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ABSTRACT

THE CONSTANT FRACTURE ANGLE MODEL
FOR CEMENTITIOUS MATERIALS

by
Suk Ki Kim

Fracture mechanics of concrete has been investigated for the past two decades

using linear elastic and nonlinear fracture mechanics concepts. The models proposed so

far remain questionable largely due to specimen dependency of the proposed fracture

parameters.

In this study, a new approach for modeling the fracture characteristics of

concrete and fiber reinforced concrete is proposed. The model depends on the load-

CMOD relationship rather than the traditional load-deflection principle. Although energy

consumed during fracture is definitely a direct function of the load-displacement

response, it was observed that traditional displacement measurement included an

extraneous and erratic portion due to test setup and support crushing. The magnitude of

this erroneous deformation was found to be of the same order as the actual displacement,

leading to inaccurate determinations of fracture parameters. To overcome this problem,

the load-CMOD relationship is a more reliable parameter for determining the fracture

characteristics because it is unaffected by the specimen setup and any support crushing.

An important step towards the use of load-CMOD concept as a key fracture

parameter depends on relating the CMOD to the traditional load-line deflection. This

investigation found that there is a unique linear relationship between the CMOD and the

load-line deflection, provided that deflection is measured accurately. The exact numeric

value of relationship between the CMOD and the deflection, that is, the slope of the line,

is discovered to be a material property. This linear relationship between the deflection



and CMOD can be understood physically as a constant fracture angle of the material.

The proposed concept is therefore named the Constant Fracture Angle Model.

The model was evaluated for size dependency using several sizes of notched

beams with different notch lengths. Different types of cementitious materials were also

investigated to confirm the validity of the proposed model. The proposed model finds a

problem with the existing RILEM recommendations for measuring the fracture

toughness of concrete. A proposal to correct the problem is made.

This theoretical model can easily relate the fracture energy to the observed load-

CMOD response. The model shows that fracture energy is a constant fracture parameter

and independent of specimen and notch size. The model also provides a constant linear

relationship of the deflection and CMOD, works with a range of specimen sizes to

produce consistent fracture parameters, and the size of an equivalent micro cracked

zone. In addition, it also generates a new concept for measuring the toughness index of

fiber reinforced composites. Different types of fiber reinforced materials were studied

and the same unique relationships were observed.

Finally, a new standard testing setup for measuring the fracture parameters of

concrete is proposed if the traditional load-line deflection method is to be used.

However, the present study strongly suggests that the CMOD response should be used

as the new standard for any future fracture toughness testing and evaluation.
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CHAPTER 1

INTRODUCTION

Fracture mechanics is devoted to the analysis of cracked bodies based on Griffith's

[1920; 1924] pioneering work that determined the fracture strength of brittle solids. The

scope and complexity of problems treated with fracture mechanics theory has been

increasing ever since. Finding the load required to cause a critical stress singularity ahead

of a crack tip, described by a stress intensity factor, and the accompanying crack

extension leading to failure are the kind of problems commonly solved using fracture

mechanics.

Due to concrete's low tension resistance, most of the failures observed in

concrete structures are initiated by local tensile failure in an area of high stress

concentrations or within a zone of pre-existing flaws. Recently, it has been realized that

in order to improve the serviceability and safety of concrete structures, the tensile

fracture resistance of concrete has to be incorporated into the analysis procedures

[Hawkins 1984; Tassios 1984; Elfgren 1988; Darwin et al. 1994].

More than thirty years after Kaplan's [1961] first attempts to apply fracture

mechanics to concrete, it is still not clear whether or not the cracking of concrete can be

predicted with linear elastic fracture mechanics (LEFM). Many inconsistent results

determining the fracture parameters, fracture toughness (K ID) or critical strain energy

release rate (G1 ,), and highly contradictory conclusions have been reported by the many

researchers [Maus 1969; Brown 1983; Francois 1984]. One of the primary reasons for

the discrepancies and increased complexity of the problem is a lack of knowledge about

the exact nature of the process zone. The experimental studies of the process zone in

concrete materials are hindered by the difficulties in estimating both the traction-free

crack and the process zone size.
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Another important fracture parameter is the fracture energy (GF), which has a

physical meaning similar to the critical strain energy release rate, and is determined from

the work needed to completely separate a specimen into two halves. The real value of GF

is obtained from a direct tensile test. Because of the difficulties involved in performing

the direct uniaxial tensile test, three-point bend tests on notched beams was suggested

from the International Union of Testing and Research Laboratories for Materials and

Structures (RILEM) for determining the fracture energy [RILEM 1985]. The energy

consumed during fracture is a direct function of the load-displacement response. The

traditional displacement measurement includes extraneous deformation due to test setup

and supports crushing. Unfortunately, the magnitude of this erroneous deformation was

found to be of the same order as the actual displacement, leading to inaccurate fracture

parameters [Hillerborg 1985; Gopalaratnam, et al. 1991]. To overcome this problem, the

load-crack mouth opening displacement (load-CMOD) relationship is a more reliable

parameter unaffected by the specimen setup and any support crushing.

Until the current study the CMOD has primarily been used in closed-loop testing

as the control parameter to ensure a stable failure of specimen so that the fracturing

activities around peak the load and through the post-peak regions can be clearly

observed. However, since the CMOD is unaffected by support settlement it is thought

that it might be a more reliable fracture parameter.

This investigation found that there is a unique linear relationship between the

CMOD and the load-line deflection, provided that deflection is measured accurately. The

numeric value of the relationship between CMOD and the load-line deflection ,that is,

the slope of the line, is shown to be a material property. Such a linear relationship

between the deflection and CMOD can be understood physically as the constant fracture

angle of the material. The proposed concept is then named the Constant Fracture Angle

Model (CFAM). The model was evaluated for size dependency using several sizes of

notched beams and with different notch lengths. With the proposed model, existing
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RILEM recommendations for measuring the fracture toughness of concrete will have to

be modified. This theoretical model can easily relate the fracture energy to the observed

load-CMOD response.

