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ABSTRACT

COMPARISON OF ADAPTIVE RADAR ALGORITHMS:
TRANSFORMED SMI, EIGENCANCELER, AND SMI

by
Chaitanya H. Kathiari

Advanced airborne radars must perform target detection in the presence of

interference and heavy clutter. In many applications, the practical usefulness of adaptive

arrays is limited by their convergence rate. In this paper, we first analyze the

performance of the SMI method. Then, two other methods, the transformed SMI and the

eigencanceler, both based on the principle component inversion (PCI) technique, are

described and analyzed by simulation. It is shown by simulation based comparison that

the transformed SMI and the Eigencanceler outperform the SMI method. It is also shown

that the transformed SMI and the eigencanceler has higher convergence rate in terms of

output signal-to-noise ratio than the SMI, specially for short data record sizes. It is

concluded that the transformed SMI and the eigencanceler are good alternatives to the

SMI method when data set available is small.
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CHAPTER 1

INTRODUCTION

Adaptive array processors are currently of interest for a variety of applications in radar,

communications, and sonar. They received much attention in the literature [1], [2] due to

their capability for automatically cancelling interferences while preserving the desired

signal. In an adaptive array, the complex envelope obtained from each element of the

receiving antenna is sampled and multiplied by a complex weight component.

Superposition of these weighted outputs is used to form a receiving beam with nulls

steered onto interferences. The complex weights of this spatial filter are controlled by

a processor or adaptive loops. In radar such adaptive systems are designed to maximize

the probability of signal detection, which is equivalent in the Gaussian interference case

to the maximization of the signal-to-noise ratio (SNR) at the output of the filter. In

practical applications, besides maximization of probability of detection, we are concerned

with the convergence speed of the adaptive beamformer since it determines the ability of

an adaptive beamformer to adapt itself to rapidly changing interference environment.

Many techniques have been developed for adaptive beamforming in the literature

over the years [3], [4]. Widrow [5] and associates at Stanford University were among the

first who started research in the adaptive array field. Besides [5], Applebaum's [6] theory

of adaptive arrays which maximizes SNR is considered the benchmark in this area. The

number of weight adaptation algorithms has been growing rapidly over the years [7-17].

1
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Published work in this field could be categorized in three major subtypes. We will name

them as Type I, Type II, and Type III in this paper. Following paragraphs describe each

subtype and provide examples of published work that falls into particular subtype.

Type I includes papers which introduce new algorithms. In [7], Brennan and Reed

introduced the theory of adaptive radar. They utilized the method of steepest ascent to

recursively update the weight vector such that the output signal-to-noise ratio is

maximized. When the array correlation matrix is not known, it can be approximated from

the data, as proposed in [8]. Using this estimated correlation matrix, the algorithm to

calculate weight vector is developed in [8] which is known as the sample matrix inversion

(SMI). That paper concluded that for the SMI method convergence rate is dependent only

on the number of weights and is independent of the noise and interference environment.

Many different algorithms came into existence after the SMI, but the SMI remained most

widely used algorithm due to its simplicity. Kelly [9] improved on the SMI method of

[8] by replacing the ad hoc procedure of Brennan and Reed by a likelihood ratio test.

Other algorithms include eigenanalysis-based processing such as the principle component

inversion (PCI) method [10] and the eigencanceler [11]. The sidelobe canceler (SLC) was

suggested in [12]. The PCI method [10] is developed for low rank approximation of a

data matrix. In [10], Kirsteins and Tuft provide a useful comparison between the PCI and

the SMI methods. The paper proves that the PCI method has a higher convergence rate

than the SMI. In this paper, the convergence rate is defined as the number of samples

needed in adaptation process to achieve maximaum signal-to-noise ratio at the output.

