
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

DEGRADATION AND BREAKDOWN IN ULIRA-THIN SILICON OXIDES 

by 
Christopher Franck 

Emerging trends in the semiconductor device industry call for detailed 

knowledge of the properties of devices whose dimensions are small enough to exploit 

Quantum Mechanical effects. This thesis presents a complete picture of oxide 

degradation in MOS direct tunnel diodes (t0  <3.4 nm). It is demonstrated that for 

structures fabricated at different facilities and stressed with either gate or substrate 

injection, a universal degradation mode is revealed which is manifested as the build up 

of positive charge in the oxide. The data gathered demonstrates that the positive 

charging phenomena in sub-3.5 nm oxides is independent of oxide thickness, and is 

characterized by a voltage threshold and two-regime temperature dependence. Further, 

the catastrophic failure, or breakdown, of these oxides was studied and the strongest 

evidence to date is presented which links the positive charging phenomena to the 

oxide breakdown. This thesis concludes with the presentation of a novel device design 

which can exploit the properties of degradation and breakdown, in thin oxides, to 

achieve an EEPROM memory cell of superior endurance. 
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CHAPTER 1 

MOTIVATION FOR BREAKDOWN STUDIES 

It is the continuing goal of the semiconductor device industry to produce components 

that are smaller, faster, more reliable, and less expensive than the existing 

technology [1]. In keeping with this trend a new generation of semiconductor devices 

is emerging called Quantum Effect devices. This technology appears to be the most 

promising with respect to meeting the goals of the industry [I], as well as creating the 

possibility for novel devices. At this time, however, most Quantum Effect structures 

have been studied in Gallium Arsenide and therefore offer little to an industry that is 

dominated by the less costly silicon processing technology [2]. Hence, there is a need 

to study the properties of structures whose dimensions exploit Quantum Effects in 

silicon. 

This thesis represents the preliminary work for just such a study. Concepts are 

explored leading to a novel approach to the design of Floating Gate Electrically 

Erasable Programmable Read Only Memory cells, or FG EEPROM cells. A design 

concept is presented which may be used to construct a FG EEPROM cell with 

superior endurance as compared with conventional technology. The endurance of 

EEPROM cells is based on the number of times they can be cycled from a logical "1" 

state into a logical "0" state and then back into the "I" state. Memory arrays currently 

available on the market can offer at least 105  cycles [3-4], and recently it has been 

reported [5] that 109  cycles has been achieved in the laboratory using a modified 

structure. It is expected that ultimately a device which exploits Quantum Effects 

coupled with recently observed properties of degradation and breakdown in ultra-thin 
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silicon oxides [6], will produce memory cells that can be cycled, effectively, an 

infinite number of times. 

Preceding the discussion of the proposed memory cell design, the physical 

properties of thin oxides on which the gain in endurance is based will be presented. 

Those properties are (1) the voltage threshold [6-8] for the onset of positive charge 

generation (discussed in chapter 2), and (2) the linking of oxide breakdown to the 

generation of positive charge (to be demonstrated in chapter 3). This latter property of 

silicon oxide breakdown is necessary because the proposed device design directly 

exploits the voltage threshold. Electrons which tunnel through thin oxides with a bias 

below 3 volts for an oxide on a P-type silicon, or 1 volt on N-type silicon, will not 

lead to the generation of positive charge within the oxide. Hence, if oxide breakdown 

is linked to positive charge generation then one would not expect eventual oxide 

breakdown to occur in devices where there is no build up of positive charge in the 

oxide. A memory structure that exploits this property must (1) be limited to a bias 

below the threshold voltage while still being recyclable, and (2) display charge 

retention. One way this could be achieved is by the use of Resonant Tunneling to 

transport electrons into and out of the Floating Gate of the memory cell. This aspect 

of the design proposal will be elaborated upon in chapter 4. 

This thesis is mainly concerned with the degradation modes in ultra-thin silicon 

oxides and the link between breakdown and positive charge generation. It is important 

these issues are well understood before one can have confidence in a device design 

that promises such an enormous gain in endurance. The efforts of this author were 



mostly focused on creating a reliable picture of ultra-thin oxide degradation and 

breakdown so as to provide a foundation for the study of enhanced FG EEPROM cell 

endurance through the use of Resonant Tunneling. 



CHAPTER 2 

OXIDE DEGRADATION 

2.1 MOS Capacitors 

To study the degradation of Silicon Dioxide (Si02) insulating layers one constructs a 

Metal Oxide Semiconductor (MOS) capacitor, Fig. 2-1, and biases the device with a 

DC voltage. The capacitor is held at the DC bias level while the tunnel current 

through the oxide is recorded. MOS capacitors fall into two categories depending on 

their oxide thickness (tox in Fig. 2-1). They are either thick oxide or thin oxide 

structures, and are differentiated based on the electron transport modes that can make 

a significant contribution to the tunnel current. For thick oxides (tox> 3.5 nm), the 

electron transport from the gate into the substrate is mainly due to Fowler-Nordheim 

(FN) tunneling [9-11]. This is not the only electron transport mechanism in these 

Fig. 2-1: (a) Simplified diagram of the physical structure of a MOS capacitor. 
(b) Simplified energy band diagram of a MOS capacitor. 
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structures, however, and in actuality one can identify at least 7 processes [9] in total 

(see Fig. 2-2). The situation is somewhat different for thin oxides, especially in the 

low bias regime. When oxides are thin enough (tox ≤ 3.5 nm), under low bias the 

tunneling of electrons directly from the gate into the substrate dominates the current. 

Accordingly, this electron transport mechanism is called Direct Tunneling (DT). Also, 

in DT oxides inelastic tunneling processes such as inelastic trap assisted tunneling may 

be present. In fact, inelastic trap assisted tunneling may dominate the current-voltage 

characteristics in DT oxides [24]. 

Fig. 2-2 shows energy band diagrams for both the low and high bias 

regimes [9]. The capacitor being depicted has an arbitrary oxide thickness and could 

therefore be either a thin or thick oxide device. DT can just as well take place in the 

Fig. 2-2: Energy band diagrams for a MOS capacitor under both (a) low and (b) high 
bias. The numbered arrows indicate the various electron transport mechanisms 
present. 
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thick oxide device, however, when tox is greater than 3.5 nm the probability that an 

electron tunnels directly into the substrate from the gate electrode is vanishingly small. 