An experimental program is undertaken to examine the relationship between the

CMOD and load-line deflection. Three different specimen sizes and four different notch

depths for each size are evaluated in the three-point bend notched beam test using

normal and fiber reinforced concretes. The load, CMOD, load-line deflection measured

with reference to the neutral axis of the beam, and load-line deflection with reference off

the beam (traditional displacement measurement) are monitored to check and investigate

the fracture parameters.

Chapter 2 will briefly review the fracture parameters of concrete. The stress

intensity factor and energy release rate are described. Experimental methods for

determining the fracture parameters are introduced. Several fracture mechanics models

are investigated in Chapter 3. The fictitious crack model, the crack band model and the

two-parameter fracture model are discussed. At the end of this chapter a new model,

relying on the load-CMOD relationship, the Constant Fracture Angle Model, is proposed

along with an in-depth analysis. Chapter 4 details the specimen preparation, concrete mix

and the experimental program and setup. An improved method for measuring beam

load-line deflections is introduced. Chapter 5 details the research findings and argues for

the adoption of the CFAM. RILEM testing recommendations are criticized. Finally, a

summary of the study's conclusions are given in chapter 6.



CHAPTER 2

FRACTURE CRITERIA

2.1 Stress Intensity Factor

A crack in a solid can be divided into three basic types, each associated with a local

mode of deformation. Mode I, or the opening mode, is associated with local

displacements in which the crack surfaces move directly apart. The sliding mode, or

Mode II, is characterized by displacements in which the crack surfaces slide over one

another normal to the crack front. Mode III, or the tearing mode, finds the crack

surfaces sliding with respect to one another parallel to the crack front. Particularly, if we

assume Cartesian coordinates as shown in Figure 2.1, then on the plane y = 0

For Mode I

Ux # 0,	 o-Y #0 , 	 o #0,	 and	 rxy = 0

For Mode II

7- # 0	 and	 cry = 0	 (2.1)xY

For Mode III

ry, # 0,	 o-y = 0, 	 and	 r = 0

ASTM E616-82 [1982] gives additional details.

The stress field at the crack tip can be treated as one or a combination of these

three basic types of stress fields. However, the field of fracture mechanics emphasizes

Mode I because usually Mode II and Mode III have been relatively unimportant in

fracture testing and application except for testing of adhesive joints. Hence, this

investigation is also limited to Mode I. The stresses for the plane strain condition are

given by Westergaard [1939] and Irwin [1957].

4
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Figure 2.1 Stress component of a body ahead of a crack
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Each stress component is proportional to a single constant, IC which is called the

stress intensity factor. If the stress intensity factor is known, then entire stress field in the

vicinity of crack tip also is known from Equation 2.2. The stress intensity factor

completely characterizes the crack tip conditions in a linear elastic material.

The stress intensity factor has the dimension of stress x (length) 112 and is

considered to be a single parameter description of the stresses and displacements in the

vicinity of crack tip. The subscript I stands for mode I. The stress intensity factor has the

following form

	K i = 6 Ica f (a I w)	 (2.3)

where a is the crack length, a is the applied external stress and f(a/w) a function of the

ratio of the crack length to the thickness, w, in the crack plane. f(a/w) has unit value for

a through crack in an infinite plate and is usually fit to a polynomial expression for a

through crack in a finite plate. Stress intensity factors and the finite size polynomials for

a number of practical configurations are reported by Tada, Paris and Irwin [1976].
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The Kr factor is a LEFM parameter because it is assumed that the material is

linearly elastic, isotropic, and homogeneous. Most cementitious materials are neither

linear elastic, isotropic nor homogeneous.

Equation 2.2 is exact in the limit as r approaches zero. However, when r is equal

to zero a stress singularity exists ( the stresses become infinite at the crack tip). In reality

at the crack tip the stress may reach an idealized maximum strength or plastic

deformation taking place at the crack tip to keep the stresses finite.

2.2 Energy Release Rate

Griffith's proposal to find the fracture strength ( i.e., load carrying capacity) of brittle

solids in 1920 has become one of the basic equations of linear elastic fracture mechanics.

He first postulated the existence of flows or cracks in materials and associated their

growth with the consumption of surface energy. Secondly, he suggested that the fracture

strength can be found by using an energy balance criterion which has since come to be

known as Griffith's energy criterion. He stated that crack propagation will occur if the

energy released upon crack growth is sufficient to provide all energy that is required for

crack growth. If this is not the case the stress must rise. The condition for crack growth

then can be stated as

dU dW_
da da

(2.4)

where U is the total potential energy, W the energy required for crack growth, and a is

the crack length of the through-thickness crack of an infinite plate of unit thickness.

Based on the stress field calculation for an elliptical flaw by Inglis [1913], Griffith

calculated dU/da as



dU 752 a
da E'

per unit plate thickness, where E'=E for plane stress and E' = El (1 — v 2 ) for plane

strain. E is Young's modulus, v is Poisson's ratio, and a is the applied normal stress. The

derivative dU/da is indicated by G, which is called the strain energy release rate or

sometimes referred to as the crack driving force. The strain energy release rate has the

dimension of energy per unit crack surface where the crack surface is the product of unit

thickness and unit crack extension.

The energy consumed in crack propagation is denoted by R = dW/da which is

called crack resistance. Following the Griffith criterion, the energy required to produce a

crack is the same for each increment da. This means that R is a constant. Griffith derived

this equation for glass which is a very brittle material. A truly brittle material such as

glass has a small process zone preceding a crack tip. For this reason R derived by Griffith

consists of surface energy only for a single crack. The energy to create the process zone

at the crack tip is the required energy for crack propagation and is assumed to be

negligible for truly brittle material. Concrete is classified as quasi-brittle material.

Equation 2.5 can written as

G
E'

since R is a constant. Based on linear elastic fracture mechanics the strain energy release

rate G can be related with the stress intensity factor as

KJ 2 	go-2 a

E' -

G
 E'

(2.7)

8

(2.5)

71-Cr 
2 a

(2.6)
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Thus, if the stress intensity factor is used as a failure criterion, the energy criterion is also

satisfied simultaneously.

2.3 Experimental Determination of Fracture Parameters

2.3.1 Critical Stress Intensity Factor

Crack propagation will occur when the combination of stress and strain (stress intensity)

reaches a critical value commonly referred to as the critical stress intensity factor, IC,c .

