solutions is not very well understood. 
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Figure 5.10 Straight run: kx plot 

Figure 5.11 Straight run: ky plot 
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Figure 5.12 Straight run: kz plot 

Figure 5.13 Straight run: e plot 

Thus, the solution re-extraction process and the equivalent angle-axis representation 

scheme demonstrated in this chapter are successfully able to eliminate a large number of 

multiple solutions in orientations. 



CHAPTER 6 

EXPERIMENTAL RESULTS 

The particle tracking system has been applied to the study of one model and two 

experimental setupsy In this chapter, some results obtained from the vibrated bed and the 

inclined chute are presented. Results of a free fall test carried out in the model-chute are 

presented in Section 6.1. Section 6.2 shows some vibrated bed results while Section 6y3 

presents the inclined chute results. 

6.1 Free Fall Test 

In order to check the performance of the data acquisition system with fast data acquisition 

a controlled trajectory is used where the tracking sphere is allowed to fall freely from rest. 

The objective of this "free fall test" is to check: 

• The real time data acquisition capability of the DASy 

• The accuracy of the DAS. 

In this experiment, the model-chute is oriented with its x-axis vertical and the ball 

containing the transmitters is tracked as it falls. Since the data acquisition rate is known, 

the time between data points is known. From the trajectory x(t) = 0.5at2  predicted by the 

signal processing backward algorithm, the acceleration a of the sphere can be computed 

by fitting the trajectory with a quadratic. This yielded a = 383.97 inch/s2  which is in very 

good agreement with the accepted value of g = 386.4 inch/s2. Only the typical results in 

x, y, z are shown in Figures 6.1, 6.2 and 6.3. Details can be found in Gupta [20]. From 

the free fall test results it can be concluded that the DAS is capable of real time data 

acquisition. 
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Figure 6.1 Free fall test: X plot 

Figure 6.2 Free fall test: Y plot 
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Figure 6.3 Free fall test: Z plot 

6.2 Vibrated Bed Results 

It has been observed that in vibrated beds larger particles tend to rise to the top. This has 

been attributed to convective transport. Recently, experiments have been conducted in 

our laboratory (La Rosa [21], Rosato et al. [22]) to study this phenomenon. The 

experiments simply measured the time required for a single large particle to be carried to 

the surface of the bed. The 3-dimensional, non-intrusive particle tracking system has been 

adapted to study the actual trajectory of this large particle. One set of results is presented 

in Figures 6.4 to 6.9. In this experiment, the larger (transmitting) sphere of 1" diameter 

was placed at the bottom of a bed of 0.125" diameter particles and the bed was vibrated at 

15 Hz with an amplitude of 0.125". It was observed that the particle rose to the top of the 

bed in less than 17 seconds. The Fast Fourier Transform (FFT) of the movement of the 

sphere in X-direction is shown in Fig. 6.4c. The dominant frequency of 7.5 Hz, as 
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expected, is half the frequency of vibration. Additional results obtained from the vibrated 

bed setup are presented in Appendix D. 

Figure 6.4a Vibrated Bed (f = 15 Hz, a = 0.125"): X plot 

Figure 6.4b Vibrated Bed (f= 15 Hz, a = 0.125").  X plot (detailed view) 
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Figure 6.4c Vibrated Bed (f = 15 Hz, a = 0.125"): FFT of X plot 

Figure 6.5 Vibrated Bed (f= 15 Hz, a = 0.125"): Y plot 
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Figure 6.6 Vibrated Bed (f = 15 Hz, a = 0.125"): Z plot 

Figure 6.7 Vibrated Bed (f= 15 Hz, a = 0.125"): a plot 
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Figure 6.8 Vibrated Bed (f = 15 Hz, a = 0.125"): ᵦ  plot 

Figure 6.9 Vibrated Bed (f = 15 Hz, a = 0.125"): y plot 
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6.3 Inclined Chute Results 

Figures 6.10 to 6.15 are the results obtained from the bottom half of inclined chute setup. 

In the incremental (controlled) trajectory "cbstrt" presented below, the transmitting sphere 

is held in the calibration jig. The jig is then moved along the global x-axis from x=59" to 

x=107" in 2" increments except at data points 15 (where the increment is 3") and 17 

(where the increment is 1"). The y and z coordinates are kept fixed at 12" and rotations 

a, ᵦ  and y are zero degrees. Very good results are obtained with only 0.34", 0.10" and 

0.06" mean errors in x, y and z coordinates and 1.47°, 0.70° and 0.56° mean error in a, 13 

and y rotations respectively. Additional results obtained from the top as well as the 

bottom half of the inclined chute are presented in Appendix E. 

