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ABSTRACT

INVESTIGATION OF DYNAMIC FRICTION IN LUBRICATED SURFACES

by
Hanuman Rachoor

The research reported in this dissertation is concerned with the development of

friction models for lubricated contacts. A few analytical models have been developed to

investigate the friction under dynamic velocity conditions. In this study, two different

tribological situations such as conformal and non-conformal contacts have been chosen.

Friction modeling covers boundary, mixed and full fluid film friction regions. Anew

theory based on the elastic properties of the surface materials, and fluid film properties of

the lubricant at the contact has been developed to determine the dynamic friction in

boundary, mixed and full hydrodynamic lubrication regions. In the full fluid film

lubrication region, friction has been determined from the lubrication principles based on

the tribological situation, i.e., hydrodynamic lubrication theory for a short journal bearing

and elastohydrodynamic lubrication theory for a line contact.

A conformal contact formed by a short journal bearing operating in the region

where hydrodynamic lubrication theory is valid has been considered to develop a model.

The model is simulated for unidirectional as well as bi-directional sinusoidal velocity

oscillations for various frequencies. Simulation resulted in a phase lag in the friction and

hysteresis in friction versus velocity (f vs U) curves. The results obtained for uni-

directional velocity oscillations indicate qualitative agreement with experimental work on

lubricated line contact by Hess and Soom (1990). Results for bi-directional oscillations

also show phase lag in friction and similar hysteresis in f vs U curves. In addition to the

hysteresis, results for the bi-directional velocity oscillations show a discontinuity in friction

at velocity reversals. These results have been verified experimentally.

A special apparatus to measure the friction has been designed and built by using a

sleeve bearing. Experiments have been conducted to measure friction under various

velocity conditions, and the results have been used to determine the coefficients required

to simulate the analytical model. The analytical model has been simulated for the above



coefficients and the results have been compared with the friction measurements. The

comparison shows similar hysteresis in f vs U curves for uni-directional and bi-directional

velocity oscillations. However, the friction behavior of the apparatus during bi-directional

oscillations differs in the magnitude of the discontinuity (step function) at velocity

reversals.

The above analytical friction model developed for the hydrodynamic short journal

bearing has been extended to investigate the effect of resisting forces on the dynamic

friction behavior at low speed. Resistance forces include sliding friction as well as the

presliding friction Dahl effect. The Dahl effect is due to elastic deformation of the

compliance in the system before the force reaches the breakaway magnitude when sliding

initiates. In this study, stiffness of the asperities as well as elastic support have been

considered. Simulation results of the model for uni-directional velocity oscillations are in

qualitative agreement with earlier experimental work. Simulation of the model for bi-

directional velocity oscillations shows that the discontinuity at velocity reversals has been

replaced by a line with slope. This work indicates that the stiffness of the elastic

compliance can play a significant role in replacing the discontinuity.

The above concepts of friction modeling has been extended for a non-conformal

contact formed with a cylindrical surface sliding over a flat surface operating on

elastohydrodynamic lubrication theory. In this model, elastohydrodynamic lubrication

theory has been used to determine the friction in full fluid film region. Simulation results

of this model for uni-directional as well as bi-directional sinusoidal velocity oscillations

indicate a similar phase lag in the friction and hysteresis in f vs U curves as observed in

the earlier models.

Results of the present investigation indicate that the instantaneous friction is not

only a function of the instantaneous velocity, but it is also a function of previous velocity

or velocity history. These models can be improved with the aid of more experimental

work. Also, these models can be extended for stick-slip analysis and for friction

compensation.
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NOMENCLATURE

a	 semiwidth of Hertzian zone
C	 radial clearance in the journal bearing
e	 eccentricity
eb	 eccentricity at the transition from boundary to hydrodynamic region
e tr	 eccentricity at the transition from mixed to hydrodynamic region
E	 equivalent modulus of elasticity
F	 external force

friction force
f	 friction coefficient
f„, 	 Coulomb's friction coefficient
h	 film thickness
h„, 	 minimum film thickness
ho 	central film thickness in the Hertizian zone of elastohydrodynamic line contact
ht,.	 film thickness at the transition from mixed to fully developed fluid film lubrication

(hydrodynamic/elastohydrodynamic region)
hb 	film thickness at the transition from boundary to elastohydrodynamic region

Ieq	 equivalent moment of inertia of the sleeve system
J J

2
 J 

2
 integrals defined in Equations (2.23-2.25)

k	
1 

torsional stiffness of the bearing support
K(s) stiffness of contact between asperities
ko 	 constant coefficient of asperities' stiffness
Kn 	stiffness of surface asperities in the elastohydrodynamic line contacts
L 	 length of the sleeve
m 	 mass of journal or roller
M.	 resistance torque between the journal and the sleeve
Ms 	reaction torque between the structure and the sleeve
0, 0 sleeve and journal centers respectively (Figure 2.1 and 3.1)
p 	 pressure in the contact (hydrodynamic/elastohydrodynamic)
R 	 radius of cylinder or roller or journal
t	 time
U surface velocity of sliding surface (cylinder/roller/shaft)
Ub	 steady sliding velocity of sliding surface at transition from boundary to full film

lubrication region (hydrodynamic or elastohydrodynamic region)
Ut,..	 steady sliding velocity of sliding surface at transition from mixed to full film

lubrication region (hydrodynamic or elastohydrodynamic region)
✓ radial component of the journal surface velocity (squeeze action against the y

direction Figure 2.1)
W	 bearing load capacity, gr,„ Tfy components ( Figure 2.1 and Figure 3.1)
We 	elastic reaction force at a contact between surfaces of journal and sleeve

xv



Wh 	hydrodynamic oil film force in the journal bearing

w 	 load capacity of the elastohydrodynamic line contact
We	 contact force between the asperities of elastohydrodynamic line contact
ws 	steady elastohydrodynamic load in the elastohydrodynamic line contact
wd 	unsteady elastohydrodynamic load in the elastohydrodynamic line contact

a 	 dimensionless frequency ratio or frequency of velocity oscillations
eccentricity, e/C, so. are sb are the magnitudes at steady velocities Ufr and Ub

pressure viscosity coefficient

deformation of surface asperities at the contact surface
A	 a factor defined in Equations 2.4, 5.10
v	 Poisson's ratio
77, 770 viscosity of lubricant, and viscosity at zero absolute pressure in

elastohydrodynamic line contact

0	 rolling to sliding ratio
lc,	 dimensionless stiffness of surface asperities in elastohydrodynamic line contact

1c(8), KnN normal stiffness at the contact between the asperities in hydrodynamic contact

Ico	 constant coefficient of asperities' stiffness
Kt 	 equivalent torsional stiffness due to the elastic shear of the surface asperities

dimensionless time, cotrt

Co	 attitude angle (Figure 2.1 and Figure 3.1)
0 	 angular coordinate (Figure 2.1 and Figure 3.1)
O. 0s rotation angle of the journal and sleeve respectively

O.'	 initial condition used for O. when the presliding mode is restored.1
0.) 	 amplitude of velocity oscillations of the journal

cob 	steady angular velocity of journal at transition between boundary and

mixed lubrication
cos 	angular velocity of the sleeve

co •	 angular velocity of the journal; cot, the transition value

viscosity of the lubricant in hydrodynamic contact of journal bearing
/2	 frequency of journal oscillations rad/sec

Notations

()	 dimensionless
06, magnitude at the transition between mixed and boundary lubrication, at steady

speed.
0b 	magnitude at the transition from mixed to boundary lubrication, at steady speed

O, ( )first and second derivatives with respect to time.
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PREFACE

Friction is present in all systems incorporating parts with relative motion. In many

mechanical systems, friction is highly desirable as it enhances the performance, such as in

clutches, brakes etc. But, in certain electro-mechanical systems such as in robots and

tracking devices, friction is highly undesirable because it curtails the precision in motion.

Presence of friction in such precise motion systems can cause limit cycles (known as

"stick-slip" phenomenon) leading to instability in the system, or hang-off from the desired

location. Therefore, friction is an impediment in closed-loop control systems requiring

precise motion.

Friction can be reduced by use of passive techniques (such as air bearings,

magnetic bearings, and improved lubrication). But, these passive techniques are

expensive, cumbersome, and sometimes are not practical. Therefore, active techniques

such as friction cancellation are desired to overcome the effects of friction. Model-based

friction compensation is one of the important active methods. Therefore, in order to apply

active techniques of friction cancellation, analytical models are required.

The present research work is a part of the major NSF (National Science

Foundation) sponsored project undertaken by a team led by Dr. Bernard Friedland,

Distinguished Professor of Electrical Engineering, and Dr. Avraham Harnoy, Professor of

Mechanical Engineering. In the present research, analytical friction models for two

different tribological situations are presented. Simulation results of the model are

compared with experiments. The following paragraph describes the contribution made by

the author for this project.
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The author has developed computer programs to simulate the dynamic friction

models of Hamoy and Friedland (1993) and Hamoy et. al (1994) as discussed in chapters

2 and 4. The author has participated in developing and building a friction measurement

apparatus. The author compared experimental and theoretical dynamic friction which

allowed to draw important conclusions about the dynamic friction as discussed in chapter

3. Also, the author has participated in analytical derivation of the friction model for a non-

conformal contact H. Rachoor and A. Hamoy (1995). Author developed computer

programs to simulate this model as discussed in chapter 5. The dissertation is organized

as follows:

Chapter 1: A brief introduction on research in friction including scientific and historic

background.

Chapter 2: Development of an analytical model for a conformal contact formed by a

hydrodynamic journal bearing based on hydrodynamic lubrication theory.

Chapter 3: Development of the friction measurement apparatus, and experimental

verification of the analytical model of the journal bearing model.

Chapter 4: Extension of the journal bearing model to analyze the resisting forces such as

presliding friction (Dahl effect).

Chapter 5: Extension of the concept developed in the Chapter 2 to a non-conformal

contact (elastohydrodynamic line contact) based on elastohydrodynamic

lubrication theory.

Chapter 6: Conclusion of the present research work including recommendations for

further research.
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CHAPTER 1

FRICTION: A PHYSICAL PHENOMENA

Friction is an important physical phenomenon and is experienced by everyone. Friction is

the principle of operation in many mechanical systems. But in most mechanical systems

involving control applications, presence of friction is an impediment as it adversely affects

the accuracy, precise motion, and stability. Particularly, friction study is very important in

closed-loop control systems.

1.1 Background

Owing to significant adverse effects of friction on control systems, many scientists are

focusing their attention to offer some solutions for the problems associated with the

friction and its compensation. The monograph of Armstrong-Hélouvry (1991) indicates

that Leonardo Da Vinci is the first researcher who studied the friction phenomenon in

1452. In his work, Da Vinci described friction as a force independent of the contact area,

opposite to the motion and proportional to the surface force. Amontos rediscovered the

friction phenomenon in 1699, and later Coulomb (1785) developed a friction model

(Figure 1.1a). All these investigations describe friction for non-zero velocity conditions

known as kinetic friction. Friction near zero velocity was first studied by Morin (1833),

and is known as static friction. In 1866, Reynold described viscous friction which is

present in a lubricated contact. Combination of kinetic, static, and viscous friction models

constitutes the basic steady friction model (Figure 1.1b). Finally, in 1902, Stibeck had

given a better explanation for the static and kinetic friction at low velocities (Figure 1.1c).

1



Figure 1.1 Friction models (friction force, Ff versus velocity, U curves) (a) Coulomb

friction model, (b) static + viscous friction model and (c) static + viscous + Stribeck
friction model.

During the 20th century, a systematic study of friction and wear evolved into the field

called tribology. The traditional goals of tribology are to perceive friction phenomenon in

respect of surface topography, and to develop better lubricants for effective friction

minimization.

After World War II, a theoretical approach to understand the friction phenomenon

in control systems begun. Theoretical models based on mathematics, physics, and

experiments have been developed to analyze friction behavior.

1.2 Friction Modeling

Most of the moving components of mechanical systems are lubricated with liquid or solid

lubricants. The main purpose of lubrication is to minimize the friction and reduce the

wear of the mating parts. Lubricants provide a barrier between the sliding surfaces, so



3

that sliding friction is replaced by viscous friction of a lower magnitude. The fluid barrier

in the load bearing interface is maintained by forcing the lubricant under pressure. There

are two techniques to perform this lubrication process, known as hydrostatic and

hydrodynamic lubrication. Hydrostatic lubrication is complex, and not applicable to many

transmission devices. Hydrodynamic lubrication is simple, but it starts working only after

some minimum velocity. At or below this velocity, there is no fluid film, but there is solid-

to-solid contact.

Figure 1.2 Topography of surface contacts. (a) Conformal contact and (b) Non-
conformal contact.

Even though the hydrodynamic lubrication is simple, its operation varies with the type

of surface contact between the mating surfaces. According to the surface topography,

there are two types of surface contacts formed between the mating parts, conformal and

non-conformal contacts. In conformal contacts (Figure 1.2a), geometry of the mating
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parts determines the apparent area of the contact, and these types of contacts are known

as area contacts. Journal bearings and machine tool guideways are two examples of

conformal contacts. In contrast, in non-conformal contacts (Figure 1.2b), the mating parts

don't have a matching surface profile, and these contacts are known as line or point

contacts, depending on the surface profile and type of surface orientation. Roller bearings,

gears, and cams are examples of non-conformal contacts. The present research deals with

both types of contacts.

Prior research in the science of tribology led to better visualization of the

hydrodynamic performance of full lubrication under steady velocity. Friction modeling

involves establishing a relation between the system parameters, operating conditions, and

friction. Particularly, the relation between friction versus velocity is considered as an

important factor in modeling.

1.2.1 Friction as a Function of Velocity: Lubrication Regimes

Regimes of lubrication can be explained from the generalized Stribek (1902) curve as

shown in Figure 1.3. There are four regimes of lubrication which are a function of

operating velocity. The following is a brief discussion of the friction regimes. Armstrong-

Helouvry (1991) presented a detailed description of these regimes.

1.2.1.1 Static Friction: Friction at zero velocity is the first regime which is known as

static friction. The static friction is due to the elastic deformation as well as plastic

deformation of the fluid film and asperities at the contact junctions as a result of external
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load. Dahl (1968, 76, 77) analyzed the static friction as spring-like behavior of the surface

asperities at the contact.

U

Figure 1.3 Stribeck curve, friction Force, F versus steady velocity, U curve
and various lubrication regimes.

1.2.1.2 Boundary Lubrication: In this regime, the velocity of sliding surfaces is not

adequate to generate a fluid film in the contact. Therefore, viscous lubrication does not

play any role in this regime. An important aspect of this regime is shearing in the

boundary lubricant due to the solid-to-solid contact. Based on the phenomenon of solid-

to-solid contact and shearing of boundary lubricant, it is assumed that the friction is higher

than the fluid lubrication.

1.2.1.3 Partial Fluid Lubrication: In this regime, sliding/rolling motion of the contact

surfaces bring the lubricant into the load bearing region. Thickness of the film depends on

the velocity of the sliding surfaces and viscosity of the lubricant. If the film thickness is
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thinner than the height of the asperities, then solid-to-solid contact is formed, and the load

is partially carried by asperities and partially by fluid film leading to partial fluid film

lubrication. In contrast, if the fluid film is thicker than the asperities, then the two surfaces

are separated completely by the fluid film, and the load is completely carried by the fluid

film. Therefore, the partial fluid lubrication is one of the challenging friction regimes for a

control engineer for controlling the purposes.

1.2.1.4 Full Fluid Lubrication: At sufficiently high operating velocities, the surface

asperities are completely submerged by the thick fluid film, and the sliding/rolling surfaces

are completely separated, and the load is completely supported by the fluid film.

Hydrodynamic and elastohydrodynamic lubrication are two forms of full fluid lubrications.

The former is for a conformal contact and the latter is for a non-conformal contact. In

order to reach this regime, the fluid film thickness should reach a critical value of the film

thickness, which depends upon the viscosity, load, and velocity. The magnitude of the

velocity at the onset of full fluid lubrication corresponding to critical film thickness can be

referred as critical or transition velocity for the given load and viscosity of the fluid film.

1.2.2 Friction as a Function of Steady Velocity

Stribeck friction is one of the most important friction models at steady velocity. To date

there is no single theoretically investigated mathematical model available to explain the

entire friction behavior. The shape of the friction-velocity curve (f — U) depends upon

the degree of boundary lubrication. The research work of Bell and Burdekin, (1966, 969)

and Hess and Soom (1990) indicates an f — U curve as shown in Figure 1.4, which has

been obtained for little or no lubrication condition. Fuller (1978) offers a very good



explanation of the boundary lubrication. Hess and Soom (1990) developed a model to

simulate and analyze this kind off — U relationship. Bo and Pavelescu (1982) developed

an exponential model to explain this kind of f — U curve. Several researchers: Bo and

Pavelescu (1982), Fuller (1984), Armstrong-Hélouvry (1988, 89, 91) worked to

investigate the correct exponential index to fit these models.

7

	 Way Lubricant

Limited Boundary Lubrication

Substantial Boundary Lubrication

U

Figure 1.4 Friction force, F versus steady velocity, U.
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1.2.3 Friction as a Function of Unsteady Velocity

The above paragraphs explain friction phenomenon under steady velocity conditions.

Under dynamic velocity conditions, Hess and Soom (1990), Dupont and Dunlap (1993),

Bell and Burdekin (1966, 1969) and Rabinowicz (1951) observed a phase lag in friction

as indicated by hysteresis in friction versus velocity curves. At low frequency velocity

oscillations, friction lag is present in partial fluid lubrication regime, where as at high

frequency velocity oscillations, friction lag is present in partial fluid regime as well as in

the full fluid lubrication regime. Armstrong-Hélouvry (1991) explains the friction lag as a

pure delay in the onset of the destabilizing drop in friction.