This value is also referred to as the material fracture toughness, which describes the

ability of a material to deform plastically and to absorb energy before and during rupture.

Fracture toughness testing of metals is based on the ASTM E399-83 which gives

the standard test method for determining the linear elastic fracture toughness for metallic

materials [ASTM 1983]. Since no similar standard exists for concrete, investigators have

commonly used the E399 standard as a reference in establishing guidelines for concrete.

The critical stress intensity factor is usually determined from the measured peak

load, the initial notch depth and related specimen geometry. A number of investigators

have produced the quite different results for K1  in concrete specimens depending on

specimen geometry and size. The results of these experiments show that when fracture

toughness is evaluated from notched beam specimens using conventional linear elastic

fracture mechanics a significant size effect is observed [Francois 1984]. The K1c, values

increase with increasing specimen size as shown in Figure 2.2. This size effect has been

attributed to nonlinear stable crack growth (fracture process zone development) that

occurs prior to the peak load. Microcracking, slow crack growth and a large size process

zone ahead of the traction-free cracks are all independent characteristics inherent to the

inhomogeneous composition of concrete. To accurately determine the critical stress

intensity factor the stable crack growth has to be added to the initial notch length.
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Figure 2.2 Various Results of the fracture toughness K1  [Francois 1984]

10

E

2

1



11

2.3.2 Critical Strain Energy Release Rate

The strain energy release rate is defined as the energy required to generate a unit crack

surface. As was shown in Equation 2.7, the critical strain energy release rate , G1, can be

expressed in terms of the critical stress intensity factor as

KIC 2

GIC - 	
E '

since G1, is closely related to Kx .

2.3.3 Fracture Energy

The fracture energy GF has a physical meaning similar to the critical strain energy release

rate. However, unlike the determination of G,, which is directly related to the peak load,

the fracture energy is determined from the work needed to completely separate the

specimen into two halves. Peterson [1980; 1981] has described in detail how GF is

determined from three-point bend test on notched beam. The values of GF should be

calculated using direct uniaxial tensile tests. But, due to the difficulties in performing a

direct uniaxial tensile test, a three-point bend test on notched beams was proposed by

RILEM [1985] to determine the fracture energy of mortar and concrete. From the load-

deflection curve obtained in a stable condition, the fracture energy is calculated from the

following equation.

GF -
Wo + mg&

A lig
(2.9)

where Wo is the energy represented by the area under the load-deflection curve, m is the

mass of the specimen, g is the acceleration due to gravity, 8 „ is maximum deflection of

the beam at failure, A lig is area of untracked ligament and, mggc, represents the energy

supplied by the weight of the beam itself.

(2.8)
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The energy terms of Equation 2.9 can be described graphically as shown in

Figure 2.3. WQ represents the area under the measured load-deflection curve. However,

the weight of the beam also contributes energy to the system, and this is represented by

W, and W2 . W is equal to mgg 0 12, and it has been shown by Petersson [1981] that the

value of W2 equals T/VI .

Based on the RILEM recommendation, GF values have been experimentally

determined by several laboratories [1985]. The GF values were reported to be dependent

on specimen sizes. For specimens with the same notch-depth ratio of 0.5, larger

specimen sizes always yield higher values of GF . For the specimens of the same size

with different notch-depth ratio, lower notch-depth ratios give higher GF values. The size

dependency of GF has been attributed to settlement of the support and, energy

consumption taking place outside the noncritical sections.
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CHAPTER 3

FRACTURE MECHANICS MODELS FOR CONCRETE

3.1 Phenomenological Aspects

The phenomenological aspects of the cracking of concrete are well understood and have

been confirmed using different methods, including microscopic, X-ray and acoustic

emission techniques. These aspect may be described by considering a specimen loaded in

tension with prescribed displacement increments. Pre-existing microcracks, mostly

located on the aggregate-matrix interface, after initial settling, assume an equilibrium

position with respect to the load. As loading increases a process zone develops where

bond cracks grow, and, after a specific displacement, microcracks start developing from

the existing voids and bridging between the bond cracks. Even at and after the peak load,

crack surface are not completely separated, but still resist some tensile stress, probably

because of aggregate interlocking effects and traction between surfaces. Slowly, with

increasing displacements, stress transfer across the micro cracked region drops to zero,

and specimen fails.

A load-displacement (or stress-strain) curve obtained from a displacement

controlled test up to failure has two distinct regions: an ascending branch before, and a

descending, softening, branch after the peak load (see Figure 3.1). The modulus of

elasticity is usually used to characterize the stress-strain relation in the elastic domain,

and the peak stress characterizes the tensile strength of an elastic material. However, in

the process zone, it has been postulated, after analysis of the softening branch of uniaxial

tension test results, that stress and the process zone displacements are functionally

dependent through a local, process zone softening constitutive relation. The material in

the process zone supports stresses after the peak load which is proportional to the

displacement in the process zone. One constitutive relation holds between stress-strain

14
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Figure 3.1 Typical load-displacement curve of concrete
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in the elastic domain, e.g., modulus of elasticity, and another holds between stress and

process zone displacements in the process zone.

3.2 Nonlinear Fracture Models

Many nonlinear fracture models for the fracture process zone have been proposed. Three

of the most well-known fracture models are the fictitious crack model (FCM) [Hillerborg

1976], the crack band model (CBM) [Bazant and Cedolin 1979; Bazant and Oh 1983]

and the two-parameter fracture model (TPFM) [Jenq and Shah 1985]. These models are

all intended to incorporate the nonlinear behavior of concrete into the analysis of the

fracture processing of concrete.

3.2.1 Fictitious Crack Model (FCM)

Hillerborg, et al. proposed the FCM for predicting crack growth behavior in concrete.