Figure 6.10 Run cbstrt: X plot 

(maximum error = 0.61", mean error = 0.34", standard deviation = 0.15°) 
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Figure 6.11 Run cbstrt: Y plot 
(maximum error = 0.29", mean error = 0.10", standard deviation = 0.08") 

Figure 6.12 Run cbstrt: Z plot 
(maximum error = 0.21", mean error = 0.06", standard deviation = 0.05") 
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Figure 6.13 Run cbstrt: a plot 
(maximum error = 2.07°, mean error = 1.47°, standard deviation = 0.47°) 

Figure 6.14 Run cbstrt: ᵦ  plot 
(maximum error = 1.92°, mean error = 0.70°, standard deviation = 0.37°) 
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Figure 6.15 Run cbstrt: y plot 
(maximum error = 1.09°, mean error = 0.56°, standard deviation = 0.25°) 

The tracking system has been tested on the vibrated bed in incremental as well as 

fast mode while in the inclined chute, only incremental testing has been done. From the 

results plotted above and in Appendices D and E, it can be concluded that the tracking 

system is capable of providing accurate and meaningful results. The accuracies of the 

tracking system for vibrated bed and inclined chute are summarized in Table 6.1. 

Table 6.1 Accuracies of the tracking system 

Accuracy Vibrated Bed Inclined Chute 

Linear 0.03" 0.3" 

Angular 1◦  10° 



CHAPTER 7 

DATA SMOOTHING AND VELOCITY CALCULATION 

7.1 Smoothing of the Results 

Errors present in the tracking system are of two types: systematic errors and random 

errors. Sources of the systematic errors and techniques employed to correct these have 

been discussed in Chapter 3 and Chapter 4. In this section we discuss the random errors 

and a smoothing technique for minimizing their effect. 

Random errors are unpredictable fluctuations that may be introduced by various 

factors such as radio noise, electromagnetic reflection etc. In order to check the nature of 

these random errors in the tracking system, an experiment was performed in the vibrated 

bed setup. The transmitting sphere was kept stationery at one position and data was 

collected at 463 Hz for two seconds. This data was then used to generate histograms, one 

of which is presented in Figure 7.1. 

Figure 7.1 Histogram for voltage (counts) 
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After processing the voltage data, histograms were also generated for calculated 

trajectory (x, y, z,a, /3, y). The histogram for a rotation is shown in Figure 7.2y It is seen 

that the random errors present in voltages and resulting trajectories are almost Gaussian in 

nature. 

Figure 7.2 Histogram for a. rotation 

It has been observed that the effect of random errors which are generally Gaussian 

in nature, can be minimized by using Gaussian smoothing techniques (Bevington [23]) and 

the nature of this Gaussian distribution can be expressed by the following equation: 

where, 

σ

 is the standard deviation of the data 

µ

 is the mean value of data.  
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The smoothing technique is implemented in the form 	of equation (7.2) [24]. The 

smoothing is done in steps, determined by the number of passes Pm. The number of points 

in the range /min to imax considered for applying Gaussian weights is determined by the 

standard deviation σ  specified by the user. In the first pass, smoothing is done directly on 

the unsmoothed data and in the subsequent passes, Gaussian weights are applied to the 

difference between unsmoothed and smoothed values of the points over the interval imin to 

imax. The amount of smoothing is thus affected by the number of successive passes and 

standard deviation. Thus there is a complete control over the smoothing process. 

where, 

pt(n) is the unsmoothed value of data point n. 

smo_pt(np) is the smoothed value of data point n after P passes. 

Pn is the total number of passes. 

np  is the total number of pointsy 

imin and imax define the moving range of points over which Gaussian weights are 

applied. 

Figure 7.3 shows the effect of smoothing applied to the results. The plot depicts 

the result of a "rigid vibration" experiment. In this experiment, the transmitting sphere is 

rigidly mounted on the vibration exciter of the vibrated bed setup and vibrated at a 

frequency of 25 Hz. Figure 7.3 shows both the raw (unsmoothed) and smoothed result of 

this experiment. Since the vibration is in x direction, only the X plot is shown here. 



