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ABSTRACT 

SENSITIVITY ANALYSIS AND DESIGN CALCULATIONS WITH 
BIOFILTRATION MODELS 

by 
Michael Lawrence Cohen 

Biofiltration is a new technology for biological treatment of volatile organic 

compounds present in airstreams. It is a complex process and thus, engineering models 

which attempt to describe it are by necessity very involved and contain a large number of 

parameters. 

In this study, two models describing biofiltration of airstreams carrying a single 

pollutant (VOC) were used in detailed parameter-sensitivity studies. 	One model 

concerned biofiltration under steady-state conditions, while the second described the 

transient behavior of the process. The intent of the sensitivity studies was to determine 

which model parameters need to be known with accuracy in order to allow for a good 

prediction of the size of a biofilter needed to achieve a given VOC-control objective. 

Studies with the steady-state biofiltration model have shown that accurate knowledge of 

the values of two kinetic parameters and the specific area of biofilm (and therefore the 

packing configuration) are essential. Studies with the transient model have revealed that 

in regards to transient behavior, the mass transfer coefficient is the most important design 

parameter. 

Design calculations were also performed in this study for an integrated process 

involving soil venting and biofiltration for cleaning a contaminated aquifer. Preliminary 



results (based on a number of simplifying assumptions) have shown that the proposed 

concept is plausible in the sense that a reasonable biofilter size is adequate for 

remediating a site in a relatively short period of time. It was also found that a given mass 

of contaminant can be treated more efficiently (shorter time, smaller biofilter volume) 

under constant venting rate if the volume of the aquifer is smaller (i.e., when the 

residence time of air in the aquifer is larger). This finding could be taken advantage of 

through faster remediation of a spill (before it spreads), or if seasonal variations affect the 

size of the aquifer. 
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CHAPTER 1 

INTRODUCTION  

Nature has the ability to decompose and recycle all substances produced by mankind. It 

can thus, treat all substances which are considered as wastes. However, environmental 

pollution is a serious problem. This arises from the fact that mankind produces wastes at 

 rates much higher than those at which nature can decompose them. In addition, high 

levels of certain pollutants impact the health of humans and other living species while 

they destroy the natural ecosystem. Consequently, pollution control becomes an 

important issue and various laws regulate the presence of various pollutants in the air, 

water, and soil. 

One of the most important groups of pollutants currently being regulated is that of 

Volatile Organic Compounds (VOCs). These compounds are among the major 

precursors, along with NOX, of ground-level ozone. In an effort to reduce the occurrence 

of this ozone the Clean Air Act Amendments of 1990 (CAAA) have introduced 

restrictions on the amounts of VOCs that may be emitted. Presently, these restrictions are 

only on large-scale industrial operations. Eventually, these restrictions will be extended 

to include smaller scale contributors such as bakeries, dry cleaners, gasoline stations, and 

storage facilities [Baltzis and Wojdyla (1995a)]. 

In order to control VOC emissions many processes have been devised, including 

thermal and catalytic incineration, flares, condensers and adsorption [Moretti and 

Mukhopadhyay (1993)]. These processes are currently the most popular, but there are 
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several newer, possibly more effective and economical ones on the horizon. One of the 

more promising of these new technologies is biofiltration. 

Biofiltration is a biological method for VOC treatment. It is based on the 

oxidation of VOCs by bacterial and fungal species which utilize the various compounds 

as a carbon or energy source. It can be argued that biofiltration is a naturally occurring 

process which is now used in a controlled manner as a specially designed technology. 

The first applications of biofiltration were in conjunction with wastewater [Fouhy and 

Grinthal (1994)], and later for odor control purposes. Presently biofilters are in use 

within many processes including aroma extraction, foundries, sewage (municipal and 

industrial), plastics processing, adhesives and rendering. They are used for the removal 

of many irritants and pollutants including odors, oxygen-, sulfur-, and nitrogen-

containing organics and hydrogen sulfide [Fouhy, 1992]. In recent decades, there has 

arisen an interest in using biofiltration for dealing with emissions of hazardous and toxic 

substances. 

There are a number of recent studies on biofiltration and they are reviewed in the 

next chapter of this thesis. Some of these studies have led to the development of 

mathematical models [e.g., Ottengraf and van den Oever (1983), Shareefdeen et al. 

(1993), Shareefdeen and Baltzis (1994)] with varying degrees of complexity. Models are 

very important for optimal engineering design of biofilters as well as for determining if 

biofiltration is an economically viable option for a given application. 

Biofiltration models (both for steady-state and transient operation) involve a large 

number of parameters. Accurate knowledge of all these parameters requires extensive 
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and expensive experimental work, something which is not practical when biofiltration is 

considered in preliminary decision making. It thus becomes important to know which 

parameters are most essential for a good estimation of the size of biofilters. This 

determination can be made through sensitivity studies with the models, and this was the 

main objective of the study presented in this thesis. 

Biofiltration is a process which was originally conceived for treatment of air 

which is unintentionally polluted. Conceivably though, it could be also used for treating 

air which is intentionally contaminated in order to resolve other pollution problems. For 

example, if soil or an aquifer is contaminated with VOCs air can be used for 

decontaminating them. In this case the pollution problem is intentionally removed from 

one phase to another; more specifically it is transferred to the air. This contaminated air 

could be subsequently treated in a biofilter where the pollutants are destroyed. This idea 

of an integrated soil venting/biofiltration process was also considered as part of the 

present thesis. Clearly the idea of soil venting is not new. Actually, a number of studies 

on soil venting or air sparging exist in the literature and are reviewed in the next chapter 

of this thesis. With regard to the integrated process, some preliminary calculations were 

performed based on detailed biofiltration models, but simple models describing 

air sparging (vapor extraction). 



CHAPTER 2 

LITERATURE REVIEW  

2.1 Biofiltration  

In recent years biological processes have been shown to be effective in treating VOC 

contaminated airstreams. There are two major biological systems for treating these 

airstreams: classical biofilters and biotrickling filters. These processes can be effective 

for a wide range of pollutants, are usually relatively inexpensive, produce 

environmentally harmless emissions and can be easily maintained for a relatively long 

period of time 	et al. (1992)]. 

The classical biofilter (or simply biofilter) consists of a porous solid support 

placed either in an open or closed structure (reactor). Microorganisms having the ability 

to biodegrade volatile substances are immobilized on this solid support. The 

contaminated airstream passes through the classical biofilter, the contaminants enter the 

wet biofilm layer surrounding the particles, and are there degraded by the 

microorganisms. There is no liquid stream in a classical biofilter {Shareefdeen and 

Baltzis (1994), Hodge and. Devinny (1994)]. The main factors affecting this process are 

the support (packing), the identity and properties of the contaminants, the microbial 

species and their characteristics, and the rates of VOC removal which can be achieved 

with a given unit. 

The biotrickling filter is similar to the classical biofilter but it involves a 

recirculating liquid phase. This allows for continuous removal of chemicals such as 

4 
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chlorinated compounds, which cause a change in the pH value. In these units pH-control 

is achieved by the addition of an acid or base when necessary. Biotrickling filters have 

also been shown to retain higher amounts of biomass in some instances, leading to higher 

degradation rates [Togna and Singh (1994)]. 

Due to the interest in biofiltration a lot of feasibility studies have been performed 

in the recent years. Detailed reviews of studies can be found in Shareefdeen (1994) and 

Androutsopoulou (1994). Removal rates vary with the compounds used, the size of 

biofilter, the concentration of pollutants in the airstream entering the biofilter, the packing 

material, etc. For example, Zilli et al. (1992) reported removal rates of phenol up to 124 

g/m3/h with a packing material consisting of peat and glass beads in a 2:1 volume ratio. 

In their experiments they used Pseudomonas sp. Ottengraf and van den Oever (1983) 

studied the removal of mixtures (containing among others toluene and butanol) and 

reported maximum removal rates in the range of 20-40 g/m3/h depending on the identity 

of the pollutant. The packing material used was primarily a peat compost. Regarding 

ethanol, Baltzis and Androutsopoulou (1994) have reported removal rates up to 40 g/m3/h 

under steady-state conditions and much higher ones under transient conditions; they used 

a packing material consisting of peat and perlite (2:3 per volume). For the same 

substance (ethanol), Hodge and Devinny (1994) have reported removal rates ranging 

from 53 to 219 g/m3/h in biofilters packed with compost, or granular activated carbon 

(GAC), or a mixture of compost and diatomaceous earth. The foregoing review is not a 

complete account of existing studies, but it shows that various parameters affect the 

performance of biofilters. 
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Since the present thesis dealt with Modeling of classical biofilters, following is a 

review of existing models. 

The first model of biofiltration under steady-state conditions was published by 

Ottengraf and van den Oever (1983). Although the model was based on experiments with 

a mixture of VOCs, it essentially concerns removal of a single compound as it does not 

take into account potential interactions between pollutants. In addition, this model does 

not account for the potential impact of oxygen availability (although biofiltration is an 

aerobic process) and uses zero- or first-order kinetics with regard to the pollutant. Due to 

the extensive simplifying assumptions this model can be solved analytically, but is now 

considered as unrealistic. 

The first detailed model describing steady-state biofiltration of a single VOC was 

published by Shareefdeen et al. (1993) and describes potential oxygen limitations of the 

process, while it accounts for more detailed (in fact complex) expressions for the 

degradation rate with regard to the VOC. Based on experiments with methanol, this 

model predicts that under most conditions oxygen is the limiting factor from the mass-

transfer view point while the carbon source (methanol) is limiting from the kinetics point 

of view. The same model was used by Androutsopoulou (1994) who experimentally 

studied the removal of ethanol and butanol in two separate units. She reached the same 

conclusions regarding oxygen and VOC limitation as those of Sh.areefdeen et al. (1993). 

The same model was used in describing biofiltration of benzene and toluene in two 

separate columns [Shareefdeen (1994)]. In this case, it was found that although oxygen 

affects the process to a certain extent, limitation both from kinetics and mass-transfer 
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viewpoints is determined by the VOC. The conclusion from the foregoing studies is that 

although oxygen should be always considered it has to be definitely accounted for in 

cases where a hydrophilic compound is treated. This was not done by Hodge and 

Devinny (1994) who modeled ethanol biofiltration data along the lines of Ottengraf and 

van den Oever (1983). However, this new model incorporates rates of carbon dioxide 

evolution. 

Models for steady-state biofiltration of VOC mixtures fall in two categories. 

Baltzis and Sharefdeen (1994) have proposed a model which accounts for competitive 

inhibition between pollutants and also accounts for oxygen effects. This model has been 

experimentally validated with mixtures of benzene and toluene. A model which accounts 

for competitive inhibition but neglects oxygen effects has been also used by Deshusses et 

al. (1995) based on experiments with MEK (methyl-ethyl-ketone) and MIBK (methyl-

isobutyl-ketone). Recently, Baltzis and Wojdyla (1995b) have proposed a model which 

accounts for species differentiation in the biofilter bed. This model accounts for oxygen 

effects and assumes the formation of separate biofilm patches for each pollutant. This 

model has been used in explaining data of ethanol/butanol mixtures removal. 

Transient biofiltration is a much more complex case since the process is 

complicated by the presence of adsorption/desorption effects. Shareefdeen and Baltzis 

(1994) were the first to propose a model for transient biofiltration of single VOCs. The 

model is an extension of the steady-state model proposed earlier by the same 

investigators [Shareefdeen et al. (1993)] and has been experimentally validated for the 

case of toluene removal under transient conditions. A transient model has also been 
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proposed by Deshusses et al. (1995) and used for describing MEK or MIBK transient 

removal. This model does not account for oxygen limitations and instead of adsorption it 

uses absorption (dissolution) of the VOCs in the water retained within the pores of the 

packing material. 

The present thesis dealt with single VOCs and used the models of Shareefdeen et 

al. (1993) and Shareefdeen and Baltzis (1994) in sensitivity and calculational studies. It 

should also be added that since this thesis dealt with classical biofilters, studies of 

biotrickling filters have not been reviewed. These studies are few in number and the only 

one on modeling has been published by Diks and Ottengraf (1991). 

2.2 Soil Venting  

Soils can become contaminated with VOCs in many ways. The main sources of 

contamination are intentional dumping, accidental spills and leaks in underground storage 

tanks. There are a number of current practices for removing these VOCs. They include 

excavation of the entire site followed by treatment of the soil, and flushing of the aquifer 

followed by treatment of the water [Hutzler et al. (1991)]. These methods are very 

expensive and time consuming, and for this reason new approaches and technologies are 

currently being investigated. 

Soil venting (also known as. soil vapor extraction or air sparging) is a new 

remediation technique which is both significantly cheaper and less time consuming than 

the current methods. In this process, VOCs are removed from the contaminated aquifer 

by forcing (sparging) air through the soil, and into the aquifer. The VOCs are volatized 



9 

out of the water, and into the airstream. These VOCs are carried out of the ground, either 

into a vapor extraction system, or when permissible, into the atmosphere [Angell (1991)]. 

It has been found that soil venting can be effective in removing a wide range of VOCs, 

under numerous conditions [Hutzler et al. (1991)]. 

Wilson et al. (1987) have proposed a model for describing the removal of VOCs 

from the subsurface using forced venting. In this model a single component (gasoline) is 

forced upward through a uniform soil. Only diffusion through the soil is considered, with 

the only soil parameter used being porosity. This model was validated experimentally in 

the laboratory, and was found to need improvement. 

Silka et al. (1991) proposed a simplistic mass balance model which assumed 

equilibrium between the liquid and gas. Transport through soil was described by a single 

variable, the effective diffusion coefficient (an overall coefficient accounting for 

partitioning, adsorption and tortuosity). This model has been found to have good 

qualitative agreement with data from vapor extraction of TCE. 

Gierke et al. (1992) proposed a detailed model of vapor extraction. This model is 

more complex than previous ones, as it includes nonequilibrium effects and more soil 

parameters such as soil particle density, soil sorption capacity, aggregate radius and 

degree of saturation. These additional parameters make the model more realistic. 

Laboratory data on the extraction of toluene and methanol from Ottawa sand and an 

aggregated porous soil material were found to be in excellent agreement with the 

predictions of the model. 
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Soil venting is a complex process which appears to need further detailed 

investigation both from the experimental and the modeling viewpoint. In the present 

thesis equilibrium between air and water (regarding the VOC) was assumed while soil 

parameters were not considered. 



CHAPTER 3 

OBJECTIVES  

There were two main objectives in this study. The first was to perform detailed 

parameter-sensitivity studies with steady-state and transient biofiltration models. The 

second objective was to perform design calculations for an integrated process involving 

air stripping (soil venting) and biofiltration for treatment of a contaminated aquifer. 

All studies were based on existing models and computer codes which are 

applicable for cases where the contaminated airstream contains a single pollutant. 

The intent of the sensitivity studies was to determine which model parameters 

need to be accurately known so that the size a biofilter needed for meeting a given VOC-

control objective can be safely predicted. 

The intent of the design calculations for the integrated soil venting/biofiltration 

process was to obtain some preliminary knowledge regarding the size of the required 

biofilter and the time frame within which a contaminated aquifer could be remediated. 

Sensitivity studies with the steady-state biofiltration model were extensions of 

similar studies by Shareefdeen (1994) and Androutsopoulou (1994). They were 

performed as follows. Two basic sets of model-parameters were first selected: one for 

toluene (a hydrophobic compound) and one for butanol (a hydrophilic compound). Each 

model parameter -one at a time- was varied within a range from 0.1 to 10 times its base 

value and the biofilter size required for performing a given duty was calculated. In most 

instances, the space (residence) time of the airstream in the biofilter rather than the 

11 
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volume of the biofilter itself was calculated. This was done because the volume (V) is 

related to the space time (τ) through the relation τ  = V/F, where F is the volumetric 

flowrate of the airstream supplied to the biofilter, and the model gives the same results for 

a given value of τ  regardless of the individual values of V and F. The results of these 

studies are presented in Chapter 4 of the thesis. 

Sensitivity studies with the transient biofiltration model were performed with a 

single set of basic parameter values (toluene). Only parameters appearing in the transient 

but not in the steady-state model were examined. These parameters refer to adsorption 

equilibrium and mass transfer characteristics between VOC and packing material of the 

biofilter. The objective here was to investigate the effect of parameters on the time 

required to achieve steady-state and on the size of the biofilter. The size of a biofilter can 

be affected by transient behavior parameters due to potential concentration overshoots. 

Results from these studies are presented in Chapter 5. 

For the integrated soil venting/biofiltration process, it was assumed that the 

aquifer was contaminated with toluene only. One set of biofiltration parameters was 

used, while it was also assumed that the air passed through the aquifer carries toluene at 

equilibrium concentrations at all times. The rate of soil venting was changed so that the 

biofilter operates under relatively constant toluene concentrations over different time 

segments. Various criteria, such as the threshold limit value (TLV) and acceptable source 

impact level (ASIL), for toluene were taken into account for the design calculations. 

Results from this part of the study are presented in Chapter 6 of the thesis. 



CHAPTER 4 

STEADY-STATE BIOFILTRATION OF SINGLE VOCs 

The work presented in this chapter refers to biofiltration under steady-state conditions 

when the contaminated airstream contains a single VOC. The process had been earlier 

modeled by Shareefdeen et al. (1993). This model was also used in the studies reported 

here. The model, which is presented in the next section of this chapter, contains a large 

number of parameters. These parameters fall into two different categories: model 

parameters and operating parameters. Model parameters are those which are specific to a 

given system; i.e., the packing material (e.g., biofilm specific area), characteristics of the 

biofilm (e.g., density), etc. Operating parameters are those which can be varied through 

design and they involve the concentration of the VOC in the airstream supplied to  the 

biofilter, the rate of either air supply (volumetric) or VOC supply (mass) to the filter-bed, 

etc. 

The work presented here falls into two categories. The first category of studies 

involved sensitivity studies with regard to the model parameters. The intent of these 

studies was to examine the impact of potential uncertainties in the values of a given 

model parameter on the predicted required size for a biofilter. In these studies, the 

biofilter was assumed to be supplied with a given VOC concentration and required  to 

achieve a given percent removal of the pollutant. Sensitivity studies were performed by 

changing the value of one model parameter at a time. 

13 
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As basis for the sensitivity studies, model parameter values from earlier studies 

were used. These studies concerned butanol which is a hydrophilic substance [Baltzis 

and Androutsopoulou (1994)], and toluene which is a hydrophobic substance 

[Shareefdeen and Baltzis (1994)]. The earlier reported/measured parameter values are 

referred to here as reference values. 

The second category of studies reported here concern the operating parameters. 

Using the reference values of model parameters, the intent here was to find the required 

biofilter volume as a function of the inlet pollutant concentration for given values of rate 

of pollutant mass supply (load) to the biofilter bed. These studies are referred to as sizing 

calculations. 