In Fig. 2-2a three electron tunneling processes are identified. The process represented 

by arrow I is DT. Process 2 is the ionization of impurity states. The dashed line just 

below the conduction band edge represents a discrete energy level introduced by the 

impurities present in the oxide. When a bias is applied across the oxide, electrons can 

tunnel from the impurity state into the conduction band of the oxide. Process 3 is 

elastic trap-assisted tunneling. In Fig. 2-2b four additional electron transport 

mechanisms arise due to the high bias applied across the oxide. Process 1 is 

essentially replaced by process 4, which is the tunneling of electrons from the gate 

electrode into the conduction band of the oxide (Fowler-Nordheim tunneling). Process 

2 is still present. Process 5 is Zener tunneling, which is the tunneling of electrons in 

the valence band of the oxide into the conduction band of the oxide. Process 6 is 

intraimpurity tunneling. In this process electrons in the lower impurity state 

(represented by the dashed line just above the valence band) tunnel into the upper 

impurity state, and can then enter the oxide conduction band. The last process, number 

7 in Fig. 2-2b, is usually referred to as hole tunneling. 

2.2 Oxide Degradation in MOS Capacitors 

At the outset it might be advantageous to define what is meant by "degradation" in 

silicon oxides, at least within the context of this work. In fact, it may very well be 

convention to regard the build up of either positive or negative charge within a fresh 

oxide that has undergone an electrical stress to be the measure of oxide degradation. 
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Within the context of this thesis, this is the measure of oxide degradation. The build 

up of negative charge within a SiO2  insulating layer can be attributed to two factors 

both related to electron trapping [7, 12-16]. One process is the trapping of electrons 

into sites that are created as a natural by-product of the processing stage. The other 

kind of trapping occurs due to trap sites that are actually generated by the FN stress 

imposed on the device. Degradation also occurs in thin SiO2  insulating layers being 

maintained in the DT current mode, and it is different in character as compared with 

thick oxides. Degradation in thin oxides is manifested as an increase in the tunnel 

current with time as, the device is maintained at fixed low voltage DC bias. This 

current versus time behavior has been attributed to increased trap assisted tunneling as 

well as, effectively, the build up of positive charge within the oxide [6]. It is believed 

that the effective positive charge that builds up after a DT stress is the result of 

physical damage that is done to the oxide [6]. Since this thesis is only concerned with 

thin oxides, however, the positive charging that occurs in thin oxides where DT is 

measurable will be the focus of the remaining discussion. 

2.3 Previously Reported Properties of Oxide Charging 

Because positive and negative charging in SiO2  insulating layers arise from two 

different tunnel mechanisms, there is no reason to believe they would display the same 

characteristics. Studies have revealed, however, that they do share one interesting 

property (electron kinetic energy/voltage threshold for the onset of degradation), and to 

be demonstrated in what follows, they differ critically in another (weak fluence 

dependance for positive charging induced by DT stress). Before going into these 
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properties, the methods used to measure oxide charging will be briefly reviewed. 

Positive or negative charging in silicon oxides is manifested as a change in the 

tunnel current (or current density) with time (see Fig. 2-3). One may also look at the 

evolution of the current (or current density) with respect to electron fluence; the 

measure of the total amount of charge per square centimeter that has passed through 

the device. Electron fluence can be seen on the top of the plots in Fig. 2-3. Another 

way to study the charging of an oxide is to look at the fractional change in current (or 

current density) as a function of time or fluence. This is given by the equation, 

Where J is the current density. A typical plot of the fractional change in current 

density is given in Fig. 2-4. 

As was stated at the beginning of the section, there is one property of 

degradation similar to thin as well as thick oxides. For both thick and thin oxides there 

exists an observed threshold for the onset of degradation. In thick oxides, where 

electrons tunnel into the oxide conduction band, it has been observed that trap 

generation does not occur unless the electrons gain about 2 eV from the electric field 

in the oxide [7]. The situation is somewhat different for thin oxides. Positive charging 

does not occur in DT devices unless the bias across the oxide exceeds a threshold 

voltage. As will be discussed in what follows, the threshold is different depending on 

whether electron injection is occurring from the gate to the P-type Si 

substrate (-3 V), or from an N-type substrate to gate (+1 V). Also, the voltage 

threshold in DT devices is independent of the oxide thickness. This is strikingly 



Fig. 2-3: (a) Negative charge generation within oxide leading to a decrease in tunnel 
current with time and (b) positive charge generation leading to an increase in tunnel 
current. 
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Fig. 2-4: Typical plot of fractional change in current density versus time. 
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different from the thick oxide threshold which depends on the oxide thickness for the 

electron to gain the threshold kinetic energy from the electric field. These differences 

clearly imply that the threshold for degradation in thick oxides depends on the field 

energy, and the threshold for thin oxides only depends on the voltage across the oxide 

independent of the oxide thickness [6]. 

Fig. 2-5 is a plot of experimental data which demonstrates the oxide thickness 

independence of the threshold voltage for the onset of positive charging in thin oxides. 

The plots show the fractional change in current density as a function of applied bias 

after the devices were stressed for 1000 s. 

2.4 Properties Being Reported in This Work 

Positive charge generation in thin oxides has been reported for electron injection from 

the gate, formed from either aluminum or polycrystalline silicon, into the substrate. In 

depth studies have been conducted using P-type silicon substrates, preliminary work 

has been reported for N-type substrates. During this study, as stated in the 

introduction, a complete picture of degradation in thin oxides is desirable. Thus, 

injection from the N-type substrate was examined in as much detail as previously 

reported for injection into P-type substrates, and it was found to exhibit the same 

charging behavior. It is therefore concluded that positive charging in devices where 

direct tunneling is measurable is a universal effect. It is reasonable to believe that this 

positive charge generation is the primary bias related instability in DT devices on the 

basis of this study. 



Fig. 2-5: Fractional change in current density for a set of thin oxide devices stressed 
at several voltages for 1000 seconds. Notice the voltage threshold for the onset of 
positive charging. 

12 
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2.4.1 Experimental Devices 

The devices used during this study were fabricated on the silicon line at the Yorktown 

Heights, New York IBM facility. Active tunnel oxides for four different nominal 

thicknesses were formed. The thicknesses are 2.0, 2.4, 2.8, and 3.4 nm. The tunnel 

oxides were formed at 700°C in dry O, in windows that were opened in the field 

oxide. The field oxide was grown on <100> oriented, —0.005-0.02 ohm-cm, n-type 

silicon. Window sizes ranging 1 µm2 to 1 mm2  were made available on each chip, 

however, measurements were mainly performed on 250 um x 250 µm for this work. 

