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ABSTRACT

A FULL WAVE METHOD FOR ROUGH SURFACE
SCATTERING USING FICTITIOUS CURRENT DISTRIBUTIONS

by
Anthony A. Triolo

Rough surface scattering is a current topic of interest in many diverse fields.

But, despite its importance, the two most widely used solution methods, the

Kirchhoff and first order perturbation methods, are valid only for a restricted range

of surface types. There is a large range of surface statistics for which neither of

these theories is valid. There are purely numerical solutions to the problem, i.e.,

the integral equation technique and FDTD method, but these methods require a

prohibitively large amount of computer time and storage space for use in practical

applications. A full wave method has been introduced by E. Bahar which agrees with

the Kirchhoff method in its range of validity, but does not bridge the gap between

the later two standard theories and does not provide understanding of the physical

processes involved in rough surface scattering. Consequently, it has been a center of

controversy since modifications made to improve the method seem arbitrary and are

without mathematical or physical justification.

The method presented here is a new full wave method which uses equivalent

currents to provide insight into the physical scattering processes. This full wave

method analytically reduces to the two standard theories in their respective regions

of validity and bridges the gap between the two, which was shown by comparison to

the integral equation method. The results presented here are for statistically rough

surfaces with Gaussian distributed heights and slopes. A Monte Carlo procedure is

used to generate the radar cross section data for this new full wave method.
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CHAPTER 1

INTRODUCTION

Rough surface scattering has been the subject of scientific investigation in many

diverse research areas for many decades. This is because all real surfaces are rough,

and it is important to determine exactly how and to what extent wave propagation

is affected by surface roughness. For example, in line-of-sight communication and

cellular communication in particular, the electromagnetic field at the receiver consists

of a directly received wave and a wave scattered by the earth's surface. For a smooth

earth, the scattered wave can be accurately predicted. However, along the path

between the transmitter and receiver a rough surface of dimensions comparable to a

wavelength is often encountered. An accurate theory of scattering by rough surfaces

could be used to predict and compensate for the scattered field to avoid signal fading.

If the communication path is above the sea surface, the surface will be rough and

time varying, causing the type of fading to change with the character of the water

waves.

Another use for rough surface scattering is that of predicting "sea clutter" in

radar return. This "sea clutter" is caused by rapidly fluctuating reflections from

facets of the surface of the sea and can seriously affect target recognition above a

water surface, sometimes totally obscuring the target. A theory that is accurate over

a wide range of frequencies and statistical surface parameters is used to formulate

effective measures for reducing interference in radar return from the sea. In the area

of medical imaging, rough interfaces between tissues and organs affect propagation

and scattering characteristics of a wave. To get an accurate image of internal organs,

a theory of scattering from rough interfaces must be used to properly analyze the

scattering data. In antenna design, the roughness of the reflector in reflector antennas

can lead to performance degradation. Compensating for this effect can result in
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improved efficiency and hence lower power requirements for reflector antennas. In

radar astronomy, the characteristics of reflected radar pulses from planetary surfaces

is used to deduce the roughness of the surface. In acoustics, rough surface scattering is

used in many ways, some of which include sonar detection, ultrasonic non-destructive

testing, and sound engineering for room acoustics. Rough surface scattering is also

very important for remote sensing of the environment. For example, to determine the

depth and extent of an oil deposit, the theory of layered media with random interfaces

can be employed to analyze radar or sonar return data. Also, the thickness of an oil

slick on the ocean surface can be determined precisely using satellite data and an

accurate theory of rough surface scattering.

Despite all the applications and interest in rough surface scattering, the two

methods most widely used are of restricted applicability. These two methods are

the small-perturbation method, which is valid for small heights and slopes, and the

physical optics (Kirchhoff) method, which is valid for high frequency, large radii

of curvature, and small slope. The so called "full-wave" methods have received

much attention as of late due to the efforts of E. Bahar. Pull wave methods

are those methods where the fields are taken to satisfy Maxwell's equations and

the exact boundary conditions by expanding the fields in terms of a basis that

includes all wave constituents. The full wave method of E. Bahar [1] uses a

local basis function expansion to convert Maxwell's equations into the generalized

telegraphist's equations. He then solves this system of coupled integro-differential

equations using the method of successive approximations, taking the surface slope as

a small parameter. This method is not easily explained in terms of physical scattering

processes, has no means of providing an internal check of accuracy, and provides

no mathematically justifiable procedure for extension to the full three dimensional

case. It has also been the center of controversy since it was introduced [2]. Recently,

RE. Collin [3] furnished a mathematical explanation of the Bahar's method, but did
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not provide a way to extend the method to include higher order scattering terms.

Without such terms, Bahar's method does not include a mechanism to asses its

accuracy. To the contrary, the full wave method presented here provides physical

insight into the rough surface scattering processes, and does provide a quantitative

measure of its accuracy. The new theory is shown to reduce to the first order pertur-

bation and physical optics (Kirchhoff) approximations in their respective regions

of validity. It has also been numerically applied to surfaces with Gaussian height

and slope variation for which it is shown to be more accurate than the first order

perturbation, Kirchhoff, and Bahar's full wave methods in regions where none of

these methods are considered valid.

In Chapter 2, the new full-wave method is formulated in general and used to

treat the specific cases of TE and TM polarization in Sections 2.1 and 2.2, respec-

tively. The method consists of initially postulating the total field above the rough

surface, called the primary or zero-order field approximation. The primary field is

chosen to satisfy the boundary conditions, but does not satisfy Maxwell's source-free

equations. To be a field solution, the primary field is forced to satisfy Maxwell's

equations with fictitious volume current sources. These zero-order fictitious volume

current sources compensate for the difference, or error, between the true total field

and the primary field, i.e., the initial approximate solution. Since the fictitious

volume current sources are not physically present in the original problem, they must

be eliminated. This is accomplished by introducing fictitious first-order sheet current

densities to fill the region above the rough surface, which is occupied by the zero-order

fictitious volume current sources. The sheet current densities cancel the fictitious

volume current, sources. These sheet current densities excite first-order fields which

consist of a superposition of modal fields that do not satisfy the source free Maxwell's

equations. They are forced to satisfy Maxwell's equations with first-order fictitious

volume current sources. These volume current sources must be small in order for the
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first-order field, to be a good approximation to the true solution. The formulation

will be performed explicitly for the first-order approximation and the general term

of the series solution will be presented as a multidimensional integral representation.

A procedure for finding a quantitative measure of the accuracy of this method using

current densities induced in the conducting surface is presented in Chapter 3.

Comparison to other standard methods, such as the Kirchhoff method, first-

order perturbation method, and Bahar's full wave method are made in Chapters 4

and 5. The comparisons are made for field expressions using a deterministic surface

profile in Chapter 4. These expressions are derived in Appendices B, C and D.

Statistical analysis is then performed on all these field expressions in Chapter 5,

using results obtained in Appendix A, and the resulting expressions are qualitatively

compared. The statistical expressions (formal averages) for these fields due to a

rough surface with Gaussian height and slope profile are evaluated and compared

in Chapter 6 by plotting the new method versus the other methods. Data for plots

of the new method were produced using Monte Carlo method. All methods are

compared, as done in the literature, to a numerical evaluation of an integral equation

using the Monte Carlo method. It is shown through these comparisons that the full

wave method presented here produces results that agree with the integral equation

results extremely well and much more closely than results form any of the previously

mentioned methods for all parameter ranges.



CHAPTER 2

FORMULATION

The two-dimensional geometry under consideration is that of an infinite perfect

conductor with a rough surface segment of length 2L embedded in air, as shown

in Figure 2.1. The rough surface in the region — L < z < L, —oo <y < oo, is

Figure 2.1 The physical geometry under consideration.

taken to be an arbitrary deterministic surface x = D(z) with D(+L) = D'(+L)

0 throughout the general formulation'. A plane wave is assumed incident upon

the surface. The total field above the perfect conductor must satisfy the time-

harmonic source-free Maxwell's equations with time dependence ejωt assumed and

suppressed:

After the total field expression is obtained, statistical analysis is performed in Chapter
5.

5
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The total wave field also satisfies the boundary conditions that the electric field

tangential to the surface is zero and that the magnetic field normal to the surface is

zero, i.e.,

It is a direct consequence of Maxwell's equations that if one of the two boundary

conditions in (2.2a,b) is satisfied then the other is automatically satisfied.

An initial postulate for the total field solution above the metal surface, called

the primary field or the zero-order field, is chosen to include an incident plane

wave plus a plane wave that is reflected from a flat perfectly conducting surface of

infinite extent adjusted to the local elevation. The primary field is chosen to satisfy

the boundary conditions (2.2a,b) but does not satisfy the source-free Maxwell's

equations. However, the field is chosen to satisfy Maxwell's equations with fictitious

electric and magnetic current densities J and M, respectively, given by

The fictitious primary volume current densities are imagined to be present in the

geometry to support the primary field. Since these current distributions do not

physically exist, they must be eliminated by postulating the presence of other current

distributions of equal magnitude but 180° out of phase with the primary volume

current densities. This is accomplished by introducing sheets of current in planes

z = z 1 , — L <z1 <L which extend to + infinity in the y direction and from D(z) to

oo in the x direction. The superposition of these first-order current sheets are used
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to cancel the primary volume current densities in the region where they are assumed

to exist, namely at points

The first-order sheet currents that are introduced at z = z 1 radiate a wave

constituent which travels to the right when z > z1 and a wave constituent that

travels to the left when z < z1 . A superposition of such wave constituents, called the

first-order field, is a correction to the primary field and is composed of orthogonal

modes, each with spatial wavenumber u 1 in the x direction and pi in the z direction,

see Figure 2.2. The wavenumber u 1 takes on values between 0 and co; 'al and

Each mode of the first-order field must satisfy the source-free Maxwell's equations

Figure 2.2 Field radiated by sheet current.

plus boundary conditions to be a solution to the problem. However, Maxwell's

equations can only be satisfied by a mode if fictitious current densities are introduced

again; these are designated first-order volume current densities. If the first-order

volume current densities are "small", the total field will be approximately equal to

the primary plus first-order fields.

The procedure above can easily be generalized to include higher order field

contributions which may improve the accuracy of the solution. For each mode cone-

2 This notation means
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sponding to a particular value of u1, there will be a fictitious first-order volume

current density remaining in the region where the primary volume current densities

had existed. This first-order volume current density can be cancelled by introducing

second-order sheet currents in the plane z = z 2 , 1z2 1 < L, D(z) < x < oo, of equal

magnitude but 180° out of phase with the first-order volume current density. These

second-order sheet currents cancel the first-order volume current densities corre-

sponding to u 1 and require another set of modes with x directed wavenumbers u2 .