As mentioned earlier, two sets of reference parameter values were employed in 

the present study. The intent was to find if the same or different parameters are most 

important in the cases of hydrophilic and hydrophobic solvents. The use of parameters 

for butanol and toluene was due to the fact that these substances had been earlier used in 

detailed biofiltration experiments [Androutsopoulou (1994), Shareefdeen (1994)]. 

4.1 Model Equations and Numerical Methods  

For airstreams carrying a single volatile organic compound (VOC) the biofiltration 

process in a classical biofilter can be described by the following mass balances, under 

steady-state conditions [Shareefdeen et al. (1993), Shareefdeen (1994)]. 



1 5 

I. Mass balance for VOC j in the biolayer at a position h along the biofilter bed: 

f(Xv)Djw d
2
sj/dx

2 
=  Xv/Yj µj(sj,sO) 	(4.1) 

	

	  

with boundary conditions, 

sj = cj / mj at x = 0                                         (4.2)                                                   dsj / dx  = 0 

	 at x = δ 	 (4.3) 
 

Equation (4.1) implies that the rate of diffusion of VOC j in the biolayer is equal to the 

rate of its biodegradation. 

II. Mass balance for oxygen in the biolayer at a position h along the biofilter bed: 

f(Xv)DOw   d2sO /dx

2 

= Xv /YOjµj(sj,sO) (4.4) 	  

	

	 

with boundary conditions, 

 

sO = cO / mO 		at    x = 0 	 (4.5) 

 

dso 

 /dx = 0                  at    x = δ 	

(4.6) 

 
	

 

Equation (4.4) implies that the rate of oxygen diffusion in the biolayer is equal to the rate 

of oxygen consumption in the biodegradation process. 

III. Mass balance for VOC j in the airstream at a position h along the biofilter bed: 

H/τ dcj/dh  = Asf(Xv)Djw[dsj/dx]x=0 (4.7) 
 

 
	   

with boundary condition, 
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cj =cji at   h = 0 	 (4.8) 

Equation (4.7) implies that the rate of loss of VOC j from the air along the biofilter is 

equal to the rate at which VOC j is transferred to the biolayer. This transfer is expressed 

as a flux. 

IV. Mass balance for oxygen in the airstream at a position h along the biofilter bed: 

H/τ dcO/dh  = Asf(XV)DOW[dsO/dx]x=0                                                               (4.9) 
 

   
 _ 

with boundary condition, 

cO  = cOi                                  at        h = 0               	 (4.10) 

The terms in equation (4.9) have the same meaning for oxygen as those in equation (4.7) 

have for VOC j. 

Function µ(sj ,sO) which appears in equations (4.1) and (4.4) assumes the following 

form,  

µ(sj ,sO) 

= µ*jsj

s

O / (Kj + sj + s2j/ KIj) (KO + sO)                                  (4.11) 
  

when the degradation kinetics follow an Andrews expression with respect to the 

availability of the carbon source (VOC), and a Monod expression with respect to the 

availability of oxygen. 

As has been shown by Shareefdeen et al. (1993) and Shareefdeen (1994) the 

model equations above can be brought in a dimensionless form once the following 

quantities are introduced, sj = sj/Kj,     sO = sO/KO,  cj = cj/cji, cO = cO/cOi,    γ = Kj/KIj,      
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λ = DjwKjY j             ϕ = µ jδXv / f(Xv)D jwKjY j         η = Asf(Xv)DjwKjτ  

ω =  KODOWcji / K

jDjwc

Oi,   ε = c ji / K jm j,   ε2 = cOi / KO mO,   θ = x/δ, z = h/H  

  

Equations (4.1)-(4.10), when expression (4.11) is also taken into account, take 

correspondingly the following form.  

d2sj / dθ2 = ϕ2     sjsO /(1 + sj 

+ γs 2 )(
1+sO)                           (4.12) 

 
 

s j = ε1 c j 	at θ = 0                                          (4.13)  

dsj / dθ = 0                           at θ = 1 	(4.14) 

 

d2sO / dθ2  = ϕ2λ sjsO /(1 + sj 

+ γs2 )(

1+sO)  	(4.15) 
 

s O = ε2cO 	at θ = 0                                     (4.16) 

dsO / dθ = 0                          at θ = 1                                     (4.17) 

dcj / dz 

= 

η[d2s j/dθ]θ =0                                                                         (4.18) 

c j = 1                                    at z = 0                                   (4.19) 
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dcO / dz2 =   ηω [dsO /dθ]θ=0 (4.20) 

                                                                                                                              
	 

cO = 1              at   z = 0 	 (4.21) 

As has been shown by Shareefdeen et al. (1993), the four dependent variables 

(sj,sO,cj,cO

) 

 are interrelated through the following two algebraic equations: 

cj = cO / λω + 1                                                             (4.22) 

 

sj =  sO / λ - ε1(1/λω - 1) - 1/λ(ε2 - ε1)cO (4.23)                                                                   
 

 
 

 

It is easy to show that equations (4.22) and (4.23) can be equivalently expressed as 

follows: 

cO = λω(cj-1) +1                                                          (4.24) 

sO = λsj - λ(ε1 - ωε2)cj-ε2(λω-1)               	(4.25) 

Because of relations (4.22)-(4.25) one needs to solve two rather than four 

differential equations. There are two possible sets; set 1: equations (4.12)-(4.14), (4.18), 

(4.19), (4.24), and (4.25); set 2: equations (4.15)-(4.17), and (4.20)-(4.23). From the 

numerical point of view, one needs to keep differential equations referring to variables 

which exhibit the largest gradient. Hence, in cases where the VOC gets depleted faster 

than oxygen (in the biolayer) one needs to work with the equations of set 1, while in cases 

where oxygen is changing (in the biolayer) faster than the VOC one needs to work with 

the equations of set 2. 
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The volume (size) of a biofilter bed can be calculated via the following two 

formulas: 

V = τF 	 (4.26) 

L 
V = T — 	 (4.27) cj 

 

where L is the rate of VOC-mass supply to the biofilter (mass of VOC supplied to the 

biofilter per unit time). Although L is called load here, it is recognized that the usual 

definition of load is "amount of VOC supplied to the biofilter per unit time and per unit 

volume of packing material." 

The model equations have been solved through the use of computer codes which 

are based on the use of the orthogonal collocation method for solving equation (4.12) [or 

(4.15)], and the Runge-Kutta method for solving equation (4.18) [or (4.20)]. In cases 

where both set 1 and set 2 of the model equations had to be used, due to changes in what 

compound is consumed first in the biolayer at different locations of the biofilter bed, the 

location of the change was first determined and each segment was solved as a separate 

biofilter. The codes used were primarily those developed earlier [Shareefdeen et al. 

(1993); Shareefdeen (1994); Baltzis (1994)] while some parts were recently revised 

and/or refined by Tsangaris and Baltzis. These codes are given in Appendix C of this 

thesis. 
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4.2 Sensitivity Studies  

As can be seen from equations (4.1)-(4.11) the model parameters are the following: 

kinetic parameters [Yj  YOj, and the four constants included in expression (4.11)]; 

diffusion coefficients (Djw,, DOw ) of the VOC and oxygen in water; correction of 

diffusivities for biofilm [f(Xv ]; distribution coefficients or Henry's constants (mj, mo) 

for the VOC and oxygen; biofilm density (Xv); specific surface area of biofilm (As). The 

thickness of the active biofilm (δ) is a model parameter but varies with the location in the 

biofilter bed. It is calculated through a trial and error procedure through the computer 

code [Shareefdeen et al. (1993)]. The correction factor for diffusivities [Xv)] is a 

function of Xv as described by the correlation of Fan et al. (1990) and thus, it was not 

individually varied. With the exception of the yield coefficients, all other parameters 

were examined in sensitivity studies. 

The results of the sensitivity studies are shown graphically in Figures A-I through 

A-16. The x-axis in these graphs represents the relative value of the parameter studied. 

This relative value is defined as the ratio of the assumed value for that parameter to its 

reference one (reported in Table 4.1). The y-axis shows the residence (or space-) time 

required for achieving a given conversion of the pollutant. In all cases, two inlet 

concentrations of the pollutant (0.5 and 1.0 g/m3) were considered and for each 

concentration two levels of removal (95% and 99%) were examined. Since the residence 

time, τ, is defined as F/V, once the flowrate is specified the volume can be calculated, or 

for a biofilter of a given size the value of τ  dictates the value of the flowrate of the 

polluted airstream which can be treated (to the conversion indicated) in the given unit. 
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Table 4.1  Base-values of model parameters for solving the steady-state equations*  
Parameter  Value  Units  
As  (butanol) 38 

m-1 
 

As (toluene) 40 m-1  
c

oi 

 275x10-3  kg/m3 

DBW  0.77x10-9  m2/s 
DTW  1.03x10-9  m2/s 

Do  2.41x10-9  m2/s 

f(Xv) 0.195 

— 

µ* B  
0.579 h-1  µ* T 

 
1.50 

h

-1  

KB  0.952 kg/m3 

KT  11.03x10-3  kg/m3 

KIB  0.857 kg/m3  
KIT  78.94x10-3  kg/m3  
KO  0.26x10

-3 
 kg/m

3 
 

mB  0.00036 — mT 
 0.27 — 

mO 

 34.4 

— 

YB  0.458 kg/kg 
YT  0.708 kg/kg 
YOB  0.232 kg/kg 
YOT  0.341 kg/kg 

Xv  100 kg/m3 

Values taken from Androutsopoulou (1994) and Shareefdeen (1994) 

During the studies reported here, the value of each parameter was changed (by 

one-tenth increments) from one-tenth to two times its reference value. For the sensitivity 

studies, and for the inlet concentration values considered, the calculations showed that for 

the case of butanol it is always oxygen which is depleted first in the biolayer. 

Hence, equations of set 2 (section 4.1) were used in the calculations. In the case of 

toluene the calculations showed that toluene rather than oxygen gets depleted first in the 

biolayer. For this reason, all calculations for the toluene case are based on the solution of 

equations of set 1 (section 4.1). 



4.2.1 Kinetic Parameters  

From expression (4.11) one can see that the kinetic expression involves four constants. 

The sensitivity of the model to the values of these constants can be judged from the 

results shown in Figures A.1 through A.8. 

Figures A-1 and A-2 show the sensitivity of the model to the values of parameter 

µ*j. As can be seen from the graphs, for relative µ*j values larger than 1 the predicted τ  

values change slightly while for relative values less than 1 there is a very substantial 

effect on the predicted τ  values. The conclusion here is that for both hydrophilic and 

hydrophobic compounds, accurate knowledge of the value of µ*j is important. It is also 

interesting to notice that the curves representing 95% and 99% conversion are very close 

to one another in both cases considered for butanol (Figure A-1) while they are far apart 

in the case of toluene (Figure A-2). Although there is not enough evidence to be sure 

about it, this difference may be due to the different actual values of µ*j  and µ*T  (observe 

that 	is almost 3 times the value of µ*B). 

Figures A-3 and A-4 show the sensitivity of the model to the value of kinetic 

parameter Kj. 	In both cases, as the value of Kj  increases the value of τ  also increases. 

However, for the case of butanol the changes in T are insignificant, while for the case of 

toluene they are quite substantial. This difference could be possibly attributed to the 

actual values of K1  and KT  which are different by almost two orders of magnitude. As in 

the case of 	one can observe that the 95 and 99% conversion curves are very close to 

one another in the case of butanol as opposed to the case of toluene. 
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Figures A-5 and A-6 show the sensitivity of the model to the values of the 

inhibition constant KIj

. 

 In the case of butanol (Figure A-5) the model is sensitive only 

when K1B  is underestimated (relative values less than 1). In the case of toluene (Figure 

A-6) the model is totally insensitive to the value of parameter KIT. It should be observed 

that the reference values of K1B  and KIT  differ by one order of magnitude. One could 

possibly argue that the more inhibitory a compound is (KIj  small) the less sensitive the 

model is to the 

K

Ij  value. It should be also observed that the value (reference) of 

K

Ij  for-

toluene is so small that it essentially remains the same when the relative value is varied 

from 0.1 to 2. This may explain the completely flat profiles of Figure A-6. 

Figures A-7 and A-8 show the sensitivity of the model to the value of the kinetic 

constant which is related to oxygen (KO). In all cases the model is insensitive to the 

actual 

KO 

 value. This is an important result because the 

KO 

 values spanned during this 

study cover essentially the entire spectrum of 

KO 

 values which have been measured in 

various studies [Shareefdeen et al. (1993)]. 

If a general conclusion can be drawn from the sensitivity studies with the kinetic 

model parameters, it is the following. It appears that in all cases, two -not necessarily the 

same- kinetic parameters have to be known accurately or measured (u*B  and 

K

1B  for 

butanol, u*T  and 

K

T  for toluene). If two kinetic parameters are important, any effort to 

represent kinetics by a single parameter (zero- or first-order kinetics) is bound to lead to 

significant errors in sizing a biofilter unit. 
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4.2.2 Diffusion Coefficients  

Figures A-9 and A-10 show the sensitivity of the model to the value of the diffusivity of 

the pollutant in water (or the biofilm since Xv  is taken constant here). In the case of 

butanol the actual value of DBW  has absolutely no impact on the predicted value of 

which is exactly the opposite to what happens in the case of toluene. It is worth 

observing from Figure A-10 that a serious mistake is made not only when DTW  is 

underestimated (relative value less than 1), but also when it is overestimated, as a slight 

overestimation leads to considerable underestimation of τ  (observe that the z values are 

large in the case of Figure A-10). This difference in behavior of butanol and toluene is 

hard to understand as the reference values of the two compounds are comparable. It may 

simply be the combined effect of the kinetics and mass transfer. This point needs further 

elaboration. 

4.2.3 Distribution Coefficients  

The sensitivity of the model to the value of Henry's constant, mi, can be judged from the 

diagrams of Figures A-11 and A-12. For the case of toluene, mr  appears to be of 

considerable importance as there is an almost perfectly linear relation between the 

uncertainty in mT  and τ. In the case of butanol, for high inlet concentration values 

(Figure A-11b) severe underestimation. of mB  creates problems. In all other cases the 

impact of mB  is minimal. It is interesting however to observe the shape of the constant 

conversion isoclines. They go through a minimum when the relative mB  value is about 

0.7 in Figure A-11a and 1.4 in Figure A-11b. Although the existence of a minimum in 
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the case of Figure A-11b is not very clear from the graph, it does actually occur. It 

should be added here that since a lot of thermodynamic data are in fact available, it is 

unlikely that mj  is not known with certainty. What the graphs of Figures A-11 and A-12 

actually (although indirectly) indicate, is the effect of uncertainty in the value of 

temperature which affects the mj  value. 

4.2.4 Biofilm Density  

Precise knowledge of the biofilm density, Xv, does not appear to affect biofilter size 

calculations unless the relative value is significantly less than 1. This can be seen from 

the diagrams of Figures A-13 and A-14. It should be also added that the reference (base) 

value for X

v

, is 100 kg/m3. As has been discussed by Shareefdeen et al. (1993) the 

reported 

X v 

 values are between 23 and 220 kg/m

3

. Hence, relative X

v 

 values should be 

between 0.23 and 2.2. As can be seen from the graphs, the T calculations are not sensitive 

to 

X v 

 for the aforementioned range of relative Xv  values. A similar conclusion regarding 

toluene was reached by Shareefdeen and Baltzis (1994), who followed a different 

approach in sensitivity studies. It should be also mentioned here that since the correction 

for diffusivities [f(Xv)] is a function of Xv, the results of Figures A-13 and A-14 were 

actually obtained by varying both Xv  and f(Xv). The dependence of f(

Xv

) on 

Xv 

 was 

taken to be that reported by Fan et al. (1990). 
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4.2.5 Specific Surface Area of Biofilm 

The parameter to which the model appears to be most sensitive is As, the specific area of 

biofilm. This can be seen from the graphs of Figures A-15 and A-16. For relative values 

larger than  0.5 there is an almost linear relationship of slope -1. That is, if the surface 

area is doubled, the required residence time is halved. For very small relative values,  the 

relation between As  and τ  is almost exponential. The fact that As  has such a major impact 

on predicting τ  is not surprising as it directly relates to the amount of biomass (catalyst) 

which is in direct contact with the pollutant. This finding implies that the packing 

configuration is very important. 

4.2.6 Conclusions from Sensitivity Studies 

Based on the results obtained in the sensitivity studies discussed in the _preceding 

sections, the following conclusions can be reached. 

In all cases, parameters µ*j  and As  are very important. Also in all cases, a second 

kinetic parameter is also important, but its identity depends on the compound. If the 

compound is highly inhibitory this second kinetic parameter is Kj, while for non-strong 

inhibitors KIj  is important. Finally, parameters m j  and Djw  appear to be significant only 

for highly volatile and inhibitory compounds. 

4.3 Biofilter Sizing Calculations 

As has been mentioned earlier, biofilter sizing calculations refer to studies with the 

operating parameters of the model. As can be seen from equations (4.1)-(4.11) these 
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parameters are the inlet concentrations of the VOC and oxygen (cji, coi), the biofilter 

height (H), and the residence time (τ). Parameters H and τ  always appear as a ratio (H/τ) 

and for this reason H was kept constant while τ  was calculated. The inlet oxygen 

concentration was never varied since it was assumed that only atmospheric air is supplied 

to the biofilter. In these calculations the reference values of the model parameters were 

used (Table 4.1). 

It should be mentioned here that for the case of butanol, as in the case of the 

sensitivity studies, it was found that oxygen is always depleted first.. Thus, equations of 

set 2 were used (see preceding section). For the case of toluene, and for inlet 

concentration values exceeding 2.8 g/m3, it was found that in a segment of the biofilter 

bed close to the entrance oxygen is depleted first (hence, set 2 was used), but in the 

remaining part of the reactor (till a desired exit concentration level or conversion is 

achieved) toluene is depleted first in the biofilm (hence, equations of set 1 were used). 

This switching requires a considerable amount of additional calculations in order to 

determine the exact location of the changeover. 

Figures A-17 and A-18 show the required residence time for two conversion 

levels as a function of the inlet concentration. These diagrams can be used in determining 

the required volume of a unit in two different cases: when the flowrate of the 

contaminated airstream is specified, or when the load (rate of mass supply) is dictated. 

The conversion of τ  to volume can be easily made via equations (4.26) and (4.27). Once 

again, it is worth noticing that in the butanol case the additional r for getting 99% rather 
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than 95% conversion of the pollutant is not significant. However, for the case of toluene 

going from 95 to 99% conversion requires a significantly larger biofilter (Figure A-18). 

Figures A-19 to A-22 show actual volume calculations when the load is specified. 