In Fig. 2-6 on a plot of the current density versus positive gate voltage is provided for 

each of the four oxide thicknesses. As can been seen in the figure the current density 

increases by a factor of about 100 for each 0.4 nm decrease in oxide thickness. This 

scaling agrees with fundamental tunneling theory [18]. 

2.4.2 Weak Fluence Dependance for Positive Charging 

The experimental results that will now be provided reveal a strikingly different 

character for oxide degradation in thin oxides as compared with thick oxides. The 

specific feature of degradation that is being compared is the electron fluence 

dependance for degradation. It has been demonstrated in the FN regime for oxide 

thicknesses from 4.5 to 5.5 rim that trap generation tends to scale with electron 

fluence [17]. This does not appear to be the situation for thin oxides in the DT regime, 

and at best there exists only a weak dependance on electron fluence for positive 

charging. 
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Fig. 2-6: Current density versus voltage for experimental devices. 
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Fig. 2-7: Fractional change in current density versus gate voltage after 1000 seconds of 
stress on experimental devices. 
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Devices with three separate oxide thicknesses were studied, with the results 

plotted in Fig. 2-7. Fig. 2-7 represents the fractional change in current, after 1000 

seconds, as a function of applied bias. Data was gathered for 2.4, 2.8, and 3.4 nm 

oxide devices. To determine the role played by the electron fluence in these curves, 

Table 2-1 provides J0  for each device at two bias levels, 1.7 and 2.0 volts. In 

Table 2-1 it can be seen that J0, and hence the electron fluence, differs by five orders 

of magnitude. Returning to Fig. 2-7, however, the fractional change in 

current density differs by no more than a factor of 2. Even more compelling, from the 

plot in Fig. 2-7, is the fact that the amount of charge generated in the 2.4 and 2.8 rim 

oxides appears to be identical. In Table 2-1, however, J0  for these two oxides differs 

by two orders of magnitude at one bias level and one order of magnitude at another. 

Clearly, if the generation of positive charge were dependent on electron fluence, then 

one would not expect the same amount of charge generation in two devices with 

current densities separated by orders of magnitude. 

2.4.3 Temperature Dependance of Positive Charging 

For gate injection it has been shown that positive charge generation is dependent on 

temperature above —150 K; below this temperature it appears to be relatively 

temperature independent [25]. Fig. 2-8 and Fig. 2-9 show plots of the data for the 

temperature dependence of positive charging. Fig. 2-8 is a plot of fractional change in 

current after 1000 seconds of stress versus gate voltage for 2.8 nm devices. Four plots 

are given for temperatures of 77 K, 150 K, 240 K, and 300 K. It can be seen that the 

charge generation rate decreases strongly with temperature. Fig. 2-9 is an Arrhenius 
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Fig. 2-8: Temperature dependance of positive charging, defined as ∆J/J0 measured at 
1000 seconds for 2.8 am oxides, versus positive gate bias. 
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Fig. 2-9: Temperature dependance of positive charging for three oxide thicknesses 
after 1000 seconds of stress. 



Table 2-1: Initial values of current density for some of the data in Fig. 2-7. 

l 	(nm) J0 (A/cm) 
Vbias = 1.7 V 

Jo  (A/cm2) 
7  bias = 2.0 V  

3.4 nm 2 x 10-8  6.4 x 10-8  

2.8 nm 6.4 x 	10-5  1.6 x 	10-4  

2.4 nm 3.2 x 10-3  8.0 x 10-3  

plot of the charge generation measured at a gate voltage of VG=2.1 V after 1000 

seconds. Again, similar to injection from the gate, DT substrate injection shows a 

strong temperature dependance above —150 K, and weak temperature dependance below 

this value. Curve fitting suggests that at low temperatures charge generation may be 

proportional to T2, but more measurements are required to confirm this. The behavior 

illustrated in Fig. 2-9 is similar to that reported for both interface state generation [26] 

and trap creation [8] in thicker oxides which undergo FN degradation. This suggests 

the possibility that while the DT defect generation mode is distinctly different from the 

FN mode, the nature of the defects created may be similar in both cases. 

2.5 Conclusion of Oxide Degradation Studies 

The properties of DT degradation presented for substrate injection complete the picture 

of degradation in thin oxides where DT transport of electrons is measurable. Devices 

have now been studied with. Al and polycrystalline silicon gates, fabricated at different 
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facilities, and stressed by either gate or substrate injection. The data that has been 

gathered reveals the following universal characteristics of DT degradation: 

• Weak fluence dependance in devices where DT current is measurable. 

• Threshold voltage for the onset of degradation. 

• Apparent thermal activation above ~150 K, and weak temperature dependance 

below —150 K. 

Having studied the properties of degradation in thin oxides, the phenomenon of oxide 

breakdown can now be addressed. It still remains to link positive charge generation to 

the ultimate failure of the oxide. This will be the subject of the next chapter. 



CHAPTER 3 

SILICON OXIDE BREAKDOWN 

3.1 Introduction 

The universal positive charge generation described in the previous chapter seems to be 

the primary bias-related instability in below 3.5 nm oxides. By itself, it is an important 

phenomenon to study since it is the signature of changing oxide characteristics over 

time. As presented in the last chapter, the detailed study of the positive charging 

provides insight into the microscopic mechanism underlying the degradation. Perhaps a 

more important question, beyond the study of defect mechanisms, would be, is there a 

relationship between the stress-related degradation and the ultimate catastrophic failure 

of the oxide? In this chapter the possibility is explored. A study of the breakdown of 

hundreds of DT devices under different bias conditions is presented. A distinction 

between "defect-related breakdown" and so-called "intrinsic breakdown," is identified, 

and strong evidence is presented linking the intrinsic breakdown to the build-up of the 

positive charge. In previous studies on thicker oxides this relationship has never been 

demonstrated. In fact, in oxides over 10.0 nm thick it has been concluded that positive 

charge generation is not related to the ultimate failure of the device [27]. In thinner 

oxides, 5.0 nm thick, where the electron injection mechanism is still FN tunneling, a 

correlation between stress-induced positive charge and breakdown has been inferred 

recently, but not demonstrated conclusively [28]. The work being presented in this 

chapter gives the first indication of a relationship between the positive charging and 

breakdown in the DT thickness regime, and gives the strongest evidence to date for 

such a relationship in any thickness regime. 

