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ABSTRACT

VAPOR-LIQUID PHASE EQUILIBRIA OF NONIDEAL FLUIDS WITH A
GE-EoS MODEL

by
Socrates Ioannidis

This study dealt with the prediction and correlation of vapor-liquid equilibria

behavior of nonideal fluids. The thermodynamic formalism of the GE-EoS models, which

combines the two traditional methods y.--(1) and OH) used so far for low and high pressure

phase equilibria correlations respectively, has been combined with the 1FGE model,

based on one-fluid theory, to produce a more consistent approach to the phase

equilibrium problem.

In the first part of our study we examine the predictive abilities of our model for

vapor-liquid equilibria of highly nonideal fluids. The results establish the fact that the

Huron-Vidal mixing rule with a one parameter version of the 1FGE model, is able to

successfully utilize available experimental information at low pressures for phase

equilibria predictions of multicomponent mixtures over an extended range of pressures

and temperatures.

In the second part of the study we perform an analysis of the correlative abilities

of the 1 FGE model, as applied to hydrogen-hydrocarbon mixtures. The results of this part

suggest that the unique local composition character of the 1FGE model, along with its one

size and one temperature-dependent energy parameter, make it able to adequately

describe vapor-liquid equilibria behavior of multicomponent mixtures for this highly

asymmetric class of mixtures. Moreover, it is shown that the model parameters for binary



hydrogen-hydrocarbon mixtures can be correlated to the acentric factor of the

hydrocarbon.

The important class of the refrigerant mixtures was modeled in the third part of

this study. The 1FGE model was introduced into the Wong-Sandler mixing rule, based on

the infinite pressure state thermodynamic formalism. The results for these systems

showed that a limited amount of experimental data, either at low or high pressures can be

utilized to provide a parameter which is practically independent of the temperature set

used. As shown from the results, this single parameter can be used to extend vapor-liquid

equilibria predictions over a range of conditions for this difficult class of systems. More

importantly, we set a heuristic rule able to screen multiparameter and one parameter

models. A coordination temperature-parameter planet can be used as a predictive tool

from a limited amount of information.

Our model comes in lieu of the GE models based on two-fluid theory, which are

inconsistent with the one fluid character of an EoS. The 1FGE-EoS framework proposed

in this work meets current needs in the area of Applied Thermodynamics, which require

that the model's parameters can be obtained from a limited information of experimental

data and can give for accurate phase equilibria predictions of nonideal mixtures from low

to high pressures.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Introduction

Vapor-liquid equilibria of highly nonideal fluids are of great interest to the chemical

process industry. For example in the oil industry hydrogenation reactions have to be

performed under extreme operating conditions. There we need a tool to describe the

solubility of hydrogen at equilibrium, in mixtures of various degrees of polarities.

Additionally in the refrigeration industry there is a need for accurate predictive models in

order to be able to analyze refrigeration cycles, something that will facilitate the

replacement procedures of the ozone destroying molecules. Moreover, the solution of

model problems will help us extend our understanding towards more complicated phase

equilibria phenomena, as for the cases involving macromolecules in the blood stream or

alloys in the area of solid state physics.

Semiempirical equations of state (EoS) have been successfully used for modeling

the volumetric properties of pure fluids. Mixing rules for the EoS parameters are used for

examining the phase behavior of mixtures. While the mixing rules traditionally used are

based on molecular considerations, recently the mixture parameters are derived from a

solution [excess Gibbs energy, (GE)] model, through the so-called GE-EoS mixing rules,

[Huron and Vidal, (1979)].

The GE-EoS models have been introduced into the area of Applied

Thermodynamics to meet the current need for predictive tools. In the past the term

"predictive" has been claimed for phase behavior analysis of multicomponent mixtures

with the use of binary parameters obtained from correlation of binary systems over a

range of temperatures, or a temperature near to the temperature of the multicomponent

mixture. Michelsen (1990), used the term "predictive" for phase equilibria predictions of

1
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binaries as well as multicomponent mixtures over a range of conditions, from knowledge

of only a few experimental binary data given at a certain temperature.

A large amount of low pressure experimental data exists in data banks, as for

example the Dechema Data Series, [Ghmeling and Onken, (1977)]. Moreover, for only a

few of these low pressure systems does there exist accurate experimental data over a

range of conditions, up to very high pressures, as for example several water-alcohol

mixtures. These systems, called in this work hereafter "test systems", have been mainly

used in the recent years [Wong et al, (1992), Huang and Sandler, (1993)], to test the

ability of the GE-EoS models to extend vapor-liquid equilibria predictions over a range of

conditions for binary and multicomponent systems, based on a limited amount of

available experimental information given at low pressures.

In another use of a GE-EoS model as a predictive tool for vapor-liquid equilibria

of nonideal systems, the available experimental information can be obtained at any

temperature, and then used for calculations at other higher or lower temperatures. In this

form we expect the model's fugacity coefficient to assume its correct composition and

pressure dependence no matter the temperature used to reveal physical information about

the system considered. A general framework for GE-EoS model development used for a

predictive tool is given in Figure 1-1.

An EoS is combined with a GE model and the model's parameters are obtained

from correlation of few experimental data at a certain condition. Then phase equilibria

predictions follow over an extended range of conditions. The GE model can in principle

draw information from statistical mechanics as well as molecular thermodynamics

tailored to the specific class of systems modeled. Various thermodynamic formalisms can

be employed for the GE-EoS coupling.

The GE models that have been incorporated into the GE-EoS models so far are

mainly based on the local composition approach and the two-fluid theory. These models,

as for example the Wilson equation [Wilson, (1964)], the Non-Random-Two-Liquid



3

Statistical thermodynamics

Available experimental
data information GE model Molecular thermodynamics

Mixing rule Thermodynamic formalism

Phase equilibria predictions
over a range of conditions

Figure 1-1 Framework for mixing rule development (GE-EoS models)

Theory (NRTL) [Renon amd Prausnitz, (1968)], and the UNIQUAC equation [Abrams

and Prausnitz, (1975)] have been traditionally used in the 7—(1) approach to phase

equilibria modeling, good only for low pressures.

The local composition concept was introduced into the area of solution models by

Wilson (1964). The idea is that the local ordering of molecules at equilibrium conditions,

does not follow the overall mixture composition. The local composition fractions satisfy

rigorous mole balances. This concept has been incorporated in all successful solution

models used nowadays.

Two-fluid theory assumes two hypothetical fluids in the binary mixture, with each

one having its own properties and local ordering. This theory is in contrast to the one-

fluid van der Waals theory where the binary mixture is treated as a pseudopure fluid. For

the one-fluid theory the Gibbs energy of the mixture is, [Scott, (1956)]:

G m (T,P,x) = G x (T,P,x)+RTIx i lnx i (1-1)

where subscript x denotes the pseudopure fluid. In the case of the two-fluid theory model

each component in the mixture is treated as a pseudopure fluid. The Gibbs energy of the

mixture is, [Scott, (1956)]:
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G,,, (T,P,x) Ix i G„(T,P,x i )+RTEx i lnx i 	(1-2)

The term RT1 x i In x i denotes the ideal Gibbs energy of mixing. The GE for the two-

fluid theory solution models as for example for the NRTL is:

G E = x 1 G (1) +x 2 G (2) 	(1-3)

where G(i) is the Gibbs energy of the pseudopure fluid.

The GE is defined as:

G E 	(T,P,x) — RTE x i In x i (1-4)

1.2 Objectives

The GE-EoS methodology is discussed in more details in chapter two. It is based on

equation 2-25 and so far only solution models based on the two-fluid theory have been

used. On the other hand the assumption underlying the GE derived from an EoS is the

one-fluid van der Waals approach (e.g. equation 2-26 for the RK-EoS). In general, two

fluid theory has received less attention with respect to the formulation of the EoS

composition dependence of parameters, [Malanowski and Anderko, (1992)].

This observation is used to set the main objective of this work. A solution model

has to be developed that is consistent with the one-fluid character of the EoS (1 FGE

model). The GE model will be incorporated in GE-EoS thermodynamic formalisms for

vapor-liquid equilibria prediction behavior of highly nonideal systems over an extended

range of conditions, so that its utility can be rigorously validated. For this reason, three

different cases will be studied.

Another objective of this work is the development of a general density dependent

mixing rule in order to resolve the issue of using different models for both the liquid and

vapor phases, so that the correct low- and high- pressure limits (set from the second virial
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coefficient and the solution model) can be satisfied. Density dependent mixing rules have

been the focus of a great deal of research in the recent years, [Panagiotopoulos (1986),

Dimitrelis and Prausnitz (1991)]. The utility of the density dependent formalism for high

pressure phase equilibria in the sense of a predictive tool as required in the area of

Applied Thermodynamics will be examined.

An additional objective of this work is to test the ideal solution assumption of

equation 2-28, so that available low pressure experimental information can be utilized for

the Huron-Vidal model through the use of equations 2-52 to 2-54 and 4-11. Successful

application of our idea will yield another thermodynamic formalism for the GE-EoS

models by which they can be used as predictive tools. Although Huron and Vidal (1979)

have paved the way for the new generation of the GE-EoS models, so far their model has

not been used as a predictive tool.

I. Case Study One

In chapter five we will examine the model's ability to incorporate available experimental

data at low pressures for phase equilibria predictions over an extended range of

conditions. "Test systems" will be used to meet this objective. For comparison, the

performance of the alternative reformulated Wong-Sandler model [Orbey and Sandler,

(1995b)] will be analyzed as well.

II. Case Study Two

The correlative abilities of our model will be examined from the simultaneous reduction

of ternary as well as binary systems. "Difficult" model systems for this purpose can be

taken from the highly asymmetric class of the hydrogen containing systems. Moreover,

the model's ability to assign physical meaning to its parameters will be examined. As

Malanowski and Anderko (1992) pointed out, it is difficult to assign physical meaning to

the NRTL parameters due to a poor theoretical background. This point is expected from
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other two fluid theory models as well. The results of the study of case two are presented

in chapter six.

III Case Study Three

In chapter seven we search for a GE-EoS model able to predict P-x diagrams over a range

of conditions with limited amount of experimental information taken at any condition.

This is a particular challenge for a GE-EoS model, since we expect the parameters taken

from an overall fit to be within the range defined from the parameters obtained from

correlation of the individual sets of temperatures of'the system. For this objective, highly

nonideal systems are examined taken from the class of refrigerant mixtures.



CHAPTER 2

THEORY

2.1 Fundamentals

Classical Thermodynamics provides the conditions for equilibrium between a vapor (v)

and a liquid (1) phase. The thermal, mechanical and chemical phase equilibrium

conditions are:

T(v)=T( 1) (2-1)

P(v)=P( 1) (2-2)

f," = fi' (2-3)

where, T and P are the temperature and pressure of the two phases at the equilibrium

conditions, and fiv f11 the fugacities of component i in the two phases. In practice, the

solution of the phase equilibrium problem is given by equation 2-3, upon specifying the

temperature, pressure and composition dependence of the fugacity of each phase.

At low to moderate pressures the activity-fugacity coefficient (7-1:13.) method was

traditionally used, where different models are applied to the liquid and vapor phases. To

apply this method, equation 2-3 is written:

v' (P — P is )
xi7, 13 is C exP[ 	

RT

where the subscripts s, v and 1 refer to the saturated, vapor and liquid phases respectively.

The mole fractions of component i in the liquid and vapor phase are denoted with xi and

y i respectively. In equation 2-4 an equation of state (EoS) is employed to calculate the

fugacity coefficient of the vapor phase and a solution model is used to derive the activity

coefficient of the liquid phase.

At high pressures the 4)--(I) methodology was traditionally used. In this approach an

EoS capable of describing both the vapor and liquid phases over an extended range of

(2-4)
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conditions is used. The reasoning behind this methodology is that the vapor and liquid

phases become indistinguishable at the critical point. Equation 2-3 is written:

The adjective high-pressure is relative, and according to Prausnitz et al (1986), in

the area of vapor-liquid equilibria this adjective corresponds to values from about 20 to

1,000 bars. In any case, at high pressures the dependence of the fugacity on pressure can

not be neglected.

In general, an expression for the chemical potential and an EoS for the pressure

can be obtained from an expression for the total residual Helmholtz energy (A r ) from the

thermodynamic identities:

A

	

O —1 	(	 \
T)	aN	 ' V- 'N '7'

T,N
p 	 T 

nAr 1 ;
u

The residual Helmholtz energy model can in principle be derived from statistical

mechanics or perturbation theories. The complexity involved in this approach however,

forced the development of semiempirical models.

Two classes of semiempirical models that have been successfully applied to the

fundamental phase equilibrium problem are the excess Gibbs energy (GE) models and the

cubic equations of state (EoS).

In the GE models, the deviation of the mixture total Gibbs energy from an ideal

state is described with a well-behaved function.

AG E = G(T,P,N I „I\I n )—G(T,P,1\1„1\1°„)	 (2-8)

where the superscript o denotes properties of the mixture at the reference state. From

equation 2-8 the activity and fugacity coefficient can be calculated directly.

In y = [ 
 a(nG E RT)

an,

(2-6)

(2-7)

(2-9)



RT In
ap 

- 

RT
 dv — RT In Z

an ;
(2-12)
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(.	 a nG E / RT)
P an,

I T,P,n izi (2-10)

where the superscript p denotes a pure state at the mixture's temperature and pressure.

Examples in this class of semiempirical models are the Wilson equation, and the NRTL

and UNIQUAC expressions. The GE models were traditionally used to provide the

activity coefficients in the y-4) methodology.

For high-pressure phase equilibria cubic EoS are mainly used, and usually in a

two-parameter form:

RT	 a
P= 	 (2-11)

v — b m v + uvb m + wb m

where am and bm are the mixture's energy and size parameters, while u and w are

numerical constants. Commonly used two parameter EoS are based on the Redlich-

Kwong (1949) EoS (RK-EoS) [u=1,w=0] or the Peng-Robinson (1976) EoS (PR-EoS)

[u=2,w=-1]. These equations provide accurate representation of the volumetric behavior

of pure components as well as mixtures with a suitable choice of mixing rules for the

parameters am and bm . The fugacity coefficient of component i in the mixture (CI; ; ) is

given by:

In this work, the 4—(1) methodology is used to solve the fundamental phase

equilibrium (equation 2-3) over an extended range of conditions.

2.2 Cubic EoS

The cubic EoS chosen for this work is the Peng-Robinson-Stryjek-Vera (PRSV) EoS. For

the PR-EoS the pressure explicit form is:

P RT
	 a

v — b v 2 + 2bv 1) 2
(2-13)



The energy parameter is:

a = (0.457235) 
R2T 2

 a(T)
Pc

The size parameter is:

b = 0.077796  R--fc
P.

For the original PR-EoS the temperature dependent term is :

10

(2-14)

(2-15)

a(T) = [1+K(1— Tr" )] 2 	(2-16)

where Tr is the reduced temperature.

Tr = 
T	

(2-17)
Tc

and K is a pure component-dependent parameter that they correlated with the acentric

factor.

Stryjek and Vera (1986b) modified the K parameter to be:

K = K +[K, +K2 (K3 —Tr )(1—T")](1-i-Tu )(0.7—Tr )	 (2-18)

with Ko given by:

K a = 0.378893 +1.4897153o — 0.17131848w - + 0.01965440) 3	 (2-19)

and K 1 ,K2 and K3 component dependent parameters.

In this form, the modified PR-EoS has been termed the PRSV2 EoS [Stryjek and Vera,

(1986b)], and when K2 and K3 are set to zero it is reduced to the PRSV EoS of Stryjek and

Vera, (1986a). This EoS, in either form, has been preferred for the Wong-Sandler mixing

rule [Wong and Sandler, (1992), Orbey and Sandler (1995a, 1995b)] to other modem

cubic EoS such as the Soave modification of the RK-EoS [Soave, (1972)].

2.3 Mixing Rules

Two classes of mixing rules can be distinguished: those mixing rules where the mixture

parameters are semiempirically derived, and those whose they are derived from solution



a m = EEx i x i a ii
i j

b m = Ex i bi

(2-20)

(2-21)
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models. In this section, we will present models from each class of mixing rules that have

been well studied.

2.3.1 Mixing Rules Based on Molecular Considerations

Van der Waals Mixing Rule. 

The basis of the mixing rule development is the one-fluid van der Waals mixing rule. The

energy am and size bm EoS parameters are:

where, b i is the pure ith component's size parameter and x i, xi are the mole fractions of

components i and j respectively. The combining rule for the cross parameter aii is:

a ij = _la a (1 — k l )v 	j	 (2-22)

with ai and aj the pure component energy parameters and k ij a binary interaction

parameter. This mixing rule has been used by Soave (1972), and can be considered as an

extension of the original mixing rules used for the van der Waals EoS. It has been mainly

used for modeling nonpolar or slightly polar systems.

Panagiotopoulos and Reid (1986a) Composition Dependent Model (PRCD) 

Panagiotopoulos and Reid (1986a), introduced a composition dependent binary

interaction parameter in the combining rule of equation 2-22, merely to facilitate phase

equilibria calculations of mixtures containing polar components. For this composition

dependent model the energy parameter is:

a m .EEx i x i Va i a i (1—kii +xilii)	 (2-23)
i	 j
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Panagiotopoulos and Reid (1986b) Density Dependent Model (PRDD) 

However, the PRCD model does not predict the correct quadratic composition

dependence of the second virial coefficient at low pressures. An energy parameter that

does give the correct composition dependence of the mixture second virial coefficient

(discussed in section 2.4.1) at low pressures has been proposed by Panagiotopoulos and

Reid (1986b).

a m = ZExixiVaia j (1-1(0+  b m EEx i x•(x.
1
 -x.)1..	 (2-24)

vRT •	 u

This mixing rule is a density-dependent mixing rule, and although it treats each phase

with a different model, it does predict a critical point. Both the PRCD and PRDD models

use equation 2-21 for the mixture's size parameter.

2.3.2 Thermodynamically Derived Mixing Rules

Huron-Vidal Mixing Rule (1979) 

A different approach for the development of multiparameter models, is the simple but

ingenious work of Huron and Vidal (1979). The basis of the mixing rule is the

requirement of equality between the GE as derived from an EoS and the GE calculated by

a solution model (denoted by *), at a certain condition.

G E G E(
RT ) =RT " RT

Huron and Vidal (1979) used the Soave RK-EoS (1972), for which:

(2-25)

GE= —{In[P•v

(	
bm)

RT	
Ex,ln[P(viRT ]} —RT 

P[v,1,

RT

1
[
a.

In(
v. + b.
	) Ex1 

a,
 ln(vi

 +bi
	)1+

RT b.	 vm	 bi	 v,
(2-26)

In the Huron-Vidal mixing rule, GE values are equated at the infinite pressure limit

where:



	ai 	(G	 )*

	

a m = bm[Ixi bi
	 In 2

(2-30)

(G 1E._ )*
m b

m [E b i
(2-31)
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lim v i b i
P-4.0

lim vm = b m 	(2-27)
1) -4 °0

If at the infinite pressure condition (equation 2-27), an ideal solution is assumed:

Ev ot, — 0 	 (2-28)

These simplify equation 2-26 to:

G E 1 a	 a.Ep 020 =— --[a1 1n(2) —Ex —1-In(2)]	 (2-29)
RT	 RT	 bi

Combination of equations 2-27 and 2-28 results in the linear mixing rule for the size

parameter (equation 2-21). The mixing rule for the energy parameter is obtained by

combining equations 2-25 and 2-29 and solving for a m .

This approach can be used with any EoS; the resulting expression is:

where the numerical constant C depends on the EoS used. For example it is equal to -1

for the van der Waals EoS, -0.62 for the PR-EoS, and -1n2 for the RK-EoS. The fugacity

coefficient for the Huron-Vidal model (derived in Appendix A-1) is:

a i 	lny i

1) + 
 b.RT	 C 

in{
v + b(1—J)

= —1n[
P(v—b)

]+ 
bPv

,
RT	 bm RT	 2-Nif	 v+bm(1+-a)] (2-32)

Michelsen (1990) MHV1 Mixing Rule

As an alternative a zero pressure condition has been used by Michelsen (1990) in

equation 2-25. Dimensionless energy and volume parameters are defined:

a m

m b m RT
(2-33)
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(2-34)u 
m b m

a mPb m 	 1
RT um —1 um (u m +1)

(2-35)

ln
fo b

!' = q(um ,am)
RT

(2-36)

and so the RK-EoS is written in dimensionless form as:

Equation 2-35 is solved at the zero pressure condition. The dimensionless volume

parameter has solutions for the liquid phase density root if a > 3 -1--Nif . In the sense of

equation 2-35, Michelsen (1990), defined the dimensionless zero pressure fugacity (q).

In the Modified-Huron-Vidal-1 model (MHV1) the parameter q is correlated linearly with

only the parameter am , since um is defined by am at the zero pressure limit:

q(a m )= q o +chez,.	 (2-37)

G E 	f(  P. o  ) EoS =	 0 _ _, x. In 
f.

°
RT	 RT	 RT

by definition and so combination of equations 2-36 to 2-38 gives:

E
P. o EoS
) +Ex.	 = q i (a m —Ex i a i )

RT	 bi

(2-38)

(2-39)

The numerical constant q 1 depends on the EoS used. For example q 1 is equal to -0.53 for

the PR-EoS. Combination of equations 2-25, 2-33 and 2-39 gives:

a m 	E
	 = Ex  a. + 1 G[( P") +Yx.1n 121--"1
RTb m 	RTbi q l RT	 bi

For the mixture bm parameter, equation 2-21 is again used.

(2-40)

Tochigi et al (1994) MHV1T Mixing Rule

Another model based on equation 2-40, is the work of Tochigi et al (1994). For this

model (MHV1T) the mixture second virial coefficient is written as:



Combination of equations 2-40 and 2-41 gives for the size parameter:

I xi(bi	
a

'
.
	)
R

b = 	
T

m
a.	 1 [( Ur 1— E x i 	

RTb i q i RT

a m	a, 	 (A pE 	 EoS

= EX
bm	

i 
'131 (2-45)
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B m = b m — a m = b m (1 
a

m 	 ) = E (bi — 
a
i )

RT	 bmRT	 RT
(2-41)

(2-42)

Wong-Sandler (1992) Mixing Rule

The idea of using equation 2-41 in mixing rule development was first introduced by

Wong and Sandler (1992). The Wong-Sandler mixing rule derives the mixture parameters

from a set of two boundary conditions at the zero and infinite pressure limits. For the zero

pressure limit the second virial coefficient condition is used, and the excess Helmholtz

energy AE is used for the infinite pressure limit. For example, the AE for the van der

Waals EoS is:

(A E ) Eos _ am +	 x a. ;

Vm 	 17-'	 v i

—RT1n[
p(vm — b.)

]+RTIxi ln[ P(vi —13i) ]
RT	 RT

and at the infinite pressure limit (equation 2-27):

(ApE.cj Eos	 ama;
 b i

For any two-parameter cubic EoS equation 2-44 is written as:

(2-43)

(2-44)

where the values of the parameter C are as reported previously for the Huron-Vidal

model. The second virial coefficient condition is written as:
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B m = bm aRmT	 = Lxixj(b— RaT)ii (2-46)

with the combining rule for the cross second virial coefficient condition:

a
(bi —	 +(b • —

RT = 
	

2

,	 a	 RT	 RT  (1 kii)	 (2-47)

where kii is a binary interaction parameter.

Combination of equations 2-45 and 2-46 gives the mixing rule for the mixture

parameters.

a m = Q 	
RT	 1— D

b= 	
m 1— D

where,

Q=EEx i x•(b— a ) i •
j	 RT

 a.	 (AL *
D=  	

)E x.
• b i RT	 CRT

Wong and Sandler (1992) noted that the AE is not dependent strongly on pressure, and so

they have used the approximation:

(2-48)

(2-49)

(2-50)

(2-51)

(A pE=. EoS	 (A 
P=low

 )Eas

For a solution model at low pressures we also have the approximation:

(G pE=lov, )* =	 )* + P(v pE. 1.) * 	(A Ep = 1 0 w

Combination of equations 2-25 (written for AE), 2-52 and 2-53 gives:

(A Ep.c. )Eos	
(G P=low

(2-52)

(2-53)

(2-54)

Equation 2-54 is utilized in equations 2-48, 2-49 and 2-51 to solve for the mixture

parameters from available experimental information at low pressures
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2.4 Discussion on Mixing Rules

In this section we will discuss the mixing rules of section 2.3, and try to show points in

their development, that are of general interest.

2.4.1 Mixing Rules Based on Molecular Considerations

The mixing rule of equations 2-20 to 2-22 is based on the one-fluid approach, first

proposed by van der Waals in 1890, [Malanowski and Anderko, (1992)]. One-fluid

theory treats a binary mixture as a hypothetical pure fluid at the same temperature and

pressure, but with mixture parameters that are averages of the pure component parameters

weighted by the mole fractions. The van der Waals mixing rule has been used by Redlich

and Kwong (1949). The form of the combining rule 2-22 incorporates the idea of

multicomponent mixture behavior prediction from only binary data. The binary

interaction parameter kid has been introduced into the combining rule to match physical

properties of a mixture. Graboski and Daubert (1979) have set the k ii parameter equal to

zero for binary hydrocarbon mixtures of equal size.

The mixing rule of equation 2-23 does not satisfy the condition that the mixture

second virial coefficient should be quadratic in composition (equation 2-46). This

condition has been derived from statistical mechanics. The virial expansion in pressure

holds for dilute to moderately dense gases and vapors, since it is an expansion of the

compressibility in powers of pressure about a pressure value equal to zero, [Abbott and

van Ness, (1989)]. For this reason, the condition of equation 2-46 is expected from a

mixing rule at low pressures. This idea prompted the density dependent mixing rule of

equation 2-24 where the molar volume is incorporated into the mixture energy parameter.

At low densities the energy parameter reduces to equation 2-20 with the combining rule

of equation 2-22, and at high densities the model of equation 2-23 is recovered.
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A significant problem that has to be avoided in the area of mixing rule

development has been pointed by Michelsen and Kistenmacher (1990). In the Michelsen-

Kistenmacher invariance problem the second component of a binary mixture is divided

into two other components sharing the same properties, and with the same overall mole

fraction as component two of the binary mixture. The EoS parameters for both mixtures

have to be the same in this thought experiment. This invariance problem is not merely of

academic interest as Michelsen and Kistenmacher (1990) pointed out, but also of

practical interest. In several industrial applications, mixtures contain similar components,

whether isomers or associating fluids, and an arbitrary number of pseudocomponents is

used.

The two mixing rules, PRCD and PRDD, show the Michelsen-Kistenmacher

invariance problem; the result depends on the number of pseudocomponents used in the

multicomponent mixture of the thought experiment of Michelsen and Kistenmacher

(1990).

A problem called the "dilution effect" has been pointed out by Michelsen and

Kistenmacher (1990) as well, for the PRCD and PRDD models. The "dilution effect"

relates to the diminishing of the parameter l id upon introduction of more components in

the binary mixture i-j. This is due to the fact that the parameter takes significant part in

the correlation of data since double summation terms contain the product of three mole

fractions. Thus in multicomponent mixtures the effect of this parameter diminishes.

We note here, that mixing rules with the Michelsen-Kistenmacher invariance

problem will break the one-fluid character of the van der Waals mixing rule since the

hypothetical binary and ternary fluids will result in two different mixture critical

conditions. While equations 2-14 and 2-15 hold for pure fluids only, a pseudocritical

temperature and pressure can be defined which depend on the mixture equation of state

parameters, [Reid et al, (1987)]. The Michelsen-Kistenmacher invariance problem is one

possible reason why the one-fluid theory approach is used in EoS mixing rule
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development and not the two fluid theory approach. The mixture critical properties for the

one-fluid theory treatment depend on the pure component critical properties and on the

overall composition. On the other hand, the properties for the two-fluid theory treatment

also depend on the number of the components used, since summation terms are involved.

2.4.2 Mixing Rules Based on Thermodynamic Formalism

In this section, discussion will follow on the mixing rules presented in section 2.3.2.

Equation 2-25 is the basis of the new generation of mixing rules, the so-called GE-

EoS models. The Huron-Vidal model has been used for correlating experimental data,

since as it has been stated, it cannot utilize available information of a solution model

given at low pressures [Michelsen, (1990), Wong and Sandler, (1992)]. Moreover, the

model does not satisfy the second virial coefficient condition. Huron and Vidal (1979)

defended the inability of the model to satisfy the second virial coefficient condition, since

they believed that the experimental data at high densities require a higher order mixing

rule in composition. Note here that if a density independent mixing rule satisfies this

condition, it does so not only at low pressures but at all conditions. In the Huron-Vidal

model, equation 2-28 is necessary so that the value of GE will not be infinity at the

infinite pressure limit.

While the mixing rules of Huron and Vidal (1979), and Michelsen (1990) will not

result in any divergence of a state function at the infinite pressure state, the Wong-

Sandler (1992) and the Tochigi (1994) models will do so, since they do not employ

equation 2-21. On the other hand, the last two models do satisfy the second virial

coefficient condition, while the first two do not.

Although MHV1 was criticized by Wong and Sandler (1992), in that it uses ad

hoc extensions of the zero pressure fugacity, and that it does not satisfy the second virial
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coefficient condition, the MHV1T did not show any significant differences in the results

compared to the MHV I model, [Tochigi et al, (1994)].

2.5 Solution Models

Mainly solution models that are based on the two-fluid theory have been used with the

GE-EoS methodology.

Two-fluid theory has been introduced into GE models by Wilson (1964), along

with the local composition concept. This theory treats the binary mixture as two

hypothetical fluids with each one having its own properties and local ordering. The

NRTL and UNIQUAC equations are both based on two-fluid theory.

Besides the two-fluid theory models, the van Laar expression has been used as

well [Wong et al, (1992)1, but holds only for binary mixtures:

G E 	1
(
RT

) = 1 	 1

A p x, A 21 x 2

(2-55)

A solution model that is widely used nowadays is the NRTL expression for

which:

E \
RT

where,

E X•G-T..
j=1

X i	 n
1=1

X11/4,Gki

k=1

T..
G ji =exp( — cc

RT )

(2-56)

(2-57)

In the NRTL expression there are two energy parameters ('r1 and tji) and a non

randomness parameter au for each binary i-j pair. For the nonrandomness parameter the

following assumption is used:

JI	
(2-58)



T .1 1 )

RT
G il = b j exp(— (2-59)
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Although it is difficult to assign any physical meaning to the model parameters, the

NRTL expression has excellent correlative abilities. A modification of equation 2-57 used

by Huron and Vidal (1979) is:

The activity coefficients at infinite dilution for a binary mixture (for later reference), are

related to the parameters of the modified NRTL expression [Orbey and Sandler, (1995b)]

through the equations:

T 21 = lny
,
	 T 1)1 exp ( — a12 12 )b 2

b 2
T r, 	 lny; 

— 'L21	 exp(-0-21 1 21) (2-60)

Comparisons of the mixing rules based on molecular considerations with those

based on thermodynamic formalism are shown in Figure 2-1. While the classical, PRCD

and PRDD models can not correlate the experimental data for the systems presented, the

GE-EoS models can predict their behavior with van Laar parameters taken at low

pressures, as given in Wong et al (1992). Note that the MHV1T model has one parameter

less than the Wong-Sandler model. The parameters for the molecular based mixing rules

are given in Table 2-1.