In this portion -for each value of load- four cases were considered: two based on 

conversion, and two based on exit concentrations. The most important feature of these 

diagrams is that there are cases (butanol, Figures A-19 and A-21) in which the isoclines 

go through a minimum. This is a finding originally reported by Baltzis (1994) for the 

case of ethanol. It suggests that if the inlet concentration is higher than that at which the 

minimum occurs one could -significantly- reduce the biofilter volume by diluting the 

contaminated airstream with pure air while keeping the load constant. The same is 

observed for the case of toluene, but it is only of mathematical/numerical importance as 

the minimum occurs at unrealistic concentration values in the order of 100 g/m3.  
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CHAPTER 5 

TRANSIENT BIOFILTRATION OF SINGLE VOCs  

In this chapter, results from sensitivity studies with a transient biofiltration model are 

presented. This model was originally developed by Shareefdeen and Baltzis (1994) and 

is given in the next section of this chapter. 

There is a substantial difference between steady-state and transient biofiltration 

and this is what makes the results presented here particularly important. This difference 

is that, with the materials used for packing classical biofilters, transient operation 

involves an extra process. This is the adsorption of VOCs to the packing material, a 

process which does not affect steady-state behavior since at steady-state the adsorption 

process is at equilibrium. 

In general, the questions pertaining to transient operation refer to the  time 

required for the system to (practically) reach steady-state and the form of the  response. 

The form of the response may be such that concentrations exhibit an  overshoot which is 

potentially unacceptable. Hence, the intent of the sensitivity studies  with the transient 

biofiltration model was to examine the impact of various parameters  on the key features 

of the response of a biofilter during transients. 



 

 

 

 

 

30 

5.1 Model Equations and Numerical Methodology  

The basic model equations describing transient biofiltration of airstreams carrying a 

single pollutant (VOC) are mass balances written for three phases: biofilm, air, and 

solids (packing material). These equations, taken from Shareefdeen and Baltzis (1994), 

are as follows: 

I. Mass balance for VOC j and for oxygen in the biofilm: 

∂s j/∂t = f(X v)D jw∂2s j/∂x2 - X v /Y jµ j(s j,s O)                                          (5.1)    
 

 

∂sO/∂t = f(Xv)DOw∂2sO/∂x2 - Xv/YOµ j(s j,sO)                                        (5.2)   

 

II. Mass balances for VOC j and for oxygen in the gas phase: 
v ∂cj/∂t = -ug∂cj/∂h + Djw f(Xv)αA*s(∂sj/∂x)x=0 -ka(1-α)A*s(cj-c*j)                              (5.3)     

v ∂co/∂t = -ug∂cO/∂h + DOw f(Xv)αA*s(∂sO/∂x)x=0 (5.4)  
 

 

 

III. Mass balance for VOC j in the solid phase (particles): 

 (1-v)ρ p ∂c jp/∂t = ka(1-α) A*s(c j-c* j)                                                (5.5)       

Equations (5.1) - (5.4) are the unsteady state versions of equations (4.1), (4.4), (4.7), and 

(4.9), respectively. The sole difference is the last term in equation (5.3) which stands for 

the rate of mass transfer of VOC j to the solid particles (excluding biolayer). Equation 



(5.5) expresses that the rate of accumulation of VOC j in the solid particles is equal to the 

rate of mass transfer of VOC j to the particles. These equations are a set of partial 

differential equations, and their corresponding initial and boundary conditions can be 

found in Shareefdeen and Baltzis (1994) and Shareefdeen (1994). 

Function µj(sj,sO) appearing in equations (5.1) and (5.2) expresses the kinetics of 

biodegradation and -as was also the case in Chapter 4- it is given by the following 

expression: 

µ j(s j,s O ) = µ j* s j / K j + s j + s2 j /  sO / KOj  + sO                                (5.6) 

 

 

The driving force for the mass transfer of the VOC from the air (gas phase) to the 

particles (solid phase) is cj-c*j , as indicated in equations (5.3) and (5.5). Concentration c*j  

is related to the concentration of VOC in the solid phase through an adsorption isotherm. 

For the case of toluene, this isotherm was found [Shareefdeen (1994)] to follow the 

Freundlich equation. Hence, one can write 

cj = kd(c*j)n 	(5.7)   

Equations (5.1) - (5.5) have not been exactly solved to date. They have been 

solved through an approximation which introduces the use of effectiveness factors 

defined as, 
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e j = f(Xv)D jw(∂s j/∂x)x=0 / δXv /Y j[ µ j(s j,s o)]x=0 (5.8) eO = f(Xv)DOw(∂sO /∂x)x=0 / δXv /YO[ µ j(s j,s o)]x=0 (5.9) 

 

Actually it can be easily shown that eT  = eO. The use of the effectiveness factor allows 

for omission of equations (5.1) and (5.2). Details of this approximation can be found in 

the original references [Shareefdeen and Baltzis (1994) and Shareefdeen (1994)], where it 

is also shown that the problem reduces to the following set of equations 

∂sj/∂ζ 

= 

-1/v ∂cj/∂z -β1g(cj,c0 )-β3(cj-c*j)                                             (5.10)  

∂cO/∂ζ = -1/v ∂cO/∂z -β2g(cj, cO) (5.11)  

∂cjP/∂ζ 

= β3(c j,c* j) (5.12) 

 

  

where 
g(c j, cO) = ε1 c j/(1+ε1 c j+ε1 2 γc j2) ε2cO /(1+ε2c jO)                                     (5.13)  

 

 

and 

c* j = ψ(c jP)1/n (5.14)   

 
 

 

 

The initial and boundary conditions for equations (5.10) - (5.14) are, 
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c j =  1, cO  = 1,  c jP = c jP,0(0)              at  ζ = 0 and z = 0                       (5.15) cj  =  1, cj,0

(z)

,   cO = cO,0(z),  cjP  = cjP,0 (0)         at ζ = 0 and z = 0 < z ≤ 1         (5.16) 

 

cj =  1,                cO  = 

 1                    at ζ  ≥ 0 and z = 0 	(5.17) 

Equations (5.10) - (5.12) are in dimensionless form, and the dimensionless 

quantities appearing in them are related to the dimensional quantities of the original 

equations through the following, 

cj  = cj/cji ,  c*j  = c*j/cji ,    cO  = cO/cOi,    cjP  = (1-v)ρpcjP /vcji 

, 

z = h/H,        ζ = t /τ

, 

ε1 = cji / mjKj ,  ε2 = cOi / mOKO ,  γ = Kj/KIj ,  

β3 = ka

(

1-α)A*sτ/v,             ψ = 1/cji[vcji /(1-v)ρPkd]1/n  

 

 

Equations (5.10) - (5.12) cannot be solved unless expressions fora and e are 

available. For the case of toluene, and for relatively low toluene concentrations in an 

airstream fed to a biofilter such expressions were derived by Shareefdeen (1994), and 

they have been used in the present study. Solution of equations (5.10) - (5.12) was based 

on a computer code which employs the method of finite differences in the z-direction and 

integration of the resulting set of ordinary differential equations via the ODESSA 

algorithm. The basic code was that of Shareefdeen (1994), modified by Tsangaris and 

updated for the purposes of this study. The code is given in Appendix D of this thesis. 
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5.2 Results and Discussion 

An example of concentration profiles at various locations in the biofilter bed is given in 

Figure 5.1. From this figure it is interesting to observe that the exit concentration (which 

is the most important concentration from the practical point of view) overshoots (albeit 

slightly) the eventual steady-state value. For this reason, it was decided to perform 

sensitivity studies with regard to the degree of overshoot and the time at which it occurs. 

Another parameter which was investigated was the time needed to achieve the steady-

state level of operation. Mathematically, it takes an infinite amount of time to reach 

steady-state. Here, the time for reaching 50 and 90% of the steady-state level was 

investigated. The steady-state exit concentrations (from which the 50 and 90% values 

were calculated) were obtained by solving the transient model, and allowing the model to 

run until no further changes occurred in the exit concentration (usually several days). 

This was done only once for each set of studies as transient parameters do not affect 

steady state values. Although the steady-state model from the previous chapter could had 

been utilized, it was found that there were slight differences between the steady-state 

concentrations determined by these two models. This is due to the approximation 

required for the determination of the effectiveness factor. 

As can be seen from the basic model equations (5.1) - (5.7) the model contains a 

number of various parameters. All parameters discussed in Chapter 4 are also present in 

the transient model. Although some of these parameters may be affecting transient 

behavior (e.g., overshoot of exit concentration), they were not examined during the 

course of the present work. They were kept constant at the values (measured or 
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Figure 5-1  Transient concentration profile in a biofilter bed at the exit, 2/3 height, and. 
1/3 height (curves 1, 2, and 3, respectively). The dashed line represents the steady-state 
ex it concentrations 

estimated) by Shareefdeen (1994) and reported in Table 5.1. The parameters which were 

examined here were those which appear in the transient, but not in the steady-state model. 

These are, the void fraction of the bed (u), the density of the packing material (pp), the 

fraction of the surface area covered by biofilm (a), the mass transfer coefficient (ka), and 

the Freundlich constant (kd). Base values for these parameters are also given in Table 

5.1. Parameters which affect the transient behavior but were not studied here are, the 

second Freundlich constant (n) and the initial distributions of VOC concentration on the 

solids and in the air [cjp(h) and cj(h) at t = 0]. The latter appear in the boundary 

conditions of the model equations and for the purposes of the studies reported here it was 

always assumed that cjp(h) = cj(h) = 0 at t = 0. The implication is that the results are valid 
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Table 5.1  Base-values of model parameters for the transient biofiltration studies*  

Parameter  Value  Units  

A*s 
 

133.3 

m -1 

 

cOi  275x10-3  kg/m
3 

DOW  2.41x10-9 m2/s DTW 
 1.03x10-9  m2/s 

f(Xv) 0.195 — 

ka  6.04x10-3  h-1  

kd  2.25x10-5 
 

kg/m 

KIT  78.94x10-3  kg/m
3 

KO  0.26x10-3  kg/m
3 

KT  
11.03x10- 3  kg/m

3 

mO  34.4 

— 

mT  0.27 

— 

n 1.04 

— 

τ  3.09 min 

Xv  100 

kg/m
3 

YOT  0.341 kg/kg 
YT  0.708 kg/kg 

α  0.3 

— 

δ  1.5cj+33.4 1 um (cj in g/m3) 

eT or eO  0.03cj+0.2 (c j in g/m

3

) 

v 0.3 — 
ρp  4.28x105  g/m3  

µ* T  1.50 
h-1 

 

* From Shareefdeen (1994) 

under process start-up conditions, i.e., when a biofilter unit is first put into operation with 

new packing material. 

As in the case of the studies reported in Chapter 4, only one parameter was 

changed at a time. Changes were made relative to the reference (or base) values given in 

Table 5.1. A relative value of 0.2 for a parameter, means (as in Chapter 4) that the actual 

value of that parameter used in the calculations is equal to 0.2 times the base value 

reported in Table 5.1. 
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Results from the studies with the transient biofiltration model are given in a 

graphical form in the figures of Appendix B of the thesis. 

Figures B-1 through B-5 show the time needed for the exit VOC concentration to 

reach 50% and 90% of its steady-state value as a function of various parameters. 

Calculations were performed at two different VOC (toluene) concentrations in the air 

stream fed to the biofilter; namely, 0.5 and 2.0 g/m. 

Figure B-1 shows the effect of the void fraction of the biofilter bed (u). Since this 

is a parameter that can be easily measured and varies from 0 to 1, actual rather than 

relative values of u were used and are shown in the x-axis of the two graphs. As can be 

seen from the graphs, it appears that there is a perfectly linear relationship between time 

and u. It also appears that for the two inlet concentrations tried, the time for reaching a 

given percentage of the steady-state level is essentially the same for a given value of u. 

Values of u very close to zero are meaningless because they imply that there is no room 

in the bed for the airstream to pass through. Values of u very close to unity are also 

meaningless since they imply that there is no packing -and thus, no process- in the 

(empty) structure. in this case, the time needed to reach steady-state is equal to the space 

time, if the air passes in plug flow through the vessel (structure). For realistic values of 

u, as u increases the adsorption process is faster (since there are less solids) but the 

reaction is slower in the sense that the material passes through the bed without enough 

time to react. The overall effect is that it takes longer to reach steady-state as u increases. 
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As Figure B-2 indicates, the value of the density of the packing (pp) has no effect 

on the time needed to reach steady-state. Similar are the results with the Freundlich 

isotherm constant (kd) as indicated by the graphs of Figure B-3. 

The effect of parameter α  (fraction of surface area covered with biofilm) on the 

time required to reach steady-state is shown in Figure B-4. As the graphs indicate, the 

effect of α  is minimal. However, the following should be mentioned. The available 

correlations for the effectiveness factor and δ  were for a value of As  = 40m-1. Since As  = 

αA*s , for the correlations to be valid the values of α and A*
s 

were simultaneously 

changed so that their product remained constant. Thus, as a increases A
s 

decreases. 

This also implies that the area of solids available for adsorption, i.e., (1 - α)A*
s 

also 

decreases. One would then expect that -if adsorption was the only process- it would take 

longer to reach steady-state as there is less area through which a constant amount of VOC 

needs to be adsorbed onto the solids. However, there is also reaction taking place. A 

slow-down of the adsorption leads (during transients) to higher VOC concentrations in 

the gas phase and this makes the reaction faster. Overall the effect is minimal, showing a 

slight decrease in the time needed to reach steady-state. If the explanation above is 

correct, one should observe an increase in the time needed to reach steady-state for higher 

inlet toluene concentrations. High concentration brings the kinetics into the inhibitory 

regime; hence, the reaction is slowed down. Since a decrease in As also slows down the 

adsorption process, one should observe an overall increase in time. This hypothesis was 

not tested during the course of this work. 
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Figure B-5 shows the effect of the mass transfer coefficient on the time needed to 

reach steady-state. Here the effect can be very substantial as the logarithmic scale of the 

y-axis indicates. It should be mentioned here that the curve showing the time for 

reaching 50% of the steady-state value at the exit exhibits the same behavior as the one 

indicating time for reaching 90% of the steady-state value (curve 2 in the graphs). 

However, for the case of curve 1 the substantial increase in time occurs at ka  values which 

fall outside of the range of the graphs. The features of curve 2 could be potentially 

explained by the following arguments. At high values of ka the pollutant is transferred 

fast to the solid packing and this leads to temporarily low VOC concentrations in the gas 

phase. This implies a lower VOC concentration in the biofilm and thus, a reduction in 

the reaction rate. The process is controlled by kinetics and thus the value of ka, does not 

affect the time of response (upper plateau of curve 2). At low ka  values, the adsorption 

process is slow, but it leads to very fast kinetics due to the higher concentrations in the air 

and the biofilm. Hence, the process is again under kinetic limitation and this explains the 

lower plateau of curve 2. In the intermediate regime the process is under both mass 

transfer and kinetic control. It should be mentioned here that there is a lot of uncertainty 

in the values of ka since there are not experimental data for them. Further studies are 

needed here. 

As was mentioned earlier, in conjunction with Figure 5.1, there are cases in which 

the exit biofilter concentration overshoots the steady-state exit concentration. Computer 

simulations have shown that almost invariably, the exit concentration exhibits a peak. 

However, with the reference values this peak does not exceed the steady-state value. In 
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fact, a maximum (peak) is observed and then the concentration falls and subsequently 

rises and stabilizes at a level higher than the peak. In such cases, the existence of the 

concentration peak is unimportant from the practical point of view. This was the case for 

the studies performed with low inlet concentrations (2.0 g/m3) and shown in the graphs of 

Figures B-6 through 13-8. The only parameters found to affect the concentration at the 

peak are α  and ka  (Figures B-7a and B -8). Observe that for very high a-values or very 

low values of ka  the peak concentration is a real overshoot; that is, it exceeds the steady-

state value. This becomes an important factor (at realistic α  and ka  values) when the inlet 

VOC concentration increases. The time at which the peak concentration occurs is only 

affected by the void fraction of the bed, as Figure 

B

-9 indicates. A comparison of Figures 

B-1 and 

B

-9 shows that as u increases the extent of the transient period of the process 

increases from every point of view. 

A small effort was made in examining whether the inlet concentration value of the 

VOC affects the extent of the transients of the process. An example is shown in Figure 

B-10. The effect of inlet concentration appears to be minimal. However these results 

should be considered with extreme caution as they were obtained based on correlations 

for δ and e (Table 5.1) which were originally derived for a range of inlet concentrations 

much narrower than the one used in Figure B-10. 

The conclusion which can be drawn from the results of the studies presented in 

this chapter is that the transients of the biofiltration process are primarily affected by the 

mass transfer coefficient and the void fraction (porosity) of the biofilter bed. 



CHAPTER 6 

CONCEPTUAL DESIGN FOR REMEDIATION OF A CONTAMINATED 
AQUIFER THROUGH THE USE OF BIOFILTRATION 

In  this chapter results from some preliminary work performed on the conceptual design of 

an integrated soil venting/biofiltration process are presented. This integrated process is 

proposed as an alternative method for treating a contaminated aquifer. A schematic of 

this integrated process is shown in Figure 6.1. 

Figure 6-1 Schematic of the integrated soil venting/biofiltration process. 
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The ideas incorporated in the schematic of Figure 6.1 are the following. Air is 

passed through the aquifer via multiple sparging wells. The air forces the volatile 

contaminants into the gas phase (air) which is then collected through vapor extraction 

wells. If the air exiting the soil (aquifer) contains VOCs at high concentrations which are 

not appropriate to be supplied to the biofilter, it is diluted with clean air. The clean air is 

first humidified in order to ensure that the biofilter bed will not get dry. After mixing of 

the two airstreams, the combined stream is passed through a biofilter. The inlet to the 

biofilter is at the top of the biofilter bed so that if humidification of the airstream is not 

100% and thus, there is the potential of drying part of the biofilter bed, this part is at the 

top and can be easily brought to the correct conditions of water content by supplying 

water at this location. The airstream exiting the biofilter bed meets the appropriate 

environmental standards. Looking at the process as a whole, the inlet consists of clean air 

(to the sparging wells and humidification tower) and the exit (from the biofilter) also 

consists of clean air. 

6.1 Basic Assumptions  

The work presented in this chapter is based on the following assumptions. 

1. Contamination is uniform throughout the liquid (water) contained in the aquifer. The 

volume of the water is constant. 

2. There are no contaminants adsorbed on the soil. 

3. Air sparging is uniform throughout the aquifer. 

4. All air supplied to the soil at sparging points is recovered at the extraction wells. 
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5. There is a single contaminant (toluene was assumed) in the aquifer. 

6. The contaminant in the liquid phase (aquifer) and the gas phase (air) is in equilibrium 

at all times. The equilibrium distribution is dictated by Henry's law. 