21 
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3.2 Intrinsic and Defect-Related Breakdown 

The IBM chip set containing the test DT devices has a large number of 250 x 250 

micron capacitors. Most of the work presented in the previous chapter was conducted 

using this size of device. The chip set also contains small area capacitors down to 

1 x 1 micron. In the breakdown studies both the large area devices and a group 

of —12 x 12 micron devices were used. 

By studying breakdown in devices of different area it is possible to distinguish 

two breakdown regimes: defect-related and intrinsic [29]. Breakdown that occurs at a 

weak spot in the oxide is generally termed defect related breakdown. If the dielectric 

strength of these weak spot defects is distributed, and breakdown occurs at the weakest 

spot, then the average breakdown voltage, or the average time to breakdown at a given 

voltage, will be lower in devices which contain more defects. Assuming that a single 

type of defect is responsible for the weak spot, and the defects are distributed 

randomly over the surface, then the distribution of breakdown times at a given field is 

characterized by a Poisson distribution with a single time constant. This is given by, 

where µ is the time constant. Assuming a constant defect density that is independent 

of the device area, and owing to the probabilistic nature of breakdown, the distribution 

of breakdown times is expected to scale with device area by a factor In(A1/A2) where 

A1 and A2 are the respective areas, and the time axis is increased for decreasing 

areas [29]. On a Weibull plot, plotting In(-In(1-F)) versus log (tbd), where tbd  is the 

measured time to breakdown and F is the fraction of samples that have broken down 
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after a time less than tbd, defect-related breakdown gives rise to a shallow slope. In 

contrast, so-called intrinsic breakdown gives rise to a very steep slope. The steep slope 

indicates that beyond a threshold stress time, essentially all devices are prone to 

experience catastrophic failure, hence the term intrinsic breakdown. Fig. 3-1 illustrates 

the two breakdown modes in a thick oxide. This data was taken from Wolters, 

et al [28]. 

3.3 Results of Breakdown Studies on Experimental Devices 

The IBM samples mainly fail by a defect related mechanism. This is confirmed in 

Fig. 3-2 and Fig. 3-3 for a 2.8 nm oxide. Fig. 3-2 shows the distribution of breakdown 

times for 110 250 x 250 micron devices stressed at 2.4 V, where the data is 

normalized using the number of breakdowns divided by half the number of devices. 

Fig. 3-1: Time dependent Weibull breakdown distribution for an 11 nm oxide 
measured at various fields [28]. 
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The data can be fit reasonably well using the sum of two Poisson distributions, 

assuming that half of the devices broke down with the shorter time constant, the other 

half broke down with the longer time constant. Fig. 3-3 shows the normalized 

distribution of breakdown times for 40 —12 x 12 micron devices, also stressed at 2.4 V. 

Notice that the time axis is expanded by a factor of six compared to the time axis for 

the larger area devices. On this scale, despite the small amount of data, the distribution 

of breakdown times is remarkably similar to that for the larger area devices, except 

scaled by the factor of 6 in time. The natural log of the ratio of the areas, 

ln(650,000/144) is approximately 6, which leads to the conclusion that defect-related 

breakdown is mainly occurring. The data of Fig. 3-2 is replotted in Fig. 3-4 on a 

Weibull plot. Except for the very longest lived devices, this plot has a shallow slope, 

consistent with defect related breakdown. The two peaks in Fig. 3-2 indicate that two 

Fig. 3-2: Normalized distribution of breakdown times for 110 250x250 micron devices. 
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Fig. 3-3: Normalized distribution of breakdown times for 40 12x12 micron devices. 

Fig. 3-4: Weibull plot of time to breakdown data in Fig. 3-2. 
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different types of defects may be responsible for the observed oxide failures, each 

defect type claiming roughly half of the devices. This suggests that in these DT 

oxides, some sort of defect breakdown spectroscopy may be possible. However, such 

defects generally are to be avoided, and in optimized fabrication processes, at least in 

thicker oxides, defect-related breakdown can be almost entirely avoided. 

Fig. 3-5 shows the average time to breakdown of 250 x 250 micron devices as 

a function of applied gate voltage for four different oxide thicknesses. The time to 

breakdown curves are roughly parallel, shifted to lower voltages for the thinner oxides. 

This is identical to the findings of Schuegraf and Hu, who claimed to be studying 

intrinsic breakdown 130]. It is certain that the data presented in Fig. 3-5 are not due to 

intrinsic breakdown, but rather to defect-related breakdown. 

It is possible to study intrinsic breakdown in the experimental devices, but to 

do so requires looking at the longest lived devices at the highest voltage levels 

possible. Fig. 3-6 shows the longest of five breakdown times measured at various bias 

levels using 12 x 12 micron devices. Four different device thicknesses were studied. 

These breakdowns were measured at very high voltage levels compared to those for 

Fig. 3-5. In general it is found that no 250 x 250 micron device could survive at this 

high bias, and roughly half of the 12 x 12 micron devices failed immediately after the 

high bias was applied. The other half of the smaller area devices lasted for times 

ranging from 100 to 10,000 seconds depending on the applied bias and oxide 

thickness. Because of the distinctly long lifetime at high bias, the failure is attributed 

to intrinsic breakdown. Notice that there is a significant difference in the thickness 

dependence of defect-related breakdown shown in Fig. 3-5 and the thickness 



Fig. 3-5: Average time to breakdown for 250x250 micron devices versus gate voltage. 
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dependence of the intrinsic breakdown shown in Fig. 3-6. In particular, there is no 

parallel shift in the time-to-breakdown voltage dependence for intrinsic failure of the 

2.0 to 2.8 nm oxides in Fig. 3-6. In other words, the time to intrinsic breakdown of the 

2.0 to 2.8 nm oxides at a given bias voltage is roughly independent of oxide thickness, 

while the time to breakdown of the 3.4 nm oxides is somewhat higher. This behavior 

is strikingly similar to the thickness dependence of the build-up of positive charge. 

Fig. 3-7 repeats the data from chapter 2 which shows that the build-up of positive 

charge is relatively independent of oxide thicknesses of 2.8 nm and below,. and 

somewhat decreased for the 3.4 nm oxides. The correlation between thickness 

dependence of the build-up of positive charge and the time to intrinsic breakdown 

suggests that the positive charge may be at the root of intrinsic oxide failure. In this 

interpretation, positive charge evolves over time as described in chapter 2, independent 

of oxide thickness, until a critical amount of charge is present. Above this critical 

threshold, intrinsic breakdown is inevitable. If this interpretation is correct, then the 

use of charge to breakdown, QBD, is completely inappropriate as a characterization 

parameter for predicting the lifetime of thin oxides in the DT regime. Q depends 

strongly on the oxide thickness, but intrinsic breakdown in DT oxides is an effect 

which appears merely to be a function of time, independent of thickness. 
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Fig. 3-6: Maximum time to breakdown for 12x12 micron devices versus gate voltage. 
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Fig. 3-7: Fractional change in current density versus gate voltage after 1000 seconds of 
stress on experimental devices. 



