

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

RELAY LADDER LOGIC AND PETRI NETS FOR DISCRETE EVENT
CONTROL DESIGN: A COMPARATIVE STUDY

by
Edward Twiss

In the 1960's and earlier discrete event systems (DES) were controlled by hard-

wired electromechanical relay systems. In 1969 an electronic programmable logic

controller (PLC) was introduced. PLC's have been programmed utilizing relay ladder

logic (RLL). RLL is a graphical programming language with software "devices" used to

emulate electromechanical devices. RLL programs, however, often become large and

difficult to understand because its graphical representation of physical switching devices

obscures the discrete event dynamics inherent in the process to be controlled. Petri nets

are a methodology for modeling discrete event systems (DES). Using a Petri net based

controller, a control strategy could be developed that captures the discrete event dynamics

of the process. This should result in a control strategy that is much easier to understand,

troubleshoot, modify and evaluate.

RELAY LADDER LOGIC AND PETRI NETS FOR DISCRETE EVENT
CONTROL DESIGN: A COMPARATIVE STUDY

By
Edward Twiss

Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Masters of Science in Manufacturing Systems Engineering

Department of Industrial and Manufacturing Engineering

May 1996

APPROVAL PAGE

RELAY LADDER LOGIC AND PETRI NETS FOR DISCRETE EVENT
CONTROL DESIGN: A COMPARATIVE STUDY

Edward J. Twiss

MengCrou, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, MIT

Dr, Re
Prates

J. Caudill, Committee Member
pdustrial and Manufacturing Engineering, NET

Date

ulact, (6Committee Member
Associate Professor of Industrial and Manufacturing Engineering, MIT

Date

UI

BIOGRAPHICAL SKETCH

Author:	 Edward J. Twiss

Degree:	 Master of Science in Manufacturing Engineering

Date:	 May 1996

Undergraduate and Graduate Education:

• Master of Science in Manufacturing Systems Engineering
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor of Science in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 1987

Major:	 Manufacturing Systems Engineering

Presentations and Publications:

M.C. Zhou and E. Twiss, "A Comparison of Relay Ladder Logic Programming and Petri
Net Approach Sequential Industrial Control Systems", Proc. of the 4th IEEE
Conf on Control Applications, Albany, NY, September 1995, pp. 748-753.

M.C. Zhou and E. Twiss, "Discrete Event Control Design Methods: A Review", to appear
in Preprints of the 13th IFAC World Congress, San Francisco, CA, July 1996.

M. C. Zhou and E. Twiss (1995), "A Comparison of Relay Ladder Logic Programming
and Petri Net Synthesis for Control of Discrete Event Systems", Technical Report
#9501, Discrete Event Systems Laboratory, ECE, New Jersey Institute of
Technology.

iv

ACKNOWLEDGMENT

I would like to express my sincere thanks to Dr. Zhou for his guidance and support

throughout the progress of thesis. I would also like to express thanks to Dr. Reggie

Caudill and Dr. Xiulu Chao for their participation in my committee. Special thanks also

goes to my wife Noreen and Bernadette O'Connor for their support, many hours of proof

reading and that always revitalizing cup of tea when most needed.

vi

This thesis is dedicated to
my loving wife Noreen

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 PROGRAMMABLE LOGIC CONTROLLERS 	 3

2,1 Brief History 	 3

2.2 Methods for Developing Relay Ladder Logic 	 4

2.3 Tank Level Control System Functional Description 	 8

2.4 Review of RLL Development Methods 	 8

2.4.1 Direct Implementation of RLL 	 8

2.4.2 Instrumentation Society of America (ISA)
Logic Diagrams (ISA standard S5.2-1976) 	 12

2.4.3 Timing/Sequence Diagrams 	 15

2.4.4 State Diagrams 	 18

3 THEORY OF PETRI NETS 	 21

3,1 Basic Petri Nets. 	 21

3.2 Real-Time Petri Net Based Controller 	 24

3.3 RTPN Model of Conveyor Start/Stop Control 	 26

4 COMPARISON OF PROGRAMMING LANGUAGES 	 29

4.1 Basic Elements 	 29

4.2 Advanced Instructions 	 29

5 RLL AND PETRI NET DESIGN FOR AN INDUSTRIAL SYSTEM 	 33

5.1 Functional Description of an Industrial System 	 33

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.1.1 Skimmer Pipes 	 33

5.1.2 Spray Water Valve 	 36

5.1.3 Scum Flushing Valve 	 36

5.1.4 Remote Sequence of Operation 	 36

5.2 RLL Design 	 37

5.2.1 Summary of RLL Design 	 42

5.3 RTPN Design 	 42

5.3.1 Top Level Design 	 42

5.3.2 Second Level Design 	 45

5.3.3 RTPN Model of Skimmer 	 49

5,3.4 Scum Valve Model 	 54

6 DESIGN COMPARISON 	 56

6,1 Understandability 	 56

6.2 Simulation 	 57

6.3 Flexibility 	 57

6.3.1 Time Delay 	 58

6.3.2 Maximum Cycle Counter 	 58

6.3,3 Sequence Modification 	 59

6.4 Diagnostics 	 60

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.5 Documentation 	 60

7 CONCLUSION 	 61

APPENDIX A PLACE/TRANSITION DESCRIPTION TABLE 	 62

APPENDIX B PLC LADDER LISTING OF TYPICAL SKIMMER
WITH SEQUENCE MODIFICATIONS SHOWN 	 67

LIST OF TABLES

Table	 Page

2.1 Methods for Developing RLL Programs 	 20

LIST OF FIGURES

Figure	 Page

2.1 Tank Level Control System 	 5

2.2 Level Control System Inputs 	 6

2.3 Level Control System Outputs 	 7

2.4A Direct Implementation of RLL (Sheet 1) 	 9

2.4B Direct Implementation of RLL (Sheet 2) 	 10

2.5A ISA Logic Diagram (Sheet 1) 	 13

2.5B ISA Logic Diagram (Sheet 2) 	 14

2.6 Timing/Sequence Diagram Approach 	 17

2.7 State Diagram Method 	 18

3.1 A RTPN Model of Conveyor System 	 28

3.1 B RLL Model of Conveyor System 	 28

5.1 A Top View of Clarifiers 	 34

5.1B Detail of Skimmers 4-6 	 34

5.2 Skimmer Pipe Rotation 	 35

5.3 First Level PN Model 	 44

5.4 Second Level PN Model 	 48

5.5 Petri Net Model of a Skimmer 	 53

5.6 PN Model of Scum Valve 	 55

xi

CHAPTER 1

INTRODUCTION

For the past two decades programmable logic controllers (PLC's) using relay ladder logic

(RLL) programming have been the workhorse for controlling sequential industrial sys-

tems. Petri nets are a methodology for modeling, evaluating and controlling discrete event

systems (DES). This thesis uses a theoretical Petri net based controller for an industrial

control application. RLL programming and Petri net methods are compared using an in-

dustrial design example. Comparisons are made on the ability to evaluate the programmed

logic, flexibility of the logic, and the ability to troubleshoot/debug the system.

As product life cycles become shorter, factories are pushed to develop small

batches of many different products. The need for highly flexible control systems has be-

come a necessity. The majority of existing automated industrial systems are controlled by

programmable logic controllers (PLC's). in most cases the control programs for PLC's

are developed using relay ladder logic (RLL) [10]. RLL is a graphical programming lan-

guage consisting of software devices (i.e. relays, timing relays, drum sequencers and pro-

grammable counting devices) to achieve a control strategy. RLL's graphical representa-

tion of physical switching devices does not capture the underlying sequential, asynchro-

nous and concurrent events that drive the process to be controlled. It is difficult to deter-

mine the original design specification/sequence of operation from the completed RLL pro-

gram. For this reason control software written utilizing RLL is often difficult to under-

stand and lacks a high degree of flexibility.

2

Petri net theory was developed in 1962 by Carl Adam Petri. They are a graph

theoretic as well as a visually graphical tool specifically designed for modeling, analysis,

performance evaluation and control of discrete event systems (DES) [7]. Petri nets are

capable of modeling sequential, asynchronous and concurrent events that drive an indus-

trial process. Since Petri nets are a proven tool for modeling these systems, they should

prove to be a valuable tool for controlling these processes [7, 14, 8].

Using a Petri net model, a control strategy can be developed which captures the

discrete event dynamics of the process being controlled. This should result in a control

strategy that is easier to understand, troubleshoot, modify and evaluate system perform-

ance. This thesis discusses ladder logic programming and Petri net synthesis techniques

for DES. A functional specification for a sequential industrial control problem is de-

scribed. A control system is designed for the described system using both ladder logic and

Petri nets, The thesis makes a comparison on the design/performance evaluation of the

RLL-based and Petri net-based systems. Comparisons are made on the flexibility (number

of changes required to meet a change in specification), maintainability and support docu-

mentation of the two design methodologies.

CHAPTER 2

PROGRAMMABLE LOGIC CONTROLLERS

2.1 Brief History

In the late 1960's electromechanical devices were the order of the day as far as industrial

automated control was concerned. These devices, relays, electromechanical tim-

ers/counters and electromechanical sequencers were being used by the thousands to con-

trol many sequential industrial processes and stand alone machines. These devices in-

stalled in control cabinets used hundreds of wires and their interconnection to affect a

control solution [4). These control systems were able to sequence and synchronize the

events required to manufacture a single product. However, if a change was made to the

product, or a new product had to be produced, the control solution had to be changed by

physically rewiring the panel. This required downtime to make the needed wiring changes.

If the amount of wiring changes were excessive, it was not uncommon to discard the en-

tire panel in favor of a new one.