Table 2-1 Parameters for acetone-water/2-propanol-water (Figure 2-1)

Mixing Rule	 k..

Classical	 -0.167/-0.142

PRCD	 -0.404/-0.270	 -0.015/-0.050

PRDD	 -0.152/-0.139	 5.556/1.099
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Figure 2-1 Comparisons of different models for the system (a) acetone-water, and (b) 2-
propanol-water at 150°C.



CHAPTER 3

LITERATURE REVIEW

This study delved into a number of different issues. These issues involve modeling of

high pressure nonideal systems with parameters obtained from systems at low pressure,

equation of state (EoS) modeling of hydrogen containing systems with weight on ternary

systems, as well as modeling of refrigerant mixtures. Due to the diversity of these various

issues, the literature review has been organized in three different sections.

3.1 Vapor-Liquid Equilibria Predictions of High Pressure Systems

The first predictive model for high pressure equilibrium calculations from available GE

information at low pressures is the MHV1 model of Michelsen (1990) (presented in

section 2.3.2). The MHV1 model was able to describe qualitative experimental data over

a range of temperatures. Another version of this model (MHV2) developed by Dahl and

Michelsen (1990) provided more accurate representation of high pressure vapor-liquid

equilibria.

The thermodynamic formalism presented by Wong and Sandler (1992) has been

applied successfully as a predictive tool to a variety of nonideal systems [Wong et al,

(1992)]. A comprehensive study of the Wong-Sandler and the MHV2 models on a set of

high-low pressure systems (test problems), by Huang and Sandler (1993), proved the

superiority of the Wong-Sandler mixing rule over the MHV1 model for both the PRSV

EoS and the Soave modification of the RK-EoS [Soave, (1992)]. That work included

comparisons for vapor-liquid predictions of ternary systems.

Tochigi et al (1994) revised the MHV1 model so that it will be consistent with the

second virial coefficient condition. They have not noticed any significant change in the

results as compared to the MHV1 model. Moreover, they showed that the Wong-Sandler

23
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model does not always reproduce accurately GE information at low pressures. They

attributed this to the infinite pressure formalism on which the Wong-Sandler model is

based.

Eubank et al (1995) extended the Wong-Sandler mixing rule, and proposed the

use of the regular solution assumption for the liquid phase. This results for the van Laar

model, for example, in an inverse relationship of the parameters with temperature so that

the excess free energy model would be independent of temperature. They also revised the

gas phase procedure, to take into account experimental values of cross second virial

coefficients.

Orbey and Sandler (1995b), suggested the use of an excess free energy model of a

special form with the Wong-Sandler mixing rule, so that it can be reduced to the 1-fluid

mixing rule for systems where it is appropriate. For the nonideal systems they decided to

have a predictive model, where the energy parameters of the NRTL expression [Renon

and Prausnitz, (1968)] are obtained from the infinite dilution activity coefficients of a

group contribution model, the nonrandomness is set to 0.1 and the binary interaction

parameter in the combining rule is set to zero. As the NRTL model was originally

developed, the nonrandomness parameter related to the reciprocal of the coordination

number in the mixture, [Walas, (1985)].

Group contribution solution models with parameters obtained from experimental

data reduction at low pressures can be incorporated into GE-EoS models as well. Dahl et

al (1991) used the MHV2 model with the modified UNIFAC model [Larsen et al, (1987)]

for multicomponent vapor-liquid equilibria of complex systems and gas solubility

predictions at low and high pressures. Orbey et al (1993), used the UNIFAC model at a

low temperature to calculate the UNIQUAC parameters, which was the GE model used

with the Wong-Sandler mixing rule, to predict vapor-liquid and liquid-liquid equilibria

over a great range of pressures and temperatures. To obtain the binary interaction

parameter in the combining rule for the mixture second virial coefficient, they used the
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mixing rule at a low temperature and at an equimolar composition point of the binary

mixture. In another work, Kolar and Kojima (1993) used an infinite dilution activity

coefficient model to match it with the one derived from the EoS and so they defined the

value of the cross second virial coefficient which in turn defined the value of the binary

interaction parameter. They used their model with group contribution methods such as the

modified UNIFAC [(Larsen et al, (1987)], and the modified ASOG method [Tochigi et al,

(1993)]. Soave et al (1994), used another modified UNIFAC specific for infinite dilution

activity coefficient prediction, which was subsequently used for the calculation of the

activity coefficients at the infinite pressure state, and phase equilibria predictions

followed with a Huron-Vidal mixing rule.

3.2 Modeling of Hydrogen Containing Mixtures

The phase behavior of hydrogen containing mixtures is of major importance in the

chemical industry, as for example for the development of hydrotreating processes (coal

liquefaction area) or cryogenic recovery of methane from synthetic gas. Mixtures

containing hydrogen show such complex phase equilibria behavior as gas-gas demixing,

and density inversions for mixtures of light gases. The description of the phase equilibria

of these high pressure systems, was traditionally done with the use of charts specific for

each system, that provided the equilibrium ratio for each component, and the equations of

state that were at hand. In the following we will provide a short review of the work in the

area of hydrogen containing systems.

Sagara et al (1972), provided equilibrium data of binary and ternary systems. In

particular, they studied the ternary systems hydrogen-ethylene-methane (ethane). They

concluded that the addition of a heavier hydrocarbon than methane raises the relative

volatility of the hydrogen to methane, and that upgrades the purity of hydrogen in the

recovery gas. The Benedict-Webb-Rubin (1951) EoS (BWR) was fair for the description

of the experimental data. In another work Sagara et al (1975) studied the ternary mixtures
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hydrogen - methane - propylene, hydrogen - propane - propylene, and hydrogen - propane

- ethylene. The accuracy in the predictions of the equilibrium values of the hydrocarbons

decreased at lower temperatures with the BWR EoS. They especially observed that, when

the system was below the normal boiling points of the hydrocarbons, the errors of those

components exceeded 10%. Besides, they applied the regular solution theory for Henry's

constant predictions and they concluded that their method could be successfully applied

for predictions of the Henry's coefficients of simple gases in nonpolar mixed solvents.

Nieto and Thodos (1978), studied the polar-nonpolar system ethanol-propane over an

extended range of conditions and they used the BWR EoS, and also the Soave RK-EoS

(Soave, 1972) to describe the phase properties of the mixture. The results were fair, with

somewhat better predictions of the cubic EoS for the equilibrium values of the polar

component. They suggested that the improvement in the system representation can result

from the mixing rule improvement, and the better understanding of the interactions

between unlike molecules.

Graboski and Daubert (1979) developed the Penn State EoS which was applied to

both defined and undefined systems containing hydrogen. They concluded that there is no

need for binary interaction parameters for systems of hydrocarbons, but for mixtures of

nonhydrocarbons the binary interaction parameter improves the predictions significantly.

Moreover, they correlated the interaction parameter with the solubility parameter

difference between the hydrogen and the nonhydrocarbon. Gray et al (1983), examined a

variety of cubic EoS for multicomponent systems containing hydrogen, and concluded

that a version of the RK-EoS, with a temperature dependent size parameter, can facilitate

the phase equilibria correlations of the binary systems, but not necessarily for the

multicomponent mixtures.

Vetere (1986) applied the y-4 method with the symmetric convention for all

mixture components, for vapor-liquid equilibria of mixtures with supercritical gases. He

correlated the NRTL parameters of the binary polar and nonpolar systems with
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temperature. The results showed good representation of multicomponent systems. Wang

and Zhong (1989), studied several hydrogen containing mixtures and suggested the use of

the Panagiotopoulos and Reid (1986a) mixing rule for the cohesive mixture parameter,

and a similarly modified form for the mixture covolume parameter. In another work

Grevel and Chatterjee (1992), studied vapor-liquid equilibria of the hydrogen-water

system, over an extended range of conditions with a modified form of the RK-EoS. They

assumed pressure dependent size and energy parameters for the pure components, and

they used the one fluid mixing rule for the mixture. These assumptions involved a

numerical integration into the phase equilibrium problem.

Promising results into this difficult problem of phase predictions of mixtures

involving supercritical gases, came from the work of Huang et al (1994), who employed

the GE-EoS methodology with the Wong-Sandler (1992) mixing rule and the NRTL

model, for hydrogen-hydrocarbon mixtures. Moreover, they correlated the model's

parameters with temperature and the acentric factor of the hydrocarbon. Their work

proves the usefulness of a GE model for phase predictions for the highly asymmetric class

of hydrogen-hydrocarbon systems.

3.3 Modeling of Refrigerant Mixtures

The most important application of chlorofluorocarbons (CFCs), and hydrochlorofluoro-

carbons (HCFCs) is refrigeration. The phase behavior prediction of refrigerant mixtures

and pure components has been addressed through the EoS approach. A review of the

recent literature involving cubic EoS which have been most commonly used for modeling

of the refrigerant systems will follow.

Wright (1985), applied the Soave-RI-EoS (Soave, 1972), for several binary

mixtures and the ternary nonazeotropic system R13b1-R12-R152a. A limited amount of

experimental data on binary mixtures was correlated to provide the value of the single

interaction parameter per pair of components which gave good predictions for the
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systems tried. Abu-Eishah (1991), used the PR-EoS with a single interaction parameter

for a variety of CFC mixtures and CFC-gas mixtures. His model did not work with the

same accuracy for all systems tried, as for example it predicted a false phase splitting at

low temperature for the system R14-R23. Moreover, he concluded that the binary

interaction parameter is not always easily correlated with temperature for all systems with

a single equation. Nevertheless, Lee and Sun (1992), by using the Patel-Teja (1982) EoS

with a single mixture parameter, managed to correlate it with the acentric and the critical

compressibility factors of the pure components. The predictive model worked

satisfactorily for phase equilibria predictions of a variety of refrigerant mixtures including

azeotropes. Moshfegian et al (1992), recommended the use of the PR-EoS with classical

mixing rules for calculating thermodynamic properties of refrigerant mixtures including

azeotropic ones, except for liquid densities, where the predictions were not so accurate.

Gow (1993) used a Clausius type EoS, with one parameter for each pure component and

one interaction parameter per binary pair, for modeling the phase equilibria properties of

pure refrigerants and mixtures. Additionally, he correlated the interaction parameter with

temperature for each binary pair with the use of a second degree polynomial. Reasonable

model predictions followed for the ternary mixture R14-R23-R13 at 199.8 K and 6.895

bars, with parameters correlated from the constituent binaries at the same temperature.

Laugier et al (1994), presented experimental data and modeling of binary and ternary

mixtures of HCFCs and CFCs. They concluded that either the Trebble-Bishnoi-Salim

EoS or its generalized form [Salim and Trebble, (1991)], are best suited for the

representation of saturated pressures and liquid molar volumes of the mixtures studied. In

the generalized Trebble-Bishnoi-Salim EoS pure component parameters are correlated

with the acentric factor and the critical compressibility factor. For the mixing rule, after

trials with a temperature dependent size parameter, they settled on the one parameter

classical mixing rule to avoid erroneous results for derivative properties predicted from

their model. Kleiber (1994), studied vapor-liquid equilibria of sixteen binary refrigerant
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mixtures with propylene or R134a with the PR-EoS as modified by Stryjek and Vera

(1986a). He concluded that a two-parameter van Laar type of mixing rule gave only

slightly better results than the one parameter van der Waals mixing rule. He also noted,

the inability of the UNIFAC group contribution method to deal with halogenated

refrigerant mixtures.

Noncubic EoS have also been used for refrigerant mixtures. For example,

Blindenbach et al (1994) applied the Perturbed Anisotropic Chain Theory, a closed-form

EoS, to model vapor pressures and liquid densities of pure CFC and HCFC components,

as well as mixtures of CFCs with HCFCs and CFCs/HCFCs with hydrocarbons. Their

model performed successfully as a predictive tool, especially for mixtures with polar

components, while they suggested the use of a cubic EoS such as the PR-EoS as a

correlative tool. An extended BWR EoS has been proposed by Nishiumi et al (1995) for

mixtures of HCFCs and CFCs. This EoS is not in a closed form and includes in the

compressibility factor of each pure component, five parameters for polar contributions in

addition to fifteen nonpolar parameters. The mixing rule for their model has one binary

interaction parameter which was correlated for each system with temperature through a

quadratic equation.

The problem of the description of the temperature dependence of the binary

interaction parameters involved in the models presented, passed with the use of the GE-

EoS models. These models provide temperature-dependent mixture parameters through

the built-in temperature dependence of the GE model. Orbey and Sandler (1995a),

suggested the use of the Wong-Sandler mixing rule with a cubic EoS for unconventional

refrigerant mixtures. For the GE model they used the NRTL theory [Renon and Prausnitz,

(1968)] which along with the combining rule, constitutes a three parameter

thermodynamic model. As they have shown, it is possible to obtain the model's

parameters from experimental data regression at a single temperature, and then use the

same parameters for phase equilibria predictions at other temperatures. In another work
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by Peng et al (1995), an excess enthalpy-EoS (HE-EoS) model was derived from the

infinite pressure limit of the excess enthalpy (HE). The HE function has been shown to be

independent of pressure. An explicit expression of the EoS mixture energy parameter

resulted only after they isolated the absolute temperature from the pure component EoS

energy parameter. A polynomial expression with two to four parameters was used for the

direct correlation of available HE experimental data, along with the Soave RK-EoS

(Soave, 1972), and simple linear mixing rules with no adjustable parameters. The model

was applied to vapor-liquid equilibria property predictions for a variety of hydrocarbon

and halogenated refrigerant mixtures with fair results.



CHAPTER 4

MODEL DEVELOPMENT

4.1 Density Dependent Mixing Rule

In order to relax the vapor phase model from the free energy model traditionally used for

the liquid phase, and also use the ideal solution assumption at the infinite pressure limit

(equation 2-28), we developed a density dependent mixing rule. Note that the mixing rule

of equation 2-21 is a good assumption for the EoS approach, [Walas, (1985)]. Besides, a

temperature dependent mixture size parameter will result in a divergent value of U pE=c0

[Eubank et al, (1995)]. In Appendix A-2 we show the steps for the mixing rule derivation.

The mixing rule that results is:

(G E- )• 	a.	 a.a m = (	 + Ex 1 	RT[b	 (bi	 )](1—F) (4-1)
i 	I) ; 	RT

where F is a density dependent interpolation function.

In this work we considered an interpolation function with the general form:

rb	 v — b
F = 	  1 F = 	

v+(r-1)b	 v + (r — 1)b

where r a composition dependent separation parameter:

r =EEx.x.j r..
i j

Equation 4-3 is needed so that calculation of multicomponent systems will be possible

from only binary parameters. When all ru parameters in this equation are equal to one, we

get for the interpolation function:

F = 
b (4-4)

and for the fugacity coefficient:

(4-2)

(4-3)
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where Q and D are defined in equations 2-50 and 2-51 respectively. For the mixture size

parameter we employed equation 2-21. The only model parameters are those from the GE

model. A study of more than forty ethanol-water systems from the Dechema Data Series,

[Gmehling and Onken, (1977)] revealed that a system at 4.137 bars gives the best van

Laar parameters for overall predictions with the Wong-Sandler mixing rule. We used the

same system to obtain the van Laar parameters for mixing rule 4-1. For comparison, we

also used a data set at 50 0C to obtain the van Laar parameters.

Comparisons of the model of equation 4-5 (DD model) with the Wong-Sandler

(W-S) mixing rule is given in Table 4-1. The table reports the sum-of-squared residuals

obtained for predicting data sets at eight different temperatures. Note that the Wong-

Sandler approach uses not only the two van Laar parameters but also a kii parameter

(equation 2-47).

Table 4-1 DP E (P Pexp ) 2 and Dy = 1(y — y exp ) 2 for the system ethanol-water,

with the Wong-Sandler (W-S) and the density dependent (DD) mixing rule.

W-S (4.137b) DD (4.137b) DD (50°C)

T (°C) DP Dy DP Dy DP Dy

120 1.20710 2.21510-2 1.15410° 1.683 10 -2 5.475 10 -1 6.63210 -3

150 1.82510° 8.39910-3 2.392 10 1 1.105 10 -2 9.040 10 -1 4.93110-3

200 5.80510 1.15710 -3 1.430 10 1 3.61810 -3 5.15710° 2.29510-3

250 1.108 10 1 2.073 10-3 4.995 10 1 2.127 10 -3 1.868 10 1 1.376 10-3
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Table 4-1 (continued)

W-S (4.137 b) DD (4.137 b) DD (50°C)

T (°C) DP Dy DP Dy DP Dy

275 6.509 10 1 7.41310 -3 3.825 10 1 1.37310 -3 2.834 10 1 1.419l0 -3

300 5.835 10 1 2.16610-3 2.30710a 5.70310-4 1.785 10 1 7.28810-4

325 2.733 102 5.50910-3 3.934 10 1 1.14410 -3 5.788 10 1 1.28810 -3

350 9.32810a 8.48810 - S 1.209 10 1 3.17310 - '6 9.257 100 2.86410-6

Although the results for the ethanol-water system were good, that was not the case

for other high pressure systems. The main problem encountered was the difficulty with

tuning the binary rid parameters, which implies that it is not possible to separate the vapor

and liquid phases when both phases are at high densities. Besides, the DD model has been

implicitly derived from the GE-EoS formalism. So the idea of using different models for

each phase and matching them at the critical point with a density dependent mixing rule

did not work well in this sense of a predictive tool, and it was difficult to extend to

multicomponent mixtures.

4.2 Utilization of Low Pressure Data for the Huron-Vidal Model

It is preferable to use the infinite pressure limit, since information from the structure of

the EoS can be directly incorporated in the mixing rule. Moreover, these limiting cases

can reveal theoretical weaknesses of a model.

Since the excess internal energy can not be divergent at any condition (including

the infinite pressure state, [Eubank et al, (1995)]), and the AE is not divergent as well at

the infinite pressure limit (equation 2-44), we get for the excess entropy (SE):

(4-6)



(4-9)

(4-10)

V p=a # 0 (4-12)
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Two approaches can be followed at this point. In the first approach equation 2-28 holds.

For this case the GE at the infinite pressure state is not divergent due to the relationship:

aG E
V p=,„ = 0 = 	 )Tap

Besides,

(4-7)

HE = uE pvE = u E
P=.0	 P.M	 P=.0	 P=.0

Also,

A E  - U E — TS EP=co 	 P=co 	 P=co

G E = HE	 TS DEP=co 	 P=oo 	 =oo

Combining equations 4-8 to 4-10 we get:

A E 	GEP=co 	 P=co

(4-8)

(4- 1 1)

In the second approach [as used by Wong and Sandler (1992)] in lieu of equation 2-28 we

have:

Consequently the G pE.,„, is divergent as well as H pE,__. from equation 4-8. Also, for cases

where the EoS energy parameter does not depend on temperature, [Eubank et al (1995)]:

S E= 	0Pc0

For these cases where equation 4-13 holds we get from equation 4-9:

A E = U EP=co 	 P=co

(4-13)

(4-14)

We note that while the approach based on equation 2-28 (ideal solution) would work for

both the athermal and regular solution models at the infinite pressure state, the approach

based on equation 4-10 would work only with the regular solution model.
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Equation 4-9, based on the ideal solution assumption at the infinite pressure limit

(equation 2-28), along with equations 2-52 to 2-54 provide the basis for the utilization of

low pressure information for the Huron-Vidal mixing rule.

4.3 One Fluid Excess Gibbs Energy (1FGE) Model

The following model that we will present is not based on two-fluid theory and so it can be

incorporated in equation 2-25 in a consistent way. Note that we do not need just a value

from the solution model, but we incorporate its structure to the GE-EoS model.

Rigorous development from statistical mechanics and proper use of molecular

thermodynamic considerations have been combined with the local composition concept

established by Wilson (1964) to provide the total Gibbs energy of mixing for a liquid

solution [Knox et al, (1984)]:

(AG t ) ath

kT	 kT

-E ziNi
	In

 ziNi /2
 +ZEN"(	 Nib+ln 	 )	

ziNiEji

i 2	 I	 i i	 kT	 / 2	 i 2kT
(4-15)

The interaction energy of an i-j pair is Eij and the number of i-j pair interactions is N ii .

The Boltzmann factor is denoted with k. The number of component i molecules is N i and

z i is the characteristic number of pair interactions for a molecule i with other molecules.

The counting of the number of pair interactions assigned to species i is:

z.N	 ENi .
2	 •

The i-j pair interactions are assigned half to species i and half to species j:

N ii

(4-16)

(4-17)

The total number of interactions in the mixture is:



x l.j. = 	
z•N • / 2

and a molecular z-area fraction as:

Nii
(4-19)

= ziN i /2 
(4-20)

N fi N ij 	kT

N N	 —(2sii —s ii —s ii )
	  = exp[ (4-21)

x ; r;

2.4 x .r.
J

(4-25)

z•.
I = E  "

i	 2

So we can define the local composition around an i species:
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(4-18)

The maximum sum of the model's partition function results when:

For the athermal solution model, Knox et al (1984) used the Guggenheim model for

which:

(AG) ath
=Exiln(pi +

RT

Z 	 '1 1 In -i
2	 (Pi

(4-22)

From the definition of GE:

G E AG=
RT RT

-I x i lnxi

we get:

G E z. •	 x .•
	  = x• ln (Pi + E 	 x in
RT	 i 	x •	 • 2

	

1	 (Pi

where (p i is a volume fraction of component i:

(4-23)

(4-24)

where r i a volume parameter defined in Bondi (1968).

The model's activity coefficient is:



Xi; X:i
"	 = C ii

Xii Xii
(4-27)
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Originally the model was used for correlating vapor-liquid equilibria under the

assumption:

Knox et al (1984) applied the model for vapor-liquid equilibria of binary systems,

with the use of three parameter z 1 , z2 and C 12 . The results showed that different values of

the same species had to be assigned to improve the correlations. Replacement of the zi

values with the qi values did not produce accurate results.

In order to fix this problem and since we noted that zi counts the pair interactions,

we made the modification that:

N i

zi (4-28)

where pij is a binary parameter correlated to the pure component area parameter qi as set

from Bondi (1968). Note here that as in the original model the i-j pair interactions are

averaged in the mixture, it is not proper to treat the p ij parameter as an adjustable one,

under the assumption:

Pi; (4-29)

Of course it can be treated as fitted parameter under the assumption:

Pi; (4-30)

This requirement is necessary so that physical information on the system can be captured

with the use of the parameter. Otherwise, the predictive ability will be defeated, in lieu of

the correlative ability. This is a crucial point in a model development, since if we can find

a model which relates the pij parameter to pure component properties in a functional
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form, of course then we can have equation 4-29, but then the functional form of the pig

parameter should be invariant under the change of the subscripts of the components in the

mixture.

We thus managed to modify the model of Knox et al (1984), so that it will be

consistent with the idea of phase behavior predictions of multicomponent mixtures with

only binary parameters.

Upon application of the activity coefficient definition:

AG` / kT
lny k	 aN, 

) T
"
p N --lnx k

we get:

(4-31)

(Pk 	 (1)k 	 zk ((Pk 	 xkk 	 Xi (pik — zi), x i i	 „ A ,,,
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The working equations of our model are 4-24, 4-32 along with:

zfx,a ; = .,. 	 (4-33)
Z i X

X, ; X ;i 	-lo'"	 = exp[ 
 RT	

(4-34)
x ii x ii

a,x j, = a i x ii 	(4-35)

=1	 (4-36)

Z i = 	 X i p ii 	(4-37)

Note here that since this model is to be used for phase behavior predictions over a range

of temperatures, equation 4-34 is needed, while for single temperature correlations,

equation 4-27 could be used very well.

If we assume in equation 4-32:
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Pik = Zi	 (4-38)

our model reduces to the original model of Knox et al (1984). Equations 4-24 and 4-32

are derived in Appendix A-3.

With inspection of equations 1-1 to 1-4 it is clear that this model (termed as

1FGE) is based on one fluid theory, consistent with the one-fluid character of GE as

derived from an EoS.

4.4 Predictive Tools (Case Three)

In this section we will give a short discussion on a main point that this work tackles in

chapter seven.

As we already mentioned, the needs in Applied Thermodynamics have recently

changed. A predictive tool is needed where a minimum amount of experimental

information can be used to tune the model parameters so that predictions can be made at

higher and lower temperatures.

Multiparameter models are not in general suitable for this reason. For example we

need at least four experimental data points to obtain the parameters of the NRTL

expression when it is combined with the Huron-Vidal mixing rule, or five points for the

Wong-Sandler mixing rule. Note here that in order to fit model parameters with the

Marquardt-Levenberg algorithm, used in this work, we need at least one degree of

freedom [(number of points) - (number of parameters)].

Another point related to the numerical solution of the problem, is the encounter of

local minima for the objective function [Walas, (1985)1 This implies that the number of

parameters in the nonlinear model are too many, and they should be reduced.

In the phase equilibrium problem with the ep—(1) methodology, it is required that the

correct dependence of the fugacity coefficient, on the temperature, pressure, and

composition can be captured from the model. Moreover, it is sought that the model
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parameters, as tuned to meet the correct dependence of the fugacity coefficient on the

problem variables, can be related to physical properties of the mixture such as its polarity

and asymmetricity (size differences of the molecules). In a sense this would prove the

usefulness of the model as a predictive tool.

This problem as tackled by a predictive model is not trivial at all, due to the

extreme range of the conditions involved. A heuristic rule is set in this work to develop

such a predictive model. The overall correlation of all the temperature sets should result

in model parameters, that are within the ranges defined from the correlation of the

individual temperature sets. We can imagine that for a fixed temperature and a binary

system we look at a surface of the fugacity coefficient [(1)(P,x 1 )]. As the results of chapter

seven will show, the description of the model can be mapped to a single parameter. For a

range of temperatures these surfaces can define in the parameter space a polynomial of

various degrees (first, third, etc.). The difficulty comes when we consider the

hypersurface of the fugacity coefficient, where the temperature varies. For this case the

rule that we set can accommodate the need that this hypersurface (four dimensions) will

reduce to the individual surfaces defined earlier.

Two-fluid theory models in particular, are not good candidates for such a

predictive tool, since it is difficult to assign physical meaning to the parameters. This can

be seen for the NRTL model, where the nonrandomness parameter can be set to different

values for different classes of systems [Orbey and Sandler, (1995a), Orbey and Sandler,

(1995b)]. Of course the behavior of the model is different for different values of the

nonrandomness parameter, and very different to the behavior of the original NRTL

model, where all three parameters are fitted simultaneously.



CHAPTER 5

CASE STUDY ONE

5.1 Introduction

In this chapter we will present high pressure vapor-liquid equilibria predictions with the

1FGE-EoS model under the thermodynamic formalism of the Huron-Vidal model. Low

pressure experimental data will provide the single energy parameter of the 1FGE model.

The justification of our approach is given in section 4.2. The systems modeled are "test

systems", tried for most of the research work presented in section 3.1

The cross binary parameter pij (equation 4-37) for the 1FGE model has been

replaced by the simple relation:

q i +q i

2

The fugacity coefficient for the Huron-Vidal model has been given in equation 2-32.

One alternative to the 1FGE-EoS model presented recently for these "test

systems", is the reformulated Wong-Sandler mixing rule [Orbey and Sandler, (1995b)].

This model can draw information from infinite dilution activity coefficients as given by a

solution model, such as UNIFAC [Fredenslund et al, (1975)]. For the class of nonideal

systems tried in this chapter the binary interaction parameter needed in equation 2-46 is

set to zero. In this form the model becomes fully predictive. In contrast the 1FGE-EoS

model requires a limited amount of available experimental information at low pressures.

The difference between a group contribution model and the 1FGE-EoS model is that the

group contribution model can be used for modeling of systems where there are no

experimental data available. The reformulated Wong-Sandler model will be presented in

section 5.1. Predictions for binary and ternary systems from both of these models will be

presented in section 5.2.

(5-1)
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5.2 Reformulated Wong-Sandler Mixing Rule (RWS)

The idea behind the model's formulation is its ability to describe fluids in a

multicomponent mixture which are good candidates for the one-fluid van der Waals

mixing rule as well as highly nonideal fluids.

Orbey and Sandler (1995b), substituted the classical mixing rule in equation 2-45

to solve for the excess Helmholtz energy as:

E 	
Cx1x2	 b2	 b1	 8xix2

A = 	 ( 2 a 12 a l 	a2	 ) 	
x i b i + x2 b 2 b1 b2 x i b i + x2 b 2

For example if the choice of the excess Helmholtz energy model is the van Laar

expression which is given by:

(3)( 1 )(2
A E - 	00 	 „ u2

we get for the binary interaction parameter:

[b m —E,Exixi(b 	 )ijIRT
RTi	 a 

i= 
	(3x i x 2

bm 	i 
xi

 bi	 x i b i + x2 b 2

1(12 = 1 	
1
	Lai

 b2
 +a2

 b1

2Va 1 a. 2	b1	 b2 C

where the combining rule (equation 2-47) is written as:

a 	bi + b i Vaiai (1 — kii)
(b —	 )ii = 	

RT J	 2	 RT

which ensures the van der Waals, classical mixing rule recovery.

Besides the van Laar model the modified NRTL model (section 2.5) can also be

reduced in a similar manner. If we also set the nonrandomness parameter (in equation 2-

59) equal to zero, then:

(5-2)
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(5-6)A =
E x1x2 (b1ti2 +b2t2i)
co xibi +x 2 b2

and with the substitution of the classical mixing rule into equation 2-45, the binary

interaction parameter is given as follows:

1	 b2	 b1 RT
k12 = 1 — 	 ta1	

RT
k12 	 +b2T21)12Vala2 b2 C

Since the excess Helmholtz energy models that have been derived from statistical

mechanics cannot be reduced to the form of the equation 5-2 (for example the ideal gas

mixture contains the term xilnx i), Orbey and Sandler (1995b), suggested the use of a

predictive model for nonideal mixtures, where the binary interaction parameter k ii

(equation 5-5) is set to zero, the nonrandomness parameter cc ij (equation 2-59) is set to

0.1, and the set of equations 2-60 is solved for the energy parameters T with the infinite

dilution activity coefficients given from a predictive model such as UNIFAC, or any

other excess free energy model. In the case where we want to use the van der Waals

mixing rule we set the nonrandomness parameter equal to zero and use a known value of

the binary interaction parameter kii to solve for the energy parameters T. In this case the

authors reduced equation 5-7 as:

2Va i ai (1-14)	
aj	

+
RT
—c Drij(cii + ji)} =

c Vaiaj (I — kij) a ia ; 	RT 	 ,b	
bi

	+—C 	= 	
b i 	RTE	 bi,

since equation 5-7 does not result in a unique solution for the energy parameters, which

are needed to calculate the activity coefficients. In the above equation b ii denotes an

average value of the pure component size parameters b. Note that in this way (cif—T .0 the

two-fluid theory based NRTL model, reduces to the one-fluid theory based van der Waals

model.