CHAPTER 4 

RESONANT TUNNELING 

4.1 Introduction 

In this chapter a theoretical description of the Resonant Tunneling (RT) phenomena 

will be presented, culminating with a calculation of the ideal current density profile 

that can be expected from a RT diode. The model to be presented incorporates 

simplifications that will lead to quantitative discrepancies When compared with actual 

device measurements. For example, it has been found that the electron-phonon 

interaction is one of the most important processes to include in any model that will 

achieve accurate quantitative results [19]. Also, the assumption of uniform oxide 

thickness is another source of quantitative errors [18]. The analysis that will follow is 

not meant to provide an accurate quantitative solution, rather, it is meant to illuminate 

the critical features of Resonant Tunneling as they apply to the memory cell design 

proposal mentioned in chapter 1. 

4.2 Qualitative Description of the Resonant Tunneling Phenomena 

In chapter 2 the topic of tunneling through a SiO2  insulating layer was discussed. The 

energy band diagrams for a single layer of silicon dioxide were given in Fig. 2-1 and 

Fig. 2-2. These diagrams depict a single potential energy barrier encountered by an 

electron traveling from the gate electrode towards the substrate. If a thin layer of 

silicon is sandwiched between two thin oxide layers, a double barrier (DB) potential 

energy profile will result (Fig. 4-1). 

The tunneling of electrons through a DB can lead to resonances in the 
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Fig. 4-1: Double barrier structure formed by a SiO2/Si/SiO2, sandwich. 

transmission spectrum. By resonances it is meant that sudden, sharp peaks close to 

unity in the transmission probability can occur for electrons of specific energies. This 

is in contrast to tunneling through a single barrier where the probability for tunneling 

can be expressed by, 

where V(x) is a well behaved function, usually a constant or just linear in x. Eq. 4-1 is 

the usual expression given by the WKB approximation. Notice in Eq. 4-1 that the 

probability of tunneling through a single barrier rises exponentially and exhibits no 

sudden peaks as E is varied from zero. Yet, if a DB structure is formed from two 



33 

oxides, separated by a thin layer of silicon, with the same tox as the oxide in Eq. 4-1, 

there will be distinct energy levels at which an electron will pass through both oxides 

layers completely unattenuated. This is the phenomena of Resonant Tunneling. 

Resonant Tunneling occurs due to the wave nature attributed to the electron. If 

the oxide layers are thin then electrons impinging upon the first barrier (on the left in 

Fig. 4-1), will tunnel directly through the barrier into the silicon in the center of the 

double barrier structure (to be referred to as the silicon well from this point on). The 

electron waves will then strike the second barrier and be reflected as well as 

transmitted. The reflections will be directed back towards the first barrier and be 

reflected again. As more electrons pass through the first barrier they can constructively 

interfere with the reflections already bouncing between the two barriers, provided they 

are phase synchronized. Phase synchronization is disrupted whenever an electron 

scatters. The repeated reflection of phase synchronized electron waves results 

whenever a bias is placed across the entire DB structure and will cause standing waves 

of large amplitude to build up inside the silicon well at distinct energy levels. The 

resulting probability for an electron to tunnel through both barriers at these energy 

levels will be close to unity. At other energy levels the electron waves will not be in 

phase and therefore destructively interfere. The energy levels of high transmission 

probability will be referred to as resonant states. 

In the preceding discussion it was specified that both the silicon well and the 

oxide barrier layers need to be thin. Clearly, if the oxides are not thin enough to allow 

DT then one would not expect the build up of large standing waves in the silicon well. 

But there is a more important need for thin oxide layers and silicon well. The build up 
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of standing waves in the silicon well depends on the phase coherence of the incoming 

and reflecting waves, however, electrons in solids will only travel a certain distance 

before they are scattered. The scattering of an electron changes its momentum and 

therefore disrupts its phase. The average distance an electron will travel before being 

scattered is referred to as its mean-free path. Hence, the entire DB structure must be 

smaller than the mean-free path of the electron. When an electron tunnels without 

being scattered it is referred to as ballistic tunneling. It has been observed that ballistic 

tunneling can take place in oxides that are as large as 10 nm [23]. 

The discussion so far has only provided a qualitative model for the resonant 

tunneling phenomena. The probability of tunneling still needs to be calculated and this 

will be the subject of the next section. 

4.3 Calculation of Transmission Coefficient for Double Bather Potential 

Before one can compute the theoretical current density versus voltage (JV) curve for a 

tunnel diode, the tunneling probability as a function of electron energy must be found. 

This is required by the current density integral which takes on the form [9], 

where N(E) is referred to as the supply function since it incorporates the Fermi 

function and density of states, ms  is the electron effective mass in the metal/silicon 
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electrode, q is the electron charge magnitude, kB  is Boltzman's constant, T is 

temperature, h is Planck's constant, V is the bias applied across the structure, ᵦ= 1/ 1/kBT, 

 is the Fermi-level in silicon, and lastly T(E) is the probability of tunneling as a 

function of electron energy. The evaluation of this integral will be the subject of the 

next section, the focus for the remainder of this section will be on finding an 

approximate expression for T(E). 