Presence of the friction lag has been investigated experimentally by several

researchers [Sampson et al. (1943), Rabinowicz (1958, 1965), Bell and Burdekin (1966,

1969), Walrath (1984), Rice and Ruina (1983) and Hess and Soom (1990)]. But there is

no theoretical explanation for this phase lag based first principles. Hess and Soom (1990)

observed hysteresis in friction for oscillating velocity conditions, for a lubricated line

contact, and also measured friction lag for different load and lubricant combination. They

observed that the lag was increasing with the contact load and lubricant viscosity. They

also observed that the lag was independent of frequency of oscillations. Based on the

experimental results, Hess and Soom (1990) offered an analytical with a correction to

include the phase lag between friction and velocity oscillations. The friction models of

Canudas et al (1993) also show hysteresis in friction-velocity curves. Dupont and Dunlop

(1993) extended the work of Hess and Soom (1990) for a point contact at very low

velocities, and their results show hysteresis in friction-velocity curves as observed by Hess
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and Soom (1990). A detailed description of the research on friction is presented by

Armstrong-Helouvry (1991).

1.3 Presliding Friction (Dahl Effect)

At low velocities, many systems experience several types of resistance forces to their

motion. Sliding friction and presliding elastic reaction are some of the resistance forces

present in sliding contacts. The presliding elastic reaction is also known as Dahl effect.

The Dahl effect is an elastic force present in the system due to compliance in the system,

and this force reaches the break-away magnitude before the on-set of sliding. This is an

important aspect for the systems working in closed-loop control, particularly, for precise

motion control systems. The presliding friction is dominant when the operating velocity

oscillates around zero or the motion of the system is not uni-directional. This Dahl effect

is predominant when the system is in transition from rest to motion. The available friction

models described by Armstrong-Hélouvry (1991) are based on steady f — U curve,

Stribeck (1902), and they do not address important phenomena such as friction function

under dynamic velocity conditions, and elastic resistance forces due to the shear

deformation of the surface asperities at the commencement of sliding. Dahl (1977)

measured friction in bearings, and his model exhibited dynamic effects. Recently, Canudas

de Wit et al. (1993) offered a couple of friction models. One of these models is modified

version of Dahl model while the other model is improved version of Hess and Soom

(1990) model. These models cover the important aspects of dynamic friction: hysteresis in

friction under oscillating velocities, and presliding friction at zero velocity. These two

models were reduced to Stribeck curve at constant velocity. Experiments were conducted
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by Rabinowicz (1951) to measure the presliding elastic forces. He measured very small

presliding deformation between two steel surfaces, and these measurements show that the

presliding deformations are in the order of a few microns.

1.4 Present Investigation

According to the above discussion, the current friction models are empirical. These

models are function of the steady Stribeck curve and the models have been developed by

applying curve fitting techniques. However, closed-loop control systems often involve

time-variable velocity oscillating at small amplitudes around zero velocity. In such cases,

the steady friction models are inadequate for two important reasons. First, the friction is

not a only a function of the instantaneous velocity, but also entails dynamic effects such as

memory function of velocity history. Second, near zero velocity, there are significant

elastic effects of surface asperities and supporting structure. Since the empirical models

do not predict these dynamic effects, there is a need for the friction models to be

developed from the first principles. Analytical models based on physical principles will

predict the behavior of the dynamic system when compared to the empirical models

developed from the steady models by curve fitting. Therefore, there is a need to develop

analytical models based on physics of the system.

Present study is a part of a sponsored project focused on estimation and

compensation of friction for precise motion control, and is investigated by a team

comprising of faculty and students and of electrical and mechanical engineering

departments at New Jersey Institute of Technology . The primary goal of the project is to

estimate and compensate friction in closed-loop control systems. Friction can be
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estimated in several ways, one important and useful method is model-based friction

estimation. In this method, analytical models are developed to predict friction from the

physical principles of friction processes.

The main objective of the present study is to develop analytical friction models

from physical principles, and verify these models by appropriate experiments. As most of

the systems operate in lubricated condition, the study is focused on developing friction

models for lubricated surfaces. With this goal, analytical models to capture the friction

behavior under dynamic velocity conditions have been developed from physics of the

mechanism for two different tribological situations. Dynamic friction results obtained for

these analytical models have been compared with the earlier experimental work as well as

with friction measurements performed on a special apparatus developed for this

comparison purpose.

The research discussed in this dissertation is an effort of the team including the

author, and it is difficult to distinguish precisely the boundaries of each individuals' effort.

In order to make the dissertation to be self contained, the contribution of the entire team is

discussed. The contribution of the authors' work is as follows:

• The author has developed computer programs to simulate the dynamic friction

models of Harnoy and Friedland (1993) and Harnoy et al. (1994) as discussed in

chapters 2 and 4.

• The author has participated in developing and building a friction measurement

apparatus.
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• The author has compared experimental and theoretical dynamic friction which

allowed to draw important conclusions about the dynamic friction as discussed in

chapter 3.

• Also, the author has participated in analytical derivation of the friction model for a

non-conformal contact H. Rachoor and A. Harnoy (1995). Author developed

computer programs to simulate this model as discussed in chapter 5.

The following is the description of contribution of the individuals involved in the

team including the author:

• Harnoy and Friedland have developed an analytical model for a short journal

bearing operating on hydrodynamic lubrication theory [see Harnoy and Friedland

(1993)]. The author has been actively involved in performing the simulations of

the model. Subsequently, in this study, the model has been verified experimentally.

• The research team has developed an apparatus to measure friction in the lubricated

surfaces. The author of this dissertation participated in the development of the

experimental apparatus along with other graduate students, Aly Atif, Jayesh Amin

and an undergraduate student, Richard Semenock. The analytical model of Harnoy

and Friedland (1993) is verified conducting friction tests. The apparatus is

described in this dissertation. Experimental results have been used for estimating

the parameters required for simulating the analytical model, and comparing with

simulation results of the analytical model for these data.

• A friction model to include the resistance forces is developed by extending the

friction model of Harnoy and Friedland (1993). The objective of this study is to

investigate the effect of different elastic resistance forces such as sliding friction,
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presliding friction Dahl effect on friction behavior. In this model, attention is

focused to evaluate the effect of elasticity of the surface asperities and the elasticity

of the bearing support on friction behavior. The model can be simulated for

different stiffness values of surface aperities as well as bearing support.

• Friction model for a non-conformal lubricated contact based on

elastohydrodynamic lubrication theory is developed. A lubricated line contact

formed by conformal surfaces such as roller bearings, gears is used in this

investigation. The model uses all the techniques used by the earlier hydrodynamic

model except the principle used in the full fluid film lubrication. In this model,

elastohydrodynamic theory is used for modeling the friction in full fluid film

lubrication region. The model is represented by a single fourth order non-linear

differential equation and a friction equation.



CHAPTER 2

DYNAMIC FRICTION MODEL FOR A LUBRICATED
CONFORMAL CONTACT

2.1 Introduction

In general, under steady conditions, the friction force between two sliding surfaces is a

function of the relative velocity. But, under unsteady or dynamic conditions prevailing

because of variations in velocity with time, the instantaneous friction is a function not only

of the instantaneous velocity but also is a function of the velocity history. Dynamic

conditions may be due to oscillatory motion or motion of constant acceleration.

The study is focused on developing an analytical model to investigate friction in

the lubricated conformal contact formed a short journal bearing. The lubrication theory

chosen for this bearing is hydrodynamic lubrication. The friction model is developed from

the fundamental principles of physics based on lubrication theory and elastic properties of

the metals in contact. Friction for steady and unsteady conditions can be simulated with

aid of this model.

This study is extension of previous work, with the aim of investigating the physical

mechanism for a phase-lag in friction shown in f —U curves in lubricated surfaces. The

development is based on first principles, and the model can predict the magnitude of the

phase-lag between friction and velocity as well as hysteresis in friction. In addition, the

model also predicts the conditions under which the steady curve, combined with a time

lag, can be used as a model for dynamic friction. The result of the present investigation is

dynamic model which can be expressed by a set of differential equations, relating the

friction force to the time varying velocity of the sliding surfaces.

14
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According to the classical hydrodynamic lubrication theory, film thickness is

function of velocity. Full fluid film lubrication, in this case hydrodynamic lubrication

commence only when the sliding velocity crosses a critical velocity. Above this critical

velocity value, a lubrication film thicker than the size of the surface asperities is generated,

and full fluid film lubrication is maintained. In the fully developed hydrodynamic

lubrication regime, only viscous friction force is present and it increases with velocity since

the shear rates and shear stresses are proportional to the sliding velocity.

According to the steady friction versus velocity (f — U) curve of Stribek (1902),

for the velocities below the critical velocity, there is mixed lubrication (friction) region,

where the thickness of the lubrication film is less than the maximum height of the surface

asperities. Under the action of external load on two sliding surfaces, there is a contact

between the surfaces, resulting in elastic as well as plastic deformation of the asperities at

the contact. In the boundary lubrication region, load is completely carried by the

asperities, and in the mixed region, the load is carried partly by fluid film and partly by the

deformed asperities. The film thickness in the contact increases with velocity; therefore,

as the velocity increases, a larger fraction of the external load is carried by the fluid film.

The result is that in the mixed region, the friction decreases with increase in the velocity

because the viscous friction is lower than the mechanical friction at the contact between

the asperities.

The above discussion shows that the friction force is primarily dependent on the

lubrication film thickness which in turn is an increasing function of the steady velocity.

However for dynamic velocity, the relation between film thickness and velocity is not so

simple. The following analysis attempts to capture the physical phenomena when the
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lubrication film undergoes changes during owing to dynamic velocity. As a result of the

damping in the system and the mass of the sliding body, there is a time delay to reach the

film thickness that would be generated under steady velocity. The research reported in

this chapter has been published already [see Harnoy and Friedland (1993)]. The author of

this dissertation actively participated in the simulation of the model and computer

programming. Since experimental verification of this theory is one of the objectives of the

present study, the theory is presented in the following sections.

2.2 Theory for Model

In the present study, a short hydrodynamic journal bearing has been selected for friction

modeling. The main reason is its wide use in machinery , steady in the fully developed

hydrodynamic film region and it is well understood.

Consider a short journal bearing operating on hydrodynamic lubrication theory is

under steady conditions as shown in Figure 2.1. Under steady condition, all the variables

such as external load and operating speed are assumed to remain constant with time.

During this steady condition, the journal center 0 1 does not move relative to the bearing

sleeve, and the friction between the journal and sleeve remains constant. This steady state

situation prevail and continue to prevail after a transient interval having damping the initial

motion of the journal center, if any. If there is any motion in the journal center 01 , there

exists an unsteady or transient condition in the system. The motion of the journal center is

due to the variations in the fluid film thickness and friction as a result of unsteady velocity

conditions. This phenomenon explains the dynamic effects of unsteady friction.



In the development of the present model, relatively a new approach has been

adopted by Harnoy (1993) to model friction in the steady state mixed friction region in

which there is a contact between the surface asperities of the sliding surfaces. The

asnerities are assumed to deform under the constant force and exert a reaction force

17
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The theory is based on the minimum film thickness, hm in the contact, see Figure

2.1. In the instant, when the minimum film thickness of lubrication, hm goes below a

certain small transition magnitude, kr , a part of the bearing load is carried by the reaction

force exerted by the deformed surface asperities in the contact. The reaction force,

between the asperities of the two surfaces, is assumed as an increasing function of the

elastic part of the deformation, 5, it is like the displacement of a support by a non-linear

spring.
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The magnitude of the elastic deformation S of the asperities is proportional to the

difference in transition and actual minimum film thickness,

	

= hfr — h. 	 (2.1)

The elastic reaction force, W exerted by the surface asperities can be obtained as,

	

= K(5)6'	 (2.2)

where K(S) is the equivalent stiffness of the surface asperities. The stiffness function

K(S) is a function of the shape of the asperities. The contact area between the surface

asperities increases with the load and deformations. Hence, K(S) must be an increasing

function of 8 .

According to theory of lubrication for a journal bearing, the deformation of

asperities, 5, can be represented in terms of eccentricity, e, thereby relative eccentricity,

6= e I C where C is the average radial clearance in the bearing (see Figure 2.1). With

this observation, the reaction force, We can be expressed in terms of the relative

eccentricity. Here onwards, the term "eccentricity" means "relative eccentricity". It is

assumed that there exists a relative eccentricity of transition, s fr , from mixed to

hydrodynamic lubrication. At the point that the eccentricity falls below this transition

value, that is e <6„, contact and elastic reaction initiated. At the instant that the

eccentricity reaches the transition value, that is c = 6„, the minimum lubricant film

thickness reaches to its transition value, h„, = h„. The magnitude of eccentricity at the

transition, 6„ can be calculated from the Stribeck curve at the transition from mixed to

hydrodynamic lubrication for any given bearing geometry, lubricant viscosity, and the
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velocity at the transition, U„ . The deformation (5* can be replaced by C(6. — E t,,) and the

equation for the elastic reaction is,

We = K(s)C(e — 6 .)A 	 (2.3)

where K(8) = K(e) and A is defined as

11,	 if (e — 6 ) >= 
tr

(0,	 if (a- — 6 ) <0 	 (2.4)
tr

The total bearing load capacity W in the mixed region, can be obtained applying

vector summation of the elastic reaction We and the hydrodynamic oil film force due to

viscous friction, TY; :

4r Tike fri"; 	 (2.5)

The friction force Ff , in the bearing is in the tangential direction, and it is obtained

by summing up of the mechanical and viscous friction forces in the contact. The

mechanical part of the friction force is due to the deformation of the asperities at the

contact, and it is assumed to follow the Coulomb's friction law. According to Coulomb's

friction law, the friction force at the contact is proportional to the normal load. Further, it

is also assumed that, in the mixed region, the density of surface asperities is sufficiently

low, and their influence on the flow of the lubricant and hydrodynamic performance is

insignificant.

With the above assumptions, Harnoy and Friedland (1993) derived an equation for

the total friction force, Ff as,

Ff ✓ mic(e)C(e fr )sgn(U)A + L'aR 	271. U
C (1— 8 2 ) 0.5

(2.6)



(2.7)sgn(U) = t1- 1 U < 0
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where fn, is the Coulomb's friction coefficient, L, R are the length and radius of the

bearing (Figure 2.1), U is the circumferential velocity at the surface of the rotating

journal, p is the lubricant viscosity, and sgn(U) is the sign of the velocity, U, which is

defined as:

The hydrodynamic viscous friction force taken in the Equation 2.6 is represented

by the short bearing formula Pinkus (1961), and Szeri (1980). The lubricant viscosityp in

Equation 2.6 is assumed as a constant in the development of the present model for both

steady and dynamic conditions. Under dynamic conditions, s and U vary with time,

resulting in a time variable friction force, Ff The time variable friction coefficient of the

bearing f(t) is calculated as a ratio of the friction force, Ff and external load F ,

f() — f

2.3 Static Friction Model

A static friction model operating at a steady or constant velocity is developed for any

given constant values of the system. The development of the model involves in

determining the friction force. Following paragraphs explain friction modeling for any

given constant journal speed.

The relative eccentricity s of the journal bearing is determined from the load, F

and the reaction force W.. A set of equations relating the load, F on the journal bearing,

and the relative eccentricity, s have been derived for steady journal speed condition.

(2.8)



These equations are based on the hydrodynamic lubrication theory for a short journal

bearing derived by Dubois and Ocvirk (1953).
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F casco tc(e)C(e e „)sgn(U)A +
(1	

U
— 6 2 ) 2 C 2

71-62 43
F sinco 	

(1 — 6 2 ) 2 C 2

(2.9)

(2.10)

where co is the attitude angle as shown in Figure 2.1. The direction of the elastic reaction

force, W is along the symmetry line 00 1 , ( X direction) and is opposite to the direction

of the load component, Fx . The load component in X direction Fx (= F cos co) in

Equation 2.9 is obtained by summing up the hydrodynamic reaction force component, F,,

which is due to the fluid film pressure, and the elastic reaction force, We exerted by the

asperities at the point corresponding to minimum film thickness. The load component in

Y direction Fy (= F sin q)) in Equation 2.10 is equal to the hydrodynamic reaction force

component, F,, only, which is due to the fluid film pressure, and there is no contact force

in the Y direction. These two equations can be used to determine the magnitude of

unknown variables, 6 and co.

In the mixed region, (s > s tr ), for any steady velocity, U, the magnitude of

unknown variables, e and co can be computed by solving Equations 2.9 and 2.10 for any

given values for C, L, F and ic(s) . Thus the solution obtained for relative eccentricity,

s can be used to compute the friction force, Fj, using Equation 2.6 there by the friction

coefficient, f (t) from Equation 2.7 for any given values of R and . This methodology



(2.11)

(2.12a)

(2.12b)

can be applied to plot the Stribeck Curve for the mixed and hydrodynamic lubrication

regions.

For the purpose of simulation, the above equations have been transformed into

dimensionless form by introducing the following dimensionless parameters:
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C2 	C3 	UF = 	 3 F , 	 14s) = 	 Ic(s) 	 and	 U = 
,uU 	 ,uU ,L3 	U „tr

The following are dimensionless form of Equations 2.9 and 2.10:

F cosq, = k(s)(s — sr ) sgn(ü)46, + 0.5J12 sU

Fsinço = 0.5J11 eti

The integrals J11 and J12 used in the above equations are defined in the following

section. The above dimensionless equations can be applied to derive or plot the f —U

curve for any steady velocity in the mixed and hydrodynamic regions.

2.4 Dynamic Friction Model

Dynamic modeling involves computing the system parameters for dynamic or time variable

velocity conditions. In this section, a dynamic friction model has been developed by

incorporating the dynamic effects in the static model that has been developed in the

previous section. In order to develop a dynamic friction model, the hydrodynamic short

journal bearing theory is extended to include dynamic effects. In this study, the mixed and

fully developed hydrodynamic fluid film regions have been considered to include the

dynamic effects.