(5-7)

(5-8)
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The systems tried in this chapter as being highly nonideal are modeled with the

modified NRTL model, where the nonrandomness parameter is set to 0.1 following the

suggestions of Orbey and Sandler (1995b), along with the UNIFAC model as the source

of the infinite dilution activity coefficients. Examples of the infinite dilution activity

coefficient derivation for the systems methanol-water, acetone-methanol and acetone-

water are presented in Appendix A-4, with a general program given in Appendix D-1. For

the energy parameters T of equation 2-60, we employ a Newton algorithm from the IMSL

software package to solve the system of the nonlinear equations. The energy parameters T

for some of the binary systems we tried are given in Table 5-1 along with the infinite

dilution activity coefficients.

Table 5-1 Infinite dilution activity coefficients and energy parameters for several binary
systems with the reformulated Wong-Sandler mixing rule

co
System (1-2)	 lny 12 1.12 	 T21

acetone-methanol

acetone-water

methanol-water

ethanol-water

methanol-chloroform

acetone-chloroform

0.6739 0.6735 4.282 -4.095

2.4399 1.9962 11.069 -11.072

0.8086 0.4729 5.862 -6.239

1.4990 0.8180 8.293 -8.824

2.1730 0.8970 -4.370 6.541

-1.0000 -0.8520 5.610 -4.532

-0.730 -0.133

-3.321 4.109
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As we see from the system acetone-chloroform in Table 5-1 multiple solutions for

the energy parameters could result, depending on the initial estimates given to solve the

nonlinear set of equations 2-60. As Walas (1985) states this phenomenon is common for

the NRTL equation for cases where the infinite dilution activity coefficient is less than

one. Moreover, this is expected for other solution models based on two-fluid theory. For

binary mixtures there are heuristic approaches to find the best set of parameters, for the

original NRTL, depending either on the sum of the absolute values of the energy

parameters, or their product, [Walas, (1985)1 These approaches were not successful for

the modified NRTL, and it is difficult to extend to multicomponent mixtures.

5.3 Results

In section 5.2.1 we present results for low-high pressure vapor-liquid equilibria of the

"test systems" (references reported in Table 5-2), along with the few low pressure binary

systems used for predictions for ternary systems. In section 5.2.2 we present vapor-liquid

equilibria predictions of the ternary system methanol-acetone-water at low and high

pressures, and the system chloroform-acetone-methanol at low pressures. The last ternary

system involves multiple solutions for the energy parameters of the NRTL expression for

the binary mixture chloroform-acetone. This ternary system has been chosen to test for

the sensitivity of the results on the choice of the parameter set for the RWS model

(Wong-Sandler formalism). Results for the ternary systems with the 1FGE-EoS model

(Huron-Vidal formalism) are given for two different parameters for the methanol-acetone

system, obtained from fit of two different low pressure systems.
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5.3.1 Binary Mixtures

The area and volume parameters for the components involved in the systems we have

tried are given in Table A-5-1. All of them were set from Bondi (1968), except for the

area parameter for water, which was set as the best suited value for the systems tried.

In Table 5-2 we report absolute average deviations in pressure and vapor phase
n	 exp

composition for several binary systems [AADM = 	 where M stands form exp

pressure or vapor phase mole fraction]. A general purpose program for bubble and dew

point vapor-liquid equilibria has been developed for this work. The program listing is

given in Appendix D-2. The model parameters in this work are obtained from the

nonlinear optimization Marquardt-Levenberg algorithm. The objective function used is

(p pexp )2

1=1

Table 5-2 AAD(%) in pressure and vapor phase composition, and binary parameter for
several binary systems with the 1FGE model.

System Temperatures (K) Number of points/ (%)AAD(P-Y 1 -Y2)

1-2 Data sets/ X12

Methanol-benzene(') 308.15,328.15,363.15, 94/10/4.41 4.37-5.49-11.01

373.15-493.15

Methanol-water(2 ) 298.15, 70/5/-0.37 3.36-5.79-8.01

373.15-523.15

Acetone-methanol( 2) 308.15,328.15 78/5/2.88 1.84-3.74-7.68

373.15-473.15

Acetone-water(2) 308.15 100/5/0.69 2.54-3.54-5.33

373.15-523.15
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Table 5-2 (continued)

System	 Temperatures (K)	 Number of points/ (%)AAD(P-Y 1 -Y2)

1-2	 Data sets/ 212

Ethanol-water(3 )	 298.14,323.15,348.15 	 110/10/0.13	 2.19-3.35-2.46

423.15-623.15

2-propanol-water(3) 308.16,318.29,328.18,338.19	 109/9/0.29	 2.45-5.39-1.07

423.15-573.15
( 1 ) High pressure data from Butcher & Medani (1968),( 2) Griswold & Wong (1952),(3 )
Barr-David & Dodge (1959)

The low pressure system used to fit the energy parameter is taken from the Dechema Data

Series, Gmehling and Onken (1977), and its temperature is reported first, in the second

column of Table 5-2. We can see that the one parameter model we presented can

successfully utilize low pressure data for phase equilibria predictions over an extended

temperature range. The systems that we have tried are highly nonideal and are presented

in a graphical form in Appendix A-5. The choice of the excess Gibbs energy model is of

much importance, since a model with more parameters might give worse results for

systems that are predicted with the parameters fitted at other conditions. For example the

system acetone-water has been modeled in Wong et al (1992) with the original Wong-

Sandler mixing rule with the van Laar expression as the choice of the GE model. The van

Laar parameters were taken from a system at 100 0C and the binary interaction parameter

(equation 2-47) set at 0.27. The absolute average deviations in pressure and vapor phase

compositions of acetone and water for the system at 35 0C with this three parameter

model are (6.69,2.08,16.92) respectively, while for the one parameter 1FGE model they

are: (4.09,1.62,12.15).

In Table 5-3 we compare results for the binary systems that are involved in the

low pressure ternary system methanol-chloroform-acetone taken from Goral et al (1985),
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with the 1FGE model and with the RWS model. Additionally, we report predictions for

the ethanol-water binary system with the RWS mixing rule, for which we see that the

pressure deviation is two times larger than our model and the vapor phase composition

three times larger. For the chloroform-acetone binary system the three sets of parameters

do not show significant variation in the pressure or vapor composition absolute average

deviation values. For the system methanol -acetone reported in Goral et al (1985) at 40 0C

we obtained a different value of the energy parameter than the value 2.88 that had

resulted from the system taken from the Dechema Data Series and reported in Table 5-2.

We thus list the predictions with both values of the energy parameter. We see that the

results are acceptable for the case with the value of the energy parameter set to 2.88, but

of course, the fitted value 3.49 is superior for the error in pressure, since it has been

specifically fitted to one of the two chloroform-acetone binary systems.

Table 5-3 AAD(%) in pressure and vapor phase compositions for the constituent binaries
of the system methanol-chloroform-acetone at 313.15 and 323.15 K with models 1FGE-
EoS and the RWS models, and the ethanol-water system with the RWS model.

System

1-2

Data sets/

No of points

(%)AAD(P-Y1-Y2) 2 12

1FGE-EoS

'712,121

RWS

Methanol-chloroform 2/55 3.23-7.45-7.63 7.26

5.52-6.06-4.86 -4.37,6.54

Methanol-acetone 2/48 0.74-2.73-1.27 3.49

2.22-3.57-3.68 2.88

3.28-4.30-3.83 -4.10,4.28
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Table 5-3 (continued)

System Data sets/ (%)AAD(P-Y1-Y2) k12 112,T21

1-2 No of points 1FGE-EoS RWS

Chloroform-acetone 2/30 0.88-3.10-2.03 -2.02

2.14-3.19-3.59 4.11,-3.32

2.35-3.55-4.00 -0.13,-0.73

1.63-2.31-2.93 -4.53,5.61

Ethanol-water 10/110 6.35-7.86-5.98 8.24,-8.82

5.3.2 Ternary Mixtures

Two ternary systems have been tried with the 1FGE-EoS and compared to the RWS

model. In Table 5-4 we report the results for the system acetone-methanol-water at two

different temperatures. The data were taken from Griswold and Wong (1952).

It can be observed from Table 5-4 that the error in pressure for the 1FGE model, is

more sensitive at the lower temperature (100°C), to the low pressure parameter used.

However, the vapor phase compositions with our model are insensitive to the system

taken to fit the binary parameter, and the errors are consistently less than the errors from

the RWS model. Nevertheless, the data for the system at 100 °C are much more difficult

to predict with either of the models.
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Table 5-4. Absolute average deviations (AAD%) in pressure and vapor phase
composition for the ternary system acetone(1)-methanol(2)-water(3) at 100 & 250 °C

T (0C) (%)AAD(P-Y1-Y2-Y3)	 2'12/X13/23	 7. 12/T21 ,T 13/T3123h32

1FGE-EoS	 RWS

100 3.04-8.22-19.55-6.39 2.88/0.69/-0.37

250 3.64-5.25-5.75-3.96 cc

100 3.81-8.36-20.44-7.06 3.49/0.69/-0.37

250 4.04-5.60-5.72-4.02 ,,

100 4.18-11.44-22.51-6.86 4.28/-4.10, 11.07/-11.07, 5.86/-6.24

250 2.01-6.92-7.87-5.16 ,,

A point of interest is that while for the 1FGE model the error in pressure for the

higher temperature is larger than for the lower temperature system (as we would expect

when using a low pressure parameter and extrapolating to higher temperatures), this is not

the case for the RWS model.

In a similar approach by Huang and Sandler (1993), an average of several low

pressure data systems was used to model the ternary system acetone-methanol-water, at

the two temperatures of 100 and 250 0C, with the UNIQUAC equation. They report a

value of ( E 
OP

 %) equal to 2.49 while for our model and with the parameters of Table
i=1 P

5-2 we get 0.53, which shows that our model results in more sign changes. This is an

indication that for these high pressure binary and ternary "test systems", the assumption

of the linear mixing rule for the size parameter (equation 2-21) is performing better than

the temperature dependent rule (equation 2-49) assumed in the Wong-Sandler (1992)

model.

In Table 5-5 we report results for the ternary system methanol-chloroform-acetone

at 40 and 50 0C taken from Goral et al (1985). For the RWS model we present the results
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for the three different parameter combinations as given in Table 5-3. It can be seen from

the results in Table 5-5 that the 1FGE model is less sensitive to the change of the low

pressure parameter. Moreover, the small variations in the vapor phase composition of one

component are compensated with variations in the composition of the other, so that the

summation of the errors in vapor composition of all three components does not vary

significantly.

Table 5-5 Absolute average deviations (AAD%) in pressure and vapor phase
composition for the ternary system methanol(1)-chloroform(2)-acetone(3) at 40 & 50 0C

T (0C) (%)AAD(P-Y1-Y2-Y3)	 X12/A,13a23	 112/121,713/13111-23/1-32

1FGE-EoS	 RWS

40 2.24-7.24-4.18-9.41 7.26/3.49/-2.02 .

50 1.72-5.81-3.44-6.32

40 1.84-5.32-5.63-9.30 7.26/2.88/-2.02

50 1.41-4.71-4.81-6.80 "

40 2.76-11.41-3.83-9.79 -4.37/6.54, -4.10/4.28, 4.11/-3.32

50 2.98-9.25-2.87-6.71 u

40 2.38-5.84-6.63-14.58 -4.37/6.54, -4.10/4.28, -0.13/-0.73

50 2.00-4.63-5.58-10.47 it

40 4.58-17.13-6.94-7.06 -4.37/6.54,-4.10/4.28, -4.53/5.61

50 5.11-13.93-8.53-5.45 "

The RWS model shows small variations in the pressure predictions for the first two set

of parameters, but the vapor phase composition predictions show large variations for

methanol and acetone (up to two times). The pressure predictions as well as the vapor
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phase composition predictions for methanol and chloroform are less accurate for the last

set of parameters, compared to all model variations tried in Table 5-5. While for this last

case the results are two to three times less accurate than the other models, the same model

predicts the vapor composition of acetone more accurately than all the other models.

This sensitivity of the results to the choice of the parameters for the RWS model,

is an issue concerning the use of the model as a predictive tool for multicomponent

mixtures. On the other hand, the good performance of the 1FGE-EoS on the predictions

of the binary and ternary systems along with its robustness on the change of the

parameter set, adds to its reliability when used as a predictive model for these high-low

binary and ternary "test systems" based on available low-pressure experimental

information.



CHAPTER 6

CASE STUDY TWO

6.1 Introduction

In this part of our work the Huron-Vidal thermodynamic formalism is combined with the

1FGE-EoS model for vapor-liquid equilibria correlations of hydrogen containing ternary

systems along with their constituent binary systems. Both phases in the systems studied

are at high densities, and so we do not have any compliance problem with the second

virial coefficient condition, Trials with the density dependent mixing rule presented in

Appendix A-2 gave poor results, since the model could not distinguish between the two

phases at high pressures. The systems tried provide the basis for examining our model's

potential to describe highly asymmetric systems, where the ratio of the molecular

volumes of the components is far away from unity.

For these systems there are two parameters in the 1 FGE model. One energy

related (X. 1.j in equation 4-34) and one size related parameter (p.j in equation 4-37). As we

mentioned in section 4.3, a consistent way to treat p ii as an adjustable parameter is to

combine equation 4-37 with equation 4-30.

As Gray et al (1983) suggested, for accurate prediction for the ternary systems, we

might need to weight the binary parameters accordingly. An alternative, of course, would

be to introduce ternary interaction parameters in an empirical way, but this would have

complicated the model and would be inconsistent with the idea of multicomponent

mixture behavior prediction from only binary parameters.

In order to obtain conclusive results on the correlative abilities of the 1 FGE model

we have included four ternary along with 15 binary systems in our list of systems. The

area and volume related parameters of the pure components are taken from Bondi (1968),

except for the area parameters for hydrogen, carbon monoxide and ethylene, which were

53
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regressed from all the systems in which they were involved. These parameters along with

the acentric factor of each component are given in Table B-1. The cubic EoS that we have

used is the PRSV EoS (section 2.2).

An alternative GE-EoS model that has been recently presented by Huang et al

(1994), uses the PRSV EoS along with the Wong-Sandler mixing rule, for modeling

hydrogen-hydrocarbon mixtures. Their choice for the GE model was the NRTL

expression (section 2.5).

Huang et al (1994) set the nonrandomness parameter (equation 2-57) to 0.36 for

this class of systems, and temperature independent parameters were used in equation 2-

57 :

G 3 ; =xp ( —a .
Ji

. A .. )	 (6-1)

This model assigns three parameters to each binary pair. There is one binary interaction

parameter kid in the combining rule (equation 2-47) and two energy parameters in the GE

model, andand A (equation 6-1). They have correlated the vapor-liquid equilibrium data

at each temperature set independently. Although all binary parameters showed variation

with temperature for each system, the authors decided to correlate the binary interaction

parameter k id with temperature, and the energy parameters with the acentric factor of the

hydrocarbon, so that the model could be used as a predictive tool. In Table 6-1 we report

the values of the energy parameters as given by Huang et al (1994), for both the

correlative and predictive models, for two representative systems.

Table 6-1. Energy parameters for the NRTL model [as reported by Huang et al (1994)] 

System	 T (K)	 Correlation	 Prediction

1-2	 Al2	 A21	 Al2	 A21 

H2-Ethane	 283	 0.134	 0.456	 0.69	 0.39

255	 -0.150	 0.500 /I



Al2 	 A21

0.69	 0.39

0.24	 0.24
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Table 6-1. (continued)

System	 T (K)	 Correlation	 Prediction

1-2	 Al2	 A21

H2-Ethane	 227	 0.499	 0.499

	

199	 -0.359	 1.569

H2-Decane	 583	 0.208	 0.448

	

543	 -0.029	 0.550

	

503	 -0.188	 0.604

	

462	 -0.275	 0.600

Although the values of the k id parameter were close to one for most of the systems and

could be correlated to temperature, the energy parameter values in Table 6-1 suggest that

it is difficult to correlate them not only with temperature but with the acentric factor of

the hydrocarbon as well. Note that the predictive model will not be able to deal with

multicomponent mixtures, since it is based only on hydrogen containing binaries.

Nonetheless it is of extreme importance for a good model to be able to use the acentric

factor of the hydrocarbon to correlate hydrogen-hydrocarbon binaries, since this

parameter can be used to characterize the asymmetricity of the mixture.

The good results that the authors obtained for several systems dictated the

significance of the binary interaction parameter kii in their model, while several sets of

energy parameters could be used with no significant effect on the calculations. So it is the

number of parameters responsible for the good correlations of these systems. Huang et al

(1994), have also showed that the one parameter van der Waals mixing rule, with the

parameter fitted at each isotherm, gave only fair results.
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In section 6.2 we present results for the binary and ternary systems from the

1FGE-EoS model. Moreover, we will investigate the ability of the model to assign

physical significance on the parameters, since this could implicitly add value to the

character of the model as a predictive tool.

6.2 Results and Discussion

6.2.1 Binary Mixtures

In Table 6-2 the energy and size parameters, as well as the hydrocarbon acentric factor,

for a block of seven hydrogen-hydrocarbon pairs (more results are given in Table B-2)

are reported. These results are directly obtained from the optimization algorithm used to

fit a large number of data sets.

Table 6-2 Mixture size and energy parameters

System (1-2) Xii pig 02

H2 -C2H6 3.14 1.61 0.098

H2-C3H8 1.58 2.22 0.154

H2-n C4H 10 -0.49 3.48 0.201

H2-n C611 1 4 -0.64 3.74 0.301

H2-n C711 16 -0.83 3.85 0.350

H2-n C 1 0422 -1.84 4.44 0.491

H2-n C16H34 -3.07 5.34 0.744

Table 6-2 indicates that as the size of the hydrocarbon increases the unlike interactions

are favored. This means that in equation 4-21 the cross parameter 26 12 has larger absolute

value than the sum of the interaction energies measuring the size of the like interactions.
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Note that since the interaction energy measures the depth of the potential well it has a

negative value. Also, a larger number for the pig parameter translates to a larger number of

interactions (like and unlike). Our observations for this block of hydrogen-hydrocarbon

systems are translated with an excellent correlation of the pig parameter with the acentric

factor of the hydrocarbon, as well as of the energy parameter with the p ly parameter.

these two correlations are:

pig =1.77 +5.26co i 	(6-2)

k ii = 5.49 —1.64p ij 	(6-3)

In Table 6-3 we report the absolute average deviations in pressure and vapor

phase mole fraction for the first component for all temperatures.

Table 6-3. AAD(%) in pressure and vapor phase composition of component 1 for binary
systems.

Components

1-2

Temperature

sets

Temperature

range (K)

Number

of points

%AADP %AADY 1

1-12-CO 2 83.30-100.00 18 4.6653 2.9514

CH4-CO 5 91.60-123.90 22 3.7066 8.6238

H2-CH4 4 103.15-173.05 26 3.3856 2.8454

H2-C2H6 4 148.15-223.15 16 5.3152 0.7070

CH4-C2H6 12 130.37-199.93 129 2.3571 0.8433

H2-C2 H4 6 158.15-255.35 34 3.3520 3.5024

C2H6-C2H4 4 199.82-263.15 43 2.9594 3.4851

CH4-C2H4 10 148.09-248.37 144 1.3171 0.6175

H2-C3 H8 7 173.15-323.15 41 5.6585 1.0705

H2-n C411 10 5 327.65-394.25 60 1.8740 2.5029

H2-n C61-1 14 6 277.59-444.26 94 4.2338 1.2643
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Table 6-3. (continued)

Components

1-2

Temperature

sets

Temperature

range (K)

Number

of points

%AADP %AADY 1

H2 -n C714 1 6 3 424.15-498.85 32 8.0101 2.4906

H2-n C i 0H22 (a) 4 462.45-583.45 26 3.9801 1.7174

H2-n C 16H34(b) 4 461.65-664.05 28 14.0701 0.6260

H2-C7H8 3 461.85-542.15 20 1.5651 1.6983
(a) Data from Sebastian et al (1980), (b) Data from Lin et al (1980).

Several of the systems reported in Table 6-3 are given in a graphical form in

Figures B-1 to B-10. We see that the systems are well represented, but for some series the

pressure deviation is either positive or negative. As Kolbe and Gmehling (1985)

suggested, this is due to the fact that the model must be able at the same time to

reproduce the temperature dependence of the fugacity coefficient, and also the

measurements across the whole concentration range. They had modeled the ethanol-water

system over a great span of temperatures.

Another important issue in the 1FGE model is the description of the local ordering

in the mixture, although we cannot verify the results either from a lab or a molecular

simulation experiment. For example, for the hydrogen n-hexadecane binary and for the

high temperature set, we have the local composition of the hydrocarbon around the

hydrogen molecule to be 0.41 and the hydrogen local composition around the

hydrocarbon to be 0.72 for an equimolar mixture. This which means that the hydrogen is

surrounded by more molecules of hydrogen most probably due to steric effects from the

size difference of the molecules of the components in the mixture.
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Since the errors in pressure for the systems hydrogen-heptane and hydrogen-n-

hexadecane in Table 6-3 are higher than for the other systems, it is tempting to investigate

the use of the assumption 4-29, which adds one additional parameter in the model.

Table 6-4 Predictions with the three parameter model for two hydrogen-hydrocarbon
binaries.

1-19 -n C7H i 6	 1.24	 2.94	 5.21	 4.4804	 3.0425

H2-n C161134 	 -0.75	 4.01	 6.09	 3.0931	 0.8188

The results in Table 6-4 are not hard to interpret since both of the size parameters

have perturbed around the size parameter reported in Table 6-2, with the hydrocarbon

molecule to show larger of pair interactions. This result suggests the possibility of a

judicious introduction of an extra size parameter to improve the correlation without loss

of physical meaning.

In contrast, the same formalism (Huron-Vidal) with two-fluid theory based GE

models is not sensitive to the variation of the parameters in the fitting procedure, as Yoon

et al (1993) reports, and without significant variance in the results from the choice of the

GE model. They have worked with the ternary system carbon dioxide-water-methanol.

Results for each individual isotherm are reported in Table B-3 . The high error

value for the vapor mole fraction of the hydrocarbon, is due to the small experimental

values.
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6.2.2 Ternary Mixtures

Results for the ternary systems are presented in Table 6-5. The ternary mixtures were

regressed along with the binary mixtures with the use of only binary parameters (given in

Table B-2). We thus get the best predicted results for both the binary and ternary

mixtures. Our model predictions for the ternaries H2-CH4-C2H6 and H2-CO-CH4 are

compared with the results from the Dechema Data Series [Knapp et al, (1982)] on exactly

the same data set. In the Dechema Data Series the experimental data are modeled with the

PR-EoS and the classical one-fluid mixing rule. The results for the ternaries H 2-C114-

C2H4 and H2-C2H6-C2H4 are compared with the BWR equation on the same data set as

reported from Sagara et al (1972).

Table 6-5 Absolute average deviations in pressure and vapor phase mole fractions for the
ternary systems.

Components Temperature sets Temperature span (K) (%)AAD(P-Y 1 -Y2-Y3 )

1-2-3 Number of points Pressure span (bars)

H2-CO-CH4 12-95 120.00-173.25 2.85-6.29-2.65-3.64

28.9-103.42

Dechema 6.32-15.41-4.04-3.57

H2-CH4-C2H6 4-15 144.26-199.82 3.61-3.21-4.35-12.66

34.47-68.95

Dechema 6.03-8.55-7.55-20.41

H2-C2H4-CH4 20-98 123.15-248.15 4.67-5.72-9.27-17.86

20.26-81.04

BWR 13.55-5.66-13.43-37.38

H2-C2H4-C2H6 16-80 148.15-223.15 4.69-0.92-16.21-11.98

20.26-81.04

BWR 17.60-1.44-21.15-31.60
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The large percentage errors in the mole fraction of the vapor phase of ethylene,

methane, and ethane in the last two ternary systems of Table 6-5 are due to the small

numerical values involved. Deletion of only five points for the system H2-CH4-C2H4

brings the absolute average deviation of methane down by more than 4 percent. Also, as

Sagara et al (1972) implied, the experimental compositions in the high dilution region

may have large errors.

Figure 6-1 illustrates the ternary mixture hydrogen-methane-ethane at 144.26 K

and 68.95 bars. We see that at the conditions given, the methane-ethane system is

completely miscible and well described with our model. A few other indicative ternary

diagrams for each of the ternary systems are given in Figures B-11 to B-13.

0•0 	 \P	
00000 Liquid

0 	 0000. Vapor
•1 	QF •

(tr. O. .o 	
a 	

1C0 0
0.3 1

NJ •

6
.0 	 / 	 0. 	 0

°O•

0 6,
O•

Qa

0 0

N\\\\\\. 	

0(.5

0 6)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9 1.0

Mole fraction hydrogen

Figure 6-1 Vapor-liquid equilibria for the ternary system hydrogen-methane-ethane at
144.26 K and 68.95 bars
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In the case where the vapor phase mostly contains hydrogen, the excess

Helmholtz function term is close to zero, so that basically this term corrects for

nonidealities in the liquid phase. In Tables B-4 to B-7, we report the error averages for

each data set, at each of the various temperatures.

It is obvious that our approach decreased the absolute average deviation

significantly for these so-called "difficult" systems. In general, the results in Appendix B

indicate the ability of the model to describe the vapor composition of these systems at

high pressure even though the vapor composition is not included in the objective function

for the regression. This gives us confidence in the description of both phases with the

1FGE-EoS model we proposed.



CHAPTER 7

CASE STUDY THREE

7.1 Significance

The study of the "ozone hole" above the Antarctic has established the relationship

between the chlorine and ozone content in the stratospheric zone, and has also shown that

the chlorine oxide (C10 -) radical is mainly responsible for the ozone destruction. This

radical is formed by chlorine atoms released by chlorofluorocarbons (CFCs) and

hydrochlorofluorocarbons (HCFCs).

CFCs are not water soluble and they rise to the stratosphere where upon the action

of UV rays they release chlorine atoms. These transform ozone molecules to oxygen,

while the hydrogen atom facilitates hydrolytic reactions in HCFCs and lowers their life

expectancy in the atmosphere.

The ozone depletion potential (ODP), defined as reduction of ozone per unit mass

of gas emitted per year, and compared with that for a unit mass of CFC-11, are given in

Table 7-1 for some CFCs and HCFCs along with their life expectancy in the atmosphere

[Clodic and Sauer, (1994)].

Besides their ozone destruction capabilities, CFCs and HCFCs are also

contributors to the greenhouse effect, mainly by the release of carbon dioxide in the

energy production cycles for cooling.

The Montreal Protocol (1987), which was followed up by the London Revision

(1990), grouped the six CFCs of Table 7-1 and their mixtures as Class I along with

carbon tetrachloride and methyl chloroform, and halons 1211, 1301 (R1381), 2402 as

Class II, and required that these two classes have to be phased out by the year 2000 in

stages. The required reductions targeted all applications; namely for CFCs: refrigerants,
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blowing agents in polymer foam manufacture, solvents for electronics and propellant

gases for aerosols; and for halons: extinguishers and refrigeration products.

Table 7-1 ODP values of CFCs and HCFCs.

Component	 Life in atmosphere (years) 	 ODP 

CFC-11	 60	 1

CFC-12	 130	 1

CFC-13	 400	 1

CFC-113	 90	 1.07

CFC-114	 130	 0.8

CFC-115	 400	 0.52

HCFC-22	 15	 0.055

HCFC-123	 2	 0.02

HCFC-124	 7	 0.022

HCFC-141b	 8	 0.11

HCFC-142b	 19	 0.065

The Copenhagen Revision (1992) accelerated the phase out in stages of CFCs by

the year 1996, and of halons by 1994. The phase out date for HCFCs was set in the year

2030, while in the USA, the Environmental Protection Agency (EPA) accelerated the

phase out date of the products HCFC-141b, HCFC-142b and HCFC-22 as well as

hydrobromofluorocarbons, by the year 1996. Later in 1993, a proposal by the European

Community Commission followed, which suggested as the phase out date of HCFCs the

year 2015. For each country the phase out of the CFCs is based on its consumption
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(production + import - export) in the year 1989, while for the other products is based on

their consumption, as well as the CFCs consumption, for the same year.

The need for thermodynamic predictions of mixtures containing CFCs and

HCFCs starting from accurate information of the properties of the pure components will

facilitate their replacement procedure according to the environmental regulations recently

imposed, and with a minimum cost of necessary modifications performed to the existing

refrigeration equipment. Besides, since alternatives to current ozone depleting refrigerant

fluids were found to be several hydrofluorocarbons (HFCs) and HCFCs, the study of

mixture properties could alleviate bad properties of some single component refrigerants

such as inflammability, or insolubility in oil which hinders their recovery.

7.2 Thermodynamic Framework

As explained in section 3.3, previous researchers have established the good correlative

ability of the simple van der Waals one parameter model for phase equilibria calculations

of many refrigerant mixtures, as well as its poor predictive abilities. For this reason we

examine a one-parameter version of the 1FGE-EoS model on representative fluorocarbon

(FC), CFC, and HCFC mixtures and CFC/HCFC-hydrocarbon mixtures.

In particular we were interested in deriving a predictive model in the sense noted

by Orbey and Sandler (1995a). Phase equilibrium experimental data, in a limited amount,

can be used to obtain the value of the parameter at a single temperature. Then phase

equilibria predictions can follow at higher, or lower temperatures.

Orbey and Sandler (1995a) used the Wong-Sandler mixing rule along with the

NRTL expression (equations 2-56 to 2-58). A limited amount of experimental data were

used for each binary system at a single temperature to fit the two NRTL parameters T12

and T21 along with the binary interaction parameter kii (equation 2-47). The

nonrandomness parameter (equation 2-57) set to 0.40 for most of the systems, but they

had to set it equal to 0.35 to improve the correlation for the system R14-R23 at 145 K.
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This model will be designated as 3PWS (three-parameter Wong-Sandler) and will be used

for comparisons with the 1FGE model (incorporated to the Wong-Sandler mixing rule)

for ternary systems.

For the 1FGE model equation 4-29 is used where pij is given by:

qi " 
Pii	 a-1

The area parameter qi is used in other local composition models as well; for example, the

UNIQUAC model, developed by Abrams and Prausnitz (1975). It is worth noting that

with the form of the equation 7-1 we have the choice of getting back the original model

of Knox et al (1984) by setting the aij parameter equal to one, or having the interactions

per molecular components equal to each other by setting this parameter equal to zero. The

a 1.j parameter could be compared with the non-randomness parameter of the NRTL

model, except that for our model the parameter has more theoretical background since it

is connected implicitly to the number of interactions per molecule through the surface

area parameters.