To evaluate the current integral expressed in Eq. 4-2 an approximate expression 

for T(E) will be used based on the WKB approximation. A complete derivation can be 

found in Bohm and Merzbacher [20-21]. Fig. 4-2 depicts the DB structure upon which 

the analysis of T(E) will be based. In Fig. 4-2 the DB is symmetrically centered about 

the origin of the coordinate system and tox and w refer to the oxide and silicon well 

thicknesses, respectively. The structure is treated as unbiased, which introduces the 

first simplifying step since the resonant states of this structure will be used at all bias 

levels. The diagram is divided into five regions. Electrons impinge upon the first 

Fig. 4-2: Double barrier profiles used to calculate transmission probability. 
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barrier traveling from region I towards region II. After tunneling through both barriers 

the electrons will emerge in region V and continue traveling in the +x direction. The 

expression for the transmission coefficient, using the WKB approximation, is given by, 

k(x) and k(x) are trivial for rectangular potentials since they are constant for a given 

energy (not functions of x), they are defined in the usual way as, 

where ms  and max  represent the electron effective mass in silicon and SiO2, 

respectively, and V0  is the barrier heights. Fig. 4-3 shows a plot of T(E) along with a 

plot of T(E) for a single barrier with a thickness of 2tox. The plot of T(E) for the DB 

follows T(E) for the single barrier, except for the addition of the resonant peaks and 

the dips below T(E) for the single barrier, between the resonant peaks. Both of these 

effects can be attributed to either constructive or destructive interference between 

electron waves. This means that when many scattering events take place as electrons 

cross the structure, which will "wash-out" the interference effects, the tunneling 
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Fig. 4-3: Transmission probability versus electron incident energy for double barrier 
and single barrier with an oxide thickness of twice the double barrier oxides. The 
solid line represents the double barrier. 
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probability will reduce to that of a thin oxide with a thickness of 2tox  , as one might 

expect. 

The tunneling probability as given by Eq. 4-3 leads to a very simple expression 

for the resonant states. Since the cos and sin functions in Eq. 4-3 both have the same 

argument, T(E)=1 when cos(L)=0. Applying this condition, the resonant states are 

given by, 

or upon evaluation of the integral, 

Eq. 4-5 is the same expression the W1(13 approximation gives for the bound states of a 

potential well, predicting that the resonant states of the DB are the same as the bound 

states in the equivalent Quantum Well (by equivalent it is meant that the well depth is 

V0 and width is w). Since an exact solution of the Quantum Well problem is 

straightforward (see Gasiorowicz [31]), a comparison between the two will be made. 

Also, a straightforward exact calculation for the resonant states of the DB structure is 

given by Roy [10], 

Both the Quantum Well solution and Eq. 4-6 lead to transcendental equations that 
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must be solved numerically. The equations were solved for w = 2 nm, and tox=  3 nm 

in the DB case, and are given in table 4-1. 

The results in table 4-1 confirm the prediction that the Quantum Well bound 

states are the same as the DB resonant states, but from the exact calculations, not 

Eq. 4-5. Even though the WKB resonant states are not very accurate, there is a way to 

use the results from the exact calculation of the DB resonant states (Eq. 4-6) combined 

with the WKB approximation. 

Bohm demonstrates that for electron energies near the resonant states, 

Eq. 4-3 reduces to, 

where T is the amount of time an electron travelling classically would require to make 

two passes through the silicon well. This can be expressed as, 

Using the exactly calculated resonant states and Eq. 4-7 a function can be constructed 

to give good approximate results with the resonant peaks at the correct energies. When 

investigating Eq. 4-7 it was found that it gives the same results as Eq. 4-3 within the 

energy range of interest (to be discussed in the next section). This is not surprising 

because 0 dominates Eq. 4-3. For the purpose of calculating the current density 

integral, Eq. 4-7 will be used for T(E) and the exact resonant states will be calculated 

using Eq. 4-6. One difficulty arises, however, when using Eq. 4-7 or Eq. 4-3. Both 
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Table 4-1: Comparison of resonant state calculations based on WKB approximation, 
and exact Quantum Well and Double Barrier calculations. 

Index 
(n) 

WKB 
(eV) 

Quantum Well 
(eV) 

Double Barrier 
(eV) 

0 0.01 0.06 0.06 

1 0.12 0.24 0.24 

2 0.40 0.54 0.54 

3 0.83 0.97 0.96 

4 1.42 1.53 1.50 

5 2.16 2.21 2.17 

6 3.06 2.98 2.94 

equations are very sensitive to the value of E near the resonant states. If the value 

for E at the resonant state is not made exactly equal to En  then the result can be orders 

of magnitude below unity. Because of this another simple approximation of T(E) will 

be used to evaluate the current integral. 

Using a second simple approximation of T(E) also provides an 

opportunity to determine what the important features of the RT transmission 

probability curve are. That is, to determine whether it is the peak at unity, or the 

spread (bandwidth) of the peaks about the resonant states that make the most 

important contributions to the current integral. This second approximation of T(E) will 

be given by, 

where δ(E-En) is the Dirac Delta function. Eq. 4-8 is the equation for tunneling 
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through a single barrier (see Eq. 4-1) of thickness 2tox, replaced by unity at the 

resonant states. 

4.4 Evaluation of Current Density Integral for Double Barrier Potential 

To determine if the model of RT presented in the previous section is valid, at least to 

some degree, one will measure the current density versus voltage on an experimental 

DB structure. This will require the evaluation of Eq. 	for comparison. The 

integration of Eq. 4-2 is not trivial and therefore numerical techniques will need to be 

employed. Moreover, aspects of semiconductor physics need to be considered to 

determine a valid bias regime. Fig. 4-4 shows a band diagram for an experimental test 

structure with an P-type silicon substrate, which exaggerates the band bending that will 

occur at the substrate oxide interface. In Fig. 4-4 the silicon well is depicted as 

intrinsic, and therefore band bending will occur at its interfaces as well, for simplicity 

it will be ignored in the following analysis. 

When a negative bias is applied to the gate of the device, as is the case in 

Fig. 4-4, the bands in the substrate will bend up. This is referred to as Accumulation 

in the P-type substrate [ 1 1 ]. Under this bias condition the device is said to be Tunnel-

Limited and the JV curve can be based simply on the evaluation of Eq. 4-2. This is 

NOT true when a positive bias is applied to the gate. Under this bias condition, when 

the bias is not strong enough to cause Inversion [11], the bands in the silicon substrate 

are bent down. The hole concentration near the oxide-silicon interface will decrease 

and a region of fixed donor ions, devoid of charge carriers, will form and extend into 

the substrate from the interface [11]. This is referred to as Depletion and under this 
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Fig. 4-4: Double barrier structure under negative gate bias. 

bias condition the device is said to be Depletion limited. Its JV characteristics will no 

longer be found simply from Eq. 4-2. For simplicity in the analysis to follow, only the 

JV characteristics for the Tunnel-Limited case will be calculated, therefore, only a 

negative gate bias will be considered. Before the entire bias regime is specified, 

however, factors placing an upper limit of the gate bias must be addressed. 