The authors state that a significant advantage of the PCI method is that it achieves more
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rapid adaptation than conventional methods such as adaptive loops [6], [7], the SMI [8],

and the generalized likelihood ratio test (GLRT) receiver of Kelly [9]. The eigencanceler

in [11] utilizes the eigenstructure of space-time covariance matrix to adapt its weight

vectors. The eigencanceler provides a good alternative to the SMI method due to its

robustness and convergence speed. In [12], Hendon and Reed derives yet another

algorithm called the constant false alarm rate (CFAR) sidelobe canceler (SLC). As the

name suggests it has the CFAR feature embedded in it. An approach based on reducing

the processor's number of degrees of freedom is suggested in [13]. In fact, the PCI

method [10] and the eigencanceler [11] also reduce the number of degrees of freedom

during weight adaptation. In [13], the weight computation is done in two steps. First, the

interference covariance matrix is transformed into a lower rank matrix using a matrix

created from singular vectors of covariance matrix and then, for newly created

transformed matrix, weights are calculated. Chapman [14] and Van Veen and Roberts

[15] describes several reduced rank adaptive beamformers. Chapman, in [14] reduces the

number of adaptive channels by means of various configurations before calculating the

weights. Contrary to [13], Chapman in [14] investigates each configuration further and

provides evaluation of the effects of array errors on all configurations studied. The author

also studied the effects of the finite transient response time on the effectiveness of the

adaptive array for the case of a typical defense radar system. In [15], authors develops

a partially adaptive beamformer design that minimizes output power.

The Type II of work according to our classification consists of extensions to

original algorithms [16-22]. A multiband SMI (MBSMI) algorithm is proposed in [16]
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as oppose to the single band SMI (SBSMI) of [8]. Here, authors state that the limitation

of the SMI method is the size of secondary data record set, and point out that size of this

data record could be increased by employing a frequency diversity scheme. They show

that the MBSMI outperforms the SBSMI. They did so by comparing both methods under

chosen system constraints. Articles [17-19] are extension works based on the Kelly's

GLRT [9] receiver. In [17], [18], and [19] authors describe the multiband GLR, the joint

domain localized GLR (JDL-GLR), and doppler domain localized GLR (DDL-GLR)

receivers, respectively. All of the GLR extensions have desirable feature of the CFAR.

The adaptive algorithm of [17] proves that it is better than the MBSMI even in the non-

Gaussian environment such as Weibull, Log-normal, and K-distribution. In [18],

superiority of the JDL-GLR is proven against space-time and time-space processor

configurations in nonstationary and nonhomogeneous environments. In [19], authors

Wang and Cai show that the DDL-GLR is a data-efficient implementation of higher order

optimum detector.

Finally, the third type of papers, by our classification, provide comparisons among

existing algorithms [20-25]. In [20], authors compared adaptive loops of Applebaum [6]

to the SMI [8] and to another algorithm which is based on recursively updating the

inverse of the sample covariance matrix. Authors of [20] show that the SMI provides

better performance in terms of number of samples needed for weight computation than

the other two methods. Chang and Yeh [21] compared the performance of the eigenspace-

based beamformers to the SMI method. They showed that performance of the SMI

method is degraded by the disturbed noise subspace due to the estimation process of the
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covariance matrix and proved that in such case eigenspace-based beamformers adapt

faster than the SMI. Chang and Yeh [21] provided theoretical as well as analytical results

to prove superiority of the eigenspace-based beamformers. In [22], Cai and Wang

described another extension of the SMI method called the modified SMI and provided its

comparison to the GLR algorithms. The paper remarked that in Gaussian interference

environment, the GLR receiver has a probability of false alarm independent of the

unknown interference statistics, i.e. it has the CFAR feature; and in non-Gaussian

environments such as the Weibull clutter, the GLR is much more robust than the

Modified SMI. Papers [23] and [24] are related to each other in a sense that they both

analyze Mean Square Error (MSE) performance of linearly constrained minimum variance

beamformers. In [23], Van Veen analyze the case where same set of data is used for

both, weight adaptation as well as output statistic formulation. Krolik and Swingler [24],

on the other hand analyzes further to include the case when calculated weights from one

set of data is applied to other distinct set of data. Both papers provide excellent

mathematical analysis. Van Veen in [25] compares three partially adaptive beamforrners,

namely beam-based, eigenstructure-based, and power minimization based designs. He

proves that the power minimization based design performs better than other two when the

number of adaptive degrees of freedom is limited.

Our work falls into the third category approach. It provides the comparison among

the SMI method [8], the eigencanceler [10], and the two step nulling technique [13]. The

comparison is based on the convergence rate of the algorithm in terms of the normalized

output signal-to-noise ratio, and detection capability of the algorithm. In this paper, the
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two step nulling algorithm is referred to as the transformed SMI. The given name

becomes self evident in chapter 4. The eigenvectors of the covariance matrix shall be

used to transform the covariance matrix to a lower rank matrix. The present work will

show that the transformed SMI and the eigencanceler have higher convergence rate than

the SMI method. It will also show that the transformed SMI provides higher probability

of detection than two of its competitors considered in this paper. The comparison will be

done under linearly constrained environment.