Figure 7.3 Effect of smoothing on rigid vibration result: X plot 

(a) (b) 
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Figure 7.4 Effect of smoothing on rigid vibration result: FFT 

Figure 7.4 shows FFTs of the two data series in Figure 7.3. Figure 7.4(a) is the FFT of 

rigid vibration X plot before smoothing. It is seen that besides the dominant 25 Hz 

frequency, noise of higher frequency is also present. Figure 7.4(b) is the FFT of rigid 

vibration X plot after smoothing. The high frequency noise present in the unsmoothed 

results is no longer seen. A marked improvement is observed in Figures 7.3 and 7.4. 
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7.2 Calculation of Velocities 

Once the position and orientation of the tracking sphere is known, the next step in data 

processing is the calculation of velocity of the ball - both linear as well as angulary The 

results should be post-processed prior to calculating the velocities because random errors 

and multiple solutions in solutions can result in large and unrealistic fluctuations in 

calculated velocities. This post-processing is done by smoothing the results (Section 7.1) 

and by reducing multiple solutions in orientations (Chapter 5). 

We know that velocity is the first derivative of displacement. Hence, velocity of 

the transmitting sphere can be calculated numerically using the "Five Point Formula" 

discussed by Burden et al. [25]. This formula is used to calculate the components of linear 

as well as angular velocities of the sphere. 

where, 

t is the time between consecutive readings 

Xi, is X, at data point  j 

Vi  is Vi at data point j 

Velocities calculated for the rigid vibration experiment (discussed in Section 7.1) 

are presented in Figures 7.5 to 7y10. Figures 7y5 to 7.7 are the components of the linear 



87 

velocity V, while Figures 7.8 to 7.10 are the components of the angular velocity co. The 

units used here are m/s for linear velocities and radian/s for angular velocities. 

Figure 7.5 Linear velocity of rigid vibration: V, 

Figure 7.6 Linear velocity of rigid vibration: Vy 
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Figure 7.7 Linear velocity of rigid vibration: V, 

As expected, Vx (in the direction of vibration) is the major component of linear velocity 

with small fluctuations in Vy and V,. 

Figure 7.8 Angular velocity of rigid vibration: ωx 
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Figure 7.9 Angular velocity of rigid vibration: y 

Figure 7.10 Angular velocity of rigid vibration: w 

Similarly it is also possible to calculate the accelerations as derivatives of 

velocities. Calculation of velocities and acceleration can provide valuable insight into a 
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physical process as velocity is directly related to energy and acceleration to forces and 

impulses. 

Here it must be emphasized that the only direct measurement we have is that of the 

trajectory of the sphere. 	Velocity and acceleration are derived quantities. 	Since 

calculation of velocity and acceleration is the process of calculating derivatives of the 

positions and orientations, it is very sensitive to noise. Therefore, the accuracy with which 

velocity and acceleration can be calculated is dependent on the accuracy of calculation of 

the positions and orientations and success in filtering out the random errors and noise from 

the solution. Further work needs to be done on smoothing the results before velocity and 

acceleration can be calculated with a high degree of confidencey Hence caution should be 

exercised in directly interpreting the calculated velocity and acceleration values. 



CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 Summary of Progress 

In this thesis the implementation aspects of the three-dimensional non-intrusive particle 

tracking system were discussed. Various error reduction techniques were proposed and 

implemented. Experimental results obtained from the vibrated bed setup as well as some 

preliminary results from the inclined chute setup were also presented. 

One of the main focus was the reduction of systematic as well as random errors. 

Effectiveness of the 27-point correction scheme proposed by Volcy [10] and implemented 

by Agrawal [9] was demonstrated experimentally and point [002] was chosen as the 

reference point. Further, an intuitive empirical equation was proposed to replace the 27-

point correction scheme in order to overcome some of its inherent disadvantages. A 

Gaussian smoothing technique was also implemented for reduction of random errors 

present in the solution. 

Another problem addressed was the multiple solutions in orientations. A solution 

re-extraction scheme was implemented as a post-processing technique to reduce these 

multiple solutions. Equivalent angle-axis representation was also introduced for better 

visualization of orientation results. 

The tracking system has been implemented to the inclined chute and the vibrated 

bed experimental setup. Prior to conducting experiments, the antennae configuration was 

decided and the antennae were setup. The data acquisition system consisting of pre-

amplifiers and demodulator boards was also fabricated. A switching circuit was designed 

and implemented by Ren [17] for the inclined chute setup in order to efficiently monitor 
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the whole chutey An optical switch was also developed by Ren [17] to conserve battery 

consumption. 