The friction model is developed by extending the assumptions of Dubois and

Ocvirk (1953) valid for a short bearing under steady speed. According to these



ire 3 )+ a (h
6 arc (h 	 zi +2Va (2.13)

23

assumptions, pressure gradients in the x (circumferential) direction are very small when

compared with gradients in z (axial) direction, and they are neglected (Figure 2.1). The

oil film forces are calculated only for the pressure distribution in the 0 < 9 < 7r region

only, because the pressure in this region is above atmospheric. The traditional

assumptions of Reynolds' classical hydrodynamic theory are extended. As mentioned

earlier in the previous sections, the lubricant viscosity p is assumed as a constant (at an

equivalent average temperature). The effects of fluid inertia are neglected, but the journal

mass is considered, since its magnitude is higher than the fluid mass.

The hydrodynamic pressure, P , for dynamic conditions is derived from the

following Reynolds' equation for a thin incompressible fluid film Szeri (1980) (co-

ordinates are shown in Figure 2.1):

where V is the radial velocity of the journal surface causing squeeze film action in the

direction opposite to the y direction. The right-hand side of Equation 2.13 can be stated

by the boundary conditions of the fluid film. Under dynamic conditions, the journal

center, 01 , does not remain constant but it is in motion. The surface velocity

components, U and V , of the journal are obtained by adding the velocity vectors of the

surface velocity relative to the journal center 01 (velocity due to journal rotation) and

velocity vector of 0 1 relative to 0 . The radial and tangential components of the velocity

of journal center are (de/dt and dcoidt ) respectively:

U = co R+ —de sin0 e—d9 cos0
dt 	 dt

(2.14)
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V = co .R—cl +-
de

cose+e 
dco
—sin0

dt 	 dt
(2.15)

The last two terms on the right-hand side of Equation 2.15 for velocity

component, V are negligible.

According to the assumptions of short bearing, the pressure gradient in the

x direction can neglected relative to the gradient in the z direction (refer left-hand side

terms of Equation 2.13). The Equations 2.14 and 2.15 for velocity components Uand V

are substituted into Equation 2.13, and integrated twice for pressure distribution, P, with

the following axial boundary conditions:

P = 0 at z = ± L/2	 (2.16)

Following is the pressure distribution, P , obtained for an unsteady, short

hydrodynamic journal bearing:

dco 	 2P = 3 'uL3 (co .6. sin	 26	 sin	 2 de cos 19) (1
	) 

2
–4z

4 C 2 	dt	 dt 	 h3
(2.17)

where h is the film thickness in the contact of the hydrodynamic journal bearing (see

Figure 2.1) and it can be expressed as a function of 0 as:

h = C(1+ cos 8) 	 (2.18)

The force components, Wx and Wy of the hydrodynamic oil film as shown in

Figure 2.1 are obtained by integrating the pressure in the converging clearance,

0 < t9 <7r ,
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L/2
= —2RS f P cos0 ch9 dz

0 0

r L/2

Wy = 2R P sin de dz
0 0

(2.19)

(2.20)

The above load capacity Equations 2.19 and 2.20 have been converted into

dimensionless form by substituting the pressure distribution, P , from Equation 2.17 and

film thickness, h , from Equation 2.18 into Equations 2.19 and 2.20, and integrating.

Following are the dimensionless form of Equations 2.19 and 2.20:

Wx = —0.5J12 8t7 + Ji2 80 + J22 k W(6)(e — 8, ) sgn.(U)A 	 (2.21)

Wy .0.5J11eu—J11so—J12 e 	 (2.22)

where the definition of sgn(U) is similar to the definition of sgn(U) as defined in

Equation 2.7, the variable A is already defined in Equation 2.4, and the integrals 	 :

r	 • 2sin 0 	 71-
J-11 = f (1+ 6 COS 0)3

de = 
2(1— 5 2 ) 3120

J12 

.1 sinOcose 	 —2s- 	
de = 	

J (1+ e cos 0) 3 	(1— 6'2 ) 20

yr
COS

2 0 	 n- (1+ 28 2 ) 
J22 7: f 	 de =

(1+ ecose) 3 	2 (1— 8 2 ) 5120

(2.23)

(2.24)

(2.25)

According to Newton's second law of motion, the resultant force of the external

load, F, and the of bearing force, W, accelerates the journal. The dimesionless form of
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the equations of motion of the journal in the radial and tangential directions, Xand Y as

shown in Figure 2.1 have been obtained by substituting the acceleration terms as:

Fx _ 	 tri( - so' )

Fy —W; = in-(60 +210)

where riz is the dimensionless form of the mass, m , which is defined as:

CU, 
=

peR2 
m

(2.26)

(2.27)

(2.28)

The motion of the journal or the locus of the journal center, 0 1 can be described by

the time variable parameters in polar coordinates, 6 and co as shown in Figure 2.1. Now,

substituting the components of the external load, Fx and Fy (Equations 2.12a-2.12b), and

the components of the bearing load capacity, W., and Wy (Equations 2.21-2.22), as shown

in Figure 2.1, into and Equation 2.27 and Equation 2.28, results in the following set of

differential equations, for s and co

F cos co = ic-(s)(s s„.) sgn(U)d — 0.5J12 sU + J12 60 + J22 e 	492)	 (2.29)

Fsinco = 0.5J1 1eU 
— J1160 — J12 e W1 (60 24)	 (2.30)

Solution of the above set of differential equations yields the time variable e , which

is used to compute friction force, Ff , by substituting it in Equation 2.6.
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Applying the dimesionless variables defined in Equation 2.11, friction force, Ff ,

expressed by Equation 2.6, and friction coefficient, f (t) expressed in Equation 2.7 can be

converted into the following dimensionless forms respectively:

Ff = 4,17(e)(E — 	 sgn(U)A + 
CR  27r (2.31)1,2	 _ 6) 03

f (T) = 	 = 	 (2.32)

Equations 2.29-2.32 represent the dynamic friction model for the conformal

contact formed by the short hydrodynamic journal bearing. These equations can be used

to determine the dynamic friction, f (r) , here after referred as f , for any dynamic shaft

velocity, U(t) .

2.5 Simulation of Friction Model

To analyze the performance of the friction model developed in the preceding sections, the

model is simulated for two different oscillating velocities, uni-directional and bi-directional

oscillations. In order to perform successful simulation, the following five dimensionless

constants of the bearing performance are necessary. Load on the bearing, geometry of the

shaft, viscosity of the lubricant, and density of the shaft are the determining factors for

these dimensionless constants. The five dimensionless constants listed in the following

Table-1 have been selected for the simulation, which are calculated from the steady

Stribeck curve, and other relevant information of the bearings and lubricants.



=100RC/ L2 = 0.01= 0.96 sb = 0.99 fm= 0.2

17 (6) = K 
6 — 6 

tr

6 — 6 tr (2.34)
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Table 2.1 List of dimensionless constants used in the simulation.

It is very important to note that while repeating the simulation, the dimensionless

load, F is not an independent constant, and it can be deduced from Equation 2.12 for any

given value e t, while, the dimensionless velocity, U = 1. In the example simulations,

the equation for dimensionless load (from Equation 2.12) becomes as:

F = 	 tr)2 + (0 .5J inr str) 2 = 153.8 (2.33)

where the J1 1 tr and J12tr are the magnitudes of J11 and J12 evaluated at s = s tr .

Now, the function representing the stiffness of the asperities in the contact it(s) is

increasing function of 6 , and it is assumed as a linear function of s according to the

following relation,

where 17 0 is a dimensionless spring constant equivalent to the stiffness of the asperities

and it is determined from the following relation:

F

(sb - 17.)
(2.35)
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where s b is the eccentricity at the border between boundary and mixed lubrication, [see

friction versus velocity curve in Stribeck (1902)], and it can be calculated from the journal

velocity, Ub , at this border line.

2.5.1 Simulation for Unidirectional Velocity Oscillations

Analysis of the friction model expressed by Equations 2.29-2.32 can be performed by

verifying its results with earlier results of similar work. In this study, the simulation results

of the present model have been compared with the empirical results of Hess and

Soom(1990). Hess and Soom conducted tests for dynamic velocity oscillations having a

unidirectional saw tooth wave form, oscillating between 0.01 and 1.0 m/s. Their study

was focused on non-stick conditions.

To secure accuracy and continuity in the solution, the model is simulated for a uni-

directional sinusoidal periodical velocity. The dimensionless dynamic velocity

U(z-) (here after referred as U) oscillates between 0.1 and 2.1, according to the following

relation:

U(z-) = 1.1+ sin(az-) 	 or 	 U (r) = 1.1+ sin(f2t) 	 (2.36)

where a is the dimensionless form of the frequency of velocity fluctuations, which is

defined as:

i-2a =
co

(2.37)
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where C2 is the frequency of the velocity oscillations, and co „ is the critical angular speed

of journal at the transition point.

Friction simulation have been carried by numerically integrating Equations 2.29

and 2.30. Fortran language has been used for numerical integration (see Appendix).

Later, special tools have been chosen for simulation. In the simulation, operating velocity

has been chosen to oscillate according the Equation 2.36. The transition parameters for

the simulation are determined from the operating conditions of bearings. The model has

been simulated for the conditions listed in Table 1 and Equations 2.33-2.36. The solution

of these equations (Equations 2.29 and 2.30) for the periodic velocity defined in Equation

2.36, yielded the periodic 6(0 . In the simulation, the initial values for 6, and have

been selected arbitrarily, and Equations 2.29-2.30 have been integrated over several cycles

until a periodic steady state solution is reached. Periodic steady state solution is that

solution in which the values of periodic e, and co repeat for each cycle. Thus the solution

obtained for e is substituted in Equations 2.31-2.32 to determine the periodic friction

coefficient, f . The results are presented in the form of f — U .

Simulations have been carried for different frequency of velocity oscillations, a,

different dimensionless journal mass, Tri , and different dimensionless load F . Dynamic

f — U curves are shown in Figures 2.2- 2.4. At low frequency of velocity oscillations,

(low a or SI), the f U plot reduces to the well known Stribeck curve, while at high

frequency the dynamic effects are more pronounced (see Figure 2.2). The simulation

results presented in the Figures 2.2-2.4 show that the differential equations representing



the friction model predict the existence of a phase shift between the velocity, U and the

friction coefficient, f . It can be seen from the plot of f versus U , the phase shift is

manifested as a hysteresis phenomenon as observed by Hess and Soom (1990).

31



Figure 2.4 Friction coefficient, f Vs journal velocity, U with U = 1.1+ sin ar, and

frequency ratio a= 0.1 for various dimensionless load, F with Wi = 100 .
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2.5.2 Simulation for Bi-directional Velocity Oscillations

In most of the precise motion systems, the operating velocity oscillates in two directions

passing through the zero velocity. Therefore, the model has been simulated for bi-

directional velocity oscillations. This kind of velocity oscillations are very common in

control systems. In this case, the dimensionless periodic velocity, U (r) oscillates

sinusoidally between -2.0 and 2.0 according to the following relation.

U (z) = 2 sin(ar)	 or	 U(z) = 2 sin(C2t)	 (2.38)

The simulation results for the velocity oscillations expressed in Equation 2.38

have been presented as f — U curves for different frequencies as shown in Figure 2.5,

which shows that the friction at zero velocity is less than the maximum friction as

represented by Coulomb friction, and this maximum friction decreases with increase in

frequency of oscillations. These curves show a discontinuity at zero velocity which

increases with decrease in frequency ratio a . It is assumed that during bi-directional

velocity oscillations, the viscosity in the contact varies as a result of heat dissipated at the

contact due to high friction during velocity reversals. Based on this assumption, for any

given load, the viscosity of the fluid film in the contact during bi-directional velocity

oscillations is can be less than the viscosity of the fluid film in the contact during uni-

directional velocity oscillations. As a result, it can be seen that the transition velocity

during bi-directional velocity oscillations is different when compared to the transition

velocity during uni-directional oscillations. This observation is very important when the

model is verified with friction measurements.



Figure 2.5 Friction coefficient, f Vs velocity ratio (journal velocity), U with
U = 2 sin az- , and dimensionless mass if/ = 100 for various frequency ratio a .

2.6 Summary

In this chapter, an analytical model have been developed for a lubricated conformal

contact formed by a short journal bearing. The model is based on the physics of the

system and the hydrodynamic lubrication theory of short journal bearing. The model is

simulated for unidirectional and bi-directional velocity oscillations oscillating sinusoidally.

Simulation results show that the model can successfully capture the friction behavior

under any dynamic velocity conditions. According the simulation results, the dynamic

friction under oscillating velocity shows an hysteresis effect in friction as exhibited by

f U curves, in agreement with the earlier experiments and empirical friction models.

At relatively low frequency, the dynamic curves can be approximated by Stribeck curve.

However, at high frequencies of velocity oscillations, this approximation is not valid. The
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instantaneous friction is higher (compared with the steady friction) when the friction force

is rapidly decreasing, due to increasing velocity, and lower when the friction is rapidly

increasing, due to decreasing velocity. In other words, there is a "memory effect" in the

sense that instantaneous friction is affected by the most recent friction. It is interesting

that near the maximum velocity, the friction values at increasing and decreasing velocity

almost coincide, because the rate of change of friction at this region is very low.

At low oscillating frequencies, there is an agreement with the conclusions of Hess

and Soom (1990) concerning the trend of increasing time lag with the lubricant viscosity

and external load. The curves of the present study show increasing phase-lag angle with

the frequency, but one must keep in mind that at higher frequency, the complete cycle time

is shorter. This compensation explains the interesting observation of Hess and Soom

(1990) of a time lag independent of the oscillation frequency. This conclusion can be

considered as an approximation, which is valid at relatively low frequencies and low mass.

In addition, the study indicates that there is a significant effect of the mass of the sliding

body and external load on dynamic friction. According to the results, in this model, the

phase lag in friction is a function of the frequency of velocity oscillations, mass and load.

The external force is not necessarily proportional to the mass of the journal, and should be

considered as a separate parameter.

Simulation of the model for bi-directional sinusoidal velocity oscillations shows a

discontinuity in f —U curve at zero velocity. The discontinuity is highly undesirable

from the point of view of control theory , because the systems with discontinuity are very

difficult to control. The discontinuity can be eliminated by introducing the Dahl effect.



36

The Dahl effect, Dahl (1977) can be defined as an elastic deformation of the surface

asperities as well as bearing support due to the reaction forces which is proportional to the

friction force. The effect is expected to be significant at zero velocity. In addition to the

Dahl effect, it is also expected that the visco-elastic properties of the lubricant play an

important role at dynamic condition. The visco-elastic oil film force equation Harnoy

(1976) includes terms that are proportional to the rate of change of velocity and film

thickness. Also, the maximum friction, as well as friction at the zero velocity are

decreasing with the frequency ratio a . The discontinuity resulted in bi-directional velocity

oscillations is one of the limitations for this model to use in precise motion. However,

there is no significant limitation for this model when operated under unidirectional

velocity oscillations.

The theory developed in this chapter has been verified experimentally by using a

specially designed friction measuring apparatus. Design, development, and testing of the

friction measurement apparatus as well as comparison of friction measurements with

theoretical results have been discussed in Chapter 3.

To investigate the discontinuity in friction at zero velocity, during bi-directional

velocity oscillations, the model is extended to study and analyze the effect of resistance

forces such as elastic and friction forces present in the bearing system on friction behavior

(Chapter 4).

The concepts introduced in developing this friction model are extended to develop

friction model for a non-conformal line contact formed by roller sliding over a flat surface
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(Chapter 5). The concepts of the current model can be used to develop analytical dynamic

friction models for other non-conformal contacts such as point contacts.



CHAPTER 3

MEASUREMENT OF DYNAMIC FRICTION IN JOURNAL BEARINGS

3.1 Introduction

The analytical model developed in the previous chapter is based on the physics of the

lubricated conformal contact to investigate friction in a hydrodynamic journal bearing

under dynamic velocity conditions. The simulation results of the model is in agreement

with the experimental work of Hess and Soom (1990), Polycarpou and Soom (1992) on

dynamic friction in a line contact, which is a different tribological situation. Hess and

Soom (1990), Polycarpou and Soom (1992) considered a line contact between a rotating

disk and the flat face of a cylinder under a constant load for oscillating velocities. Even

though, the comparison shows a qualitative agreement in the friction behavior, the results

suggest a need for more experimental work in dynamic friction. Further, the model

developed in Chapter 2 will be valid and useful for on-line friction estimation and

compensation only if it is verified with the appropriate experimental work.

With the aim of verification of the analytical model, immediate objective of this

study has been extended to conduct friction tests on lubricated sleeve bearings. The goal

is to measure friction for different oscillating velocity conditions including uni-directional

as well as bi-directional oscillations for various frequencies. A special apparatus has been

designed and developed for measuring the dynamic friction in short journal bearings. This

apparatus can be used to test each of the parameters affecting dynamic friction so that the

role of each can be assessed separately and effectively. Long term objectives of this

apparatus are to use the apparatus for further refinement and verification of theoretical

models, and to obtain insight into areas which require further investigation including

38
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friction compensation methods. The apparatus can be utilized for estimating the effect of

friction on the parameters such as displacement, velocity by using the observers of closed-

loop control theories. Stick-slip friction in the journal bearings can be investigated by

modifying this model.

3.2 Experimental Apparatus

Commercially available friction testing machines for sleeve bearings are suitable only for

experiments at constant shaft speed. One example of such machines is a testing machine

in which a pendulum is attached to the bearing and its swing angle determines the friction

coefficient. These machines are very well suitable for testing the bearing under steady

velocity conditions. However, under dynamic conditions, these testing machines have

errors caused by inertial forces. Moreover, in many cases it is impossible to separate the

bearing friction from other friction in the system. Further, most of these types of machines

do not have on-line recording for time-variable friction. To overcome all these problems, a

special apparatus has been designed and developed by the research team including the

author, in which the average friction of four equally loaded sleeve bearings can be isolated

from any other forms of friction present in the system. In addition, the errors caused by

inertial forces can be reduced to a negligible magnitude.