This implies that the resulting field will be a triple superposition. In other words,

there will be a superposition of modes summing over u 2 for each u1 . There will

also be a superposition of modes summing over u 1 for each position z = z2 . All of

the previous terms are then superimposed for all z 2 , 1z2 1 < L. It should be kept in

mind that z1 , z2 , u 1 and u2 are continuous variables, and the summations actually

represent integrations. The field radiated by the second-order sheet currents require

additional fictitious volume current densities (denoted as being second-order) in order

to satisfy Maxwell's equations. The entire process can be repeated to obtain higher

order terms in the scattered field. The procedure is applied to the specific cases of

TE and TM wave scattering from a rough surface in the following two sections.

2.1 The TE Case

In TE case the only non-zero components of the electric and magnetic fields are E y ,

IIx and H,, as shown in Figure 2.3. 	 Maxwell's equations with sources reduce

to



Figure 2.3 Geometry for TE case.

The boundary conditions become

where the prime denotes differentiation with respect to z. The total electric field is

written as the sum of incident and scattered fields:

The total field must satisfy Maxwell's source-free equations and boundary conditions

to be the solution to the scattering problem.

The total electric field is initially assumed to have the form

9
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which will be referred to as the primary or zero-order solution. Substituting (2.7)

into (2.4a,b) with Mx = M2 = 0 give the magnetic field components as

The primary field, satisfies the boundary

conditions (2.5a) and (2.5b) and is composed of an incident plane wave and a modified

reflected plane wave. The modified reflected plane wave is equivalent to an incident

plane wave reflected from a flat, perfectly conducting surface adjusted to the local

elevation D. The remaining source-free Maxwell equation (i.e., (2.4c) with 4 = 0)

is not satisfied by the primary field (2.7)—(2.9). The primary field does however

satisfy Maxwell's equations (2.4a,b,c) with a single source term, namely, a fictitious

electric current density JPy called the primary volume current density; it is found by

substituting (2.7)—(2.9) into (2.4c) to be

Note that J71; is zero in the region zJ > L. Since this primary volume current density

is not physically present in the original scattering problem, it may be cancelled in

a plane z = z1 , -oo < y < co and D(zi ) < x < co by introducing a superposition

of first-order sheet current densities of equal magnitude and 180° phase difference.

By allowing z ] to vary over the region occupied by J Py, namely 1z1 1 < L, D(z1 ) <

x < oo the volume current density is removed. However, the sheet current densities

produce an infinite superposition of orthogonal modes with x-directed wavenumbers

u 1 ranging from 0 to oo. Each mode, with a particular wavenumber u 1 and unknown

amplitude factor, satisfies the boundary conditions (2.5a,b) and Maxwell's equations

with XI = 0 and J = yJ(1 )y,and is expressed in the same way as the primary field.

Hence, a mode propagating to the right in the region z > z1 is postulated to be given
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by

and propagating to the left in the region z < z1 is assumed to be given by

By introducing the above modes, it is implicitly being assumed that the final

representation of the scattered field will be an infinite superposition of modes over

these wavenumbers u 1 . Continuity of E(1)y across z = z 1 implies

is continuous across z = z 1 . The discontinuity in fix is used to

determine the first-order sheet current density

which results in

is the modal amplitude for each u 1 . To cancel

the primary volume current at a specific point (x, z1 ), a superposition of all the sheet

currents at this point is used
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Recall that an infinite number of sheet currents superimposed over u 1 is required in

order to obtain a modal representation of the scattered field. Substituting (2.10) and

(2.14) into (2.15), multiplying by (2/7r) sin u1 (x — D1), integrating with respect to x

from D 1 to co and using orthogonality (see Appendix E) yields

The first-order field is obtained by superimposing the modes given in (2.11a,b,c)

and/or (2.12a,b,c) with modal amplitude A( 1 ) specified in (2.16). The superposition

is a double integral which extends first over all wavenumbers u 1 E [0, co) and then

over the physical space z1 E [— L, L]. The field expression depends on the location

of the observation point relative to the spatial location of the sheet currents. Thus,

for z > L (region 1)
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where, as before, D = D(z). The parameter u0 is suppressed in the above expression,

and is suppressed from this point forward.

To show that the field depends only on the surface height D and the square of

the surface slope /Y 2 it is necessary to obtain a convergent integral representation

for the field. This is accomplished by using the path deformation in Figure 2.4 and

Cauchy's thecrem. It can be shown that

where ((u 1 ) is given in (2.17) and the original integration over the real u 1-axis, which

is the same as integrating over the path segments F1 and r2 with only the principal

part of - (u 1,) in the integrand, is now equivalent to the integral of the principal part

of ((u1 ) over the deformed path Q. Equation (2.18), for example, is now written

Figure 2.4 The integration path in the complex u 1 plane.
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There is a branch point at u 1 = k0 (not shown in Figure 2.4) and the Riemann

sheet on which the path lies is chosen such that Im (A) < 0 when u 1 > k0 , which

ensures that the above integrand decays for large u 1 , i.e., the integral is convergent.

The raised path avoids the singularity at u 1 = u0 , ensures that it is permissible to

interchange the order of integration and leads to the following integration by parts

of the integral over z 1 :

where it has been assumed that D(±L) D'(+L) = 0. Using this identity produces

an expression for the first-order field in terms of only D and D'2

The far field is obtained by using the stationary phase approximation [4]. For

the scattering geometry shown in Figure 2.5, the following change of variables is

introduced



Figure 2.5 Scattering geometry for far field evaluation.

which produces the expression

where

The u1 integration is terminated at k0 to include only propagating modes. The w

integration is evaluated using the stationary phase approximation (see Appendix E).

If the u 1 integration is not terminated at k0 then the w integration is evaluated along

a path in the complex plane and the integration can be performed using the method

of steepest descent [4]. The result is the same in either case, and is as follows (only

the second term in the square bracket in (2.26) contributes to the integral):

15

where G0 is the 2 — D asymptotic Green's function



the constant
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is the amplitude of the incident field (see (2.7))

and the radar cross section can be obtained by taking the magnitude squared of the

scatter pattern, which is

The same procedure is performed for the case z < — L (-7r/2 < < 0) which yields

the same expression. Since the rough surface is of finite extent, the scattering pattern

expression in (2.31) remains valid for —7r/2 < < 7/2.

Although the first-order field satisfies the boundary conditions (2.5a,b), it does

not satisfy Maxwell's source-free equations; hence, it is forced to satisfy Maxwell's

(1)equations with a fictitious electric current density 4 which is:

where sgn(z z 1 ) = +1 for z Zi. Since the first-order fictitious volume current

density is not physically present in the original scattering problem, it can be cancelled

by introducing a superposition of second-order fictitious sheet current densities. This

can mathematically be stated by the following relation

(refer to (2.15) for a similar condition which was imposed to eliminate the primary

volume current density JyP(x, z1 ; u0)). Note that in (2.33) u 0 is suppressed. In (2.33),
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(1) isJ(1)yi obtained from (2.32) in the planez= z2. To eliminate the volume current

density lying in this plane requires postulating a superposition of second-order sheet

current densities g), 0 < u2 < co. In order to find an expression for the sheet

current densities 42) , the mode structure is chosen to be identical to the mode

structure introduced in (2.11a,b,c) and (2.12a,b,c) but with u 1 replaced by u2 and z 1

42) (I)replaced by z2 ; the dependence on x, z1 , and u 1 in J(2)sycomes fromj(1)y using (2.32)

in (2.33). Recall that an infinite superposition of sheet current densities at z = z 2 is

needed to generate the modal representation for the scattered field and hence is used

to eliminate the volume current distribution at z = z 2 . The modal representation for

the second-order scattered field is obtained following the same procedure as was done

before to get the first-order scattered field. For z > L (region 1), the second-order

scattered field is found to be

and for z < —L (region 3),
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For the second-order modal fields to satisfy Maxwell's equations, a second-order

volume current density is required. This can then be cancelled by a third order sheet

current, and so on. The general expression for the condition that the "n -I- 1" order

sheet current densities cancel the "n" order volume current density at (x, zn+1 ) is

written as

and J (n+1) is of the same form as J(1)sy, but with all "1" replaced by "n + 1". The

modal amplitude A (n ) can be written either as a recurrence relation given by

where
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and ζ* (un+ 1 ; un ) is the complex conjugate of (2.17), or in the explicit form expressed

as

The "n" order field radiated by the "n" order sheet current takes the form for z > L

(region 1)

and for z < —L (region 3)
L	 L 	 co

The N-order total field approximation is given by

where i = 1, 2, 3.



where, as before, The boundary conditions become

20

2.2 The TM Case

For the TM case, the only non-zero components of the electric and magnetic fields

are Hy , Es , and Ez , as shown in Figure 2.6. 	 Maxwell's time-harmonic equations

Figure 2.6 Geometry for TM case.

with source terms reduce to

where the prime denotes differentiation with respect to z. Since the magnetic field

has no x or z component, the first boundary condition (2.47a) is trivially satisfied;

therefore, the second (2.47b) must be used. The total magnetic field is written as

the sum of an incident and scattered field, i.e.,
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The total field must satisfy Maxwell's source free equations, i.e., (2.46a,b,c) with

Jx= Jz = My =0, and the boundary condition (2.47b) to be the solution to the

scattering problem. From this point forward, field quantities without superscripts

will represent total fields.

Instead of writing the total field as an incident and scattered field as in (2.48),

it is written as a primary field plus higher order field terms, where the primary field

is the zero-order solution for the total field, i.e.,

The higher order components are expressed in terms of partial fields:

where F represents any of the three field components Hy , Ex, Ez; un and -in

are vectors composed of the variables u 1 , 	 , u,„ and z1 , 	 , zn , respectively; the

integrals over 	 and 	 are

A primary field is postulated, which satisfies the flat surface boundary condition,

(2.47b) with D' = 0; thus,

Taking J2, = J = 0 in Maxwell's equations (2.46a,b) gives the remaining field

components
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and

The forms for the higher order terms with JP ) = JP ) = 0 are assumed as follows for

where the variables [u 1 , 	 , un ] and [z i , 	 , zn ] are suppressed in the amplitude

terms A±(n). These higher order terms also satisfy only the flat surface boundary

condition and not the rough surface boundary condition. In the strict sense, these

terms cannot be called modes since they do not satisfy the rough surface boundary

conditions. It will be shown, however, that these terms can be forced to satisfy the

boundary conditions and, hence, will be modes.

Br ) and 	 are continuous across z = zn , but E112) is discontinuous due to the

(n)postulation of a fictitious sheet current density M(n)sy at zn . The boundary conditions
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are explicitly given byat z =

The boundary condition (2.57a) makes A+(n) = A-(n) = AN, and the condition

(2.57b) specifies the magnetic sheet current density as

The condition for all the fictitious sheet current densities to cancel all the

fictitious volume current densities is

where
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Substituting (2.60) and (2.62) into (2.59) results in the following integral equation

for the order n

where the variables [zi, 	 , z,, 	 , un ; u®] have been suppressed, and n = 0 refers

to the primary field. Factoring out the integration over u in (2.62) and substituting

into (2.59) gives

and u® has been suppressed. Since the modal sheet currents densities in (2.65) are

all proportional to cos u (x — D), the integration over u in (2.64) can be removed

using the orthogonality properties of the cosine function. Hence, multiplying (2.64)

by 2/7r cos u'(x — D) and integrating with respect to x from D to oo gives

Referring to Maxwell's equation (2.46c), My is written as
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and the left side of (2.66) now becomes

Employing the relations

and integration by parts, (2.68) becomes

The last term in (2.71) is recognized as the boundary condition for the tangential

electric field (2.47b). The boundary term is not zero for the field as represented by

(2.49) and (2.50); it is equal to the magnetic current induced on the metal surface.