The present work is organized as follows: Chapter 2 details the signal model used

throughout the paper and also develops space-time covariance matrix. Chapter 3 discusses

the classical Wiener filter and introduces various algorithms to be compared. Chapter 4

describes simulation model explains the simulation results obtained and chapter 5 draws

conclusions. Appendix A provides analytical results for weight vector calculation of

Eigencanceler and appendix B consists of simulation graphs.



CHAPTER 2

MATHEMATICAL MODEL

The general mathematical signal model will be derived which in turn will be utilized to

formulate the space-time covariance matrix. The following notation has been adopted

throughout the paper unless otherwise stated : boldface lower case letters denote vectors,

boldface uppercase letters denote matrices, the superscript H denotes conjugate transpose -

Hermitian transpose.

2.1	 Signal Model

Consider an airborne array consisting of N omnidirectional transmit/receive modules.

Each module has a K-tap FIR filter associated with it as shown in the Figure 1.

The signal received from a point-like target is given by [11}

sr(t) = g(t - t,i)a(t) eio), - 00 -v)	 (1)

where g(t) is the transmitted waveform, a(t) represents the phase and amplitude of the

received signal, T r, is the propagation delay between the first and the n-th sensor, 0.) is the

carrier angular frequency, and 15 is the doppler angular velocity. For a linear uniform

array the propagation delay is given by In = / sin 0/c, where l is the inter-element

spacing, 0 is bearing of the source measured from the normal of the array, and c is the

speed of light. The doppler shift 15 is given by 0 = N rcocic , where Dr is the radial

velocity of the target. It is obvious that for a given target, the received signal sr(t)

7
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depends on both, the angle 0 and doppler frequency 15.

After achieving demodulation of the carrier signal, baseband signal shall

have the following form.

= sr(t) e

= g(t - ,c 
a(t)e

-xoct ut-urj 	 (2)

The above expression can be further simplified by noting that .15 << o and

hence ignoring the term Ot<< ovc. Also, a reasonable assumption could be made

regarding g(t). It can be assumed that g(t) will be constant during the propagation time

across the array, i.e. g(t - T.) = 1. Hence, we have,

sn(t) = a(t)	 ct 00 	 (3)

The term u = satin represents the phase lag across the array due to the propagation delay.

If the time interval between successive pulses is given by Tr, then v = biTr, is the doppler

phase shift between two successive pulses.

Now, we define a stacked position vector d as follows :

d(u,v) = 	
1 [1 e -fig 	 e 	e	 e -AR 	 + (K. -

where the scaling factor has been introduced to normalize the magnitude of the vector to

unity. d is a function of both angle of arrival 9 and the doppler frequency 13. Next, we

write sn(t) as a vector in terms of stacked position vector d, and call it s(t)

(4)



10

s(t) = a(t)d (0 ,u) 	 (5)

Equation (5) is a representation of a point source by a rank 1 vector. In

cases when signals extend over a range of angles 0 or doppler frequencies 15, we can

choose discrete points in the range of interest and represent the signal as a superposition

of rank 1 vectors.

2.2	 Covariance Matrix

In general, the signal received at the array may consist of the target echo of interest s(t)

and interferences such as jammer signals j(t), the clutter c(t), and the thermal noise n(t).

Let N-dimensional array vector z(t) represent the sum of all contributions at the array

output at time t, i.e. z(t) = s(t) + j(t) c(t) + n(t) . The snapshot vector z(k) is the k-th

sample of z(t). Let's define the stacked snapshot vector X(k) = [zT(k), zT(k+1),..., ir(k+K-

1)]T . The temporal cross-correlation between two snapshots is given by:

r(p) = E[z(k)z(k -p)]	 (6)

The space-time covariance matrix is generated from the cross correlations at all available

time lags.