The sectional view of the friction measurement apparatus for sleeve bearings is

shown in Figure 3.1. Figure 3.2 is a photograph of the friction apparatus. The design

concept of this apparatus is to apply internal load, action and reaction, between the

housing of each two of four equal sleeve bearings. In the system, two of the bearings are
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prestressed toward the other two by means of a thin elastic ring. The total friction torque

of the four equally loaded sleeve bearings can be measured by load cells. These load cells

measure the friction torque while preventing the rotation of the external bearing housing.

Thus, the friction torque of the four bearings is isolated from other sources of friction,

such as friction in the ball bearings supporting the shaft. The magnitude of the normal load

on the two test-bearings together can be obtained by measuring the deformation of the

calibrated elastic ring. Load on the bearing can be applied by tightening the nut to

prestress the ring. The load-cell readings are stored in a computer-assisted data acquisition

system. Any desired controllable time-variable motion of the shaft can be generated with a

reasonable accuracy with a computer controlled DC servo motor.

Figure 3.1 Cross-sectional view of friction measurement apparatus.
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Figure 3.2 A photograph of friction measurement apparatus.

3.2.1 Experimental Layout

The layout of the friction measurement system comprises a mechanical test apparatus, a

personal computer, a data acquisition unit, a control interface board, a load cell, a digital

strain indicator, signal amplifiers and DC power supplies as shown in Figure 3.3.

The friction measurement apparatus shown in Figure 3.1, contains a main support

frame, shaft-bearing assembly, bearing loading assembly, DC servo-motor, tachometer

(calibrated DC generator), strain gage mounting block and lubrication system with

reservoir.



Figure 3.3	 Experimental set-up for measuring friction in hydrodynamic journal bearings.
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3.2.2 Design Features and Operation Principle of Apparatus

Design features of the mechanical test apparatus are explained with the aid of Figure 3.1.

The test shaft (C) is supported by two ball bearings (A) attached to the main support

frame (B). There are four brass sleeve test-bearings (H). Data related to the dimension of

the test bearings used in the apparatus are given in Table 3.1.

Table 3.1 Dimensional data of test bearing

Diameter of the bearing (D = 2R) D = 25.4 x 10 -3 m

Length of the bearing L = 19 x 10 -3 m

Radial clearance in the bearing C = 0.001 x 2R

Mass of the journal m = 1.250 kg

The adjustable load can be applied by tightening the nut (P) on bolt (R) which applies

internal force between the inner and outer housings (11) and (K) and causing the two inner

bearings and the two outer bearings to be loaded equally in opposite directions. Thus the

load can be applied equally on each of the bearings. The apparatus uses a computer

controlled DC motor, in which the computer generates voltage signals to drive the servo-

motor which causes the shaft in the sleeve to rotate at specified velocity conditions. The •

transmission consists of a DC servo-motor connected through a timing belt and two

pulleys (D). A lubricating oil reservoir as shown in Figure 3.3 is mounted above the

mechanical apparatus in order to supply oil by gravity into the four bearings through four

segments of flexible tubing. Oil expelled out from the bearings accumulate in the external

bearing housing and drains through a hole into a collecting vessel through an outlet tube.
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The friction torque of the four bearings is measured by a load cell having a full

bridge strain gage. The strain gage consists four strain-gages mounted on a specially

designed device which supports the external housing and prevents its rotation. The output

signals of friction torque and test-shaft tachometer are filtered, amplified, and transferred

to the computer for further processing such as data conversion, storage and analysis.

3.3 Experimental Investigations

The apparatus described in the above sections has been used to measure the dynamic

friction between the shaft and four sleeve bearings for different sinusoidal excitations. The

sinusoidal excitation voltage applied to the servo-motor has been generated by the

computer system which causes the shaft to oscillate periodically in the specified frequency.

Friction measurements have been conducted for uni-directional and bi-directional

oscillations with various frequency ratios for two different loads. The frequency

determines the rate of change in the magnitude of friction which is shown to be an

important parameter of dynamic friction. Results are presented in the form of friction

versus velocity curves.

Experiments have been conducted for two different constant loads of 308 N and

386 N, as measured at the elastic ring, for two kinds of velocity oscillations. Each

bearing, in this case, is loaded by a normal force of 154 N, 193 N respectively. The

lubricant used is a commercial multi-grade engine oil SAE .10 W-40. Viscosity of multi-

grade oils is less sensitive to variation of temperature, but one must keep in mind that the

viscosity of the oil film in the bearing is not constant, but varies with temperature
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variations caused by dissipation of friction energy during the test. This certainly affects

the repeatability of the tests, but after several cycles, a steady state has been reached in

which repeatability has improved.

The results obtained from the friction measurements have been used to determine

the dimensionless data required for simulating the analytical model of Harnoy and

Friedland (1993) discussed in Chapter 2. Equations 2.29-2.32 of the short journal bearing

model have been solved to simulate the dynamic friction. From the experimental Stribeck

curve for the load F = 308 N, velocity at the transition Ufr = 0.125 m / s

(co„ = 9.8 rad / sec ), and L. = 0.0015 have been obtained. Using these results and

Equations 2.31-2.33, eccentricity at the transition, 6„, viscosity of the oil, 	 have been

determined. The viscosity of the oil was found to be ,u = 0.0127 N.s.m-2 . For load ,

F = 386 N , the transition velocity has been found as Ufr = 0.145 m / s

( co „ = 11.47 rad / sec), and all other data remain same. Following are the dimensionless

data obtained from the friction measurements which has been used in simulating the

theoretical model:

Table 3.2 List dimensionless constants.

Etr = 0 .71 el, = 0.995 fm= 0.1
WI = 8.5x10 -6 F . 2.5984 k c, =9.1173

3.3.1 Friction Measurements for Unidirectional Sinusoidal Oscillations

Friction measurements in the sleeve bearings for unidirectional velocity oscillations are

shown in Figures 3.4-3.12 for various frequencies and for various loads. These curves



46

shows very good qualitative as well as quantitative agreement between experimental and

analytical solutions. It is interesting to note that hysteresis effect in mixed region is in

very good agreement. At low frequency of velocity oscillations, analytical solution shows

a repetitive linear relation in fully developed region with out any hysteresis when

compared to the experiments. At high frequency, both analytical and experimental

solutions display almost same hysteresis. Plots at higher load of 386 N also displays

similar hysteresis phenomena. The analytical model has been simulated for the following

dimensionless periodic velocity oscillations.

U = 1.85 + 1.75 sin(at)	 (3.1)

where a is the frequency of shaft oscillations, U (=UA ) , is dimensionless velocity of
U

the shaft And 17

L	 I.,	 LI . ...I 	 I . ,._.	 ,.	 ,...,...	 ,.)	 ...J....,	 ,
Dimensionless Velocity _ LT

Figure 3.4 Friction coefficient f Vs dimensionless velocity U = 1.85 +1.75sin(ar) at
frequency co = 0.05 rad / sec, (a = 0.006) for the load F = 308 N .
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Figure 3.6 Friction coefficient f Vs dimensionless velocity U = 1.85 + 1.75 sin(ar) at
frequency co = 0.5 rad / sec , (a = 0.06) for the load F = 308 N .



Figure 3.8 Friction coefficient f Vs dimensionless velocity U = 1.85 +1.75sin(a-r) at
frequency w = 2.0 rad / sec , (a = 0.24) for the load F = 308 N .



Figure 3.10 Friction coefficient f Vs dimensionless velocity U = 1.85 +1.75sin(az) at
frequency w = 0.5 rad sec , ( a = 0.044) for the load F = 386 N .



Dimensionless velocity - U

Figure 3.12 Friction coefficient f Vs dimensionless velocity U = 1.65 +1.55sin(az) at

frequency w = 2.0 rad / sec , (a = 0.175) for the load F = 386 N .
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3.3.2 Friction Measurements for Bi-directional Sinusoidal Oscillations

Friction measurements have been conducted for bi-directional velocity oscillations also,

and the results are shown in Figures 3.13-3.20. These curves show very good qualitative

and quantitative agreement between experimental and analytical solutions in mixed as well

as full lubrication regions. But, at zero velocity, the magnitude of discontinuity differs.

The friction observed in the experiments at zero velocity is higher than that obtained in

analytical model. It is interesting to note that the magnitude of discontinuity at zero

velocity both in the experimental as well as analytical solution reduces with increase in the

frequency of velocity oscillations. The model has been simulated for the following

dimensionless periodic velocity oscillations.

U = 3.0 sin(at)	 (3.2)

Figure 3.13 Friction coefficient f Vs dimensionless velocity U 3.5sin(cn) at frequency

co = 0.01 rad / sec , (a = 0.00125) for the load F = 308 N .



Figure 3.15 Friction coefficient f Vs dimensionless velocity U = 3.5sin(ar) at frequency

.2) = 0.5 rad / sec , (a = 0.05) for the load F = 308 N .



Figure 3.17 Friction coefficient f Vs dimensionless velocity U = 3.5 sin(as-) at frequency
co = 2.0 rad / sec , (a 0.2 ) for the load F = 308 N .
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Figure 3.18 Friction coefficient f Vs dimensionless velocity U = 3.0 sin(ar) at frequency
co = 0.1 rad / sec , (a = 0.0087) for the load F = 386N .

Figure 3.19 Friction coefficient f Vs dimensionless velocity U = 3.0 sin(ar) at frequency
co = 0.5 rad / sec , (a = 0.044) for the load F = 386N .
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Figure 3.20 Friction coefficient f Vs dimensionless velocity U = 3.0 sin(ar) at frequency

w = 1.0 rad / sec , ( a = 0.087) for the load F = 386N .

Following are the important observations drawn from the experimental results and the

analytical solutions shown in Figures 3.4-3.20:

• The hysteresis phenomenon, in which the friction for increasing velocity is not

the same as the friction for decreasing velocity.

• There is a discontinuity in friction at zero velocity when the operating velocity

of the system oscillate in two directions. The magnitude of the Dahl effect is not

significant, to show an inclination during this transition. It is also observed that

during bi-directional velocity oscillations, friction at the starting point and

stopping point at zero velocity is different in friction measurements, when

compared to the friction at the starting point and stopping point at zero velocity

of analytical solution. This phenomenon can be seen in clearly in Figure 3.21
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which is the enlarged view of Figure 3.14. In Figure 3.21, this difference in

starting point and stopping point at zero velocity are clearly distinguished. This

phenomena may be due to the existence of dry friction at zero velocity. This

phenomenon can be seen in clearly in Figure 3.21 which is the enlarged view of

Figure 3.14.

• At low frequencies, experimental as well as analytical solution results in high

friction at zero velocity, because velocity is too low to generate the fluid film

thickness that is sufficient to take the load; therefore, there is a contact between

the surfaces for long time.

• At higher frequencies, there is a clear reduction in the magnitude of the. The

reason for the reduction in discontinuity is that there is no time for the fluid film

to be squeezed at low velocities which has been developed at high velocities;

therefore the contact between the asperities is for short time.



Dimensionless velocity - Er

Figure 3.21 Friction coefficient f Vs dimensionless velocity U = 3.5sin(ar) at frequency w = 0.1 rad / sec , ( a = 0.01) for
the load F = 308 N . This is an enlarged view of Figure 3.14.



= lKh 9h (3.4)
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c2 (3.5)
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3.4 Error Analysis

The load-cell made of an aluminum frame supports the bearing housing, prevent its

rotation and measure the torque on the housing M h by calibrated strain gages bonded to

it. The friction torque, M1 , between the bearings and journal is equal to Mh only when

housing is completely static. However, the load-cell support has a certain elastic

deformation, resulting in a small rotation of housing, O h . The equation of motion of the

housing is,

= Mh + /hk	 (3.3)

where /h is the moment of inertia of the housing around it's axis. The last term in

Equation 3.3,/h 9h , is the magnitude of the measurement error caused by inertial effects.

If the rotational stiffness of the housing is kh = Mh / O h , the following relation should be

observed,

The maximum of h(t) =. , where C2 is the frequency of oscillations of ther22 oh

housing as well as shaft. Following is the resulting condition for negligible error obtained

from Equation 3.4:

The numerical values of the above design parameters for the friction measurement

apparatus are listed in the following Table 3.3.
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Table 3.3 Design parameters of the apparatus

Spring constant (Rotational stiffness of the Housing) kh = 102 Nm

Moment of inertia of the housing ih = 10 -2 kgm2

In conducting the friction measurements for oscillating velocities, the frequency of

oscillations should be restricted to C2 « 100 rad / sec , or less than 16 Hertz. All the test

have been conducted at very small frequencies, therefore, the Equation 3.3 is valid.

3.5 Summary

Investigation indicated in this chapter deals with the experimental analysis of dynamic

friction in journal bearings operated on hydrodynamic lubrication theory. A special

apparatus for measuring friction in sleeve bearings has been designed, developed and built

by the team. The apparatus can be used to measure friction in the journal bearing for any

shaft velocity.

Experiments have been conducted on this flexible system to measure dynamic

friction in journal bearing for unidirectional and bi-directional velocity oscillations. These

results have been used to determine data required for simulating the analytical model of

Harnoy and Friedland (1993). With these data, the analytical model is simulated and the

results are compared. Comparison of theoretical and experimental results for uni-

directional velocity oscillations indicate very good qualitative and quantitative agreement.

Both experimental and theoretical curves show similar hysteresis in friction, and similar

friction behavior with frequency changes. In the case of the bi-directional velocity

oscillations, the comparison shows agreement between experimental and analytical results
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in respect of hysteresis in friction, but there is a significant difference in friction behavior at

zero velocity. At zero velocity, experimental results show higher maximum friction when

compared to the analytical results. In addition, at zero velocity, the staring point and

stopping points are different in experimental results as compared to the theoretical results.

This effect may be due to the presence of dry friction in the system at zero velocity. The

trend of reduction in the maximum friction with increase in frequency is in qualitative

agreement between experimental and analytical results. At higher frequency, in analytical

model, the discontinuity is completely eliminated, but in experimental measurements

discontinuity is not eliminated.

The apparatus can be further used to improve the existing analytical model. Also,

the apparatus can be used to study the effect of stiffness of the asperities, stiffness of the

bearing support on dynamic friction. The concept can be extended for developing the

apparatus for other tribological situations, non-conformal contacts based

elastohydrodynamic lubrication theory such as line contacts or point contacts.



CHAPTER 4

MODELING AND ANALYSIS OF RESISTANCE FORCES IN LUBRICATED
CONFORMAL CONTACTS

4.1 Introduction

Current precise motion control systems such as positioning mechanisms, robots, demand

higher accuracy and precision. In order to achieve very high precision and accuracy,

friction in the system should be minimized or eliminated. Particularly, at low velocities,

friction effects are significant. Among all the available techniques, friction compensation

is the only active method to minimize the effects of friction. For applying model based

friction estimation and cancellation techniques, a theoretical friction model is essential.

The model to be developed should characterize dynamic friction in the system under

dynamic velocity conditions, focusing on low velocity regions. The friction model

developed in Chapter 2, and the friction measurements presented in Chapter 3 for a short

journal bearing exhibit a discontinuity in friction at zero velocity when the operating

velocity oscillates in two directions. This type of behavior is highly undesirable from the

control point of view, as it effects the controllability, stability and performance of the

system. To avoid such phenomena, the discontinuity must be eliminated which can be

achieved by incorporating the effect of resistance forces on friction in the model. Most of

the resistance forces in the system are due to elastic deformation of the supporting

structure and surface asperities at the contact. In fact, the control community is interested

in all the resistance forces, sliding friction as well as presliding elastic reaction. The

objective of the present study is to develop a dynamic model for these resistance forces at

slow, time-variable velocity. The model, with proper coefficients, can be expected to
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predict the resistance torque between a bearing and rotating shaft at any instant of time.

In fact, the model shows that the friction is a memory function of the velocity history.

With the known coefficients, the model can be applied for on-line compensation which can

be achieved by producing an additional, equivalent control torque to counteract the

resistance in the bearings Friedland and Park (1992).

Research shows that the available friction models are based on empirical functions

of friction versus steady velocity curve Stribeck (1902). However, closed loop control

systems often operate under dynamic velocity, oscillating at small amplitudes around the

zero velocity. In such cases, the steady friction model are inadequate for two reasons:

First, the actual friction is not only a function of the instantaneous velocity, but also it

entails some dynamic effects, such as memory function of velocity history. Second, near

zero velocity, the elastic effects of shear deformation of the surface asperities as well as

deformation of the supporting structure of the bearing are significant. Consider a case

where a shaft is mounted inside a bearing, in such a case, most of the times the resistance

force to the rotation of the shaft is sliding friction. However, at very low speed of the

shaft, during the change in direction of velocity, there is a presliding torque in the system

which is a result of an elastic compliance. The energy losses due to sliding friction are

dissipated in the form of heat in the bearing, while the elastic displacement generates a

recoverable potential energy.

The development of earlier friction models of Hess and Soom (1990), Dahl (1977),

Canudas de Wit et al (1993) was purely based on equations that fit the observed friction

characteristics. In contrast, the development of present model is based on first principles

derived by the analysis of the physical phenomena of lubricated surfaces and the dynamics
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of the system. A preliminary dynamic friction model have already been developed as a

part of the current project by the research team including the author. The results of this

preliminary model have been presented by Harnoy and Friedland (1993), but, the model

doesn't include elastic effects. In the present work, an improved model have been

developed which includes the presliding elastic forces. The model is so important as it

takes care of the resistance forces which have a significant effect on control systems,

particularly, for the systems operating with the velocity oscillating around zero. The

present model is an extension of the earlier model for a short bearing developed in Chapter

2, and it covers the regions of hydrodynamic, mixed and boundary lubrication as well as

elastic presliding. The present model can offer a better insight into the dynamic friction

behavior of lubricated surfaces. The model is described by a set of differential equations,

and can be used for simulation for any time varying velocity, including transition between

positive and negative velocities.