This framework can be treated as a three parameter model (ot ij , kii), or upon

suitable assumptions its parameters could be reduced. A major problem which we find for

multiparameter models is that the values of the parameters depend on the initial

estimates, and especially for systems with few data points there exist a range of parameter

values which can give accurate correlation at a single temperature. The problem then

would be to choose the most appropriate set of parameters for predictions of binary and

ternary systems. The difficulty with the overcorrelation of experimental data and the

encounters (dependent on the initial estimates) with local minima of the objective

function, is more prominent as the number of parameters in the model increases.

To be able to establish a method to screen among various versions of the 1FGE-

EoS model while defining a suitable predictive model we set a heuristic rule. We required

(7-1)
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the simultaneous fitting of all the temperature sets of a system (overall fit), to result in

model parameters that are in the range defined by the parameters obtained from the

fittings of each individual temperature separately. A sample program for an overall fit

case (R134a-propane) is given in Appendix D-3.

A suitable predictive model in the sense of this work, should have parameters that

do not vary significantly with the temperature. The temperature dependence of the model

extrapolations should be described from the structure of the GE-EoS model.

In order to appreciate the value of our heuristic rule, we note that a correlation of

a system at a single temperature set, treats the system under the athermal solution

assumption, while for the overall fitting the temperature dependence of a parameter is of

importance to the results. This in a sense justifies the use of an overall fitting to validate

the model's ability to assign the correct parameter value with a single temperature set.

Basically we expect to map the highly nonlinear problem of the dependence of the

fugacity coefficients, to a temperature-parameter coordinate system, where for small

parameter variations with temperature, the parameter is considered to be constant.

Moreover, it is highly desirable to connect the model parameters with physical properties

of the systems studied, such as the polarity of the mixture.

For an initial model screening we have chosen five binary refrigerant systems to

test for this purpose: R134a-Propane, Propylene-R134a, R23-R13, Propylene-R22, and

R134a-R152a.

The cubic EoS used is the PRSV or PRSV2 EoS (section 2.2). Pure component

parameters are given in Table C-1. The EoS parameters for R123 (equation 2-18) were

optimized in this work, from saturated pressure data of Nishiumi et al (1995). The r and q

parameters of the 1FGE model (section 4.3) for the components R13, R134a, R152a, R22,

R23, propane, and propylene were taken from Kleiber (1994) and for the other

components from Bondi (1968).
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7.3 Model Parametric Forms

Initially we looked at the general three parameter model, ccii, Xij, k id (3PM). The results

from this model for the five binary systems are reported in Table C-2. A few are shown in

Table 7-2. We report the absolute average deviations in pressure and vapor phase

composition of the first component for each system.

Table 7-2 AAD(%) in pressure and vapor phase composition of component (1) for the
3PM model

System Fitting temperature Parameters Ap-Ayi

(1-2) (K) aNk

R134a-Propane Overall 1.755/4.520/0.217 1.660-2.353

255 0.446/3.369/0.378 0.236-2.916

275 0.776/3.409/0.339 0.099-1.562

298 1.497/3.912/0.254 0.394-0.994

R134a-R152a Overall -4.971/-0.430/-0.088 0.387-0.516

-3.974/-0.292/-0.067 0.424-0.458

255 -5.236/-0.514/-0.102 .	 0.155-0.482

275 -0.994/0.095/-0.058 0.071-0.592

298 -2.594/0.001/-0.067 0.125-0.383

Obviously, for the 3PM model the encounters with local minima are an issue. Moreover,

we see that the model parameters for the system R134a-propane are not within the range

defined from the individual data sets.

One possible reduction to a two-parameter model is to set the a id parameter equal

to zero which is equivalent to the assumption of having the same number of interactions
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for each molecule in the mixture. In Table C-3 we report results for this two parameter

model with adjustable parameters the (2PMa). A few of the results are shown in

Table 7-3.

Table 7-3 AAD(%) in pressure and vapor phase composition of component (1) for the
2PMa model

System Fitting temperature Parameters Ap-Ayi

(1-2) (K) Mc

R134a-Propane Overall 3.556/0.299 1.997-2.027

255 3.150/0.399 0.298-2.068

275 3.048/0.373 0.292-2.323

298 3.001/0.334 0.495-1.484

Propylene-R134a Overall 1.391/0.316 1.200-1.520

251 0.948/0.410 0.634-1.888

275 0.754/0.401 0.631-1.264

298 0.733/0.376 0.463-1.337

The results in Table 7-3 indicate that the 2PMa model does not satisfy our heuristic rule.

In another version of a two-parameter model where we assumed that the

parameter has been replaced by a linear average of the acentric factors of the pure

components. This assumption will result in	 values of about 0.2. The results for this

model (2PMb) are reported in Table C-4 and a few shown in Table 7-4.

The results in Table 7-4 suggest that the idea to fix the k ii parameter, makes the

model parameters less sensitive to temperature variations. In total the 2PMb model

satisfied our heuristic rule for three systems, the 2PMa for none, and the 3PM for one
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system. We have chosen to use the 2PMb model to try to reduce the number of its

parameters. The reduction to a one-parameter model is based on the conclusion of the

review made in section 3.3, where we showed that the one parameter classical van der

Waals is an adequate model for predicting properties of refrigerant mixtures, while

multiparameter mixing rules gave only slightly better results.

Table 7-4 AAD(%) in pressure and vapor phase composition of component (1) for the
2PMb model.

System Fitting temperature Parameters AP-Ayi

(1-2) (K) aa

RI 34a-Propane Overall 1.658/4.252 1.691-2.147

255 1.274/4.940 0.762-1.528

275 1.229/4.571 0.489-1.226

298 1.585/4.098 0.388-1.015

Propylene-R134a Overall 1.389/2.112 0.664-1.155

251 1.394/2.323 0.127-1.552

275 1.503/2.179 0.169-0.693

298 1.344/2.068 0.125-0.366

Results for the correlative capabilities of the 2PMb model for 14 binary mixtures and for

an overall fit, are given in Table C-5. It is inevitable that upon reduction in the number of

parameters we lose in accuracy of the pressure predictions, but not necessarily in vapor
N

phase composition predictions, since the objective function used is E (P Pexp )2 . The
i=
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error in the vapor composition for the system R23-R22 is based on the predictions by the

Trebble-Bishnoi EoS given in Laugier et al (1994), since the authors do not report the

experimental values.

Note that as Figure 7-1 indicates the energy parameter should be adjustable. Even

two parameters aii and kii can not recover the system when^,ij is set to -5. For the 2PMb

model (kii=0.46) for the energy X ii values: 1,2,3 the a id parameter correlated is: -5, 1.847,

0.594. For the 3PM model for the energy X, ij values: -5,2,6 the a ii/kii values obtained are:

1.112/1.023, 1.416/0.248, 1.596/-0.098.

7.4 Athermal Solution

In this section we investigate the so-called athermal solution assumption. For an athermal

solution the GE/RT function should be independent of temperature. This definition

translates to the temperature dependence of the parameters. If temperature independent

parameters are to be used with the 1FGE model then the right hand side of equation 4-34

is replaced by: exp(-X ii). The results for the system R14-R13 were the same as given in

Table C-5, with the values in the parentheses of the exponential term based on the data

given at a single temperature. Results for the system R14-R23, for which the data cover a

great temperature span, are reported in Table 7-5. For this system all temperature sets

were correlated simultaneously. It is obvious that a temperature dependent parameter help

to correlate the experimental data more accurately than the case where the athermal

solution assumption is used.



72



73

Table 7-5 AAD(%) in pressure and vapor composition of R14 for the system R14-R23
for the cases of temperature dependent and independent ? parameter

T (K) T dependent (cc/X.:-0.919/3.135) T independent (a/2,,:-1.613/-1.490)

145 9.421-0.455 21.424-1.719

172 4.712-0.581 11.573-2.569

200 0.824-2.153 4.200-6.260

225 1.018-1.078 1.221-0.789

255 1.614-4.081 1.534-4.037

283 0.572-3.454 0.364-3.100

7.5 One-Parameter Model and Results

As we have discussed in section 7-3 upon fixing the value of the k ij parameter rather than

treating it as an adjustable one, the other model parameters show less temperature

dependence. More importantly, the parameters taken from the overall fit are close to the

parameters from the individual fit of the higher pressure system, since it carries more

weight in the fitting routine.

While this is true for the 2PMb model this is not the case for the other two models

2PMa, and 3PM, where it seems impossible to predict the expected values of the overall

fit parameters. For this reason we use the 2PMb model for further reduction in the

number of its parameters.

In Table C-6 we calculated the p 12 and p21 values for all binary pairs from the oc ij

values of Table C-5 and then fit them to the one parameter equation 7-1. By doing this we

get a value of oc ij close to 1.5. The values obtained from the fitting routine are given in

Table C-6. The functional form of equation 7-1 results in two symmetric functions p 12

and p21 around a value 0.5 of the oc ij parameter. This point induced us to examine

whether if the order of these functions ln‘1-12 , P21) is of importance to the accuracy of the
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error predictions. For example, we see from the Table C-6 that for the systems R14-R13,

R23-R13, R14-R23 and R13-nButane the order of these functions (n.1-12 , p21) has been

reversed. We have chosen five systems to investigate this point further. We compare the

results of having an aii parameter with value 1.5 to the case where the parameter equals

to 0.5. The results in Table C-7 suggest that the simplified assumption of the geometric

average of the pure components is satisfactory. The area parameters used with this

assumption result in the p ly parameter values given in the last column of Table C-6. As we

see, all the parameters fall within the range defined by the parameters given in Table C-5.

For the 1PM model we have also tried the five systems that we had tried with the

previous two models to check if the parameters from the overall fit fall within the range

defined by the individual temperature fits. The results are given in Table 7-6 and they

indeed verify that the 1PM model satisfies our heuristic rule. Similar results are obtained

for the rest of the systems, as shown in Table C-8.

Table 7-6 AAD(%) in pressure and vapor phase composition of component (1) for the
1PM model.

System Fitting temperature Parameters AP-AY1

(1-2) (K) k

R134a-Propane Overall 4.257 1.824-2.111

255 4.953 0.740-2.047

275 4.584 0.535-1.413

298 4.095 0.722-0.940

Propylene-R134a Overall 2.164 0.964-1.464

251 2.367 1.119-1.374

275 2.251 0.842-1.492

298 2.117 0.590-1.180
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Table 7-6 (continued)

System Fitting temperature Parameters AP-41

(1-2) (K) X,

R23-R13 Overall 1.857 2.074-1.987

273 1.750 0.362-0.725

255 1.975 0.381-0.767

225 2.265 0.541-0.921

199 2.646 0.642-1.084

Propylene-R22 Overall -0.099 0.334-0.929

258 -0.033 0.307-0.920

263 -0.049 0.290-0.862

268 -0.079 0.274-0.897

273 -0.102 0.280-1.086

278 -0.107 0.266-0.547

283 -0.143 0.277-1.018

R134a-R152a Overall -2.049 1.101-1.002

255 -1.805 0.178-0.876

275 -1.911 0.081-0.473

298 -2.107 0.139-0.465

It is obvious that with the simplifying assumptions we introduced, we lose in

accuracy of the correlations. Nevertheless, the one parameter 1FGE-EoS model we

propose show, promise for use as a predictive model. Moreover, the results of Table 7-6

show that temperature dependence of the energy parameter could be correlated with a

straight line. For some of the systems in Table C-8 we have two straight lines to be

correlated with a cubic polynomial.
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For the model 1PM we tested the idea of having the binary parameter fitted at a

single temperature near 273 K temperature, and then predict vapor-liquid equilibria over a

range of temperatures. The results of this model are given in Table C-9, where the

highlighted temperature is the one used to obtain the energy parameter. We can see that

for most of the systems, the performance of the model is good. For comparison, in Table

C-10 we give the results for the systems R14-R23 and R13-R113 using the same

approach, for the classical one-fluid van der Waals mixing rule (vdW). We can see that

the vdW model predicts poorly the pressure at low temperature for R14-R23 and at high

temperature for R13-R113. In Table 7-7 we report the results for the ternary system R14-

R23-R13 taken from Proust and Stein (1979b) from the models 1PM, vdW and 3PWS.

The binary parameters of the 3PWS model for the system R14-R13 were obtained from

Orbey and Sandler (1995). The values of Table 7-7 show better results for the GE-EoS

models than for the classical (vdW) rule. Also, the 1PM model gives up to two times

smaller error for the pressure, and four times for the vapor phase composition predictions,

than the 3PWS model for the high pressure system. We note that the predictions at low

pressure for the system R14-R23 deteriorate, while at about seven bars all binaries are

represented very accurately.

From the overall results of Table 7-7 it can be seen that the vdW model predicts

the phase composition worse as the component's polarity increases, while for the two

other models based on the Wong-Sandler mixing rule this is not the case. The dipole

moments for these components [Blindenbach et al, (1994)] are: 0, 1.65, and 0.50 for the

molecules R14, R23, and R13 respectively.

In order to derive some conclusions as to the significance of the parameters, we

note that the system R14-R13 favors the unlike interactions more than the other two

binaries, since there is less polarity and less size difference in the components (one

chlorine replaces one fluorine). The system R14-R23 favors the like interactions more

than the other two systems, since one component is polar and the other nonpolar. Also,
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there are size differences, since one hydrogen atom replaces one fluorine atom. For the

system R23-R13 the two phenomena (size-polarity differences) bring the parameter in

between the parameters of the other two binary systems. It is interesting to note that the

van der Waals parameter shows the same order in magnitude, while it is difficult to assign

any physical meaning to he NRTL parameters.

Table 7-7 AAD% in pressure and vapor phase compositions of components 1, 2 and 3 for
the ternary system R14-R23-R13 and parameters for the models vdW, 1PM, and 3PWS
(R14-R23/R14-R13/R23-R13).

System (1-2-3) vdW 1PM 3PWS

k X. kili2/121

Parameters 0.143 3.143 0.201/542/95

0.028 0.079 0.106/617/-40

0.1032 1.750 -0.109/588/588

R14-R23-R13 6.53-4.71-5.97-3.60 2.47-3.27-3.36-7,71 1.15-4.22-2.31-6.12

(3.447 bars)

R14-R23-R13 4.51-1.36-8.16-4.68 0.78-0.67-3.76-6.02 1.97-2.90-6.56-13.15

(6.895 bars)

Overall (35 points) 5.66-3.27-6.91-4.06 1.74-2.15-3.53-6.99 1.50-3.65-4.13-9.13

In Figure 7-2 we show this ternary system at two different pressures with the two

models 1PM and 3PWS. It is obvious that for the high pressure system our model's

predictions are within the data points while for the low pressure system the NRTL model

underpredicts the vapor phase composition of R14, and our model overpredicts it. In

Figures C-1 to C-12 we present predictions for the binary systems that we have analyzed

with the 1FGE model.
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system as the second component of the binary mixture (equation 7-2). Nevertheless, we

can see from Table 7-7 that the energy parameters for the R14-R13 system have values

away from zero. For this reason two-fluid theory based models can not be safely extended

to multicomponent mixtures, treated with a number of pseudocomponents.

On the other hand the 1FGE model characterizes this system as an athermal one

with small positive deviations from Raoult's law.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The 1FGE model is presented in this work. The model shares the features of the GE

model of Knox et al (1984), on which it is established. The 1FGE model is able to predict

multicomponent mixture phase equilibria from only binary interaction parameters. A

feature of the 1FGE model is that its binary parameters have physical significance, as they

are connected with the number of interactions and the local ordering of the molecules in

the mixture. This model is incorporated into GE-EoS mixing rules based on the infinite

pressure state, in order to address the need of phase equilibrium thermodynamics for a

predictive as well as a correlative model, for use over an extended range of temperatures

and pressures.

Moreover, from the study of the nonideal mixtures of chapter five we have

established the adequacy of the Huron-Vidal (1979) mixing rule as connected to the

1FGE model, to predict vapor-liquid equilibrium behavior using only a few experimental

data. The one energy parameter of the 1FGE model could be very well obtained from

available experimental information at low pressures. In contrast the theoretical pitfalls of

the GE model presented for the reformulated Wong-Sandler mixing rule [Orbey and

Sandler, (1995b)], renders it inadequate to be connected with the one-fluid character

inherent to an EoS.

In chapter six we prove the correlative abilities of our model as applied to a

variety of hydrogen containing ternaries and their constituent binaries under the

thermodynamic formalism of the Huron-Vidal mixing rule. The only parameters involved

are those of the 1FGE model, one size and one energy related parameters, and they are

able to represent the data very well. The errors in the predictions of pressure and vapor
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phase composition drop down significantly with respect to previous models. More

importantly, for binary hydrogen-hydrocarbon mixtures the parameters can be correlated

with the acentric factor of the hydrocarbon which means that our model can describe the

highly asymmetric character of these so-called "difficult systems".

In chapter seven we have provided a flexible cross interaction parameter able to

provide an average number of interactions for different limiting cases. With simple

assumptions, we provide a one parameter version of the 1FGE-EoS model, based on the

Wong-Sandler (1992) mixing rule. The study of multiparameter models showed that

more than one parameter models tend to overcorrelate few experimental data given at a

single temperature, and so make it more difficult to predict the values of the parameters at

other conditions. It has been shown, through the heuristic rule that we have established in

this work, that the structure of the 1FGE model can describe the temperature dependence

of the fugacity coefficient, which makes it a unique candidate to be used as a predictive

tool for the highly nonideal class of refrigerant mixtures.

Also, in chapter seven we have studied the athermal (temperature-independent C

parameter of equation 4-27) solution assumption for the 1FGE model, and it has been

shown to be in discord with the idea of phase equilibria predictions over a range of

temperatures. Thus, the temperature-dependent equation 4-34 should be used. In addition,

the results for the ternary system R14-R23-R13 proved the model capable of predictions

of multicomponent mixtures with only a single binary parameter per pair of components.

Additionally, the 1FGE model parameters have the potential to be related to characteristic

constants of the systems, such as the pure component acentric factors or dipole moments.

In contrast, the Non-Random-Two-Liquid theory [Renon and Prausnitz, (1968)] chosen

by Orbey and Sandler (1995a) on the same thermodynamic formalism as ours, shows

much higher errors in both pressure and vapor phase composition predictions.
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8.2 Recommendations

Future work could include computer simulations employing the Gibbs ensemble method

able to provide the local ordering of the molecules of both phases at high pressures.

Although the predictive model we have presented is a competitor to the group

contribution methods, there are classes of systems for which there are not available

experimental data. So, for the important class of refrigerant mixtures, we recommend

developing a one-parameter group contribution model, using several binary and

multicomponent mixtures. This model could test the use of two global parameters in

equation 7-1, namely two different exponents in the nominator and denominator. An

overall correlation of the many experimental data could provide the energy interaction

parameters between the groups. This may be an improvement over the existing group

contribution models that are based on two-fluid theory.

Two more points that we can suggest, is to incorporate the athermal solution of

Florry-Huggins theory into the 1 FGE model, for predictions of the volumetric properties

of polymer solutions. Also the model could be tested for the prediction of infinite dilution

activity coefficients.



APPENDIX A

A-1 Derivation of the Fugacity Coefficient for the Huron-Vidal Mixing Rule

A-2 Derivation of the Fugacity Coefficient for the Density Dependent Mixing Rule

A-3 Derivation of the Excess Gibbs Energy and the Activity Coefficient for the 1FGE
Model

A-4 Derivation of Infinite Dilution Activity Coefficients with the UNIFAC Model

A-5 Results with the 1FGE/Huron-Vida1 Mixing Rule

83



The EoS is written as:
1 	bD 

RT v-b v 2 +2bv - b 2

nbnD
v - nb v2 + 2nbv (nb) 2

n
(A-1-6)

APPENDIX A4

Derivation of the Fugacity Coefficient for the Huron-Vidal Mixing Rule

The mixture parameters are given by:

a - bD
RT -
b =Exibi

where,

D = Ex,
a
1 + 

A Eco 
biRT CRT

and,

C = 	 - 1)

(A-1-1)

(A-1-2)

(A-1-3)

(A-1-4)

The volume cubic form of the EoS is:
v 3 + (b RT.2v) 	 (3132 + RTb 2 ID  )v + (b 3 RTb 2 D: 1 ) = 0 (A-1-5)

The compositional derivative of the pressure is:
a(P/RT) 	 1 	 n . 	 + 	 b -b,	 i 	 iani
	vv-nb  (v - nb)

nb(anD / Orli ) + n2bD
 2bi [v- nb]

X 	 X2

The terms in equation A-1-7 upon integration will give:
nbi 	 [binD+ nb(anD / ani)] v+nb(1-Vf) 1n(v - nb)   	 ln[- 	 r- ] +v - nb 	 2Jnb 	 v+nb(1+i)

n2 bD2bi 
{-v-nb 

+	1 	in( y + nb(1 - Ar27) 

4nbX 84- (nb) 2 	y+nb(1+-\,/r--2)
)+

nb[  v + nb
+ 	1 , ln(

v+nb(1-J) 

4(nb) 2 X8 (nb) 3 	17+ nb(1+.v/-2)
)1} =, 

nD
X

(A-1-7)
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ln(v - nb)-  nb
i 	[binD + nb(anD / ani)]

In[-
v +nb(1- -sif)]+

-

v-nb 	 2-ffnb 	 v+nb(1+Nri)

	:2=n2 bD2b i 1  -
v	 1+ 	 , ln( -v+nb(14)

))
	2nbX 4(nb)2	y+nb(1+-s/2)

ln(v - nb) 	
nb i 	[binD + nb(anD / ani ) -

 binD] ln[ Y. 
+ nb(1 - Nif)]+

	v- nb	 2-srfnb 	 v+nb(1+J)

n2 bD2b i v =

2nbX

in(y. - nb) 	 nb i 	(anD / ani ) 1 [ _y + nb(1-J) ] + nDb i y
- 	 (A-1-8)

	

v-nb 	 2-if 	 n v+nb(1+-j) 	 X
yr , 1 , ap ,	 1 l 	 P(v - b)

where we have used the relationship:

Pv b b v
Dbv

v_b2
D

2b
= 	 -

RT 	 v- 	 2

-= - J L--- L7-- )T.v.n 	 ]dv-nZ=-1n[J l- (- )T v n - Hciv - lnZ= -1nr \-' 1+co RT an i '-' J v 	 RT
b i 4. (ND /,ani)

ln[v
 + b(1-J)	 Dbiv,___ ] 	 ,	 , =

v-b 	 2-s/2 	 v+b(1 +V2) v` +2bv-b 2

-11)[ 
 P(

Y
-b)

]+
 bi

 ( 
Pv

 1) + 
(anD / an i )

 ln[ 
v + b(1- ../f) , ] 	 (A-1-9)RT 	 b RT 	 2.,rf 	 v+bo,v2 )



(1)a
bD

RT
a (v)

RT = 13– Q

(A-2-2)

(A-2-3)

APPENDIX A-2

Derivation of the Fugacity Coefficient for the Density Dependent Mixing Rule

For the development of the density dependent mixing rule we consider the expression:

—
a 

= —
a (1) 

F + —
a (v) 

(1– F)	 (A-2-1)
RT RT	 RT

where,

For the density dependent interpolation function F we consider the expression:
rb	 v – b

F= 	  1 F 	
v+(r–l)b	 v+(r–l)b

(A-2-4)

Since we consider multicomponent mixtures r should be composition dependent and

quadratic in composition:

r = EEx i xirii	 (A-2-5)
i j

For b we use the simple linear mixing rule (equation 2-21) and Q and D are given by

equations 2-50 and 2-51 respectively with the combining rule given by equation 2-47.

The volume roots of the cubic EoS are given by solving the expression:

v4 + v 3 [rb 
RT

]+ v2 [b 2 ( r – 4)– 
RT

(rb+Q)]+

v[b 3 (4 – 3r) –
RT 

b[(2r 1)b Drb – 2Q]]+

[(r –1)b 4
 – RT b

2 (rDb – rb + Q)] = 0	 (A-2-6)

For the compositional derivatives we have:
ab ,

.= 0
an d

1 an2 r – 2Ex-r.
n ani	 J

(A-2-7)

(A-2-8)
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1 an2 Q 	bi + b i Vaiaj

n an ;

=2Exj[ 2 i	
RT

	(1- kij )]	 (A-2-9)

anD=
	 +

a i	 lny °D i
(A-2-10)

an i biRT 
	

C

Besides,

2n r 
(nb)n2

2	+ n2 (b 	 Y-Q) 	- nb
(A-2-11)

y. -F- (
n	 ,

,

r 
- 1)(nb)	 v + (

n2	
1)(nb)

n 	 - n2r

where, v denotes the total volume of the system. So, we get for the compositional

derivative of the energy parameter:

an2a 
= 

anD 
nbF + nD 

anb 
F +

ani	 ani	 ani

[Anb + r anb ][v + (r 1)nb] mb[Anb + (r 1) 
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]
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[Anb(v - nb) + r anb v]
n2 (b Q)	 an 
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(A-2-12)

( anD
 nb + nD anb nb - n anb 

+ 8n2Q )F +
ani 	 ani 	 ani	 an i

[Anb(v - nb)+ r anb
 v]
-n2 (bD - b + Q) 	 ani

n 2

an 2 r
	  2m

A=  an i (A-2-13)

anb (nb + n anb an2Q  ) 1

an, 	 ani	 an i X
1 n

(v nb) (v - nb)

1 1 -1

where:

and so we derive:

ap n 	 anb an 2 a 1 	 2n2a  [v nb]-anb-
aniRTani (v - nb) (v - nb) 2 an; RTani X RTX 2

( anD nb + nD anb nb n anb + an2 Q ) F -
ani 	 ani 	 ani 	 an; X

[Anb(v - nb) + r anb v]
. - +n2 (bD-b+ Q) 	
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2 anb n2
[

b-
Q+

bD-b+Q F](v-nb)
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where we defined: X = v 2 + 2nbv - (nb) 2

Now we will make use of the following relations:

(A-2-14)

[v + (r - 1)nb] 2 (nb) 3 (r 2 -4r +2) 2

( 2(r - 2)v - nb(r 2 -6r +10) 	 2(r -2) 	nb(r2 - 4r +2)
	  (A-2-15)

X 	 y_ + (r - Onb [v + (r -1)nb] 2

1 	 1 	-1 
X [y + (r - 1)nb] (nb) 2 (r 2 - 4r +2)
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v - nb(r - 3) 	 1 

X 	 v + (r 1)nb

1 	 1 	 1

(A-2-16)
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r 	-r	 1 v - nb(r - 3) 	 1
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_
	 + 	v 	 nb(r -3)v - v 2
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To get the fugacity we have to integrate the terms in equation A-2-18 and for that we use

the relationships:

f dv 	 1 	 v+nb(1-.5)
J ---= = , 	 114 - 	, ]	 (A-2-19)

X 2V2nb v + nb(1 + V2)
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v2 A v
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ln[
v + nb(1-Ni- ,- ) ]

In v -nb nanb / ani	 v+ nb(1+ -■/2) 
[	 ] 	 + 	 -

v -nb	 2Nr2-,

( anb n2 (bD - b+ Q)r(r - 2) 2n2 (bD - b+ Q)A. 2+ 	 , (r - 2r + 2)+
t an'	 nb 2 r 2 - 4r + 2)	 (nb)(r2 - 4r + 2r

anb n 2 (b -Q) anD	 anb 	 r(2 -r)
, +(	 nb+nD	 )[  ,	 ] 

1
 +(nb+ n arlb ai2Q)

ani (nb) 2 	ani	 arli r". - 4r + 2 nb	 an	 an

1
anb n2 (bD- b + Q)r(-----)

2(r -1)  ] 1 	X 	
[
r2	

} +ln	 {
r" - 4r + 2 nb	 [v + (r - 1)nb]

,
 ani (nb) 2 (r 2 - 4r + 2)

(r 2 -2)  n2 (bD- b + Q)A  + 	 r
( 

anD
 nb + np —

anb 
) -

2	 (nb)(r 2 - 4r + 2) 2 2(r 2 - 4r + 2)nb ani	 ani

anb

r 	1	 ani n2 (bD - b + Q)r 
(nb + n 

anb an2 Q 
)) -F. ,, { 9

2(r 2 - 4r + 2 )nb 	ani	 ani	 (nb) (r - - 4r + 2)X

[v(r -1)- nb] + 
n 2 (b - Q)

v 
	r(r - 1)n2 (bD - b+ Q)r ,

/,	 -
2i	 (r' - 4r + 2)[v + (r- 1)nb]

n2 (bD - b +Q)Ar

[v + (r -1)nb](r 2 - 4r + 2)

nanb / an i
ln[v - nb]

v -nb
an2n

2(r -1)[n2Q 
anb-- (nb) 	 + (nb)2 r(r 2)(nb)2 anD
ani	 ani 	 an
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anb/ani n(nb) n
(nb) 	 v- nb

(2 -3r)v + rnb (r -1)v - nb

(r 2 - 4r + 2)X X(r

	2 (b - Q bD)r(r -1) 	 1
	  n2 (b-Q)

(r 2 - 4r + 2) 	 [y + (r - 1)nb]
anb / ani	1)v-nb 

rn2 bD1--a. 	  (Z-1)
2 -4r+2) 	 (nb)

(A-2-32)

ln[ IT + nb(1- 'ir_ ) ]
2(r 2 - 2r +2) n2 (bD - b + Q)A, 	 v+nb(1+ ,v2) 

	/ 	 +
(r 2 -4r + 2) 2 	nb	 2.5,

ann anD 2 anb r[nb 	
2
 `< -(nb) 2 +(nb) 2

{	
an i 	ani n Q ani 1 r 2 -2 n2 [bD - b + Q]A 

I

	

2[r 2 - 4r +2linb)2 	
( 	 )

2 	 nb r2 - 4r + 2)-
1

anb

In 	
X+  ani n2 (b - Q - bD)r(r -1) 	1	 +n2 (b _ Q)

{

[v +(r - 1)nbr2 (nb) 	 (r2 -4r+2 	 [Y. +(r -1 )nb]
(22

	+	 ,
(r -1)v-nb  rn2 131.11

(r 2 - 4r + 2)X X(r' - 4r + 2)

n2 (bD - b + Q)Ar

[v + (r -1)nb](r 2 - 4r +2)

7v , 1	 aP	 1 	 P(v b) 
+Yi =	 v n ---]dv- 1nZ =-In[ -

RTRT ani 	 v

2(r -1)[n 2 Q 	 (nb) 
an2anb 	Q + (nb) 2 1 r(r 	 )(n2b) 2 anD 

an i	ani	 ani
t

(nb) 2 (r 2 - 4r + 2)
an2 r
	 2ni lni-

v + nb(1- .Nrf)
r_

2(r 2 - 2r + 2) n 2 (bD - b + Q) Orli 	1	 v+nb(1+-J2)
]

(r2 - 4r +2) 2 	nb	 n2 	 f 	 2,5

an 2
r[nb 	 '

n
 (nb) 2 +(nb) 2 ND n2 Q anb ]

{	
a 

	(
ni	 ani	 ani	 r2 -2

) n
2 [bD - b +Q],4  ,

	