Based on the foregoing assumptions, one can write the following equations, 

VL dcL/dt = -QGcG (6.1)    

CL  = m

jC L                                                                                                                          (6.2) 

 

Combining equations (6.1) and (6.2) and integrating the resulting equation leads to the 

following expression,VL 

 

 
CL 

 = 

 C

Loe  -QGmjt / VL                                                                                                     (6.3) 

 

Combining expression (6.3) with (6.2) leads to the following expression, 

 

CG  = mcLoe  -QG m jt / VL                                                                                                (6.4)  
 

6.2 Objectives of the Design  

The objectives set for the design of the integrated process were the following. 

1. The concentration of toluene in the aquifer at the end of the remediation operation 

should be at or below the toluene Action Level in Groundwater as per existing 

regulations (see Table 6.1). 

2. The concentration of toluene in the air exiting the extraction wells should be very 

close to the Threshold Limit Value (TLV) as per existing regulations (see Table 6.1). 
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Table 6.1  Regulations for control of toluene levels 
Parameter 	 Value Units 

Threshold Limit Value (TLV)a 	86.69 g/m3  

Acceptable Source Impact 
Level (ASIL) b 	 0.2817 g/m3  

Action Level in Groundwaterc 	 1.0 g/m3  
a TLV established in the Federal Register (1993a). 

b

ASIL established by the Washington State Department of Ecology (1994). 
 cAction Level established in the Federal Register (1993b). 

The TLV is the maximum concentration of a pollutant to which human exposure is 

allowed for short time periods. It usually relates to people in the immediate vicinity 

of the source (e.g. workers). For example, if there was a leak from or a rupture of the 

pipe carrying the air from the extraction wells people in the immediate vicinity of the 

accident would be exposed to the toluene concentration in the air exiting the aquifer. 

3. The concentration of toluene at the exit of the biofilter should meet the Acceptable 

Source Impact Level (ASIL) as per existing regulations (see Table 6.1). 

4. The biofilter should be exposed to relatively constant toluene concentration over the 

majority of the remediation operation. The maximum toluene concentration in air 

supplied to the biofilter should be at values for which there is experimental evidence 

that the process works (i.e., this concentration should not be too high). Finally the 

required volume of the biofilter bed should have a reasonable value. 

6.3 Methodology for Calculations  

The methodology followed in the calculations was as follows. 
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The values of various parameters for toluene (given in Chapter 4 as base-values) 

were used in calculations with the steady-state biofiltration model. In these calculations, 

the value of the toluene concentration in the air entering the biofilter was set at different 

levels and the required space (residence) time was calculated so that the exit toluene 

concentration met ASIL requirements. It was finally decided to use an inlet concentration 

of 9.2 g/m3  as biofiltration experiments had been performed at values close to that and 

showed that the process works [Shareefdeen (1994)]. Clearly, this represents the "worst 

case scenario" since this is the maximum value of toluene concentration that the biofilter 

would be faced with. 

Having the space time from the calculations above (a value of τ  = 22 min was 

determined) and since τ  = V u/F, a value of F = 0.85 m3/min (30 cfm) was selected so that 

the volume of the biofilter bed comes to a very reasonable value of 18.70 m3. 

The volumetric flowrate of the air supplied to the biofilter was kept constant at all 

times, and the next objective was to determine what should be the flowrate of the air 

sparged through the aquifer, so that the concentration profile of the toluene concentration 

at the inlet of the biofilter was maintained relatively constant over substantial time 

periods. In order to meet objective 4 (see preceding section) a trial and error approach, 

using expressions (6.3) and (6.4) and accounting for appropriate dilution with clean air 

was used. This led to the concentration profile shown in Figure 6.2. Based on this 

profile and taking into consideration the value of the action level for toluene in 

groundwater, it was determined that the remediation would take 51 days. It should be 

mentioned here that the minimum value for QG  in formula (6.4) was 3 cfm, implying that 



Figure 6.2 Toluene concentration profile in the air supplied to the biofilter. 

Figure 6.3  Toluene concentration profile in the air exiting the biofilter. 
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during the first period of time shown in Figure 6.2 the air from the extraction wells is 

diluted with clean air at a 1:10 ratio. The value of QG, and that of dilution, were varied in 

each segment of the profile of Figure 6.2. 

Once the toluene concentration profile in the air supplied to the biofilter was 

determined, the transient biofiltration model (discussed in Chapter 5) was used in order to 

determine the profile of the toluene concentration at the exit of the biofilter. This 

required some modifications in the computer code given in Appendix D of the thesis. 

This code solves the transient biofiltration problem for a single value of the inlet pollutant 

concentration. However here the inlet toluene concentration varies continuously as per 

the profile of Figure 6.2. The modifications of the code are given in Appendix E of the 

thesis. The results are shown in the concentration profile of Figure 6.3. The reason for 

performing these calculations was the following. Although the space time was originally 

calculated for the maximum value of inlet toluene concentration in ways that ensure exit 

concentration below ASIL values, this was done under steady-state conditions. However, 

the biofilter here works always under transient conditions. The variations in the inlet 

concentration imply that adsorption and desorption phenomena are also occurring during 

the periods of inlet concentration increase and decrease, respectively. It was thus 

necessary to ensure that desorption phenomena during the operation will never lead to 

exit concentration values exceeding ASIL. This is in fact the case, as can be seen from 

Table 6.2 where all parameter values (other than those mentioned for toluene in Chapters 

4 and 5) and results are listed. It is worth noticing that the maximum toluene 

concentration at the exit of the biofilter is in fact higher than the corresponding value 
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Table 6.2 Parameters for the design of the integrated soil venting/biofiltration 
Parameter Value 

  
Units 

Volume of Aquifer (VL) 1000 

m

3  

Initial Toluene Concentration in 340 g/m3  
Aquifer (cL0) 

Volume of Biofilter (VP) 18.70 

m3 

 

Flowrate of Air Supplied to 0.85  m

3

/min 
Biofilter (F) 

Residence Time in Biofilter (τ) 22 min 

Maximum Toluene Concentration 0.0700 g/m3 
 

at Biofilter Exit (actual) 

Maximum Toluene Concentration 0.0585 

g/m3 

 
at Biofilter Exit (steady-state model 
prediction) 

Final Toluene Concentration in 0.4967 

g/m3 

 
Aquifer                                                 

Time for Remediation of Aquifer 51 days 

determined from the steady-state biofiltration model. Thus, desorption effects need to be 

considered in the calculations. 

6.4 Discussion of Results and Other Calculations 

As the numbers in Table 6.2 indicate, with the design calculations discussed in the 

previous section the final toluene concentration in the aquifer is 50% of the value of the 

action level in groundwater while the exit concentrations from the biofilter are always 

substantially lower than the ASIL value. These levels were chosen as a "safety factor" 
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and do not add more than 4-5 days to the time needed for remediation based on values 

conforming exactly to the regulations. A possibly substantial reduction in remediation 

time could be obtained if the flowrate of the air supplied to the biofilter is increased at 

about the 25th day. As can be seen from Figure 6.3, after the 25th day the exit 

concentrations drop substantially. A decrease in space time (i.e., an increase in air 

flowrate) would keep the toluene concentration exiting the biofilter relatively constant. 

This should be investigated in the future. 

Keeping most of the parameters the same as in the case of calculations discussed 

in the preceding section (i.e., Vp, τ, F) the values of the volume of the aquifer (VL) and 

the initial concentration of toluene in the aquifer (cL0) were varied and calculations were 

performed regarding the time needed for remediation. Essentially, these studies were 

based on inlet concentration profile determination (as in the case of Figure 6.2) and the 

intent was to get a profile with a maximum value of 9 g/m3  (for toluene at the inlet of the 

biofilter) which remains practically constant over most of the remediation time. 

For a constant value of cL0  equal to 100 g/m3, Figure 6.4 shows the days required 

for remediation as a function of the volume of the aquifer. Similarly, for an aquifer of a 

constant volume of 1,000 m3  the initial (maximum) toluene concentration in the aquifer 

was varied and the time required for remediation was determined; these results are shown 

in Figure 6.5. For both cases, six calculations were performed and the results were found 

to fall on the straight lines shown in Figures 6.5 and 6.6. 

In another set of calculations both VL  and cL0  were varied so that their product 

remained constant. As the results shown in Figure 6.6 indicate the time drops as the 



50 

 
Figure 6.4  Remediation time as a function of the volume of the aquifer when cL0  = 100 g/m3. 

Figure 6.5  Remediation time as a function of the maximum toluene concentration in an aquifer of 
volume 1,000 m3. 
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Figure 6.6 Remediation time as a function of cL0  for constant original amounts (VLcL0) of toluene 

in the aquifer. VLcL0= 100 kg in (a) and 10 kg in (b). 
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value of cL0  increases (which implies that the value of VL  decreases). It appears that 

some type of a minimum is reached. The results suggest that in a case where there is a 

spill, the faster it is decided to remediate it (before it spreads; spreading implies larger 

volume and lower concentration) the shorter is the time for that remediation. On the 

other hand, if the volume of the aquifer decreases due to seasonal variations in the water 

level and if the entire amount of the pollutant stays in the water, the results of Figure 6.6 

suggest that it is better to select as the date of remediation that season which results in the 

lowest volume (VL). 

6.5 Conclusions  

The results presented here are only from a preliminary effort to perform design 

calculations for an integrated soil venting/biofiltration process. The only conclusion that 

can be drawn is that these calculations (based on worst case scenaria in most instances) 

do indicate that remediation appears to be feasible in reasonable time-frames and with 

reasonable biofilter sizes. 

Extensive studies need to be performed for this process in the future. The exit 

(from the biofilter) concentration profiles (e.g. Figure 6.3) need to be optimized so that 

concentration values do not fall far below ASIL values. This will require the use of a 

variable flowrate value (F). The assumption of equilibrium between aquifer and air is 

probably incorrect. More realistic expressions (discussed in Chapter 2 of this thesis) need 

to be used. It appears that future efforts need to concentrate on the air sparging portion of 

the process while this thesis primarily dealt with biofiltration. 



CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

The main conclusion from the sensitivity studies performed during the course of this 

thesis is that despite the fact that biofiltration models contain a large number of 

parameters, few of them need to be accurately known for safely predicting the size of a 

biofilter. 

The parameters which mostly affect the size of biofilters are: two kinetic 

constants, the mass transfer coefficient, and the specific area of biofilm. Although few in 

number, the important parameters fall in three different categories: kinetics, flow 

characteristics (mass transfer), and type of packing/microbiology (the latter affect/ 

determine the biofilm surface area). Hence, there is no single aspect of the biofiltration 

process which is more important than others when it comes to design. 

The fact that two kinetic parameters are important implies that efforts to model 

the process with one kinetic parameter (zero- or first-order kinetics) are bound to lead to 

inaccurate designs for biofilter units. A detailed kinetics study appears to be needed for 

each application. However, these studies are not too difficult or expensive to perform. 

The high importance of kinetic constants also implies that the selection of 

microorganisms for the biofilter unit is very important_ as kinetics depend not only on the 

identity of the VOC, but also on that of the bacteria (catalysts of the reaction). 
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Determination of the mass transfer coefficient is also important. This relates to 

the selection of the packing material and knowledge of the air flow characteristics 

through the bed. 

The biofilm surface area has been found to be very important. As could be 

anticipated, the larger the area of the biofilm the smaller is the required biofilter volume. 

This implies that. _optimal_ biofilter -design depends- on the selection of packing material 

which allows for complete (if possible) coverage of the surface with bacterial films. 

Unfortunately, experimental determination of the biofilm surface area is not easy, if at all 

possible. New techniques need to be developed before this parameter can be accurately 

determined. 

Another interesting finding from this study is that in some cases the size of the 

biofilter has a complex dependence on the inlet concentration. The existence of a 

minimum volume under constant load for the case of butanol suggests (as originally 

reported by Baltzis (1994) for the case of ethanol) that one could substantially reduce the 

required biofilter volume by mere dilution of the contaminated airstream with clean air. 

Following are some recommendations for further sensitivity studies. With steady-

state biofiltration models studies are needed for cases where the airstreams carry mixtures 

of pollutants. Regarding transient behavior, studies are needed in a number of areas. In 

the present study characteristic values for a hydrophobic compound were used. For the 

case of hydrophilic compounds other parameters (such as adsorption isotherm constants) 

may be important. In addition, during the present study variations in the inlet 

concentration of VOC were not studied regarding changes from one steady-state to 
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another. Consequently, desorption effects which are known to occur upon a decrease in 

the inlet. VOC concentration were not considered and need to be studied in the future. 

Furthermore, in this study it was assumed that the value of the mass transfer coefficient is 

constant at all values of air flowrates. Recent studies [Wojdyla (1996)] have developed 

correlations between the mass transfer coefficient and the air flowrate, and they need to 

be used in future sensitivity studies with the transient model. Finally, modeling and 

sensitivity studies are needed for the transient biofiltration of VOC mixtures. 

The results from the design calculations for the integrated soil venting/ 

biofiltration process can only be viewed as preliminary. The air was assumed to be 

uniformly passing through the aquifer and always carrying toluene (the VOC) at 

concentrations in equilibrium with those in the aquifer. The presence of the VOC on the 

soil per se was not considered. Future studies need to relax the foregoing assumptions 

and also consider factors such as the radius of influence for the air forced into the soil and 

minimum (and/or maximum) air flowrates which are realistically permissible. However, 

the results of the first attempt to study (from the design perspective) this integrated 

process have shown that the process seems feasible with very reasonable biofilter 

volumes, the time of remediation is relatively short, and the concentration at the inlet of 

the biofilter can be kept relatively constant over considerable time periods. Two 

interesting findings were the following; in cases where there is a spill, the faster it is 

decided to remediate it the shorter is the time for that remediation, and that a non-

spreading aquifer (or plume) can be treated faster during periods in which -due to weather 

changes its volume is at a minimum level. It is believed that the work performed here 
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paved the path for future detailed studies on the design of the integrated soil 

venting/biofiltration process. 



APPENDIX A 

BIOFILTRATION OF SINGLE VOCs UNDER STEADY-STATE 
CONDITIONS: RESULTS (IN GRAPHICAL FORM) OF 

SENSITIVITY AND BIOFILTER SIZING STUDIES  
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Figure A-1  Sensitivity of the model to the value of µ*j  for the case of butanol. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-2  Sensitivity of the model to the value of µ*j  for the case of toluene. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-3  Sensitivity of the model to the value of Kj for the case of butanol. 

Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-4  Sensitivity of the model to the value of Kj   for the case of toluene. 
Curve 1: 99% conversion; Curve 2: 95% conversion 



62 
 

Figure A-5  Sensitivity of the model to the value of KIj  for the case of butanol. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-6  Sensitivity of the model to the value of KIj  for the case of toluene. 
Curve 1: 99% conversion; Curve 2: 95% conversion 



Figure A-7 Sensitivity of the model to the value of K0  for the case of butanol. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-8 Sensitivity of the model to the value of KO  for the case of toluene. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-9  Sensitivity of the model to the value of Djw for the case of butanol. 

Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-10  Sensitivity of the model to the value of Djw for the case of toluene. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-11  Sensitivity of the model to the value of mj  for the case of butanol. 

Curve 1: 99% conversion: Curve 2: 95% conversion 
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Figure A-12  Sensitivity of the model to the value of mj  for the case of toluene. 

Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-13  Sensitivity of the model to the value of Xv  for the case of butanol. 

Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-14  Sensitivity of the model to the value of Xv  for the case of toluene. 

Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-15 Sensitivity of the model to the value of As  for the case of butanol. 

Curve 1: 99% conversion; Curve 2: 95% conversion 



73 

Figure A-16  Sensitivity of the model to the value of As  for the case of toluene. 

Curve 1: 99% conversion; Curve 2: 95% conversion 



74 

 

Figure A-17  Required residence time in a biofilter removing butanol as a function of 
inlet butanol concentration. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-18  Required residence time in a biofilter removing toluene as a function of 
inlet toluene concentration. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
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Figure A-19  Required biofilter volume as a function of inlet concentration for a butanol 
load of 2.0 kg/h. 
Curve 1 : 99% conversion; Curve 2: 95% conversion; 
Curve 3: Cex=0.01 g/m3;  Curve 4: Cex=0.1 g/m3  
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Figure A-20 Required biofilter volume as a function of inlet concentration for a toluene 
load of 2.0 kg/h. 
Curve 1: 99% conversion; Curve 2: 95% Conversion 
Curve 3: C ex=0.01 g/m3; Curve 4: Cex=0.1 g/m 3   
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Figure A-21  Required biofilter volume as a function of inlet concentration for a butanol 
load of 0.5 kg/h. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
Curve 3: Cex=0.01 g/m3; Curve 4: Cex=0.1 g/m3  
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Figure A-22  Required biofilter volume as a function of inlet concentration for a toluene 
load of 0.5 kg/h. 
Curve 1: 99% conversion; Curve 2: 95% conversion 
Curve 3: Cex=0.01 g/m3; Curve 4: Cex=0.1 g/m3  



APPENDIX B 

RESULTS FROM STUDIES WITH THE TRANSIENT 
BIOFILTRATION MODEL  
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Figure B-1 Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state level 
as a function of void fraction (v). 
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Figure B-2  Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state level 
as a function of the density of packing (ρp). 
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Figure B-3  Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state level 
as a function of the Freundlich adsorption constant (kd). 
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Figure B-4  Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state level 
as a function of surface biofilm coverage (α). 
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Figure B-5  Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state level 
as a function of the mass transfer coefficient (ka). 
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Figure B-6  Peak-VOC concentration in exiting exiting air stream as a function of u (a) 
and ρp  (b). Dashed lines represent steady state exit concentrations. 
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Figure B-7  Peak-VOC concentration in exiting exiting air stream as a function of α  (a) 
and kd  (b). Dashed lines represent steady state exit concentrations. 
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Figure B-8  Peak-VOC concentration in exiting exiting air stream as a function of ka. 

Dashed lines represent steady state exit concentrations. 
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Figure B-9  Time at which the VOC-peak concentration occurs as a function of u (a) and 
α, ka, kd  and ρp  (b). 
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Figure B-10 Time for reaching 50% (curve 1) and 90% (curve 2) of the steady state 
level of operation as a function of the VOC concentration in the inlet airstream. 