Figure 3.2 shows a typical crack tip stress distribution based on the proposed model. The

stress-crack width (a - w) relationship, considered a material property, defines the post-

peak behavior of the material. The pre-peak behavior of the material is assumed to be

linear elastic and is defined by a stress-strain (cs - 6) relation. Pre-peak nonlinearity is

often neglected for mathematical convenience and, is very small compared to the post-

peak inelastic behavior (Figure 3.3) The fracture energy in the FCM is given by

G, = Sow o- (w) dw	 (3.1)

GF is one of the key parameters needed to implement the FCM. To determine

GF , a notched beam specimen is tested until it is completely fractured. The amount of

total energy absorbed during the fracture process divided by the fracture area will be the

fracture energy of the concrete material. Although the actual GF should be determined
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from a direct uniaxial tensile test, due to the difficulty of conducting the direct tensile test

most researchers accept the indirect method using a notched beam specimen. The

standard notched beam specimen has specific dimensions since it was shown that the

fracture parameters measured from notched beam specimens was specimen size

dependent. Therefore, the dimension of the test specimen must strictly adhere to the

recommended requirements.

Finite element analysis is necessary to implement the model. The model has been

shown to correctly predict the experimentally observed size effects for notched and

unnotched beam specimens. However, it has been pointed out that the experimentally

observed values of fracture energy are dependent on the specimen size. The values

obtained by the model are quite sensitive to the uniaxial tensile strength which is not easy

to determine. Furthermore, to obtain the peak load of the specimen from the model, the

whole load-deflection curve needs to be numerically calculated which requires

considerable computational time.

3.2.2 Crack Band Model (CBM)

Arguing that energy can not be dissipated in a diminishing volume of material, Bazant

and Cedolin, and Bazant and Oh have proposed the crack band model which treats the

localization as a band of distributed cracks. The pre-peak and post-peak behavior are

both described by a stress-strain relationship (pre-peak modulus E, and post-peak

modulus E2 , see Figure 3.4). The width of the crack band w, can be used to relate the

stress-strain response to the fracture energy

So
we2 	 I 	 1

G, =w C .10 	( -2 E2

(3.2)

The results are similar to those obtained from fictitious crack model if the same

values of G, and f; are used in the crack band model. The major difference between the
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FCM and the CBM models is that the FCM uses a discrete crack concept while the CBM

approach is based on the smeared crack principle. In some cases, these two models

provided similar results while in some other instances, their predictions are completely

different. Nonetheless, the results predicted using both models were claimed to be in

good agreement with the observed experimental data which was obtained from testing a

standard notched beam specimens.

3.2.3 Two-Parameter Fracture Model (TPFM)

Realizing the tediousness involved in implementation of the FCM, Jenq and Shah

proposed the two-parameter fracture model which does not require the post-peak

constitutive relation. The stress intensity factor calculated at the tip of the effective crack

is determined in such a way that the measured elastic crack mouth opening displacement

(CMODe) is equal to the one calculated using the LEFM. By either assuming the crack

profile or directly using the LEFM formulae, the elastic critical crack tip opening

displacement (CTODe) can be obtained. Based on the three-point bend test on different

beam sizes and mix-proportion, they concluded that both Kfc, and CTODC are size

independent. Since both fracture parameters are directly determined from LEFM

formulae, crack tip singularity is automatically incorporated in the model. Figure 3.5

shows the typical load-CMOD response with the two critical fracture parameters.

As proposed in the TPFM, the initial crack growth, the maximum applied load

and the corresponding elastic CMODe are all directly obtained by experiment. With

known specimen geometry and the Young's modulus, the effective elastic crack length

a eff can be calculated from the LEFM formulae using measured CMODe and the

measured maximum load. It is not a simple task to calculate a eff using the LEFM

formulae. Iteration or a trial and error method may be needed to obtain a eff . With the

calculated effective crack length, KISc and CTODC can be obtained.
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3.3 Proposed Model (Constant Fracture Angle Model)

For the fictitious crack model and the crack band model, a constitutive relationship in

terms of stress versus separation, which is only obtained by performing the direct tensile

testing, is required and finite element analysis is needed to implement the models.

In the case of two-parameter fracture model, the effective elastic crack length

a eff is calculated from LEFM formulae using measured CMODe and the measured

maximum load. Unloading around the maximum load point, which needs a special care,

is required to obtain the CMODe. Additionally, it is not a simple task to calculate a a eff

using LEFM formulae.

The indirect method for obtaining fracture energy GF , suggested by RILEM,

requires the whole load versus deflection curve from a deformation controlled test. It is

hard to obtain a stable fracture in the case of beam under the deformation control. To

obtain an accurate load-line deformation, a special test setup which eliminates the effect

of support crushing on the load-line deflection is required.

The constant fracture angle model can be used to predict the process zone

growth and fracture energy. It is based on the relationship between the CMOD and the

load-line deflection in the post-peak region.

To develop the constant fracture angle model, the LEFM concept and the

relationship between CMOD and load-line deflection in the post-peak region were used.

CMOD measurement is used because it is more accurate than load-line deflection

measurement since CMOD is not affected by support crushing.

3.3.1 Linear Elastic Range

For the initial portion, the linear elastic range, the LEFM concept can be used to obtain a

CMOD - load-line deflection (see Figure 3.6 for the LEFM based equations used).

Crack mouth opening displacement is
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Stress Intensity Factor (K.,)
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= —bc/ Al 7ra f (A)
f (A) = 1.090 - 1.735A +8.20A 2 - 14.18A 3 +14.57A 4

A = a
d

Crack Mouth Opening Displacement (CMOD)

CMOD =  6Psa  I/1(A)
Ebd2

VI (A)= 0.76-2.28A +3.87A 2 —2.04A 3 +

Additional Load-Line Displacement due to Crack

a crack = a total — 8nocrack

crack = — sV (A)

0.66

(1 - A) 2

2
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(5 . 58 —19.57A +36.82A 2 —34.94A 3 +12.77A 4 )

Figure 3.6 Three-point bend notched specimen and the associated LEFM formulas



CMOD = 
6Psa 

 V (A) = 
6Ps

 AV(A)
Ebd 2 Ebd

where P is the load, s, the span of the beam, b, the beam width, d, the beam height, a, the

initial notch depth, A, is the ratio of the initial notch length to beam depth (a/d) and

V (A) is a correction factor dependent on the loading type and the ratio of the span to

the beam depth. In the case of the three-point bend test specimen for s/d = 4, Vi (A) is

V1 (A) = 0.76— 2.28A +3.87A 2 — 2.04A 3
 + 0.66

(1— A) 2
(3.4)

The total load-line deflection of beam 5  can be expressed as

51) = c au = Sc 	 (ab 	 s)	 (3.5)

where g is the deflection due to the crack, Su the deflection of the uncracked beam,

ab the deflection due to bending and SS the deflection due to shear.

s 	Psi 
4Ebd 3

S —
3(1+ v)Ps

5Ebd

3PS2
	(A)

2Ebd 2 r 

v
2

where

V2(A) —
( A
	  (5.58-19.57A +36.82A 2 —34.94A 3 +12.77A 4 )

.1— A)

Substituting Equation 3.6 into Equation 3.5 and dividing by Equation 3.3 gives

p	 30 dSV 2(A) + 5s 2 + 12(1+ v)d 2 

CMOD	 120daVI (A)
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(3.6)
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The value of v = 0.2 is commonly used for concrete and other cementitious materials.