2[r 2 - 4r +2](nb) 2 	2	 nb r 2 - 4r + 2)-
1 I

X 	
+ 

anb / ani 
 (Z1) + 	

n2 (bD- b + Q)Ar 
In 	 (A-2-31)

[v + (r - 1)nb] 2 	 b 	 [v + (r - 1)nb](r 2 - 4r + 2)

Note that we have used the relationship:
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(A-2-30)

since,



-r(r -1)n2 [b- Q - H]X - [(2 - 3r)v + mb]n 2 (b - Q){v +(r -1)nb]-

[(r -1)v - nb]rn 2 bD[v + (r - 1)nb] . n2 (b _Q){v2(-r2 + 4r _ 2) +

vnb[r 2 - 4r + 2]} + n2 bD{vnb[-r(r 2 - 4r +2)]} 	 (A-2-33)

So we have:

anb / ani ,n(nb) n2 (b - Q - bD)r(r -1) 	 1 	2
	1	 n (b - Q)

(nb) 	 v- nb 	 (r2 -4r + 2) 	 [y+ (r - enb]

(2 - 3r)v+mb (r -1)v-nb 	 2	 anb / an i ( n(nb) m bD1 = 	 1 	 +
(r 2 -4r +2)X X(r 2 - 4r +2) 	 (nb) 	 v -nb

1 	 [n 2	 2[n (b - Q)v(nb - v) - m bDnbvn 	 (A-2-34)

and,

Py _ 1= t  (nb)n -

RT 	 v - nb

1	 [rb2Dvn3 - (b - Q)bvn 3 + (b - Q)n2 v2 ] ) 1 	 (A-2-35)
[v + (r - 1)nb]X 	 n

The fugacity expression on a molar basis is:

(bD - b + Q)(1 
an2r -2r)r

	P(v-b) anb/ani 	 n ani
inch . -ln[]+ 	 (Z 1) +

	

RT 	 b [v + (r - 1)nb](r 2 - 4r + 2)
2anb 	1 an Q 	2	 2 anD 

2(r -1)[Q 	 b(	 ) + b ] r(r 2)b
ani 	 n ani 	 ani

+{ 	 2b2 (r -4r + 2)

v+b(1-)
ln[ 	 r-- i

2(r 2 -2r + 2) (bD - b + Q) 1 an2 r 	 v+b(1+,\/2) 
( 	  201 	 +

(r 2 -4r+2) 2 	b	 n ani 	 2..\/2-

, ,, 2 n
1  an k., 	 2	 2 anD 	anb 

-r[b( 	 ) b + b 	 Q	 ]	 ,,
n ani 	 ani 	 ani 	 r- - 	 [bD - b +Q] 

1 	

	

2[r 2	
± ( 	 )

2[r - 4r + 2] .13 2 	2	 b(r - -4r +2) 2

1 an r 	 v +2bv-b2	 22
	-2r) In 	 (A-2-36)

( n ani 	 [v +(r -1)b]2
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APPENDIX A-3

Derivation of the Excess Gibbs Energy and the Activity Coefficient for the 1FGE
Model

The total Gibbs energy of mixing is given by Knox et al (1984):

AGt (AG t ) ath
	= 	
kT	 kT

;	 •	 •6..E 
z

i
N

i	 ln
z

i
N

i
 /2 

+1,ENF(cii
	 Ni
+ln 	i  ) E  ziNi ii 	(A-3-1)

i 2	 I	 i j i kT	 z iN i / 2	 i 2kT

where the total number of interactions for the mixture are:

z•N •

	

I = E  ' '	 (A-3-2)
i	 2

An important distinction with the two fluid theory is that the i-j pair interactions are

assigned half to species i and half to species j and so:

	

N I•j = N ii	 (A-3-3)

So we get the total number of interactions of species-i molecules:

z i N i 	.r.,.x.r
= 2_, IN ii	 (A-3-4)

2	 i

with a total area fraction:

a i =
I

Besides, the local composition of molecules j around a molecule i is:

N ii
x.• = 	

11 	z i Ni / 2

z i Ni /2
(A-3-5)

(A-3-6)

The local compositions will take values so that the partition function will be maximized

and they will be solved as [Knox et al (1984)]:

N••N
	 .11

••	 —(2cij -6ii - 6ij)

N	
= exp( 	

kT	
)	 (A-3-7)

ii N ii 

where 8 1.i is the interaction energy for the pair i-j.
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Pik	 rk	 8 ik= 	k—
Ni EriNi Ni Nk

Besides,

a4 i /aN k  = 8 ik
4i 	 Ni Nk

(A-3-23)

(A-3 -24)

So we have:

	

aNk 	 Xk i	 Ni Nk

+( jK 	

z: 
"
x: 

+ 
z:
' Sik )1n	 + 

ziNi 	 aNk a(p i aNk 
 )]=2 	 2 	 2 	 (pi 	 2 	 4i 	 (Pi

Nicp k 	 p. 	 z. 	 4. 	 z. 
1n --(Pk + E[8jk 	 +xi

Xk	 Nk	 2	 2 	 9 i 	2	

.
In

(Pi
ziNi 9k 4k

+ 	 (	 )]=1n (Pk  + 1— (D( +Ix i ( 12L—L)lnL&
2 Nk Nk	 xk	 xk	 2 	 2 	(Pi	 2 	(Pk

ziNi /2
( (Pk _ 1)  i 

8'(
9'1(	 Nk

But we have:

EziNi /2
zk / 2 	 Zk

Nk

	

=	 zkNk / 2  =2
ziNi / 2

(A-3-25)

(A-3-26)

and so we get:

In y a =1n !lit' +1 (f)k

	

xk	 xk

2 	 (pk	 i	 2 	 2 	 9 i 	k	 2

Combining equations A-3-20 and A-3-27 we get:

lnyk 	 +1—DL+Exi ( 11L--zi)10L+(21-(	 xkk	 )Zk
xk	 Xk	 2 	 2 	 (p i 	al,	 (Pk 2

(A-3-27)

(A-3-28)

ath = a( AG t / kT) ath
lnxk =ln (Pk +ENi[ 8ik — (Pkk



lny l =
r1     

APPENDIX A-4

Derivation of Infinite Dilution Activity Coefficients with the UNIFAC Model

i,j,1: species, k,m: groups
ri	 ri

Erix i	Erixj
j lny i =1—

r 1
	+ln  ri 	5qi (1	 j 	 + ln	 qi. )+q,(1 ln	 )

Erixi	 Eri x i 	qi	 qi 	E q jx j
J	 J	 Eqixi	 Eq i xj	 i

J	 J
EGmitmk

— E(EGklXI my,
k 1 	 Sk1X1

EG mit mk

Gki ln  m 	)
Eski x1

(A-4-1)

1— 	 +ln rl 	 5g1(1	
rl xl + r2 x2 	+ r2 x2

+ln 	 )
roc ' + r2x 2 	rixl + r2 x2 	ql	 q1 

g lxl + q2x2	 glxl + q 2 x2

IG m ic rnk

+q 1 (1 — In 	 ) EaGkixi i- Gk2X2] m
q i x i + q2x2	 k 	 Skixi +sk2x2

EG mi t mk

-Gki
	

m
	

(A-4-2)
Sklxl msk2x2

lny 2 =
r2	 r2

r2 	r2	 rixi + r2 x 2 	rixi + r2 x2
1 	 + ln 	  5q2 (1 	 + ln 	 )

r 1 x 1 + r2x2	 rixi 4- r2 x2 	q2	 q2 
q i x i + q 2 x 2 	qixi + q 2 x2

EGm2tmk

+q 2 (1-1n 	q2	 ) ECEGkoci +Gk2X2J
S81 x 1 +82x2X2 	 k 	 k1

m

X 1 S k2 X 2
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r2
 +ln

 r2
 )+q1(1-1n-91)

q l 	 qi	 q2
q2 	 q2

G mi t mk 

(A-4-4)
sk2

r2 	r2

)+q 2 (1-1n c )
q2 	 q2 	 q1
q1 	 q1
EG m2 T mk 

EGmfrmk

m— G*2 In ,
sk1X1 Sk2X2

(A-4-3)
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lny ic° =1—	 + In	 5q1(1—
x	 r2	 r2
x 2 =1

EGmlImk

— EaGk2] m	  Gkl In
k 	 Sk2

liry c° =1--r2- +l11 11 — 5g2(1 —
x =%0
x: =1

EGm2inik
(A-4-5)

1 H2O

— EGGId] m 	Gk2 In m	
k 	 Ski 	 skl

where, G ki = v (kuQ k ; t ink = exp(—a mk / T); Ski = IG mit mk

I. Application to the system Methanol(1)-Water(2) (25°C).

1 CH3 1 OH

From Table D.1 from Smith and van Ness (1986) we get the k, rk, and q k values:

Table A-4-1 Group parameters for methanol-water

k Rk Qk
(v 1)
k

(2)vk

CH3 1 0.9011 0.8480 1 0

OH 15 1.0000 1.2000 1 0

H2O 17 0.9200 1.4000 0 1

From the values in Table A-4-1 we calculate, r 1 =1.9011, q 1 =2.048 and r2=0.92, q2=1.40

From Table D.2 from Smith and van Ness (1986) we get the a mk values in K-1:
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lny 1 =1

2.5735	 2.5735
2.5735

+ In 
2.5735

5(2.336)(1 1.9011	 1.9011
1.9011 1.9011

+ln	 )
2.336	 2.336

2.048	 2.048

+2.336(1-1n

(0.848)(1.0)
+0.8481n

2.336)
	0.848

 (0.848)(1.0) + (1.488)(0.9142)
2.048	 1.5582

+ (1.488)(0.9142) 	
1.2 

(0.848)(0.0366) + (1.488)(0.5759)

+1.4881n

1.5582
(0.848)(0.2023) + (1.0)(1.488)

= 1.0309

1.231

(A-4-8)
1.077

1.9011 1.9011

°°lny
2

=1
1.9011

+ 
In 1.9011

5(2.048)(1 2.5735 ± in 2.5735 )
9.5735 2.5735 2.048 2.048

2.336 2.336

+2.048(1- In 
2.048)

 0.848
 (0.848)(1) +(1.2)(0.5918)

2.336	 2.208

+0.8481n 
(0.848)(1.0) + (1.2)(0.5918)

 +1.21n 
 (0.848)(0.0366) + (1.2)(1) 

2.208	 0.888

-1.488 
(0.848)(0.2023) + (1.2)(0.7545)

= 0.9502
1.6596

(A-4-9)

III. Application to the system (1) Acetone(1 CH3CO 1 CH 3)-(2) Water(1 H2O) (25°C).

Table A-4-7 Group parameters for acetone-water

k Rk Qk

CH3 1 0.9011 0.8480 1 0

H2O 17 0.9200 1.4000 0 1

CH3 CO 19 1.6724 1.4880 1 0



k i=1	 i=2

0.848-2.2080

0.000-0.3152

1.488-1.6596

0.000-0.5118

1.400-1.400

0.000-2.6963

1

17

19

(A-4-10)

+2.336(1-1n 
2.336 ) +0.8481n(0.848)(1.0) + (1.488)(0.9142)

1.40	 0.5118

-1.4 
(0.848)(0.012) + (1.488)(0.205) 

1.4

+1.4881n 
 (0.848)(0.2023) + (1.488)(1.0) 

= 2.4399
2.6963

0.92	 0.92
0.92	 0.92	 2.5735	 2.5735	lny..T =1- 	+ ln	  5(1.4)(1	 + ln	 )

4 	2.5735	 2.5735	 1.4	 1.4

2.336	 2.336

From the values in Table A-4-7 we get: r1=2.5735, q1=2.336 and r 2=0.92, q2=1.40

Table A-4-8 aii-Tii parameters for acetone-water

1 17 19

1 0/1 1318.0/0.012 476.4/0.2023

17 300.0/0.3656 0/1 -195.4/1.9259

19 26.76/0.9142 472.5/0.205 0/1

Table A-4-9 Gk;-ski parameters for acetone-water

2.5735	 2.5735
co 	2.5735 

+ I
n 2.5735	 0.92	 0.	lny =1	 0.925(2.336)(1 	 + In	 )

0.92	 0.92	 2.336	 2.336

1.40	 1.40
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-1.488 
(1.4)(1.9259)

= 1.9962
1.6596

(A-4-11)

+1.4(1-1n 
 1.4 )r4848 (1.4)(0.3656)

+1.41n
(1.4)(1.0) 

2.336	 2.208	 0.3152
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APPENDIX A-5

Results with the 1FGE/Huron-Vidal Mixing Rule
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Mole fraction of 2-Propanol
Figure A-5-2 Vapor-liquid equilibria predictions for 2propanol-water



Mole fraction of Acetone

Figure A-5-4 Vapor-liquid equilibria predictions for acetone-water



Mole fraction of Methanol
Figure A-5-6 Vapor-liquid equilibria predictions for methanol-benzene



APPENDIX B

Results for the Hydrogen Containing Systems
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Table B-1 Pure component area, and volume parameters and

acentric factor
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Table B-2 Mixture size and energy parameters
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Table B-3 AAD(%) in pessure and vapor phase composition for binaries
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Table B-3 (continued)
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Table B-3 (continued)
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Table B-4 (continued)
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Table B-5 (continued)
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Table B-6 (continued)
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Table B-7 AAD(%) in pressure and vapor phase composition for I-1 2-CH4-C2H4
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0.2	 0.4	 0.6	 0.8	 1.0
H2 mole fraction

Figure B-2. Vapor-liquid equilibria for the system hydrogen-carbon monoxide

0.0



0.0	 0.2	 0.4	 0.6	 0.8	 1.0

CH4 mole fraction
Figure B-4. Vapor-liquid equilibria for the system methane-ethylene
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0.0 	 0.2 	 0.4 	 0.6 	 U. 	 1.0
CO mole fraction

Figure B -6. Vapor-liquid equilibria for the system carbon monoxide-methane



0.0	 0.2	 0.4	 0.6	 0.8	 1.0
H2 mole fraction

Figure B-8. Vapor-liquid equilibria for the system hydrogen-toluene



H2 mole fraction

Figure B-10. Vapor-liquid equilibria for the system hydrogen-propane
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11G

Figure B-11 Vapor-liquid equilibria for the ternary system hydrogen-carbon monoxide-
methane at (a) 68.45 bars, 163.17 K, and (b) 50 bars, 120 K.



Figure B-12 Vapor-liquid equilibria for the ternary system hydrogen-ethylene-ethane at
(a) 20.26 bars, 148.15 K, and (b) 81.04 bars, 223.15 K.
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Figure B-13 Vapor-liquid equilibria for the ternary system hydrogen-ethylene-methane at
(a) 20.26 bars, 123.15 K, and (b) 60.78 bars, 198.15 K.



APPENDIX C

Results for Refrigerant Systems
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Table C-1 Pure component parameters

Component Tc (K) Pc (bars) K 1 K2

Rll 471.20 44.09 0.18749 0.03708

R113 487.50 34.11 0.2515 0.05596

R123 456.86 36.65 0.2816 -0.11494 0.0912661

R13 301.90 38.77 01743 -0.07588 -1.775022

R134a 374.26 40.68 0.3261 -0.01030 0.179469

R14 227.50 37.42 0.1798 0.02136

R152a 386.66 44.95 0.2680 0.08453 1.4804546

R22 369.30 49.83 0.2191 -0.07449 -1.24218

R23 299.06 48.41 0.2640 -0.15131 -1.843714

Propane 370.02 42.61 0.1514 -0.0653 -0.9023922

Propylene 364.85 46.05 0.1480 -0.0036 -0.0226415

nButane 425.16 37.97 0.2010 0.03443 0.6767

CO2 304.21 73.82 0.2250 0.04285

r q

2.89 2.60

3.87 3.48

3.47 3.06

2.20 2.10

2.48 2.38

1.78 1.82

2.14 2.08

2.03 1.87

1.63 1.61

2.48 2.24

2.25 2.02

3.15 2.78

1.30 1.12

1C3

-1.236489

0.3753762

-0.7222333

0.2994262

0.1812597

0.2110679

0.1365813

-0.1959669

0.461
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Table C-2 AAD(%) in pressure and vapor phase composition of component (1) for the
3PM model
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Table C-4 AAD(%) in pressure and vapor phase composition of component (1) for the
2PMb model.



Table C-4 (continued)
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Table C-6. Pii values for refrigerant systems.
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Table C-8 AAD(%) in pressure and vapor phase composition of component (1) for the
111or rnnriel
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Table C-9 AAD(%) in pressure and vapor phase composition of component (1) for the
1 DTI( rt, nr14.1 ‘Ir.;+i, +1-ta vs aro rrtswhar 1 fl 144,1 ra+ n ,-,;-.., ,1,2. 4,...,-„,-...,,+„..,. Tic
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Table C-10 AAD(%) in pressure and vapor phase composition of component (1) for vdW
with the naranieter k fitted at a single temnerstnre T*



0.0	 0.2	 0.4	 0.6	 0.8	 1.0
Mole fraction of Propylene

Figure C-3 Phase equilibria predictions for the system Propylene-R134a
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Liquid 273 K
Vapor

Liquid 255 K
Vapor

Liquid 225 K
Vapor

Liquid 200 K
Vapor

azzaz-Gai-4;@,,G-G

1.0
i	 i	 1	 I

0.0	 0.2	 0.4	 0.6	 0.8

Mole fraction of R23
Figure C-4 Phase equilibria predictions for the system R23-R13

6

cr

1.00.80.0	 0.2	 0.4	 0.6
Mole fraction of Propylene

Figure C-5 Phase equilibria predictions for the system Propylene-R22



Figure C-7 Phase equilibria predictions of the system CO2-R22

149



150



Mole fraction of R13
Figure C-10 Phase equilibrium predictions for the system R13-R113
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Mole fraction of R22

Figure C-12 Phase equilibria predictions for the system R22-R11
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APPENDIX D

COMPUTER CODES

D-1	 Infinite Dilution Activity Coefficient Calculation with the UNIFAC Model

D-2	 Computer Code for Vapor-Liquid Equilibria Calculation

D-3	 Sample Program for R134a-Propane
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APPENDIX D-1

Infinite Dilution Activity Coefficient Calculation with the UNIFAC Model

PROGRAM INF
C CALCULATE INFINITE DILUTION ACTIVITY COEFFICIENTS WITH UNIFAC
C EACH GROUP GETS AN ID (K) FROM TABLE D.1. SPECIES ARE DENOTED
C WITH INDEX I. RK AND QK ARE THE VOLUME AND SURFACE GROUP PARA-
C METERS. R AND Q REFER TO SPECIES. G, S AND TAU HAVE DOUBLE INDEX
C WITH G(M,I) OR G(K,I), S(K,I) AND TAU(M,K) WHERE M REFERS TO
C GROUPS. A(M,K) IS THE ENERGY INTERACTION PARAMETER BETWEEN GROUPS
C N(K,I) DENOTES THE NUMBER OF GROUPS K IN SPECIES I. NI IS INDEX
C EQUAL TO 1 WHEN THE GROUP EXISTS FOR THE MIXTURE. APPENDIX D
C SMITH AND VAN NESS

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (NG=51,RR=83.1439)
DIMENSION RK(NG),QK(NG),R(2),Q(2),G(NG,2),S(NG,2),

TAU(NG,NG),A(NG,NG),NC(NG,2),NI(NG,2),GAMMA(2),
TC(2),PC(2),BB(2)

C	 DECLARE VARIABLES
INTEGER ITMAX, N
REAL ERRREL
PARAMETER (N=2)

C
INTEGER K, NOUT
REAL FNORM, X(N), XGUESS(N)
EXTERNAL FCN, LSJAC, NEQNJ, UMACH

C	 SET VALUES OF INITIAL GUESS
C 	 XGUESS = ( 4.0 4.0 4.0 )
C

COMMON/GA/GAMMA
COMMON/PA/BB
DATA XGUESS/4.,-4./

C
ERRREL = 0.0001
ITMAX = 100

C
C CRITICAL PARAMETERS
C 	 TC(1)=508.1
C 	 TC(1)=512.58

TC(2)=647.286
C 	 TC(2)=536.55

TC(1)=513.92
C 	 PC(1)=46.96
C 	 PC(1)=80.9579

PC(2)=220.8975
C 	 PC(2)=54.72

PC(1)=61.48
C CALCULATE B1,B2 FROM PRSV

DO 14 I=1,2
BB(I)=0.077796*RR*TC(1)/PC(I)

14	 CONTINUE
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C GIVE DATA FROM TABLE DI AND D2.
RK(1)=0.9011
RK(2)=0.6744
RK(15)=1,
RK(16)-1.4311
RK(17)=0.92
RK(19)=1.6724
RK(51)=2.87

QK(1)=0.848
QK(2)=0.540
QK(15)=1.2
QK(16)=1.432
QK(17)=I.4
QK(19)=1.488
QK(51)=2.41

TAU(1,1)=1.
A(1,2)=0.
A(1,15)=986.5
A(1,16)=697.2
A(1,17)=1318.
A(1,19)=476.4
A(1,51)=24.90

A(2,1)=0.
TAU(2,2)=1.
A(2,15)=986.5
A(2,16)=697.2
A(2,17)=1318.
A(2,19)=476.4
A(2,51)=24.90

A(15,1)=156.4
A(15,2)=156.4
TAU(15,15)=1,
A(15,16)=-137.1
A(15,17)=353.5
A(15,19)=84.
A(15,51)=-98.12

A(16,1)=16.51
A(16,2)=16.51
A(16,15)=249.1
TAU(16,16)=1.
A(16,17)=-181.
A(16,19)=23.39
A(16,51)=-139.4

A(17,1)=300.
A(17,2)=300.
A(17,15)=-229.1
A(17,16)=289.6
TAU(17,17)=1.
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A(17,19)=-195.4
A(17,51)=353.7

A(19,1)=26.76
A(19,2)=26.76
A(19,15)=164.5
A(19,16)=108.7
A(19,17)=472.5
TAU(19,19)=1.
A(19,51)=-354.6

A(51,1)=36.7
A(51,2)=36.7
A(51,15)=742.1
A(51,16)=649.1
A(51,17)=826.7
A(51,19)=552.1
TAU(51,51)=1.

C DEFINE SPECIES
NC(1,1)=1
NC(2,1)=1
NC(15,1)=1

C 	 NC(1,2)=1
C 	 NC(16,2)=1

NC(17,2)=1
C NC(15,1)=1

NI(1,1)=1
NI(2,1)=1
NI(15,1)=1
NI(17,1)=1
N1(1,2)=1
NI(2,2)=1
NI(15,2)=1
NI(17,2)=1
T=298.15

C CALCULATE R AND Q FOR EACH SPECIES
DO 1 1=1,2
CC=O.
DD=O.
DO 2 K=1,NG
C-NC(K,I)*RK(K)
D=NC(K,I)*QK(K)
CC=CC+C
DD=DD+D

2

	

	 CONTINUE
R(I)=CC
Q(I)=DD

1	 CONTINUE
C CALCULATE G (D.18)

DO 3 1=1,2
DO 4 M=1,NG
G(M,I)=NC(M,I)*QK(M)

4	 CONTINUE
3	 CONTINUE
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C CALCULATE TAU D.22
DO 5 K=1,NG
DO 6 M=1,NG
IF (A(K,M).NE.0) THEN
TAU(K,M)=EXP(-A(K,M)/T)
ENDIF

6	 CONTINUE
5	 CONTINUE

C CALCULATE S(K,I) D.20
DO 7 1=1,2
DO 8 K=1,NG
FF=0.
DO 9 M=1,NG
AF=G(M,I)*TAU(M,K)*NI(K,I)
FF=FF+AF

9	 CONTINUE
S(K,I)=FF

8	 CONTINUE
7	 CONTINUE

DO 12 1=1,2
BLL=0.
IF (I.EQ.1) THEN
J=2.
ELSE
J=1
ENDIF
DO 10 K=1,NG
IF (NI(K,I).EQ.1) THEN
HH=0.
DO 11 M=1,NG
H=G(M,I)*TAU(M,K)
HH=HH+H

11

	

	 CONTINUE
AL=HH/S(K,J)
BL=G(K,J)*AL-G(K,I)*LOG(AL)
BLL=BLL+BL
ENDIF

10	 CONTINUE
GAMMA(I)=1.-R(I)/R(J)+LOG(R(1)/R(J))-5.*Q(I)*(1.-R(I)*Q(J)/R(J)

@ /Q(I)+LOG(R(I)*Q(J)/R(J)/Q(I)))+Q(I)*(1.-LOG(Q(I)/Q(J)))-BLL
12	 CONTINUE

WRITE(*,*) GAMMA
C	 GAMMA(1)=2.4399
C	 GAMMA(2)=1.9962
C	 GAMMA(1)=1.0309
C	 GAMMA(2)=.9502
C	 GAMMA(1)=1.1071
C	 GAMMA(2)=.7123
C	 FIND THE SOLUTION

CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)
WRITE(*,*) X
END

C	 USER-SUPPLIED SUBROUTINE
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SUBROUTINE FCN (X, F, N)
INTEGER N
REAL X(N), F(N)
REAL*8 GAMMA(2),BB(2)
COMMON/GA/GAMMA
COMMON/PA/BB

C
REAL EXP, SIN
INTRINSIC EXP, SIN

C
F(1) = GAMMA(1)-X(1)*BB(1)/BB(2)*EXP(-.1*X(1))-X(2)
F(2) GAMMA(2)-X(2)*BB(2)/BB (1 )*EXP(-. 1 *X(2))-X(1)
RETURN
END

C	 USER-SUPPLIED SUBROUTINE TO
C	 COMPUTE JACOBIAN

SUBROUTINE LSJAC (N, X, FJAC)
INTEGER N
REAL X(N), FJAC(N,N)

C
REAL COS, EXP
REAL*8 BB(2)
INTRINSIC COS, EXP
COMMON/PA/BB

C
FJAC(1,1)= -BB(1)BB(2)*EXP(-.1 *X(1))+

X(1)*0.1*BB(1)/BB(2)*EXP(-.1*X(1))
FJAC(1,2) = -1.
FJAC(2,1) = -1.
FJAC(2,2) = -BB(2)/BB(1)*EXP(-. 1 *X(2))+

X(2)*0 . 1 *BB(2)/BB( 1 )*EXP(- . 1 *X(2))
RETURN
END
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APPENDIX D-2

Computer Code for Vapor-Liquid Equilibria Calculation

PROGRAM G702
C PRESSURE IN BARS AND MOLAR VOLUME IN CC/MOLE,AE IS IN UNITS BARS*CC/MOLE
C CUBIC: 1 FOR PRSV-WONG-SANDLER, 3 FOR SRK
C 4 & 5 FOR PANAGIOTOPOULOS PRSV
C	 11 FOR MHV 1 (TOCHIGI)
C ACT: 1 FOR NRTL, 2 FOR VANLAAR 3 FOR UNIQUAC 5 FOR WILSON 6 FOR T-S-WILSON
C ROT: 1 BUBBLE P, 2 BUBBLE T, 3 DEW P, 4 DEW T
C IN THE INIT.TXT FILE THE NUMBERS ARE: CUBIC,ACT,MXACO,T,P,ROT
C DY=SUM(ABS(DY))/ND, PSD=SUM(DP**2.), TOCH=SUM(ABS(DP)/PEX),
C DPH-V=SQRT((SUM(DP* *2.))/ND), DYH-V=SQRT((SUM(DY**2.))/ND)
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (R = 83.1439, Z=10,KKK=8)
PARAMETER(NDATA=1000,LINIT=9)
DIMENSION

@ X(KKK,NDATA),X 1(KKK),Y(KKK,NDATA),
@ BINARY(KKK,KKK),CROSS(KKK,KKK),
@ XEX(KKK,NDATA),PEX(KKK,NDATA),YEX(KKK,NDATA),
@ TEX(KKK,NDATA),DY(KKK,NDATA),DX(KKK,NDATA),
@ DP(KKK,NDATA),PSP(NDATA),YSP(NDATA),Y5(NDATA),Y6(NDATA)
@ ,XSP(NDATA),DTEM(KKK,NDATA)

CHARACTER*16 SYM(KKK)
CHARACTER* 13 FNAME1,FNAME2,FNAME3,FNAME4

COMMON/XY/X,Y
COMMON/EQU/ROT
COMMON/KKJKK
COMMON/ICO/ICOUNT

OPEN (LINIT,FILE=INIT.TXT,STATUS='OLD')

READ(L1NIT,'(A13)') FNA IviE1
READ(LINIT,'(A 13)') FNAME2
READ(LINIT,'(A 13)') FNAME3
READ(LINIT,'(A 13)') FNAME4

CALL MXINP (SYM,T,P,BINARY)

IF ((ROT.EQ.1).0R.(ROT.EQ.2).0R.(ROT.EQ.3).OR.(ROT.EQ.4)) THEN
OPEN(10,FILE=FNAME 1,STATUS='UNKNOWN')
OPEN(11,FILE=FNAME2,STATUS=JOLD')
°PEN(1 9,FILE=FNAME3,STATUS=NEW)
OPEN(20,FILE=FNAME4,STATUS&NEW')
ENDIF

IF (KK.EQ.2) THEN
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IF (ROT.EQ.1.) THEN
WRITE (19,*) ' XEX PCALC PEXP YCALC YEXP
DY DP'
ENDIF
IF (ROT.EQ.2.) THEN
WRITE (19,*) ' XEX TCALC TEXP YCALC YEXP
DY DTEM'
ENDIF
IF (ROT.EQ.3.) THEN
WRITE (19,*) ' YEX PCALC PEXP XCALC XEXP
DX DP'
ENDIF
IF (ROT.EQ.4.) THEN
WRITE (19,*) ' YEX TCALC TEXP XCALC XEXP
DX DTEM'
ENDIF
ENDIF
IF (KK.EQ.3) THEN
IF (ROT.EQ.1.) THEN
WRITE (19, *) ' XEX1 PCALC PEXP1 YCALC1 YEXP1
DY1	 DP1'
WRITE (20,*) XEX2 PCALC PEXP2 YCALC2 YEXP2
DY2 DP2'
ENDIF
IF (ROT.EQ.2.) THEN
WRITE (19, *) XEX1 TCALC1 TEXP1 YCALC1 YEXP1
DY1 DTEM 1 1

WRITE (20,*) ' XEX2 TCALC2 TEXP2 YCALC2 YEXP2
DY2 DTEM2'
ENDIF
IF (ROT.EQ.3.) THEN
WRITE (19, *) YEX I PCALC PEXP1 XCAL Cl XEXP1
DX1	 DPI'
WRITE (20,*) ' YEX2 PCALC PEXP2 XCALC2 XEXP2
DX2 DP2'
ENDIF
IF (ROT.EQ.4.) THEN
WRITE (19, *) ' YEX1 TCALC TEXP1 XCALC1 XEXP1
DX1	 TP1'
WRITE (20,*) ' YEX2 TCALC TEXP2 XCALC2 XEXP2
DX2 TP2'
ENDIF
ENDIF
KDATA=1