A single data processing code was developed for all the systems by merging 

together different versions of the code into a single generic code controlled by command 

line arguments. Once the setup and solution scheme is specified, the tracking codes 

automatically choose the correct parameters to be used. The code was also made faster, 

more efficient and user friendly. 

The particle tracking system has been used to obtain interesting results from the 

vibrated bed setup which were presented in Chapter Six and Appendix D. Further work 

still needs to be done on the inclined chute setup, before tracking experiments can be 

performed 	on it. 

8.2 Future Work 

The tracking system has been used to obtain accurate experimental results from the 

vibrated bed setup but further work can be done on the tracking system to perfect it and 

enhance its utility. 

The tracking sphere is considered to be typical of the particles in the flow (for 

chute flows) or larger particles undergoing segregation (in the vibrated bed) whose 

trajectory is tracedy But due to unequal weight distribution within the tracking sphere, the 

sphere becomes unbalanced and no longer remains typical of the other particles. This 

unbalance tends to bias the trajectory followed by the sphere and hence is of immediate 

and great concern and needs to be looked into immediately. The situation can be 
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remedied by better arrangement of electronic components and design and fabrication of a 

better packaging to balance the transmitting sphere. 

Better and improved packaging is also desired to positively hold the transmitters in 

their relative positions inside the sphere and to facilitate quick and easy change of batteries 

without disturbing the transmitters. 

The proposed empirical equation for replacing the 27-point correction is developed 

intuitively and needs to be carefully examined and fine tuned for obtaining optimum 

corrective effect for all the systemsy An analytical approach could also be adopted for a 

more scientific approach to this problem. 

Before the tracking system can be utilized to track the sphere in chute flow 

experiments, a major problem called the "Roll Problem" has to resolved. The roll problem 

appears only when the sphere rolls at high speeds, e.g. when speed of rotation, w is high 

enough so that = v/r where v is the translation speed and r is the radius of the sphere. 

It is characterized by significant deviations of computed positions (x, y, z) from the actual 

positions. These deviations occur at the same frequency as the roll frequency, thus 

indicating that fast changes in rotations affect the ability of the backward algorithm to 

resolve the positions accuratelyy The study of the roll problem is hampered by our 

inability to perform accurately controlled roll experiments. This is because we can not use 

any standard positioning devices available commercially for controlled roll experiments 

since they are made of metal and will interfere with the magnetic fields of the transmitters. 

Therefore, all the jigs, fixtures and mechanisms have to be fabricated of radio transparent 

materials and cannot be easily made as sophisticated as their commercially available 
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equivalents. Resolution of roll problem is a pre-requisite to successful tracking in the 

chute flow experimentsy 

Though the codes have been made more flexible and easy to use, further 

improvement is possible. It is possible to further automate the transition from data 

acquisition to data processing modules. The tracking system is currently distributed. The 

data acquisition is done using Pentium based PCs and data processing is done Sun Sparc 

workstations. The data processing codes can also be implemented on DOS based PCs in 

order to make the system more cohesive, easy to use and less expensive. 

8.3 Conclusions 

The Three-Dimensional Non-Intrusive Particle Tracking System has been improved and 

made more accurate and user-friendly. It has been tested through a series of experiments 

in the lab using three different setupsy The results presented demonstrate that the tracking 

system is able to produce accurate (refer Table 6.1) and repeatable results as long as the 

rolls encountered are not fast. 

Practical application of the tracking system is demonstrated by applying it to the 

study of vibrated beds. This application also proves that the tracking system is capable of 

three-dimensional, non-intrusive trackingy 



APPENDIX A 

MODEL-REALITY PLOTS 

The data for all of these plots was collected using the old transmitter (used by Agrawal [9] 

for experiments and initial work on the 27-point scheme), and an antenna of dimensions 

20" X 20". The voltages are scaled up by a factor of 106  for better visualization. 
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Figure A.1 M-R (I) no 27 point correction, calibration point [000] 

Figure A.2 M-R (I) using 27 point correction, calibration point [000] 
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Figure A.3 M-R (I) no 27 point correction, calibration point [001] 

Figure A.4 M-R (I) using 27 point correction, calibration point [001] 
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Figure A.5 M-R (I) no 27 point correction, calibration point [002] 