In the late 1960's the Hydromatic division of General Motors Corporation wrote a

specification for a new type of programmable controller [4]. This new programmable

controller would eventually be programmed using relay ladder logic (RLL). The RLL

programming language was developed to smooth the transition from relay control systems

to PLC's The initial intent of RLL was to allow plant maintenance personnel to trouble-

shoot, maintain and make minor modifications to the system. PLC's greatly improved the

flexibility of industrial control systems and reduced the downtime required to make modi-

fications. However, the larger the control system, the more difficult it is to determine the

3

4

initial design specifications (how the system operates) by examining the control logic.

This makes troubleshooting these systems difficult.

Short RLL programs (less than 100 rungs) are not difficult to evaluate. However,

as a system becomes more complex, the RLL program can easily grow to 1000 rungs or

more. Adverse results of large RLL programs are as follows:

1. The complexity to validate and evaluate the ladder logic grows exponentially (in gen-

eral).

2. It becomes more difficult to make program modifications to reflect changes in the

systems functional specification.

. Task of troubleshooting and maintaining the program becomes more difficult.

2.2 Methods for Developing RLL

Several methods exist for developing RLL programs, however, no method has been uni-

versally accepted by industry. Although industry has greatly benefited from the PLC, little

effort has been put forth in the development of formal standards for RLL or other forms of

discrete event control. The object of this section to discuss several methods for develop-

ing RLL. These methods are useful for developing RLL, and some could be directly im-

plemented on a PLC or general purpose computer.

To help summarize these methods a control problem based on an industrial level

control system will be described. A control solution using each design method will be

applied to the system, and the resulting solutions will be evaluated. The system to be

5

controlled (Figure 2.1) is a level control system for a product storage tank. The tank is

equipped with five level switches, an inlet solenoid valve and an outlet pump. The follow-

ing design methods/tools for developing RLL programs shall be discussed and compared:

1. Direct implementation of RLL.

2, Instrumentation Society of America (ISA) Logic Diagrams (ISA standard S5.2-1976).

3. Timing/sequence diagrams.

4. State Diagrams,

ZSV-1

6

7

8

23 Tank Level Control System Functional Description

1. The system is enabled by depressing the reset pushbutton, system operation is halted

by depressing the emergency stop (e-stop) pushbutton.

2. Initially the tank is empty (LSLL-1, LSL-1, LS-1=0; LSH-1, LSHH-1=1), fill valve

(ZS V- 1) opens.

3. Level exceeds LSH- I (LSLL-1, LSL-1, LS-1, LSHH-1=1; LSH-1=0). Fill valve

(ZSV-I) closes and the discharge pump runs at high speed. If LSH-1 fails to actuate;

the above occurs when LSHH-1 actuates (LSHH-1 = 0).

4, When LS-1 actuates on falling level (LSLL-1, LSL-1, LS-1=0; LSH-1, LSHH-1 = 1),

the pump runs at low speed.

5 When LSL-1 actuates on falling level (LSL-1 = 0), the pump stops and ZSV-1 opens.

If LSL-1 fails to actuate; the above occurs when LSLL-1 actuates (LSLL-1 = 0).

6. Level control system inputs and outputs are shown in Figures 2.2 and 2.3: Note high

level switches and emergency stop pushbutton are wired for fail safe operation.

2.4 Review of RLL Development Methods

2.4.1 Direct Implementation of RLL

Direct implementation of RLL involves breaking the description of operation down to

logical segments. Each segment is related to a separate control function or step in the

process. These broken down segments are converted to RLL in an adhoc method. For

the above example the system is broken down into the following segments; fill cycle, pump

9

10

11

13enefits of Direct Ininentation of RLL

• RLL was initially developed to allow engineers with hardwired relay control systems

experience to begin using PLC's with little or no learning curve.

Simplifies system troubleshooting/debugging over conventional hardwired electrome-

chanical control.

Greatly improves system flexibility over hardwired electromechanical control.

• Many new instructions have been developed to allow complex math operations and

data m ipulation and messaging capabilities.

powback ,, of jrt Tniplqmvtatism of RLL

Difficult to determine the initial design/operating sequences from the RLL program

listing

Unable to simulate without physical hardware.

RLI. programs often become large and difficult to understand/modify.

Formal rules do not exist.

Is difficult to im 	 ent a hierarchical programming structure.

This technique can be employed by those who are very familiar with RLL. The

major disadvantage of this method is that RLL by itself fails to capture the discrete event

dynamics of the system. This makes it difficult to modify or troubleshoot the system.

Another major disadvantage is that in order to test the final control system, I/O must be

connected to simulate sensors and final control elements. This along with RLL's failure to

12

capture the discrete dynamics of the system makes programming errors more common-

place during system startup.

2.4.2 ISA Logic Diagrams

These diagrams use symbols similar to Boolean algebra symbols (i.e. AND/OR gates), and

special symbols for timer functions, counter functions, and math/data manipulation func-

tions. These diagrams are an intermediate step between the broken down description of

operation and RLL coding. ISA logic diagrams tend to decrease the amount of code re-

quired by eliminating redundant interlocks. ISA logic diagrams also have the advantage of

being converted into RLL of any PLC. The instruction sets of different PLC's vary, ISA

logic diagrams are a portable form of logic for all types of PLC's. The logic diagrams

tend to be a more compact representation of the system control strategy and can therefore

help in system modifications/debu g. ISA logic diagrams could be directly imple-

mented on a PLC. However, logic diagrams suffer from the same drawbacks of direct

implementation of RLL. They fail to capture the discrete event dynamics of the system and

cannot be simulated without connecting physical I/O to the system. The ISA logic dia-

grams are shown in Figures 2.5A & B. Following is a list of symbols used in the diagrams

and their meaning. For more detail the reader should refer to ISA standard S5.2-1976.

INPUT OUTPUT	 AND	 OR NOT TIMER

'I A

15

enefitspf IS A I .otzic Dingrag

Helps to map out required PLC memory.

Enables the control engineer to document most of the programmed instructions ahead

of time.

• A portable form of logic.

Graphical symbols are familiar to most engineers.

Helps to eliminate repetitive interlocks.

DrIwbacks of ISA I psig Pingr

Is an adhoc approach.

Difficult to determine the initial design/operating sequences from the final diagrams.

• Unable to simulate without physical hardware.

Is difficult to implement a hierarchical programming structure.

Diagi irris often become large and difficult to understand.

2.4.3 Timing/Sequence Diagrams

A timinrlsequence diagram is a horizontal bar chart similar to a Gantt chart. Tim-

ing/Sequence diagrams are an intermediate step between the description of operation and

RLL development, The I/O addresses and major internal flags appear in a column on the

left side of the chart and the major process events appear across the top of the chart. The

events form vertical lines that determine the on/off sequencing of the I/O and internal

flags. Internal flags are internal bits used to represent the broken down logical segments.

16

Timing/sequence diagrams succeed in capturing the discrete event dynamics of the system.

This is the simplest representation of the on/off sequencing of a system. The only re-

quirement to develop a sequence diagram is a full understanding of the system. The tim-

ing/sequence diagrams can be helpful in system modifications/debugging. They are helpful

in developing programs for small sequential systems, However as systems grow in com-

plexity and number of operating modes, the underlying logic that drives the system from

one state/internal flag to the next becomes obscure. These diagrams can not be directly

implemented on a PLC. These dj:i ams must be converted to RLL, and suffer from the

same drawbaas as direct implementation of RLL.

Ad\ antage ,, Timin/SeqiiencgDintams

• Captta es the systems sequence of operation.

Aids in system trouhl hooting/debu

Little or no learning curve involved.

Piadvantaiw, t)el itting/SNuolctpiaj

• Unable to program without converting to RLL or some other form.

A Sequence diagram must be developed for each subsystem.

In a system with many subsystems it is often difficult to determine the interrelations

between the different diagrams.

Can be difficult to determine the underlying logic.

18

2.4.4 State Diagrams

State diagrams are an analytical method that provides a set of rules for developing RLL.

By breaking the description of operation down to logical segments, the number of states

and state variables can be determined. After these are determined the logic that takes the

system from one state to the next can be determined. The state diagram can then be

drawn by using circles with ones and zeroes inside (the ones and zeroes represent state

variables). Directed arcs are used to interconnect the states; above each arc is the logical

expression that translates the system from one state to the next. After the state diagram is

complete, it can be converted to Boolean equations representing the setting and resetting

of state variables [16]. These Boolean equations can then be converted to RLL or directly

implemented on a computer. State diagrams help to eliminate the number of initial pro-

gramming errors, capture the discrete event dynamics of the system, and could be directly

implemented on a PLC or computer.

19

Boolean Equations Derived from State Diagram:
SA = B'
RA = B * LS-1D
SB = A * (LSH-1D + LSHEI-1D)
RB = A' * (LSL-1D + LSLL-1D)

Advantages of State Diagrams

• Is an analytical method that provides a set of rules for developing the RLL.

• Could be directly implemented by a PLC or computer.

• The systems sequence of operation can be determined from the model.

• Is a method taught and familiar to most engineers for developing sequential logic cir-

cuits.

Disadvantages of State Diagrams

• Difficult to implement when more than four state variables are involved.

• Difficult to model concurrent events.

The following table (Table 2.1) is a summary of the advantages and disadvantages

of the different methods for developing RLL programs. Other techniques for developing

RLL programs may exist. The techniques covered in this thesis are the techniques ob-

served by the author through his experience in industry. As mentioned earlier industry has

not invested much effort in standardizing on techniques for developing RLL programs.