The WKB approximation that has been used to find T(E) (Eq. 4-7) 

becomes increasingly inaccurate as the bias across the oxide layers is raised. This is 

not a problem, however, since the purpose of studying the RT diode's characteristics 
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is for an application restricted to low bias (see chapter 5). It will be assumed that the 

total voltage across the device divides evenly across each oxide layer and therefore the 

upper limit on the bias will be placed at -3 volts (-1.5 volts across each oxide). Hence, 

the entire bias regime has been defined, ie.- 0 to -3 volts. One last factor needs to be 

considered and this is the band bending induced at the interface of the substrate and 

oxide layer. 

The result of band bending under a negative gate bias is to effectively 

lower the Fermi-level with respect to the band edges in the substrate silicon, at the 

interface. thereby changing the number of electrons tunnelling across the barrier. A 

very simple approach will be used to account for this during the evaluation of Eq. 4-2. 

As was previously stated, it will be assumed that half of the total bias across the entire 

structure appears across each oxide layer. Treating the silicon/oxide/silicon sandwiches 

as ideal capacitors, the surface charge at the oxide-substrate interface will be 

calculated using Guass's law, 

where the left hand side of Eq. 4-9 is the electric-field expressed in terms of the 

voltage and oxide thickness, a' is the surface charge density at the oxide-substrate 

interface, and sox  is the permittivity of SiO,. The surface charge in the substrate 

silicon can be related to the band-bending at the surface using, 

which is the usual expression for the charge density within a semiconductor, and ϕb 
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and ϕ(x) are defined consistent with the treatment given by Sze [11]. Eq. 4-10 can be 

used to find the surface charge density at the oxide-substrate interface by assuming, 

when in Accumulation, all of the holes are concentrated into a very thin layer at the 

interface. This assumption leads to the convenient integral representation, 

Upon substitution of Eq. 4-10 into Eq. 4-11 the surface charge density becomes, 

where ϕ(x) is replaced by the constant ϕs at the interface only. A value for ϕs is found 

by rearranging Eq. 4-12, which is then used in Eq. 4-2b to account for the effective 

shift in the Fermi-level. This changes Eq. 4-2b to, 

With a bias regime defined and band bending taken into account, the 

integral of Eq. 4-2 can be evaluated. It should be pointed out that Eq. 4-2 treats the 

conduction band of the gate as the energy zero for the entire system. The integral does 

not have to be taken to infinity since the concentration of electrons, as determined by 

the fermi function and density of states [22], approaches less than 1000 electrons per 

cm' per eV as E approaches 1.4 eV. It was found that taking the integral to I eV 

proves sufficient. Fig. 4-5 shows the results of the integrations using the two 

expression for T(E) in Eq. 4-2, at T=4K, in normalized units. 
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Having presented an analysis of the RT phenomena, device structures can 

be fabricated to look for the JV characteristics predicted in Fig. 4-5. Because of 

non-uniform oxide thicknesses arid electron-phonon interactions, the ideal curves 

presented in Fig. 4-5 can never be achieved. However, the significance of Fig. 4-5, 

with respect to device design, is that a large current may be achievable at low bias. 

Although, the peaks in a real JV characteristic will not be as many orders of 

magnitude above the conventional tunnel current as depicted in Fig. 4-5. The 

significance of the large current, however, is that it will allow fast switching rates at 

low bias. If this were not the case then defeating the DT degradation would not 

matter, because practical devices (fast switching times) could not be made. With the 

combined information that has been presented in chapters 1 through 4, a novel 

approach to the design of FG EEPROM memory cells will now be presented. 
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Fig. 4-5: Ideal current density versus voltage characteristics for an RT diode. The 
dashed curve is the result using Eq. 4-8 for T(E) in Eq. 4-2. The solid curve is the 
result using Eq. 4-7. 



CHAPTER 5 

OPERATING PRINCIPLES OF 
RESONANT TUNNELING ELECTRICALLY ERASABLE PROGRAMMABLE 

READ ONLY MEMORY CELL 

5.1 Introduction 

A practical memory cell requires two stable operating states with which it represents a 

logical "1" and a logical "0". This has been realized in conventional floating gate (FG) 

electrically erasable programmable read only memory (EEPROM) cells by the use of a 

FG. Depicted in Fig. 5-1, the FG is an island of metal or polycrystalline silicon 

electrically isolated from the gate electrode by the field oxide, and electrically isolated 

Fig. 5-1: Schematic diagram of EEPROM memory cell. 
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from the substrate by a tunnel oxide layer. Charge can be transported into and out of 

the FG by tunneling electrons across the tunnel oxide. The thickness of the tunnel 

oxide is determined from two requirements: (1) it must be thin enough so that 

electrons can tunnel to the floating gate at a reasonable bias, and (2) it must be thick 

enough so that electrons do not "leak" off the floating gate by direct tunneling back 

through the oxide. The typical tunnel oxide thickness is 5.0 - 10.0 nm, so the 

conduction mechanism through the oxide is Fowler-Nordheim tunneling. This transport 

mechanism, however, leads to degradation in the tunnel oxide and therefore limits the 

number of times the charge state of the FG can be changed. 

Since the FG is usually implemented in a modified Metal Oxide Semiconductor 

Field Effect Transistor (MOSFET), sensing the charge state of the FG is achieved by 

passing current from the Drain to the Source of the transistor. The charge state of the 

FG alters the conduction properties of the substrate silicon just below the tunnel oxide 

layer. For example, if the Drain and Source are formed from P-type silicon and the 

substrate from. N-type, when positive charge is stored on the FG the Drain to Source 

path is poorly conductive. But, when negative charge is stored on the FG, an inversion 

layer can be formed just below the tunnel oxide layer and create a highly conductive 

path between the Drain and Source. In this way the two logical states are achieved. 

In what follows the operating principles of a novel approach to the design of 

FG EEPROM memory cells will be presented. Essentially, the single tunnel oxide 

layer is replaced by a SiO2/Si/SiO, sandwich (double barrier as described in chapter 4). 

The goal of this approach is to effect the transport of electrons to and from the FG via 

resonant tunneling. This will keep the required bias, for writing and erasure, below the 
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threshold for the onset of DT degradation (discussed in earlier chapters). In this way, 

it may be possible to achieve an EEPROM cell that will not suffer appreciable 

degradation during its use over any realistic time frame. 