R = XXyI
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(7)

r(0)	 r(1)	 r(K-1)

r(-1) r(0)	 r(K-2)

r(-K+1)	 r(-1) r(0)



CHAPTER 3

VARIOUS ALGORITHMS

The theory of adaptive radar was established in a series of publications by Brennan,

Mallett, and Reed [7],[20]. They showed that if the disturbance is a stationary process

and the elements of the corresponding array vector are distributed jointly Gaussian, then

the likelihood ratio test for detecting the signal in the presence of the interference is

maximized by processing the data with the following weight vector,

wo = kJ?' cls (8)

where ds is the position vector corresponding to the desired signal and k is a gain

constant. Equation (8) represents the classical Wiener Filter. The corresponding weight

vector is optimum if the covariance matrix R is known. In practical situation a-priori

knowledge of the space-time covariance matrix is unavailable since we have to work with

finite window of data from which R must be estimated. In this case the solution is not

optimum. And the quality of solution depends upon the fact that how close the estimated

covariance matrix is to the real covariance matrix.

The signal environment can be assumed stationary only over short periods. Hence,

the covariance matrix estimate needs to be continually updated. Because of changing

environment, the same weight vector can not be used for different data sets if better

detection capability is the goal. Many adaptive algorithms have been developed over the

12
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years for updating the array weight vector. The following are the three algorithms that

are compared in this paper.

3.1 Sample Matrix Inversion (SMI)

Originally proposed by Reed, Mallett, and Brennan [8], SMI is quite popular for its

simplicity. As pointed out earlier, the knowledge of space-time covariance matrix is not

available in practice. So, an estimate of the covariance matrix is achieved and used.

The covariance matrix can be estimated using the relation :

M = H

where I is data record size and xi are the various snapshots corresponding to different

sample times. This estimated matrix M is used in equation (8) to calculate the weight

vectors and thus, the name Sample Matrix Inversion algorithm.

wsm/ kM - ids 	 (10)

The constant k in above equation depends on the constraint placed to achieve prescribed

response over a range of angles and doppler frequencies. The weight vector is then

obtained by solving the linearly constrained minimization problem.

min
w ilMw subject to constraint C liw = f 	 (11)

w

where C is the NK X J constraint matrix and f is the desired response vector. Gradient

of equation (11) provides,

(9)
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(12)

(13)

= wN.Mw + p.(wilC f)

Now, O= dl = mw + 	 = o
awN

w _m-ic

substitute w into C Rw = f,

= f

- 	 f
C HM -lC

substituting p into equation (12), we get

•• 	 w = M -1C(C HM -10 -1f

For the purpose of this paper, the constraint of the unity gain in the direction of look has

been adapted. Thus,

C = ds ;

f= 1;

which in turn implies,

(14)rids

In theory, as I in equality (9) approaches infinity, the estimated covariance matrix M

approaches R. No doubt that the SMI is simplest algorithm of all but its simplicity is
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achieved by trading the convergence speed. Here, in the entire paper, the convergence

speed is defined as the number of samples needed during weight adaptation to achieve

maximum signal-to-noise ratio at the output. As eq.(14) shows, calculation of weight

vector requires a matrix inversion which requires an order of (NK) 3 multiplications.

Obviously (NK) 3 could be quite large even for moderate number of filters and filter taps.

The eigencanceler is an algorithm that does not require direct matrix inversion. The

algorithm utilizes eigenstructure of the space-time covariance matrix to determine the

weight vectors as described below.

3.2 Eigencanceler

Before proceeding with the calculation of the weight vectors, it is important to explore

some important properties of the space-time covariance matrix since they hold the essence

of this particular method.

3.2.1 Eigenstructure of the Space -time Covariance Matrix

In radar applications, the desired signal (pulse reflected from target) is present only part

of the time. Considerable simplification can be achieved if the interferences are estimated

when the desired signal is not present. This corresponds to collecting clutter and jammer

data from neighboring range cells. For this case, the stacked array vector x(t) is a

superposition of clutter signals e(t), jammer signals j(t), and the thermal noise n(t). The

space-time covariance matrix can be written also as a superposition of the clutter, the

jammer, and the noise covariance matrices.
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(15)

M = E[XXH }

= MC + + MN

It would be reasonable if we assume that there exists no correlation between the clutter

echoes, jammer signals, and thermal noise. To investigate the eigenstructure, we will

have to examine each contributor in more detail [1].

Clutter :	 The clutter extends over a sector of angles 8 and due to the

flight geometry of the airborne radar, it covers a band of doppler

frequencies. The clutter covariance matrix is given by

Mc = f pc(0,04(0,u)d (0,u) dude 	 (16)
e By

where pc(0,1)) is the power spectral density of the clutter at angle 0 and

doppler frequency v.