CHAPTER 3

THEORY OF PETRI NETS

3.1 Basic Petri Nets

Carl A. Petri developed Petri net theory to analyze communication systems [8]. Petri nets

have proven to be a useful tool for modeling, control and performance evaluation of

manufacturing systems [14]. Their fundamental knowledge can be seen in [6, 13] and

applications in manufacturing automation in [20]. Petri nets are useful for modeling sys-

tems with the following characteristics [7, 13]:

1. Concurrency - More than one operation taking place at a time.

2. Asynchronous Operations - Operations are completed at different times and in differ-

ent amounts of time. A Petri net model can maintain the sequence of events under

these conditions.

3. Deadlock - The system reaches a state in which no new processes can be started. This

can happen when two or more processes share one resource.

4. Conflict/Choice - Two or more operations are enabled to begin, however, only one

part is allowed to be processed. A choice must be made in this situation as to which

process should be started.

5. Event Driven - A process coming to completion can be considered an event. The oc-

currence of this event starts a new process. The order/sequencing and timing of the

events need not be unique. The order of the events are driven by the overall state of

the system.

21

22

Petri nets like RLL are built up of several basic elements. Following is a descrip-

tion of these basic elements [13]:

1. Places (circles) are used to represent conditions (true/false), resource availability or a

process status (i.e. a machine is processing a part).

2. Transitions (bars or boxes) are used for events, start and end of activities.

3. Input functions are defined as "arcs" from places to transitions.

4. Output functions are defined as "arcs" from transitions to places.

These four elements define the structure of a Petri net. The state of a Petri net is

defined by its marking. The marking is the number of tokens (dots) in each place. Tokens

travel from place to place along directed arcs. The flow of tokens is determined by the

"firing" of transitions. A marking, m is denoted as an n-vector, where n is the total num-

ber of places. The pth component of m, denoted by m(p), is the number of tokens in place

p. Mathematically a marked Petri net is a five-tuple (P,T,I,O,m o), where:

1. P is a finite set of places.

2. T is a finite set of transitions, with PuT#0 and P n T = 0

3. I: P x T —> N is an input function that specifies arcs directed from places to transitions,

where N is the set of all natural numbers.

4. 0: P x T -* N is an output function that specifies arcs directed from transitions to

places, where N is the set of all natural numbers.

5. mo : P --> N is an initial marking whose ith component represents the number of tokens

represented by dots in the ith place.

23

In order to simulate the dynamic behavior of a system, a state or marking in a Petri

net is changed according to defined "firing" rules. These firing rules are also referred to as

the token player game. They are defined as follows:

1. A transition t is said to be enabled if each input place p of t is marked with at least

I(p,t) tokens, where I(p,t) is the weight of the arc from p to t. Mathematically, t E T

is enabled iff m(p)	 t) Vp E P.

2. An enabled transition may or may not fire (depending on whether or not the event

takes place).

3. Firing of an enabled transition t removes I(p,t) tokens from each input place p of t, and

adds O(p,t) tokens to each output place p of t, where O(p,t) is the weight of the arc

from t to p [13]. Mathematically, t fires at marking m', yielding the new marking m(p)

= m'(p) + O(p,t) -I(p,t), Vp EP.

The marking m is said to be reachable from m' . The reachability set is the set of

all markings reachable from mo by a sequence of transition firings and is denoted by

R(Z,m o). A place p E P is k-bounded iff 3 k > 0, 3 m(p) k, V m E R(Z, mo). Z is k-

bounded iff p is k-bounded, V p E P. Z is safe iff it is 1-bounded. Z is live iff 3 a fireable

sequence whose firing results in a marking which enables t, V t E T and m E R(Z, mo).

The significance of boundedness, liveness, and other properties of Petri nets in manufac-

24

turing is discussed in [20]. Briefly, boundedness guarantees stability, liveness guarantees

freedom from deadlocks and repeatability.

Deterministic time delays are often associated with transitions and/or places in

Petri nets which model industrial automated systems. Random time variables can also be

associated to a Petri net. By associating random time variables which follow an exponen-

tial distribution to some of the transitions, a generalized stochastic Petri net is developed

(GSPN). These types of nets consist of both timed and immediate transitions. The timed

transitions model the delays of a systems operation. GSPN's and Petri nets in general can

be used to mathematically determine many of the properties of a system (i.e. throughput,

resource utilization) [13, 7, 21].

3.2. Real-Time Petri Net Based Controller

A real-time Petri net (RTPN) based controller can be developed by assigning physical in-

put/output (I/O) functions to places and assigning physical I/O and timing variables to

transitions of the Petri net model. Formally the RTPN could be defined as follows [18):

A RTPN is eight tuple and defined as: RTPN = {P,T,I,O,m o,D,Y,Z} where:

• (P,T,I,O,mo} are as defined in the untimed Petri net model.

• D is a firing time delay function, consisting of non-negative real numbers.

• Y is defined as the set of physical input signal functions mapped to transitions.

• Z is defined as the set of physical output signal functions mapped to places.

25

1. Timing vector D assigns time delays to transitions. Timing vector D models the delays

and synchronization of activities in the system.

2. Vector Y is used as an enable signal and determines when a transition is fired. Vector

Y can be mapped to a single input address or can be a Boolean expressions of input

addresses. When the function associated with Y(i) is true and all input places are

marked, then the firing rule is executed 'g. tokens are removed from input places and

deposited in output places). Vector Y is the firing attribute of all transitions in the

RTPN. The RTPN would have two (2) basic types of transitions:

• Immediate - Represented as solid bars, these would always have a firing at-

tribute of one and zero time delay.

• Input - Represented by hollow bars, these transitions would fire when all input

places are marked, the firing attribute is true, and the time delay di has expired.

Transition ti can have the form as follows: Y(i) = 1# or a Boolean expression,

e.g., (Y(i) = I1 * 12 + 1(3); D(i) = x sec/min). Where i is the transition number,

I# is an input address often represented by tag name, and x is a preset time de-

lay. Y(i) and D(i) together are the firing attribute of t,.

3. Vector Z writes commands to the digital output interface. When a place p i is marked

by a token, then some output function occurs (e.g. start motor). Place pi would only

be allowed to write to a single element xi of vector Z, thus p i would only be allowed

to set or reset a single output.

26

It should be noted that in [18], input signal functions are associated with places and output

with transitions. Our practice of PN modeling of industrial systems suggests that it is

easier to associate input signal functions with transitions and output with places. This

latter approach was adopted in [14, 21].

An emergency stop situation normally requires the process to be halted (all outputs

reset) and for the system to return to an initial state or last state, upon the alarm condition

being manually or automatically reset. To handle different emergency stop schemes and

simplify modeling, special e-stop places would be used. These places have an additional

attribute that disables all designated outputs when the e-stop place is marked. Once the e-

stop place is marked all tokens will be removed from the RTPN. When the e-stop place

loses its token, either the last state marking or the initial marking mo will be restored,

based on the type of restart required. This place can also be used to execute a fault rou-

tine (i.e. execute a safe shutdown or alarm annunciation routine).

3.3. RTPN Model of Conveyor Start/Stop Control

Following is an example of how a RTPN can be used to model a conveyor system. The

functional specification for the system is as follows:

When parts are detected by a photo switch (PS1) in the conveyor receiving area,

the conveyor motor is commanded to start. When the delivery area photo switch (PS2)

detects a part the conveyor is commanded to stop. This DES can be broken down into the

following events:

27

1. Parts are detected by the receiving area photo switch.

2. The motor is commanded to start.

3. Parts are detected by the delivery area photo switch.

4. The motor is commanded to stop.

This system can be modeled using two places and two transitions. A place is re-

quired for each system state, i.e. conveyor running/conveyor stopped:

• pi sets the motor run output.

• p2 resets the motor run output.

• ti has a firing attribute of PS1 = 1 and delay = 0.

• t2 has a firing attribute of PS2 =1 and delay = 0.

An RTPN model of the system is shown in Figure 3.1(A). The system has an ini-

tial marking, ino = [0,1], i.e., place pi is not marked and place p2 is marked. Transition I./

fires when p2 is marked and PS1 detects a part. Place pi starts the conveyor motor by

setting output signal x i on the digital output interface. Transition t2 fires when the motor

is running (p i marked) and a part is detected by the delivery photo switch PS2. When the

token is removed from Place pi the motor is stopped by resetting output signal x l . The

system is now at its initial state and waits for another part to become available. The RLL

equivalent to the RTPN appears in Figure 3.1(B).

CHAPTER 4

COMPARISON OF PROGRAMMING LANGUAGES

4.1 Basic Elements

Both RLL and Petri nets contain several basic elements [18]. PN's have basic elements to

model conditions, status, activity, information/material flow, and resource avalability.

RLL does not have corresponding explicit representation to model these conditions.

Logical AND and logical OR can easily be modeled by both PN and RLL. Other concepts

such as time delays, cycle counting, concurrency and synchronization can be modeled by

both PN's and RLL [18].

4.2 Advanced Instructions

Since PLC' s have been on the market, the instruction set has expanded far beyond the

basic elements. The instruction set of todays typical PLC includes [4, 10, 12].

• Logical operations (AND, OR, NOT,etc..) on word length data.

• Integer and floating point math instructions.

• Data manipulation instructions (i.e. word moves, block moves, bit shift instructions,

bit rotate, etc.)

• Data conversion (Binary to BCD, etc.)

• Program control functions (jump to subroutine, jump to label, etc.)