APPENDIX C 

COMPUTER CODE FOR SOLVING THE STEADY-STATE 
BIOFILTRATION MODEL FOR A SINGLE VOC  
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main.f 

c

********************************************************** 

c 	Purpose : 	"Solution Of The Steady-State Biofiltration 
c 	 Model For Single VOCs" 

c Method : 	Orthogonal Collocation 

c Language : FORTRAN 

c Written By : Dimitrios Tsangaris, Newark, NJ on January 26,1995 

c Updated By : Michael Cohen, Newark, NJ in May 1995 

c************************************************************ 

implicit none 
include "Include/parameters.h" 
real* 8 height(ng+1),gasB(ng+1), gasO(ng+1) 
real*8 solcol(2*n),xdat(n+2),Bdat(n+2),Odat(n+2) 
real*8 delz,z 
real*8 deriB,deriO,one,deltainit 
real*8 resinit,foo,step,relative,mBin 
character outfile*80 
integer outrep,rep,maxrep 
integer igas,k 
integer status,iconv 
include "Include/operating.h" 
include "lnclude/collocation.h" 
include "Include/liquid.h" 
include "Include/gas.h" 
include "Include/interface.h" 
include "Include/system.h" 
include "Include/volumetric.h" 
include "Include/kinetic.h" 
real*8 fcNew 
external fcNew 

* open(6,file='btcolw.out',status='new') 
* Read the program parameters 

one = 1 
* This controls which area is examined during the 
* sensitivity analysis 

step = 0.02 
open (unit=4,file='in', status='old') 
read (4,*) foo 
read (4,*) resinit 
close (4) 

* This gives the initial value of the parameter 
to be studied, it will be then multiplied by 

* different relative values (usually 0.1-2.0) 
mBin=0.27 
maxrep = 2000 
do outrep=2,20 

92 



relative=outrep/10.0 
rep = 1 
do while (rep.lt.maxrep) 

restime=resinit+step*(rep-1) 
mB=mBin*relative 

if (restime.lt.10) then 

write(outfile,'(f4.2,1x,f3.1)') restime,relative 
else 

write(outfile,'(f5.2,1x,f3.1)') restime,relative 
endif 
open (unit=6,file=outfile,status='unknown') 
call input() 
call Update() 
call output() 
call PrintDim() 
deltainit = delta 

c 	Initialize the orthogonal collocation routines 
call InitCollocation() 
status—TRUE 
status—DEBUG 
CALL today 
WRITE (6, I 01) n 

101 	Format( ' Solution of the Model using Orthogonal Collocation ' 
& 	,/,' 	with [',i3,'] col. points',/) 

c gas 
delz 	= I ./float(ng) 
z 	= 0.0 

height(1)= z 
gasB(1) = cgasB 

gasO(1) = cgasO 
*START THE LOOP OVER Z AXIS 

do 100 igas=2,ng+1  
iconv = FALSE 

write(6,123) 
write(6,102)z+delz 

102 	format(' Height =',5x, H4.3) 
delta = deltainit 

6 	call Update() 
if (status.eq.DEBUG) call PrintDim() 
call lnitProfile(solcol) 

C 	 CALCULATE LIQUID PHASE CONCENTRATION 
call newton(status,solcol) 
if (status.eq.DEBUG) call PrintSolution(solcol,root) 
call interpolate(status,solcol,nt,root,dif I ,xdat,Bdat,Odat) 
call CheckConvergance(iconv,Bdat,Odat) 

if(iconv.eq.TRUE-) then 
call interpolate(THETACONV,solcol,nt,root, difl, 

& 	 xdat,Bdat,Odat) 
c 	 CALCULATE GAS PHASE CONCENTRATION 

call deli (solcol, deriB, deriO) 
CALL RK4(eta,one,deriB,delz,cgasB) 
z = z + delz 

height(igas) = z 
cgasO = fcNew(cgasB) 
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gasB(igas) = cgasB 
gasO(igas) = cgasO 
write(6,*) 
write(6,'(a)')' 	Gas phase concentration so far' 
do k=1 ,igas 

write(6,'(4(f12.6,3x))') 
&                                             height(k),gasB(k),gasO(k) 

enddo 
else 

goto 6 
endif 

100 	continue 
*END OF LOOP OVER Z AXIS 

call Results(height,gasB,(gasO) 
close(6) 

123 	FORMAT(/,' =============================================================',/) 
if (gasB(ng+1).gt.(0.30)) then 

rep=rep+19 
else 

if (gasB(ng+ I ).ge.(0.10)) rep=rep+9 
if (gasB(ng+1).ge.(0.070).and.gasB(ng+1).It..(0.10)) rep=rep+4 

endif 
if (gasB(ng+ I ).ge.(0.020).and.gasB(ng+ I ).1t.(0.049)) rep=rep+9 
if (gasB(ng+1).ge.(0.015).and.gasB(ng+1).It.(0.020)) rep=rep+4 
rep=rep+1 
if (gasB(ng+1).le.(.01)) rep=2001 

end do 
end do 
stop 
end 

io.f 

************************************************************************************ 
* *     

This subroutine reads the Kinetic constants and Operating 

*     

parameters only 
* 

************************************************************************************* 

subroutine input() 

implicit none 
include "Include/parameters.h" 
include "Include/liquid.h" 
include "Include/interface.h" 
include "Include/gas.h" 
include "nclude/col Include/col ion.h" 
include "Include/operating.h" 
include "Include/volumetric.h" 
include "lnclude/kinetic.h" include "Include/system.h" 
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character filename*80 
real*8 foo 
integer status,unfn 
unfn=7 

*ResTime must be entered in Minutes 
*cgB00 must be entered in g/m3 

open (unit=5,file='in',status='old') 
read(5,*) cgb00,foo 
read(5,'(a)')filename 
close (5) 
open (unit=unfn,file=filename,status='old') 
read(unfn,*) 
read(unfn,*) foo 
read(unfn,*) 
read(unfn,*) foo 
read(unfn,*) 
read(unfn,*) delta 
read(unfn,*) foo 
read(unfn,*) 
Now read from the standard input the operating conditions 
System parameters 
itmax = 100 
iprnewton = TRUE 
iprnewton = FALSE 
epsl = 1.e-9 
eps2 = 1.e-9 
Collocation parameters 
n0 :1 if 0 is included in the collocation interval 
n 1 :1 if 1 is included in the collocation interval 
alpha and beta are the parameters for the Gauss Trial functions 
n0 = 1 
n1 = 1 
nt = n0+n1+n 

alpha = 0. 
beta = 0. 
Biofilm parameter ( in kg/m3) 
read(unfn,*)b0 
Kinetic constants for Ethanol and Butanol 
read(unfn,*) miouB 
miouB = miouB/3600 
read(unfn,*) KB 
read(unfn,*) K81 
read(unfn,*) KO 
Diffucivities 
read(unfn,*) DBW 
read(unfn,*) DOW 
Yield coefficients 
read(unfn,*) YB 
read(unfn,*) YOB 
Henry's constants 
This parameter (mB) is not read in 
here, as it is the one being tested 

c 	read(unfn,*) mB 
read(unfn,*) foo 
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read(unfn,*) m0 
Entrance concentrations 

cgB00 = cgB00 * 1.e-3 
read(unfn,*) cgo00 
cgo00 = cgO00 * 1.e-3 
Volumetric properties 

* Delta belongs here but it is more convenient to put it at the top 
of the input file since it is Inlet conditions dependent 
read(unfn,*) As 
read(unfn,*) Volume 
read(unfn,*) Surface 
restime = restime*60 

* initialize the concentrations of B,E,O at zero theta 
cgasB = 1.0 
cgasO = 1.0 

* Now calculate the delta dependent values: eta,phiB2,phiE2 
rewind(unfn) 

c 	This Update is now called in the main program 
c 	call Update() 

return 
end 

************************************************************************** 

* This subroutine calculates some dimensionless units that depend on 
* the parameter 'delta'. Delta, is the depth of the biofilm 
************************************************************************** 

subroutine Update() 
implicit none 
include "Include/parameters.h" 
include "Include/volumetric.h" 
include "Include/kinetic.h" 
include "Include/operating.h" 
include "Include/interface.h" 
include "Include/gas.h" 
include "Include/liquid.h" 
real*8 xv,fd 
real*8 deltaMt 

* Now calculate some Dimensionless quantities using the above values 
* This section (10 lines) was in Input, but has been moved to Update 

lamdaB = DBW*KB*YB/(DOW*Ko*YOB) 
gamaB = KB/KB1 
omegaB = (DOW*KO*cgB00)/(DBW*KB*cg000) 
epsilnB = cgB00/(mB*KB) 
epsilnO = cgO00/(mO*KO) 
deltaMt = delta*1.e-6 
xv = b0 
fd = 1-0.43*xv**0.92/(11.19+0.27*xv**0.99) 
eta = As*DBW*fd*restime*KB/(deltaMt*cgB00) 
phiB2 = xv*deltaMt*deltaMt*miouB/(fd*DBW*KB*YB) 
return 
end 
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*************************************************************************** 

This subroutine Prints out the Updated values of the dimensionless units 
that depend on delta 

*************************************************************************** 

subroutine PrintDim() 
implicit none 
include "Include/liquid.h" 
include "Include/interface.h" 
include "Include/gas.h" 
include "Include/operating.h" 

WRITE(6,123) 
WRITE(6,1) 

1         FORMAT (' ', ' Dimensionless Parameters :', 
write(6,52)delta,eta 

	

52 	format (3x,'delta 	= ',f12.3, 
& 3x,'eta 	=',f12.3) 

WRITE(6,2) phiB2,lamdaB 

	

2 	FORMAT (3x,'phiB^2 =',e12.6, 
& 3x,'lamda B = ',e12.6) 

write(6,*) 
WRITE(6,3) epsilnB,epsilnO 

	

3 	FORMAT (3x,'Epsilon B =',f12.6, 
3x,'Epsilon O = ',f12.6) 

write(6,*) 
WRITE(6,5) omegaB,gamaB 

	

5 	FORMAT (3x,'omega B = ',e12.6, 
& 3x,'gamma B = ',e12.6) 

write(6,*) 
write(6,*) 

	

123 	format(' 	 ____________',/) 
return 
end 

c********************************************************************************* 

Print the variables 
c****************************************************************************************  

subroutine output 0 

implicit none 
include "Include/parameters.h" 
include "Include/liquid.h" 
include "Include/gas.h" 
include "Include/interface.h" 
include "Include/operating.h" 
include "lnclude/kinetic.h" 
include "Include/volumetric.h" 

c 

write(6,123) 

WRITE(6,1) 
1 	FORMAT (' ',//, ' VARIABLES IN THE MODEL',//) 

WRITE(6,2) 

	

2 	FORMAT (3x,' 1 - Butanol',/,3x,'2 - Ethanol',/,3x,'3 - Oxygen',/) 

97 



WRITE(6,19) restime/60 
19 	format (' ', 'Residence Time (mill)           =',f12.3) 

WRITE(6,3) volume* 1e6 
3 	FORMAT (' ', 'Volume of the column(cm3)       =',f12.3) 

WRITE(6,4) As 
4 	FORMAT (' ', 'Biolayer Sur.Area( m2/m3)      =',f12.3)  

write(6,44) b0 
44 	format (' ', 'Biomass Conc. (kg/m3)         =',f12.3)  

WRITE(6,5) delta* I e-3 
5 	FORMAT ('  ', 'Film thickness (mm)           =',f12.3)  

WRITE(6,18) CGB00*1000. 
WRITE(6,22) CGO00*1000. 

18 	FORMAT C   'Inlet conc. (g/m3 of air)(B)  =', f12.3) 
22 	FORMAT C 'Inlet conc. (g/m3 of air)(O) =', f12.3) 

write(6,3 I) YOB 
31 	format ('  ', 'Yield Coefficient (B) 	= 112.3) 

write(6,34) YOB 
34 	format ('  ', 'Yield Coefficient (OB) 	= f12.3) 

WRITE(6,51) DBW* I .e+9 
WRITE(6,55) DOW*1.e+9 

51 	format (' 	'Diff. Coeff. (B)* I e9(m2/s) = f12.3) 
55 	format C 	'Diff. Coeff. (O)*1e9(m2/s) = f12.3) 

WRITE(6,565) mB 
565 	FORMAT (' ', 'Dist. Coeff. 	(B) 	= e12.3) 

WRITE(6,567) m0 
567 	FORMAT ('  ', 'Dist. Coeff. 	(O) 	= e12.3) 

write(6,123) 
write(6,*) ' 	Andrews and other Parameters' 
WRITE(6,6) 

&                  miouB*3600,KB*1000,KBI*1000,Ko*1000 
6 	format ('  ',/, 

&                 ' miou B(1/hr) = ',f12.3,/, 
&                             ' KB (g/m3) =',f12.3,/, 

&                             ' KBI (g/m3) =',f12.3,/, 
&                             ' KO (g/m3) = ',112.3 ) 

123 	FORMAT(' 	 ',/) 
return 
end 

************************************************************************ 
* 

subroutine today 

*     

EXTERNAL TDATE 

*     

CALL TDATE (IDAY, MONTH, IYEAR) 
write(6,123) 
WRITE (6,66) month,iday,iyear 

66 	Format( 3x, ' Date : 
&                Model Predictions for Ethanol-Butanol Mixture',/, 

	

& 	 by Orthogonal Collocation Method 	',/, 
&                   written by Dim itrios Tsangaris 

	

& 	 '//) 

	

123 	FORMAT(' 	 ',/) 
return 
end 
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subroutine Results(height,gasB,gasO) 
implicit none 
include "Include/parameters.h" 
include "Include/liquid.h" 

include "Include/operating.h" 
include "Include/volumetric.h" 
real*8 height(1),gasB(1),gasE(1),gasO(1) 
real*8 removal(2) 
integer igas 

write(6,123) 
WRITE(6,22) 

22 	format(//,5x,' 	Gas Phase Concentration Profile',//) 
WRITE(6,13) 

13 	FORMAT 	12x, 'Height',10x,'Cg(B)',10x,'Cg(O)',10x,'1-Cg(B)'/) 
do 44 igas=1 ,ng+1 

write(6,33) height(igas), gasB(igas), gasO(igas) ,I.-gasB(igas) 
44 	continue 
33 	format(4x,F14.6,2x,F14.6,1x,f14.6,1x,f14.6,1x,f14.6) 

WRITE(6,25) 
25 	format(//,5x,' 	Gas Phase Concentration Profile[g/m31',//) 

WRITE(6,15) 
15 	FORMAT C 	I 2x, 'Height',10x,'Cg(B)', I 0x,'Cg(O)',10x,Cg(-)'/) 

do 45 igas=1,ng+1 
write(6,34) height(igas), 

+                                           gasB(Igas)*cgBOO* 1000., 
	+ 	gasO(igas)*cgO00*1000. 

45 	continue 
removal(1) = (3600/restime) * (gasB(1) - gasB(ng+1))*(cgB00*1000.) 
removal(2) = (3600/restime) (gasO(1) - gasO(ng+1))*(cgB00*1000.) 
write(6,99) removal(1),removal(2) 

99 	format(/,' Removal rates for Butanol[g/m3* hr] ',f12.4,/, 
&                            Oxygen [g/m3*hr] ',f12.4) 

34 	format(4x,F14.6,2x,F14.6,1x,f14.6,1x,f14.6) 
write(6, 1 23) 

	

123 	FORMAT('  	 ',/) 

return 
end init.f 

*******************************************************************************************************  

subroutine InitCollocation() 

implicit none 
include "Inciude/parameters.h" 
include "Include/system.h" 
include "Include/collocation.h" 
integer 

c     ----calculate the collocation point---- 
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call jcobi(nt,n,n0,n1,alpha,beta,difl,dif2,dif3,root) 
c  ----calculate the discretization matrices a & b---- 

do i=1,nt 
call dfopr(nt,n,n0,n I ,i,l,difl,dif2,dif3,root,v) 
do j=1,nt 

a(i-1,j-1)=v(j) 
enddo 
call dfopr(nt,n,n0,n,1,i,2,dif1,dif2,dif3,root,v) 
do j=1,nt 

b(i- I ,j-1)=-v(j) 
enddo 

enddo 
return 
end 

************************************************************************************ 
* 

subroutine lnitProfile(xold) 
implicit none 
include "Include/parameters.h" 
real*8 xold(1) 
integer i,n local 
nlocal = n 
do i=1,nlocal 

xold(i) = 1 
enddo 
return 
end 

newton.f 

c*********************************************************************************** c 	purpose : 	NEWTON RAPHSON to solve the system of non-linear algebraic equations 
C 	 There are nsize equations, where nsize is 2*n 
C 	 because every concentration has n unknowns-equations 
c 
c****************************************************************************** 

subroutine newton(status,xold) 
implicit none 
include "Include/parameters.h" 
real*8 xold(1) 
include "Include/collocation.h" 
include "Include/system.h" 
include "Include/operating.h" 

* * 

Define new nmatrices for the Newton method 
real*8 xinc(2*n),jac(2*n,2*n+1) 
integer iter,n2,indic,i,itcon,status 
real*8 deter 
real*8 simul]  
external simul] 
n2 =n  
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if ((status.eq.DEBUG).or.(status.eq.TRUE)) then 
write(6,123) 

123 	FORMAT(' 	NEWTON ITERATION 	  
endif 
if(iprnewton.eq.TRUE) then 

write(6,202) iter,deter,n2,(xold(i),1=1,n2) 
endif 
do 9 iter=1,itmax 
call Model(xold,jac,n2) 

c 	 call PrintA(jac,n) 
c 	 Simul computes the Jacobian and the Correction DX in zinc 

indic = 1 
deter = simul l (n2,jac,xinc,eps 1, indic,n2+1) 
if (detereq.0.0) then 

write(6,201) 
return 

end if 
c 	 check for convergence and update xold value 

neon—TRUE 
do 5 i=1,n2 

if(dabs(xinc(i)).gt.eps2) ncon—FALSE 

xold(i)=xold(i)+xinc(i) 
5 	 continue 

if(iprnewton.eq.TRUE) then 
write(6,202) iter,deter,n2,(xold(i),i=1,n2) 

endif 
if (itcon.ne.FALSE) then 

if astatus.eq.TRUE).or.(status.eq.DEBUG)) then 
write(6,203)iter,delta 

endif 
return 

endif 
9 	continue 

write(6,204) 
return 

C 	formats for input and output statements 
200 	format(' itmax =',i8,/' iprint =',i8/' n 	=',i8/ 

&' epsl = ',1pe14.1/' eps2 = ',Ipe14. 1 / 1 0x,'xold(1)...xold(', 
&  i2,')'//(1h ,1p4e16.6)) 

201 	format(38h0matrix is ill-conditioned or singular) 
202 	format(' iter --',i8/ 10h deter = ,e18.5/ 

$ 	26h 	xold(1)...xold(i2,1h) / (1 h ,1p4e16.6) ) 
203 	format(' Successful convergence: Iteration=',i5, 