This induced magnetic surface current can be forced to be zero by adding a fictitious

magnetic surface current 180° out of phase with the induced magnetic surface current.

This fictitious magnetic surface current also needs to be cancelled by the sheet current

density. The fictitious magnetic surface current density is absorbed into the volume

current density in order to be cancelled by the sheet current densities. This is

accomplished by representing the fictitious surface current density using the delta
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function, i.e., (2.71) becomes

where the effective fictitious current densities are

This procedure effectively forces the entire field in (2.49) and (2.50), and hence, each

mode of the expansion to satisfy the boundary conditions. Effectively, this means

that the field is expanded into the sum of primary field and higher order terms as in

(2.49) and (2.50), such that each effective fictitious volume current density is canceled

by the next higher order sheet current density. The primary volume current density

is cancelled as follows

and since the fictitious surface current density is included in the volume current

density, both are cancelled by the first-order sheet current density. After substituting

the primary field expressions (2.52)—(2.54) into (2.74), this integral equation is solved

by using the orthogonality properties of sines and cosines (E.6)—(E.8). If this is done,

the modal amplitude becomes

where



and z and u have been replaced by z 1 and v i , respectively. The next higher order

modal amplitude is found by taking

00

and solving for A( 2) which is included in 42) . The process can be generalized to

order n.

The order "n" field is generated by superimposing the partial fields (2.55a,b,c)

and/or (2.56a,b,c) over all u1, , u m and all z1, , zn . The field must be divided

into three regions as in the TE case. Hence, for z > L (region 1)
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and for z < — L (region 3)

The total field in each region is expressed in terms of its partial fields,

where i = 1, 2, 3.

Consider only the first-order field in region 1 which is written as a sum of two

pieces

where,
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The integral over

L

in which will be called

L

is split into two pieces:

The first integral can be re-expressed by performing an integration by parts recog-

nizing that

When the integration by parts is done, a term arises which is due to the endpoints of

the integration region. This term can be rewritten as an integral in order to combine

it with the other integrated terms by using the relation

The integral over z 1 in Hy(1)1b, which will be called /b , has already been trans-

formed by using integration by parts for the TE case in (2.23) and is rewritten here

for convenience

Because the term (u0 — u 1 ) multiplies all of (2.85b), the delta function term can be

dropped. Hence, the first-order field is expressed in terms of
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or

where

(2.93)

The integral in (2.92) is evaluated asymptotically to obtain the far field, as was done

for the TE case, using the change of variables

which refer to Figure 2.5, and (E.9)—(E.11) with le equal to zero, which produces:

where G0 is the 2 — D asymptotic Green's function defined in (2.29), the amplitude

constant from the incident field part of (2.52) is

and the scatter pattern becomes

Again, as in the TE case, the same procedure is performed for the case z < — L

(-7r/2 < < 0) to obtain the same expression. The complete scattering pattern is

now the same as (2.97) except it is valid over —π/2 <Φ< π/2.



CHAPTER 3

ACCURACY CHECK FOR THE FIRST ORDER FIELD

In the previous chapter, the first-order field was determined. This is an approximate

solution which includes only two terms in the summation (2.45). All higher-order

terms are small in the numerical comparisons made in Chapter 6 between the

fictitious current first-order solution and the integral equation solution, which is

considered to be a reference solution. This check on the accuracy of the solution is

limited since it is a purely numerical check and is performed for a finite number of

surface parameters. Calculation of higher order terms are prohibitively cumbersome,

and to evaluate the overall accuracy would require evaluation of a number of

additional higher order terms to ascertain that they are negligible. A simpler

estimate of the validity of the first-order solution, however, can be obtained by

finding the scattered fields radiated by the physical currents induced in the surface

by the first-order approximation of the total solution.

In the first-order approximation, the total field above the rough surface is

The current induced in the metal scatterer is given by

where 1-1' (1) is found from Maxwell's equation

and S0 is the entire metal surface x = D(z) over —cc < z < oo, with D(z) = 0 for

|z| > L. The scattered field radiated by K tot(1)ind is found from [5]

31
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where G2-Df  is the two-dimensional free-space Green's function

The total first order field is now expressed as

which includes the field E va/ due to the first-order volume current density J (1) •

Equating (3.1) and (3.6) gives

This shows that the field radiated by the volume current is a measure of the accuracy

of the first-order solution. Note that if E0 ) = Ed then E vol is zero, i.e., j ( ' ) is zero

and E (1) would be the exact scattered field.

It is now necessary to determine the fields radiated by the induced current

densities in the metal and the field radiated by the volume current density. Returning

to (3.2) for the TE case, it follows that

where n is given by

Since the total field can be written as a sum of incident, reflected and scattered fields

the total induced current density (over the entire surface for z E ( —oo, +co)) can

be expressed as the sum of incident, reflected and scattered current densities K,,

Kr and Ksy Recall that the incident and reflected fields are given in (2.7). For the
Y 

region z > L, the reflected field reduces to the form of the field reflected from an

infinite fiat plate, namely,
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whereas in the middle region, |z| < L, the reflected field is adjusted to the local

elevation, i.e.,

The induced surface current density is expressed in the different regions as

with Kr due to Ery, and KR due to ER. In order to examine only the scattered field,

the surface current density Kiy  + KR over a length 2L is added to and subtracted

from the total surface current density (see Figure 3.1). The resultant current

Figure 3.1 Induced surface current densities.

density is then split into five pieces as shown in Figure 3.2, each of which will now

be examined independently. Part E of the total induced current density (see Figure

3.2) consists of the current density that is induced in an infinite flat metal surface

irradiated by an incident plane wave. Since this current density gives no contribution

to the scattered field, this field constituent is not included in the final result.

To find the contributions to the scattered field from the remaining current

densities, it is convenient to find the magnetic vector potential A(r) from which the

electric field is readily obtained. Since all current distributions flow in the y-direction,
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Figure 3.2 Partitioning the total surface current density into five pieces which are
designated A: Ki + KR over the rough surface |z| < L; B: —Kt — Kr over the smooth
surface |z| < L; C: K8 over the rough surface 1z1 < L; D: K8 over the smooth surface

|z| >L;and E:Krover the infinite smooth surface, —so <z< .

only the y component of the magnetic vector potential exists; it takes the form [5]

and HP ) is the zero-order Hankel function of the second kind. The associated electric

field also has only a y component, it is given by

Returning to the partitioned current densities in Figure 3.2, consider Part A

which involves Ki+KR on the rough surface in 1z1 < L. The induced current density

for Part A is found by using (2.8)—(2.9) and the corresponding portion of the total

induced current density due to the incident and reflected fields. Hence,
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Using (3.13) and (3.15), the scattered field due to this current density is

(3.17)

The current density of Part B gives the field scattered by a finite fiat metal strip of

width 2L. The induced current on this finite metal strip is KB = K — Kry, which is

explicitly given by

The scattered field due to

-L

Assume that the scattered electric field is given by the first-order field approxi-

mation in (2.18)-(2.20). The induced current density that gives rise to this scattered

field is obtained from the first-order magnetic field which is found by using (2.18)-

(2.20) in the Maxwell equation similar to (3.3) and by substituting this magnetic field

into (3.8). However, when the total scattered field is approximated by the first-order

field, a first-order volume current density (2.32) is left over, as shown in Figure 3.3.

This volume current density radiates a field which should be small compared to the

total first-order field for the first-order field to be an accurate approximation to the

total scattered field. The field due to this first-order volume current density is the

remainder term in the series solution (2.45). Since the scattered field is approximated

by the first-order field, the induced current density is Kys = I( 1) . Hence, the surface

current density Kyc ,which is used for part C, is found by using (2.19) to be



Figure 3.3 The remaining volume current density.

Hence, using (3 13) and (3.15), the radiated field for Part C becomes

To find the radiated field from Part D, K on the smooth surface x = 0 in z > L is

used. The field expressions (2.18) and (2.20) then give

36
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The scattered field due to the volume current density is found using the radiation

integral [5]:

Using the volume current density (2.32) and making the change of variable x 0

x0 — D0 , the scattered field becomes

In the far field, the Hankel functions in the above expressions are asymptotically

expanded and the parallel ray approximation is used, as is done in Appendix C, to

give the following relations

Substituting these relations into all the expressions for the scattered fields, Parts

A—D and F, adding them and performing some very involved manipulations returns

the expression for the first-order scattered field, whose scatter pattern is
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Note that these evaluations show that (3.7) is satisfied and provides a check on the

(scatter pattern (2.31) for the first-order scattered field E (1)y.

In order to compare the magnitude of the field radiated by the volume current

density EFy , to the total first-order field E(1)y, the scatter pattern for (3.25) is obtained

in the form

where

and the integration path Q is defined in Figure 2.4. Many attempts were made to

estimate the relative magnitude of RP in comparison to RTE . One way is to perform

a numerical integration using the Monte Carlo procedure. Having this capability will

permit the determination of the surface parameters for which the fictitious current full

wave method will give accurate results. Since the numerical results for the fictitious

current full wave method agree very well with the integral equation reference solution

(see Chapter 6), the evaluation mentioned above was deemed unnecessary at this

point, but will be performed in future works.



CHAPTER 4

ANALYTIC COMPARISON TO OTHER METHODS

Even though rough surface scattering theories are usually used to predict scattering

from random surface profiles, it is instructive to first examine the scattered field

expressions found using various surface scattering theories with an arbitrary deter-

ministic surface profile. The standard methods for computing the field scattered by

rough surfaces are the Kirchhoff method, the first order perturbation method and

Bahar's Full Wave method. The Kirchhoff theory is valid for high frequencies (radii

of curvature large with respect to wavelength) and small slopes [6]. The Perturbation

theory is valid for surfaces with small heights and slopes [7]. Bahar's original full

wave method is valid for small slopes. Thorsos and Winebrenner [8] have shown that

Bahar's Modified Full Wave theory (see Appendix B) does not reduce to the Pertur-

bation result in the limit of small heights and small slopes and is approximately

equivalent to the Kirchhoff theory for all parameters that they examined; Bahar's

Modified Full Wave theory is not included in this discussion. The expressions for

the scattered field of all four methods have been derived in the appendices; the first

three mentioned above are rewritten here for convenience.

Bahar's original full wave method for the TE case (see Appendix B) gives a

scat ter pattern

and for the TM case

39
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The Kirchhoff method (see Appendix C) gives a scatter pattern

The TE scatter pattern for the first-order Perturbation theory (see Appendix D) is:

and for the TM case is:

The full wave theory developed in this dissertation, referred to as the new method,

gives a scatter pattern for the TE case of the form:

and for the TM case the form:

It should be noted that for small slopes, i.e., D'0 << 1, the new full wave method

reduces exactly to Bahar's original full wave method.