4	 READ(10,1002,END=3) PEX(1,KDATA),XEX(1,KDATA),YEX(1,KDATA)
IF (KK.EQ.3) THEN
READ(11,1002,END=3) PEX(2,KDATA),XEX(2,KDATA),YEX(2,KDA TA)
ENDIF
KDATA=KDATA+1
GOTO 4

1002	 FORMAT(3 F10.4)
3	 KDATA=KDATA-1

IF ((ROT.EQ.2.).0R.(ROT.EQ.4)) THEN
TEX(1,1)=PEX(1,1)
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IF (KK.EQ.3) THEN
TEX(2,1)=PEX(2,1)
ENDIF
ENDIF

IF RROT.EQ.1.).0R.(ROT.EQ.2.)) THEN
IF (KK.EQ.2) THEN
X(1,1)=XEX(1,1)
X(2,1)=1.-XEX(1,1)
Y(1,0)=X(1,1)
Y(2,0)=X(2,1)
ELSE
IF (KK.EQ.3) THEN
X(1,1)=XEX(1,1)
X(2,1)=XEX(2,1)
X(3,1)=1.-XEX(1,1)-XEX(2,1)
Y(1,0)=X(1,1)
Y(2,0)=X(2,1)
Y(3,0)=X(3,1)
ELSE
ENDIF
ENDIF
ELSE
ENDIF

IF ((ROT.EQ.3.).0R.(ROT.EQ.4.)) THEN
IF (KK.EQ.2) THEN
Y(1,1)=YEX(1,1)
Y(2,1)=1.-YEX(1,1)
X(1,0)=Y(1,1)
X(2,0)=Y(2,1)
ELSE
IF (KK.EQ.3) THEN
Y(1,1)=YEX(1,1)
Y(2,1)=YEX(2,1)
Y(3,1)-1.-YEX(1,1)-YEX(2,1)
X(1,0)=Y(1,1)
X(2,0)=Y(2,1)
X(3,0)=Y(3,1)
ELSE
ENDIF
ENDIF
ELSE
ENDIF

ICOUNT=1.
CALL MXEOSPAR (T,X1,BINARY)
IF (ROT.EQ.1.) THEN
CALL MXBUBBLE(T,P,BINARY,CROSS,VL,VG)
ENDIF
IF (ROT.EQ.2.) THEN
CALL MXBUBBLET(T,P,BINARY,CROSS,VL,VG)
ENDIF
IF (ROT.EQ.3.) THEN
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DTEM(2,1)=T-TEX(2,1)-273.15
WRITE (20,1004) Y(2,1),T,TEX(2,1)+273.15,X(2,1),
XEX(2,1),DX(2,1),DTEM(2,1)
ENDIF
ENDIF
ENDIF
ENDIF

DO 1110 ICOUNT=2,KDATA
C	 DO 1110 ICOUNT=2,500

IF OROT.EQ.2.).0R.(ROT.EQ.4)) THEN
TEX(1,ICOUNT)=PEX(1,ICOUNT)
IF (KK.EQ.3) THEN
TEX(2,ICOUNT)=PEX(2,ICOUNT)
ENDIF
ENDIF

IF ((ROT.EQ.1.).0R.(ROT.EQ.2.)) THEN
X(1,ICOUNT)=XEX(1,ICO'UNT)
X(2,ICOUNT)=1.-X(1,ICOUNT)
IF (KK.EQ.3) THEN
X(2,ICOUNT)=XEX(2,ICOUNT)
X(3,ICOUNT)=1.-X(1,ICOUNT)-X(2,1COUNT)
ENDIF
ENDIF

C 	 DO 124 1=2,500
C 	 X(1,1)=I/500.
C 	 X(2,I)=1.-X(1,I)
C 124	 CONTINUE

IF aROT.EQ.3.).0R.(ROT.EQ.4.)) THEN
Y(1,I COUNT)=YEX(1,ICOUNT)
Y(2,ICOUNT)-1.-Y(1,ICOUNT)
IF (KK.EQ.3) THEN
Y(2,ICOUNT)=YEX(2,ICOUNT)
Y(3,ICOUNT)=1.-Y(1,ICOUNT)-Y(2,ICOUNT)
ENDIF
ENDIF

IF (ROT.EQ.1.) THEN
CALL MXBUBBLEP(T,P,BINARY,CROSS,VL,VG)
ENDIF
IF (ROT.EQ.2.) THEN
CALL MXBUBBLET(T,P,BINARY,CROSS,VL,VG)
ENDIF
IF (ROT.EQ.3.) THEN
CALL MXDEWP(T,P,BINARY,CROSS,VL,VG)
ENDIF
IF (ROT.EQ.4.) THEN
CALL MXDEWT(T,P,BTNARY,CROSS,VL,VG)
ENDIF

IF ((ROT.EQ.1.).0R.(ROT.EQ.2.)) THEN
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DY(1,ICOUNT)=Y(1,ICOUNT)-YEX(1,ICOUNT)
IF (KK.EQ.3) THEN
DY(2,ICOUNT)=Y(2,ICOUNT)-YEX(2,ICOUNT)
ENDIF
IF (ROT.EQ.1.) THEN
DP(1,ICOUNT)=P-PEX(1,ICOUNT)*0.0689473
WRITE (19,1004) X(1,ICOUNT),P,PEX(1,1COUNT)*0.0689473,
Y(1,ICO'UNT),YEX(1,1COUNT),DY(1,ICOUNT),DP(1,ICOUNT)
IF (KK.EQ.3) THEN
DP(2,ICOUNT)=P-PEX(2,ICOUNT)*0.0689473
WRITE (20,1004) X(2,1COUNT),P,PEX(2,ICOUNT)*0.0689473,
Y(2,ICOUNT),YEX(2,ICOUNT),DY(2,ICOUNT),DP(2,ICOUNT)
ENDIF
ELSE
IF (ROT.EQ.2.) THEN
DTEM(1,ICOUNT)=T-TEX(1,ICOUNT)-273.15
WRITE (19,1004) X(1,ICOUNT),T,TEX(1,ICOUNT)+273.15,Y(1,ICOUNT),
YEX(1,ICOUNT),DY(1,ICOUNT),DTEM(1,1 COUNT)
IF (KK.EQ.3) THEN
DTEM(2,ICOUNT)=T-TEX(2,ICOUNT)-273.15
WRITE (20,1004) X(2,ICOUNT),T,TEX(2,1COUNT)+273.15,Y(2,ICOUNT),
YEX(2,ICOUNT),DY(2,ICOUNT),DTEM(2,ICOUNT)
ENDIF
ENDIF
ENDIF
ENDIF

IF ((ROT.EQ.3.).0R.(ROT.EQ.4.)) THEN
DX(1,ICOUNT)=X(1,ICOUNT)-XEX(1,1 COUNT)
IF (KK.EQ.3) THEN
DX(2,ICOUNT)=X(2,ICOUNT)-XEX(2,ICOUNT)
ENDIF
IF (ROT.EQ.3.) THEN
DP(1,ICOUNT)=P-PEX(1,ICOUNT)*0.0689473
WRITE (19,1004) Y(1,ICOUNT),P,PEX(1,ICOUNT)*0.0689473,
X(1,1COUNT),XEX(1,ICOUNT),DX(1,ICOUNT),DP(1,1COUNT)
IF (KK.EQ.3) THEN
DP(2,ICOUNT)=P-PEX(2,ICOUNT)*0.0689473
WRITE (20,1004) Y(2,ICOUNT),P,PEX(2,ICOUNT)*0.0689473,
X(2,ICOUNT),XEX(2,ICOUNT),DX(2,ICOUNT),DP(2,ICOUNT)
ENDIF
ELSE
IF (ROT.EQ.4.) THEN
DTEM(1,ICOUNT)=T-TEX(1,ICOUNT)-273.15
WRITE (19,1004) Y(1,ICOUNT),T,TEX(1,ICOUNT)+273.15,X(1,ICOUNT),
XEX(1,ICOUNT),DX(1,1COUNT),DTEM(1,ICOUNT)
IF (KK.EQ.3) THEN
DTEM(2,ICOUNT)=T-TEX(2,ICOUNT)-273.15
WRITE (20,1004) Y(2,ICOUNT),T,TEX(2,ICOUNT)+273.15,X(2,ICOUNT),
XEX(2,ICOUNT),DX(2,ICOUNT),DTEM(2,1COUNT)
ENDIF
ENDIF
ENDIF
ENDIF
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ELSE
IF (ROT.EQ.4.) THEN
TS1=TS
TS5=SQRT(TS/KDATA)
WRITE(*,*) 'DX1=',DS,'TSDECH=',TS1,'TOCHIGI=',TS2,
'DT H-V=',TS5,'DX1 H-V=',DYS3
IF (KK.EQ.3) THEN
TS7=TS3
TS8=SQRT(TS3/KDATA)
WRITE(*,*) 'DX1=',DS2,'TSDECH=',TS7,'TOCHIGI=',TS4,
'DT H-V= 1 ,TS8,DX1 H-V=',DYS4
ENDIF
ENDIF
ENDIF
ENDIF

END

SUBROUTINE MXINP (SYM,T,P,BINARY)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (LSPEC = 6, LCRIT = 7, LNRTL = 8, LINIT=9)
PARAMETER (R = 83.1439, Z=10,KKK=8)
DIMENSION TC(KKK),PC(KKK),AKK(KKK),OMEGA(KKK),GG(KKK),GQ(KKK),

PA R1(KKICKKK.),PA R2 (KKICKICK),
BINARY(KKK,KKK),RUN(KKK),QUN(KKK)

CHARACTER* 16 SYM(KKK), LINE, PREV_LINE, LINE2

COMMON/PRA/PAR1,PAR2
COMMON/CA/CUBIC,ACT
COMMON/RN/RUN,QUN,VSTARL
COMMON/CRJTC,PC,AKICOMEGA,GQ,GG
COMMON/MXACO/MXAC
COMMON/EQU/ROT
COMMON/KK/KK

OPEN (LSPEC,FILE= 1 SPECIES.TXT',STATUS= 1 OLD')
READ (LINIT,*) KK
DO 20I = 1,KK
TC(I)=0.
PC(I)=0.

DO 10 J = 1,KKK
BINARY(I,J)=0.
PAR2(I,J)=0.

IF (I.EQ.J) THEN
PAR1(I,J) = 1
ELSE
PAR1(I,J)=0.
ENDIF

10	 CONTINUE
20	 CONTINUE

READ (LINIT,*) CUBIC
READ (LINIT,*) ACT
READ (LINIT,*) MXAC
READ (LSPEC,'(I3)') ISPEC
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DO 50I = 1,ISPEC
READ (LSPEC,'(A16)') LINE

PREV_LINE = LINE
50	 CONTINUE
60	 CONTINUE

DO 90 I = 1,KK
READ (LINIT,'(A16)') SYM(I)

90	 CONTINUE
READ (LINIT,*) T
READ (LINIT,*) P
READ (LINIT,*) ROT

C READ CRITICAL PROPERTY DATA
OPEN (LCRIT,FILE='CRITICAL.TXT',STATUS='OLD')
DO 130 I = I,KK
REWIND (LCRIT)

DO 110 J = 1,ISPEC
READ (LCRIT,88)
LINE, TC(I),PC(I),AKK(I),OMEGA(I),RUN(I),QUN(I),GG(I),GQ(I)

88	 FORMAT(A13,F8.3,3F8.5,F5.3,F4.3,2F9.7)
PC(I) = PC(I)

IF (LINE SEQ. SYM(I)) GOTO 120
110	 CONTINUE
120	 CONTINUE
130	 CONTINUE

C GET BINARY PARAMETERS FOR ACTIVITY MODEL
U = 0.0
V = 0.0
W = 0.0
IF (ACT.EQ.1.) THEN
OPEN (LNRTL,FILE=NRTL.TXT',STATUS= 1 0LD')
ELSE

IF (ACT.EQ.2.) THEN
OPEN (LNRTL,FILE='VANLAAR.TXT',STATUS='OLD')
ELSE

IF (ACT.EQ.3.) THEN
OPEN (LNRTL,FILE&UNIQUAC.TXT',STATUS=POLD')

ELSE
•IF ((ACT.EQ.5.).0R.(ACT.EQ.6.)) THEN

OPEN (LNRTL,FILE='WILSON.TXT',STATUS='OLD')
ELSE
ENDIF

ENDIF
ENDIF

ENDIF
DO 1501= 1,1(.1(
REWIND (LNRTL)

DO 140 J = 1,KK
REWIND (LNRTL)

IF (J.NE.I) THEN
DO 135 K = 1,ISPEC**2

READ (LNRTL,81,END=170) LINE,LINE2,U,V,W,TEM
81	 FORMAT(A16,A I 6,F9.4,F9.4,F9.4,F9 .4)

IF ((LINE .EQ. SYM(1)).AND.(LINE2 .EQ. SYM(J))) THEN
IF (TEM.EQ.T) THEN
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PARRI,J) = U
PAR2(I,J) = V
BINARY(I,J) = W

82	 FORMAT(A16,A16,F10.4,F10.4,F10.4,F10.4)
GOTO 140
ELSE
ENDIF
ELSE
ENDIF

135	 CONTINUE
ENDIF

140	 CONTINUE
150	 CONTINUE

GOTO 170
160	 CONTINUE

STOP
170	 CONTINUE

T= T+273.15
RETURN
END

SUBROUTINE MXEOSPAR(T,X1,BINARY)
C SUBROUTINE TO DETERMINE AI'S AND BI'S BASED ON THE EOS USED

IMPLICIT DOUBLE PRECISION (A-H 2O-Z)
PARAMETER (R = 83.1439, Z=10, KKK=8)
DIMENSION A(KKK),B(KKK),TC(KKK),PC(KKK),BEOS(KKK,KKK),

AKK(KKK),OMEGA(KKK),AEOS(KKK,KKK),BINARY(KKK,KKK),
X 1(KKK),GG(KKK),GQ(KKK)

COMMON/CA/CUBIC,ACT
COMMON/AB/AEOS,BEOS
COMMON/CR/TC,PC,AKK,OMEGA,GQ,GG
COMMON/KK/KK

C PURE COMPONENT A'S AND B'S FOR PENG-ROBINSON
C NOTE THAT IT IS TEMPERATURE DEPENDENT

IF ((CUBIC.EQ.1.).0R.(CUBIC.EQ.11.)) THEN
DO 10 I = 1, KK

A(I) = 0.457235*((R*TC(I))**2)/PC(1)
B(I) = 0.077796*(R*TC(I))/PC(I)

C	 BETA = 0.37464+1.54226*OMEGA(1)-0.26992*OMEGA(1)**2
BETA = 0.378893+1.4897153*OMEGA(I)-0.17131848*

OMEGA(I)**2+0.0196554*OMEGA(I)**3
TR = T/TC(I)

C	 ALPHA = (1 + BETA*(1 - SQRT(TR)))**2
ALPHA = BETA+(AKK(I)+GG(I)*(GQ(I)-TR)*(1-SQRT(TR)))*

(1+SQRT(TR))*(0.7-TR)
AKI=(1+ALPHA*(1-SQRT(TR)))
A(I) = A(I)*AKI**2

10	 CONTINUE
DO 65 I=1,KK
DO 66 J=1,KK
AEOS(I,J)=(A(I)+A(J))/2.*(1-BINARY(I,J))
BEOS(I,J)=(B(I)+B(J))/2.*(1-BINARY(I,J))
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170

66	 CONTINUE
65	 CONTINUE

ENDIF
C PURE COMPONENT A'S AND B'S FOR SOAVE-REDLICH-KWONG EOS

IF (CUBIC.EQ.3.) THEN
DO 300 I = 1,KK

A(I) = 0.42748*(R**2)*(TC(I)**2)/PC(I)
B(I) = 0.08664*R*TC(I)/PC(1)
BETA = 0.48+1.574*OMEGA(I)-0.176*OMEGA(I)**2
TR T/TC(I)
ALPHA = (1 + BETA*(1 - SQRT(TR)))**2
A(I) = A(I)*ALPHA

300	 CONTINUE
DO 615 I=1,KK
DO 616 J=1,KK
AEOS(I,J)=(A(I)+A(J))/2.*(1-BINARY(I,J))
BEOS(I,J)=(B(I)-FB(J))/2.*(1-BINARY(I,J))

616	 CONTINUE
615	 CONTINUE

ENDIF
C PURE COMPONENT A'S AND B'S FOR PENG-ROBINSON, WITH
C PANAGIOTOPOULOS MIXING RULE

IF (CUBIC.EQ.4.) THEN
DO 100I= 1, KK

A(I) = 0.457235*((R*TC(I))**2)/PC(I)
B(I) = 0.077796*(R*TC(I))/PC(I)
BETA = 0.378893+1.4897153*OMEGA(I)-0.17131848*

OMEGA(I)**2+0.0196554*OMEGA(I)**3
TR = T/TC(I)
ALPHA = BETA+AKK(I)*(1+SQRT(TR))*(0.7-TR)
AKI=(1+ALPHA*(1-SQRT(TR)))
A(I) = A(I)*AKI**2

100	 CONTINUE
DO 650 1=1,KK
DO 660 J=1,KK
AEOS(I,J)=SQRT(A(I)*A(J))*(1-BINARY(I,J)+(BINARY(I,J)

-BINARY(J,I))*X1(I))
IF (I.EQ.J) THEN
BEOS(I,J)=(B(I)+B(J))/2.
ENDIF

660	 CONTINUE
650	 CONTINUE

ENDIF
C PURE COMPONENT A'S AND B'S FOR PENG-ROBINSON, WITH
C PANAGIOTOPOULOS QUADARTIC MIXING RULE

IF (CUBIC.EQ.5.) THEN
DO 1100 I = 1, KK

A(I) = 0.457235*((R*TC(I))**2)/PC(I)
B(I) = 0.077796*(R*TC(I))/PC(I)
BETA = 0.378893+1.4897153*0MEGA(I)-0.17131848*

OMEGA(I)**2+0.0196554*OMEGAM**3
TR = T/TC(I)
ALPHA = BETA+AKK(I)*(1+SQRT(TR))*(0.7-TR)
AKI=(1+ALPHA*(1-SQRT(TR)))



A(I) = A(1)*A1(.1**2
1100	 CONTINUE

SNRR=0.
DO 6150 I=1,1(.1(
DO 6161 J=1,1(1(
IF (I.LT.J) THEN
AEOS (I, J)=SQRT(A(I)*A (.1))* (1 -B INARY (I,J))
AEOS(J,I)=AEOS(I,J)
ENDIF

6161	 CONTINUE
AEOS(I,I)=A(I)
BEOS(I,I)=B(I)

6150	 CONTINUE
ENDIF

RETURN
END

SUBROUTINE MXACT(T,X I ,GAMMA,AE)
IMPLICIT DOUBLE PRECISION (A-H 2O-Z)
PARAMETER (R = 83.1439, Z=10, KKK=8)
DIMENSION XI(KI(K), PA R1(1(1(.1C,K1(1(),PAR2 (K.K.K,KKK),

RUN(KKK),QUN(KKK),G(ICICK,ICKK),TH(1(1(1(),
PH(KKK),DL(KKK),DT(KKK,KKK),GR(KKK),
GC(KKK),GAMMA(KKK),XIJ(KKK,KKK),VSTARL(KKK),

XX(KKK,KKK),PHUN(KKK),THUN(KKK),QUNN(KKK,KKK),
ZQUN(KKK)

COMMON/CA/CUBIC,ACT
COMMON/PRA/PARI ,PAR2
COMMON/RN/RUN,QUN,VSTARL
COMMON/ACTIV/G,TH,PH,DL,DT,GR,GC
COMMON/MXACO/MXAC
COMMON/MC/1(K

IF (MXAC.EQ.0) THEN
RETURN
ENDIF

C CALCULATE AE, GAMMA(I) FOR NRTL EQUATION
IF (ACT.EQ.1.) THEN
DO 48 I=1,KK

DO 44 J=1,KK
DT(I,J)=PAR2(I,J)/1.9871T
G(I,J)=EXP(-PAR1(I,J)*DT(I,J))

44	 CONTINUE
48	 CONTINUE

AIS=0.0
AIST=0.0
DO 45 I=1,KK
UU=0.0
UUT=0.0
UST=0.0
USTT=0.0
DD=0.0
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DDT=0.0
DO 46 J=1,KK

DS=0.0
DSA=0.0
US=0.0
USA=0.0

DO 47 L=1,KK
US=X1(L)*DT(L,J)*G(L,J)
DS=X1(L)*G(L,J)
USA=USA+US
DSA=DSA+DS

47	 CONTINUE
UST=X1(J)*G(I,J)*(DT(I,J)-USA/DSA)/D SA
USTT=USTT+UST
DD=X1(J)*DT(J,I)*G(J,I)
DDT=DDT+DD
UU=X1(J)*G(J,I)
UUT=UUT+UU

46	 CONTINUE
GAMMA(I)=DDT/LTUT+USTT
AIS=X1(1)*DDT/UUT
AIST=AIST+AIS

45	 CONTINUE
C THE UNITS OF AE IN BARS*CC/MOLE, TO GET CAL/MOLE MULTIPLY BY (1.987/83.145)

AE=R*T*AIST
RETURN

C CALCULATE AE, GAMMA(I) FOR VAN LAAR EQUATION
ELSE
IF (ACT.EQ.2.) THEN
DO 49 I=1,KK.
VLL=0.
VLLD=0.
VL=0.
VLD=0.
DO 410 K=1,KK

IF (I-K) 411,410,412
411	 VL=PAR1(1,K)*(X1(K)*PAR1(K,I)/(X1(I)*PAR1(I,K)

+X1(K)*PAR1(K,I)))* *2
VLL=VLL+VL
GOTO 410

412	 VLD=PAR1(I,K)*(X1(K)*PAR1(K,1)/(X1(1)*PAR1(I,K)
+Xl(K)*PAR1(K,I)))**2
VLLD=VLLD+VLD

410	 CONTINUE
GAMMA(I)=VLL+VLLD

49	 CONTINUE
GGVL=0.
GVL=0.
DO 414 I=1,KK-1

DO 415 J=I+l,KK
GVL=X1(1)*X1(J)*PAR1(J,1)*PAR1(I,J)/(X1(1)*PAR1(I,J)+X1(J)

*PAR1(.1,I))
GGVL=GGVL+GVL

415	 CONTINUE
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414	 CONTINUE
C THE UNITS OF AE IN KPA*CC, TO GET CAL/MOLE MULTIPLY BY (1.987/8314.5)

AE=R*T*GGVL
RETURN

C CALCULATE AE, GAMMA(I) FOR UNIQUAC EQUATION
C FIND SHAPE-SIZE PARAMETERS

ELSE
IF (ACT.EQ.3.) THEN
TT=0.
RR=O.
RRT=0.
TTT=0.

DO 416 I-1,ICK.
RR=RUN(I)*X1(I)
TT=QUN(I)*X 1(I)
RRT=RRT+RR
TTT=TTT+TT

416	 CONTINUE
DO 417 I=1,KK
TH(I)=Q'UN(I)*X1(I)/TTT
PH(I)=RUN(I)*XI(I)/RRT
DL(I)=Z*(RUN(I)-QUN(I))/2.-(RUN(I)-1.)

417	 CONTINUE
XLT=0.
XL=0.

DO 4 J=1,K.K.
XL=X1(J)*DL(J)
XLT=XLT+XL

4	 CONTINUE
DO 418 I=1,KK

DO 419 .1=1,KK.
DT(J,I)=EXP(-PAR2(J,I)/1.987/T)

419	 CONTINUE
418	 CONTINUE

C
C CALCULATE GAMMA(I)

DO 420 I=1,KK
CC=0.

CCT=O.
CCTT=0.
CC1=0.0
CC1T--0.

DO 422 J=1,KK
CC=TH(J)*DT(I,J)
CC1=TH(J)*DT(J,I)
CC1T=CC1T+CC1
BB=0.
BBT-0.

DO 421 K=1,KK
BB=TH(K)*DT(K,J)
BBT=BBT+BB

421	 CONTINUE
CCT=CC/BBT
CCTT=CCTT+CCT
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DT(I,J)=1.
ENDIF

696	 CONTINUE
695	 CONTINUE

C	 DT(1,2)=0.95*EXP(-PAR1(1,J)/1.987/T)
C	 DT(2,1)=1.07*EXP(-PAR I (I,J)/1.987/T)

AIST=0.0
AIS1T=0.
DO 425 I=1,KK
U su=o.o
DDT=0.0
RTLL=O.
SSRT=O.
DO 426 J=1,1(1(
USA=0.0

ANNT=O.
DO 427 L=1,1(1(
US=X I (L)*DT(J,L)
USA=USA+US
ANN=X1(L)*VSTARL(L)/VSTARL(J)
ANNT=ANNT+ANN

427	 CONTINUE
UST=X I (J)*DT(J,I)/USA
USTT=USTT+UST
DD=X1(J)*DT(I,J)
DDT=DDT+DD
RTL=X1(J)*VSTARL(J)NSTARL(I)
RTLL=RTLL+RTL
S SR=X1(J)*V STARL(I)NSTARL(J)/ANNT
SSRT=SSRT+SSR

426	 CONTINUE
GAMMA(I)=-LOG(DDT)+1,-USTT
IF (ACT.EQ.6.) THEN
GAMMA(I)=-LOG(DDT)-USTT+LOG(RTLL)+SSRT
ENDIF
AIS=X 1(I)*LOG(DDT)
AIS 1=X I (I)*LOG(RTLL)
AIS1T=AIS I T+AIS 1
AIST=AIST+AIS

425	 CONTINUE
C THE UNITS OF AE IN BARS*CC/MOLE, TO GET CAL/MOLE MULTIPLY BY (1.987/83.145)

AE=-R*T*AIST
IF (ACT.EQ.6.) THEN
AE=-R*T*(AIST-AIS1T)
ENDIF
RETURN

ENDIF
RETURN
END

SUBROUTINE MXMIX(T,BINARY,CROSS,X I ,AE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (R = 83.1439, Z-10, KKK=8)
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DIMENSION CROSS(KKK,KKK),X1(KKK),BINARY(KKKX1CK),
AEOS(KKX,KKK),BEOS(KKX,KKX)

EXTERNAL TOCHI

REAL*8 FUN
COMMON/CA/CUBIC,ACT
COMMON/AMBM/AM,BM
COMMON/AB/AEOS,BEOS
COMMON/SUMM/Q1vIX,DMX
COMMON(S5/SS5
COMMON/FUNC/SUNT,FUNN,AAE,Q1,XRTT1,XRTT
COMMONIKKIKK

IF (CUBIC.EQ.4.) THEN
SSS=0.
SSSU=0.
DO 25 1=1,1(1(
DO 26 J=1,1(1(
SSU=AEOS(1,J)*X1(1)*X1(J)
SSSU=SSSU+SSU

26	 CONTINUE
SS=X1(I)*BEOS(I,I)
SSS=SSS+SS

25	 CONTINUE
AM=SSSU
BM=SSS
ENDIF

IF (CUBIC.EQ.5.) THEN
SSRU=0.
DO 925 I=1,K.K.
DO 926 J=1,1(1(
SSU=AEOS(I,J)*X1(I)*X1(J)
SSRU=SSRU+SSU

926	 CONTINUE
925	 CONTINUE

SDR=O.
SNTH=0.
DO 927 I=1,KK
DO 928 J=1,KK
IF (I.LT.J) THEN
SD=X1(I)*X1(J)*(X1(I)-X1(J))*BINARY(J,I)
SDR=SDR+SD
ENDIF
IF (I.GT.J) THEN
SD=X1(I)*X1(J)*(X1(I)-X1(J))*BINARY(I,J)
SDR=SDR+SD
ENDIF

928	 CONTINUE
SNT=BEOS(I,I)*X 1(I)
SNTH=SNTH+SNT

927	 CONTINUE
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BM=SNTH
SS5=SDR
AM=SSRU
ENDIF

IF (CUBIC.EQ.11.) THEN
SUNT=O.
XRTT=O.
XRTTI=0.
Q1=-.53
DO 1237 I=1,K.K.
SUN=X1(I)*AEOS(I,I)/BEOS(LI)
S'UNT=SUNT+SUN
XRT1=X1(1)*LOG(BEOS(L1))
XRTT1=XRTT1+XRT1
XRT=X1(1)*(BEOS(LI)-AEOS(1,I)/R/T)
XRTT=XRTT+XRT

1237	 CONTINUE
FUNN=R*T
AAE=AE
DO 1239 1=1,20
BM=ZBRENT(TOCHL5.,80.,0.0001)

1239	 CONTINUE
AM=BM*(SUNT+1./Q1*(AE+R*T*(LOG(BM)-XRTT1)))
ENDIF

DO 51 I=1,KK
DO 52 J=1,K.K.

IF (I.NE.J) THEN
CROSS(I,J)=((BEOS(LI)-AEOS(1,I)/R/THBEOS(J,J)-AEOS(J,J)

/R/T))/2,*(1-BINARY(I,J))
ELSE
CROSS(I,J)=((BEOS(I,I)-AEOS(L1)/R/THBEOS(J,J)-AEOS(J,J)

/R/T))/2.
ENDIF

52	 CONTINUE
51	 CONTINUE

IF ((CUBIC.EQ.1.).0R.(CUBIC.EQ.3.)) THEN
STRAIGHTT=0.
QMX-0.
SMMM=0.
UMMM=0.
DO 53 I=1,KK
SUMT=0.
SMM=0.

DO 54 J=1,KK
SUM=X1(I)*X1(J)*CROSS(I,J)
SUMT=SUMT+SUM

54	 CONTINUE
QMX=QMX+SUMT
STRAIGHT=X1(1)*AEOS(1,1)/BEOS(LI)/R/T
STRAIGHTT=STRAIGHTT+STRAIGHT

53	 CONTINUE
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IF ((CUBIC.EQ.1.)) THEN
C=1./SQRT(2.)*LOG(SQRT(2.)-1.)
DMX=STRAIGHTT+AE/C/R/T
BM=QMX/(1-DMX)
AM=BM*DMX*R*T
ELSE
IF (CUBIC.EQ.3.) THEN
C=-LOG(2.)
DMX=STRAIGHTT+AE/C/R/T
B M=Q MX./(1-D MX)
AM=BM*DMX*R*T
ELSE
ENDIF
ENDIF
ENDIF
RETURN
END

FUNCTION TOCHI(ABM)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
COMMON/FUNC/SUNT,FUNN,AAE,Q1,XRTT1,XRTT
TOCHI=ABM*(1.-SUNT/FUNN-AAE/Q1/FUNN+XRTT1/Q1)-ABM*LOG(ABM)/Q1
-XRTT
RETURN
END

SUBROUTINE MXVOL(T,P,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (R = 83.1439, Z=10, KKK=8)
REAL*8 RTR(3),RTI(3),A(4),RTRR(4),RTII(4),A5(5)
REAL*8 VL,VG

COMMON/AMBM/AM,BM
COMMON/CA/CUBIC,ACT
COMMON/S5/SS5
COMMON/KK/KK

VL=1.E37
VG=0.0
IF aCUBIC.EQ.1.).0R.(CUBIC.EQ.4.).OR.