The proposed model reveals that there is an interesting relation between the

various friction regions, in the sense that the friction in one region is affected by a memory

function of the velocity within another region. In fact, the model proposed herein

suggests that, in certain cases, the previous models can be considered as approximations

to the model presented here.

Consider a simple case of a sleeve bearing, where the sleeve is supported by an

elastic structure and it has a small angular compliance when subjected to the bearing

friction torque. This study investigates the role of the sleeve angular compliance, which is

included in the dynamic model.
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A set of differential equations relating instantaneous friction to the dynamic state

of the system have been developed and simulated. The simulation results have been

presented in the form of friction versus velocity curves which show a hysteresis effect, in

agreement with earlier dynamic friction experiments on lubricated surfaces. These results

also indicate the elastic deformation eliminates the discontinuity at zero velocity as

predicted by the classical Coulomb friction model (In fact, in reality, a discontinuity never

occurs because, there is always some elastic compliance in the bearing system). In

addition, it is shown that, in a journal bearing, the elastic compliance influences the friction

over the complete velocity range, including the sliding region, and not merely the behavior

near zero velocity.

Closed loop motion control entails small oscillations at low velocity with frequent

changes in sign. In certain cases where the velocities are very small, it is possible to have

vibration without sliding, and the dynamics of the motion is governed by the moment of

inertia of the bearing system and its elastic compliance. Presliding conditions are similar

to the dynamics of a gear having torsional oscillations and meshed by elastic flexible teeth

to an internal gear supported by a torsional spring. At higher velocity, sliding initiates

between the journal and sleeve as the torque between shaft and sleeve exceeds the static

friction torque.

In the classical hydrodynamic lubrication theory of journal bearings, the sleeve is

considered to be rigid. Neglecting the sleeve compliance in a bearing operating at steady

journal speed has been justified. However, this study shows, that the elastic displacement

of the angular compliance of the sleeve is significant under dynamic velocity conditions.
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4.2 Presliding Motion of Shaft and Sleeve

Consider a shaft accelerating from zero speed inside the sleeve of a short journal bearing

as shown in Figure 4.1. Initially, there is a contact between the journal and sleeve, and

owing to the elasticity in the system there is an angular compliance, namely, the sleeve has

a small rotary motion before the initiation of sliding, and the journal rolls inside the sleeve

like internal friction pulleys.

Figure 4.1 Short journal bearing with angular compliance.

The friction resistance torque, M ./ between the journal and sleeve increases

radually. Sliding process is initiated whenever the friction torque, Mi exceeds the

Magnitude of the Coulomb friction torque in the contact between the journal and sleeve:

Mi > fmRT	 (4.1)
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where We is the normal reaction force resulting from a direct contact between the journal

and the sleeve surfaces, R is the journal radius and fm is the coulomb friction coefficient

•at this contact.

The elastic structure of every real bearing support must allow for a small angular

sleeve compliance. In Figure 4.1, the elastic support of the sleeve is represented by

springs. The motion of the sleeve causes a reaction torque, Ms , of the structure on the

sleeve in the direction opposite to the rotation of the sleeve, according to the equation of a

torsional spring is,

Ms = kO, 	 (4.2)

where k is the torsional stiffness of the bearing support and, O s is the angular rotation of

the sleeve.

An additional contribution to the compliance of the system is the elastic shear

deformation of the surface asperities in the contact area between the sleeve and journal.

The elastic component of the shear deformation of the surface asperities creates a second

torsional spring between the sleeve and the journal. Before initiation of the sliding, the

journal rotates the sleeve as a result of an internal resistance torque M I , which is

proportional to the difference between the rotation angle of the journal 0 ./ and that of the

sleeve, 0, according to the equation,

M1 = ict(0; Os)	 (4.3)

where lc, is the equivalent torsional stiffness due to elastic shear of the surface asperities

of the journal and sleeve at the contact area.
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The resultant of M. and M, accelerates the sleeve according to the following

equation:

kt(Of — Os) — kOs=iegi), 	 (4.4)

where Ieq is the equivalent moment of inertia of the sleeve system. In real bearings with

an elastic support, the sleeve can turn together with the bearing housing. In such cases

/eq refers to all the rotating parts together (see Figure 4.1). For the presliding mode,

Equation 4.4 is the governing differential equation of motion, and it can be numerically

integrated for any given dynamic journal speed, 9 g. . One example of the dynamic journal

speed,	 , is a periodic bi-directional journal oscillations:

9 i = co o sin )t	 (4.5)

where the amplitude co, is the maximum angular velocity of the journal, and C -2 is the

frequency of velocity oscillations. The differential equations expressed by Equations 4.4-

4.5 can be integrated together to determine the time variable rotation angles 6 j and O s .

Subsequently, M1 and Ms can be obtained from Equations 4.2 and 4.3 respectively as

functions of time or journal velocity.

4.2.1 Returning from Sliding to Presliding Mode

It is very important to observe the criterion for transition between the sliding and

presliding modes at each step of integration of Equation 4.4. To assure this, at each step

of integration, the journal torque, M. for the sliding mode and presliding mode must be

computed and compared. The mode having the minimum journal torque, M i is selected.
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Whenever there is a return from sliding to presliding mode, then the sliding

rotation angle, O f is no longer appropriate for Equation 4.4, since the journal has already

rotated to a large angle during sliding. Therefore, Equation 4.4 requires a new reference

for the measurement of initial journal angle, 0", , at the instant whenever the presliding

mode is restored. This initial journal angle, 0"7. is almost the same as the sleeve angle, 0„

except that there is a small shift between the journal and sleeve, owing to elastic shear

deformation of the asperities. The equation for the initial fri at the return to the

presliding mode thus is,

imWeR 0' = 0 +

Once the presliding mode is restored, 0 / in Equation 4.4 is measured by the same

reference as the sleeve, having initial value O f . The variable 0 i , for integrating Equation

4.4, during the presliding, is obtained from the initial 0 .7. in Equation 4.6 and shaft velocity

according to the equation:

= 0;. + J O jcit
0

where 0 . is the time varying periodic speed defined in Equation 4.5.

The initial value 0 i" must be computed at each step of the sliding mode. It is used

to calculate the hypothetical next presliding torque, Mt , for testing the possible return to

presliding mode.

kr
(4.6)

(4.6)
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4.3 Dynamic Friction at the Sliding Mode

At the initiation of sliding, the journal velocity is too small to generate a lubrication film of

sufficient thickness so that the rubbing surfaces are completely separated; therefore, there

is a contact between the surface asperities. The friction in the contact can be either

boundary or mixed lubrication region.

The mixed lubrication region occurs when minimum film thickness of lubrication,

hn„ (see Figure 4.1) falls below a certain small critical value, h„ . The magnitude of htr is

the minimum film thickness at the transition between mixed and hydrodynamic lubrication

regions at steady journal speed, which can be determined from the constant journal speed,

co, corresponding to the transition point. The journal speed co „ can be obtained from the

Stribeck curve (1902). In the mixed region, there is a contact between the surface

asperities, and they are deformed under the action of applied load which results in

generating a reaction force, We . The reaction force, We between the asperities of the two

surfaces is an increasing function of the elastic deformation (5, of the asperities, which

behaves like a spring in the direction normal to the contact area. However, this spring-like

behavior is not linear. The development of theory and equations for the elastic reaction

force, We , already have been developed in Chapter 2. The elastic reaction force, We , is

defined in Equation 2.3, and all the related terms are defined in Equations 2.1-2.4.

Following is the equation (Equation 2.3) for reaction force, We , taken from Chapter 2.

W = ic(s)C(6. e fr )A	 (4.8)

The magnitude of the variable A is either 0 or 1 which had been already defined in

Equation. 2.4. In the hydrodynamic lubrication region, there is no contact between the
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two surfaces, therefore there is no reaction force, i.e. We = 0, and this region is

represented as A 0. But, in the mixed or boundary lubrication region, there will be a

reaction force, W > 0 in the contact, and this region is represented by A =1. In the

mixed region, the bearing load capacity W is obtained by adding the vectors of the contact

reaction force, We , and the hydrodynamic fluid film force, Wh as defined in Equation 2.5,

as:

T2V P17e 4:71,	 (4.9)

The bearing friction force, 	 in the tangential direction is the sum of contact and

viscous friction forces. The contact friction force is assumed to follow Coulomb's law,

and hence, it is proportional to the normal contact load, We , while the hydrodynamic,

viscous friction torque follows the short bearing equation as given in Finials (1961, 12)

and Szeri (1980, 64). It is also assumed that the density of the asperities in the mixed

region is sufficiently low so that it does not have any significant effect on the

hydrodynamic performance. With the above assumptions, the total friction torque,

(M1 = FfR ) between the journal and sleeve can be expressed as:

= frnic(s)CR(6. — s fr ) sgn( i )A + LIIR3 27r 	.	 )
C (1 — s 2)" "

(4.10)

where f is the Coulomb friction coefficient, L and Rare the length and radius of the

bearing (Figure 4.1), Cis the average radial clearance, and ,u is the viscosity of the

lubricant. The term sgn(B 1 ) represents the direction of motion of the journal which is

defined as,



< 0
sgno j) {±11

(4.11)

3
frnic(s)CR(e — 6-0 sgn(edd + LIIR2g

C (1 - 6 2 )°
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Under dynamic conditions, friction torque, M on the journal is function of

dynamic variables e, Of and 6 . For any known journal speed and bearing data, these

dynamic variables, e and 9 s are required to determine the friction torque, M i. , from

Equation 4.10. Following sections show the detailed description for determining these

two dynamic variables e and 8 s based on the equation of motion and the theory of

hydrodynamic lubrication.

The friction coefficient of the bearing, f (t) is determined from the resistance

torque M3 , and the applied torque proportional to the load,(M = FR) according to the

following equation:

f (t) = M'	(4.12)

4.3.1. Calculation of 0,, During the Sliding Mode

A differential equation for the torque between the journal and the sleeve similar to

Equation 4.4 have been derived for sliding conditions, as following. The torque includes

the contact and viscous components.

= /BA	 (4.13)
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4.3.2. Hydrodynamic Force

As this model is an extension of the friction model developed for a short hydrodynamic

journal bearing in Chapter 2, the hydrodynamic force developed in Equations 2.13-2.20 is

valid for the present analysis with a minor modification in pressure distribution. In this

model, derivation of the pressure distribution is similar to the Equation 2.17, but it

includes an extra term to account the angular rotation of the sleeve in addition to the

angular rotation of the shaft as described in the following equation:

3 43 r	 (L2 - 4 z 2
P 	 t(co . + co )6 sin t9 26 

dq) 
sin	 2 

de 
cos 9} ) 

4 C 2	dt	 dt 	 h3
(4.14)

Following are the equations for the fluid film force components of the bearing

obtained by substituting the pressure distribution, P in Equation 4.14, and integrating

with boundary conditions given in Equations 2.16.

Wx 
/IRV = 	 0.5J1260; bJ A2 60 J22e} + 17(6)(8 eir)sgn(e.i)A 	 (4.15)

C 2

3w 
C )--T1180 — J12e1 (4.16)

where B S is the rate of angular rotation of the sleeve, which is determined from the

dynamic equation of the bearing, Equation 4.4 or Equation 4.13, depending upon the

presliding or sliding mode.

The integrals	 occurring in Equations 4.15 and 4.16 have been defined already in

Equations 2.23-2.25.
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According to the Newton's law of motion, the resultant force of the external load,

F , and fluid film force, W, accelerate the journal center with an acceleration, a , as per

the equation:

F + W = ma	 (4,17)

where m is the journal mass. Substituting the acceleration terms, in polar coordinates, in

the radial and tangential directions (directions opposing to Wx , and Wy in Figure 4.1) and

the load components Fx and Fy in the same directions, Equation 4.17 yields:

Fx — Wx —W = inC(a — 6.0 2 )	 (4.18)

Fy Wy = mC(60 +2,e0)	 (4.19)

where Fx and F), the load components can be obtained from the external load as (see

Figure 4.1),

Fx = F cow	 (4.20a)

F = Fsinco	 (4.20b)

Substituting the appropriate definitions into Equations 4.18-4.19, obtained the

following differential equations:

ARV {F cosco = 	  0.5./i2e(8i + i)s ) + Ju s0 + J22 4 +mC(i. — e0 2 ) +
C 2 	(4.21)

17- (e)(e 8 f) sgn(B1),A.

,uRrF, sing) = L. {0 .5 J11 60 ./ k-)s. J1160 	 ± MC(60 ± 241) (4.22)

These equations together with Equations 4.10 and 4.13 constitute the dynamic

friction model being sought for the sliding mode. Equations 4.21 and 4.22 together with

Equations 4.3 and 4.4 describe the presliding mode.
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4.4 Dynamic Friction Simulation for Periodic Journal Speed

The model developed in the previous sections need to be analyzed for its friction behavior,

by simulating it for known bearing data. To simulate the model for friction, the variable e

must be determined by integrating Equations 4.21 and 4.22 numerically together with the

equation for angular rotation, O s , (Equation 4.4 for the presliding mode or in combination

with Equation 4.13 for the sliding mode). Once e, and O s are determined, friction torque

between the journal and the sleeve, Mi is computed using Equation 4.3 for presliding,

Equation 4.10 for sliding conditions. Finally, the friction coefficient, f (t) is determined

from Equation 4.12. The simulation of the model requires the following twelve constants

listed as in Table 4:

Table 4.1 Data required for simulation

Gtr fm

R (m) I, (m) C (m)

I eq (kgm2 ) eu (Nsm-2 ) F (N)

In (kg) k, (Nm) k (N)

The magnitude of the angular velocity of the journal, co,, at the transition

between mixed and hydrodynamic friction can be calculated from the external load

(Equations 4.15 and 4.16) at constant journal velocity and when the relative

eccentricity, e= 6„ .



1
kt =

Ieqw 2 tr

k- = 1 k

./„w 2 tr
= LR3

2WO tr
= Cob- 	 m (4.23)
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For the convenience of simulation, Dimensional analysis have been performed on

Equations 4.4, 4.13, 4.21 and 4.22, which suggests that the data can be reduced from

twelve to seven independent dimensionless parameters. In addition to the three

dimensionless constants e 6b , and fm , the simulation of the model depends on the

following four dimensionless parameters, which are defined as:

Either in the above set of equations and or in Table 4.1, the external force term, F

does not appear, since it has already been considered in the calculation ofcv i,. . The

angular velocity at the transition point, co, has been obtained from Equations 4.21 and

4.22 for steady conditions: when all time derivatives are zero, except 	 , and for 6 = „

The function ic(s) related to the stiffness of the surface asperities which have been

used in Equations 4.8, 4.10, 4.13, 4.15 and 4.21 is assumed to vary linearly with the

asperity deformation, 8 = C(s. — 6 „.) according to the relation defined in Equations 2.34

and 2.35 as discussed in Chapter 2. Terms relating to the definition of x(e) have been

discussed in 2.5.

Data required for simulation as expressed by seven dimensionless variables is listed

in Table 4.2 as below:

Table 4.2 Dimensionless bearing data.

= 0.96 	 I 	 6b = 0.99 	 I	 fm = 0.1

17t = 1000 	 I 	 E. 500 	 i 	 = 0 . 1 	I m = 100
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4.4.1 Simulation for Bi-directional Velocity Oscillations

The first part of simulation have been performed for bi-directional journal speed

oscillations. The journal oscillates sinusoidally and passes through zero velocity according

to the Equation 4.5. Following is the dimensionless form of journal velocity, U =U f lU„

Equation 4.5.

U = 2 sin(ar)

where r is the dimensionless time, a is the dimensionless frequency ofjournal

oscillations which is defined as,

a =
co,

(4.24)

(4.25)

Simulation results for the data given in Table 4.2, have been presented as f — U

(friction coefficient, f(t) versus dimensionless velocity ofjournal, U), plots as shown in

Figure 4.2. These plots indicate hysteresis in friction. It is interesting to note that these

results are similar to the dynamic friction measurements of Ting (1993) on an piston ring

of an engine. Figure 4.2 shows the simulation results for various frequency values of

journal oscillations, a . These plots show that at low frequency of oscillations, the

presliding curve is steeper, and the maximum sliding friction increases. The most

important result is that at high oscillating frequency, the overall sliding friction of a journal

bearing has been reduced significantly.

The presliding mode near zero velocity, in Figure 4.2, is followed by the sliding

mode at higher velocity. The friction coefficient in the presliding mode is inclined, nearly

a linear function (more precisely, it is parabolic) located between two turning points,
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instead of a discontinuity as predicted by the classical Coulomb model. However, at high



Figure 4.3 Friction coefficient, f Vs journal velocity, U with U = 2 sin(0.1r) , for

various bearing support stiffness, IT- .

Dynamic friction simulations also have been performed for various values of

torsional stiffness, T , of the bearing support, and the results are shown in Figure 4.3. The

most interesting result in this simulation is that the peak friction in a journal bearing is

reduced by decreasing the stiffness T . The result suggests that a journal bearing with a

soft support has an advantage of reduced sliding friction, when compared to a rigid

support. This is an interesting interrelation between the elastic presliding characteristic

and the sliding friction. This phenomena demonstrates the merit of the proposed model,

as in most of the previous empirical models, the system compliance affects only the

presliding region. The effect can be explained as an initial compliant rotation of the sleeve

Szeri (1980). The sleeve rotation results in presliding rolling between the journal and

sleeve (like internal friction pulleys). During this rolling, the lubrication film pressure



79

builds up, and reduces the maximum friction at the initiation of sliding. This effect is

unique to journal bearings, and it is not expected in other geometries such as plane sliding.

The dynamic friction curves in Figures. 4.2 and 4.3 exhibit fluctuations in the

sliding friction near the peak friction. This phenomena can be explained as the torsional

vibrations of the sleeve, which is a dynamic system of inertia in torsional springs.