It is easily seen that all methods are polarization dependent except the

Kirchhoff method. This is a shortcoming of the Kirchhoff method, since it is widely

known that electromagnetic waves depolarize when scattered by a rough surface

[9]. Also, the Kirchhoff solution for the TE case does not satisfy the boundary

conditions, i.e., RTKE 0 for 0 = ±7r/ 2. It should be noted that when the TE



41

and TM cases for the new full wave method are added together, they produce the

Kirchhoff approximation, as does Bahar's method:

The assumptions for the perturbation theory to be valid are

If these assumptions are taken then the exponential involving D 0 in the new full

wave solution (4.36) and (4.37) can be expanded in a Taylor series about D 0 = 0 as

follows

If only the first two terms in (4.40) are retained and the term D'20 in either (4.36)

or (4.37) is ignored, since it is very small compared to unity, then the new full

wave method reduces to the perturbation result in its region of validity. The same

procedure can be performed on Bahar's original solution with the same result.

Since the new full wave method and Bahar's original full wave method both

reduce to the Kirchhoff and first order perturbation solutions in their limited regions

of validity, these two full wave solutions will be compared over broader parameter

ranges. This will be accomplished by comparing the two full wave theories to the

"exact" integral equation method' of Eric I. Thorsos in Chapter 6.

'The solutions are exact in the sense that no approximations are made in the scattering
physics, i.e., shadowing and multiple scattering effects are taken into account.



CHAPTER 5

STATISTICAL ANALYSIS

Rough surface scattering theories are useful for predicting the scattered field from

many different types of surfaces, such as periodic, arbitrarily specified deterministic,

or random surfaces. The most numerous types being random surfaces since any

scattering application involving natural surfaces requires a statistical description

of the surface. These naturally occurring rough surfaces are described using the

theory of stationary random processes (see Appendix A). The most commonly used

statistical description for these surfaces is the one where each point on the surface is

taken to be a random variable which has a Gaussian probability density function and

all points on the surface are related by a Gaussian correlation function. Therefore,

this chapter, will discuss the average diffuse radar cross section (RCS) for surfaces

with Gaussian distributed heights and slopes and with Gaussian correlation function

(see [10] p. 221 for a discussion of the use of non-Gaussian distributions in rough

surface scattering).

The average diffuse radar cross section is defined [10] as

where the brackets ( ) denote the ensemble average and R is the scatter pattern

discussed in Chapter 2. Bahar's original full wave method (with the integrated term

present as discussed in Appendix B) and the Kirchhoff theory have the same form

for the scatter pattern given by

where Us = ko (cos 0 + cos 00) and Tr, = k0 (sin qj - sin 0); the only difference

between the two is the function 5(0, 00).
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To simplify the analysis, R is split into two pieces, one containing the random

variable (RV) D0 and one without the RV, i.e.,

where

and

The diffuse RCS now becomes

The first term is expanded as follows

and the second term as

Subtracting the two gives

Averaging Ra over the ensemble of realizations of D0 results in
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where σ is the ELMS height of the surface. Evaluation of (5.10) gives

the sinc function is defined as

The ensemble average of R*a is evaluated to give the same result as above, which

when substituted into (5.9) results in

This expression is independent of the term Rb which does not contain an RV. A closed

form expression for this average can be found by following the procedure outlined in

[9] as follows. Referring to (A.52) gives the relation

with r (r) , the correlation coefficient, taken as

with correlation length l, -r z0 — z 1 and D 1 = D(zi ). The first term in the RCS

(5.14) can now be rewritten as

The diffuse RCS now becomes
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The correlation coefficient r(τ) measures how two points on a surface are

correlated when they are separated by a distance T. For T = 0, the two points

are coincident and the correlation coefficient has its maximum value of unity (fully

correlated). As the distance between the two points becomes very great, T oo,

the correlation coefficient reaches its minimum of zero, i.e., the two points are not

correlated at all (independent). Between the two extremes of T = 0 and T oo,

the correlation coefficient decreases monotonically and reduces to a value of e -1 at

one correlation length, T = l. In order for the surface to be truly rough, the corre-

lation length / must be much smaller than the surface length 2L, otherwise the rough

surface would just have one or two irregularities. Thus, it is assumed

This implies that the correlation coefficient is non-zero only in a small region about

T = 0. If D 0 and D 1 are independent (which is true for T = 0), the second charac-

teristic function becomes (see Appendix A)

and the integrand in (5.19) is non-zero only in the small region around T = 0.

The average diffuse RCS (5.19) is now simplified by transforming to a sum

and difference coordinate system, z0 z 1 and z0 — z1. Since the integrand is only a

function of the difference coordinate, the integration over the sum coordinate yields

the surface length 2L. To simplify the integration over the difference coordinate, it

must he remembered that the integrand in (5.19) is non-zero only for a small region

around T = 0 and hence the term of the form
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which arises from the transformation can be neglected. Therefore, the diffuse RCS

The average diffuse RCS is now normalized for surface length 2L and free space

wavenumber k0 , Le., 0d = k0d/2L, and the limits of integration are taken to infinity

since the major contribution comes only from the neighborhood of T = 0, i.e.,

This represents the radar cross section per surface length. In order to evaluate (5.24),

x2 (vs , —vs ) is expanded in a Taylor series, which gives

Using the integral [11]

the average diffuse RCS for both the Kirchhoff and Bahar's original full wave method,

assuming I < L, becomes

where vx = vx/k0 = cos 0+ cos 00 and vz = vz/k0 = sin 00 — sin 0. If the diffuse radar

cross section for the Kirchhoff method is desired, the coefficient S(0, co0) becomes (see

Appendix C)
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If the diffuse RCS for Bahar's full wave method is desired, S(0, 00) is (see Appendix

B)

for the TE case, and

for the TM case.

For comparison to the other statistical results, the statistical analysis for the

fictitious current full wave case will be included, even though Monte Carlo results

are used for the numerical comparisons. The scatter pattern for the fictitious current

full wave method is

where S and SN are arbitrary functions of 0 and (/)0 • The diffuse RCS for the new

full wave method is defined as

Since the term RFb does not contain a random variable, the same argument used to

obtain (5.14) is used to give
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Dropping the (75 and Φ0 dependence, the average of RFa  is

Since for a stationary RP the heights and slopes at a given point are uncorrelated,

the average can be simplified to

where a2 is the variance of the random variable D' (surface slope), which from (A.57)

is

The characteristic function x(vx) is the same as defined in (5.11). The term

(RFa) (RFa) * is now given by

where it is assumed that SN is real. Using (5.32) the term (RFaR*Fa) becomes

In general, heights and slopes at different points are correlated and the average

inside the integral must be performed using the four dimensional probability density

function as in [8]. For short correlation lengths, the heights can be considered uncor-

related to the slopes and the average (RFaR*Fa) can be written as
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Note, however, that a height (slope) at one point is correlated to a height (slope)at

a second point. Recalling the definitions of the autocorrelation of D' 2 in (A.59) and

the characteristic function x2 (v-x —vx) in (5.15), (RFaR*fa) becomes

Combining (5.42) with (5.39) and using (A.60) and (5.23) gives

The autocorrelation of D' is given in (A.57) and is rewritten here for convenience:

For short correlation lengths, the function R Dr2(τ)x2(vx, —vx ) strongly peaks about

T = 0 and the double integral in the second term of (5.43) reduces to

If the limits of integration are removed to infinity as before and the expansion of the

characteristic function given in (5.25) is used in (5.45), K is expressed in terms of

an infinite series, i.e.,

Using the relations [11]



and (5.26), K becomes

where

Therefore, the

normalized average diffuse radar cross section (gFd = k0~gdF/2L) for the new full wave

method is for short correlation lengths

is defined in (5.27). The coefficients S and SN for the TE case are

and

50

and for the TM case are

and
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It should be noted that the difference between the new full wave method and Bahar's

full wave method are all terms of order a 2 and ad , where a2 is the mean squared

value of the slope (variance). For surfaces with small slopes, i.e., a 2 < 1, the new

full wave method reduces to Bahar's full wave method.

In order to perform the formal average correctly for surfaces with long corre-

lation lengths, the correlation between heights and slopes must be taken into account.

The average in (5.40) must be performed by using the four dimensional probability

density function. After transforming (5.40) to sum and difference coordinates it is

written as

The averaged term in the integrand is expressed as

By using the four dimensional Gaussian PDF P4 (D0, D1, D'0, D'1, τ) (5.57) is written

as

with

and Tv is a vector with components T.) = [D0 , D 1 , D , D'] = [w 1 , w2 , w3 , w4]. The four

dimensional Gaussian PDF for one height and one slope taken at z 0 and another

height and one slope taken at z 1 z0 — τ [12] is
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where K is the symmetric 4 x 4 covariance matrix and |K|  is the determinant of this

matrix. The elements of K are given by (see Appendix A)

The determinant of K is found to be

The inverse of K, which is also symmetric, has matrix elements

where

After substituting (5.60) into (5.58), the double integration over D 0 and D 1 can be

performed analytically (using a relation similar to (A.5)) to yield the closed form

expression



53

where

is the joint PDF for the slope, which is

The function A ( -r) is now expressed as a two-dimensional integral, which makes

(5.56) a three-fold integration that can be evaluated numerically. Is should be noted

that the PDF P2 (D , T) is singular at 7- = 0 and must be handled carefully in

the same manner as was done in [8]. Once this three-fold integration is performed,

the result can be combined with (5.39) and substituted into (5.35) to obtain the

average diffuse RCS for the Fictitious Current Full Wave method for large correlation

lengths. This integration was performed for a few cases and was found to require

more computational time than the Monte Carlo method. Therefore, the Monte Carlo

method was used to produce the data in Chapter 6.

The analysis for the first-order perturbation method is particularly simple. The

scattering pattern for the perturbation method is

Its average is zero since the average height, (D0) , is zero. Therefore, the diffuse RCS

becomes

The definition of the autocorrelation of D from (A.50) is
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The transformation to sum and difference coordinates is now performed on (5.68)

which results in

If the surface is assumed to be very large, the first term in the brackets is much larger

than the second and the average diffuse RCS becomes approximately

Using relation (5.26) and the same normalization as used previously, i.e., gPd =
k0gdP /2L, the average diffuse RCS is evaluated to be

For the TE case, the coefficient Sp is

and for the TM case it is



spatial wavenumber Phe coefficients

CHAPTER 6

NUMERICAL RESULTS

For the fictitious current full wave method, the evaluation of the average diffuse

radar cross section per unit length can be performed in one of two ways. The first is

to evaluate the formal average given in Chapter 5 using numerical integration. The

second, called the Monte Carlo method, is to evaluate repeatedly the simpler integrals

for the TE and TM scatter patterns, as given in (4.36) and (4.37), respectively, using

many different realizations of the surface to calculate a collection of radar cross

sections. This collection of radar cross sections is then averaged over the ensemble of

realizations. In order to perform the Monte Carlo method, a procedure for generating

random surfaces with the appropriate statistics must be developed.