The derived formula should leave s/d as a variable but substitute the value of v = 0.2.

Hence
ap 	30(s/d) V2 (A) + 5(s/d) 2 + 14.4

CMOD	 120 A V, (A)

If s/d = 4 as recommended by ASTM standard, Equation 3.8 is

cSp 	V2(A) 	23.6 

CMOD  A V, (A) + 30 AV, (A)

Based on the Equation 3.7, load-line deflection can be expressed as follows:

= S . CMOD	 (3.10)

where S, is a constant determined by loading type and specimen geometry.

3.3.2 Post-Peak Range ( Crack Propagation Range )

To derive the relationship between CMOD and load-line deflection, following

assumptions are used.

(1) Fracture energy, GF , is a material property.

(2) Microcracks are fully developed at the peak load, and when a crack propagates the

size of fracture process zone does not change.

(3) The ratio of the change of CMOD to the change in crack length is constant (see

Figure 3.7).

The incremental ratio of load-line deflection to CMOD, A Sp / A CMOD , can be

expressed using chain rule as

(3.8)

(3.9)
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A5p 	Aa A gp

A CMOD A CMOD A a

The energy needed to produce a small increment of load -line deflection, A U is

AU=P Ag,	 (3.12)

Substituting Equation 3.12 into Equation 3.11 gives

Ab`p 	Aa	 AU
(3.13)

A CMOD A CMOD P A a

Since A U / A a is the fracture energy GF , Equation 3.13 changes to Equation 3.14.

Ag,	 GF  A a

A CMOD b P A CMOD
(3.14)

The right side of above equation is a constant because GF is a material property and

Aa IA CMOD is a constant. Therefore, A S )  / A CMOD is a constant.

ASP 	  S
A CMOD

(3.15)

S2 is a material property, independent of size, and can be determined by experiments.

3.3.3 Microcracked Process Zone

In the microcracked process zone, microcracks start and fully develop at the peak load.

Near the peak load, the coalescence of microcracks produces a traction-free surface in

the process zone. This traction-free surface continuously changes causing a continuous

slope change from Si to S2 (see Figure 3.8).

(3.11)
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AS = 	
A CMOD OCMOD OCMOD

	 AP
Oa	 OP

Opp Aa 	Ogp
 AP

Oa	 OP
(3.16)

Pmax
(3.17)P =

1+K

The change of slope, A S, due to increment of load A P is

30

Rearranging the Equation 3.16 with respect to P by using LEFM gives Equation 3.17

(see Appendix A).

where

3s2 	6s
K 	  K 	 AS

K= 1 2Ebd 3	2 Ebc12 	Aa
OCMOD 	 06.

AS	 '
OP	 OP 

(3.18) 

ICI =[2 
 A 
(1 — A)

3 (5.58-19.57A+36.82A2-34.94A3+12.77A4)

124  A  )(-19.57+73.64A-104.82A 2 +51.08A 3 )
1— A 

r 1.32
K2 = (A)+ A —2.28+7.74A-6.12A 2 + 	

(1— A) 3      

A a in Equation 3.18 is calculated from the CMOD value at the peak load using

Equation 3.3 (see Figure 3.9). Equation 3.3 is a polynomial function of A requiring a

numerical method for the determination of A. Since a = ao + A a, A a can be found. So,

Equation 3.17 can be solved for P, which is the proportional limit in this case.
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CHAPTER 4

EXPERIMENTAL PROGRAM

The experimental program was designed to verify the proposed model, and to evaluate

the applicability of the LEFM concept to concrete. Notched beams of three different

sizes and a variety of different initial notch lengths were prepared and tested under

CMOD controlled loading in a 100,000 pound MTS closed loop servo controlled testing

machine.

Concrete mix-proportion, casting and curing procedure were kept constant for all

specimens in order to minimize scatter by keeping the concrete as consistent as possible

for all samples. Type III cement was used with sand passing through sieve #4 and coarse

basalt of 3/8 in. maximum size. Mix-proportion by weight is presented in Table 4.1. An

additional series of fiber reinforced concrete beam were also tested to determined the

effect of fiber addition on S2 values [Tindukasiri 1993]. The results are shown in Table

5.3.

4) 3 x 6 in cylinder specimens were cast in disposable plastic molds to determine

compressive strength and Young's modulus. The small and medium size beams were cast

in plexy-glass molds and large size beams were cast in plywood molds. The beam

dimensions are shown in Table 4.2. All specimens, both beams and cylinders, were cured

in a lime saturated water until one day before testing, when they were taken out to cut

the notch, attach the clip gage holders and the beam mounted reference frame holders.

The compressive strength and modulus of elasticity were determined according to

standard procedures, ASTM C-39 and ASTM C-469. The specimens were tested at the

age of 8 days. The average compressive strength and average Young's modulus were

5720 psi and 3120 ksi, respectively.