Jammers : Jammer signals can be viewed as sources at discrete angles.

In general, we can model jammers to extend over the full range of

baseband frequency, since this range B,, is much smaller than RF

frequency at which the jammer signals are originated. The jammer

covariance matrix can be written as

MJ = E f prii(u) d(e i ,u)d(epu) dv	 (17)
ei By

where pj,i(D) is the power spectral density of the i th jammer and at the

frequency v.
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Noise : Thermal noise is assumed white across the array and over

the frequency band of interest. In other words, sensor outputs are

uncorrelated to each other and uncorrelated to themselves at non-zero time

lag. The resulting covariance matrix is the unity matrix scaled by the noise

variance :

MN = aN1 	 (18)

From above discussion it is evident that, in the airborne radar problem, clutter and

jammer signals may be broadband spatially as well as temporally. The eigenstructure of

the space-time covariance matrix for such signals has been considered by number of

authors, [26], [27]. They concluded that the space-time matrix is characterized by a

limited number of dominant eigenvalues and a large number of small eigenvalues.

Buckley [27] states an argument that relates the number of dominant eigenvalues to the

array time-bandwidth product. This product is calculated from the duration of the signal

across the array/filter taps structure and bandwidth of the signal and is equal to (N + K -

1). Examples of typical eigenspectra resulting from a clutter field and background noise

are shown in Figure 2 for different data record sizes : NK, 1.5NK, 2NK, 3NK, 5NK, and

lONK. The curves were obtained using the simulation model described in chapter 5.

The total power of all the signals in the array is given by :

p =[] =
NK

 E	 (19)
1=1

where xi are the eigenvalues of space-time covariance matrix M indexed in ascending

order (2 is the largest eigenvalue). By inspection of Figure 2, we can conclude that most



18

of the power is compacted in the largest (N + K - 1) eigenvalues. For arrays in which

(N + K - 1) NK, a small number of eigenvalues contain all the information about

interferences. It follows that the span of the eigenvectors associated with the dominant

eigenvalues include all the position vectors that comprise data. For that reason, we refer

to the dominant eigenvectors as interference eigenvectors. The space spanned by

interference eigenvectors is called the interference subspace. The non-dominant

eigenvectors, called noise eigenvectors which span the noise subspace, are orthogonal to

dominant eigenvectors, and hence, are orthogonal to interference subspace.

3.2.2 Weight Vector Calculation

Let Q. denote the matrix representation of the interference subspace, generated by the

jammers and clutter contributions. The columns of Q. consist of the interference

eigenvectors. Let Q. denote the matrix representation of the noise subspace. The

columns of Q, consist of the noise eigenvectors. Since QrHQV = 0, any weight vector in

the noise subspace, w € span (Qv }, has the property of nulling-canceling interferences.

The interference cancellation process consumes only a limited number of degrees of

freedom, namely (N + K - 1). Additional requirements may be imposed on w to optimize

some array performance criterion. Two beamformer formulation are suggested [11] : The

minimum power eigencanceler (MPE) and the minimum norm eigencanceler (MNE). In

this paper only the MNE is investigated.

The minimum norm eigencanceler (MNE) is designed to minimize the norm of the

weight vector while maintaining the linear and eigenvector constraints :
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mn(20)wHw subject to Q,Hw = 0 and C Hw = f

The solution to the optimization problem in equation (20) is provided in Appendix A.

In appendix A, we show that :

	we = 	 [CHQvQ IICJli 
f	 (21)

Since, QQH QvQH = I, we get

we = (/ - CIA,H)C [C H (.1 - (4(2„.H)C]' l f	 (22)

which represents weight vector in terms of dominant eigenvectors.

Now substituting C = ds and f = 1, we get

we = (I - Qr Q,H)ds [dsH (I - Qi.Q7, H)d sr	 (23)

	3.3	 Transformed SMI

As the name of the method suggests, it is another form of Sample Matrix Inversion

method but with added strength of the principle component inversion (PCI) method. The

author of this method, Marshall [14], called it the two step nulling. The description of this

method and derivation of weight vector are as follows :

First, the estimated space-time covariance matrix is generated from the set of

observation vectors using relation (9). Then, eigenfactorization is achieved in a similar

fashion as in the eigencanceler. The interference subspace Qr consisting of dominant

eigenvectors is achieved.