6.1 Random Surface Generation

To calculate the average RCS, a random surface profile must be generated with the

appropriate statistics, i.e., a surface profile with Gaussian correlated heights and

slopes. This is accomplished using either the moving average, autoregressive, or

spectral method of random number generation. A discussion of the moving average

and autoregressive methods is found in [10]. For the present work, the spectral

method [6] is used because it numerically more efficient than the others.

The pth realization of the rough surface D„, called Di."„ is represented as a

summation of Fourier components as long as the surface roughness is of finite extent

and is considered one period of length 2L of an infinite periodic surface, i.e.,

the surface extends over
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FP(Ki) are random and uncorrelated when D 	 random, and are expressed as

The power spectrum of the discrete random process Dpn is [13]

where the brackets ( ) represent averaging over all the realizations. If the coefficients

FP(Ki) are chosen using the relation

where * denotes complex conjugation and Xp is an uncorrelated random process.

The new process Dpn has the power spectrum P(/(,). The choice of FP* (Kt ) for i < 0

makes the resultant process Dpn real. For the case under consideration, i.e., a surface

with Gaussian heights and slopes, the coefficients FP(Ki) become [6]

Each G (0, 1) represents an

independent sample of a Gaussian (Normally) distributed random variable with zero

mean and unit variance. The power spectrum is Gaussian and is taken as

where o- is the RMS height and I is the correlation length of the surface.

The evaluation of (6.1) is performed efficiently using an inverse fast Fourier

transform (IFFT). In order to implement this IFFT using a standard package, the

index i in (6.1) is shifted so that it extends over the interval [1, N]. A new index is
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introduced such that m = j+ (N/2) +1; this yields an alternative expression for the

pth realization of the surface height:

where

the coefficients for m < N/2+1 need to be calculated from (6.9), since the remaining

terms are found using FP (Km-N/2-1) = FP* (K for m < N/2 + 1. The

surface height profile is now written as

and, by taking the first derivative, the surface slope profile becomes

6.2 Numerical Comparisons

Since the formal average method is numerically very cumbersome for the Fictitious

Current Full Wave method, the Monte Carlo method is used, which is performed as

follows. Once the discrete surface profile Dpn is generated, it is substituted into the

expression for the scattering pattern (2.31), which is
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for the TE case. Since the surface height and slope profiles are discrete variables,

the integrand is only known at the specific points zn = nΔz, where Δz = 2L/N. A

simple, but effective, method to evaluate the integral in (6.12) is to use the extended

trapezoidal rule [14]:

with D D„ since only one realization is being considered. The function f,-, is a

function of 0, which means the summation is performed for each value of 0. In the

numerical results presented, 0 is taken at 180 discrete values ranging form —90° to

+90° in 1° increments. All the Monte Carlo data generated for the fictitious current

full wave method use N = 1024 with 2L = 80A0 and x = 0.078A0 . In order to

verify that the results are not contaminated by edge effect scattering, surfaces with

lengths 2L = 160A0 and 2L = 320A 0 were used in the simulation which produced

no change in the results. Spatial resolution in the simulation was also increased to

N = 2048 and N = 4096 for 2L = 80A0 , which also yielded no change in the results.

Fifty surface realizations are used in the Fictitious Current Full Wave method Monte

Carlo plots, and accuracy was checked by increasing this number to 100 with, again,

no change in the results.

The methods that are used in the comparisons are all formally averaged (see

Chapter 5), except for the integral equation method and fictitious current full

wave method. The integral equation method is normally used for comparison in

the literature and is considered very accurate. Data presented for the integral

equation method was supplied for use in the plots by Eric I. Thorsos, much of which
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was previously published [8],[6],[7]. Details of the method are found in [6], but is

summarized here.

To find the field scattered by a 1-D surface for the TE, case the Helmholtz

integral (see Appendix C) is used. For the TE case, the tangential electric field is

zero on the perfectly conducting boundary and the unknown total field above the

surface is written as

where fig ) is the zero-order Hankel function of the second kind and Ey  (r') /an'
is the normal derivative of the total field on the surface, which is also unknown.

An integral equation for the unknown term 84 (r') /an' is formulated by letting

r approach the surface and using the boundary condition that 4 (r) = 0 on the

surface, i.e.,

with r and r' both on the surface. This integral equation is a linear integral equation

of the first kind for 8E /an'. An alternative formulation can be obtained by

applying the operator /n = fl. V to (6.15), where n is the surface normal, and

taking r to approach the surface, i.e.,

This is a linear integral equation of the second kind for 84 (r') /an'. Once

84 (r') /an' is found, the total field can be calculated by placing the result in

(6.15).

Both integral equations are solved by using a quadrat ure method to convert the

integral into a summation and, hence, the integral equation into a matrix equation

which is solved by standard methods. The generation of the matrices and the
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solutions of the matrix equations require considerable computer resources and were

performed on a CRAY supercomputer for the large matrices required to give suffi-

ciently accurate results. Many checks were performed to ensure the accuracy of the

solution (see [6],[7],[8]). Note, to reduce "edge" effect scattering by the edges of the

rough surface, the incident field was taken to be a tapered Gaussian beam instead

of a plane wave.

The first set of eight plots are for the TE case. The parameters k0σ, k0l and γ

are the normalized RMS height, normalized correlation length and RMS slope angle,

respectively, where k0 is the free-space wavenumber. The RMS slope angle is found

from the RMS height and correlation length using the relation tan = ,4o-/l. The

formally averaged results appear as smooth lines in the plots. The Monte Carlo data

is jagged compared to the formal averages because the results using the Monte Carlo

methods are only averaged over a finite number of surface realizations. The formal

averages are analytically averaged for an infinite number of surface realizations. All

curves, except the integral equation curve represent the diffuse scattering strength,

which is the diffuse RCS divided by 27r. The integral equation curve is a plot of

the total scattering strength, which is equal to the diffuse scattering strength plus a

coherent component that contributes around the specular direction 6, 45° which

is seen as a large peak in the plots, and slightly near grazing 0 0 = +90°. The integral

equation data for Figures 6.1 and 6.2 was originally published in [7], for Figures 6.3

and 6.4 in [8], and for Figures 6.5 and 6.6 in [15]. The integral equation data for

Figures 6.7-6.10 is previously unpublished.

Figure 6.1 demonstrates the agreement between the Fictitious Current (F.C.)

Full Wave results and the "exact" integral equation results in a region where neither

the Kirchhoff or first order perturbation results are valid. Bahar's results fall below

the integral equation result for —90° < < —30°, and is approximately 3dB below

it at -70°. Figure 6.2 shows the results from all the methods under consideration
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for an increased RMS slope angle. The disagreement between Bahar's result and

the integral equation result is even more pronounced than in the previous plot.

This should be expected since Bahar's method is only valid for small RMS slopes.

Disagreement between Bahar's result and the integral equation result now starts to

occur for q5 < 0° and reaches a maximum disagreement of 5dB around 0 = —70°.

Figures 6.3 and 6.4 present two cases where the first order perturbation result is valid.

It is seen that the F.C. Full Wave, Bahar's Full Wave and the integral equation

results all overlap with the perturbation result. Results in Figure 6.5 are plotted

for the region where the Kirchhoff result is valid. The F.C. Full Wave, integral

equation and :Kirchhoff results all overlap for this case. Bahar's Full Wave result

disagrees with the aforementioned results for 0 < 0°; specifically, at q = —60°

Bahar's result is about 10dB below the three results mentioned above. For this case,

the first order perturbation result is not accurate, except for .0 > 70°. Figures 6.6-6.8

present cases where the Kirchhoff, first order perturbation and Bahar's results are

not valid, but the F.C. Full Wave method agrees very well with the "exact" integral

equation results. Figures 6.9 and 6.10 present results for TM polarization. It can be

seen that the Kirchhoff, F.C. Full Wave and Bahar's Full Wave results all agree for

these parameters, but the integral equation results do not agree with these others

around grazing angles 0 = +90°. This may be explained because of the difference

in the formulation between the integral equation method and the other methods

examined. All the other methods under consideration are formulated for infinite

surfaces illuminated by a plane wave. The integral equation method is formulated

for a finite surface illuminated by a tapered Gaussian beam. Although the integral

equation solution is considered an "exact" solution, it is an exact solution to a

problem that is slightly different than the one considered in the other methods.

The discrepancy appears most distinctly in the TM case, since the scattered field

is non-zero on the surface (0 = +90°). The integral equation result is smaller than
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the others for 0 = ±900 since the beam does not illuminate the surface far from

the origin. The scattered field that reaches the observation point on the surface at

= ±90° is a wave that has propagated along the surface but has lost some energy

to multiple scattering effects in the surface troughs.

Figure 6.1 Comparison of rough surface scattering methods for k0σ = 0.333, k0l =
2.83, 7 = 9.48°, 00 = 45°, TE polarization, where σ is the RMS surface height, 1 is
the surface correlation length, 7 is the RMS surface slope angle and 0 0 is the angle of
incidence. The large peak in the specular direction for the integral equation method
is due to the coherent field and is subtracted from all the other results.
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Figure 6.2 Comparison of rough surface scattering methods for k0σ = 0.666, k0l
2.83, -y = 18.4°, q50 = 45°, TE polarization.
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Figure 6.3 Comparison of rough surface scattering methods for k0σ = 0.187, k01 =
1.5, -y = 10°, 	 = 45°, TE polarization.
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Figure 6.4 Comparison of rough surface scattering methods for k0σ = 0.0928, k01 =
1.5, 7 = 5° , çb0 = 45°, TE polarization.
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Figure 6.5 Comparison of rough surface scattering methods for k0σ = 1.5, k©1 =
12.0, 7 = 10.02°, 00 = 45°, TE polarization.
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Figure 6.6 Comparison of rough surface scattering methods for k0σ = 0.399, k0l =
3.2, -y = 10°, ç = 45°, TE polarization.
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Figure 6.7 Comparison of rough surface scattering methods for k0 σ = 1.319, k0l
4.0, = 250, q = 45°, TE polariazation.
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Figure 6.8 Comparison of rough surface scattering methods for k0σ = 1.0, /c0/ = 3.0,
7 = 25.24°, 	 = 45°, TE polarization.
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Figure 6.9 Comparison of rough surface scattering methods for k0σ = 0.2, k0l = 2.0,
7 = 8°, 00 = 45°, TM polarization.
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Figure 6.10 Comparison of rough surface scattering methods for k0 σ = 0.4, k0l =
2.0, 'y = 15.8°, (k0 = 45°, TM polarization.