Dynamic friction curves for various values of torsional stiffness due to the elastic

shear deformation of the surface asperities, k r , are shown in Figure 4.4. The results

indicate that there is a wider presliding region and a reduction in the maximum sliding

friction with a softer stiffness of the asperities. The slope of the curve in the presliding

mode is less steep for softer IC, .

Figure 4.4 Friction coefficient, f Vs journal velocity, U with U 2 sin(0.1r) , for various

shear stiffness of the asperities, 17, .
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4.4.2 Simulation for Unidirectional Velocity Oscillations

To verify the performance of the current model, with earlier experimental work of

Hess and Soom (1990), the model also have been simulated for unidirectional

oscillations. Hess and Soom (1990), measured dynamic friction for velocity fluctuations

between 0.01 and 1.0 m/s (to eliminate the presliding mode. For comparison purposes,

the current model is simulated for the following sinusoidal velocity:

U = 1.1+ sin(a-r)	 (4.26)

Simulation results of friction for the above journal oscillations are shown in Figure

4.5 for various values of torsional stiffness of the support, Fc .

Figure 4.5 Friction coefficient, f Vs journal velocity, U with U = 1.1+ sin(0.1T), for

various values of bearing support stiffness of the asperities, k .
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Hess and Soom (1990) measured the dynamic friction between the two sliding

surfaces having a line contact with lubrication. They measured friction between a rotating

disc and a circular button, while the present model is for a short journal bearing.

Moreover, they conducted experiments for velocity oscillations with a triangular profile,

while this study is for sinusoidal. Irrespective of these variations, the simulation results

show that there is a qualitative agreement in respect of hysteresis in friction versus velocity

curves.

4.5 Summary

A model for dynamic friction, based on the physical phenomenon of hydrodynamic

lubrication, and effect of resistance forces on friction behavior for a lubricated journal

bearing has been developed and simulated. The model considers the compliance in the

bearing system resulting from elasticity of surface asperities in the contact between the

sleeve and journal (Dahl effect) as well as the elasticity of the bearing support, and the

model can effectively simulate the transition from presliding to sliding modes and a return

to presliding mode. The simulation of the model yields dynamic friction versus journal

velocity ratio f — U curves. Simulation results of the model indicate replacement of the

step function at zero velocities, when the journal undergoes bi-directional velocity

oscillations. Also, the results for various frequencies of velocity oscillations, torsional

stiffness of the support, indicate significant reduction in the maximum friction with

increase in frequency or decrease in torsional stiffness of the support. The results also

indicate that the width of the presliding region increases with decrease in the stiffness of

the asperities. In fact, rigid asperities generate a steeper presliding region when compared
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to the soft asperities, as depicted by the simulation results shown in f — U curves for

different asperities' stiffness values.

Simulation of the model for dynamic friction shows a memory effect in f — U

curves indicating that the instantaneous friction is a function of instantaneous velocity, and

velocity history. At very low frequency of journal oscillations, the f — U curve reduces

to the steady velocity Stribeck curve and the effects of the compliance of the system

disappear.

An additional important conclusion, for a journal bearing, is that the model shows

a relation between presliding and sliding modes. In this model, pre-sliding and sliding

friction have been modeled separately. If the stiffness of the bearing support is reduced, it

reduces presliding resistance, as well as the maximum sliding friction, as demonstrated by

the results. This effect in a journal bearing has been explained earlier as initial rolling

between the journal and sleeve. This conclusion can have important practical applications.

The friction in a journal bearing can be reduced by a proper design, i.e., by employing a

soft support to the sleeve. In particular, if the small oscillations involved in controlling the

system are within the presliding range, the soft bearing supports can benefit in control of

precise motion.

The model was developed for a conformal contact formed by a short journal

bearing, assuming the viscosity of the lubricant to be constant. This model can be

extended, for non-conformal contacts such as line or point contacts formed by cylindrical

rolling elements, roller/ball bearings, operating on elastohydrodynamic lubrication theory

where the elastic deformation of the surfaces and pressure-viscosity variation are
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significant. In addition to variable viscosity, under these extreme pressures, the lubricant

undergoes changes in its rheological properties and becomes visco-elastic. The

performance of the current model can be verified with proper experiments considering all

the above factors. The present model has been extended to investigate the friction during

start-up of hydrodynamic journal bearings, and the work has been published Harnoy

(1995). Author has actively involved in computer programming and simulation of the

model,



CHAPTER 5

DYNAMIC FRICTION MODEL FOR A LUBRICATED
NON-CONFORMAL CONTACT

5.1 Introduction

Earlier work on friction as well as previous chapters on friction modeling shows that

friction has an adverse effect on the precision of motion of dynamic systems governed by

automatic control. In particular, in closed-loop control systems, friction may induce

undesirable tracking errors, limit cycles and stick-slip motion. The negative effect of the

friction is more significant at low velocity, where there is a negative slope in the friction

versus velocity curve. The precision of closed-loop control systems can be improved by

compensating for the friction by applying an additional force or torque through a servo-

motor in the opposite direction to the friction force. A suitable friction model is required

to estimate the friction as a function of measured unsteady velocity so that the friction is

compensated.

In friction modeling, there is a trade-off between the simplicity and the precision of

the model. The accuracy of the friction model can be improved by increasing the

complexity of the model. However, for a complex friction model, the computation time is

too long for on-line compensation. A simplified friction model is practically more efficient

than a complicated model. Therefore, in the present study, a relatively simple friction

model has been developed derived by focusing on the most significant physical principles.

The precision of the model can be improved when it includes parameters which are

determined experimentally.
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In Chapter 2, an analytical model for a conformal contact formed by a short journal

bearing based on hydrodynamic lubrication theory has been developed. This model is

applicable only for the mechanical systems which use the components that form conformal

contacts such as journal bearings, guide ways etc. But, the model may not be applicable

to the mechanical systems having non-conformal contacts such as point or line contacts,

formed by roller bearings, cams and gears. Point contacts as well as line contacts are just

idealization, in fact, the parts in the contact will deform to create an apparent area of

contact and which increases with load. Therefore, this property of non-conformal

contacts may affect the friction behavior. The objective of the present study is to develop

a dynamic friction model for a non-conformal contact, by incorporating the theory similar

to the that developed for conformal contact. A line contact based on elastohydrodynamic

theory have been chosen for this investigation. This model can be applied to many

practical systems as well to any specific systems such as roller bearings or gears.

Although there is a considerable difference in the approach, analytical and

experimental models developed by Hess and Soom (1990), Canudas de Wit et. al. (1993),

Hamoy and Friedland (1993), and Hamoy et. al. (1994), indicate similar type of phase lag

manifested as hysteresis in friction under dynamic velocity conditions. Recent experiments

of Hamoy et. al. (1994), indicate that earlier empirical models are suitable for low

frequency oscillations, but are not in complete agreement with the measured friction at

high frequency velocity oscillations where the measured friction is zero at zero velocity.

The advantage of models by Harnoy and Friedland (1993) and Harnoy et. al. (1994) is that

it can describe the above effect at high frequencies as well as low frequencies for any time-

variable velocity oscillations.
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The present study applies the techniques of the model Harnoy and Friedland

(1993), and Harnoy et. al. (1994), to elastohydrodynamic line contact where the elastic

deformation of the contact is considered as well as the variation of lubricant viscosity with

the contact pressures. Particularly, the area of the contact as a result of deformation of

the contact surfaces which is due to the load has been considered in computing the friction

force. The present model can predict similar phase lag manifested as hysteresis in the

friction-velocity curves. The model also shows that the friction-velocity curve reduces to

the Stribeck curve at steady velocities.

5.2 Development of Friction Model

The present friction modeling is focused on non-conformal line contact based on

elastohydrodynamic lubrication theory. The model uses the elastohydrodynamic

lubrication theory developed by Grubin (1949), and Hamrock (1994). Consider a

rectangular line contact obtained by two parallel cylinders loaded against each other as

shown in Figure 5.1a. In this system, one cylinder can roll or slide over the other, and

these cylinders also can have a combination of rolling and sliding motion which is common

in the operation of gears. Under the applied load, the surfaces at the contact undergo

significant amount of elastic deformation resulting an area which is a function of the load.

The rectangular contact has a width of 2a as shown in Figure 5.Ia is very well known as

Hertzian width. The isothermal elastohydrodynamic theory includes the combined effects

of elastic deformation and viscosity dependence on the pressure distribution. Grubin,

(1949) introduced combinations of these effects on the fluid film pressure distribution.

Hamrock (1994) recently reviewed elastohydrodynamic lubrication theory for rectangular
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conjunctions which are formed due to deformation of line contacts. One important aspect

of this work is that the fluid film thickness at the contact is almost uniform, and its width

as well as corresponding pressure distribution are closer to that of Hertzian dry contact.

In the present investigation, the central film thickness, ho , of the Hertzian zone have been

taken as a uniform film thickness along the Hertzian width. The minimum film thickness

corresponding to the pressure spike is neglected and only the central film thickness is

considered.

5.2.1 Steady Elastohydrodynamic Load

Consider a general case of elastohydrodynamic line contact as shown in Figure 5.1a, with

two rollers of radii R1 , and R2 having surface velocities U1 , and U2 respectively. A

simplified case of the line contact have been shown in Figure 5. lb for pure sliding (0 = 0)

condition, where the cylinder slides over a stationary plane with a velocity, Ur .

In the present study, elastohydrodynamic analysis assumes constant fluid

temperature and an incompressible fluid with a variable viscosity-pressure relation.

Neglecting leakage in the axial direction, Reynolds equation for steady conditions in the

contact has been obtained as,

d (12	 )3 p\	 dh
6 U,.(1+ 0)

obc ' 77 ex	 dx

where Ur (U, = U1 ) is surface velocity of the moving surface, 0 is the rolling to sliding

ratio [ (0 = U2 /U1 with U2 < U1 ) Hamoy (1976)1 p is absolute pressure, 17 is fluid

viscosity and h is film thickness at the contact. The fluid viscosity, ri in the contact is not

(5.1)
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constant, but is function of pressure which have been taken from Barus (1949), and it can

be expressed as,

77= 77oe P 	(5.2)

where 770 is viscosity at zero absolute pressure, and 	 is the pressure-viscosity

coefficient.

The steady elastohydrodynamic fluid film load capacity, w s , per unit length is

obtained by solving Equation 5.1 and Equation 5.2. The solution includes elastic

deformation of the surfaces in contact [see Hamrock (1994)]. The following

dimensionless equation for fluid film load capacity, Ws , has been obtained by rearranging

the equation of Pan and Hamrock (1989) as:

= 635.91 [0.5U, (1 + 0)] 4.169 (E) 2.831 (H) -6.024 	 (5.3)

where Ws ,U„ E , and H are dimensionless static load capacity per unit length, velocity,

Pinetir rrinr111111c a ri A r.t.ril-rn1 -Alrn +11;,17V1AC, 	 N:711; 	 am PI...A/10A a -Pnll rvvi7o •

where ho is the central fluid film thickness, E is the equivalent elasticity modulus of the

two surfaces in contact, Rev is an equivalent radius of the two cylinders which are

determined from the following relations as:

2E -1 = (1— v 12 )E 1 1 + (1— v22 )E2 1 	(5.5)

+	 (5.6)
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sere E 1 and E2 are the modulii of elasticity, and v1 and v2 are Poisson's ratio and

and R2 are radii of the two rollers respectively. The radius of curvature for a concave

rface is negative, and it is infinity for a plane surface. In this case, according to Figure

lb, R, = R and R2 = 00 , therefore, Reg = R1 = R .

figure 5.1 Non-conformal contact (Elastohydrodynamic line contact) (a) between two
;ylinders (b) between a plane and translating roller ( 0 = 0 ).

2.2 Contact Force w e in Mixed Friction Region

he mixed friction region in the contact occurs at low velocity. According to the

cperiments, the mixed region is shown as a negative slope in the steady friction versus

Dlo city (f — U) curve. In the mixed region, the load is carried partly by the contact

a.tween the asperities and partly by the elastohydrodynamic fluid film. As the sliding and

)lling velocity, Ur (1+ 0) , increases, a larger part of the load is carried by the fluid film

ad the friction force decreases, because the viscous friction is less than the contact
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friction. At higher velocities, the fluid film completely separates the surfaces. There is a

transition velocity, U fr , corresponding to the transition from mixed to elastohydrodynamic

lubrication region. The transition velocity, U„ , is equal to the steady sliding and rolling

velocity, Ur.(1+ 0) . The magnitude of the transition velocity, U„, can be obtained from

the experimental Stribeck curve, while the fluid film thickness at the transition, kr., can be

obtained from the elastohydrodynamic equation and U„ .

Surface asperities at the contact undergo appreciable elastic as well as plastic

deformation due to the contact force or load. These deformed asperities behave like non-

linear springs and generate a reaction force at the contact in the direction normal to the

surface. The stiffness of these asperities can be assumed as a function of the elastic

defog illation, 5 of the asperities in the direction normal to the surface. The average elastic

deformation of the asperities 8 , can be expressed as the difference between the transition

and the central film thickness,

	

= hfr —ho 	(5.7)

The reaction force, w e , per unit length, between the asperities can be expressed as

[Harnoy (1993, 1994)]:

	Kn8	 (5.8)

where IC is the stiffness of the surface asperities per unit length in the direction normal to

the surface. The contact area increases with the deformationä of the surface. Therefore,

the stiffness, K„, is an increasing function of deformation, 8 .

Substituting the definition of elastic deformation 5 defined in Equation 5.7 in

Equation 5.8, the elastic reaction force w e can be expressed in the following form:



1
=n Ee  rm. W e

"L 'L teq

(5.12)
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w e Kn (h,—ho )d	 (5.9)

d is defined as:

	A . 11,	 if (h„ —ho )> 0
	0,	 if (h„ —h) <0 (5.10)

The elastic reaction force, w e , defined in Equation 5.9 reduces to zero as the film

kness, ho , increases above the transition film thickness h„. This phenomenon indicates

in the fully developed elastohydrodynamic lubrication region, w e 0 and there is no

tact friction. However, in the mixed lubrication region, whenever ho goes below the

[sition film thickness hfr , there is a contact between the surface asperities exerting a

-zero contact force, w e . The contact force, w e defined in Equation 5.9 can be

Lsformed into the following dimensionless form:

We = K n (H, — H)A	 (5.11)

re We and x n are the dimensionless reaction force and stiffness of the asperities

fled as follows:

.3 Unsteady Elastohydrodynamic Load

very well understood that from previous chapters that the friction behavior under

gamic or unsteady velocity conditions is different from the steady velocity conditions.

:refore, it is necessary to introduce the dynamic conditions. Under dynamic velocity

editions, there is an additional load capacity component, wd , associated with time-

fable fluid film thickness (squeeze film force). It is assumed that there exists an



(2a) 3 dh
= —77 	w d	 eq ho 	dt

(5.13)

FR
a = ( 8 	eq )"

7r E
(5.14)

(5.16)
„

=
U 

t
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[uivalent viscosity, ri eg , of the lubricant, so that wd can be derived from the principles of

ueeze film action. The equivalent viscosity, q eq , is calculated from Equation 5.2, based

the average pressure (F/2a). Also, the film thickness, ha , in the contact is assumed to

constant, and is approximated to the central film thickness. The dynamic load

)mponent, w d , per unit length is:

here a is the semiwidth of the Hertzian zone which is assumed to be a function of

mstant external force (load), F, per unit length, and can be determined from the

&owing equation as:

Substituting lubricant viscosity, 77 from Equation 5.2, and dimensionless variables

fined in Equation 5.4, the dimensionless dynamic load, d is obtained as:

Wd =	 WI' II 	 (5.15)

'here H is derivative with respect to dimensionless time, 	 and the dimensionless

arameters defined as:

The total fluid film force in the contact can be obtained by summing up the steady

nd dynamic (squeeze film) load capacities w„ and -w d . In fact, in the classical

ydrodynamic theory, these two effects are superimposed. Since the steady pressure is
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high enough, cavitation due to positive film thickness, H in line contacts (in Equation

5.15) is not expected.

The load of the capacity fluid film in the contact is obtained by assuming the

density of asperities in the mixed region is sufficiently low so that it does not affect the

flow of fluid significantly, and does not influence the hydrodynamic action Harnoy and

Friedland (1993). Even though the fluid film forces, w„ and w c, are very low in mixed

region (A = ), they are not neglected. The load capacity, w, in the mixed region is a

vector summation of elastic reaction, w e  and elastohydrodynamic loads, w s , and w d

However, in the elastohydrodynamic region, A = 0, there is no surface contact,

therefore, there is no elastic reaction force. The dimensionless form of the load capacity,

W on, the contact per unit length is obtained by adding Equation 5.11, Equation 5.3 and

Equation 5.15 as:

W = K pi (H„ - H)A + 635.91 [0.5 rf,. (1 + 0)] 4.169 (E-) 2.831 (11) -6.024 8Fieez-r 3 (p-)-31/- (5.17)

5.2.4 Dynamic Equation of System

The mass of the roller surface, m, which is supported by the fluid film undergoes a small

motion in y direction normal to the surface as a result of acceleration of the fluid film in

the contact. Therefore, the acceleration of the mass, m is equal to the acceleration of the

fluid film thickness, ho , which is determined by the difference of the load capacity, w, and

the external force, F . According to the Newton's second law of motion (m, F and w

are per unit length), the acceleration of the mass is given as:



(5.20)U 2t7,77 	r

2 

m
EReq

F 	
ER eq
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w — F = ink 	 (5.18)

Substituting Equation 5.17 into Equation 5.18, the following dimensionless

equation of motion is obtained:

F =lc- n (17,-11)A+ 635.91 [0.5 U,.(1+ 0]
4169() 2.831 (H)-6.024 8rieq a 3 (H) -3 ri Fig

(5.19)

Dimensionless forms of in- and F are defined as:

5.2.5 Friction Force at Contact

The friction force, Ff , at the contact, in the tangential direction of the contact surface, is

a combination of contact and viscous friction forces. The mechanical contact part of the

friction force is proportional to the normal reaction load, w e , and is assumed to follow the

well known Coulomb's law of friction. Adding viscous friction, based on equivalent

viscosity, to the mechanical friction, the total friction, Ff , per unit length in the contact

can be expressed as:

2arie,U,. (1— 0)
Ff = fn,K,(h„ —ho )A sgn(U,.) +

h 	
(5.21)

o

where sgn(U,.) term is same as sgn(U) which have been defined already in Equation. 2.7,

and fm is mechanical friction coefficient accounted for by Coulomb's friction law at the

contact, which can be determined from friction measurements. The mechanical friction



a

e = 	 e dx
q 2a

(5.22)
-a

9 5

coefficient is equal to the maximum friction in the f U (Stribeck) curve at zero sliding

velocity. The equivalent viscosity, 77,4, can be determined by integrating Equation 5.2 as:

Precision of the model can be improved by solving Equation 5.21 for the

equivalent viscosity, ri eq , by from the measured friction force Ff with the aid of steady

friction experiments. The dimensionless form of Equation 5.21 is:

Ff = f„,x.„(H„—	 sgn(/r) + 24	 Ur 
(1— )—ci

rh o	H

where the friction force .f can be defined as:

Ff 	
—ER F1

eq

(5.23)

(5.24)

The coefficient of dynamic friction, f (z) , at the contact is defined as the ratio of

the friction force, Ff and external force, F .