Let's define a transformation matrix T as
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T = [q 1 , q2,	 , q,,	 where p =	 (24)

where d8 is the steering vector and qi 's are dominant eigenvectors of estimated covariance

matrix M. The transformation matrix T has the dimension of NK X (p+1). This

transformation matrix is then used to transform the space-time covariance matrix M as

follows :

	D = THMT	 (25)

Where D is the transformed space-time covariance matrix. D has some interesting

characteristics that should be mentioned.

1. D is a reduce-ranked matrix with rank equal to (p+l) . On the other hand M

had a rank of NK > (p+1).

2. D belongs to interference subspace only.

The first characteristic contributes to the speed of the algorithm as it is less

computational burden to invert (p+l) X (p+1) matrix than to invert NK X NK matrix.

The second characteristic guarantees the interference cancellation capability.

Similarly, the desired position vector is also transformed with T. The new

position vector, call it dt is,

	dr = T Hels 	(26)

Now, using these transformed parameters, the weight vector for this algorithm is

formed.



Mill w HDw subject to d H w =

The solution to the problem in (26) is,

wt
dtHD'dt
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(27)

(28)
D -ldt

The above weight vector has a dimension of (p+1) X 1.



CHAPTER 4

NUMERICAL RESULTS

For the ease of programming we considered a linear uniform array with N = 8 elements.

The separation between two array element was kept at half wavelength. Each channel

consisted of an FIR filter with K = 4 taps. The sampling frequency was normalized to

unity. The radar waveform was modeled such that it could be considered constant over

the propagation time across the array. An airborne radar, with a platform velocity of 0.4

was modeled. Hence, the ground clutter at boresight appears approaching at relative

velocity of 0.4. The clutter was assumed to extend over the full angular sector considered

(-90° to +90°). The clutter returns were simulated by spreading 30 scatterers at random

in the considered angular sector. The clutter echoes were modeled as independent

complex Gaussian random variables, with zero mean and variance determined by the

clutter-to-noise Ratio (CNR). The CNR was calculated from the contributions of all

clutter echoes. The clutter generated using above guidelines might have distribution

shown in the Figure 3. The simulation also included two jammers located at -30° and

10°, with jammer-to-noise Ratios (JNR) of 20 dB and 10 dB, respectively. Both jammers

were modeled approaching at relative redial velocity of 0.8. The noise was modeled as

white with variance of unity.

Using the definition of stacked position vector, the observation vector X was

calculated which consisted of clutter echoes, jammer signals, and thermal noise under

22
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interference only hypothesis and it included signal term also under signal plus interference

hypothesis. Number of observation vectors were collected for different data record sizes.

Here data record sizes of NK, 1.5NK, 2NK, 3NK, 5NK, and lONK are being considered.

Following calculation was done for every set.

First, space-time covariance matrix was derived from eq. (7). Using the

observation vectors under interference only hypothesis the estimated covariance matrix

was calculated from eq. (9). Then, various weight vectors were calculated for herein

considered methods. For Eigencanceler and Transformed SMI method, the assumed rank

p of interference subspace matrix Q., was varied from 1 to 2(N + K). For all of these

different sizes of p, weight vectors were calculated for both methods.

These weight vectors were used to calculate output of filter y = w HX, where X

belongs to signal plus interference hypothesis set. The calculation for mean and variance

of y conditioned on w followed which in turn were used to formulate the normalized

signal-to-interference ratio, p at the output of the filter. The normalized signal-to-

interference ratio is defined as,

SIR for given method
optimal SIR

where SIR is the signal-to-total interference ratio.

The probability density function of p and probability of detection were also

calculated and graphed. The probability density functions curves are obtained from the

histograms and probability detection curves are obtained when the probability of false

alarm is kept constant at 10-5. The adopted antenna patterns for all methods were

(29)
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achieved. The results of the simulation is discussed in the following section. All the

results were obtained from averaging 200 independent runs of simulation.

Numerical results are disseminated in Figures 2 through 23 in Appendix B. The

grouping of these results is done as follows: Figures 2 and 3 show the eigenvalue plots

and clutter spectrum, respectively. Figures 4 through 9 display graphs of normalized

signal-to-noise ratio, p at the filter output with respect to the assumed rank of interference

subspace. In this set of plots, each figure represents outcome of simulation for various

data record sizes. Different data record sizes used are NK, 1.5NK, 2NK, 3NK, 5NK and

10NK. Figures 10 through 15 show probability density function of p, and Figures 16

through 21 are probability of detection curves. For these two sets also variable between

two curves is data record size. Figures 22 and 23 are frequency and angle pattern curves,

respectively.