'   &    ' Delta=',f8.2,/) 
204 	format(' no convergence' ) 

end 
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interpolate .f 

****************************************************************************** 

*   purpose : 	interpolating the results that you get from 
*                      newton raphson subroutine 
*                      The xold contains the solution of sB,sO at positions 
*                      between 1-->n-->2n. 
*                      Those values are unpacked to Bsol,Osol and later 
*                      used to obtain the values at xdat->Bdat,Odat 
* 
******************************************************************************* 

subroutine interpolate(iflag,xold,nt,root, difl,xdat,Bdat,Odat) 

implicit none 
integer flag 
include "lnclude/parameters.h" 
real*8 xold( I ),root( I ),dif1(1) 
real*8 xdat(1),Bdat(1),Odat(1) 
real*8 xintp(n+2),Bsol(n+2),Osol(n+2) 
real*8 so,sb,dist 
integer i,j,nt 
include "Include/operating.h" 
include "Include/interface.h" 
real*8 sb0,so0 
real*8 fsNew 
external fsNew 

if ((iflag.eq.DEBUG).or.(illag.eq.THETACONV)) then 
write(6,123) 

WRITE(6,12) 
12 	FORMAT ( 

& 	',10x, 'Concentration Profiles in the Biofilm ',/) 

WRITE(6,13) 
13 	FORMAT ( 

&                  5x,' x ',6x,'s(B)',10x,'s(O)',10x,'s(E)'/) 
end if 
sb0 = epsilnB*cgasB 
Bsol(1)=sb0 
do i-=1,n 

Bsol(i+1)=xold(i) 
enddo 
Bsol(n+2)=Bsol(n+1) 
do 20 i=1,n+1 

dist = float(i-1)/n 
call intrp(nt,nt,dist,root,dif1,xintp) 
sb=0.0 
do 30 j=1,n+2 

sb = sb+xintp(j)*Bsol(j) 
30 	 continue 

so = fsNew(sb) 
if ((iflag.eq.DEBUG).or.(iflag.eq.THETACONV)) then 

write(6,40) dist,sb,so 
endif 

xdat(i)=dist 
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Bdat(i)=sb 
Odat(i)=so 

20 	continue 
40 	format(2x,f7.2,2x, 

f12.6,2x,f12 .6,2x,f1 2 .6,7x, 
f14.6,2x,f12.6) 

123 	FORMAT(' +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++',/) 
return 
end 

c******************************************************************************************** 

c 	Subroutine for evaluating the derivative 
c 	necessary for gas phase profiles 

c********************************************************************************************* 

subroutine deri (xold, deriB, deriO) 

implicit none 
include "lnclude/parameters.h" 
include "Include/liquid.h" 
include "Include/interface.h" 
include "Include/gas.h" 
include "Include/collocation.h" 
include "Include/operating.h" 
real*8 deriB,deriO,sb0,so0,sb,so 
real*8 xold(1) 
real*8 sum1,sum2 
integer 
suml =0.0 
sum2 = 0.0 
do 10 j = 1,n 

sb = xold(j) 
sum I = sum1+(a(0,,j)-a(0,n+1)*a(n+ I ,j)/a(n+1,n+ I ))*sb 

10 	continue 
sb0 = epsilnB*cgasB 
deriB = sum I +(a(0,0)-a(0,n+1)*a(n+1,0)/a(n+1,n+1))*sb0 
return 
end 

c ********************************************************************* c c  c         for gas phase 
c 	using the fourth order runge kutta method 
cc********************************************************************* 

SUBROUT1NE RK4(eta,omega,deri,H,cg) 

implicit none 
real*8 eta,omega,deri,cg,H,FUN 
external FUN 
cg= cg+H*FUN(era,omega,deri) 
RETURN 
END 

c ********************************************************************* 

 

c purpose : 	give the function for RK method, in the gas phase 
c 	 balance c ********************************************************************* 
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real*8 FUNCTION Fun(eta,omega,deri) 
implicit none 
real*8 eta,omega,deri 
Fun = eta*omega*deri 
RETURN 
END 

check.f 

subroutine CheckConvergance(status,Bdat,Odat) 

implicit none 
include "Include/parameters.h" 
include "Include/interface.h" 
include "Include/operating.h" 
integer status 
real *8 Bdat(1),Odat(1) 
real*8 uplmB,uplmO 
real* 8 sbf,sof 
real*8 fsnew 
external fsnew 

* 	*** calculate the concentrations at the end of the biofilm (theta=1) 
sBf = Bdat(n+1) 
sOf = Odat(n+1) 
sof = fsNew(sbf) 
if (sof.ne.Odat(n+1)) then 
print*,'Warning: Odat contains different value for SB then SO predicts' 
print*,sof,odat(n+1) 
endif 
uplmB = epsilnB*cgasB*PERCENTAGE 

uplmO = epsilnO*cgasO*PERCENTAGE 
if (sof.gt.0.0.and.sof.le.uplmO)then 

status = TRUE 
elseif asbf.gt.0.0.and.sbfile. uplmB).or. 

& 	(sof.gt.0.0.and.sof.le. up1mO)) then 
status = TRUE 
elseif(delta.lt.300)then 

delta = delta + 2.0 
status = FALSE 

elseif(delta.ge.300)then 
delta = 300 

status = FALSE 
endif 
return 
end 
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printsol.f 

subroutine PrintSolution(xold,root) 

implicit none 
include "Include/parameters.h" 
real*8 xold(I),root(1) 
integer 

write(6'(3a12)')' theta',' S (B)',' S (0)' 
do i=1,n+1 

write(6'(3f14.8)') root(i+1),xold(i) 
enddo 
return 
end 
subroutine PrintA(a,m) 
implicit none 
real*8 a(20,1) 
integer 
do i=1,m 
do j=1 , m 

if (a(i,j).ne.0.0) then 
write(*,'(2i5,f14.8)') i,j,a(i,j) 
endif 

enddo 
enddo 
do i=l,m 

write(*,'(215,f14.8)') i,0,a(i,m+1) 
enddo 
return 
end 

modeLf 

c************************************************************************ 
c 	purpose : 	construct the jacobian matrix and on the last 
c 	 column vector -f 
c 	 df contains the jacobian at (nsize,nsize) 
c 	 and the -F vector at (nsize,nsize+1) 
C 	 notice that nsize = n 
c**************************************************************** 

subroutine Model(x,df,nsize) 
implicit none 
include "Include/parameters.h" 
real*8 x(nsize),df(nsize,n+1) 
integer nsize 
include "Include/liquid.h" 
include "Include/interface.h" 
include "Include/collocation.h" 
include "Include/operating,.h" 
real*8 sB,sO,sBO,so0 
real*8 kinetic 1 0,kinetic 1 1 
real*8 fk 
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real*8 surn,q1,q2,q3 
real*8 fsNew 

external fsNew 
integer i,j,m 

* Reset The jacobian matrix 
do i=1 ,nsize 

do j=1,nsize+1 
df(i,j)=0.0 

enddo 
enddo 

*Those are the concentrations at theta=0 
sb0= epsilnB*cgasB 

so0= epsilnO*cgasO 
m = nsize 
do 10 i=1,m 

sum = 0. 
do 20 

sB = x(j) 
sO = fsNew(sb) 
df(i,j) = b(i,j)-b(i,m+1)/a(m+1,m+1)*a(m+1,j) 
if (i.eq.j) then 

q1 = 1. + sB + gamaB*sB*sB 
q2 = 1. + sO 
q3 = - gamaB*sB*sB 
kinetic10 = phiB2*sO/q2*sB/q 1 
kinetic11 = phiB2*((1/q2/q2)*(sb/q1)*lamdaB+(sO/q2)*(q3/q1/q1)) 
df(i,j) = df(i,j) - kinetic 11  

endif 
sum = sum + (b(i,j)-b(i,m+1)/a(m+1,m+1)*a(m+1,j))*sb 

20 	 continue 
*                      This is the value of F{k} 
fk I = (b(i,0) - b(i,m+1)*a(m+1,0)/a(m +1,m+ I ))*sb0 
df(i,(nsize+1))=-(fk1 + sum - kinetic10) 

10 	continue 
return 
end 

c******************************************************************** 

c 	Those subroutines calculate the concentration of fsE,fcE 
c 	given the concentrations of the other components 
c******************************************************************** 

real*8 function fsNew(sb) 
implicit none 
include "Include/parameters.h" 
include "Include/liquid.h" 
include "Include/gash" 
include "Include/interface.h" 
include "Include/operating.h" 
real*8 sb 
real*8 cO,cB 

cO = cgasO 
cB = cgasB 

*Now solve for SB given CO,CB and SO 



fsNew = epsilnO*Co lamdaB*(sb-epsilnB*Cb) 
return 
end 
real*8 function fcNew(cb) 
implicit none 
include "Include/parameters.h" 
include "Include/liquid.h" 
include "Include/gas.h" 
include "Include/interface.h" 
real*8 sb,so 
real*8 cb 

*Now solve for SB given CO,CB and SO 
fcNew = (cb-I.)*IamdaB*omegaB + 1. 
return 
end 

SRC=main.f Init.f Check.f Model S PrintSol. 
interpolate.f 

OBJ=main.o lnit.o Check.o Model.o PrintSol.o io.o newton.o\ 
interpolate.o 

LIB=~mike/lib/orthcol.o 

OPT= -extend_source 
.SUFFIXES: .o .f 
.f.o: ; 177 -c $(OPT) $*.f -o$*.o 
single: $(OBJ) 

177 S(OBJ) $(LIB) -o ssicol 
clean: 

m -f *.o  

in  

1.65 
7.7 

Toluene. in 

Toluene. in 

******************************************* 

0.00 Toluene concentration (g/m3) 

******************************************* 

 

0.00  Residence time (in min) or Flowrate (m3/h) 
******************************************** 

30 	This is used by the old version 
1 	Initial guess for delta (in micrometers) 
******************************************** 

100 	BO 	[Kg] 
1.50 	Miou i   [1/h] 
11.03e-3     Ki 	[Kg/m3] 
78.94e-3     Kil 	[Kg/m3] 
0.26e-3      KO 	[Kg/m3] 

107 



1.03e-9 DiW   [m2/s] 
2.41e-9 DOW  [m2/s] 
0.708   Yi     [Kg/Kg] 
0.341 	YOi 	[Kg/Kg] 
0.27 	mi 	[-] 
34.4 	mO 	[-] 
275    C[o]  [g/m3] 
40 	As 	[m-1] 
1529 l e-6  Volume      [m3] 
1 .82e-2     Surface      [mᴧ2] 

Include 

parameters. h 

integer n,ng,ndata 
parameter (n=20 ,ng=20, ndata=20) 
real*8 PERCENTAGE 
parameter (PERCENTAGE=0.01) 
integer TRUE,FALSE 
parameter (TRU E=1,FALSE=0) 
integer RESITENCE 
parameter (RESITENCE = 10) 
integer LASTZ,MIDDLEZ 
parameter (LAST"/, = 20, MIDDLEZ=30) 
integer THETACONV 
parameter (THETACONV = 10) 
integer DEBUG 
parameter (DEBUG = 100) 

operating.h 

real*8 cgB00,cgo00 
common /cgas/cgB00,cgo00 
real*8 delta 
common/del/delta 
real*8 cgasB,cgasO 
common /cgas/cgasB,cgasO 

collocation.h 

real*8 a(0:n+1,0:n+1),b(0:n+1,0:n+1) 
common /colloc/ a,b 
real*8 root(n+2) 
real*8 difl(n+2),dif2(n+2),dif3(n+2) 
real*8 v(n+2) 
common /colloc1/ root,difl,dif2,dif3,v 

real*8 IamdaB 
real*8 gamaB 
common /lamda/lamdaB 
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common /gama/gamaB 
real*8 phiB2 
common /phi/phiB2 
real*8 sigmaB 
common /sigma/sigmaB 

gas.h 
  

real*8 omegaB,eta 
common /omega/eta,omegaB 

interface.h 

real*8 epsilnB,epsilnO 
common /epsiln/epsilnB,epsilnO 

system.h 

real*8 eps1 ,eps2 
common/sysm/eps1 ,eps2 
integer itmax,iprnewton 
common/flowcontrol/itmax,iprnewton 
integer n0,n1,nt 
real*8 alpha,beta 
common/init1/n0,n1,nt 
common/expon/alpha,beta volumetric.h 

real*8 volume,surface,volrate,restime 
real*8 as 
common/volumetric/volume,surface,volrate,restime 
common/volumetric1/as 

kinetic.h 

real*8 KB,KB1,KO,miouB 
real*8 DOW,DBW 
real*8 YB,YOB 
real*8 b0 
common/kinetic1/KB,KB1,KO,miouB 
common/kinetic2/DOW,DBW 
cornmon/kinetic3/YB,YOB 
common/kinetic4/b0 
real*8 mB,mO 
common/henry/mB,mO 
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APPENDIX D 

COMPUTER CODE FOR SOLVING THE TRANSIENT 
BIOFILTRATION MODEL FOR A SINGLE VOC  
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main .f 

********************************************************** 

c 	Purpose 	"Solution Of The Transient Biofiltration 

c 	 Model For A Single VOC" c 

c Method : 	ODESSA-Ordinary Differential Equation 
c 	 Solver With Explicit Sensitivity Analysis; 
c 	 Stiff Mode When User Supplied Jacobian 
c 	 Option Is Used c 

c Language : FORTRAN 

c 

c Written By : Dimitrios Tsangaris, Newark, NJ on March 28,1995 

c 

c Updated By : Michael Cohen, Newark, NJ in August 1995 

c 

c********************************************************** 

implicit none 
include "Include/parameters.h" 
external fun,dfun,jfun 
include "Include/odessa.h" 
real*8 cg(0:nhmax,0:ntmax) 
real*8 co(0:nhmax,0:ntmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:ntmax), ht(0:nhmax) 
include "Include/operation.h" 
include "Include/dimensional.h" 
include "Include/dimensionless.h" 
real*8 dt,t,tout,err,tau,avcgb 
integer istate,istatus,i 
integer ndim,npar,nt,nh,it,ih,tlast 
integer sens 

* * 

Read the system parameters, and initialize the concentrations 
do sens=1,10 
call Reset(rwork,iwork,itask,istate,iopt,ml) 
call today() 
This gives the original value of the parameter to be 
examined, and then checks its relative values 
(usually 0.1 to 10.0) 
kapaA=6.04e-3 
kapaA=kapaA*sens 
call ReadParam(istatus,ndim,npar,nh,nt,dt,err,tau) 
call InitConditions(istatus,nh,nt,cg,co,cp,ht,dt,time,y) 
call lnitOdessa(neq,ndim,npar, 

*                  iopt,itask,Irw,liw,mf,itol,rtol,atol,err) 
call PrintDimensional() 
call PrintDimensionless() 
call PrintOne(cg,co,cp,time,ht,nh,zero) 
call C2Y(cg,co,cp,y,zero,nh) 
do it = 1,ntmax 
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T = time(it-1) 
tout = time(it) 

Find the average concentration for this time instance 
avcgb = cg(nh/2,it-I )*cgB00 
if (it.eq.1) avcgb=0.0 
call Update(avcgB) 
if (it.gt.(ntmax-5)) call PrintDimensionless() 
call Pack(par) 
istate = TRUE 
CALL ODESSA(fun,dfun,NEQ,Y,PAR,T,TOUT,ITOL,RTOL,ATOL, 

&                  ITASK,ISTATE, IOPT,RWORK,LRW,IWORK,LIW,jfun,MF) 
if(istate.LT.0) then 

write(6,*) ' istate= ',istate 
stop 

endif 
call Y2C(cg,co,cp,y,it,nh) 
if (it.gt.(ntmax-5)) call PrintOne(cg,,co,cp,time,ht,nh,it) 
call CheckSteadyState(istatus,cg,co,cp,nh,it,m,tau,tout) 
if (istatus.eq.TRUE) then 

tlast = it 
goto 10 

endif 
enddo 

c 	Output your results 
10 	continue 

call PrintSum(cg,co,cp,time,ht,nh,tlast,tau) 
enddo 
stop 
end 

init.f 

subroutine InitConditions(istatus,nh,nt,cg,co,cp,ht,dt,time,y) 

implicit none 
include "Include/parameters.h" 
include "Include/dimensionless.h" 
include "Include/operation.h" 
integer istatus,nh,nt 
real*8 cg(0:nhmax,0:ntmax) 
real*8 co(0:nhmax,0:ntmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:mmax),ht(0:nhmax) 
real*8 y(neqmax,nparmax+1) 
real*8 dt 
charactcr*80 Filename 
integer ih,it 

* Initial profile along the z axis (t-0) 
if (colstatus.eq.OLD) then 

open(unit=9,file=fileprev,status='old') 

read(9,*)  
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do ih = 0,nh 
read (9.*) ht(ih),cg(ih,0),co(ih,0),cp(ih,0) 
cg(ih,0)= cg(ih,0)/cgB00/1000 

co(ih,0) = co(ih,0)/cgO00/1000 
enddo 
cg(0,0) = 1.0 
co(0,0) = 1.0 
cp(0,0) (cg(0,0)/psi)**( I Jan) 
close(9) 

elseif(colstatus.eq.FRESH) then 
do ih = 0,nh 

cg(ih,0) = 1.0e-4 
co(ih,0) = I .0e-4 

enddo 
cg(0,0) = 1.0 
co(0,0) = 1.0 
cp(0,0)= (cg(0,0)/psi)**(1 /an) 
else 
write(6,'(a)')'Error in Initial Status selection' 
stop 
endif 
do ih = 0,nh 
cp(ih,0) = cg(ih,0)/psi 
enddo 

Initial conditions (t=0) at the entrance of the column 
do it =-- 1,nt 

cg(0,it) = cg(0,0) 
co(0,it) = co(0,0) 
cp(0,it) = cp(0,0) 

enddo 
do it =0,nt 

time(it) = float(it)*dt 
enddo 
if (istatus.ne.OLD) then 

do ih=0,nh 
ht(ih) = float(ih)*dz 

enddo 
endif 
return 
end 

******************************************************* 

subroutine InitOdessa(neq,ndim,npar,iopt,itask,Irw,liw,mf,itolo,rtol,atol,err) 

implicit none 
include "Include/parameters .h" 
real*8 atol(neqmax,nparmax+1),rtol(neqmax,nparmax+1 ) 
integer mf,itask,Irw,liw,itol 
integer neq(2),iopt(3) 
integer ndim,npar 
integer nsv 
real*8 err 
integer i,j 

neg(1)=ndim 
neq(2)=npar 
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nsv=nparmax+1 ito1=4 
do i=1,ndim 

do j=1,nsv 
rtol(i,j)=err 

atol(i,j)=err 
enddo 

enddo 
itask=1 
iopt(1)=0 
iopt(2)=0 
iopt (3)=0 
Irw=lrwmax 
liw=liwmax 

mf=22 

return 
end 

subroutine Reset(rwork,iwork,itask,istate,iopt,mf) 
implicit none 
include "Include/parameters.h" 
real*8 rwork(Irwmax) 
integer iwork(liwmax) 
integer itask,istate,iopt(3),mf,i 

istate= 0 
itask = 0 
mf  = 0 
iopt(1) = 0 
iopt(2) = 0 
iopt(3) = 0 
do i=1,Irwmax 

rwork(i) = 0. 
enddo 
do i=1,1iwmax 

iwork(i) = 0 
enddo 
return 
end 

print.f 

C********************************************************************************** 

C print concentration changes along the column time 
C C

************************************************************************** 

subroutine PrintAll(cg,co,cp,tim e,nt,ht,nh) 
implicit none 
include "Include/parameters.h" 
real*8 cg(0:nhmax,0:ntmax) 
real*8 co(0:nhmax,0:ntmax) 
real*8 cp(0:nhmax,0:ntmax) 
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real*8 time(0:ntmax),ht(0:nhmax) 
integer nt,nh,it,ih 

write (6,84) 