CHAPTER 7

CONCLUSION AND SUGGESTIONS

A new full wave theory has been formulated for scattering by rough perfectly

conducting surfaces where the surface exists over a finite segment of the infinite

conductor. Above the conductor, the field is initially approximated by a zero-order

(primary) field that satisfies the boundary conditions and Maxwell's equations

with a fictitious volume current source. This fictitious volume current source is

cancelled by a higher order fictitious sheet current source which generates a higher

order correction term to the field called the first-order field. The first-order field

satisfies the boundary conditions and Maxwell's equations, but with a new first-order

fictitious volume current source. At this point, the total field above the conductor

is approximated by the superposition of the zero (primary) and first-order fields

with the first-order fictitious volume current source present. The first-order volume

source is cancelled by the next higher order sheet current source which produces a

second-order field correction term. The process can be repeated until the desired

field precision is obtained. Through use of currents induced on the metal surface, a

quantitative measure of the accuracy of this method can be obtained.

This new full wave method generates a far field which is equivalent to Bahar's

original full wave method plus an extra term proportional to the squared slope of the

surface. For surfaces with small slope, both methods produce identical results. In the

limit as the surface height and slope become small, the new full wave method reduces

to the first-order perturbation result. Adding the first-order far field expressions for

the TE and TM cases determined by the new full wave method and dividing by

two gives the Kirchhoff result. This indicates that the Kirchhoff result, which is

polarization independent, is essentially an average of the TE and TM cases. In the

region where neither the Kirchhoff nor the first-order perturbation method are valid,

the new full wave results agree with the "exact" integral equation solution more
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closely than do Bahar's original full wave results; Bahar's modified full wave results

are approximately equivalent to the Kirchhoff results [6] which as stated do not agree

with the integral equation data.

Future work should be concerned with formulating a numerical procedure that

uses the above mentioned induced surface current to measure the accuracy of the

Fictitious Current Full Wave method for arbitrarily specified surface parameters. An

efficient numerical method to evaluate the formal average for this method can also

be obtained. The method can also be extended to include scattering by surfaces

which are rough in two dimensions, and scattering by dielectric layers with rough

interfaces, all of which are currently being investigated.



APPENDIX A

STOCHASTIC PROCESSES

A.1 General Processes

The purpose of this section is to provide a general overview of the analysis of

stochastic, or random, processes. It is assumed that the reader is familiar with

the basic theory of a single and multiple random variables (for a detailed discussion,

see [12]).

Some basic definitions pertaining to stochastic processes are necessary for

further discussion. A random variable (RV) X is a rule for assigning a real number

X(() to an outcome ( in the sample space of an experiment. A stochastic, or

random, process (RP) X(z) is a rule for assigning a function X(z,() to every

outcome C. Therefore, a stochastic process is a family of spatial functions of the

real variable z which depend on the parameter C. In all the cases considered here,

z will be a continuous variable. The notation X(z) will be used to represent the

stochastic process, suppressing the ( dependence. X(z) has the following different

interpretations [12]:

1. It is an ensemble of functions X(z, () where both z and C are variables.

2. It is a single spatial function of z, or a sample of the random process, if z is a

variable and ( is a fixed parameter, i.e., if = 6 then X(z, (1 ) varies over the

range of z

3. X(z) is a random variable equal to the state of the process at point .z = z 1 if z1

is fixed and C is variable, i.e., is the set of numbers {X(z 1 , ζ1), X(z1, ζ2), • • • }.

4. X(z) is a number if both z and C are fixed, i.e., if z = z 1 and = CI then

X = X(z1,ζ1 ).
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For the interpretation given in (3), a stochastic process is a collection of random

variables X(2.,(:; ), j = 1, , oo, for each z = z„. If a specific point z is considered,

X(z) is an RV with the first-order probability distribution defined by

and first-order probability density function defined as

where P {A} means the probability that event A occurs. The second-order distri-

bution is a joint distribution function of the RVs X(z1) and X(z 2 ) such that

and the second-order probability density function is defined by

This can be generalized to the nth-order distribution and density functions. Note,

in order for the definition of the first-order distribution and density functions to be

consistent with the second-order ones, it must be true that

For the stochastic process to be completely determined, its distribution function

F(x1 , ... n xxn;z1, ...,zn)must be known for everyxi, zi,where i = 1, , n, and for

all n. However, in most practical applications only a few properties of the stochastic

process need to be specified. These include the mean, or ensemble average, which is

defined as
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where f (x, z) is the first-order probability density function (A.2). Prom (A.6), it

follows that

where Xi = X(zi ). Also from (A.6), the mean of a function of X 1 is

A second property of the RP X(z) is its autocorrelation function which is defined as

where the random variables X 1 and X2 are, in general, complex. Related properties

are the autocovariance which is defined as

the variance which is

and the correlation coefficient which is the ratio

The standard deviation of an RP, also called the root mean squared (RMS), is defined

as

Further properties include the characteristic function x(ω) of a first-order distribution

f (x , z),
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and the characteristic function x 2 (w i , w 2 ) of a second-order distribution function

f(x 1 x2 ; 	 z2 ) which is

A stochastic process is called strict-sense stationary (SSS) if its statistical

properties do not change with a shift in the origin, i.e., X(z) and X(z c) have

the same statistical properties for any real constant c. Two processes X(z) and Y (z)

are called jointly stationary if their joint statistics are the same as the joint statistics

of X(z c) and Y(z c). If a process is complex, i.e., Z(z) = X(z) jY(z), then

it is SSS if X(z) and Y(z) are jointly stationary. If a random process has a constant

mean and has an autocorrelation which depends only on the distance r between two

points z and z T then it is called wide sense stationary (WSS), i.e., if

and

then X is WSS. The autocovariance for a WSS process can now be written as

and the correlation coefficient becomes

If two processes are to be considered jointly WSS then each must be WSS and the

cross-correlation must only depend on 7- , i.e.,
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It follows that the cross-covariance is given by

Two WSS processes are considered uncorrelated if Cxy (τ) = 0 for all 'r, and are

considered mutually orthogonal if Rxy(τ) = 0 for all T. If the two processes are

uncorrelated, it follows from (A.21) that

It can be shown that if a process is SSS then it is automatically WSS. It is not

true, in general, that if the process is WSS it is SSS.

If a stochastic process is the input to a system with a transfer function, or

operator, T, the output is also a stochastic process, i.e.,

A system is called memoryless if its output at a given point z = z 1 , say Y(z 1 ) depends

only on X (zi ), i.e.,

where g is only a function of X. The statistics of Y for a memoryless system can be

expressed in terms of the density function of X, namely, fx , as follows:

If the system is linear then the operator T will be called L and
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where the definition of a linear system is given by

for any a i a2 , Xi (z), X2 (Z). Note, the output of a linear system is a convolution

where H is the impulse response, i.e.,

For any linear system the mean of the output is

the cross-correlation between input X and output Y is

where the subscript "2" means the system operates on z 2 holding z1 as a fixed

parameter, and the autocorrelation for the output is

For example, if the linear system is a differentiator then the above results can be

used to find the statistics of the output. Hence, if

where

it follows that
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and the cross-correlation and autocorrelation is expressed as

and

In the above, and to follow, primes mean differentiation with respect to the argument.

If the input process is WSS then the above relations become

since the mean of the input process is constant. Since the autocorrelation of the

input process is a function of only T , i.e., Rxx (z1 , z2 ) = Rxx(τ) with T = Z2 -

then

The previous results can be specialized to give higher order correlations through the

relationship

If z1 = z2 = z then higher order surface derivatives and RMS values can be found

using

and

respectively.
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A.2 Gaussian Stochastic Processes

Gaussian, or Normal, stochastic processes occur frequently in nature, mostly as

a result of the central limit theorem which can be stated as follows. Given n

independent RVs Xi , their sum is

This new RV X has a mean m = m1 + • • • + mn and variance σ2 = σ21 + • • • + σn'. If

X is a continuous RV, the central limit theorem states that as 72, approaches infinity,

the density function of X approaches a Gaussian density function with the above

mentioned mean and variance, i.e.,

Therefore, if the RP under consideration is everywhere a result of a large number of

local events, the effects of which are cumulative, then the resulting RP is Gaussian

distributed. This is the case with most natural processes which form rough surfaces

[10].

A property of Gaussian RPs is that wide sense stationarity implies strict sense

stationarity. Thus, if a Gaussian process under consideration has a constant mean

and an autocorrelation function which is a function of only the distance between

two points then it is automatically SSS. This considerably simplifies the analysis.

Another property of a WSS Gaussian RP denoted by X is that X' is also Gaussian,

and X and X' at the same point are uncorrelated [9].

For the remainder of this section, the Gaussian stochastic process under consid-

eration will be denoted D(z) and will be taken to be a WSS process having a zero

mean and Gaussian autocorrelation. The associated first-order probability density

function (PDF) is then
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where ((z) is one realization of the Gaussian RP D(z) and u is the RMS value of

the RP. The second-order PDF is given by

and RDD (τ) is the autocorrelation function, which is assumed to be Gaussian

The parameter / called the correlation length, and the RMS value of the surface σ,

are sufficient to characterize the surface.

Two other important quantities are the characteristic functions defined in

(A.14) and (A.15), which reduce to [9]

For the special case of w 1 = —w2 = w, (A.52) becomes

If j and (2 are independent (uncorrelated) then
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which follows from (A.22).

If the Gaussian process is the input to a linear differentiator whose output

equals

then using (A.39) and (A.40) give

or, explicitly,

Assume the output of the above system is the input to a memoryless square-law

detector whose output is

The statistics of Y can be found by noting that for the input process X, X(z) and

X(z+T) are jointly normal RVs with zero mean and autocorrelation Rx (τ) = RD/ (T).

Hence,

and through use of the Moment Theorem [12], the autocorrelation for the output Y

is

The mean of Y is seen to be
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Also note that the variance of Y is given by

The autocorrelation and variance of D'2 can now be written explicitly as

and

respectively.



APPENDIX B

BAHAR'S FULL WAVE METHOD

The full wave theory for rough surface scattering was first introduced by Bahar

[1, 16, 17] to describe scattering by multilayered dielectric structures of arbitrary

thickness. The method was applied to a one-dimensionally rough surface with the

same geometry as was used in previous sections of this dissertation. It consists of

expanding the x and z components of the field in terms of a set of local flat surface

basis functions. Maxwell's equations are then written in the form of the telegraphist's

equations for the right and left going amplitudes of the scattered fields. Since the

fields are expanded in terms of basis functions, the telegraphist's equations become

a set of coupled differential equations for the modes. This set of equations is solved

by taking the surface slope as a small parameter and using the method of successive

approximations, which is the same as assuming there is no mode coupling. Bahar

removes the explicit dependence on the surface slope through use of integration by

parts and discards the integrated term by assuming it is a negligible edge term.

However, since the set of coupled equations is solved by assuming the surface slope

is small, the method should only be valid if this condition is met. This method will

be called Bahar's original full wave method.

Bahar later attempted to extend his method for the one dimensional surface to

solve the problem of scattering from a surface which is rough in two dimensions [18].