Figure A.6 M-R (I) no 27 point correction, calibration point [002] 
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Figure A.7 Error Plot for M-R (I) 
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Figure A.8 M-R (II) no 27 point correction, calibration point [000] 

Figure A.9 M-R (II) using 27 point correction, calibration point [000] 
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Figure A.10 M-R (II) no 27 point correction, calibration point [001] 

Figure A.11 M-R (II) using 27 point correction, calibration point [001] 
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Figure A.12 M-R (II) no 27 point correction, calibration point [002] 

Figure A.13 M-R (II) using 27 point correction, calibration point [002] 
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Figure A.14 Error Plot for M-R (II) 



104 

Figure A.15 M-R (III) no 27 point correction, calibration point [000] 

Figure A.16 M-R (III) using 27 point correction, calibration point [000] 
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Figure A.17 M-R (III) no 27 point correction, calibration point [001] 

Figure A.18 M-R (III) using 27 point correction, calibration point [001] 
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Figure A.19 M-R (III) no 27 point correction, calibration point [002] 

Figure A.20 M-R (III) using 27 point correction, calibration point [002] 
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Figure A.21 Error Plot for M-R (III) 



APPENDIX B 

ADDITIONAL PLOTS FOR. CHAPTER 4 

The data for all of these plots was collected using the old transmitter (used by Agrawal [9] 

for experiments and initial work on the 27-point scheme) and an antenna of dimensions 

20" X 20". The trajectories used for these plots are explained in Section 3.3. Each plot 

has four data series -- 

1. Voltage obtained from the DAS, calibrated using point [002] (actual) 

2. Theoretical voltage corrected using 27-point correction scheme as explained in 

Chapter 3. (with 27 point) 

3. Theoretical voltage corrected using the empirical equation as explained in 

Chapter 4. (with eqn) 

The voltages are scaled up by a factor of 106  for better visualizationy 
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Figure B.1 Effect of empirical equation: M-R (I) 

Figure B.2 Effect of empirical equation: M-R (II) 



110 

Figure B.3 Effect of empirical equation: M-R (III) 



APPENDIX C 

EQUIVALENT ANGLE-AXIS REPRESENTATION 

Equivalent angle-axis representation of orientation is introduced in Section 5.2 as a means 

of better visualizing the orientations and detecting multiple solutions. The method of 

converting the solution obtained in the form of rotation a about x-axis, rotation ᵦ  about y-

axis and rotation y about z-axis is converted into an equivalent rotation 0 about an axis (kx, 

ky, k2) using the formulae given below (adapted from Paul [11] and Craig [19]). 

The RPY transformation matrix given by equation (5.1) in a simple form can be 

represented by equation (C.1). 

The values of the terms of this matrix are the same as those of the transformation 

matrix for equivalent angle-axis representation but the meaning of each term is different 

and is given by equation (C.2) 

The values of rotation angle 0 and unit vectors kx, ky, k: can be extracted from the 

matrix T using the equation given below. First of all the value of 0 is found by equation 

(C.3). Then depending on the value of 0, further processing is done to determine the unit 

vectors kx, ky  and 
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If 9 < 90°, then the values of kx, ky and 	are obtained straight-away from 

equations (C.4), (C.5) and (Cy6) respectivelyy 

In case 8 > 90°, then we need to analyze the values of kx, ky  and kz given by 

equations (Cy7), (C.8) and (Cy9) and then depending on these values, use the applicable 

equations (C.10) to (C.15) to find kx, ky  and kz. First we pick the largest component, kx, ky  

or kz of the unit vector 12 . 
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If kx  is the largest component of 	then the other components of k are given by 

equations (C.10) and (C.11). 

If ky is the largest component of 	then the other components of k are given by 

equations (C.12) and (C.13). 

If k> is the largest component of k, then the other components of k are given by 

equations (C.14) and (C.15). 

Thus we can extract the values of the equivalent rotation angle B about an axis k 

with components kx, ky  and kz from the transformation matrix T. 



APPENDIX D 

VIBRATED BED PLOTS 

Three complete sets of tracking results for the vibrated bed experiment are presented here. 