	

84 	format(//,5x,'Solution of the Transient Model',//) 
do it = 0, nt 

write (6,86) time(it) 

	

86 	 format (/, 10x, 'At Time = 	f14.3,/) 
write (6,89) 

	

89 	 format(//,8x,'h/H',9x,'cg', 13x,'co',  13x,'cp',//) 
do 	= 0, nh 

write (6,96) ht(ih), cg(ih,it), co(ih,it), cp(ih,it) 

	

96 	 format (5x, f7.3,3x,f10.4,5x,f10.4,5x,f10.4) 
enddo 

enddo 
return 
end 

**************************************************************************************  *             The subroutine Prints out the Updated values of the dimensionless units 
*             that depend on delta 

************************************************************************************** 

 

subroutine PrintDimensionless() 
implicit none 
include "Include/dimension less.h" 

WRITE(6,123) 
WRITE(6,1) 
FORMAT (", ' Dimensionless Parameters :', /) 
write(6,*) 
WRITE(6,5) betaB,betaO 

	

5 	FORMAT (2x,'Beta [B]= ',f1 4.8, 
& 2x,'Beta [O]= ',114.8) 

WRITE(6,6) effectB,effectO 

	

6 	FORMAT (2x,'Effectv[B]= 
& 	2x,'Effectv[O]= ',f14.8) 

WRITE(6,3) epsilnB,epsilnO 

	

3 	FORMAT (2x,'Epsilon[B]= ',f14.8, 
&   2x,'Epsilon[O]=  ',f14.8) 

write(6,*) 
WR1TE(6,8) gamaB 

	

8 	FORMAT (2x,'gamaB = ',f14.8) 
write(6,*) 
write(6,52) psi,beta 

52 	format (2x,'psi 	=',f14.8, 
& 2x,'beta 	= ' ,f14.8) 

WRITE(6,2) porosity,delta 

	

2 	FORMAT (2x,'porosity = ',f14.8, 
& 2x,'delta 	= ',f14.8) & 

WRITE(6,7) l./an,dz 

	

7 	FORMAT (2x,'n 	=',f14.8, 
& 2x,'dz 	= ',f14 8) 

write(6,*) 
write(6,*) 
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123 	format(' 	 ______',/) 
return 
end 

c****************************************************************** 

Print the variables 
************************************************************************ 

subroutine Printdimensional () 
implicit none 
include "Include/parameters.h" 
include "Include/dimensional.h" 
include "Include/operation.h" 
include "Include/dimensionless.h" 
write(6,123) 
WRITE(6,1) 
	1 	FORMAT (' ',//, ' VARIABLES IN THE MODEL',//) 

WRITE(6,11) 
	11 	FORMAT (5x,/, ' Input data for Transient Biofilter Model',/) 

WRITE(6,2) 

	

2 	FORMAT (2x,'1- Toluene',/,2x,'2 - Oxygen',/) 
WRITE(6,19) restime/60 

	

19 	format (", 'Resitance Time (min) 	= f12.5) 
WRITE(6,3) volume* 1e6 

	

3 	FORMAT (", 'Volume of the column(cm3) =', f12.5) 
WRITE(6,4) As 

	

4 	FORMAT (' ',Biolayer Sur.Area(m2/m3)  =', f12.5) 
WRITE(6,41) alpha 

	

41 	FORMAT ('  ', '% area covered by biomass =', f12.5) 
write(6,44) b0 

	

44 	format (", 'Biomass Conc. (kg/m3)    =', f12.5)  
WRITE(6,5) delta*le-3 

	

5 	FORMAT (", 'Film thickness (mm)   =', f12.5)  
WRITE(6,59) porosity 

	

59 	FORMAT (", 'Porosity              =', f12.5)  
WRITE(6,18) CGB00*1000. 
WRITE(6,22) CGO00*1000. 

	

18 	FORMAT (' 'Inlet conc. (g/m3 of air)(B) = f12.5) 

	

22 	FORMAT (", 'Inlet conc. (g/m3 of air)(O) = f12.5) 
write(6,31) YB 

	

31 	format ('  ', 'Yield Coefficient     (B)        =', f12.5)  
write(6,34) YOB 

	

34 	format (", 'Yield Coefficient (OB)           =', f12.5)  
WRITE(6,51) DBW* 1 .e+9 
WRITE(6,55) DOW* 1.e+9 

	

51 	format ('  ', 'Diff. Coeff. (B)* I e9(m2/s)   = f12.5) 

	

55 	format ('  ', Diff. Coeff. (O)* I e9(m2/s)   = f12.5) 
WRITE(6,565) mB 

565 	FORMAT (", 'Dist. Coeff. 	(B) 	=', e12.5)  
WRITE(6,567) m0 

567 	FORMAT (", 'Dist. Coeff. 	(O) 	=', e12.5) 
WRITE(6,566) Kapaa*3600. 

566 	FORMAT (", 'Mass Trans. Coef. Ka [m/h]---- e12.5) 
WRITE(6,568) Kapad 

568 	FORMAT (", 'Adsorption Parameter Kd [g/g]= e12.5) 
WRITE(6,569) rho 
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569 	FORMAT ('  ', 'Particle Density 	[kg/m3]= e I 2.5) 
write(6,123) 
write(6,*) 	Andrews and other Parameters' 
WRITE(6,6) 

miouB*3600,KB*1000,KBI*1000,Ko*1000 
6 	format (",/, 
& ' miou B(1/hr) = ',f12.3,/, 

&                       ' KB (g/m3) = ',f12.3,/, 
& ' KB! (g/m3) =',f12.3,/, 
& ' KO (g/m3)       =',f12.3 ) 

write(6,123) 
123 	FORMAT(' 	 __________________________________________________________________',/) 

return 
end 

*********************************************************************** 

subroutine today() 
* EXTERNAL TDATE 
* 	CALL TDATE (IDAY, MONTH, (YEAR) 

write(6, 123) 
WRITE (6,66) month,iday,iyear 

66 	Format( 2x, ' Date : 
&           '       Model Predictions for Toluene System 	',/, 
&           ' 	written by Dim itrios Tsangaris 	',/, 
• ' ================================================='/) 

123 FORMAT(' 	 _______________',/)  
return 
end 

C*********************************************************************** 
C print concentration changes along the column time 
C*********************************************************************** 

subroutine PrintOne(cg,co,cp,time,ht,nh,it) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
real*8 cg(0:nhmax,0:ntmax),co(0:nhmax,0:nrmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:nrmax),hl(0:nhmax) 
integer 

write (6,84) 

	

84 	format(//,5x,'Solution of the Transienr Model',//) 
write (6,86) time(it) 

	

86 	format (/, 10x, 'At Time = 	f14.3,/) 
write (6,89) 

	

89 	format(//,8x,'h/H',9x,'cg',13x,'co',13x,'cp',//) 
do ih = 0, nh 

c 	write (6,96) ht(ih), cg(ih,it), co(ih,it), cp(ih,it) 
write (6,96) ht(ih), cg(th,it)*cgB00* 1000, 

	

& 	co(ih,it)*cgo00* 1000, cp(ih,it) 

	

96 	format (5x, f7.3,3x,f10.4,5x,f10.4,5x,f10.4) 
enddo 
return 
end 
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C**************************************************************************** 

C print concentration changes along the column time 

C*************************************************************************** 

subroutine PrintSum(cg,co,cp,time,ht,nh,nt,tau) 
implicit none 
include "lnclude/parameters.h" 
include "Includc/dimensional.h" 
include "Include/operation.h" 
real*8 cg(0:nhmax,0:ntmax),co(0:nhmax,0sntmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:ntmax),ht(0:nhmax),tau 
integer nh,it,ih,nt 

write (6,84) 
84 	format(//.5x,'Summary Results for the Transient Model',//) 

write (6,89) 
89 	format(//,8x,'time(h)',4x,'cg (1/3)',7x,'cg (2/3)',7x,'cg',//) 

do it = 0, nt 
write (6,96) time(it)*tau*24,cg(nh/3,it)*cgBOO*1000, 

&               cg(nh*2/3,it)*cgB00*1000,cg(nh,it)*cgB00*1000 
96 	 format (5x, f8.3,3x,f10.4,5x,f10.4,5x,f10.4) 

enddo 
write(6,*) 
return 
end 

readparant.f 
subroutine ReadPararn(istatus,ndim,npar,nh,nt,dt,err,tau) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
include "Include/dimensional.h" 
include "Include/dimensionless.h" 
include "Include/system.h" 
integer istatus,nh,nt,ndim,npar,column 
real* 8 dt,err,tau,flowrate 
real*8 foo 
character filename*80 

integer unfn 
unfn=7 
filename 'Toluene.in' 
ResTime must be entered in Minutes 

cgB00 must be entered in g/m3 
* 	read(5,*) cgb00,restime *         read(5,'(a)')filename 

*         open (unit=unfit,file=filename,status='old') 
*         read(unfn,*) flowrate 
*         read(unfn,*) cgb00 
*         read(unfn,*) 
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*  Now read from the standard input the operating conditions 
* 	System parameters 

iprnewton = TRUE 
iprnewton = FALSE 
ODESSA parameters 
ndim = neqmax 
spar= nparmax 
nt = ntmax 
nh = nhmax 

*        Biofilm parameter (in kg/m3) 
read(unfn,*)b0 

*        Kinetic constants for Ethanol and Butanol 
read(unfn,*) m iouB 

miouB = miouB/3600 
read(unfn,*) KB 
read(unfn,*) KBI 
read(unfn,*) KO 

*        Diffucivities 
read(unfn,*) DBW 
read(unfn,*) DOW 

*        Yield coefficients 
read(unfn,*) YB 
read(unfn,*) YOB 

*        Henry's constants 
read(unfn,*) mB 
read(unfn,*) m0 

*        Entrance concentrations 
cgB00 = cgB00 * 1.e-3 
read(unfn,*) cgo00 
cgo00 = cgO000 * I .e-3 

*        Volumetric properties 
read(unfn,*) Volume 
read(unfn,*) Surface 
flowrate = flowrate/3600 
restime = volume/flowrate 
velocity = 1./restime 
tau 	= restime/24.0/3600 

*        Adsorption parameters 
read(unfn,*) 
read(unfn,*) As 
read(unfn,*) alpha 
read(unfn,*) foo 

* 

	read(unfn,*) kapaA 
read(unfn,*) kapad 
read(unfn,*) porosity 
read(unfn,*) rho 
read(unfn,*) an 
kapaa= kapaa/3600. 

*        Numerical parameters 
colstatus= FRESH 
read(unfn,*) column 
if (column.eq.(20.0)) colstatus = OLD 

read(unfn,'(a)') fileprev 
read(unfn,*) err 
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* Now calculate some Dimensionless quantities using the above values 
gamaB = KB/KBI 

epsilnB = cgB00/(mB*KB) 
epsilnO = cg000/(mO*KO) 

* Now calculate some Dimensionless quantities using the above values 
i status= FRESH 

c 	dt = 0.01 
read(unfn,*) dt 
dz = 1.0/float(nh) 
call Update(zero) 
close (unfn) 
return 
end 

************************************************************************** 

*         The subroutine calculates some dimensionless units that depend on 
the *         parameter 'delta'. Delta, is the depth of the biofilm 

************************************************************************** 

subroutine Update(cgasB) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
include "Include/dimensional.h" 
include "Include/dimensionless.h" 
real*8 xv,cgasB 
real*8 deltaMt,const 

call FindDelta(cgasB,delta,effectB,effect0) 
*A correction is needed because the empirical formula Cjp = Kd (Cj*)^n holds 
*        only when cj is in [g_j / m3 aid. Then, const= g/m3->Kgr/m3. 
* 	After this correction, cstar_reduced = psi*Cjp_reduced 

const = I .e-3 
deltaMt = delta* I .e-6 
xv = b0 

betaB=effectB*(alpha*As)*deltaMt*xv*restime*miouB/(YB *cgB00*porosity) 
betaO=effect0*(alpha*As)*deltaMt*xv*restime*miouB/(YOB*cg000*porosity) 

beta = kapaa*( I -alpha)*As*restime/porosity 
psi = (consticgB00)*(porosity*cgB00/(( 1 -porosity)*rho*Kapad))** an 
return 
end 

util.f 
subroutine C2Y(cg,co,cp,y,it,nh) 
implicit none 
include "Include/parameters.h" 
real*8 y(neqmax,nparmax+1) 
real*8 cg(0:nhmax,0:ntmax), co(O:nhmax,0:ntmax),cp(0:nhmax,0:ntmax) 
integer ih,it,nh 

do ih = 1,nh 
y(ih, 1) 	= cg(ih,it) 
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y(ih+nh, 1 ) = co(ih,it) 
y(ih+2*nh, l)= cp(ih, it) 

enddo 
return 
end 

subroutine Y2C(cg,co,cp,y,it,nh) 
implicit none 
include "Include/parameters.h" 
real*8 y(neqmax,nparmax+1) 
real*8 cg(0:nhmax,0:ntmax), co(O:nhmax,0:ntmax),cp(0:nhmax,0:ntmax) 
integer ih,it,nh 

do ih = 1, nh 
cg (ih,it) = y(ih,1) 
co (ih, it) = y(ih+nh,1) 
cp (ih,it) = y(ih+2*nh,1) 

enddo 
return 
end 

*********************************************************************** 

subroutine pack(par) 
implicit none 
include "Include/parameters.h" 
include "Include/dimensionless.h" 
real*8 par(1) 

par( 1 ) = epsilnB 
par(2) = epsilnO 
par(3) = gamaB 
par(4) = betaB 
par(5) = betaO 
par(6) = beta 
par(7)= psi 
par(8) = porosity 
par(9) = dz 
par( 1 0)= an 
return 
end 

*********************************************************************** 

subroutine CheckSteadyState(istatus,cg,co,cp,nh,it,nt,tau,tout) 
implicit none 
include "Include/parameters.h" 
real*8 cg(0:nhmax,0:ntmax), co(O:nhmax,0:ntmax),cp(0:nhmax,0:ntmax) 
real*8 dl,d2,d3,tau,tout 
integer it,nh,istatus,nt 

d1 = abs (cg(nh,it) - cg(nh,it-1)) 

d2 = 
 abs (co(nh,it) - co(nh,it-1)) 

d3 = abs (cp(nh,it) - cp(nh,it-1)) 
c 	if(d1.le.TOLERR.and.d2.le.TOLERR.and.d3.le.TOLERR) then 

*          As this program is checking sensitivity it goes until done, 
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and does not use the steady state checker 
if(it.ge.ntmax-5) then 

istatus = TRUE 
write(6,47) tout*tau, it, nt 

else 
istatus = FALSE 

endif 
47 	format(//,5x,'Steady state was reached in',f10.3, ' days', 

&             /,5x,'Iterations 	= ',i10, 
&                  /,5x,'Maximum Iterations =',i10,//) 

return 
end 

model.f 

C*********************************************************************** 

c this subroutine computes the vectorfield 
c********************************************************************** 

subroutine fun(ndim,t,y,par,ydot) 
implicit none 
include "Include/parameters.h" 
real*8 y(neqmax),ydot(neqmax),par(nparinax),t 
integer ndim 
real*8 yl,y2,y3,funl,fun2,y4 
real*8 cbpr,copr,cb,co,cp 
real*8 der1 ,der2 
real*8 cstar 
integer i,offset,nh 
include "Include/UNFOLD.h" 

write(6,'(5f10.4)')(par(i),i=1,10) 
write(6,'(10f8.4)')(y(i),i=1,ndim) 

nh = ndim/3 
print*,nh 
do i = 1,nh 

cb = y(i) 
cbpr = 0. 
if (i.ge.2) cbpr = y(i-1) 
co = y(i+nh) 
cp = y(i+2*nh) 
cstar= psi*(cp**an) 
y1 = epsilnB*cb 
y2 = epsilnO*co 
y3  = 1. + y 1 + gamaB*y 1 *y1 
y4 = 1. + y2 

fun1 = (y1/y3)*(y2/y4) 
fun2 = cb-cstar 
if (i.eq.1)then 

den = (cb-1.)/dz 
else 

der 1 = (cb-cbpr)/dz 
endif 
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ydot(i)= -der1 /porosity-betaB * fun 1 -beta*fun2 
enddo 
offset = nh 
do i = 1,nh 

cb = y(i) 
co = y(i+nh) 
copr = 0. 
if (i.ge.2) copr = y(i+nh-1) 

y1 = epsilnB*cb 
y2 = epsilnO*co 
y3 = 1 .+y I + gamaB*y1*y1  
y4 = 1.+y2 
fun I = (y 1 /y3)*(y2/y4) 
if (i.eq.1)then 

der2 = (co-1)/dz 
else 

der2 = (co-copr)/dz 
endif 
ydot(i+offset)= -der2/porosity-betaO*fun I 

enddo 
*           Equations for Solid adsorption 

offset = 2*nh 
do i = 1,nh 

cb = y(i) 
cp = y(i+2*nh) 
cstar= psi*(cp**an) 
fun2 = cb-cstar 
ydot(i+offset) = beta*fun2 

enddo 
*           write(6,'( I 0(f8.4))')(ydot(i),i=1,ndim) 

return 
end 

C*************************************************************************** 
subroutine dfun(ndim,t,y,par,dfdp,jpar) 

c**************************************************************************** 

partial derivatives wrt. parameters of interest 
implicit none 
real*8 y(ndim),par(1),dfdp(l),t 
integer ndim,jpar 
return 
end 