Brief description of these numerical results is given in following paragraphs.

Normalized signal-to-noise ratio curves: (Figures 4 through 9)

Examination of these figures reveal that the transformed SMI and the eigencanceler

provide higher normalized signal-to-noise ratio than SMI, especially for small data record

sizes (Figures 4, 5). Reed [8] proved in his paper that the SMI requires approximately

2NK snapshots to achieve half the performance of optimum processor. Indeed, from

Figure 6, it can be seen that the SMI achieves normalized signal-to-noise ratio of

approximately 0.53 at the data record size of 2NK. Examination of these plots, (Figure

7, for example) reveal that the transformed SMI and the eigencanceler obtain maximum

achievable value of p when the value of the assumed rank of the interference subspace
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is in close proximity of 7. This criteria is explained from Figure 2. It can be observed

from Figure 2 that the number of dominant eigenvalues is approximately seven. This

value is the true rank of the interference subspace. Indeed, the performance of the

eigenanalysis-based methods peaks when the assumed rank p equals the true rank. The

remaining curves (Figures 8, 9) imply that as the data record size increases, the

performance of the SMI method improves. These figures also show that the SMI has slow

rate of convergence than the transformed SMI and the eigencanceler. Here, convergence

rate is measured in terms of number of snapshots need for weight calculation. From

Figure 9, we can see that the SMI requires 1ONK snapshots to achieve p comparable to

the transformed SMI and the eigencanceler.

Probability density curves: (Figures 10 through 15)

The examination of this set of plots also prove that the transformed SMI and the

eigencanceler provide better performance in terms of p than the SMI method. It can be

seen from the Figure 10 that the mean values of p for the transformed SMI and the

eigencanceler are approximately 0.65 and 0.60, respectively, whereas the mean value of

p for the SMI is approximately 0.05. As the number of snapshots increases, the mean

value of p for the SMI improves. Figures 11 and 12 show that the mean value of p for

the SMI is approximately 0.35 and 0.5, respectively. And, as the value of data record size

gets very large, the mean value of p for all three method discussed here gets in close

proximity (Figure 15).
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Probability of detection curves: (Figures 16 through 21)

This set of curves again prove the superiority of the transformed SMI and the

eigencanceler over the SMI method. The SMI method follows the same pattern as it did

in previous results. That is, as the number of snapshots increases, the SMI provides better

performance which is higher probability of detection for this set of plots.

Figure 22 represents frequency pattern curves for these methods. It can be

observed from the figure that the transformed SMI nulls the clutter better than the

eigencanceler and the SMI. The clutter, as we programmed is located at normalized

frequency of 0.4 .

Finally, Figure 23 shows angle pattern curves for methods considered in this paper.

We can clearly see the nulls placed at -30° and 10° where the jammer signals are suppose

to be located.

To better understand the behavior of each method as revealed by the simulation

results, we use the SMI method as a baseline for our discussion.

The weight vector for the SMI is given by equation (7) and rewritten below for

convenience.

= kAr lds

Now, M could be written as

P'gc.PQrArQrli 	 (30)

where Q, and IQ, represent interference and noise subspace matrix, respectively and Ap

and A,. are interference and noise eigenvalue matrices, respectively. Then,
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n A
P

 -i n I/ QA-1QrH

where p is a constant related to the type of constraint placed on the algorithm.

It follows that,

wan = [QP AP -1 QP N
 + QA -1 12r1ds

It is evident from the above representation of the weight vector equation that the

weight vector for SMI consists of components from noise subspace as well as interference

subspace. Graphical representation of the weight vector could be given as in Figure (24).

Now, we noticed earlier that the SMI provides poor performance for small data record

sizes (Figures 1, 2). For small data records sizes, the noise eigenvalues of the estimated

covariance matrix are not constant. That is, they fluctuate substantially from one data set

to the other (see curves for data record sizes NK and 1.5NK between the eigenvalue

number 7 and 32 in Figure 2). This variation introduces the noise in the approximation

process of the covariance matrix which, in turn leads to lower signal-to-noise ratio. As

the number of snapshots grows the fluctuation in the noise eigenvalues decreases leading

to the better approximation and the better performance (compare Figures 4 and 9).