The main object of the experimental program is to obtain the complete load vs.
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Table 4.1 Mixture design

Materials Specific Gravity Weight Ratio Weight ( lb/yd3)

Cement 3.15 1 674

Sand 2.60 2 1348

Aggregate 2.83 2.50 1685

Water 1.00 0.53 357
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Table 4.2 Size of specimens and number of specimens tested

Beam

Size

Width (b)

(inch)

Depth (d)

(inch)

Length (L)

(inch)

Span (s)

(inch)

Weight

(pound)

Small (S) 3 3 15 12 11.5

Medium (M) 3 4.5 21 18 24.3

Large (L) 3 6 27 24 42.1

Series Notch depth / Beam depth (aid)

0.2 (N2) 0.33 (N3) 0.4 (N4) 0.5 (N5)

Small (S) 2 3 3 3

Medium (M) 2 3 3 3

Large (L) 3 3 3 3
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CMOD and load vs. load point deflection curves then, to use them to analyze the

material behavior for a variety of testing configurations. Table 4.2 summarizes the testing

program. The parameter a/d is the ratio of the notch depth, a, to the depth of the beam,

d. The three beam sizes and the four a/d ratios were selected to investigate how the

beam size and the notch depth effect the fracture parameters.

All samples were tested on an MTS system 442 closed-loop servo controlled

hydraulic testing machine. The closed-loop system enabled the use of CMOD control

under which the CMOD was increased at a rate of 0.002 inch per minute. This mode of

control produces a controlled failure of the sample allowing all parameters of interest to

be measured. Raw data was recorded using a PC based IBM data acquisition and control

board (DACA) running the Unkelscope data acquisition program sampling at 2 Hz.

Before testing the exact beam dimensions, notch depth and span were measured

and recorded. Samples were installed on a flexural testing stand as shown in Figure 4.1.

The sample supports were semicircles. The load was applied through a swiveling

arrangement that adjusted for sample irregularities.

Four measurements were made and electronically recorded by the data

acquisition system. The load was measured by a 5,000 pound load cell, calibrated and

traceable to KIST just prior to the start of the testing, attached to the MTS piston. Two

measurements of the load-line deflection were made. The first, LVDT1, was made using

a linear variable differential transformer (LVDT), resolving 0.05 inch into ten volts,

measuring between the beam and a reference frame attached at the level of one half the

unnotched depth, as seen in Figure 4.1. The reference frame was hinged above one

support and free to move laterally above the other. The second measurement, LVDT2,

was a conventional measurement, made also using an LVDT with the same range

characteristics of LVDT 1, between the beam and a fixture attached to the test stand. The

last measurement was of the CMOD, made with an MTS clip-on gage which resolved

0.02 inch into ten volts.
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Figure 4.1 Testing setup



CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Extraneous Deformations

The experimental results allow for a direct comparison of two methods of measuring the

beam deflection. The results indicate that measurements made from a reference off the

beam tend to overstate the actual deflection. Figures 5.1 through 5.3 show some typical

load deflection curves. These figures, as well as additional figures for other specimens

found in appendix B, show that for all beam sizes and all notch conditions the deflection

measured with reference off the beam (LPD2) measured with LVDT2 is greater than

deflections measured with reference to the neutral axis of the beam (LPD1) measured

with LVDT 1. The same phenomena was also observed in Figure 5.4 on fiber reinforced

composites [Gopalaratnam, V. S., S. P. Shah, G. B. Batson, M. E. Criswell, V.

Ramakrishnan, and M. Wecharatana 1991]. No one else seems to have considered this

issue. This effect, which has heretofore been believed to be negligible, is primarily due to

crushing at the supports. Unfortunately, the magnitude of the extraneous deformation is

of the same order as the actual beam deflection. The failure to consider the extraneous

deformations has led to some misconceptions about the behavior of concrete samples.

Table 5.1 shows the ratio of LPD2 to LPD1 at the peak load. In all cases, except in a

couple of cases when LVDT2 failed to move, LVDT2 always indicates a larger

deformation than LVDT1 so the ratio always exceeds 1.0, which shows that LPD2

always includes some degree of settlement. It can also be noted that after the peak load

no further crushing occurs. A calculation of fracture energy, GF , based upon this

overstated deflection will give an inflated value. When this value is used in fictitious

crack model erroneous results will occur. For accurate measurement of beam deflections

a reference attached to the beam, of the sort used in these experiments, should be used.
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Figure 5.1 Load-deflection relationship (N4L3 bxdxsxa=3x6x 24 x 2.4)
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Figure 5.2 Load-deflection relationship (N4M3 bxdxsxa=3x 4.5 x 18 x 1.8)
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Figure 5.3 Load-deflection relationship (N4S3 bxdxsxa=3 x3 x 12 x 1.2)
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Table 5.1 The ratio LPD2 to LPD1 at the peak load

Specimen
LPD1

(10 -3 inch)
LPD2

(10-3 inch)
LPD2/LPD1

N2L1 7.29 8.21 1.13
N2L2 6.74 13.77 2.04
N2L3 6.54 16.14 2.47
N2M1 6.05 16.91 2.79
N2M2 5.43 11.17 2.06
N2S1 4.92 8.78 1.79
N2S2 5.19 12.61 2.43
N3L1 7.83 8.06	 1.03
N3L2 7.03 LVDT2 failed to move
N3L3 8.06 21.34 2.65
N3M1 6.53 11.44 1.75
N3M2 7.23 LVDT2 failed to move
N3M3 6.75 10.87 1.61
N3S1 6.15 11.43 1.86
N3 S2 5.58 11.60 2.08
N3 S3 5.05 7.63 1.51
N4L1 8.74 20.09 2.30
N4L2 8.06 12.25 1.52
N4L3 8,89 18.90 2.13
N4M1 7,02 16.74 2.39
N4M2 7.04 10.73 1.52
N4M3 7.54 9.90 1.31
N4S1 4.96 10.95 2.21
N4S2 5.19 12.15 2.34
N4S3 5.86 10.89 1.86

N5L1 9.27 15.49 1.67
N5L2 9.88 19.97 2.02
N5L3 9.40 18.13 1.93
N5M1 6.37 7.15 1.12
N5M2 6.74 12.65 1.88
N5M3 7.17 13.23 1.84
N5S1 3.88 7.66 1.97
N5S2 3.86 8.86 2.30
N5 S3 2.61 6.46 2.47
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Until the current study the CMOD has primarily been used to control the

specimen loading rate. However, since the CMOD is relatively unaffected by support

settlements it was thought that it might be a more reliable fracture parameter. Figure 5.5

is a typical load-CMOD curve, it has a strong resemblance to typical load-deflection

curves. Typical deflection-CMOD curves are shown in Figure 5.6. The lower curve

shows the LVDT2 deflection vs. CMOD and apparently there is no clear relationship

between the deflection and the CMOD. Strikingly, the LVDT1 deflection vs. CMOD

shows a simple bilinear relationship. This study is the first to observe this relationship

because it has eliminated the extraneous deformations and is thereby able to relate the

correct load-line deflection to the CMOD.