Ff
er) = —F, 	 (5.25)

Equation 5.19 and Equation 5.23 represent the dynamic friction model for a non-

conformal line contact. Equation 5.19 can be integrated numerically to solve for the

dimensionless central film thickness, H , which in turn is substituted into Equation 5.23 for

friction force. The time variable friction coefficient, " f (-0" here after referred as "f " can

be determined as a function of the sliding velocity.
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5.3 Simulation of Model for Dynamic Friction

The model can be used to simulate dynamic friction for any dynamic velocity, provided

that all the model coefficients such as ?l eg , hfr and the stiffness, ic„, of the asperities, are

known. In the following simulations, it is assumed that ic- ,, is an increasing linear function

of the deformation of the asperities, (h„ — h), since the contact area between the asperities

increases with the deformation. A linear relation for stiffness, K „, is:
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From the above dimensionless parameters, external force at transition, F and stiffness

constant of the asperities, lc ° have been computed using Equation 5.19 and Equation 5.27

respectively as given in Table 5.2:

Table 5.2 Additional data required for simulation

= 0.0223 	 I	 KO = 575.37

5.3.1 Uni-directional Oscillating Sliding Velocity

The first example selected for simulating the model for dynamic friction is an uni-

directional oscillating velocity. Uni-directional velocity oscillations have been chosen to

compare the performance of the current model with the experimental results of Hess and

Soom (1990). This example is relatively simple since there is no transition at zero

velocity. The dimensionless velocity chosen for the simulation oscillates between two 0.1

and 2.1, according to the following equation:

U = 1.1+ sin a T. 	or	 U = 1.1+ silica	 (5.28)

where U is the velocity ratio (U = Ur /U„ ), and a is the dimensionless frequency of

velocity oscillations as defined in Equation 2.37 (a = S2 / co o.).

The time-variable friction is simulated by performing numerical integration of

Equation 5.19 to solve for the film thickness, H, as a function of time, for the periodic

velocity U defined in Equation 5.28. The initial value of film thickness, H, can be

selected arbitrarily, and after a few cycles, a steady state is reached at periodic film

thickness, H . The periodic friction coefficient f (I-) can be determined by substituting



the film thickness, H, into Equations 5.23 and 5.25. Results of the simulation are

presented in the form of (f — U) curves as shown in Figure 5.2.

98
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The (f — U) curves shown in Figure 5.2 indicate dynamic effects, such as phase

	

lag and hysteresis. At very low frequencies of velocity oscillation (a 	 0) , the (f — U)

curve reduces to the Stribeck curve. However, the hysteresis effect is more pronounced at

higher frequency of velocity oscillations. It is also evident from Figure 5.2 that the

maximum friction decreases with increase in frequency of oscillations. The analytical

results presented in Figure 5.2 are in qualitative agreement with the experimental results of

Hess and Soom (1990) which were conducted under similar conditions of line contact and

unidirectional oscillating sliding velocity. The model also has been simulated for various

dimensionless load, as shown in Figure 5.3.

5.3.2 Bi-directional Oscillating Sliding Velocity

A second example chosen for friction simulation is a sinusoidal velocity which passes

through zero velocity. These velocity oscillations are of interest, since most of the

motion in a control system involves harmonic oscillations passing between positive and

negative velocity values. The velocity varies with time according to the equation:

U = 2 sin(a	 or	 U = 2 sin(cot)	 (5.29)

Simulation results for this velocity oscillations are presented in Figure 5.4. The

friction curves exhibit a discontinuity at zero velocity as observed by Harnoy(1993, 1994).

The magnitude of friction at zero velocity is less than the maximum friction. The

maximum friction as well as the magnitude of the discontinuity at zero velocity decreases

with increase in frequency of velocity oscillations, a .
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Velocity ratio - U

Figure 5.4 Friction coefficient, f Vs dimensionless velocity (velocity ratio) of the roller,

U with U = 2 sin az for various frequency ratio, a .

Harnoy et, al. (1994) conducted experiments using a hydrodynamic journal bearing

for similar sinusoidal velocity oscillations. Although the range of the sliding velocity in the

experiment is limited in comparison to the wider velocity range in the simulation, results of

the model indicate similar hysteresis effect and discontinuity at zero velocity as that

obtained in this analytical simulation of Harnoy and Friedland (1993) and the friction

measurements discussed in the Chapter 3. There is also an agreement in the trend of the

decreasing magnitude of the friction step, at zero velocity. In fact, the experiments

indicate that above a certain frequency of oscillations, the discontinuity is reduced and

there is zero friction at zero velocity, particularly at high frequencies of velocity

oscillations. This effect is predicted by the present friction model, but cannot be derived

from earlier models based on friction phase lag. Bowyer also observed [ see Cameron
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(1979)] a similar type of hysteresis in his experiments. Polycarpou and Soom (1992) also

obtained similar hysteresis in friction versus velocity curves in their friction experiments.

5.4 Comparison of Friction Curves for Steady Velocity

Although the journal and sleeve, in hydrodynamic journal bearing, form a conformal

surfaces at low velocities, there is also a line contact with high contact pressure. The

contact surfaces undergo deformation and the viscosity of the lubricant in the contact is

affected. This deformation may play a significant role on the load capacity and fluid film

thickness. In order to investigate the elastohydrodynamic effect in journal bearings, in the

mixed lubrication region, friction experiments were conducted on a journal bearing at

steady velocities, using the apparatus described in the Chapter 3 and Harnoy et. al. (1994),

f — U (Stribeck) curve, have been plotted. The results are compared to the curves

obtained from the analytical model of hydrodynamic lubrication theory developed in the

Chapter 2, and Harnoy and Friedland (1994) as well as the present analytical model based

elastohydrodynamic lubrication theory. The bearing data used in the experiments for the

steady f — U curve is as shown in the following Table 5.3:

Table 5.3 Short journal bearing data

Radius of journal R= 12.7 x 10-3 m

Length of sleeve L = 19 x 10 -3 	m

Radial clearance in bearing C = 1.27 x 10 -5 m

External force F = 200 N
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Elastohydrodynamic theory
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The transition velocity, U„, was determined experimentally from the Stribeck curve as:

Ufr= 0.284 m / s . The values of the equivalent viscosity, ?l eg , and film thickness at

transition, 17,, were also determined from experiments as explained earlier. These

coefficients were used in the simulation.

Comparison of the theoretical f — U curves derived from the hydrodynamic

lubrication theory, the elastohydrodynamic theory and experimental data are shown in

Figure 5.5. These curves indicate that the friction measured by the experiments in the

mixed region is in better agreement with the hydrodynamic lubrication theory.

-0 	 0.5 	 1 	 _ 1.5 . 	 2
Velocity ratio - U

Figure 5.5 Steady Stribeck, f — U curves plotted from hydrodynamic theory,
elastohydrodynamic theory and experiment on short journal bearing.
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5.5 Summary

In this chapter, an analytical dynamic friction model for a non-conformal contact formed

by a roller and a flat surface have been developed. The concept of the model is same as

the concept used in Chapter 2, except the lubrication theory. This model is based on

elastohydrodynamic lubrication theory which considers the elastic deformation of the

surfaces in contact, and the viscosity variation with contact pressure. According to the

results of the present model, friction is a memory function of the velocity. The f — U

curves shown in results indicate that the friction is not only a function of the instantaneous

velocity, but is also a function history of velocity. In the low velocity region, at any given

velocity, the friction is higher for time-increasing velocity when compared to the friction

for time-decreasing velocity. Moreover, the rate of change of velocity is also important,

and the difference between the magnitude of friction at increasing and decreasing velocity

is more pronounced as the rate increases. As a result the hysteresis effect is more

pronounced at high frequencies of velocity oscillations. These trends are in qualitative

agreement with the earlier experiments as well as the friction measurements on journal

bearing as described in Chapter 3.

The physical explanation of the memory effect in this study, can be described as

the motion of the sliding surface in the direction normal to the sliding surface. At steady

velocity, the lubrication film thickness is determined by the sliding velocity. However, for

time-variable velocity, there is a time-delay to squeeze the fluid film or increase it to the

steady thickness level.

This model can be extended for point contacts where the deformation of the

surfaces is quite different, and dynamic load is also different. The present model also can



104

nded to investigate the stick-slip friction phenomena in non-conformal line

.s. This model can be verified by setting up a separate apparatus for friction

ements. Once the model is verified, it can be used for on-line compensation.

A model based friction compensation can offer a new effective method to enhance

vision of motion in control system. On-line estimation of equivalent viscosity, rieg

,rove the precision of the model. This can be achieved by on-line estimation

s, based on measured parameters such as displacement and velocity.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Dynamic friction behavior of lubricated contacts has been modeled for different dynamic

velocity conditions including uni-directional and bi-directional oscillations. The following

are the results of this investigation:

1. A friction model developed by Harnoy and Friedland (1993) for a conformal contact

formed by a journal bearing operating on hydrodynamic lubrication theory shows a

phase lag in the friction as manifested by hysteresis in friction versus velocity (f —U)

curves for uni-directional and bi-directional velocity oscillations. Simulation results

for bi-directional velocity oscillations show a discontinuity in friction at velocity

reversals. Friction results for uni-directional velocity oscillations are in good

agreement with the experimental measurements on a line contact of Hess and Soom

(1990).

2. A special apparatus has been designed and built by the team using a short journal

bearing to the verify the above analytical model. Experiments have been conducted to

measure the dynamic friction in the bearing for uni-directional and bi-directional

sinusoidal periodic velocity oscillations. Friction measurements resulted a phase lag in

the friction as manifested by hysteresis in the f —U curves. These results have been

compared to the simulation results of the analytical model, which indicate qualitative

and quantitative agreement between the analytical model and experiments. Simulation

results for bi-directional velocity oscillations are in good qualitative and quantitative

105
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agreement in mixed and hydrodynamic friction regimes. But, there is a disagreement

in friction at velocity reversals. Measured friction for bi-directional velocity

oscillations shows that friction at starting and stopping corresponding to zero velocity,

is different when compared to the simulation results of theory, which shows that the

friction at starting and stopping corresponding to zero velocity is same. The

magnitude of the discontinuity in friction at velocity reversal obtained from the friction

measurements is higher than the magnitude of the discontinuity in friction obtained

from analytical solution which may be due to dry friction at zero velocity. The results

indicate that the measured friction has dry friction at zero velocity, and the analytical

model could not capture the dry friction at zero velocity. The analytical model of

Harnoy and Friedland (1993) need to be modified to account this difference in friction

behavior at the zero velocity by conducting experiments on dry friction.

3. The above analytical model [Harnoy and Friedland (1993)] has been extended to

investigate the effect of resisting forces on the dynamic friction behavior at low speed.

In this study, resisting forces such as presliding friction known as "Dahl" effect and

sliding friction have been considered for modeling. Behavior of the model under uni-

directional velocity oscillations are in qualitative agreement with earlier experimental

and analytical work. During bi-directional velocity oscillations, the model shows an

improvement in dynamic friction behavior. The improvement is that the discontinuity

at the zero velocity is replaced by a slope. The simulation results indicate that the

stiffness of the surface asperities plays a significant role in replacing the discontinuity

to a slope.
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4. The concept used in developing the analytical model for a conformal contact [Harnoy

and Friedland (1993)] has been applied to develop a friction model for a non-

conformal contact. In this study, a non-conformal contact formed by a roller sliding

over a flat surface operating on elastohydrodynamic lubrication theory has been

considered for friction modeling. Simulation results of the model for unidirectional

and bi-directional velocity oscillations show a phase lag in the friction as manifested by

hysteresis in f — U curves as displayed by other models and experimental results.

Simulation results of the above analytical models and friction measurements

indicate that there is a phase lag in the friction as manifested by hysteresis in f — U curves.

From this observation, it can be concluded that the instantaneous friction is not only a

function of the instantaneous velocity but also is a function of the velocity history. The

analytical models discussed in the above section can be improved with the aid more

experimental work.

6.2 Recommendations

All the above models and the experiments have been focused on friction behavior resulted

from the response of the system under given dynamic conditions. Further investigation is

required to determine how this friction influences performance of the system directly or

indirectly when it is subjected to dynamic conditions. In order to determine the effect of

friction on the system, on-line estimation of the system parameters, such as displacement,

velocity and acceleration as well as viscosity of the lubricant is recommended. Thus, the

estimated parameters of the system can be used to analyze the behavior of the system.



108

The analysis will be very useful in friction compensation processes required for precise

motion control systems.

Further, the above analytical models can be successfully used for friction

compensation so that the effect of friction such as stick-slip can be eliminated. These

models can be further extended for analyzing the stick-slip phenomenon. Also, these

concepts can be used to develop analytical models for other non-conformal contacts such

as point contacts. Techniques used in developing these models can be improved for

estimating friction in dry contacts.



APPENDIX A

COMPUTER PROGRAM TO SIMULATE THE MODEL DISCUSSED IN
CHAPTER 2

The analytical model of Harnoy and Friedland (1993) developed in the Chapter 2 has been

simulated using numerical techniques. A computer program using FORTRAN -77 has been

developed for simulation. Later, the model has been simulated by using a special

simulating environment as discussed in the following sections. Following is the code

written using the finite difference method to solve the differential equations of the friction

model represented by Equations 2.29-2.32. The details of the these equations are

discussed in chapter which are given as,
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where A, B, C, P, 0, and R are the variables derived after substituting the above

mentioned finite differences and the term "I" refers to the step. The following code

computes the magnitude of A, B, C, P, Q, and R for each step, and solves for the time

variable e and q) of the future step. Following are the definitions of the terms used in the

code:

EC:	 G tr

AC:	 CR/L2 defined in Equation 2.31.

KO:	 dimensionless spring constant defined in Equation 2.35

M:	 dimensionless mass defined in Equation 2.28

FM	 Coulomb's friction coefficient used in Equations 2.6 and 2.31

J11, J12, 122: are the integrals defined in Equations 2.23-2.25, J1 and 12 are at transition

point used in Equation 2.33

E:

FI:

U:	 dimensionless velocity defined in 2.36 and 2.38

FF, CF:	 friction force and friction coefficient defined in Equations 2.31 and 2.32

respectively.

FX, FY:	 components of load in x and y directions respectively

WE:	 reaction force defined in Equation 2.3



PARAMETER (N=30000)

REAL EC,AC, KO ,M, FM, J1, J2 ,D, EB,ALPHA, PI,DELTA

REAL J11 (N) , J12 (N) , J22 (N) , E (N) , FI (N) , U (N) , CF (N)

REAL FF (N) , FX (N) , FY (N) , WE (N)

OPEN(1,FILE='indata',STATUS= 1 UNKNOWN')

OPEN(2,FILE=trfdata',STATUS= 1 UNKNOWN')

OPEN(3,FILE=ircf.dat',STATUS='UNKNOWN')

PI=3 .1415926

EB=0 .99

• PRINT*, ' M = ? '

• READ (*, *) m

• PRINT*, ' ALPHA = ?

• READ (*, *) ALPHA

PRINT*, 'AC=? '

• READ (*, *) AC

PRINT*, ' MECHANICAL FRICTION FACTOR FM=?'

• READ (*, *) FM

PRINT*, ' EC=? '

READ (*, *) EC

READ (1, *) M, ALPHA, AC, FM, EC

WRITE (2,10)

PRINT*, ' WAIT 	 PLEASE

* COMPUTATION OF CRITICAL FORCE FC*

J1=PI/ (2 .* (1-EC**2)**1.5)

J2=-2 .*EC/ (1-EC**2)**2

FC=SQRT ( ( ( -0 .5*J2*EC) **2) + ( (0 .5*J1*EC)**2) )

KO=FC/ (EB-EC)

WRITE (2, *) ' MASS= ' ,M, 'ALPHA= ' , ALPHA, ' CONSTANT RCL2= , AC

WRITE (2, *) ' MEC . FRIC *FACTOR= , FM, ' CRITICAL ECC. = ' , EC

WRITE (2, *) CRITICAL FORCE= ' , FC, ' SPRING CONSTANT= ' , K

* DETERMINATION OF EPSILON FOR DIFFERENT VALUES OF oUn*

WRITE (2, 10)

FI (0) =PI+ (10 . *PI) /180.

E (0)=0.96
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WE (0) =0.0

FI (1) =FI (0)

CF (0) =0.0

U(0)=0.0
E (1) =E (0)

CF (1) =CF (0)

U (1) =U (0)

WE (1) =WE (0)
DT = PI/ (90 . *ALPHA)

DO 100 I= 1,N

U (I) =2 . *SIN (ALPHA*DT*I)

U (I) =1.1+1*SIN(ALPHA*DT*I)

J11 (I) =PI/ (2* (1 -E (I) *E (I) ) **1.5)

J12 (I) =-2*E (I) / ( (1-E (I) *E (I) )**2)

J22 (I) = (PI* (1+2*E (I) **2) ) / (2* (1-E (I) *E (I) ) **2.5)

K=K0* (E (I) -EC) / (EB-EC)

IF ( (E (I) -EC) .LT .0.0) THEN

DELTA=0.