29

30

To include the expanded features of today's PLC's into a RTPN controller, special

"places" could be developed. These special places could be built in functions, or user-

defined functions. If these special places are part of the "built in" functions, programming

software could be developed to allow the user to zoom into these places and observe their

contents. If these special places are user defined subroutines, these routines could be

written in "C" or Basic using the RTPN editor. These user defined subroutines could be

stored in a library and used over and over again by changing the number and addresses of

the input and output parameters. In RLL, data manipulation is performed by individual

functions entered directly into the ladder logic editor. This allows the user to view the

contents of the registers being manipulated. However, entering these functions directly in

the ladder logic editor further obscures the systems underlying sequential logic. RLL

allows the storage of blocks of ladder logic in library files. However, using these library

files not only requires changing the number and addresses of the input and output

parameters, but also requires modifying the addresses and tag descriptions of the internal

elements of the library file.

To keep the PN both small and manageable, sub-PN's could be developed. These

sub-PN's could be represented as a box containing two transitions and one place. The

sub-PN' s would consist of tested RTPN program modules representing the different

components of the system to be controlled. This would allow the programmer to break

the system down into small easily understandable RTPN models. These models could be

designed and tested individually, allowing concurrent engineering activities to take place.

To control program flow and execution, a supervisory PN could be used. The supervisory

31

PN would perform a function similar to the main program file in a "C" or Pascal program.

The addition of the sub-PN and supervisory PN allows for a hierarchical top-down or

bottom-up approach to developing a design algorithm. An example of this hierarchal

structure is as follows:

A system consists of five automatic assembly lines, waste water treatment of the

process effluent and an air pollution control and monitoring system. Each automatic

assembly system has three assembly stations. The supervisory PN enables each of the

main program sections (the five automatic conveyor systems, the waste water treatment

process and the air pollution control system). Thus only enabled program sections are

executed. If a particular line is not chosen for operation, its program logic is not solved.

The waste water treatment system logic is solved if at least one of the lines is in operation.

A RTPN is developed for a typical assembly line, the waste water and air pollution control

processes. The typical assembly line PN is reused and modified for the remaining four

conveyors. Each of these RTPN's is then broken down into groups of sub-PN' s. A

typical assembly line PN consists of a RTPN to sequence the transportation of materials

and the initiation of work at each of the three assembly stations. The typical assembly line

RTPN could contains three sub-PN's for each of the assembly stations.

At the present time Allen Bradley has developed a Sequential Function Chart

(SFC) programming language. SFC is a Petri net like programming language used to

coordinate large, complicated tasks into smaller, more maneagable tasks. The SFC itself is

not used for direct process control. However, it controls the execution of independent

32

RLL files. Similar to the RTPN language, a RLL file is developed for subsystem and

executed according to the supervisory SFC.

The RTPN would allow using places and transitions in more than one sub PN. In

a formal PN, a place or transition is only allowed to appear once in the net. A cross

reference index to places and transitions could be generated to show their usage. This

would be used for simplifying different interlocking schemes and keeping multiple arcs

from crossing over each other.

CHAPTER 5

RLL AND PETRI NET DESIGN FOR AN INDUSTRIAL SYSTEM

5.1 Functional Specification of an Industrial System

This functional description is based on a process used in water pollution treatment

facilities. The control system is for a secondary clarifier scum removal system. The scum

removal system is manufactured by Envirex Inc. Waukeshaw, Wisconson and is to be

installed in the Deer Island water pollution treatment facility near Boston, Massachusettes.

The system as shown in Figures 4.1(A) and 4.1(B) consists of nine (9) clarifier channels,

nine (9) skimmer pipes (one for each channel), and two (2) scum boxes. Waste water

flows through the clarifiers towards the skimmer pipe. As shown in Figure 4.1(B), the

skimmer pipes are sloped in groups of three towards a scum box. The skimmers are

rotated on a sequential basis to allow the froth on the surface of the water to be collected

in a scum box. Figure 4.2 shows the skimmer pipe positions related to the flow of water

through the clarifier.

5.1.1 Skimmer Pipes

As shown in Figure 5.1, each skimmer pipe is equipped with a motorized actuator and

position limit switches. A local control panel at each skimmer pipe is provided with a

local/off/remote selector switch. In the local mode the tubes are operated using switches

located on the local panel. The local controls are provided for maintenance purposes and

emergency system operation. In remote mode the skimmer pipes are controlled by the

PLC.

33

35

36

5.1.2 Spray Water Valve

Each skimmer pipe is also equipped with a spray water solenoid valve (not shown in the

Figures). Each spray valve has a local/off/remote selector switch at a local control panel.

In remote mode the respective valve is controlled by the PLC. In local mode the

respective valve is operated by local open/close switches. Similar to the skimmer pipes,

the local controls are provided for maintenance purposes and emergency system operation.

5.1.3 Scum Flushing Valve

A scum flushing valve is provided to flush the scum boxes at the completion of the

skimming cycle. The scum flushing valve is equipped with open and closed limit switches,

and a torque switch. The scum valve is also provided with a local/off/remote selector

switch at a local control panel. Local/remote operation is similar to the skimmer pipes and

spray water valves.

5.1.4 Remote Sequence of Operation

The skimmer pipes are to be provided with a sequential controller to rotate each skimmer

on a timed or continuous basis. In the timed mode, the sequence completes one cycle

every 6-24 hours (adjustable). In the continuous mode, the sequence starts when

continuous mode is selected. The sequence repeats until continuous mode is no longer

selected. In both modes of operation the skimming sequence is the same. The sequence

starts with skimmer A9 and finishes with Al in a decreasing numerical order. The

sequencing within each skimmer is as follows:

37

1. Rest position to reverse position for 10 to 60 seconds (adjustable).

2. Reverse to shallow or deep skim position for 10 to 120 seconds (adjustable).

3. Step to next skimmer.

4. The spray water valve opens during the skimming sequence of the associated skimmer

pipe.

5. The scum flushing valve opens for 60 seconds (adjustable) at the completion of the

skimming sequence.

The following interlocks affect the skimming cycle as follows:

1. The skimming cycle is interrupted on a high wet well level, the skimming cycle is re-

initialized at the interrupted skimmer on low wet well level.

2. The skimming cycle is halted and an alarm is generated on a skimmer malfunction.

The skimming cycle is resumed at the next skimmer on activation of "resume"

pushbutton. A skimmer malfunction is defined as failure to reach an operational mode

(rest, reverse, shallow or deep), within a specified time.

3. If the "local/off/remote" selector switch of a particular skimmer is not in the remote

position, then resume skimming at the next skimmer.

5.2 RLL Design

The RLL program was developed with the assistance of ISA logic diagrams. Samples of

the logic diagrams appear in Zhou & Twiss [25]. As can be seen the logic diagrams map

out many of the internal status bits and registers used by timers and counters. This enables

38

the programmer to document many of these internal instruction before any rungs are

entered with the RLL editor. This helps to insure the programmer the correct addresses

are entered when editing instructions. The PLC used for this project was an Allen Bradley

PLC-5, model 5/40. The PLC software was written using Wintelligent software by ICOM

Inc. A copy of the documented ladder logic program appears in Zhou and Twiss [25].

The RLL program was created by entering one RLL file for skimmer #9. This file

was tested with a test stand physically connected to the PLC I/O modules. The test stand

consisted of maintained and momentary switches to simulate input conditions, and lights

to indicate output signals. After the first program file was completely tested, it was copied

and stored in a library file. The addresses I/O and internal status bits of the library were

then searched and replaced with the addresses for skimmers 8 through 1. When the

search and replace was completed the files were inserted into the RLL program with the

logic for skimmer #9. To index from one skimmer subroutine to another, a sequential

function chart (SFC) was used [12, 6]. SFC's are similar to Petri nets. SFC's consist of

steps (similar to Petri net places) and transitions. A SFC repeatedly scans a step (program

file subroutine) until its output transition(s) become true. Once the output transition(s)

become true, all output conditions in the step are reset and the next enabled step (program

file subroutine) is scanned. After the SFC was entered, the system was again tested

using the test stand. A printout of the SFC appears in Zhou & Twiss [25]. The logic for

the scum valves and spray water valves was entered and a final test was then performed.

A portion of the ladder logic as shown in Appendix B is described as follows:

39

6-24 Hour Timer

Rungs 1-3 define the 6-24 hour timer. The minute timer on rung #1 is a 1 minute self

reseting timer, whose done bit pulses and increments the minute counter on rung #2. The

minute counter has a maximum preset value of 32,767 minutes. The minute counter resets

when rung #3 is executed.

Timer Mode

Rung #4 output instruction latches when the minute counter done bit is set. The auto start

timer latch bit remains set until skimmer #1 completes its skim cycle or timer mode is no

longer selected. This output instruction is used to remember that the system was initiated

in timer mode and is used on rung #5 to automatically restart skimming after a high to low

wet well transition. Rung #5 output instruction (auto start tmr) is a "one shot". The ONS

instruction only enables the post-conditions for one program scan while the pre-conditions

are set. This bit is set by either the minute counter done bit "or" a high to low wet well

transition when the system is in timer mode. The logic for the high wet well level latch

and low wet well reset bit is not shown.

Continuous Mode

Rung #6 output instruction is also a "one shot". This bit is initially set when the resume

pushbutton is depressed. It is then repeatedly set by the previous cycle complete bit. This

bit is also set on high to low wet well transitions while continuous mode is selected,

40

Step to Next Skimmer

Rung #7 enables the next skimmer when any of the following ocurrs:

1. A skimmer fault ocurrs and the "resume" pushbutton is hit.

2. The skimmer is in rest mode and the rest limit switch is activated.

3. Remote mode is not selected and the skimmer is in any cycle.

Auto Start

Rung #8 output instruction (auto start) is set when either the timer OR continuous auto

start bits are set AND remote mode is selected. This is also a "one shot" instruction since

the auto start timer and continuous instructions are "one shots".