(CUBIC.EQ.11.)) THEN
A(4)=1
A(3)=BM-R*T/P
A(2)=(AM-2*R*T*BM)/P-3*BM**2
A(1)=BM**3+(R*T*BM**2-AM*BM)/P
ELSE
IF (CUBIC.EQ.5.) THEN
A5(5)=1
A5(4)=BM-R* T/P
A5(3)=(AM-2.*R*T*BM)/P-3*BM**2.
A5(2)=BM**3.+(R*T*BM**2.-AM*BM+BM*SS5/R/T)/P
A5(1)-----BM**2.*SS5/RJT/P
ELSE

IF (CUBIC.EQ.3.) THEN
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A(4)=1
A(3)=-R*T/P
A(2)=(AM-R*T*BM)/P-BM**2
A(1)=-(AM*BM)/P
ELSE
ENDIF

ENDIF
ENDIF
M=3
DD=1.E-7
DDD=1.E-7
IF (CUBIC.EQ.5.) THEN
M=4
CALL ZRHQR(A5,M,RTRR,RTII)
DO 631 1=1,4
IF (ABS(RTII(I)).LT.DD) THEN
IF (RTRR(I).GT.DDD) THEN
VL=MIN(VL,RTRR(I))
VG=MAX(VG,RTRR(I))
ENDIF
ENDIF

631	 CONTINUE
RETURN
ENDIF
CALL ZRHQR(A,M,RTR,RTI)
DO 63 1=1,3
IF (ABS(RTI(I)).LT.DD) THEN
IF (RTR(I).GT.DDD) THEN
VL=MIN(VL,RTR(I))
VG=MAX(VG,RTR(I))
ENDIF
ENDIF

63	 CONTINUE
RETURN
END

SUBROUTINE MXFUGA CITY1(T,P,CROS S,V,X 1 ,PHI,GAMMA,BINARY,AE)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (R = 83.1439, Z=10, KKK=8)
DIMENSION GAMMA(KKK.),X1(KKK),A(KXK),B (KKK), CRO S S (KKK.,KKK),

PHI(KKK),AEOS(KKK,KKK),BEOS(KKK,KKK),
B INARY(KKK,KKK), V STA RL(KKK),GQ(KKK),GG (KKK),

TC(KKK),PC(KKK),AKK(KKK),OMEGA(KKK)

COMMON/AMBM/AM,BM
COMMON/AB/AEOS,BEOS
COMMON/CA/CUBIC,ACT
COMMON/SUMM/QMX,DMX
COMMON/CR/TC,PC,AKK,OMEGA,GQ,GG
COMMON/KK/KK

IF (CUBIC.EQ.1.) THEN
C=1 ./SQRT(2.)* LOG(SQRT(2 .)-1 .)
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435	 CONTINUE
ENDIF

IF (CUBIC.EQ.5.) THEN
DO 4435 K=1,KK.
SKK=O.
SIKK=0.
STKK=0.
SOKK=0.
DO 4436 I=1,KK
DO 4423 J=1,KK
IF (LLT.J) THEN
SK=BINARY(J,1)*X1(I)*X1(J)*(X1(I)-X1(J))*SQRT(AEOS(I,I)
*AEOS(J,J))
SKK=SKK+SK
ENDIF

4423	 CONTINUE
IF (I.LT.K) THEN
STK=BINARY(K, I)*X1(I)* *2.
SIK=-BINARY(K,I)*X1(I)*Xl(K)
SOK=X1(I)*(1.-BINARY(I,K))*SQRT(AEOS(I,I)*AEOS(J,J))
STKK=STKK+STK
SIKK=SIKK+SIK
SOKK=SOKK+SOK
ENDIF
IF (I.GT.K) THEN
STK=-BINARY(I,K)*X1 (I)* *2.
SIK=X1(I)*X1(K)*BINARY(I,K)
SOK=X1(I)*(1.-BINARY(K,I))*SQRT(AEOS(1,0*AEOS(J,J))
STKK=STKK+STK
SIKK=SIKK+SIK
SOKK=SOKK+SOK
ENDIF
IF (I .EQ.K) THEN
SOK=X I (I)*AEOS(I, I)
SOKK=SOKK+SOK
ENDIF

4436	 CONTINUE
PHI(K)=BEOS(K,K)*(P*V/R/T-1.)/BM-LOG(P*(V-BM)/R/T)+
(-AM*BEOS(K,K)+2.*BM*SOKK-(2.*BEOS(K,K)/BM*SKK-2,*SIKK-STKK))
/2./SQRT(2.)/BM* *2./R/T*LOG((V+BM*( .-SQRT(2.)))/
(V+BM*(1.+SQRT(2.))))+(2.*BEOS(K,K)/BM*SKK-2.*SIKK-STKK)/2.
/BM* *2./R/T*LOG(V* *2./(V* *2.+2.*BM*V-BM* *2.))

4435	 CONTINUE
ENDIF

IF (CUBIC.EQ.1 I .) THEN
DO 71731 I=1,KK
Q1=-0.53
C1=-1./R/T
C2=1.
C3=AM/R/T-BEOS(I,I)+AEOS(1,I)/R/T
D1=1./R/T/BM



D2=-1./BM*(AM/R/T/BM+1./Q1)
D3=-AEOS(I,I)/R/T/BEOS(1,I)-1./Q1*(GAMMA(1)
+LOG(BM/BEOS(I,I))-1.)
DNBM=(D1*C3-Cl*D3)/(D2*C1-D1*C2)
DNAM=(C2*D3-C3*D2)/(D2*C1-D1*C2)
PHI(1)=-LOG(P*(V-BM)/R/T)+DNBM/BM*(P*V/R/T-1.)

+AMJ2./SQRT(2.)/BlvI/R/T*(DNAM/AM-DNBM/BM)
*LOG((V+BM*( I -SQRT(2.)))/(V+BM*(1+SQRT(2.))))

71731	 CONTINUE
ENDIF

RETURN
END

SUBROUTINE MXBUBBLE(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT=200,ERR=1.E-3,ERRR=1.E-5)
PARAMETER (R = 83.1439, Z=10, KKK=8)
PARAMETER (CON-1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
PARAMETER(NDATA=1000)
DIMENSION X(KKK,NDATA),Y(KKK,NDATA),X1(KKK),
PA R1(KKICKKK),PAR2(KKK,KKK),

BINARY(KKK,KKK),CROSS(KKK,KKK),
PHIV(KKK),PHIL(KKK),PHI(KKK),DK(KKK),SIT(MAXIT),

GAM MA(KKK.),GAMMAV (KKK),G AMMAL(KKK)

COMMON/CA/CUBIC,ACT
COMMON/PHUG/PHIV,PHIL
COMMON/XY/X,Y
COMMON/ALV/AEL,AEV
COMMON/GLV/GAMMAV,GAMMAL
COMMON/RN/RUN,QUN,VSTARL
COMMON/KK/KK
COMMON/ICO/ICOUNT

DO 1 I=1,KK
PHI(I)=0.
PHIL(I)=0.
PHIV(I)=0.
X1(I)=0.

1	 CONTINUE
SIT(1)=1.E37
NSD=0.

26	 CONTINUE
DO 3000 I=2,MAXIT
SIT(I)=0.

3000	 CONTINUE
DO 24 ITER=2,MAXIT
DO 27 I=1,KK
Xl(I)=X(LICOUNT)

27	 CONTINUE
CALL MXACT(T,X1,GAMMA,AE)
DO 3131 I=1,KK
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GAMMAL(I)=GAMMA(I)
3131	 CONTINUE

AEL=AE
CALL IvDCMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHLGAMMA,BINARY,AE)
DO 29 1=1,KK.
PHIL(I)=PHI(I)

29	 CONTINUE
NSD=NSD+ICOUNT
IF (NSD.EQ.ICOUNT) THEN
DO 210 I=1,KK
Xl(I)=Y(I,ICOUNT-1)

210	 CONTINUE
ELSE
DO 213 I=1,1a.
X1(I)=Y(I,ICOUNT)

213	 CONTINUE
ENDIF
CALL MXACT(T,X1,GAMMA,AE)
DO 3133 I=1,KK
GAMMAV(1)=GAMMA(1)

3133	 CONTINUE
AEV=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL M.XVOL(T,P,VL,VG)
V=VG
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 211 I=1,KK
PHIV(I)=PHI(I)

211	 CONTINUE
DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 22 I=1,KK
SI=DK(I)*X(I,ICOUNT)
SIT(ITER)=SIT(ITER)+SI

22	 CONTINUE
IF (ABS(SIT(ITER)-SIT(ITER-1)).LT.ERR) THEN
GOTO 25
ENDIF
DO 23 I=1,KK
Y(LICOUNT)=DK(I)*X(LICOUNT)/SIT(ITER)

23	 CONTINUE
24	 CONTINUE

PAUSE 'TOO MANY ITERATIONS IN MXBUBBLE'
25	 IF ((ABS(LOG(SIT(ITER)))-0.).LT. ERRR) THEN

RETURN
ELSE
P=P*SIT(ITER)
GOTO 26
ENDIF
RETURN
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END

SUBROUTINE MXDEW(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT=200,ERR=1.E-3,ERRR= I .E-5)
PARAMETER (R = 83.1439, Z=10, KKK=8)
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
PARAMETER(NDATA=1000)
DIMENSION X(KKK,NDATA),Y(KKK,NDATA),X1(KKK),
PAR 1(KKK,KKK),PAR2(KKK,KKK),

BINARY(KKK,KKK),CROSS(KKK,KKK),
GAMMA(KKK),PHIL(KKK),

PHIV(KKK),PHI(KKK),DK(KKK),SIT(MAXIT),
GAMMAV(KKK),GAMMAL(KKK),VSTARL(KKK)

COMMON/CA/CUBIC,ACT
COMMON/PHUG/PHIV,PHIL
COMMON/XY/X,Y
COMMON/ALV/AEL,AEV
COMMON/GLV/GAMMAV,GAMMAL
COMMON/RN/RUN,QUN,VSTARL
COMMON/KKJKK
COMMON/ICO/ICOUNT

DO 1 I=1,KK
PHI(I)=0.
PHIL(I)=0.
PHIV(I)=0.
Xl(I)=0.
CONTINUE
SIT(1)=1.E37
NSD=0.

26	 CONTINUE
DO 3000 I=2,MAXIT
SIT(I)=0.

3000	 CONTINUE
DO 24 ITER=2,MAXIT
DO 27 I=1,KK
Xl(I)=Y(LICOUNT)

27	 CONTINUE
CALL MXACT(T,X1,GAMMA,AE)
DO 31311=1,KK
GAMMAV(I)=GAMMA(I)

3131	 CONTINUE
AEV=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VG
CALL MXFUGA CI TY1(T,P, CRO S S, V,X1,PHI, GAMMA,BINARY, AE)
DO 29 I=1,KK
PHIV(1)=PHI(I)

29	 CONTINUE
NSD=NSD+ICOUNT
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IF (NSD.EQ.ICOUNT) THEN
DO 210 I=1,KK
X1(I)=X(LICOUNT- 1)

210	 CONTINUE
ELSE
DO 213 I-1,KK
Xl(I)=X(LICOUNT)

213	 CONTINUE
ENDIF
CALL MXACT(T,X1,GAMMA,AE)
DO 3133 I=1,KK
GAMMAL(I)=GAMMA(I)

3133	 CONTINUE
AEV=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHLGAMMA,BINARY,AE)
DO 211 I=1,KK
PHIL(I)=PHI(I)

211	 CONTINUE
DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 22 I=1,KK
SI=Y(LICOUNT)/DK(I)
SIT(ITER)=SIT(ITER)+SI

22	 CONTINUE
IF (ABS(SIT(ITER)-SIT(ITER-1)).LT.ERR) THEN
GOTO 25
ENDIF
DO 23 I=1,KK
X(LICOUNT)-Y(LICOUNT)/DK(I)/SIT(I fER)

23	 CONTINUE
24	 CONTINUE

PAUSE 'TOO MANY ITERATIONS IN MXBUBBLE'
25	 IF ((ABS(LOG(SIT(ITER)))-0.).LT. ERRR) THEN

RETURN
ELSE
P=P/SIT(ITER)
GOTO 26
ENDIF
RETURN
END

SUBROUTINE MXBUBBLEP(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT=200,ERR=1.E-3,ERRR=1.E-5)
PARAMETER (R = 83.1439, Z=10, KKK-8)
PARAMETER (CON=1.4,CON2-CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
PARAMETER (NDATA=1000)
DIMENSION X(KKK,NDATA),Y(KKK,NDATA),X1(KKK),
PAR1(KKK,KKK),PAR2(KKK,KKK),

BINARY(KKK,KKK),CROSS(KKK,KK.K),
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GAMMA(KKK),PHIL(KKK),
PHIV(KKK),PHI(KKK),DK(KKK),SIT(MAXIT),
GAMMAV(KKK),GAMMAL(KKK),DPHIDP(KKK),
DPHIDPV(KKK),DPHIDPL(KKK),DKDP(KKK),
ADERL(NTAB,NTAB),ADERV(NTAB,NTAB),PHIL_H(KKK),
PHIL_MH(KKK),PHIV_H(KKK),PHIV_MH(KKK),PHIL1_H(KKK),
PHIL 1_MH (KKK),PHIVl_H (KKK.),PH I V1_MH (KKK), V STARL (KKK)

COMMON/CA/CUBIC,ACT
COMMON/PHUG/PHIV,PHIL
COMMON/XY/X,Y
COMMON/ALV/AEL,AEV
COMMON/GLV/GAMNIAV,GAMMAL
COMMON/CRIT/BT
COMMON/RN/RUN,QUN,VSTARL
COMMON/KK/KK.
COMMON/ICO/ICOUNT

DO 1 I=1,KK.
PHI(I)=0.
PHIL(I)=0.
PHIV(I)=0.
Xl(I)=0.

1	 CONTINUE
SIT(1)=1.E37
NSD-0.

26	 CONTINUE
DO 3000 I=2,MAXIT
SIT(I)=0.

3000	 CONTINUE
DO 24 ITER=2,MAXIT
DO 27 1=1,KK.
Xl(I)=X(LI COUNT)

27	 CONTINUE
CALL MXEOSPAR(T,X1,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3131 I=1,KK
GAMMAL(I)=GAMMA(I)

3131	 CONTINUE
AEL=AE
CALL MXM1X(T,BTNARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL lvLXFUGACITY1(T,P,CROSS,V,X1,PHLGAMMA,BINARY,AE)
DO 29 I=1,KK
PHIL(I)=PHI(I)

29	 CONTINUE
H=0.001
P1=P+H
CALL MXVOL(T,P1,VL,VG)
V=VL
CALL MXFUGACITY1(T,P1,CROSS,V,X1,PHLGAMMA,BINARY,AE)
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DO 291 I=1,KK
PHIL_H(I)=PHI(I)

291	 CONTINUE
P2=P-H
CALL MXVOL(T,P2,VL,VG)
V=VL
CALL MXFUGACITY1(T,P2,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 292 I=1,1(1(
PHIL_MH(I)=PHI(I)

292	 CONTINUE
DO 13 K=1,1(1(
HH=H
ADERL(1,1)=(PHIL_H(K)-PHIL_MH(K))/(2.0*HH)
ERR 1=BIG
DO 12 I=2,NTAB
HH=HH/CON
P11=P+HH
CALL MXVOL(T,P11,VL,VG)
V=VL
CALL MXFUGACITY1(T,P11,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 302 I1=1,KK
PHIL 1_H(I 1)=PHI(I 1)

302	 CONTINUE
P22=P-HH
CALL MXVOL(T,P22,VL,VG)
V=VL
CALL MXFUGA CITY1(T,P22,CROS S,V,X1,PHI,GAMMA,BINARY,AE)
DO 303 I2=1,KK
PHIL1_MH(I2)=PHI(I2)

303	 CONTINUE
ADERL(1,I)=(PHIL1_H(K)-PHIL 1_MH(K))/(2.0*HH)
FAC=CON2
DO 11 J=2,I
ADERL(J,I)=(ADERL(J-1,1)*FAC-ADERL(J-1,I-1))/(FAC-1 .)
FAC=CON2*FAC
ERRT1=MAX(ABS(ADERL(J,I)-ADERL(J- I ,I)),ABS(ADERL(J,I)-ADERL
(J-1,I-1)))
IF (ERRTI.LE.ERR1) THEN
ERR] =ERRT I
DPHIDPL(K)=ADERL(J,I)
ENDIF

11	 CONTINUE
IF(ABS(ADERL(I,I)-ADERL(I-1,I-1)).GE.SAFE*ERR1) GOTO 4

12	 CONTINUE
4	 CONTINUE
13	 CONTINUE

NSD=NSD+ICOUNT
IF (NSD.EQ.ICOUNT) THEN
DO 210 I=1,KK
X1(I)=Y(I,ICOUNT-1)

210	 CONTINUE
ELSE
DO 213 I=1,1(1(
X 1(I)=Y(I,ICOUNT)
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213	 CONTINUE
ENDIF
CALL MXEOSPAR(T,X 1,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3133 I=1,KK
GAMMAV(I)=GAMMA(I)

3133	 CONTINUE
AEV=AE
CALL MXMIX(T,B1NARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VG
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 211 I=1,KK
PHIV(I)=PHI(I)

211	 CONTINUE
P_V=P+H
CALL MXVOL(T,P,VL,VG)
V=VG
CALL MXFUGACITY1(T,P_V,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2211 I=1,KK
PHIV_H(I)=PHI(I)

2211	 CONTINUE
P_VH=P-H
CALL MXVOL(T,P_VH,VL,VG)
V=VG
CALL MXFUGACITY1(T,PVH,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2311 I=1,KK
PHIV_MH(I)=PHI(I)

2311	 CONTINUE
DO 133 K=1,KK
HH1=H
ADERV(1,1)=(PHIV_H(K)-PHIV_MH(K))/(2.0*HH1)
ERR22=BIG
DO 123 I=2,NTAB
HH1=HH1/CON
P33=P+HH1
CALL MXVOL(T,P33,VL,VG)
V=VG
CALL MXFUGACITY1(T,P33,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2511 I3=1,KK
PHIVl_H(I3)=PHI(I3)

2511	 CONTINUE
P44=P-HH 1
CALL MXVOL(T,P44,VL,VG)
V=VG
CALL MXFUGACITY1(T,P44,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2411 14=1,KK
PHIVl_MH(14)=PHI(I4)

2411	 CONTINUE
ADERV(1,I)=(PHIV1_H(K)-PHIV I _MH(K))/(2.0*H111)
FAC=CON2
DO 113 J=2,I
ADERV(J,I)=(ADERV(J-1,1)*FAC-ADERV(J-1,1-1))/(FAC-1.)
FAC=CON2*FAC
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ERRT2=MAX(ABS(ADERV(J,I)-ADERV(J-1,I)),
ABS(ADERV(J,I)-ADERV(J-1,I-1)))
IF (ERRT2.LE.ERR22) THEN
ERR22=ERRT2
DPHIDPV(K)=ADERV(J,I)
ENDIF

113	 CONTINUE
IF(ABS(ADERV(I,I)-ADERV(I-1,I-1)).GE.SAFE*ERR22) GOTO 43

123	 CONTINUE
43	 CONTINUE
133	 CONTINUE

DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 31 I=1,KK
DKDP(I)=DK(I)*(DPHIDPL(I)-DPHIDPV(I))

31	 CONTINUE
SSS=0.
DO 22 I=1,KK
SS=X(I,ICOUNT)*DKDP(I)
SSS=SSS+SS
SI=DK(I)*X(I,ICOUNT)
SIT(ITER)=SIT(ITER)+SI

22	 CONTINUE
DO 23 I=1,KK
Y(I,ICOUNT)=DK(I)*X(I,ICOUNT)/SIT(ITER)

23	 CONTINUE
PN=P-(-1.+SIT(ITER))/SSS
IF (ABS(PN-P).LT.ERR) THEN
P=PN
RETURN
ELSE
P=PN
GOTO 26
ENDIF

24	 CONTINUE
RETURN
END

SUBROUTINE MXDEWP(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT=200,ERR=1.E-3,ERRR=1.E-5)
PARAMETER (R = 83.1439, Z=10, KKK=8)
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
PARAMETER (NDATA=1000)
DIMENSION X(KKK,NDATA),Y(KKK,NDATA),X 1(KKK),
PAR1(KKK,KKK),PAR2(KKK,KKK),

BINARY(KKK,KKK),CROSS(KKK,KKK),
GAMMA(KKK),PHIL(KKK),
PHI V(KKK),PHI(KKK),DK(KKK),SIT(MAXIT),
GAMMA V(KKK),GAMMAL(KKK),DPHIDP(KKK),
DPHIDPV(KKK),DPHIDPL(KKK),DKDP(KKK),
ADERL(NTAB,NTAB),ADERV(NTAB,NTAB),PHIL_H(KKK),
PHIL_MH(KKK),PHIV_H(KKK),PHIV_MH(K.K.K),PHILl_H(KKK),



PHILl_MH(KKK.),PHIVI_H(KKK),PHIV1_MH(KKX),VSTARL(KKK)

COMMON/CA/CUBIC,ACT
COMMON/PHUG/PHIV,PHIL
COMMON/XY/X,Y
COMMON/ALV/AEL,AEV
COMMON/GLV/GAMMAV,GAMMAL
COMMON/CRIT/BT
COMMON/RN/RUN,QUN,VSTARL
COMMON/KIQKK
COMMON/ICO/ICOUNT

DO 1 I=1,KK
PHI(I)=0.
PHIL(I)=0.
PHIV(I)=0.
XI(I)=0.

1	 CONTINUE
SIT(1)=1.E37
NSD=0.

26	 CONTINUE
DO 3000 I=2,MAXIT
SIT(I)=0.

3000	 CONTINUE
DO 24 ITER=2,MAXIT
DO 27 I=1,KK.
XI(I)=Y(I,ICOUNT)

27	 CONTINUE
CALL MXEOSPAR(T,X1,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3131 I=1,K.K.
GAMMAV(I)=GAMMA(I)

3131	 CONTINUE
AEV=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VG
CALL lvIXFUGACITY1(T,P,CROSS,V,X I ,PHI,GAMMA,BINARY,AE)
DO 29 I=1,KK
PHIV(I)=PHI(I)

29	 CONTINUE
H=0.001
P1=P+H
CALL MXVOL(T,P1,VL,VG)
V=VG
CALL MAFUGACITY1(T,P1,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 291 I=1,KK
PHIV H(I)=PHI(I)

291	 CONTINUE
P2=P-H
CALL MXVOL(T,P2,VL,VG)
V=VG
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CALL MXFUGACITY1(T,P2,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 292 I=1,KK
PHIV MH(I)-PHI(I)

292	 CONTINUE
DO 13 K=1,KK
HH=H
ADERV(1,1)=(PHIV_H(K)-PHIV_MH(K))/(2.0*HH)
ERR1=BIG
DO 12 I=2,NTAB
HH=HH/CON
P 1 1=P+HH
CALL MXVOL(T,P11,VL,VG)
V=VG
CALL MXFUGACITY 1(T,P 1 I ,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 302 I1=1,KK
PHIV1 H(I1)=PHI(11)

302	 CONTINUE
P22=P-HH
CALL MXVOL(T,P22,VL,VG)
V=VG
CALL MXFUGACITY1(T,P22,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 303 I2=1,KK
PHIV I MH(12)=PHI (12)

303	 CONTINUE
ADERV(1,1)=(PHIV1_H(K)-PHIV1_MH(K))/(2.0*HH)
FAC=CON2
DO 11 1=2,I
ADERV(J,I)=(ADERV(J-1,1)*FAC-ADERV(J-1,I-1))/(FAC-1.)
FAC=CON2*FAC
ERRT1=MAX(ABS(ADERV(J,I)-ADERV(J-1,I)),ABS(ADERV(J,I)-ADERV
(1-1,I-1)))
IF (ERRT1.LE.ERR1) THEN
ERR1=ERRT1
DPHIDPV(K)=ADERV(J,I)
ENDIF

11	 CONTINUE
IF(ABS(ADERV(I,I)-ADERV(I- 1 ,I- I )).GE. SAFE*ERR1) GOTO 4

12	 CONTINUE
4	 CONTINUE
13	 CONTINUE

NSD=NSD+ICOUNT
IF (NSD.EQ.ICOUNT) THEN
DO 210 I=1,KK
Xl(I)=X(I,ICOUNT-1)

210	 CONTINUE
ELSE
DO 213 I=1,KK
X1(I)=X(I,ICOUNT)

213	 CONTINUE
ENDIF
CALL MXEOSPAR(T,X1,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3133 I=1,KK
GAMMAL(I)=GAMMA(I)
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3133	 CONTINUE
AEL=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL MAFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 211 I=1,KK
PHIL(I)=PHI(I)

211	 CONTINUE
P_L=P+H
CALL MXVOL(T,P_L,VL,VG)
V=VL
CALL MXFUGACITY1(T,P_L,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2211 I=1,KK
PHIL_H(I)=PHI(I)

2211	 CONTINUE
P_LH=P-H
CALL MXVOL(T,P_LH,VL,VG)
V=VL
CALL MXFUGACITY1(T,P_LH,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2311 I=1,K.K.
PHIL_MH(I)=PHI(I)

2311	 CONTINUE
DO 133 K=1,KK
HH1=H
ADERL(1,1)=(PHIL_H(K)-PHIL_MH(K))/(2.0*HH1)
ERR22=BIG
DO 123 I=2,NTAB
HH1=HH1/CON
P33=P+HH 1
CALL MXVOL(T,P33,VL,VG)
V=VL
CALL MXFUGACITY1(T,P33,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2511 I3=1,KK.
PHIL 1_H(13)=PHI(13)

2511	 CONTINUE
P44=P-HH1
CALL MXVOL(T,P44,VL,VG)
V=VL
CALL MXFUGACITY1(T,P44,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2411 I4=1,KK
PHILl_MH(14)=PHI(I4)

2411	 CONTINUE
ADERL(1,I)=(PHIL I _H(K)-PHILl_MH(K))/(2 .0*HH1 )
FAC=CON2
DO 113 J=2,I
ADERL(J,I)=(ADERL(J- I ,I)*FAC-ADERL(J-1,I-1))/(FAC-1.)
FAC=CON2*FAC
ERRT2=MAX(ABS(ADERL(J,I)-ADERL(J-1,I)),
ABS(ADERL(J,I)-ADERL(J-1,I-1)))
IF (ERRT2.LE.ERR22) THEN
ERR22=ERRT2
DPHIDPL(K)=ADERL(J,I)
ENDIF
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113	 CONTINUE
IF(ABS(ADERL(I,D-ADERL(1-1,I-1)).GE.SAFE*ERR22) GOTO 43

123	 CONTINUE
43	 CONTINUE
133	 CONTINUE

DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 31 I=1,KK
DICDP(I)=DK(I)*(DPHIDPL(I)-DPHIDPV(I))

31	 CONTINUE
SSS=0.
DO 22 I=1,KK
SS=-Y(LICOUNT)*DICDP(I)/DK(I)**2.
SSS=SSS+SS
SI=Y(1,ICOUNT)/DK(I)
SIT(ITER)=SIT(ITER)+SI

22	 CONTINUE
DO 23 I=1,KK
X(1,1COUNT)=Y(LICOUNT)/DK(1)/SIT(ITER)

23	 CONTINUE
PN=P-(-1.+SIT(ITER))/SSS
IF (ABS(PN-P).LT.ERR) THEN
P=PN
RETURN
ELSE
P=PN
GOTO 26
ENDIF

24	 CONTINUE
RETURN
END

SUBROUTINE MXBUBBLET(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT=200,ERR--1 .E-3,ERRR=1.E-5)
PARAMETER (R = 83.1439, Z=10, KKK=8)
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB-10,SAFE=2.)
PARAMETER (NDATA=1000)
DIMENSION X(KKK,NDATA),Y(KKK,NDATA),X1(KKK),
PAR1(KKICKKK),PAR2(KKK,KKK),

BINARY(KKK,KKK),CROSS(KKK,KKK),
GAMMA(KKK),PHIL(KKK),
PHI V(KKK),PHI(KKK),DK(KKK),SIT(MAXIT),
GAMMA V(KKK),GAMMAL(KKK),DPHIDP(KKK),
DPHIDTV(KKK),DPHIDTL(KKK),DKDT(KKK),
ADERL(NTAB,NTAB),ADERV(NTAB,NTAB),PHIL_H(KKK),
PHIL_MH(KKK),PHIV_H(KKK),PHIV_MH(KKK),PHILl_H(KKK),
PH IL1 MH(KKK),PHIV I _H(KKK),P H IVl_MH(KKK), V S TARL(KKK)

COMMON/CA/CUBIC,ACT
COMMON(PHUG/PHIV,PHIL
COMMON/XY/X,Y



COMMON/ALV/AEL,AEV
COMMON/GLV/GAMMA.V,GAMMAL
COMMON/CRIT/BT
COMMON/RN/RUN,QUN,VSTARL
COMMON/KK/KK
COMMON/ICO/ICOUNT

DO 1 I=1,KK
PHI(I)=0.
PHIL(I)=0.
PHIV(I)=0.
Xl(I)=0.