5.2 Device Function 

5.2.1 Critical Design Parameters 

The proposed device structure is depicted in Fig. 5-2. Similar to conventional 

FG EEPROM design, the Resonant Tunneling EEPROM (RTEEPROM) is essentially a 

MOSFET with the inclusion of a FG and tunnel oxide layer. The tunnel oxide, 

however, is separated into two ultra-thin layers (-3nm) by an ultra-thin layer of Silicon 

(-2nm). The dimensions of these layers are the first critical design parameters since the 

Fig. 5-2: Schematic diagram of RTEEPROM. 
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quasi-bound states of the silicon well depend on them as discussed in 

Gasiorowicz [31]. The ground state of the silicon well increases as the silicon well 

width decreases. In what follows, it will be demonstrated that the ground state of the 

silicon well determines the amount of charge stored in the FG. An additional critical 

design parameter is the doping concentration of the substrate. The ability of the charge 

stored in the FG to push the substrate into inversion is strongly dependent upon the 

doping concentration of the substrate. 

5.2.2 Device Function 

Fig. 5-3 shows the band structure of the tunnel layers sandwiched between the FG and 

the substrate silicon in four different states. It is assumed that the Silicon Well is 

intrinsic, and the substrate and FG Silicon is N-type. In Fig. 5-3a the equilibrium or 

"no charge" state is depicted. All the fermi levels are aligned with each other, and a 

slight amount of band bending occurs in the substrate due to the difference in Work 

functions between the Silicon Well and substrate. The band bending gives rise to a 

small amount of charge stored at the interfaces. In Fig. 5-3b a positive voltage (Va) 

has been applied to the gate of the transistor. This causes the fermi level of the 

substrate to fall below the fermi level of the FG, therefore, electrons begin to tunnel 

into the FG as indicated by the arrow. A negative charge forms in the FG and 

therefore a positive charge forms in the substrate. As electrons tunnel into the floating 

gate an internal electric field (Eint) develops which opposes the applied field (Ea). Once 

Eint=Ea, the Fermi levels again line up and electron flow halts. Fig. 5-3c shows the 

situation directly after the applied bias is removed. Eint now creates a potential 
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Fig. 5-3: Band diagrams of Double Barrier depicted in various states. 
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difference across the double barrier and the Fermi level of the FG is above the Fermi 

level of the substrate. The upward bending of the conduction band in the Substrate 

reflects the fact that positive charge is stored there. Electrons will now tunnel out of 

the FG, and will do so until the fermi level of the FG lines up with the ground state of 

the silicon well. This is depicted in Fig. 5-3d and shall be referred to as the Quiescent 

State. In this state any further leakage of charge from the FG would lower the Fermi 

level of the PG below the ground state of the silicon well. Since the electron 

population in the PG essentially vanishes above the Fermi level, charge in the FG 

would no longer have a path to tunnel through and therefore charge leakage due to 

resonant tunneling must halt. Since DT from the PG requires passing through the 

combined thickness of both oxides, the probability for tunneling will be vanishingly 

small. In this way charge retention on the FG can be achieved, as well as transporting 

charge at low bias to defeat DT degradation. 

5.3 Inversion of Substrate at Quiescence 

The Quiescent state is critical to the operation of the device. When the device is in 

this state the path between the Drain and Source becomes highly conductive. This 

occurs when the charge on the FG pushes the substrate into inversion. When a positive 

bias is applied to the gate, electrons will tunnel into the PG. If left undisturbed the FG 

will remain at the quiescent state with a net negative charge stored in it. The negative 

charge on the FG will induce a positive charge in the substrate. The positive charge in 

the substrate can be formed by either the creation of a space charge region, or the 

combination of a space charge region and a positive surface charge of holes [11]. The 
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latter case is the inversion phenomena. To ensure that the substrate is in inversion 

when the device is in the quiescent state, the doping concentration of the substrate 

must be chosen properly. The following demonstrates how this choice can be made. 

Fig. 5-3d shows a diagram of the device in the Quiescent state. Since the 

voltage drop across the double barrier is 0.12 V, the surface charge in the FG and 

substrate can be calculated using σ=C0xVox, where Cox  is the total capacitance of the 

tunnel layers and Vox  is the voltage across the tunnel layers. The total capacitance of 

the tunnel layers can be found from C=ϵ/tox  Using ϵox=3.9ϵ0, tox=3 nm, and treating the 

tunnel layers as two ideal capacitors in series, the total capacitance of the tunnel layers 

is Cox=.006 F/m2. This leads to σ=720 µC/m2. Since the charge in the FG is negative it 

will be assumed that all of σ is created by a very thin layer of electrons at the 

interface of the FG and tunnel oxide. The positive charge in the substrate, however, 

will need to be a combination of a thin layer of holes and a space charge region. 

The space charge region in the substrate forms as a consequence of the 

negative charge in the FG repelling the electrons in the substrate near the 

substrate-tunnel oxide interface. Since the positively charged donor ions in the 

substrate are fixed in position, they form an effective positive surface charge at the 

interface of the substrate and tunnel oxide. The magnitude of the effective surface 

charge is given by, 

In Eq. 5-3 W is the width of the space charge region. The space charge region will 

reach a maximum width, Wm, which is determined by the substrate dopant 
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concentration. Once Wm  is reached the positive surface charge is completed by a thin 

layer of holes that forms at the interface of the substrate and tunnel oxide. 

As is depicted in Fig. 5-3d all of the bands in the substrate, except for Ef , are 

bent upward as a result of the stored charge in the device. Following the discussion 

found in Sze [11], the potentials Ψ and ΨB can be defined such that Ψ=Ei-Ei0  and 

ΨB=Ef-Ei0 (refer to [1 I]). With these definitions the carrier concentration in the 

substrate is given by, 

It can be seen in Eq. 5.4 that as Ψ approaches ΨB the total charge concentration in the 

substrate approaches ND. When Ψ exceeds ΨB the total charge concentration in the 

substrate must be partly due to N D, and partly due to holes, since ND  is only a constant 

in the equation. Since the holes are mobile it is assumed that they are attracted to the 

surface. Following Sze [11], the calculations used to find N D  for the substrate will 

assume that the charge density in the space charge region is given entirely by N D. 

With the stated assumptions, ND  for the substrate will now be calculated. 

Sze [11] demonstrates that the maximum space charge region width is given 

by, 
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This means the space charge region will only grow as wide as Wm  before inversion 

sets in. In choosing N D, therefore, we want W calculated from Eq. 5.3 to be greater 

than Wm so as to ensure that the substrate goes into inversion. Fig. 5-4 shows a plot of 

W and W m  versus doping concentration, where W is represented by the dashed line 

and Wm  is represented by the solid line. Clearly, as long as ND  is kept below 

approximately 1022  m-3 the substrate will be in inversion. 
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Fig 5-4: Depletion layer width and maximum depletion layer width versus dopant 
concentration. 
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