Reverse Skim

Rung #9 output instruction (reverse skim) is set and latched when the auto start bit is set.

This bit remains set until either of the following ocurrs:

1. Actuator fault going to the reverse position.

2. Deep or shallow skim mode is initiated.

3. A high wet well level is reached.

Once in reverse skim mode, an actuator fault timer is started (rung #10). If the

input for the reverse limit switch does not become true within a preset time, an actuator

fault is initiated (rung #11). Also in the reverse skim mode, the PLC has a choice of

starting two timers depending on the position of the "deep/shallow" selector switch.

41

When one of these timers expires the reverse skim mode is terminated and shallow or deep

skim is initiated.

Deep or Shallow Skim

Deep or shallow skim cycles are identical to the reverse skim cycle. When the respective

timer expires the deep or shallow skim mode is terminated and the skimmer returns to the

rest position.

Rest Position

Once the skimmer is commanded to go to the rest position and the rest limit switch is

actuated, the next skimmer is enabled (rung #7). If the rest limit switch is not actuated

within a preset time, an actuator fault is initiated.

Spray Water Valve

The spray water valve is an energize to open and energize close valve. The output

instruction on rung #27 determines when the skimmer is in any cycle. A N.O. contact of

the output instruction on rung 27 opens the spray water valve (rung #28). A N.C. contact

of the output instruction on rung 27 closes the spray water valve (rung #27).

End of Transition

The output instruction on rung #30 (EOT) disables this program file and steps to the next

skimmer file in the SFC. In general when an EOT output instruction is true, the

42

receptivity of the output transition of the respective program step (RLL file) is true. Once

the output transition of a program step is true, then all the output conditions of the step

are reset and program execution begins at the next enabled step. [6, 11].

5.2.1 Summary of Ladder Logic Listing (Appendix B)

As can be seen in Appendix B and in Zhou & Twiss, 1995 [25], it is fairly simple to

determine the output of an individual rung. However, to determine the complete sequence

of operation from the ladder logic takes a concentrated effort. The difficulty in

determining the sequence of operation is due to the fact that the ladder logic listing fails to

capture the discrete event dynamics of the system. The components shown in dotted

boxes are for design modifications and will be explained later in chapter 6.

5.3 RTPN Design

5.3.1 Top Level Design

A top down approach is used in the RTPN design. Detail on top down Petri net synthesis

is discussed in Zhou & Dicesare, 1993 [20] and a laboratory demonstrated example using

four pneumatic pistons can be seen in Zhou, et. al., 1994 [18]. The top level design is

shown in Figure 5.3. Figure 5.3 is a cross between a Petri net and a flow chart. It models

the sequencing of the major elements of the system. Each of the large rectangles

represents a model of the major elements of the system. The major elements of the system

are: a model for the continuous mode of operation, a model for the timer mode of

operation, a model of each skimmer and a model of the scum valve. The model of each

43

skimmer is broken down into four (4) sub-models. The four sb-models are: the skim cycle

model, spray water valve model, high wet well e-stop model, and a model for loss of the

remote input when the skimmer is in cycle.

The system can be initiated in either continuous or timer mode. When the

continuous mode is selected, transition ta fires and enables the continuous mode model.

The output transition lb of the continuous mode model enables skimmers 9 - 1 in a

decreasing numerical order. Transition ta has a firing attribute (Y(a) = continuous: D(a) =

0) and transition tb is an immediate transition, which fires once all input places are marked.

Once skimmer #1 completes its operation the scum valve is enabled. If continuous mode

is still selected at the completion of the scum valve operation then the cycle repeats until

the continuous mode is no longer selected.

When timer mode is selected the timer model output transition t, fires once every

6-12 hours after completion of the scum valve operation. Transition t, has a firing

attribute (Y(c) = timer mode: D(c) = 6-12hrs). The output transition t, of the timer mode

model enables skimmers 9 - 1 in a decreasing numerical order. Once skimmer #1

completes its operation the scum valve is enabled. If timer mode is still selected at the

completion of the scum valve operation then the system continues to repeat one cycle

every 6-12 hours, until timer mode is no longer selected.

'La

45

5.3.2 Second Level Design

In the second level design (Figure 5.4) the model for skimmer #9 is expanded, and the

details of the continuous and timer models are shown.

Skimmer #9 Model Expansion

The model for skimmer #9 is expanded to show the relationship between the different

components of the skimmer model. As shown in the first level design the the skimmer

model is made up of four components. Three of the components (skimmer seq/high wet

well/spray water valve) are synchronized by transitions it] and / 16. When pi is marked by

either the continuous or timer mode of operation, immediate transition ti fires passing

tokens to the skimmer sequence model, the high wet well e-stop model and the spray

water valve model. If the remote input from a skimmer is lost while the skimmer is in

cycle, the skimmer stops and the next available skimmer (skimmer with remote selected) is

enabled. Thus the loss of remote model is shown with connections to the reverse skim,

shallow skim and deep skim places of the skimmer sequence model.

Continuous Mode Model Description

When the continuos mode of operation is selected, transition to fires. Transition t29 has a

firing attribute of (Y(29) = continuous: D(29) = 0). When transition t29 fires, a token is

removed from place p24 (enable skimmer #9) and deposited into place p20 (continuous

mode enabled). Place p24 is originally marked by the initial marking m0. When p20 is

marked, transitions t30 and 61 are enabled. Transition t3I has a firing attribute of (Y(31) =

46

skimmer #9 remote': D(31) = 0), t30 has a firing attribute of (Y(30) = skimmer #9 remote:

D(30) = 0). Therefore, if skimmer #9 is selected for remote operation, then 60 fires and

passes a token to pi (skim start request) of skimmer #9. Ifp20 is marked and if skimmer

#9 is not selected for remote operation then the skimming sequence is started at skimmer

#8. When skimmer #9 has completed its cycle, skimmer #8 is enabled by place p25 (enable

skimmer #8) being marked. When place 1325 is marked, and if skimmer #8 is selected for

remote operation, then skimmer #8 is enabled. If skimmer #8 is not selected for remote

operation then transition t37 fires bypassing skimmer #8. Transition t37 has a firing

attribute of (Y(37) = skimmer #8 remote': D(37) = 0). Once skimmers 8 through 1 and

the scum valve have completed their sequences, or have been bypassed, then place p24 is

marked. When p24 is marked and if continuous mode is selected, then the cycle repeats

until continuous mode is no longer selected. The dashed arcs in the upper portion of

Figure 6, are for design modifications and will be explained later.

Timer Mode Model Description

When the timer mode of operation is selected, transition t32 fires. Transition 62 has a

firing attribute of (Y(32) = timer: D(32) = 0). When transition 132 fires a token is removed

from place p24 (enable skimmer #9) and deposited into place p23 (timer mode enabled).

Place p24 is originally marked by the initial marking m0. When p23 is marked, transitions 63

and 64 are enabled. Transition 64 has a firing attribute of (Y(34) = timer': D(34) = 0),

transition 63 has a firing attribute of (Y(33) = 1: D(33) = 6-12 hrs), therefore if p23 is

marked for 6-12 hours then (33 fires and passes a token to 1,22 (timer mode remote check).

47

If timer mode is de-selected while p23 is marked then, transition t34 fires and p24 is re-

marked. When P22 is marked, t35 and t36 are enabled. Transition t36 has a firing attribute of

(Y(36) = skimmer #9 remote': D(36) = 0), and t35 has a firing attribute of (Y(35) =

skimmer #9 remote: D(35) = 0). Therefore, ifp22 is marked and if skimmer #9 is selected

for remote operation, then t35 fires and passes a token to pi of skimmer #9. If p 22 is

marked and if skimmer #9 is not selected for remote operation then the skimming

sequence is started at skimmer #8. When skimmer #9 has completed its cycle, skimmer #8

is enabled by place p25 (enable skimmer #8) being marked. The skimming cycle will

sequence through skimmers 8 to 1, similar to the continuous mode of operation. Once

skimmers 8 through 1 and the scum valve complete their sequences, or have been

bypassed, then place p24 is marked. Whenp24 is marked and if timer mode is enabled, then

t32 fires and the timer cycle is re-initiated.

Evaluation of Second Level Design

The RTPN models for the second level design was evaluated by playing the "token game".

The skimmer function boxes were replaced with "normal" places to allow the token game

to be played. To play the token game, the player places tokens according to the systems

initial marking. The player then looks for any enabled transitions and manipulates the

tokens according to the "firing rules" [13]. Incorporating the "token game" into the

RTPN programming package would facilitate program development and evaluation. For

this example the token player should find this model to be a safe and live PN. A safe and

live PN is both deadlock free and each place can contain no more than one token (1-

49

5.3.3 RTPN Model of Skimmer

The RTPN of a skimmer is composed of three components; the skimmer sequence, the

high wet well e-stop and spray water valve. Transition ti is used to initialze the three sub-

nets. Transition t16 is used to synchronize the three sub-nets at the end of the cycle.

Normal token flow through the typical skimmer RTPN model (Figure 5.5) is as follows:

Place p i (skim start request) receives a token from the continuous or timer mode of

operation (see second level design). When ti fires p2, 1,12 and pm are marked. Place p16

enables the high wet well e-stop RTPN. Place p12 enables the spray water valve RTPN.