C*********************************************************************** 

c this subroutine computes the jacobian 
c of the vectorfield 
c*********************************************************************** 

subroutine jfun(ndim,t,y,par,m1,mu,pd,nrpd) 
implicit none 
include "Include/parameters.h" 
integer ndim,ml,mu,nrpd 
real*8 y(neqmax),pd(neqmax,neqmax),par(nparmax),t 
real*8 y1,y2,y3,y4,y5 
real*8 co,cb,cp,dfyi,dfyn 
integer offset,nh,i,j 
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include "Include/UNFOLD.h" 

nh = ndim/3 
c  jacobian of the vectorfield 

do i=1,ndim 
do j=1,ndim 

pd(i,j)=0. 
enddo 

enddo 
*            dCB partial derivatives 

do i =1, nh 
cb = y(i) 
co = y(i+nh) 
cp = y(i+2*nh) 
y1 	= epsilnB*cb 
y2 = epsilnO*co 
y3 	= 1. + y 1 + gamaB*y 1 *yl 
y4 = 1.+ y2 
y5 = epsilnB*(1.-gamaB*y1*y1) 
dfyi = (y5/y3/y3)*(y2/y4) 
dfyn = (y1/y3)*(epsilnO/y4/y4) 
if (i.gt.1) pd(i,i-1) = 1/porosity/dz 
pd(i,i) -1/porosity/dz-betaB*dfyi-beta 
pd(i, nh+i) = -betaB*dfyn 
pd(i,2*nh+i)= beta *psi*an*(cp**(an-1)) 

enddo 
*            dCO partial derivatives 

offset = nh 
do i = 1, nh 

cb = y(i) 
co = y(i+nh) 
cp = y(i+2*nh) 
y 1 	= epsilnB*cb 
y2 = epsilnO*co 
y3 	= 1. + y1 + gamaB*y1*yl 
y4 = 1.+ y2 
y5 	= epsilnB*(1.-gamaB*y1*y1) 
dfyi = (y5/y3/y3)*(y2/y4) 
dfyn = (y1/y3)*(epsilnO/y4/y4) 
pd(offset+i,i) = -betaO*dfyi 
pd(offset+i, offset+i) = -1/porosity/dz-betaO*dfyn 
if (i.gt.1) pd(offset+i,offset+i-1) = 1/porosity/dz 

enddo 
*           dCp partial derivatives 

offset = 2*nh 
do i= 1, nh 

cb = y(i) 
pd (offset+i,i) 	= beta 
pd (offset+i,offset+i) 	= -beta*psi*an*(cb**(an-1)) 

enddo 
return 
end 
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finddelta.f 

subroutine FindDelta(avcg,delta,effectB,effectO) 
implicit none 

real*8 avcg,delta,effectB,effectO 

delta = 1.513*avcg*1 e3+33.35 
effectB= 0.031*avcg*1e3+ 0.19 

*        if (avcg.eq.0) then 
*                   delta = 20 

*                   effectB = 0.2 
*        else 

*                   delta 	= 23.3061*(avcg**0.436968) 
*                   effectB = 0.43163*(avcg**(-1.87141)) 

*        endif 
effectO = effectB 
return 
end 

Makefile.f 

SRC=main.f Model.f Print.f Init.f ReadParam.f Util.f FindDelta.f 
OBJ=main.o Model.o Print.o Init.o ReadParam.o Util.o FindDelta.o 
LIB=$(HOME)/lib/odessa.o 

#OPT=-extend_source -check_bounds -trapuv -g 
OPT=-extend_source -O2 
.SUFFIXES: .o .f 

.f.o: ; f77 -c $(OPT) $*.f -o $*.o 
ssm ix: $(OBJ) 

f77 $(OBJ) $(LIB) -o toluene 
clean: 

rm -f *.o 

Toluene.in 

0.1 	 Flowrate 
5.0 	 cg 
************Tolune****************** 

100 	 BO 	 [Kg] 
1.50 	 Miou i 	[1/h] 
I I .03e-3 	Ki 	 [Kg/m3] 
78.94e-3 	Kit 	 [Kg/m3] 
0.26e-3 	KO 	 [Kg/m3] 
1.03e-9 	DiW 	 [m2/s] 
2.41e-9 	DOW 	[m2/s] 
0.708 	 Yi 	 [Kg/Kg] 
0.341 	 YOi 	 [Kg/Kg] 
0.27 	 mi 
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34.4 	 mO 	 [-] 
275 	 C[o] 	 [g/m3} 
5.15e-3 	Volume 	[m3] 
1.82e-2 	Surface 	[m^2] _______________________________________ 

133.33 	As 	 [m-1] 
0.3 	 Alpha 	[-] 
6.04e-3 	Ka 	 [m/h] 
2.254e-5 	Kd 	 [g/g] 
0.3 	 Porosity [-] 
428 	 RhoP 	[kg/m3] 
0.96 	 1/n 	 [This is 1/n] 
10 	if 20 then use OLD initial profile below 0.625.last 

1e-6 	Error for ODESSA 
0.01 	dt 

Include 

parameters.h  

integer nhmax,ntmax 
parameter(ntmax=100) 
parameter(nhmax=20) 
integer neqmax,nparmax,liwmax,Irwmax,colstatus 
character *80 fileprev 

parameter(neqmax=3*nhmax,nparmax=20,lrwmax=5000,lrwmax=100) 
integer FRESH,OLD 
parameter (FRESH= I 0,OLD=20) 
real*8 TOLERR 
parameter (TOLERR=I.e-4) 
integer TRUE,FALSE 
parameter (TRU E=1,FALSE=0) 
real*8 zero 
parameter (zero=0.0) 
common/colstatus/co lstatus 
common/fileprev/fileprev 

odessa.h  

real*8 par(nparmax),y(neqmax,nparmax+ 1) 
real*8 atol(neqmax,nparmax+1),rtol(neqmax,nparmax+1) 
real*8 rwork(lrwmax) 
integer iwork(liwmax) 
integer neq(2),iopt(3) 
integer mf,itask,lrw,liw,itol 

operation.h  

* Concentrations 
real*8 cgB00,cgo00 
common/concen/cgB00,cgo00 
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dimensional.h 

* Kinetic Parameters 
real*8 KB,KBI,KO,miouB 
real*8 DOW,DBW 
real*8 YB,YOB 
real*8 b0 
common/kinetic I /KB,KBI,KO,miouB 
common/kinetic2/DOW,DBW 
common/kinetic3/YB,YOB 
common/kinetic4/b0 

* Henry's Parameters 
real*8 mB,mO 
common/henry/mB,m0 

* Volumetric Parameters 
real*8 volume,surface,volrate,restime,As,velocity 
common/volumetric/volume,surface,volrate,restime,As,velocity 

* Adsorption 
real*8 kapaa,kapad,alpha,rho 
cornmon/adsorp/kapaa,kapad,alpha,rho 

dimensionless.h 

real*8 epsilnB,epsilnO 
real*8 betaB,betaO 
real*8 psi,garnaB,porosity,beta 
real*8 dz,an 
common/diml/epsilnB,epsilnO,betaB,betaO 
common/dim2/beta,gamaB,psi,porosity,dz,an 
real*8 effectB,effectO,delta 
common/aux/effectB,effectO,delta 

system. h: 

integer iprnewton 
common/flowcontrol/iprnewton 

unfold.h 

real*8epsilnB,epsilnO,gamaB,betaB,betaO,beta,psi,porosity,dz,an 

beta 	= epsilnB    = par(1) 
epsilnO    = par(2) 
gamaB     = par(3)     

betaB 	= par(4) betaO       = par(5) beta          = par(6) 
psi 	= par(7) 
porosity   = par(8) 
dz 	= par(9) 
an 	= par(10) 
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APPENDIX E 

COMPUTER CODE FOR SOLVING THE TRANSIENT 
BIOFILTRATION MODEL FOR A SINGLE VOC 
WITH A VARYING INLET CONCENTRATION 
(only portions differing from Appendix D shown)  
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main.f  

************************************************************ 

c 	Purpose : 	"Solution Of The Transient Biofiltration 
c 	 Model For A Single VOC, 
c 	 With A Varying Inlet Concentration." c 

c   Method : 	ODESSA-Ordinary Differential Equation 
c 	 Solver With Explicit Sensitivity Analysis; 
c 	 Stiff Mode When User Supplied Jacobian 
c 	 Option Is Used 

c c 

c Language : FORTRAN 

c 

c Written By : Dimitrios Tsangaris, Newark, NJ on March 28,1995 

c 

c Updated By : Michael Cohen, Newark, NJ in August 1995 c

************************************************************* 

 

implicit none 
include "Include/parameters.h" 
external fun,dfun,jfun 
include "Include/odessa.h" • 
real*8 cg(0:nhmax,0:ntmax) 
real*8 co(O:nhmax,0:ntmax) 
real*8 cp(O:nhmax,0:ntmax) 
real*8 time(0:ntmax), ht(O:nhmax) 
include "Include/operation.h" 
include "Include/dimensional.h" 
real*8 dt,t,tout,err,tau,avcgb 
integer istate,istatus,i 
integer ndim,npar,nt,nh,it,ih,tlast 

* 
• Read the system parameters, and initialize the concentrations 

call Reset(rwork,iwork,itask,istate,iopt,mf) 
call today() 
call ReadParam(istatus,ndim,npar,nh,nt,dt,err,tau) 
call InitConditions(istatus,nh,nt,cg,co,cp,ht,dt,time,y) 
call InitOdessa(neq,ndim,npar, 

iopt,itask,Irw,liw,mf, itol,rtok,atol,err) 
call PrintDimensional() 
call PrintDimensionless() 
call PrintOne(cg,co,cp,time,ht,nh,zero) 
call C2Y(cg,co,cp,y,zero,nh) 
do it = 1,ntmax 

T = time(it-1) 
tout = time(it) 

• Find the average concentration for this time instance 
• The formula used is cg,B00=mB*Clo*exp(-Qg*mB*time)/VL) 
c 	to get time from time(it) it is necessary to divide 
c 	by restime, so replace Qg with volume (and divide 
c 	by dilution, as only Qg, not flowrate is leaving soil) 



cgB00 = mB*Clo*exp(-(volume/dilution) 
*mB*time(it)/Vplume) 

cgB00 = cgB00/dilution 
inlet(it) = cgB00 
cgB00 = cgB00* I .e-3 
avcgb = cg(nh/2,it- I )*cgB00 
if (it.eq.1) avcgb=0.0 
call Update(avcgB) 
if (it.lt(ntmax-20)) goto 888 
call PrintDimensionless() 

888 	 continue 
call Pack(par) 
istate = TRUE 
CALL ODESSA(fun,dfun,NEQ,Y,PAR,T,TOUT,ITOL,RTOL,ATOL, 

&                 ITASK,ISTATE, IOPT,RWORK,LRW,IWORK,LIW,jfun,MF) 
if(istate.LT.0) then 

write(6,*) istate= ',istate 
stop 

endif 
call Y2C(cg,co,cp,y,it,nh) 
if (it.lt.(ntmax-20)) goto 999 

call PrintOne(cg,co,cp,time,ht,nh,it) 
999 	 continue 

call CheckSteadyState(istatus,cg,co,cp,nh,it,nt,tau,tout) 
if (istatus.eq.TRUE) then 

tlast = it 
goto 10 

endif 
enddo 

c 	Output your results 
10 	continue 

call PrintSum(cg,co,cp,time,ht,nh,tlast,tau) 
stop 
end 

print.f (partial)  

C********************************************************** 

 

C print concentration changes along the column time 
C********************************************************** 

subroutine PrintOne(cg,co,cp,time,ht,nh,it) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
real*8 cg(0:nhmax,0:ntmax),co(0:nhmax,0:ntmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:ntmax),ht(0:nhmax) 
integer nh,it,ih 

write (6,84) 
84 	format(//,5x,'Solution of the Transient Model',//) 

write (6,86) time(it),cgBOO*1000 
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86 	format (/, 10x, 'At Time = ', f14.3,3x,'Cg = ' f10.3,/) 
write (6,89) 

89 	format(//,8x,'h/H',9x,'cg',13x,'co',13x,'cp',//) 
do ih = 0, nh 

write (6,96) ht(ih), cg(ih,it)*cgB00*1000, 
&                co(ih,it)*cgo00*1000, cp(ih,it) 

96 	 format (5x, f7.3,3x,f10.4,5x,f10.4,5x,f10.4) 
enddo 
return 
end 

C********************************************************** 

C  print concentration changes along the column time 
C********************************************************** 

subroutine PrintSum(cg,co,cp,time,ht,nh,nt,tau) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
real*8 cg(0:nhmax,0:ntmax),co(0:nhmax,0:ntmax) 
real*8 cp(0:nhmax,0:ntmax) 
real*8 time(0:ntmax),ht(0:nhmax),tau 
integer nh,it,ih,nt 

write (6,84) 
84 	format(//,5x,'Summary Results for the Transient Model',//) 

write (6,89) 
89 	format(//,8x,'time(h)',6x,'cgin',9x,'cg (1/3)',9x,'cg',//) 

do it = 0, ntmax 
write (6,96) time(it)*tau*24,inlet(it), 

&                            cg(nh/3,it)*inlet(it),cg(nh,it)*inlet(it) 
96 	 format (5x,f8.3,3x,f10.4,5x,f10.4,5x,f10.4) 

enddo 
write(6,*) 
return 
end 

readparam.f 

 

subroutine ReadParam(istatus,ndim,npar,nh,nt,dt,err,tau) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
include "Include/dimensional.h" 
include "Include/dimensionless.h" 
include "Include/system.h" 
integer istatus,nh,nt,ndim,npar,column 
real*8 dt,err,tau,flowrate 
character *80 filename 
integer unfn 
unfn=7 
filename = 'Toluene.in' 

*        ResTime must be entered in Minutes  
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*  *          cgB00 must be entered in g/m3 
* read(5,*) cgb00,restime 

read(5,'(a)')filename 
open (unit=unfn,file=filename,status='old') 
read(unfn,*) flowrate 
read(unfn,*) Clo 
read(unfn,*) Vplume 
read(unfn,*) dilution 
read(unfn,*) * 

*          Now read from the standard input the operating conditions 
* System parameters 

iprnewton = TRUE 
iprnewton = FALSE 

* 

ODESSA parameters 
ndim = neqmax 
npar= nparmax 
nt = ntmax 
nh = nhmax 

*          Biofilm parameter ( in kg/m3) 
read(unfn,*)b0 

*          Kinetic constants for Ethanol and Butanol 
read(unfn,*) miouB 
miouB = miouB/3600 
read(unfn,*) KB 
read(unfn,*) KBI 
read(unfn,*) KO 

*          Diffucivities 
read(unfn,*) DBW 
read(unfn,*) DOW 

*          Yield coefficients 
read(unfn,*) YB 
read(unfn,*) YOB 

*         Henry's constants 
read(unfn,*) mB 
read(unfn,*) mO 

*          Entrance concentrations 
cgB00 = mB*Clo 
cgB00 = cgB00/dilution 
inlet(0) = cgB00 
cgB00 = cgB00 * 1.e-3 
read(unfn,*) cgo00 
cgo00 = cgO00 * 1.e-3 

*          Volumetric properties 
read(unfn,*) Volume 
read(unfn,*) Surface 
flowrate = flowrate/3600 
restime = volume/flowrate 
velocity = I ./restime 
tau = restime/24.0/3600 

*          Adsorption parameters 
read(unfn,*) 
read(unfn,*) As 
read(unfn,*) alpha  
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read(unfn,*) kapaA 
read(unfn,*) kapad 
read(unfn,*) porosity 
read(unfn,*) rho 
read(unfn,*) an 
kapaa= kapaa/3600. 

* Numerical parameters 
colstatus= FRESH 
read(unfn,*) column 
if (column.eq.20) colstatus = OLD 
read(unfn,'(a)') fileprev  
read(unfn,*) err 

* Now calculate some Dimensionless quantities using the above values 
gamaB = KB/KB1 
epsilnB = cgB00/(mB*KB) 
epsilnO = cgO00/(mO*KO) 

*  Now calculate some Dimensionless quantities using the above values 
istatus= FRESH 
dt = 0.01 
dz = 1.0/float(nh) 
call Update(zero) 
close (unfn) 
return 
end 

************************************************************************** 

*          The subroutine calculates some dimensionless units that depend on 
*          the parameter 'delta'. Delta, is the depth of the biofilm 

************************************************************************** 

subroutine Update(cgasB) 
implicit none 
include "Include/parameters.h" 
include "Include/operation.h" 
include "Include/dimensional.h" 
include "Include/dimensionless.h" 
real*8 xv,cgasB 
real*8 deltaMt,const 

* Now recalculate some Dimensionless quantities using the new values 
* of cgB00 

epsilnB = cgB00/(mB*KB) 
epsilnO = cgO00/(mO*KO) 
call FindDelta(cgasB,delta,effectB,effectO) 

* A correction is needed because the empirical formula Cjp = Kd (Cj*)^n holds 
*          only when cj is in [g j / m3 air]. Then, const= g/m3->Kgr/m3. 
*          After this correction, cstar_reduced = psi*Cjp_reduced 

const = 1.e-3 
deltaMt = delta* 1.e-6 
xv = b0 
betaB=effectB*(alpha*As)*deltaMt*xv*restime*miouB/(YB *cgB00*porosity) 
betaO=effectO*(alpha*As)*deltaMt*xv*restime*miouB/(YOB*cgO00*porosity) 
beta = kapaa*(1-alpha)*As*restime/porosity 
psi = (const/cgB00)*(porosity*cgB00/((1-porosity)*rho*Kapad))**an 
return 
end  
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Toluene.in  

51 	 Flowrate 
100 	 Clo 
1000 	Volume of Plume 
3 	 dilution 
************Toluene************** 

100 	 BO 	 [Kg] 
1.50 	 Miou i 	[1/h] 
11.03e-3 	Ki 	 [Kg/m3] 
78.94e-3 	KiI 	 [Kg/m3] 
0.26e-3 	KO 	 [Kg/m3] 
1.03e-9 	DiW 	[m2/s] 
2.41e-9 	DOW 	[m2/s] 
0.708 	Yi 	 [Kg/Kg] 
0.341 	YOi 	 [Kg/K2.] 
0.27 	 mi 	 [-] 
34.4 	 mO 	 [-] 
275 	 C[o] 	 [g/m3] 
18.70 	Volume 	[m3] 
1.82e-2 	Surface 	[m^2] ___________________________ 

133.33 	As 	 [m-1] 
0.3 	 Alpha 	

[-] 

 
6.04e-3 	Ka 	 [m/h] 
2.254e-5 	Kd 	 [g/g] 
0.3 	 Porosity 	[-] 
428 	 RhoP 	[kg/m3] 
0.96 	 1/n                    [This is 1/n] 
10 	 If 20 use OLD initial profile below 
42.last 
Ie-6 	 Error for ODESSA 

include (partial) 

operation.h  

* Concentrations 
real*8 cgB00,cgo00,Clo,Vplume,dilution 
real*8 inlet(0:ntmax) 
common/concen/cgB00,cgo00,Clo,Vplume,dilution,inlet 
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