He did this by leaving the inverse Fourier transform with respect to y uncompleted,

and replaced the one dimensional surface profile D(z) by the two dimensional one

D(y, z). This procedure was not justified mathematically by Bahar. However, Collin

[3], with slight modifications to Bahar's theory, rigorously obtains Bahar's result for

scattering form one- and two-dimensional rough surfaces.
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In order to remove the small slope restriction, Bahar introduced a new

coordinate system which conforms to the rough surface [18, 19]. In this formu-

lation, angles of incidence and scatter used in the original method are referred to the

local normal along the surface. This method will be referred to as Bahar's modified

full wave theory. It has been shown that this modified theory does not reduce to

the first-order perturbation theory in the limit of small height and slope variation

[8] and provides results almost equivalent to those obtained with the Kirchhoff

theory for all parameters studied. In order to correct this solution method, Bahar

reintroduced the edge term before transforming to the local coordinate system. It

was then shown by Collin [20] that this added term for vertical (TM) polarization

yields radar cross sections that are more than an order of magnitude larger than

when the term was not included. Bahar proceeded next to revise his method to

overcome these problems [20] and again removed the edge term, which resulted in

his obtaining more acceptable radar cross section calculations. However, this latest

full wave method still does not reduce to the first-order perturbation result over its

entire range of validity and does not bridge the gap between the regions of validity

of the Kirchhcff and first-order perturbation theories [20]. It does, however, agree

with the Kirchhoff result for high frequency and small slopes, but for large heights

and slopes it produces a large enhancement of the diffuse radar cross section around

the specular direction, which is considered to be nonphysical [20].

Experimentally, it was observed that rough surfaces can strongly backscatter

[21]. This enhanced backscatter was not predicted by any of the standard first-order

theories. In a 1989 paper, Bahar and Fitzwater [22] interpreted data generated by

the modified full wave theory for a rough surface with εr = —56.6 —:721.3 as evidence

of backscatter enhancement. In this study, the radar cross section that they obtained

was 20 times larger than Kirchhoff results in the backscatter direction. Collin [20] has
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subsequently shown that this anomalous enhancement was a result of the assumption

that the heights and slopes were uncorrelated and the slopes were perfectly correlated.

Since there is still some confusion as to which of Bahar's full wave theories is

correct, this appendix will derive r the results for the original full wave theory and

explain how it is modified to obtain Bahar's modified full wave theory. For a rigorous

treatment of the full wave theory for two dimensional rough surfaces, the reader is

referred to the excellent paper by Collin [3].

For the TE case, Ex = Ez = Hy = 0, with the same geometry as shown in

Figure 2.3, Maxwell's equations reduce to

Introducing the notation g = k0n0Hx, f = E and combining (B.1b) with (B.1c)

result in a set of coupled differential equations:

The field quantities are now expressed as a superposition of mode functions, with

parameter u, of the form:

These mode functions are interpreted, for a fixed z value, as local modes of a

waveguide with one boundary at infinity. The modal superpositions with a convenient

1 The derivation in this section will closely follow that of Voronovich [23]
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normalization are given by

which are considered as field transforms. Using the orthogonality properties of the

sine function, the inverse transforms are written as

D

To transform the set of coupled differential equations, they are multiplied by the

mode function 0„(x, z) and integrated over x from D to oo. Using Liebnitz rule,

namely,

the left hand side of (B.2a) becomes

By substituting the transform of f and (B.4a) into (B.8) and using the orthogonality

relations for the improper integrals involving sines and cosines from Appendix E,

i.e., (E.6), (E.7) and (E.8), the transformed version of the left hand side of (B.2a) is

deduced as
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where the P means the principal value of the integral. The right hand side of (B.2a)

is transformed in the same way and the complete transformed version of (B.2a) is

expressed as

The second differential equation (B.2b) is transformed by the same method as used

on the first equation (B.2a), except that the term with the second derivative is

integrated by parts twice. The result is the transformed version of (B.2b):

Introducing the new variables

into the coupled integro-differential equations (B.10) and (B.11) yields the gener-

alized telegraphist's equations:

and

0



where

and, as in previous sections,

If equations (B.13) and (13.14) are solved for a flat surface, D = 0, the solutions a

and b are waves propagating in the positive and negative z directions, respectively.

For a rough surface, the equations can be solved by the method of successive approxi-

mations, taking the surface slope DI (z) to be small for all z. An initial approximation

for the total field is constructed by adding together an incident plane wave and a

plane wave reflected by an infinite conducting flat surface that is adjusted to the

local surface height x = D(z). This field is the same as the primary field used in

Chapter 2 and is

The transformed primary wave is expressed as

and the amplitude terms are a () = 2F0 and b0 = 0. By the method of successive

approximations, the first-order solution is found by substituting a = a 0 into the

right side of (B.13) and a = a 1 in the left side, i.e.,

where
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Since the amplitude a represents a wave traveling to the right, a = 0 for the region

z < L. Using this condition, the solution to (B.20) for z L is

The delta function term in (B.21) represents the specularly reflected wave and can

be ignored as long as the solution is not examined in the specular direction. The

first-order field is now inverse transformed to yield

Since the field is being considered for z > L, the surface height in this region is zero

and the field in (B.23) is given explicitly as

where D = D(z'). An integration by parts is performed to remove the explicit

dependence on D' by noting that

Thus,

The integrated term is rewritten as an integral, i.e.,
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As mentioned previously, in Bahar's original formulation of the full wave theory

he discarded this "edge" term as negligible, but later found it to be important.

Therefore, it is included in this example The scattered field is now written as

To obtain the far field, the u integration is approximated by using stationary phase

as was done in Chapter 2, and the resulting expression becomes

and

The angles 0 and q are defined in Figure 2.5. If the analysis is performed for z < — L,

the same expression is obtained, which implies (B.29) is valid for —7r/2 < < 7r/2.

The method outlined above can be performed for the TM case and results in a

scatter pattern of the form

As was mentioned above, Bahar later modified this formula by referring the

angles 0 and 00 to the local normal (see Figure B.1), i.e.,
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and

where the angle 7 is defined by

The integration must now be performed along the rough surface, which means dz0

Figure B.1 Referring incident and scatter angles to local normal.

must be replaced by an element of length along the surface:

The scatter pattern now becomes

where
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The statistical analysis of the radar cross section for this modified full wave method

is particularly difficult and requires use of conditional probability density functions.

Since Thorsos and Winebrenner [8] have shown that this method does not reduce

to the first-order perturbation results, and because of other shortcomings of this

method [20], it will not be considered here.



APPENDIX C

KIRCHHOFF (PHYSICAL OPTICS) METHOD

The most commonly used theoxy for predicting rough surface scattering is the

physical optics, or Kirchhoff, method'. The xeason the method is so popular is its

simplicity of use and its validity over a fairly wide range of surface paxameters. The

method consists of using the Kixchhoff approximation of the boundaxy conditions

which are then used in the Helmholtz integral.

The notation for this section is basically the same as that used for the previous

sections, i.e., the propagation vector always lies in the xz plane, p is the radius vector

The vector from the origin to the point (D 0 , z0 ) on the surface S0 is

and the vector from the point (D0 , z0 ) on the surface S0 to the observation point

(x, z) is

where D0 D(z0 ). The angle of incidence is measured from the x axis to the

incident propagation vector k i in a counter-clockwise direction and is denoted by

00; the scattering angle q5 is measured from the x axis to the scattered propagation

vector k in a clockwise direction as shown in Figure C.1 for a finite scatterer, where

'The material in this section essentially follows the procedure outlined in Beckmann
and Spiziccino [9].
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Figure C.1 Finite one-dimensional rough surface S0 with incident and scattered
angles illustrated.

An incident electric field is assumed to be expressed as

where for TE (or horizontal) polarization = +Sr' , and for TM (or vertical) polar-

ization "e" = x cos Φ+z sin Φ with the incident H field in the +y direction. Henceforth,

only the scalar portion of Ez in (C.5) will be used; a superscript "+" will refer to the

TM case and a superscript "-" to the TE case. A time dependence of ejωt is assumed

and suppressed. If P is the observation point and R = 1111 is the distance from a

point (D0 , .41) on S0 to the observation point P then the scattered field from a finite

surface is obtained using the Helmholtz integral [24],

where E is the total field above the surface and

which is the two-dimensional free-space Green's function. If the observation point is

removed to the fax-field (Fraunhofer zone), i.e., R	 co, then the asymptotic form



of the Hankel function

is used along with the parallel ray approximation (illustrated in Figure C.2)

to give the far-field form of the Green's function which is

where

To obtain the scattered field Es (P), the integral in (C.6) is evaluated, where E and

Figure C.2 The parallel ray approximation.

E Ian, are the field and its normal derivative on the surface S0 . In general, these

two quantities are unknown.
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The Kirchhoff or Physical Optics approximation consists of approximating the

values of E and E/n on S0 by the field that would be present on the infinite tangent

plane at that point (Figure C.3) and then evaluating (C.6). This approximation

Figure C.3 Tangent plane at a specific point on a rough surface. (a) Radius of
curvature is large compared to wavelength. (b) Radius of curvature is small compared
to wavelength.

will obviously be very good when the radius of curvature of the irregularities is laxge

compared with the wavelength, but will be inaccurate if the roughness includes shaxp

edges or points. Using this approximation, the field on S0 is

where n is the normal to the surface at the point under consideration and F is

the reflection coefficient of a smooth infinite plane, i.e., for the case of a perfectly

conducting surface, F+ 1 for the TM case and F- = —1 for the TE case. Equation

(C.12b) is obtained by differentiating the incident and reflected fields.

Substituting (C_10) and (C.12a,b) into (C.6) gives the scattered field at P
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Equation (C.13) may be written for a finite surface extending from [—L, L] as

where D0 D(z0 ), vx and vz are the x and z components respectively of v, and

Integration by parts is performed on (C.15) by noting that

Employing the same normalization as used in (2.28), the scatter pattern is seen to

be the negative of the term in the large brackets, i.e.,
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with 0+ = q and 0- = 00 represents "edge" effects. It has been rigorously shown

that these "edge" effects go to zero if .\ << L [8]. The scatter pattern for a finite

rough surface of length 2L can, therefore, be written as

where, again, the "+" superscript means the TM case and the "-" means the TE

case. It should be noted that in the full wave case, the surface under consideration

is a finite rough surface of length 2L with a flat surface (D(z) = 0) in the region

> L.