When p2 (skimmer to reverse) is marked, the output address that drives the skimmer to

the reverse position is set, (Z(2) = skimmer to reverse). When p2 is marked, transitions t2

or t14 are enabled to fire. Transition t2 has a firing attribute of (Y(2) = the reverse limit

switch: D(2) = 0), when this transition fires a token is removed from p2 and deposited into

p3 (reverse skim), reseting Z(2). Transition t14 is a pure time delay transition, firing

attribute = (1: x seconds), where x is a variable delay preset by an operator. Transition t14

fires if the reverse limit switch is not actuated before D(14) time delay expires. When t14

fires, place pio (skimmer fault) is marked. This is fault loop is typical for "deep",

"shallow" and "rest" actuator faults. Place p3 sets the output for the reverse skim

indicator (Z(3) = reverse skim indicator). When p3 is marked transitions t3 or t6 are

enabled to fire, t3 has a firing attribute of (Y(3) = shallow skim: D(3) = x sec), t6 has a

firing attribute of (Y(6) = deep skim: D(6) = x sec). Depending on the mode selected

(shallow or deep), the skimmer will stay in "reverse" until the delay associated with 13 or

t6 expires. The skimmer then enters "shallow" or "deep" skim mode. When p4 (skimmer

When p4 or p6 is marked, then t4/t12 or On are enabled to fire. Transitions t4/t7 have a

firing attribute of (Y(4) = the shallow limit switch: D(4) = 0/ Y(6) = the deep limit switch:

D(6) = 0), when one of these transitions fire a token is removed frompip6, and deposited

into p5/p7 (shallow/deep skim skim), thus reseting Z(4)/Z(6). Similar to the reverse skim

mode, if the skimmer does not reach the desired position within a preset delay (t12 or t13),

then t12 or t13 fires and place pio (skimmer fault) is marked. Places ps and p 7 indicate that

the skimmer is in the reverse skim position and set the outputs for those respective

indicators. The system stays in the deep or shallow skim mode until the delay associated

with t5 or t8 expires. Place pa converges the two paths (shallow/deep). Transition t9 is an

immediate transition and fires as soon as ps is marked. When p9 (skimmer to rest) is

marked the output address that drives the skimmer to the rest position is set, (Z(9) =

skimmer to rest). When p9 is marked, transitions /Jo and t11 are enabled to fire. Transition

do has a firing attribute of (Y(10) = the rest limit switch: D(10) = 0), when this transition

fires a token is removed from p9 and deposited into p l , (cycle complete), thus reseting

Z(9). Similar to the reverse skim mode, if the skimmer does not reach the desired position

within a preset delay (tri). Then tit fires and placepio (skimmer fault) is marked.

When an actuator fault occurs during the skim cycice, place pm is marked. To

reset the fault and continue skimming at the next skimmer the operator must hit the

resume pushbutton. In the RTPN transition 6 5 has a firing attribute of (Y(15) = resume

51

pushbutton: D(15) = 0). When pio is marked and the resume pushbutton is hit, then a

token is removed from pro (skimmer fault) and depsoited top]] (cycle complete).

Spray Water Valve

The spray water valve is enabled when place 1312 is marked. When P12 is marked,

transitions t17 and t20 are enabled to fire. Place pp, is marked by the initial marking mo.

Transition t17 has a firing attribute of (Y(17) = spray water valve remote: D(17) = 0),

transition t20 has a firing attribute of (Y(20) = spray water valve remote': D(20) = 0). If

the spray water valve is not selected for remote operation, then t20 fires and place pis is

marked. If the spray water valve is selected for remote operation, then t17 fires and 1313 is

marked. Place p13 sets the spray water valve open output. Whenpl3 is marked transitions

t18 and t19 are enabled. Transition t18 is an immediate transition and fires when pH

(skimmer cycle complete) is marked. When t18 fires a token is removed and re-deposited

into pii by the bi-directional arc, a token is removed from 1313 (resetting the spray water

valve open outpt), and a token is deposited to 1314. Place p14 sets the spray water valve

close output. If pH is marked and the remote mode of operation is de-selected, then t19

fires, removing the token from p 13 and depositing a token into pm and p15. This allows an

operator to take local control of the spray water valve while the automatic skimming cycle

continues.

52

High Wet Well E-Stop Description

When the high wet well level e-stop place p i , is marked, skimmer operation is disabled by

removing all tokens from all places. Place p 17 is marked when the particular skimmer is in

any cycle and a high wet well condition ocurrs. The high wet well condition is

automatically reset on a low wet well level. Transitions t23 and t24 are used to debounce

the high and low level switches. These transitions have the following firing attributes

(Y(23) = low level switch: D(23) = 3 sec) and (Y(24) = high level switch: D(24) = 3 sec).

When the high wet well condition is reset, immediate transition t 22 fires and the token is

removed from the e-stop place pi 7. When the e-stop place loses its marking, then the

initial marking is returned to the particular skimmer were the high wet well condition

ocurred. The initial marking for the skimmer is for pi, p12 and pm to be marked. The

skimming cycle then re-initializes and continues forward from this point.

Loss of Remote PN Description

Place pii (cycle complete) is marked when the skimmer is in any cycle

(reverse/shallow/deep) and the remote input is lost. Transitions 65, 426 t27 have a firing

attribute of (Y(25-26) = skimmer remote'; D(25-26) = 0).

The following figure (Figure 5.5) is the RTPN model for a typical skimmer. This model

includes the skimmer operation, spray water valve operation, high wet well e-stop

interlock, and the action of skipping to the next skimmer when remote mode is no longer

at the skimmer local control panel.

54

5.3.4 Scum Valve Model

The RTPN model of the scum valve is shown in Figure 5.6. Normal token flow through

the scum valve RTPN is as follows: Place 1330 enables receives a token when skimmer #1

completes its skim cycle. Transition 141 is an immediate transition, when t41 fires a token is

removed from 1330 and deposited to p 31 . Place psi sets the output that opens the scum

valve, (Z(31) = open scum vave). When P31 is marked transitions 42 and 143 are enabled.

Transition 143 fires when the scum valve open limit switch is actuated, (Y(43) = scum valve

open limit switch; D(43) = 0). When 143 fires place p32 is marked. Place 1332 indicates the

scum valve is open (Z(32) = scum valve open indicator). Place 1332 will remain marked

until the delay associated with 144 expires. Transition t44 has a firing attribute of (Y(44) =

1; D(44) = x sec). When 144 fires 1333 is marked, p33 sets the output that closes the scum

valve. When the scum valve closes, 143 (Y(45) = scum valve closed limit switch; D(45) =

0), fires and marks place p34. Place 1,34 indicates that the scum valve has completed its

cycle. When p34 is marked immediate transition 46 fires and passes a token to skimmer #9.

Scum valve actuator fault is initiated when the valve is commanded to open or

close and does not reach its full open or closed position within a predetermined time.

Transitions 14 7 and 148 are pure time delay transitions. These transitions fire and mark p45

(skimmer fault) when the scum valve does not reach its open or closed position within a

predetermined time. To reset the fault condition the resume pushbutton must be

depressed. Transition 147 has a firing attribute of (Y(47) = resume pushbutton; D(47) = 0).

If the valve repeatedly fails to close the fault must be manually corrected.

55

CHAPTER 6

DESIGN COMPARISON

6.1 Understandability

The RLL program listing produces approximately 450 rungs of code, or 90 pages, see

Zhou & Twiss [25], while the RTPN program produces four Petri net designs structures

(Figures 5.3, 5.4, 5.5 and 5.6) plus a table (Appendix A) to interpret the meanings of

places and transitions. RTPN' s make it easier to implement a hierarchal structure. This

results in a more compact design algorithm. One could argue, the ladder logic program

consists of 9 subroutines. The only difference between these subroutines is the addresses

and tag numbers. Therefore, once one subroutine is understood, all are understood. Each

RLL subroutine is approximately 30 rungs, or 7 pages, roughly equivilant to the RTPN.

As mentioned earlier the RLL program was written with the assistance of a supervisory

SFC. The SFC simplifies the sequencing of each RLL subroutine. However, when many

subroutines are used in a pure RLL file it becomes difficult to determine how and in what

order they are executed. This is because RLL is similar to a line number oriented

programming language. Every rung is scanned in sequential order wether the conditions

for the rung output instruction are true or false (jump to subroutine is considered a rung

output instruction). RTPN is similar to a procedural programming language, e.g., C or

Pascal and can be used to outline the execution of a program. In a RTPN, only sections of

logic that are enabled are executed. The order of execution is determined by the structure

of the RTPN itself As mentioned earlier RLL fails to capture the time/event dependency

56

57

of the different events taking place in the system. The RTPN model, however, explicitly

models the skimmer sequencing.

6.2 Simulation

Simulation is inherently built into RTPN's. By playing the "token game," a system

designer could follow the program logic step by step before the software is loaded into the

controller. Simulation is not inherently built into RLL. Several software manufacturers

have recently added the ability to create "historgrams," or bar charts that show the timing

sequence of several input and output conditions. A single historgram, however, cannot be

used to show the timing sequence of every input and output instruction in a RLL program

of any measurable size. The average size of a histogram is 5 to 10 horizontal timing bars.

This requires the designer to build many histograms to monitor the RLL program.

6.3 Flexibility

To determine the flexibility of each algorithm, the following changes will be made to the

original design specifications for the waste water treatment system described above:

• A time delay is to be inserted before a skimmer begins the reverse skim operation.

• Continuous mode is to be modified to allow only five complete skimming cycles.

• The RTPN sequence is to be modified as follows: rest to reverse, reverse to shallow,

shallow to deep, deep to rest, all with adjustable time delays as before.

58

6.3.1 Time Delay

The insertion of a time delay before the reverse skim operation begins has no effect on the

structure of the RTPN. The immediate transition t i that follows pi in Figure 5.5, is

changed from an immediate transition to a timed transition. Changing a transition from

immediate to timed has no effect on the RTPN structure.