5.2 Bilinear Deflection-CMOD Relationship

The deflection-CMOD relationship, shown in Figure 5.6 is observed to be bilinear. The

first linear part, S 1 , shows the deflection-CMOD relationship in the linear elastic region.

As the microcracked process zone develops the slope gradually changes until the peak

load is reached. At this point the process zone is completely developed and cracking

begins. The second linear portion, S2, is sustained as the crack grows until complete

failure. Since nonlinearity of concrete is mainly a contribution of the microcracked zone,

the size of the process zone in front of the crack tip remains fully developed and shifts

forward as the macrocrack grows. It can be noted on Figure 5.6 that if the LVDT2

deflection (LPD2), which includes the extraneous deformations, is considered this

relationship is not at all apparent.

S2 is the slope of the deflection-CMOD curve as the crack propagate through the

specimen. The values of S2 for the concrete used in this study are shown in Figure 5.7. It

can be seen from Table 5.2 that the values, which average 0.8720, are very consistent.

Table 5.3 shows the resuls from the fiber reinforced beam tests [Tindukasiri 1993].These

results shows consistantly higher values for S2 which are due to the presence of
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LVDT2

Figure 5.6 Load-CMOD-deflection relationship
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Table 5.2 The values of S2

Specimen S2 Average

N2L1 0.8505
N2L2 0.8694 0.8676
N2L3 0.8828
N2M1 0.8548
N2M2 0.8824 0.8686
N2S1 0.8670
N2S2 0.8698 0.8684
N3L1 0.8860
N3L2 0.8752 0.8710
N3L3 0.8519
N3M1 0.8722
N3M2 0.8520 0.8656
N3M3 0.8727
N3S1 0.8649
N3S2 0.8757 0.8763
N3S3 0.8882
N4L1 0.8728
N4L2 0.8764 0.8758
N4L3 0.8781
N4M1 0.8455
N4M2 0.8826 0.8700
N4M3 0.8819
N4S1 0.8673
N4S2 0.8869 0,8786
N4S3 0.8816
N5L1 0.8631
N5L2 0.8512 0.8671
N5L3 0.8870
N5M1 0.8854
N5M2 0.8756 0.8846
N5M3 0.8927
N5S1 0.8627
N5S2 0.8756 0.8707
N5S3 0,8739

0.8720
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Table 5.3 Results of fiber reinforced concrete testing

Specimen Fiber type
Wt. of

Fiber (lb)
Max.

Load (lb)
E (ksi) S2

DO5B1 0.5%, 1 in 3.43 1420.90 2963.95 1.04

CO5B1 0.5%, 1 in 3.43 1640.63 3079.91 1.05

HO5B1 0.5%, 1 in 3.43 1494.14 2933.90 0.94

D10B2 1.0%, 2 in 6.86 4165.04 3031.31 0.98

D10B1 1.0%, 1 in 6.86 1469.73 3044.80 0.98

C1OB1 1.0%, 1 in 6.86 2036.13 3241.10 1.00

H10B1 1.0%, 1 in 6.86 2187.50 3084.98 0.88

D15B1 1.5%, 1 in 10.29 4155.27 3210.21 1.06

C15B1 1.5%, 1 in 10.29 2646.48 3210.21 0.97

H15B1 1.5%, 1 in 10.29 2778.32 3202.59 0.96
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fibers.This indicates that S2 is a material property in the same way that GF is a material

property.

The fracture energy is usually taken as the area under the load-deflection curve.

However, there have been many discrepancies for determining the fracture energy for

cementitious composites, now thought to have been due, in large part, to the difficulties

encountered making exact measurements of the load-line deflection. These problems can

be eliminated using the bilinear concept because the CMOD value is used to calculate the

fracture energy. The fracture energy is computed using the following expression:

GF .10°0 P d8 = CJ  P dCMOD
	

(5.1)

where C is S 1 in the elastic range and S2 in the post-peak region as long as S 1 and S2 are

constants.

5.3 Pe/Pmax Limit

The ratio of load at the elastic limit, Pe, to the maximum load, Pmax, indicates the extent

of the fracture process zone. The assumption of the current fracture mechanics theory, as

it applies to concrete, is that up until the proportional limit there is no process zone or

microcracking. After the proportional limit the process zone gradually develops until it

reaches its full extent when the peak load is reached and the macrocrack begins to

propagate. A small ratio of Pe/Pmax would indicate a relatively larger process zone than

a larger ratio for the same configuration. Values of Pe/Pmax, calculated using the model,

plotted against a/d for all samples are shown in Figure 5.8. This figure shows that as the

notch depth increases the ratio of Pe/Pmax increases until it exceeds 1.0. This result

explains the presence of the so called "size effect" in notched beams observed by other

researchers. The size effect is used to explain the decrease in fracture energy as deeper

notches are made. For smaller notches the process zone is relatively larger than for larger
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notches. This leads to the observation that as the notch size increases the fracture energy

decreases.

Conceptually, the value of Pe/Pmax can not be greater than 1.0. However, when

a/d equal to 0.5 Pe/Pmax was found to exceed 1.0. The interpretation of this result is

that at this notch size the process zone for the beam reaches the confinement of the

compression zone before being fully developed. Therefore, the zone can develop no

further so cracking starts relatively earlier than for other notch sizes resulting in a lower

peak load and lower fracture energy.

RILEM's committee on fracture toughness of concrete recommends that when

measuring the fracture energy of concrete using three-point bend notched beams a/d

should be 0.5. Presently, most researchers follow these recommendations. The results of

this study indicate that there may be problems with this recommendation and that the

recommendation for a/d should be changed. An a/d less than 0.4, which is a/d when

Pe/Pmax is appropriately 1.0 should be used.