In case of the eigencanceler, the equation for the weight vector is rewritten below.

It is evident from the following equation that the weight vector only utilizes interference

subspace for adaptation.

= (/ - (2,42,nds [cIsH (I - (2,.Q.H)ds 1- 1

Because of that the effect of the estimation noise is not realized in the eigencanceler and

hence, it provides better signal-to-noise ratio than the SMI method for small data records.
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The transformed SMI also utilizes the interference subspace, in this transformed

interference subspace. And, thus provides better performance.

We observed from the normalized signal-to-noise ration curves, Figure 6, for

example, that the performance of the transformed SMI matches the performance of the

eigencanceler as long as the assumed rank of the interference subspace in less than or

equal to the actual rank which is approximately seven. But when the assumed rank of

the interference subspace is overestimated, the performance of the transformed SMI does

not deteriorate as quickly as of the eigencanceler. This is due to the transformation that

takes place in the Transformed SMI method before weight adaptation. The embodied

steering vector ds in the transformation matrix T ensures at the output that signal

component in the observation vector does not get cancelled. More simply stated, the

weight vector solution of the eigencanceler is not optimum in the subspace whereas the

weight vector solution of the transformed SMI is optimum in the reduced rank subspace.

Hence, the performance of the transformed SMI does not deteriorate as quickly as of the

eigencanceler.



CHAPTER 5

CONCLUSION

In this paper, we examined three adaptive array techniques, namely the SMI, the

eigencanceler, and the transformed SMI. We showed by simulation that the algorithms

not requiring direct matrix inversion provide faster convergence rate. Here, convergence

rate is defined in terms of normalized signal-to-noise ratio at the filter output. The paper

proved that the transformed SMI and the eigencanceler provide superior performance than

the SMI method for small data record sizes. The paper also showed that the transformed

SMI provides better performance than the eigencanceler when the assumed rank of the

interference subspace is overestimated. That is, the transformed SMI is robust to rank

overestimation. The simulation also showed that the transformed SMI and the

eigencanceler have relatively higher probability of detection for small data records.

Again, we conclude that transformed SMI and the eigencanceler could be good

alternatives to the SMI method, specially for short data record sizes.
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APPENDIX A

EIGENCANCELER WEIGHT VECTOR CALCULATION

In this appendix we develop the expressions for weight vectors for the minimum

norm eigencanceler (MNE).

The MNE weight vector is the solution to the optimization,

min w"w subject to (2, 11w = 0 and Ow = f 	 (31)

Using the method for Lagrange multipliers, we define

J = 	 - [W HC - w1112,11	 (32)

Taking gradient with respect to wH ,

V =	 = w - CA, - 	 = 0
raw

which implies that,

w = C A. +	 (33)

Substituting above w into both of the above constrains, we get

QraCX +QTHQr = 0

=	 (34)

where we have used a fact that Q.HQ. = IT , an identity matrix.
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C HCX + C HQ,* = 	 (35)

substituting p, we get

C HC - C HQA.IIC = f

A (C RC C RIZA,11C) = f

= [C HQVCrif 	 (36)

where we have used the equality (),Q H + QVQVH = I

substituting X and p back we get,

we = 12,,CVIC [C H (2,,Q,,HC]-1 f 	 (37)



APPENDIX B

SIMULATION RESULTS

This appendix consists of graphs generated by using the simulation model described in

Chapter 5.
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Figure 2: Eigenvalue Spectra
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Figure 3: Clutter Spectrum
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Figure 11: Probability Density Function of p, (I = 1.5NK )
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Figure 12: Probability Density Function of p, ( I = 2NK )
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Figure 13: Probability Density Function of p, ( I = 3NK )
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Figure 14: Probability Density Function of p, ( I = 5NK )
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Figure 15: Probability Density Function of p, (I = lONK )
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Figure 16: Probability of Detection, PD ( I = NK)
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Figure 17: Probability of Detection, PD ( = 1.5NK)
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Figure 18: Probability of Detection, PD ( I = 2NK)
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Figure 19: Probability of Detection, PD ( I = 3NK)
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Figure 20: Probability of Detection, PD (I = 5NK)
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Figure 23: Angle Pattern ( I = 2NK )
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