1	 CONTINUE
SIT(1)=1.E37
NSD=0.

26	 CONTINUE
DO 3000 I=2,MAXIT
SIT(I)=0.

3000	 CONTINUE
DO 24 ITER=2,MAXIT
DO 27 1=1,10(
X 1(I)=X(I,ICOUNT)

27	 CONTINUE
CALL MXEOSPAR(T,X1,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3131 I=1,KK
GAMMAL(I)=GAMMA(I)

3131	 CONTINUE
AEL=AE
CALL MXMIX(T,BINARY,CROSS,X I ,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 29 I=1,1(1(
PHIL(I)=PHI(1)

29	 CONTINUE
H=0.001
T1=T+H
CALL MXEOSPAR(T1,X1,BINARY)
CALL WIXACT(T1,X1,GAMMA,AE)
CALL MXMIX(TI,BINARY,CROSS,X1,AE)
CALL MXVOL(T1,P,VL,VG)
V=VL
CALL MXFUGACITY1(11,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 291 I=1,KK
PHIL H(I)=PHI(I)

291	 CONTINUE
T2=T-H
CALL MXEOSPAR(T2,X1,BINARY)
CALL TvIXACT(T2,X1,GAMMA,AE)
CALL MXMIX(T2,BINARY,CROSS,X1,AE)
CALL MXVOL(T2,P,VL,VG)
V=VL
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CALL MXFUGACITY1(T2,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 292 I=1,KK.
PHIL_MH(I)=PHI(I)

292	 CONTINUE
DO 13 K=1,KK
HH=H
ADERL(1,1)=(PHIL_H(K)-PHIL_MH(K))/(2.0*HH)
ERR1=BIG
DO 12 I=2,NTAB
HH=HH/CON
T11=T+HH
CALL MXEOSPAR(T11,X1,BINARY)
CALL MXACT(T11,X1,GAMMA,AE)
CALL MXMIX(T11,BINARY,CROSS,X1,AE)
CALL MXVOL(T11,P,VL,VG)
V=VL
CALL MXFUGACITY1(T11,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 302 I1=1,KK
PHILl_H(11)=PHI(11)

302	 CONTINUE
T22=T-HH
CALL MXEOSPAR(T22,X1,BINARY)
CALL 1VIXACT(T22,X1,GAMMA,AE)
CALL MXMIX(T22,BINARY,CROSS,X1,AE)
CALL MXVOL(T22,P,VL,VG)
V=VL
CALL MXFUGACITY1(122,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 303 12=1,KK
PHILl_MH(I2)=PHI(12)

303	 CONTINUE
ADERL(1,I)=(PHIL1_H(K)-PHIL1_MH(K))/(2.0*HH)
FAC=CON2
DO 11 J=2,I
ADERL(J,I)=(ADERL(J-1,I)*FAC-ADERL(J-1,I-1))/(FAC-1.)
FAC=CON2*FAC
ERRT1=MAX(ABS(ADERL(J,I)-ADERL(J-1,I)),ABS(ADERL(J,1)-ADERL
(J-1 , 1-1 )))
IF (ERRT1.LE.ERR1) THEN
ERR I =ERRT1
DPHIDTL(K)=ADERL(J,I)
ENDIF

11	 CONTINUE
IF(ABS(ADERL(1,1)-ADERL(I-1,I-1)).GE.SAFE*ERR1) GOTO 4

12	 CONTINUE
4	 CONTINUE
13	 CONTINUE

NSD=NSD+ICOUNT
IF (NSD.EQ.ICOUNT) THEN
DO 2101=1,KK
Xl(I)=Y(LICOUNT-1)

210	 CONTINUE
ELSE
DO 213 I=1,KK
X1(1)=Y(LICOUNT)
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213	 CONTINUE
ENDIF
CALL MXEOSPAR(T,XI,BINARY)
CALL MXACT(T,X1,GAMMA,AE)
DO 3133 I=1,KK
GAMMAV(I)=GAMIVIA(I)

3133	 CONTINUE
AEV=AE
CALL MXMIX(T,B1NARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VG
CALL MXFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 211 I=1,KK
PHIV(I)=PHI(I)

211	 CONTINUE
T V=T+H
CALL MXEOSPAR(TV,X1,BINARY)
CALL MXACT(T_V,X1,GAMMA,AE)
CALL MXMIX(T V,BINARY,CROSS,X1,AE)
CALL MXVOL(T-V,P,VL,VG)
V=VG
CALL MXFUGACITY I (T_V,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2211 I=1,KK
PHIV H(I)=PHI(I)

2211	 CONTINUE
T_VH-T-H
CALL MXEOSPAR(T VH,X1,BINARY)
CALL MXACT(T VH--,X1,GAMMA,AE)
CALL MXMIX(TVH,BINARY,CROSS,X1,AE)
CALL MXVOL(f_VH,P,VL,VG)
V=VG
CALL MXFUGACITY1(T_VH,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2311 I=1,KK
PHIV MH(I)=PHI(I)

2311	 CONTINUE
DO 133 K=1,KK
HH1=H
ADERV(1,1)=(PHIV_H(K)-PHIV_MH(K))/(2.0*HH1)
ERR22=BIG
DO 123 1=2,NTAB
HI-11=HH1/CON
T33=T+HH1
CALL MXEOSPAR(T33,X1,BINARY)
CALL MXACT(T33,X1,GAMIvIA,AE)
CALL MXMIX(T33,BINARY,CROSS,X1,AE)
CALL MXVOL(T33,P,VL,VG)
V=VG
CALL MXFUGACITY1(T33,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2511 I3=1,KK
PHIV1 H(I3)=PHI(13)

2511	 CONTI-NUE
T44=T-HH1
CALL MXEOSPAR(T44,X1,BINARY)
CALL MXACT(T44,X1,GAMMA,AE)



CALL MXMIX(T44,BINARY,CROSS,X1,AE)
CALL MXVOL(T44,P,VL,VG)
V=VG
CALL MXFUGACITY1(T44,P,CROSS,V,X1,PHI,GAM1VLA,BINARY,AE)
DO 2411 14=1,KK.
PHIV 1_MH(14)=PHI(I4)

2411	 CONTINUE
ADERV(1,1)=(PHIV1_14(K)-PHIV1_MH(K))/(2.0*HH1)
FAC=CON2
DO 113 .1=2,I
ADERV(J,I)=(ADERV(J-1,I)*FAC-ADERV(J-1,1-1))/(FAC-1.)
FAC=CON2*FAC
ERRT2=MAX(ABS(ADERV(J,1)-ADERV(J-1,1)),
ABS(ADERV(J,I)-ADERV(J-1,I-1)))
IF (ERRT2.LE.ERR22) THEN
ERR22=ERRT2
DPHIDTV(K)=ADERV(J,I)
ENDIF

113	 CONTINUE
IF(ABS(ADERV(I,I)-ADERV(I-1,I-1)).GE.SAFE*ERR22) GOTO 43

123	 CONTINUE
43	 CONTINUE
133	 CONTINUE

DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 31 I=1,KK
DKDT(I)=DK(I)*(DPHIDTL(I)-DPHIDTV(I))

31	 CONTINUE
SSS=0.
DO 22 I=1,KK
SS=X(I,ICOUNT)*DKDT(I)
SSS=SSS+SS
SI=DK(I)*X(I,ICOUNT)
SIT(ITER)=SIT(ITER)+SI

22	 CONTINUE
DO 23 I=1,KK
Y(I,ICOUNT)=DK(I)*X(I,ICOUNT)/SIT(ITER)

23	 CONTINUE
TN=T-(-1.+SIT(ITER))/SSS
IF (ABS(TN-T).LT.ERR) THEN
T=TN
RETURN
ELSE
T=TN
GOTO 26
ENDIF

24	 CONTINUE
RETURN
END

SUBROUTINE MXDEWT(T,P,BINARY,CROSS,VL,VG)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (MAXIT-200,ERR=1.E-3,ERRR=1.E-5)
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29	 CONTINUE
H=0.001
T1=T+H
CALL MXEOSPAR(T1,X1,BINARY)
CALL MXACT(T1,X1,GAMMA,AE)
CALL MXMIX(T1,BINARY,CROSS,X1,AE)
CALL MXVOL(T1,P,VL,VG)
V=VG
CALL MXFUGACITY1(T1,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 291 I=1,KK
PHIV_H(I)=PHI(I)

291	 CONTINUE
T2=T-H
CALL MXEOSPAR(T2,X %BINARY)
CALL MXACT(T2,X1,GAMMA,AE)
CALL 1VLXMIX(T2,BINARY,CROSS,X1,AE)
CALL MXVOL(T2,P,VL,VG)
V=VG
CALL MXFUGACITY1(T2,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 292 I=1,KK
PHIV_MH(I)=PHI(I)

292	 CONTINUE
DO 13 K=1,KK.
HH=H
ADERV(1,1)=(PHIV_H(K)-PHIV_MH(K))/(2.0*HH)
ERRI=BIG
DO 12 I=2,NTAB
HH=HH/CON
TI I =T+HH
CALL 1V1XEOSPAR(T11,X1,BINARY)
CALL MXACT(T11,X1,GAMMA,AE)
CALL MXMIX(T11,BINARY,CROSS,X1,AE)
CALL MXVOL(T11,P,VL,VG)
V=VG
CALL MXFUGACITY1(T11,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 302 I1=1,KK
PHIV1_H(I1)=PHI(11)

302	 CONTINUE
T22=T-HH
CALL MXEOSPAR(T22,X %BINARY)
CALL MXACT('T22,X1,GAMMA,AE)
CALL MXMIX(T22,BINARY,CROSS,X1,AE)
CALL MXVOL(T22,P,VL,VG)
V=VG
CALL MXFUGACITY 1(T22,P,CROSS,V,X I ,PHI,GAMMA,BINARY,AE)
DO 303 I2=1,KK
PHIVl_MH(I2)=PHI(I2)

303	 CONTINUE
ADERV(1,I)=(PHIV1 J1(K)-PHIV1_MH(K))/(2.0*HH)
FAC=CON2
DO 11 J=2,I
ADERV(J,I)=(ADERV(J-1,I)* FAC-ADERV(J-1 ,I-1))/(FAC- 1 ,)
FAC=CON2*FAC
ERRT1=MAX(ABS(ADERV(J,I)-ADERV(J-1,I)),ABS(ADERV(J,I)-ADERV



(J-1,I-1)))
IF (ERRT1.LE.ERR1) THEN
ERR1=ERRT1
DPHIDTV(K)=ADERV(J,I)
ENDIF

11	 CONTINUE
IF(ABS(ADERV(1,1)-ADERV(I-1,1-1)).GE.SAFE*ERR1) GOTO 4

12	 CONTINUE
4	 CONTINUE
13	 CONTINUE

NSD=NSD+ICOUNT
IF (NSD.EQ.ICOUNT) THEN
DO 210 I=1,KK
X 1(I)=X(I,ICOUNT-1)

210	 CONTINUE
ELSE
DO 213 I=1,KK
Xl(I)=X(I,ICOUNT)

213	 CONTINUE
ENDIF
CALL 1VIXEOSPAR(T,X1,BINARY)
CALL MXACT(T,X1,GAMIVIA,AE)
DO 3133 I=1,KK.
GAMMAL(I)=GAMMA(I)

3133	 CONTINUE
AEL=AE
CALL MXMIX(T,BINARY,CROSS,X1,AE)
CALL MXVOL(T,P,VL,VG)
V=VL
CALL 1V1XFUGACITY1(T,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 211 I=1,KK.
PHIL(I)=PHI(I)

211	 CONTINUE
T V=T+H
CALL MXEOSPAR(T_V,X1,BINARY)
CALL MXACT(T V,X1,GAMMA,AE)
CALL MXMIX(T-V,BINARY,CROSS,X1,AE)
CALL MXVOL(TiV,P,VL,VG)
V=VL
CALL MXFUGACITY1(T_V,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2211 I=1,KK
PHIL H(I)=PHI(I)

2211	 CONTINUE
T VH=T-H
CALL MXEOSPAR(T_VH,X1,BINARY)
CALL MXACT(T VH,X1,GAMMA,AE)
CALL MXMIX(TVH,BINARY,CROSS,X1,AE)
CALL MXVOL(T-_VH,P,VL,VG)
V=VL
CALL MXFUGACITY1(T_VH,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2311 I=1,KK
PHIL MH(I)=PHI(I)

2311	 CONTINUE
DO 133 K=1,KK

201



HH1=H
ADERL(1,1)=(PHIL_H(K)-PHIL_MH(K))/(2.0*HH1)
ERR22=BIG
DO 123 I=2,NTAB
HH1=HH1/CON
T33=T+HHI
CALL MXEOSPAR(T33,X1,BINARY)
CALL MXACT(T33,X1,GAMMA,AE)
CALL MXMIX(T33,BINARY,CROSS,X1,AE)
CALL MXVOL(T33,P,VL,VG)
V=VL
CALL MXFUGACITY1(T33,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2511 13=1,KK
PHILI_H(I3)=PHI(I3)

2511	 CONTINUE
T44=T-HH 1
CALL MXEOSPAR(T44,X1,BINARY)
CALL MXACT(T44,X1,GAlvfMA,AE)
CALL IvLXMIX(T44,BINARY,CROSS,XI,AE)
CALL MXVOL(T44,P,VL,VG)
V=VL
CALL MXFUGACITY1(T44,P,CROSS,V,X1,PHI,GAMMA,BINARY,AE)
DO 2411 I4=1,KK
PHILI_MH(I4)=PHI(14)

2411	 CONTINUE
ADERL(1,0-(PHIL1_H(K)-PHIL 1_MH(K))/(2.0*HH1)
FAC=CON2
DO 113 J=2,1
ADERL(.1,I)=(ADERL(J-1,I)*FAC-ADERL(J-1,I-1))/(FAC-1.)
FAC=CON2*FAC
ERRT2=MAX(ABS(ADERL(J,I)-ADERL(J-1,0),
ABS(ADERL(J,1)-ADERL(J-1,I-1)))
IF (ERRT2.LE.ERR22) THEN
ERR22=ERRT2
DPHIDTL(K)=ADERL(J,I)
ENDIF

113	 CONTINUE
IF(ABS(ADERL(1,1)-ADERL(1-I,I-1)).GE.SAFE*ERR22) GOTO 43

123	 CONTINUE
43	 CONTINUE
133	 CONTINUE

DO 212 I=1,KK
DK(I)=EXP(PHIL(I))/EXP(PHIV(I))

212	 CONTINUE
DO 31 I=1,KK
DKDT(I)=DK(I)*(DPHIDTL(I)-DPHIDTV(I))

31	 CONTINUE
SSS=0.
DO 22 I=1,KK
SS-Y(1,ICOUNT)*DKDT(I)/DK(1)**2.
SSS=SSS+SS
SI=Y(I,ICOUNT)/DK(1)
SIT(ITER)=S1T(ITER)+SI

22	 CONTINUE
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DO 23 1=1,KK
X(I,ICOUNT)=Y(I,ICOUNT)/DK(I)/SIT(ITER)

23	 CONTINUE
TN=T-(-1.+SIT(ITER))/SSS
IF (ABS(TN-T).LT.ERR) THEN
T=TN
RETURN
ELSE
T=TN
GOTO 26
ENDIF

24	 CONTINUE
RETURN
END

FUNCTION ZBRENT(FUNC,X I ,X2,TOL)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
INTEGER ITMAX
REAL* 8 ZBRENT,TOL,X1,X2,FUNC,EPS
EXTERNAL FUNC
PARAMETER (ITMAX=100,EPS=3.E-8)
INTEGER ITER
REAL*8 B,C,D,FA,FB,FC,P,R,S,TOL1,XM,A,E,Q
A=X1
B=X2
FA=FUNC(A)
FB=FUNC(B)
IF((FA.GT.0..AND.FB.GT .0.),OR.(FA.LT.0..AND.FBIT.0.))PAUSE
'ROOT MUST BE BRACKETED FOR ZBRENT'
C=B
FC=FB
DO 11 ITER=1,ITMAX
IF((FB.GT.0..AND.FC.GT.0.).OR.(FB.LT.0..AND.FC,LT.O.))THEN
C=A
FC=FA
D=B-A
E=D
ENDIF
IF(ABS(FC).LT.ABS(FB)) THEN
A=B
B=C
C=A
FA=FB
FB=FC
FC=FA
ENDIF
TOL1=2.*EPS*ABS(B)+0.5*TOL
XM=.5*(C-B)
IF(ABS(XM).LE.TOLI .OR. FB.EQ.0.)THEN
ZBRENT=B
RETURN
ENDIF
IF(ABS(E).GE.TOLI .AND. ABS(FA).GT.ABS(FB)) THEN
S=FB/FA
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IF(A.EQ.C) THEN
P=2.*XM*S
Q=1.-S
ELSE
Q=FA/FC
R=FB/FC
P=S*(2.*XM*Q*(Q-R)-(B-A)*(R-1.))
Q=(Q-1.)*(R-1.)*(S-1.)
ENDIF
IF(P.GT.O.) Q=-Q
P=ABS(P)
IF(2.DO*P .LT. MIN(3.DO*XM*Q-ABS(TOL1*Q),ABS(E*Q))) THEN
E=D
D=P/Q
ELSE
D=XM
E=D
ENDIF
ELSE
D=XM
E=D
ENDIF
A=B
FA=FB
IF(ABS(D) .GT. TOL1) THEN
B=B+D
ELSE
B=B+SIGN(TOL I ,XM)
ENDIF
FB=FUNC(B)

11	 CONTINUE
PAUSE 'ZBRENT EXCEEDING MAXIMUM ITERATIONS'
ZBRENT=B
RETURN
END

SUBROUTINE ZRHQR(A,M,RTR,RTI)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
INTEGER M,MAXM
REAL*8 A(M+1),RTR(M),RTI(M)
PARAMETER (MAXM=50)

CU USES BALANC,HQR
INTEGER 3,K
REAL*8 HESS(MAXM,MAXM),XR,X1
IF (M.GT.MAXM.OR.A(M+1).EQ.0.) PAUSE 'BAD ARGS IN ZRHQR'
DO 12 K=1,M
HESS(1,K)=-A(M+1-K)/A(M+1)
DO 11 J=2,M
HESS(3,K)=0.

11	 CONTINUE
IF (K.NE.M) HES S(K+1,K)=1 .

12	 CONTINUE
CALL BALANC(HESS,M,MAXM)
CALL HQR(HESS,M,MAXM,RTR,RTI)
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DO 14 J=2,M
XR=RTR(J)
XI=RTI(J)
DO 13 K=J-1,1,-1
IF(RTR(K).LE.XR)GOTO 1
RTR(K+1)=RTR(K)
RTI(K+1)=RTI(K)

13	 CONTINUE
K=0

1	 RTR(K+1)=XR
RTI(K+1)---xi

14	 CONTINUE
RETURN
END

SUBROUTINE HQR(A,N,NPAVR,WI)
IMPLICIT DOUBLE PRECISION (A-H 2O-Z)
INTEGER N,NP
REAL*8 A(NP,NP),WI(NP),WR(NP)
INTEGER I,ITS,J,K,L,M,NN
REAL*8 ANORM,P,Q,R,S,T,U,V,W,X,Y,Z
ANORM=ABS(A(1,1))
DO 12 I=2,N
DO 11 J=1-1,N
ANORM=ANORM+ABS(A(I,J))

11	 CONTINUE
12	 CONTINUE

NN=N
T=O.

1	 IF(NN.GE.1)THEN
ITS=O

2	 DO 13 L=NN,2,-1
S=ABS(A(L-1,L-1))+ABS(A(L,L))
IF(S.EQ.O.)S=ANORM
IF(ABS(A(L,L-1))+S.EQ.S)GOTO 3

13	 CONTINUE
L=1

3	 X=A(NN,NN)
IF(L.EQ.NN)THEN
WR(NN)=X+T
WI(NN)=0.
NN=NN-1
ELSE
Y=A(NN-1,NN-1)
W=A(NN,NN-1)*A(NN-1,NN)
IF(L.EQ.NN-1)THEN
P=0.5*(Y-X)
Q=P**2+W
Z=SQRT(ABS(Q))
X=X+T
IF(Q.GE.0.)THEN
Z=P+SIGN(Z,P)
WR(NN)=X+Z
WR(NN-1)=WR(NN)
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IF(Z.NE.0.)WR(NN)=X-W/Z
WI(NN)=0.
WI(NN-1)=0.
ELSE
WR(NN)=X+P
WR(NN-1)=WR(NN)
WI(NN)=Z
WI(NN-1)=-Z
ENDIF
NN=NN-2
ELSE
IF(ITS.EQ.30)PAUSE 'TOO MANY ITERATIONS IN HQR'
IF(ITS.EQ. I O.OR.ITS.EQ.20)THEN
T=T+X
DO 14 I=1,NN
A(I,I)=A(1,0-X

14	 CONTINUE
S-ABS(A(NN,NN-1))+ABS(A(NN-1,NN-2))
X=0.75*S
Y=X
W=-0.4375*S**2
ENDIF
ITS=ITS+1
DO 15 M=NN-2,L,-1
Z=A(M,M)
R=X-Z
S=Y-Z
P=(R*S-W)/A(M+1,M)+A(M,M+1)
Q=A(M+1,M+1)-Z-R-S
R=A(M+2,M+1)
S=ABS(P)+ABS(Q)+ABS(R)
P=P/S
Q=Q/S
R=RJS
IF(M.EQ,L)GOTO 4
U=ABS(A(M,M-1))*(ABS(Q)+ABS(R))
V=ABS(P)*(ABS(A(M-1,M-1))+ABS(Z)+ABS(A(M+1,M+1)))
IF(U+V.EQ.V)GOTO 4

15	 CONTINUE
4	 DO 16 I=M+2,NN

A(1,1-2)=0.
IF (I.NE.M+2) A(I,1-3)=0.

16	 CONTINUE
DO 19 K=M,NN-1
IF(K.NE.M)THEN
P=A(K,K-1)
Q=A(K+1,K-1)
R=0.
IF(K.NE.NN-1)R=A(K+2,K-1)
X=ABS(P)+ABS(Q)+ABS(R)
IF(X.NE.0.)THEN
P=P/X
Q=QA
R=R/X
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ENDIF
ENDIF
S=SIGN(SQRT(P**2+Q**2+R**2),P)
IF(S.NE.O.)THEN
IF(K.EQ.M)THEN
IF(L.NE.M)A(K,K-1)=-A(K,K-1)
ELSE
A(K,K-1)=-S*X
ENDIF
P=P+S
X=P/S
Y=Q/S
Z=R/S
Q=QfP
R=R/P
DO 17 J=K,NN
P=A(K,J)+Q*A(K+1,J)
IF(K.NE.NN-1)THEN
P=P+R*A(K+2,J)
A(K+2,J)=A(K+2,J)-P*Z
ENDIF
A (K+1,J)=A(K+1,J)-P*Y
A(K,J)=A(K,J)-P*X

17	 CONTINUE
DO 18 I=L,MIN(NN,K+3)
P=X*A(I,K)+Y*A(I,K+1)
IF(K.NE.NN-1)THEN
P=P+Z*A(I,K+2)
A(I,K+2)=A(I,K+2)-P*R
ENDIF
A(I,K+1)=A(I,K+1)-P*Q
A(I,K)=A(I,K)-P

18	 CONTINUE
ENDIF

19	 CONTINUE
GOTO 2
ENDIF
ENDIF
GOTO 1
ENDIF
RETURN
END

SUBROUTINE BALANC(A,N,NP)
IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
INTEGER N,NP
REAL*8 A(NP,NP),RADIX,SQRDX
PARAMETER (RADIX=2.,SQRDX=RADIX**2)
INTEGER I,J,LAST
REAL*8 C,F,G,R,S

1	 CONTINUE
LAST=1
DO 14 I=1,N
0=0.
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R=0.
DO 11 J=1,N
IF(J.NE.I)THEN
C=C+ABS(A(J,I))
R=R+ABS(A(I,J))
ENDIF

11	 CONTINUE
IF(C.NE.O..AND.R.NE.O.)THEN
G=RIRADIX
F=1.
S=C+R

2	 IF(C.LT.G)THEN
F=F*RADIX
C=C*SQRDX
GOTO 2
ENDIF
G=R*RADIX

3	 IF(C.GT.G)THEN
F=F/RADIX
C=C/SQRDX
GOTO 3
ENDIF
IF((C+R)/F.LT.0.95*S)THEN
LAST=0
G=1./F
DO 12 J=1,N
A(I,J)=A(I,J)*G

12	 CONTINUE
DO 13 J=1,N
A(J,I)=A(J,I)*F

13	 CONTINUE
ENDIF
ENDIF

14	 CONTINUE
IF(LAST.EQ.0)GOTO 1
RETURN
END

SUBROUTINE XSOLVE(T,Y,XIJR)
C
C THIS SUBROUTINE EMPLOYS A FIXED POINT ITERATION
C	 METHOD TO SOLVE FOR THE R RATIOS, AND THEN
C	 CALCULATES THE LOCAL COMPOSITIONS XIJ THAT
C	 R-VALUES REPRESENT.
C

IMPLICIT REAL*8(A-H 2 O-Z)
PARAMETER (RR = 83A439, Z=10, KKK=8)
LOGICAL TEST
DIMENSION Y(KKK),XIJR(KKK,KKK)
DIMENSION C(KKK,KKK),CSQRT(KKK,KKK),PAR2(KKK,KKK),PAR1(KKK,KKK)
DIMENSION R(KKK),RNEW(KKK)
COMMON/PRA/PA R1,PAR2
COMMON/KKJKK



DATA EPS/1.OD-06/
ITMAX=25.

DO 44 I=1,KK
DO 45 J=1,KK
C(I,J)=EXP(-PAR1(I,J)*10000./RR/T)

	

45	 CONTINUE
C(I,I)=1.

	

44	 CONTINUE
IT=-1
K=1

C
C DETERMINE KEY COMPONENT BY LARGEST COMPOSITION VALUE
C

DO 1 I=1,KK
IF(Y(I).GT.Y(K)) K=I

	

1	 CONTINUE
SUM=0.0D0

C
C CALCULATION OF INITIAL GUESSES. WE DO SO BY IGNORING
C THE PRESENCE OF ALL COMPONENTS OTHER THAN THE KEY
C COMPONENT AND THE COMPONENT FOR WHICH WE ARE
C	 OBTAINING AN INITIAL GUESS.
C WE ALSO CALCULATE THE CSQRT VALUES HERE TO SAVE NEEDLESS
C	 REPITITION IN THE ITERATION LOOP.
C

DO 5 I=1,KK
IF(I.EQ.K) GO TO 2
IF(Y(I).EQ.0.0D0) GO TO 3
T1=Y(I)/Y(K)
T2=1.0DO+T1
T3=(C(1,K)-1.0D00)/C(I,K)
R(I)=2.0DO*T11(1.0D0+T1 +DSQRT(T2*T2-4.0DO*T1*T3))
SUM=SUM+R(I)
GO TO 6

	

2	 R(I)= LODO
SUM=SUM+R(I)
GO TO 6

	

3	 R(I)=0.0D0
SUM=SUM+R(I)

	

6	 DO 5 J=1,KK
CSQRT(I,J)=DSQRT(C(I,J)/(C(1,K)*C(J,K)))

	

5	 CONTINUE
IT=O

C
C ENTER ITERATIVE LOOP
C

	4	 DO 9 I=1,KK
SUMJ=O.ODO
DO 8 J=1,KK
SUMJ=SUMJ+R(J)*CSQRT(I,J)

	

8	 CONTINUE
RNEW(I)=(Y(1)/Y(K))*SUM/SUMI
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IF(I.EQ.K) RNEW(I)=1.0D0
9	 CONTINUE

TEST=.TRUE.
DO 10 I=1,KK
IF(DABS(RNEW(I)-R(I)).GT.EPS) TEST=.FALSE.

10	 CONTINUE
IF(TEST) GO TO 50

11	 DO 12 I=1,KK
R(I)=RNEW(I)

12	 CONTINUE
IT=IT+1
IF(IT.GT.ITMAX) GO TO 50
SUM=0.0D0
DO 7 L=1,KK
SUM=SUM+R(L)

7	 CONTINUE
GO TO 4

C
C HAVE EXITED LOOP; WE NOW CALCULATE THE XIJ VALUES
C

50	 DO 51 I=1,KK
SUMJ=0.0D0
DO 52 J=1,KK
SUMJ=SUMJ+R(J)*CSQRT(I,J)

52	 CONTINUE
DO 51 J=1,KK
XIJR(I,J)=R(J)*CSQRT(I,J)/SUMJ

51	 CONTINUE
IF(IT.GT.ITMAX) WRITE(*,53)

53	 FORMAT('-MAXIMUM NUMBER OF ITERATIONS EXCEEDED')
DO 54 I=1,KK
DO 54 J=1,KK
IF (XIJR(I,J) .LT. 0.0D0) GO TO 55

54	 CONTINUE
RETURN

55	 WRITE(*,56) (R(I),I=1,KK)
56	 FORMAT('- R-VALUES ARE:',3X,8E13.6)

WR1TE(*,57) (Y(I),I=1,KK)
57	 FORMAT('- Y-VALUES ARE:',3X,8E13.6/'- C-VALUES ARE:')

DO 58 I=1,KK
WRITE(*,59) (C(I,J),J=1,KK)

59	 FORMAT('0',8E13 .6)
58	 CONTINUE

STOP
END
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APPENDIX D-3

Sample Program for R134a-Propane

SUBROUTINE FOFX(ID,XD,BINARY,YD,ZZZ)
C PRESSURE IS IN BARS AND MOLAR VOLUME IN CC/MOLE,AE IS IN UNITS C
BARS*CC/MOLE

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z)
PARAMETER (R = 83.1439, Z=10, KKK=3)
PARAMETER(LINIT=9)
PARAMETER(LSPEC=6,LCRIT=7,LNRTL=8)

DIMENSION X(KKK),X 1(KKK),Y(KKK),BINARY(50)

REAL ZZZ

COMMON/CA/CUBIC,ACT
COMMON/XY/X,Y
COMMON/PR/PRE,TEM
COMMON/EQU/ROT
COMMON/ZLO/ZLZ
COMMON/PP/PRES
COMMON/IC/ICOUNT
COMMON/IT/ITER

C	 IDD=ID+14
IDD=ID

C	 IF (ID.GE.8) THEN
C	 IDD=ID+23
C	 ENDIF

ICOUNT=IDD

IF ((ROT.EQ.1).0R.(ROT.EQ.2)) THEN
IF(IDD.LE.70) THEN
X(1)=XD
X(2)= I -XD
X1(1)=X(1)
X I (2)=X(2)
ENDIF
ENDIF

C R134A-PROPANE

IF (IDD.LE.23) THEN
ZLZ=3
ENDIF
IF (IDD.GE.24.AND.IDD.LE.46) THEN
ZLZ=1
ENDIF

IF (IDD.EQ.1.0R.IDD.EQ.24) THEN
Y(1)=0.25

211



Y(2)=1.-Y(1)
P=3.1
ENDIF

IF (IDD.EQ.8.0R.IDD.EQ.31) THEN
Y(1)=0.23
Y(2)=1.-Y(1)
P=6.
ENDIF

IF (IDD.EQ.15.0R.IDD.EQ.38) THEN
Y(1)=0.21
Y(2)=1.-Y(1)
P=11.
ENDIF

IF (IDD.GE.1.AND.IDD.LE.7) THEN
T=255.
ENDIF
IF (IDD.GE.8.AND.IDD.LE.14) THEN
T=275.
ENDIF
IF (IDD.GE.15.AND.IDD.LE.23) THEN
T=298.
ENDIF
IF (IDD.GE.24.AND.IDDIE.30) THEN
T=255.
ENDIF
IF (IDD.GE.31.AND.IDD.LE.37) THEN
T=275.
ENDIF
IF (IDD.GE.38.AND.IDD.LE.46) THEN
T=298.
ENDIF

CALL MXEOSPAR (T,X1,BINARY)

SWITCH= 1 .
CALL MXBUBBLE(T,P,BINARY,VL,VG,ZZ)

IF (ZLZ.EQ.1) THEN
IF(IDD.LE.84) THEN
ZZZ=Y(1)
ENDIF
ENDIF

IF (ZLZ.EQ.2) THEN
ZZZ=X(1)
ENDIF

IF ((ROT.EQ.1).0R.(ROT.EQ.3)) THEN
IF (ZLZ.EQ.3) THEN
ZZZ=P
ENDIF
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ENDIF
IF ((ROT.EQ.2).0R.(ROT.EQ.4)) THEN
IF (ZLZ.EQ.4) THEN
ZZZ=T
ENDIF
ENDIF
IF (ZLZ.EQ.5) THEN
ZZZ=ZZ/R/T
ENDIF

END
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