ELSE

DELTA=1 .

ENDIF

WE (I) =DELTA*K* (E (I) -EC)

FX (I) =1.0*FC*COS (FI (I) -PI) -WE (I)

A1=0.5*ABS (U (I) ) *E (I) *J12 (I)

A2=E (I) *FI (I-1) *J12 (I) / (2*DT)

A3=E (I-1) *J22 (I) / (2*DT)

A4 =2 *M*E (I) / (DT*DT)

A5= -M*E (I-1) / (DT*DT)

A6=M*E (I) *FI (I) **2/ (DT*DT)

A7=M*E (I) *FI (I -1) **2/ (DT*DT)

A8=-2*M*E (I) *FI (I) *FI (I-1) / (DT*DT)

50 	 A= FX (I) +Al +A2 +A3 +A4 +A5 +A6+A7+A8

B=J22 (I) / (2*DT) +M/ (DT*DT)

C=E (I) *J12 (I) (2*DT)

FY (I) =1.0*FC*SIN(FI (I) -PI)

P1=-0.5*ABS (U (I) ) *E (I) *J11 (I)

P2= -E (I) *FI (I-1) *J11 (I) / (2*DT)

P3=-E (I-1) *J12 (I) / (2*DT)

P4= -2*M*E (I) *FI (I) / (DT*DT)

P5=M*E (I) *FI ( I -1) / (DT*DT)

P6=M*E (I-1) *FI (1-1) (DT*DT)
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APPENDIX B

MATLAB PROGRAMS TO SIMULATE THE MODEL DISCUSSED IN
CHAPTER 3 FOR COMPARING WITH EXPERIMENTAL RESULTS

The analytical model discussed in Chapter 2 also have been simulated using a different

software tool to compare the experimental results as discussed in Chapter 3. Simulink

tool of Matlab software have been used for the simulation purpose. The tool uses

numerical integration. The differential equations to be solved by numerical integration are

stored in a file as a special Matlab function, which will be accessed by the Simulink at the

time of simulation. The data required for simulation also stored in a file, so that it can be

supplied to the program before simulation. Following are the Matlab functions and data

file. The Simulink diagram representing the model is shown in Figure A.1.

B.1. JOURN.M (Matlab function)

sk function defining the friction model differential equations of
sk conformal contact (Hydrodynamic short journal bearing).

function x = journal(u)

global FF EPS_CR EPS_B RCL MM FM KO

U = u(1);
eps 	 u(2);
epsdot 	 u(3);
phi = u(4);
phidot = u(5);

d = 1 - eps ^ 2;
J1I = pi/2/d ^ 1.5;
J12 = -2*eps/d ^ 2;
J22 = pi*(1+2*eps ^ 2)/2/d ^ 2.5;

k = KO* (eps - EPS_CR)/(EPS_B - EPS_CR);
delta = 1;
if (eps<EPS_CR) delta = 0;
end

d = 0.5*eps*abs(U) - eps*phidot;

cps dd = (FF*cos(phi) - k*(eps-EPS_CR)*delta + d*J12 - epsdot*J22)/MM +
eps;.phidot ^ 2;
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phi_dd = (-FF*sin(phi) + d*J11 - epsdot*J12)/(eps*MM) -
2 *epsdot*phidot/eps;

Ff = FM * k*(eps-EPS_CR)*delta*sign(U) + RCL*2*pi*U/(1-eps ^ 2) ^ 0.5;
f = Ff/FF;
x = reps_dd phi_dd f]i;

B.2 JORDAT.M (Data)

% jordat.m 	 data file for journal bearing dynamic friction model

global FF EPS CR EPS B RCL MM FM KO

EPS_CR = 0.97775; % critical (or transition) eccentricity
EPS_B = 0.99; 	 % eccentricity at boundary to mixed transition
Jlltr= (pi/(2*(1-EPS_CR ^ 2) - 1.5));
J12tr= (-2*EPS_CR/(1-EPS_CR A 2)^2);
FF = sqrt((-0.5*J12tr*EPS_CR) ^ 2+(0.5*Jiltr*EPS_CR) ^2) % dimensionless

% normal load
RCL = 0.01; 	 % dimensionless ratio of R*C/L"2
FM = 0.2; 	 % friction coefficient
MM = 100; 	 % journal mass
KO = FF/(EPSB-EPSCR) ^ 1.0; 	 % Stifness constant fo the asperities
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APPENDIX C

COMPUTER PROGRAMS

C.1 COMPUTER PROGRAMS TO SIMULATE THE MODEL
DISCUSSED IN CHAPTER 4

The computer program developed for simulating the analytical model discussed in

Appendix A has been modified for simulating the model discussed in Chapter 4.

Following is the code to solve the differential equations of the friction model, investigating

the resistance forces, including the Dahl effect. The following code is the extended

version of the code discussed in the Appendix A including the equations of the model

discussed in Chapter 4. The definition of the terms discussed in Appendix A are valid.

PARAMETER (N=962000)

REAL J-11 (N) , J12 (N) , J22 (N) , E (N) ,U (N) , FI (N) , FF (N) CF (N) , FX (N) , FY (N)

REAL WE (N) , TJPR (N) , 'TB (N) ,MWE (N) , TJD (N) , TBD (N) ,MJ (N) ,K (N)

REAL MF (N)

REAL ALPHA,DT,PI,EC,AC,DE,DF,KO,M,FM,J1,J2,D,EB,N1 ,N2 ,N3 ,N4

REAL C1, C2, C3, C4, DELTA

INTEGER NFLAG (N)

OPEN (1, FILE= indata , STATUS= ' UNKNOWN' )

OPEN (2, FILE= ' f data ' , STATUS= UNKNOWN' )

OPEN (3, FILE= ' cf data STATUS= ' UNKNOWN' )

OPEN (4, FILE= ' mf data ' , STATUS= ' UNKNOWN' )

P1.3.1415926

EB=0.99

W0=2.00

FM=0.2

EC=0.96

AC=0.010 	 •

FAC=50.

PRINT*, ' M = ? '

READ(*,*) M
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PRINT*, ' ALPHA 	 ? 1

READ (* *) ALPHA

READ(1, * )M,ALPHA,AC,FM,EC

PRINT*,'ENTER TJO,TBO'

READ(*,*)TJO,TBO

PRINT*, 'ENTER N1,N4'

READ(*,*)N1,N4

PRINT*, ' WAIT 	 PLEASE

N3=AC

N2=N4+N1

* COMPUTATION OF CRITICAL FORCE FC*

J1=P1/(2.*(1-EC**2)**1.5)

J2=-2.*EC/(1-EC**2)**2

FC=SQRT(((-0.5*J2*EC)**2)+((0.5*J1*EC)**2))

KO=FC/(EB-EC)

WRITE(2,*) 'MASS=',M,IALPHA=',ALPHA,'CONSTANT RCL2=',AC

WRITE(2,*) 'MEC.FRIC.FACTOR=',FM,'CRITICAL ECC.=',EC

WRITE(2 1 *)'#CRITICAL FORCE= ',FC,'SPRING CONSTANT= ',KO

WRITE(3 1 *)'*MASS=',M,'ALPHA=',ALPHA,'CONSTANT RCL2=',AC

WRITE(3,*) 1 *MEC.FRIC.FACTOR=',FM,'CRITICAL ECC.=',EC

WRITE(3,*)'*CRITICAL FORCE= ',FC,'SPRING CONSTANT= ',KO

* DETERMINATION OF EPSILON FOR DIFFERENT VALUES OF "Un*

WRITE(4,*)'# 1 ,'N1= 	 ',N1,'N2= ',N2, 1 N3= 1 ,N3,IN4= ',NA

WRITE(4,*) 1 # 1 ,'MASS= ',M,'ALPHA= ',ALPHA,'EPSIINTIAL.

, ' #### ' , AC

*

&EC,'A CONSTANT (AC) =

WRITE(3,5)

WR1TE(4,6)

WRITE(2,10)

WRITE(3,10)

WRITE(4,10)

• INITIAL CONDITONS

FI(0)=0.

E (0) =0.99

WE (0) =0.0

CF (0) =0.0

U(0)=0.0



TJPR (0) =0 .

TB (0)=0.

TJD (0) =0 .

TBD (0)=0.

FI (1) =FI (0)

E (1) =E (0)

TJPR (1) =TJPR (0)

TB(1) =TB (0)

CF (1) =CF (0)

U (1) =U (0)

WE (1) =WE (0)

TJD (1) =TJD (0)

TBD (1) =TBD (0)

NFLAG (1) =0

DT=PI/(1800.)

* COMPUTATION OF EPSILON *

DO 100 I= 1,N

U (I) =2 . *SIN (ALPHA*DT*I)

311 (I) =PI/ (2* (1-E (I) *E (I) )**1.5)

J12 (I) =-2*E (I) ( (1 - E (I) *E (I) ) **2)

J22 (I) = (PI* (1+2*E (I) **2) ) / (2* (1-E (I) *E (I) )**2.5)

*CALCULATION OF SPRING CONSTANT k(d), DEFINING DELTA, AND ELASTIC

REACTION We*

IF ( (E (I) -EC) .LT.0 .0) THEN

DELTA=0 .

ELSE

DELTA=1 .

ENDIF

K (I) =DELTA*K0* (E (I) -EC) / (EB-EC)

WE (I) =DELTA*K (I) * (E (I) -EC)

*CALCULATION OF EPSILON *

TJD (I) =U (I)

TBD (I) = (TB (I) -TB (I-1) ) /DT

FX (I) =1.0*FC*COS (FI (I) ) -WE (I)
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A1=0.5*E (I) *J12 (I) *ABS (TJD (I) +TBD (I) )

A2=E (I) *FI (I-1) *J12 (I) / (2*DT)

A3=E (I-1) *J22 (I) / (2*DT)

A4=2*M*E (I) / (DT*DT)

A5=-M*E (I-1) / (DT*DT)
A6=M*E (I) *FI (I) **2/ (DT*DT)

A7=M*E (I) *FI (I-1) **2/ (DT*DT)

A8=-2*M*E (I) *FI (I) *FI (1-1) / (DT*DT)

50

	

	 A=FX (I) +Al +A2 +A3 +A4 +A5 +A6+A7+A8

B=J22 (I) / (2*DT) +M/ (DT*DT)

C=E (I) *J12 (I) / (2*DT)

FY (I) =1.0*FC*SIN(FI (I) )

P1=- 0.5*E (I) *J11 (I) *ABS (TJD (I) +TBD (I) )

P2=-E (I) *FI (I-1) *J11 (I) / (2*DT)

P3=-E (I-1) *J12 (I) / (2*DT)

P4 =-2*M*E (I) *FI (I) / (DT*DT)

P5=M*E (I) *FI (I-1) / (DT*DT)

P6=M*E (I -1) *FI (1-1) (DT*DT)

P7=-M*E (I-1) *FI (I) / (DT*DT)

P=FY (I) +Pl+P2+P3+P4+P5+P6+P7

Q=-J12 (I) / (2*DT) -M*FI (I) / (DT*DT) +M*FI (I - 1) / (DT*DT)

R=-E (I) *J11 (I) / (2*DT) -M*E (I) / (DT*DT)

E (I+1) = (A*R-P*C) / (B*R-Q*C)

FI (I+1) = (A*Q-P*B) / (C*Q-R*B)

* COMPUTATION OF FRICTION FORCE FF, FRICTION FACTOR CF FOR DIFFERENT U

VALUES*

D=1.

IF(U(I).LT.0.0) THEN

D=-1.

ELSE

D=1.

ENDIF

FF (I) = (D*FM*WE (I) +AC*U (I) *2*P1/ ( (1-E (I) **2 ) ) )

CF (I) =FF (I) /FC

IF (I .GE . (N-300) ) THEN

WRITE (2, *) I , ANGLE (I) , FI 	 ,E (I) ,U(I) ,FF (I) ,CF (I)

WRITE (3, *)U (I) ,CF (I)

ENDIF

MWE (I) =D*FM*WE (I)



* PRE-SLIDING REGION- COMPUTATION OF THETA"B",THETA"J",TORQUE MU*

TJPR(I)=TJPR(I-1)+DT*TJD(I)

MF(I)=N1*(TJPR(I)-TE(I))

IF(ABS(MF(I)).LT.ABS(MWE(I)))THEN

NFLAG (I) =0

ELSE

NFLAG(I)=1

ENDIF

IF (NFLAG(I).EQ.0) THEN

TJPR(I)=TJPR(I-1)+DT*TJD(I)

MJ(I)=N1*(TJPR(I)-TE(I))

TB(I+1)=(2.-DT**2*N2)*TE(I)-TB(I-1)+DT**2*N1*TJPR(I)

ENDIF

* SLIDING REGION- COMPUTATION OF THETA"B",THETA"J",TORQUE Mtn*

IF (NFLAG(I).EQ.1) THEN

C1= (2/ (DT**2)) -N4

C2=UPI*N3)/(DT*(1.-E(I)**2)**0.5))-(1/DT**2)

C3=(2*N3*PI*TJD(I))/((1.-E(I)**2)**0.5)

C4=(1/DT**2)+((N3*PI)/(((1.-E(I)**2)**0.5)*DT))

TB(T+1)=(MWE(I)+Cl*TB(I)+C2*TE(I-1)+C3)/C4

TED(I+1)=(TB(I+1)-TE(I))/(DT)

MJ(I)=MWE(I)+2*N3*PI*(TJD(I)-TED(I))/((1.-E(I) ** 2) ** 0.5)

TJPR(I)=(MJ(I)/N1)+TB(I)

ENDIF

MJ 	 =MJ (I) / (FC)

100 CONTINUE

* PRINTING THE RESULTS *

DO 200 I=(N-76400),N,20

WRITE(2,*)U(I),MJ(I),K(I),WE(I),MWE(I),E(I),NFLAG(I)

WRITE (3, *) TJPR(I) ,TB (I) ,TJD (I) ,TBD (I) ,NFLAG

WRITE(4,*)U(I),MJ(I),NFLAG(I)*0.02

200 CONTINUE

5 	 FORMAT(1X,'#',4X,'TJPRIME '3X,'TB',3X,'TJD',3X,'TBD '

&,3X,'NFLAGI)
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6 	 FORMATP#1,3X,'VELOCITY(U) ',4X,'TORQUE(MJ) ',3X,'NFLAG')

7 	 FORMAT(1X,'#1,3X,'U',4X,'MJ7,4X,'K',4X,'WE',4X,'MWEl,4X,'EPSILON

&',2X,'FLAG')

10 	 FORMAT ('# 	
)

*20 	 FORMAT(3X,1#1,4X,'EPSI1,2X,'VEL',2X,'FR.F0',2X,'COF1)

*30 	 FORMAT(2X,I8,2X,6F12.4)

PRINT*,' 	 Y 0 U 	 GOT IT'

120 	 STOP

END



APPENDIX D

MATLAB PROGRAMS TO SIMULATE THE MODEL DISCUSSED IN
ClIAFFER5

The analytical model discussed in Chapter 5 have been simulated Matlab with the help of

Simulink tool. As discussed in the Appendix B, the differential equations and data

required for simulation are stored in different files. These files will be accessed by the

Simulink at the time of simulation. Following are the Matlab functions and data file. The

Simulink diagram representing the model equations is shown in Figure A.2.

D.1 LCT.M (Matlab function)
* function defining the friction model differential equation in %
%- Rachoor and Harnoy model for EHDL line contact.
* The file name is LCT.M for the function ehdl(u).

function x ehdl(u)

global Ftr KO Htr Hb Utr eta0 etaeq E Mm Fm ab etaeqb etar

UBAR = u(1);
H = u(2);
Hdot = u(3);

Kn = K0* (Htr - H) / (Htr - Hb);
delta = 1;
a = Htr - H;
if (a < 0) delta = 0;
end

Hdd 	 ( Kn* (Htr - H)*delta + 635.91 * UBAR ^4.169 * E^2.831 * H"(-
6.024)... - 8 * etaeqb * ab " 3 * H ^ (-3)*Hdot 	 Ftr 	 )/Mm;

Ff = Fm * Kn* (Htr - H) * delta * sign(UBAR) +
2 *etar * UBAR * ab /(H);

f = Ff/Ftr;
x = [Hdd 	 f]';

D.2 LCTDAT.M (Data)
* lctdat.m - 	 data file for EHDL dynamic friction model
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of Rachoor and Harnoy paper (2/14/95).

global Ftr KO Htr Hb Utr eta() etaeq E Mm Fm ab etaeqb etar

Mm = 2.4e-2; 	 % Mass
E = 4200; 	 % Dimensionless modulus fo elasticity
Fm = 0.1; 	 % Mechanical friction coefficient
Htr = 2.5775e-5; 	 % Film thickness at transition
Hb = 5.e-6; 	 % Film thickness at boundary
Utr = 1.5e-10; 	 % Velocity at transition
Ftr = 635.91*E ^2.831*Utr -4.169*Htr^(-6.024); % Load at transition
KO = Ftr/(Htr-Hb); 	 % Stiffness constant
ab = (8*Ftr/pi)^0.5; 	 % Semiwidth of Hertizian contact
eta0=0.375; 	 % Viscosity at p = O.
etaeq = 1; 	 % Effective viscosty
etaeqb = etaeq * Utr/eta0;
etar = etaeq/eta0 ;
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Dynamic friction model for a non-conformal (Elastohydrodynamic) line contact
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Figure D1 Visual simulation program for simulating dynamic friction in non-conformal contact (elastohydrodynamic line contact)
formed by a roller and a plane surface (Chapter 5).
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