The insertion of a time delay in the RLL program requires an additional rung to

include the timer function, an additional rung output instruction (coil), and modification to

existing rungs of ladder logic. The original output instruction (coil) is replaced by the new

output instruction (coil). A normally open contact of the new output instruction was used

to enable the new timer. The done bit of the timer was then used to set the original output

instruction (coil) that started the reverse skim mode operation. See Appendix B for RLL

modifications.

6.3.2 Maximum Cycle Counter

The insertion of a counter requires modification to the basic structures of both designs.

The RTPN requires two additional places p2 7 (counter place), p28 (cycle permit place) and

an additional transitions t39. Transition t39 has a firing attribute of (Y(39) = resume PB:

D(3 9) = 0). The "counter place" has an output arc of weight 5 to the new transition and

an input arc of weight 1 from transition t30. When the system is in continuous mode, each

time transition t30 fires, a token is removed from p28 and deposited to p27. After t30 fires

five times, p28 has 0 tokens, t30 is disabled, p27 has five tokens, and /39 is enabled if the re-

sume pushbutton is hit. When transition t39 fires all five tokens are removed from p27, five

59

tokens are deposited to p28 and one to p24. Place p28 is initially marked with five tokens by

mo. The required modifications are shown in Figure 5.4 using dashed arcs.

The insertion of a cycle counter in the RLL program requires modifications to ex-

isting rungs and two new rungs. One rung to include the counter function and another to

reset the counter. The modifications are as follows (see Appendix B for the modifica-

tions):

• A normally open contact of the original rung output instruction (coil) used to start the

system in continuous mode was used on a new rung to increment the counter each

time a new cycle is started.

• To reset the counter the resume PB input was used.

• To prevent more than five cycles from occurring at once the "not" (normally closed

contact) of the counter done bit was placed in series with the original output instruc-

tion that started the system when continuous is selected.

6.3.3 Sequence Modification

Modification of the sequence to eliminate the choice structure of the system requires

modifications to the structures of both algorithms. The elimination of the choice structure

simplifies the RTPN structure by eliminating the parallel paths after p3 . The elimination

of the choice structure in the RLL program does not simplify this algorithm. See [25] for

a comparison of the old and new RTPN' s and RLL.

60

6.4 Diagnostics

The diagnostic features of RLL programming packages have been consistently improved

over the past 20 years. With today's RLL packages the systems engineer can search for a

certain output statement, observe the precondition logic and backtrack to the source of the

problem. RLL packages also offer the capability to "force" override the precondition

logic for an output statement. This allows engineers to determine if the fault is in the

hardware or software. A RTPN software package would have to have at minimum the

above capabilities. However the main advantage the RTPN could have over RLL would

be on-line monitoring of token flow.

6.5 Documentation

As can be seen in Zhou & Twiss [25] the RLL program is built around an extensive data-

base. Also at the bottom of each rung is a cross-reference of where the output instruction

is used throughout the program. Programmers are required to describe (for their own

benefit) each and every instruction used in the program. For an average program they

spend approximately 25% to 50% of their time editing the database. A RTPN package

would require the description and I/O mapping of each place and transition. This should

result in a smaller database due to the elimination of internal flags required in RLL, which

are not be needed in the RTPN model. Another advantage to an RTPN package would be

that documentation is "built into" the control program by virtue of the model itself.

CHAPTER 7

CONCLUSION

ISA Logic diagrams and Timing/Sequence diagrams are valuable tools in the development

and maintenance of relay ladder logic control systems. Graphical modeling approaches

such as Petri nets and Sequential Function Charts tend to be more compact than their cor-

responding relay ladder logic programs. Graphical modeling techniques capture the dis-

crete event dynamics of a system. These approaches show how the controller operates

instead of how it is implemented [1]. This enables quicker understanding, easier mainte-

nance, and reduced programming errors.

Petri nets hold a promise as a solution to modern industrial control problems.

They display greater flexibility and understandability of the process than today's standard

RLL programming techniques. To speed up their applications to industrial discrete event

control problems, more standard software tools have to be developed. It should be noted

that several companies in Japan, e.g., Hitachi, Kobe Steel, have invested in this area and

achieved a significant savings in system development time compared with traditional RLL

and general-purpose programming approaches [14, 19]. A benchmark study on a variety

of methodologies should be helpful in convincing engineers to accept new approaches

such as Petri nets. Future work includes benchmark studies among sequential function

charts, Petri nets, structured text, and state machine methods.

61

APPENDIX A

PLACE/TRANSITION DESCRIPTION TABLE

62

Place/Transition Table

63

Place Description

P1	 Skimmer #9 start request

P2	 Skimmer #9 moving to reverse position

P3	 Skimmer #9 in reverse skim mode

P4	 Skimmer #9 moving to shallow position

P5	 Skimmer #9 in shallow skim mode

P6	 Skimmer #9 moving to deep position

P7	 Skimmer #9 in deep skim mode

P8	 Skimming complete

P9	 Skimmer #9 moving to rest position

P10 Skimmer #9 fault

P11 Skimmer #9 cycle complete

P12 Enable spray water valve

P13 Spray water valve open

P14 Spray water valve closed

P15 Spray water valve loss of remote

P16 Enable high wet well e-stop

P17 High wet well e-stop

P18 Hi wet well level

P19 Low wet well level

P20 Continuous mode start request

P21	 6-12 hour timer enable

P22 Timer mode start request

P23 Timer mode selected check

P24 Enable skimmer #9

Attributes

status only

(Z(2) = skimmer to reverse)

(Z(3)= reverse skim indicator)

(Z(4)= skimmer to shallow)

(Z(5) = shallow skim indicator)

(Z(6) = skimmer to deep)

(Z(7) = deep skim indicator)

status only

(Z(9) = skimmer to rest)

status only

status only

status only

(Z(13)= spray water valve open)

(Z(14)= spray water valve closed)

status only

status only

Disables all outputs when

marked/resets RTPN by placing a

single token in P(1)when t(22) fires.

status only

status only

status only

status only

status only

status only

status only

Trans

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Description

Initiate skim cycle

Reverse position limit switch

Reverse skim duration 1

Shallow position limit switch

Shallow skim duration

Reverse skim duration 2

Deep position limit switch

Deep skim duration

Skimming complete

Rest position limit switch

64

P25 Enable skimmer #8	 status only

P26 Enable scum valve	 status only

P27 Not used

P28 Not used

P29 Not used

P30 Not used

P31 Open scum valve
	

(Z(31) = open scum valve)

P32 Scum valve open
	

(Z(32) = scum valve open indicator)

P33 Close scum valve
	

(Z(33) = close scum valve)

P34 Scum valve fault	 status only

Til Skimmer to rest fault check

T12 Skimmer to shallow fault check

T13 Skimmer to deep fault check

Attributes

Immediate transition

(Y(2) = reverse skim limit switch; D(2) = 0)

(Y(3) = 1; D(3) = 10-60 seconds)

(Y(4) = shallow skim limit switch; D(4) = 0)

(Y(5) = 1; D(5) = 10-120 seconds)

(Y(6) = 1; D(6) = 10-60 seconds)

(Y(7) = deep skim limit switch; D(7) = 0)

(Y(8) = 1; D(8) = 10-120 seconds)

Immediate transition

(Y(10) = rest position limit switch;

D(10) = 0)

(Y(11) = "not" rest position limit switch;

D(11) = 45 seconds)

(Y(12) = "not" shallow skim limit switch;

D(12) = 45 seconds)

(Y(13) = "not" deep skim limit switch;

D(13) = 45 seconds)

(Y(14) = "not" reverse skim limit switch;

D(14) = 45 seconds)

Immediate transition

(Y(17) = spray water valve remote;

D(17) = 0)

Immediate transition

(Y(19) = spray water valve "not" remote;

D(19) = 0)

(Y(20) = spray water valve "not" remote;

D(20) = 0)

Immediate transition

Immediate transition

(Y(23) = wet well low level switch;

D(23) = 3 s)

(Y(24) = wet well high level switch;

D(23) = 3 s)

(Y(25) = skimmer#9 "not" in remote;

D(25) = 1s)

(Y(26) = skimmer#9 "not" in remote;

D(26) = 1 s)

(Y(27) = skimmer#9 "not" in remote;

D(27) = 1 s)

65

T14 Skimmer to reverse fault check

T16 Step to next skimmer

T17 Spray water valve remote check 1

T18 Initiate close spray water valve

T19 Spray water valve remote check 2

T20 Spray water valve remote check 3

T21	 Initiate high wet well e-stop

T22 Reset high wet well e-stop

T23 Low wet well level switch debounce

T24 High wet well level switch debounce

T25 Skimmer #9 "not" in remote

T26 Skimmer #9 "not" in remote

T27 Skimmer #9 "not" in remote

T28 Not used

T29 Initiate continuous operation

T30 Continuous mode remote check 1

T31 Continuous mode remote check 2

(Y(29) = skimmer#9 continuos mode

selected; D(29) = 0)

(Y(30) = skimmer#9 remote mode selected;

D(30) = 0)

(Y(30) = skimmer#9 "not" in remote mode;

D(30) = 0)

66

T32 Initiate timer operation

T33 Timer mode initiate delay

T34 Timer mode check

T3 5 Timer mode remote check 1

T36 Timer mode remote check 2

T37 Skimmer #8 remote mode check

T38 Scum valve remote mode check

(Y(32) = skimmer#9 timer mode selected;

D(32) = 0)

(Y(33) = 1; D(33) = 6-12 hours)

(Y(34) = skimmer#9 timer mode selected;

D(34) = 0)

(Y(35) = skimmer#9 remote mode selected;

D(35) = 0)

(Y(36) = skimmer#9 "not" in remote mode;