Figures D.1 through D.6 are the results obtained by vibrating the bed at a frequency of 10 

Hz with an amplitude of 0.175". Figures D.7 through D.12 are the results obtained by 

vibrating the bed at a frequency of 15 Hz with an amplitude of 0.125". Figures D.13 

through D.18 are the results obtained by vibrating the bed at a frequency of 20 Hz with an 

amplitude of 0.2". 
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Figure DA Vibrated Bed (f= 10 Hz, a = 0y175"): X plot 

Figure D.2 Vibrated Bed (f = 10 Hz, a = 0.175"): Y plot 
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Figure D.3 Vibrated Bed (f= 10 Hz, a = 0.175"): Z plot 

Figure D.4 Vibrated Bed (f= 10 Hz, a = 0.175"):a plot 
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Figure D.5 Vibrated Bed (f= 10 Hz, a = 0.175"): ᵦ  plot 

Figure D.6 Vibrated Bed (f = 10 Hz, a = 0.175"): y plot 



Figure D.7 Vibrated Bed (f= 15 Hz, a = 0y125"): X plot 
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Figure D.8 Vibrated Bed (f= 15 Hz, a = 0y125"): Y plot 
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Figure D.9 Vibrated Bed (f= 15 Hz, a = 0.125"): Z plot 

Figure D.10 Vibrated Bed (f= 15 Hz, a = 0.125"): a plot 



Figure D.11 Vibrated Bed (f= 15 Hz, a = 0.125"): 13 plot 

Figure D.12 Vibrated Bed (f= 15 Hz, a = 0.125"):y plot 
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Figure D.13 Vibrated Bed (f = 20 Hz, a = 0.2"): X plot 
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Figure D.14 Vibrated Bed (f= 20 Hz, a = 0.2"): Y plot 
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Figure D.15 Vibrated Bed (f= 20 Hz, a = 0.2"): Z plot 

Figure D.16 Vibrated Bed (f= 20 Hz, a = 0.2"): a plot 



Figure D.17 Vibrated Bed (f = 20 Hz, a = 0.2"): 13 plot 

Figure D.18 Vibrated Bed (f = 20 Hz, a = 0.2"): y plot 
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APPENDIX E 

INCLINED CHUTE PLOTS 

Two complete sets of tracking results of controlled trajectories obtained using the top as 

well as the bottom half of the inclined chute setup are presented here. The experiments 

are performed by holding the tracking sphere in the calibration jig and incrementally 

changing one of the coordinates x, y, z, a, B or y 

Figures E.1 to E.6 are results of the run "ctstrt" carried out in the top half of the 

chute. The jig (and thus the transmitter) is moved along the global x-axis from .x=10" to 

x=54" in 2" increments keeping they and z coordinates fixed at 12". Rotations a, β   and 7 

are zero degrees. 

Figures E.7 to E.12 are results of the run "cbgamma" carried out in the bottom 

half of the chute. The jig (and thus the transmitter) is kept at x=90", y=12" and z=12". 

Rotations a and 8 are kept zero degrees and the transmitter is rotated 180° about the z-

axis (i.e. 7= -90° to 90°) at 10° increments. 
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Figure E.1 Run ctstrt: X plot 
(maximum error = 0.99", mean error = 0.35", standard deviation = 0.25°) 

Figure E.2 Run ctstrt: Y plot 
(maximum error 0.58", mean error = 0.20", standard deviation = 0.14") 



126 

Figure E.3 Run ctstrt: Z plot 
(maximum error = 0.38", mean error = 0.19", standard deviation = 0.10") 

Figure E.4 Run ctstrt: a. plot 
(maximum error =2.28°, mean error = 1.34°, standard deviation =0.50°) 
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Figure E.5 Run ctstrt: ᵦ  plot 
(maximum error =L69°, mean error = 0.87°, standard deviation =0.41°) 

Figure E.6 Run ctstrt: y plot 
(maximum error =1.72°, mean error = 0.78°, standard deviation =0.36°) 
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Figure E.7 Run cbgamma: X plot 
(maximum error = 0.52", mean error = 0.43", standard deviation = 0.06") 

Figure E.8 Run cbgamma: Y plot 
(maximum error = 0.21", mean error = 0.08", standard deviation = 0.06") 
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Figure E.9 Run cbgamma: Z plot 
(maximum error = 0.27", mean error = 0.19", standard deviation = 0.05") 

Figure E.10 Run cbgamma: α plot 
(maximum error =4.98°, mean error = 3.31°, standard deviation =1.29°) 
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Figure E.11 Run cbgamma: ᵦ  plot 
(maximum error =2.36°, mean error = 0.90°, standard deviation =0.64°) 

Figure E.12 Run cbgamma: y plot 
(maximum error =8.93°, mean error = 4.34°, standard deviation =3.11°) 
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