The scatter pattern for the full wave case is obtained by subtracting from the

approximate field (first-order field), the incident field and speculaxly reflected field

from an infinite flat surface. Therefore, the Kirchhoff scatter pattern in (C.22) must

be modified in order for a comparison to be made to the full wave solution. If the

original geometry (see Figure 2.1) is considered with an incident plane wave as the

excitation, the total field above the conducting surface is

The field scattered by a fiat metal plate of length 2L centered about the origin, Ef ,

is added to and subtracted from (C.23) to produce

The scattered field E8 can now be written as the sum of two fields, one scattered by

the finite rough surface in the region  < L denoted EL , and one scattered by the

flat surface in the region |z|> Ldenoted E°°. Thus,

Note that Ef -1-E" is the field specularly reflected from an infinite fiat conducting

surface which is designated E. The field needed to calculate the scatter pattern Esp
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is equal to the total field minus the incident and speculaxly reflected fields, Le.,

The scatter pattern for E L is given in (C.22) and the scatter pattern for E1 is

obtained by setting D 0 = 0 in (C.22). Therefore, the scatter pattern obtained using

the Kirchhoff approximation for the geometry in Figure 2.1 is



APPENDIX D

FIRST ORDER PERTURBATION METHOD

The small perturbation method was first introduced in 1951 by Stephen 0. Rice

[25] for the solution of the problem of scattering of electromagnetic waves by slightly

rough surfaces. The solution is obtained by expanding the scattered field in a pertux-

bation series and satisfying the boundaxy conditions to the first-order. In the afore-

mentioned paper by Rice, the solution is formulated for the three-dimensional case,

with the roughness on a finite patch. The solution for the two-dimensional case

can be constructed from the three-dimensional solution by restricting the source

and observation points to the xz-plane (see Figure D.1) and using the 2 — D

Figure D.1 Scattering geometry for a two-dimensionally rough surface.

Green's function to obtain the far field. However, it is instructive to obtain the two-

dimensional solution by assuming no y dependence fxom the outset. In this appendix,

the 2 — D analysis will be performed for the TE case.
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If the suxface is taken to be a one-dimensionally rough surface (see Figuxe 2.5)

with height D(z), the conditions under which the perturbation method is applicable

can be written as

Since the TE case is being considered (E x = Ez = Hy = 0), Maxwell's equations

become

Take the same incident field as used in all

the previous methods, i.e.,

where i3 = k ip sin 00 and u0 = /c0 cos 00 . The field reflected by a smooth surface of

infinite extent is

The total field in the region above the rough surface x > D(z) is assumed to be

Since the rough surface is of finite length 2L, the scattered field can be represented

by a Fourier series in the z direction:
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provided the dimension L is taken to be large. Since .q satisfies the Helmholtz

equation, b(n; v) satisfies

For purposes of coefficient matching, the incident wavenumber g o is defined by the

integrer ii as

this means that 00 is restricted to discrete values, but as L becomes laxge can take

on any value.

It should be noted that (D.8a) contains only waves propagating in the +x

direction (outgoing) and not incoming propagating waves. As a result of this omission

(D.8a) is not complete and cannot be considered valid in the regions between the

peaks and valleys of the rough surface unless the incoming propagating waves are

added. However, numerical investigation[26] shows that as long as the slope of the

surface is small (<0.4) and the field is examined at a point sufficiently far from the

surface, (D.8a) gives a good approximation. The approximation that the scattered

field is represented by only outgoing propagating waves is the Rayleigh hypothesis.

The boundary condition that the tangent electric field be zero on the surface

is

and for the TE case becomes

Since a perturbation solution for slightly rough surfaces is sought, the small

parameter can be either the height or slope of the surface :
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In general, the surface normal, and hence the boundary condition in (D.11), is

expanded in powers of the small parameter e; however, for the TE case this is not

necessaxy. The Fourier coefficient in (D.8a) can also be expanded in a power series

in terms of s:

Note that for the case of a smooth flat surface (D(z) 	 0), the scattered field should

be zero; hence, it is at least of order s. Therefore, A2 ) is order s, 42) is order 62 ,

and so on.

The exponential involving x in (D.8a) is now expanded in a Taylor series about

x = 0, as is the incident plus reflected field (D.7):

The boundary condition (D.12) can now be written as

Keeping only terms up to 0(s):

The surface height is now expanded in a Fourier series:

and coefficients for each n, are equated, giving

remembering that
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The total field to order E becomes

The expression for the scattered far-field is obtained using the Helmholtz

integral (C.6), which for the case of a one dimensional surface with the electric field

equal to zero on the surface is

p and P0 are defined in (C.1) and (C.2), respectively. By using the asymptotic

expansion of the Hankel function and the parallel ray approximation (see Figure

C.2),

k • p0 = k0 D0 cos 0 + k0 z0 sin 0 (see (C.2) and (C.4b)) and D0 = D(z0 ). The normal

derivative of Ey can be calculated using the relation

Evaluating the factors in (D.27) on the surface x = D0 , z = z0 gives
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Since all the terms in the above expressions except the first one in (D.28a) axe at

least order E , only the first is kept, which from (D.23) produces

The exponential involving D0 is now expanded in a Taylor series, ignoring terms of

order greater than E , yields

The above expression is the field scattered by a finite metal strip of rough surface

as depicted in Figure C.1. In order to compare this result to the full wave result,

which is the field scattered by a finite rough strip surrounded by a flat plate, the field

scattered by a finite metal flat plate over |z| < Lneeds to be subtracted from (D.30)

(see Appendix C for a more detailed explanation). This is done by subtracting from

(D.30) the same expression with D 0 = 0. Thus,

Normalizing the field expression gives the scatter pattern:

The same procedure is performed to obtain the scatter pattern for the TM

case, which is



APPENDIX E

MATHEMATICAL APPENDIX

An integral of the following form axises from the procedure used to obtain (2.16)

Using relations found in Heitler [27], this integral is evaluated as follows:

The P/x is called the principal value of 1/x. When x 0 it behaves like 1/x, but for

x = 0, it vanishes. When multiplied by a function and integrated, it has the effect

of removing a small interval (—c, +c) symmetrically about x = 0, i.e.

The function 5(x) is the Dirac delta function which is undefined unless in the

integrand of an integral. It has the following properties

If the expression in (E.2) is combined in the proper way, improper integrals of the

sine and cosine functions are obtained, i.e.,
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If a > 0 and b > 0 then 6(a + b) = 0.

In order to find the far fields in Sections 2.1 and 2.2, the stationary phase

method is used, which is given by Felsen and Marcuvitz [4] to be

where Ω > 0, U(α) is the Heaviside step function which is zero for a < 0 and unity

for a > 0; Is is the contribution from the stationary-phase point, which is

and ire is the contribution from the endpoints, namely

The stationary point is the point at which q' (x3) = 0 and is assumed to lie within

the interval



REFERENCES

1. E. Bahar, "Electromagnetic wave propagation in inhomogeneous multilayered
structures of arbitrary thickness--full wave solutions," J. Math. Phys.,
vol. 14, no. 8, pp. 1030-1036, 1973.

2. W. J. Plant, "Comment on the full-wave controversy," J. Geophys. Res., vol. 96,
no. C9, pp. 17,105-17,106, 1991.

3. R. E. Collin, "Electromagnetic scattering from perfectly conducting rough
surfaces," IEEE Trans. Antennas Propag., vol. AP-40, no. 12, pp. 1466--
1477, 1992.

4. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. New York:
IEEE Press, 1994.

5. C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989.

6. E. I. Thorsos, "The validity of the Kirchhoff approximation for rough surface
scattering using a gaussian roughness spectrum," J. Acoust. Soc. Am.,
vol. 83, no. 1, pp. 78-92, 1988.

7. E. I. ThorFos and D. R. Jackson, "The validity of the perturbationapproximation
at 	 for rough surface scattering using a Gaussian roughness

spectrum," J. Acoust. Soc. Am., vol. 86, no. 1, pp. 261-277, 1989.

8. E. I. Thorsos and D. P. Winebrenner, "An examination of the 'full-wave' method
for rough surface scattering in the case of small roughness," J. Geophys.
Res., vol. 92, no. C9, pp. 17,107-17,121, 1991.

9. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from
Rough Surfaces. New York: Macmillan, 1963.

10. J. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces.
Philadelphia: Institute of Physics, 1991.

11. I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products. San Diego:
Academic Press, corrected and enlaxged ed., 1980.

12. A. Papoulis, Probability, Random Variables, and Stochastic Processes. New
York: McGraw-Hill, third ed., 1991.

13. M. Priestly, Spectral Analysis and Time Series, vol. I: Univariate Series.
London: Academic Press, 1981.

14, P. J. Davis and P. Rabinowitz, Methods of Numerical Integration. Orlando:
Academic Press, second ed., 1984.

110



111

15. E. I. Thorsos and A. Ishimaru, "An examination of the 'full-wave' method for
rough surface scattering," in National Radio Science Meeting, (Boulder,
Colorado), 1988.

16. E. Bahar, "Radio wave propagation over a rough vaxiable impedence boundary,
ii, application of full wave analysis," IEEE Trans. Antennas Propag.,
vol. AP-20, pp. 362-368, 1972.

17. E. Bahar and G. Rajan, "Depolaxization and scattering of electromagnetic waves
by irregulax boundaxies for arbitrary incident and scatter angles—full
wave solutions," IEEE Trans. Antennas Propag., vol. AP-27, pp. 214-
225, 1979.

18. E. Bahar, "Full-wave solutions for the depolaxization of the scattered radiation
fields by rough surfaces of arbitrary slope," IEEE Trans. Antennas
Propag., vol. AP-29, pp. 443-454, 1981.

19. E. Bahar, "Full-wave solutions for the scattered radiation fields from rough
surfaces with arbitrary slope and frequency," IEEE Trans. Antennas
Propag., vol. AP-28, no. 1, pp. 11-21, 1980.

20. R. E. Collin, "Full wave theories for rough surface scattering: An updated
assessment," Radio Science, vol. 29, no. 5, pp. 1237-1254, 1994.

21. E. Mendez and K. O'Donnell, "Observations of depolarization and
backscattering from Gaussian random surfaces,"Opt. Commun.,vol. 61, pp. 91-

95, 1987.

22. E. Bahar and M. Fitzwater, "Depolarization and backscatter enhancement in
light scattering from random rough surfaces: Compaxison of full-wave
theory with experiment," J. Opt. Soc. Am., vol. A Opt. Image Sci., pp. 33-
43, 1989.

23. A. G. Voronovich, Wave Scattering from Rough Surfaces. Berlin: Springer-
Verlag, 1994.

24. J. Kong, Electromagnetic Wave Theory. New York: Wiley, second ed., 1990.

25. S. 0. Rice, "Reflection of electromagnetic waves from slightly rough surfaces,"
Commun. Pure Appl. Math., vol. 4, pp. 351-378, 1951.

26. L. Fortuin, "Survey of literature on reflection and scattering of sound waves at
the sea surface," J. Acoust. Soc. Am., vol. 50, pp. 1209-1228, 1970.

27. W. Heitler, The Quantum Theory of Radiation. New York: Dover, 1984.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Formulation
	Chapter 3: Accuracy Check for the First Order Field
	Chapter 4: Analytic Comparison to Other Methods
	Chapter 5: Statistical Analysis
	Chapter 6: Numerical Results
	Chapter 7: Conclusion and Suggestions
	Appendix A: Stochastic Processes
	Appendix B: Bahar'S Full Wave Method
	Appendix C: Kirchhoff (Physical Optics) Method
	Appendix D: First Order Perturbation Method
	Appendix E: Mathematical Appendix
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)