D(36) = 0)

(Y(37) skimmer#8 "not" in remote mode;

D(37) = 0)

(Y(38) = scum valve "not" in remote mode;

D(38) = 0)

T39 Not used

T40 Not used

T41 Scum valve open limit switch

T44 Scum valve fail to open fault

T45	 Scum valve fail to close fault

T46 Reset scum valve fault

(Y(41) = scum valve open limit switch;

D(41) = 0)

(Y(42) = 1; D(42) = 30 - 120 seconds)

(Y(43) = scum valve closed limit switch;

D(43) = 0)

(Y(44) = "not" scum valve open limit

switch; D(44) = 45 seconds)

(Y(45) = "not" scum valve closed limit

switch; D(45) = 45 seconds)

(Y(46) = resume pushbutton; D(46) = 0)

T42 Scum valve open duration

T43 Scum valve closed limit switch

APPENDIX B

PLC LADDER LISTING OF TYPICAL SKIMMER
WITH SEQUENCE MODIFICATIONS SHOWN

67

minute tmr
TON

minute ctr
CTU

minute ctr reset

auto start
tmr latch

0

auto start
tmr

0

tmr mode

low wet well
auto start
tmr latch

'-
hi wet

well latch 	 cont. mode

low wet well

minute tmr
done

minute tmr
done
	 II 	

minute ctr
d9ne
	 I 	

minute ctr
d9ne
	 I I 	

auto start
tmr latch

I

minute ctr
done
	 II 	

hi wet
well latch

resume
pushbutton

prey. skimr
cycle comp.

hi wet
well latch

max cycle
ctr done

auto start
cont.

resume pb

68

auto start
cont.

max cycle ctr

max cycle ctr
	 res

CTU

timer mods

resume pb

rest limit
switch

skmr in
any crcle

auto start
t.

	

I
I I 	

auto start
tmr
	 I I 	

remote

	

I 	

go to
next skimr

seq mod
delete this NC

contact

69

sknif fault

rest
	If	

remote

auto start
tmr
	 I I 	

auto start
c(it.

auto, start

reverse skim
	 I I 	

reverse skim
	 I I 	

enable rev ,
, skim timer
reverse skim

rev limit
swp

r

enable rev
skim timer
-I
to rev skim
tmr

I I
done

-

to rev
skim tmr

TON

TON

go to
next skimr
0

auto start
0

to rev 	 hi wet
fault 	 to deep 	 to shallow 	 well

	I ons

reverse skim 	 to rev
fault tmr

to rev
fault tmr done
	 I I	

to rev fault

rev limit
reverse skim switch 	 shallow ss
	 II 	 II 	 II	

to shallow
tinier done

I .

to shallow
timer
TON

0 to shallow

1 0

1 1

12

1 3

ons

to shallow
to shallow
	

fault

to reverse

hi wet
well

	4er	
to re)(rst

shallow limit
switch

to shallow
fault tmr done
	 I I	

to shallow
fault tmr

TON

to shallow fault

shallow skim shallow is
	 rev limit

reverse skim switch
14 	 II	 I I	

to deep
timer done
	 I I	

to deep

0
shallow

skim

0

17

shallow
skim
	 I I	

18

to cleceSa u It

to rest
timer
TON

shallow	 shallow
skim	 limit switch

to deep

deep
skim

deep
skim

hi wet
well

deep
skim

0

to deep
fault tmr

to deep
fault tmr done

deep limit
switch

to deep
fault to rest
	 Air	

deep limit
switch

deep
skim
 I I

ons I	

TON

19

20

21

70

to deep
timer

deep, ss TON

15

16

22

71

to rest
timer done to rest

0

rest

0

to rest
fault tmr

TON

to rest fault

to rest
fault 	 auto startto rest

ons I 	

rest

rest limit
switch
	 #11r	

to rest
fault tmr done

23

24

25
rest

26

reverse
skim
	 I I 	

shallow
skim

deep
skim

skmr in
any cycle
 II
skmr in

any cycle
29

go to
next skmr

30

skmr in
any cycle

0

open spray
water valve

close spray
water valve

0

EOT

	 0

27

28

REFERENCES

1. A.D. Baker, T.L. Johnson, D.I. Kerpelman, and H.A. Sutherland, Grafcet and SFC as
Factory Automation Standards Advantages and Limitations", Proc. of the 1987
American Control Conference, Minn, MN, pp. 1725-1730, June 1987.

2. T.O. Boucher, M.A. Jafari, and A.G. Meredith, "Petri Net Control of an Automated
Manufacturing Cell," Computers and Indu. Eng., 17(1-4), pp. 459-463, 1989.

3. G. Bruno, and G. Marchetto, "Process translatable Petri Nets for the Rapid
Prototyping of Process Control Systems," IEEE Trans. on Software Eng., 12 (2),
pp. 346-356, 1986.

4. L. A. Bryan, Programmable Controllers - Theory and Implementation, Industrial Text,
Chicago, IL., 1988.

5. D. Crockett, A.A. Desrochers, F. DiCesare, and T. Ward, "implementation of a Petri
Net Controller for a Machining Workstation," Proc. of IEEE Int. Conf. Robotics
and Automation, Raleigh, NC, pp. 1861-1867, 1987.

6. R. David and H. Alla, Petri Nets and Grafcet, Tools for Modeling Discrete Event
Systems, Prentice Hall, N.Y., N.Y., 1992.

7. A. A. Desrochers and F. DiCesare, "Modeling, Control, and Performance Analysis of
Automated Manufacturing Systems Using Petri Nets", Control and Dynamic Sys-
tems, C.T. Leondes, Ed., N.Y., N.Y.: Academic, Vol. 47, pp. 121-172, 1991.

8. A. A. Desrochers, Modeling and Control of Automated Manufacturing Systems, IEEE
Computer Society Press, Washington, D.C., 1990.

9. A. Falcoine and B. H. Krogh, "Design Recovery for Relay Ladder Logic," IEEE Con-
trol Systems, 13(2), pp. 90-98, 1993.

10. D.G. Johnson, Programmable Controllers for Factory Automation, Dekker, N.Y.,
N.Y., 1987.

11. International Electrotechnical Commission, Technical Committee 65: Industrial Proc-
ess Measurement and Control, Subcommittee 65A, Working Group 6 (1990). Part
3: Programming _Languages, March 15, 1990.

12. G. Michel, Programmable Logic Controllers, Architecture and Applications, John
Wiley & Sons, N.Y., N.Y., 1991.

13. T. Murata, "Petri Nets: Properties, Analysis and Applications", Proceedings of the
IEEE, 77(4), pp.541-580, 1989.

72

73

14. T. Murata, N. Komoda, K. Matsumoto and K. Haruna, "A Petri Net-Based Controller
for Flexible and Maintainable Sequence Control and its Applications in Factory
Automation", IEEE Trans. on Industrial Electronics, pp. 1 -8, 1986.

15. T. Murata and I. Suzuki "A Method for Stepwise Refinements and Abstractions of
Petri Nets", Journal of Comp. and Syst. Science, 27, pp. 51 -76, 1983.

16. L. Ready, "Programming PLC's with Sequential Logic", Control Engineering, pp.
101-107, November 1991.

17. R. Vallette, "Analysis of Petri Nets by Stepwise Refinements", Journal of Comp. and
Syst. Science, 18, pp. 35-46, 1979.

18.K. Venkatesh, M.C. Zhou, and R. J. Caudill, "Comparing Ladder Logic and Petri Nets
for Sequence Controller Design through a Discrete Manufacturing System", IEEE
Trans. on Industrial Electronics, 41(6), pp. 611-619, 1994.

19. M.C. Zhou, Petri Nets in Flexible and Agile Automation, Kluwer Academic, Boston,
MA, 1995

20. M.C. Zhou and F. DiCesare, Petri Nets Synthesis for Discrete Control of
Manufacturing Systems, Kluwer Academic, Boston, MA, 1993.

21. M.C. Zhou, K. McDermott and P.A. Patel, "Petri Net Synthesis and Analysis of a
Flexible Manufacturing System Cell", IEEE Trans. on Man & Cybernetics, 23(2),
pp. 523-531, March/April 1993.

22. M.C. Zhou, F. DiCesare, and D. Rudolph, "Design and Implementation of a Petri Net
Based Supervisor for a Flexible Manufacturing System", Automatica, 28(6), pp.
1999-2008, 1992.

23. M.C. Zhou and E. Twiss, "A Comparison of Relay Ladder Logic Programming and
Petri Net Approach Sequential Industrial Control Systems", Proc. of the 4th IEEE
Conf. on Control Applications, Albany, NY, pp. 748-753, September 1995.

24. M.C. Zhou and E. Twiss, "Discrete Event Control Design Methods: A Review", to
appear in Preprints of the 13th IFAC World Congress, San Francisco, CA, July
1996.

25. M. C. Zhou and E. Twiss, "A Comparison of Relay Ladder Logic Programming and
Petri Net Synthesis for Control of Discrete Event Systems", Technical Report
#9501, Discrete Event Systems Laboratory, ECE, New Jersey Institute of
Technology, Newark, N.J., 1995.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical sketch
	Acknowledgment
	Dedication Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Programmable Logic Controllers
	Chapter 3: Theory of Petri Nets
	Chapter 4: Comparision of Programmable Languages
	Chapter 5: RLL and Petri Net Design for an Industrial System
	Chapter 6: Design Comparison
	Chapter 7: Conclusion
	Appendix A: Place/Transition Description Table
	Appendix B: PLC Ladder Listing of Typical Skimmer with Sequence Modifications Shown
	References

	List of Tables
	List of Figures