5.4 Fracture Energy

Fracture energy is a very important parameter used in studying the properties of

concrete. It is the amount of energy required to extend a crack a unit area through the

material. If the fracture energy is known then the behavior of a structure can be predicted

more accurately. The most widely used fracture mechanics model for analyzing

structures is the fictitious crack model (FCM). To implement FCM the GF , a material

property, needs to be considered. If this value is not determined accurately the analysis

will not be correct. Figure 5.9 shows GF calculated based on the LVDT2 measurements.

The value of GF is seen to be widely scattered, an effect not uncommon when many

measurements of the same sort are made. Figure 5.10 shows GF calculated based on the

bilinear concept. The value is seen to be essentially constant until it drops when a/d

equals 0.5, for the reasons discussed above in the section on Pe/Pmax. The constant
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value shows that this method is independent of the specimen size and notch depth.

Again, since the fracture energy is one of the parameters sought when testing using

RILEM recommendations, the current recommendation of 0.5 needs to be changed.

5.5 Fracture Toughness

In order to apply LEFM to concrete the microcracked zone (process zone) must be

incorporated into the analysis. In the elastic region there is no process zone. In the region

between the proportional limit and the peak load the process zone gradually grows until

it reaches its full size. After the peak, the zone shifts upwards as the macrocrack grows

but the size of the process zone remains unaltered unless a confinement is encountered.

If the fracture toughness is a material property its value should be a constant, regardless

of the specimen or the notch size. Figure 5.11 shows the IC1c value computed based on

LEFM without consideration of the process zone. It is derived solely on the basis of the

initial notch depth and the peak load. The value of the fracture toughness seems to vary

with the notch depth.

Figure 5.12 shows the fracture toughness computed on the basis of the effective

crack length, which accounts for the process zone. It shows Kw to be constant except

until the initial notch depth ratio is 0.5 where it seems to drop. The reason for this is that

because the ligament of the beam has become so small the process zone reaches the

compression zone of the beam before the process zone reaches its full size. Therefore,

the load can not be increased further so the corresponding K-1c, value is smaller than for

the other notch sizes.
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CHAPTER 6

CONCLUSIONS

Based on the results obtained through this study the following conclusions can be drawn:

1. Traditional methods of measuring load-line deflections in beams, which is

commonly measured with respect to the base of the testing machine, contain extraneous

measurements that are of the same order of magnitude as the actual deflection of the

beam. These extraneous measurements are mostly the result of support crushing., which

can be eliminated by measuring the beam deflections with reference to its neutral axis

using a reference frame attached to the beam. In this study, a new test setup for

measuring the load-line deflection in a notched beam test is proposed.

2. When proper measurements of a beam's deflection are made, a bilinear

relationship between the CMOD and the deflection is found to exist. This bilinear

relationship serves as the critical tool to relate the CMOD to the fracture energy of the

notched beam.

3. The presence of steel fibers in cementitious composites generally increases the

ductility (nonlinearity) of the composites. In this study the addition of steel fibers tends

to increase the S2 values without effecting the linear nature of S2.

4. The deflection-CMOD relationships in the pre and post peak regions, S 1 and

S2 respectively, are material properties.

5. To avoid using the complicated testing setup required for properly measuring

the load-line deflection of beams, the CMOD, which is unaffected by support crushing or

other extraneous measurements, is a more reliable parameter for predicting the fracture

properties of cementitious composites. Use of the load-CMOD relationship along with

the proposed S 1 and S2 relationships could lead to a new testing standard for measuring

fracture toughness and fracture energy of cementitious composites.
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6. Analysis of Pe/Pmax for various notch depths indicates the progression of the

process zone into the region of effective confinement caused by the compression zone of

the beam. This inability of the process zone to fully develop explains the so-called "size

effect" often noted by the variation of the fracture energy in the testing of notched

beams. The analysis further indicates the need to change the current RILEM

recommended a/d of 0.5 to a value of 0.4 to avoid this effect and improve measurement

of fracture energy.



APPENDIX A

DERIVATION OF THE RATIO OF ELASTIC LIMIT LOAD TO PEAK LOAD
(Pe/P.)
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1.32

Derivation of the Ratio of Elastic Limit Load to Peak Load (Pe/P..)

Crack mouth opening displacement (CMOD) is

CMOD = 
 6Psa  

V (A)= 
 6Ps

 AV ((A)
Ebd2	Ebd

where

60

I/1 (A) = 0.76— 2.28A +3.87A 2 — 2.04A 3 +
0.66

(1— A) 2

A =
d

Differentiate CMOD with respect to a

OCMOD OCMOD OA 1 OCMOD 
Oa	 OA Oa

= 
d OA

s
Let C = 

 6P 
= 

6s 
 P

Ebd2 Ebd2

Substituting C and VI (A) into equation 
OCMOD

 gives
Oa

OCMOD
=CVI (A)+CA( -2.28+7.74A - 6.12A 2 + + 1. 32

Oa	 (1- Af
6s 

=K2 Ebd2P

where

K2 = ( 	 4-2.28+7.74A — 6.12A 2 +

Differentiate CMOD with respect to P

OCMOD 6s 
OP 

= 
Ebd 

AV i (A)

Load point displacement S is

3Ps2 	Ps'	 3. 6PsSp = 2Ebd2V2(A)+ 
4Ebd

3+ 
 5Ebd



where
( A  2

V2 (A) — (5.58-19.57A +36.82A 2 —34.94A 3 +12.77A 4 )
— A/

Differentiate 8, with respect to a

3s2egp 319's
	2Ebd3 P—	 3Oa 2Ebd

where

K,=[2  A
(1 — A)

3 (5.58-19.57A +36.82A 2 —34.94A 3 +12.77A4 )

	 2+( i_AA )(-19.57+73.64A-104.82A 2 +51.08.A 3 )

Differentiate by with respect to P

08p 	3s2	 s3	 3.6s

OP 2Ebd
2V2(A)+ 

4Ebd 3 5Ebd

The change of slope, A S, due to increment of AP is

Old p Aa 	M
P AP

AS = ASP = Oa	 OP 
A CMOD OCMOD Aa + OCMOD 

AP
Oa	 OP

Rearranging the above equation gives

OCMOD
 Aa+

eCMOD 

	

AP AS = 	 P Aa + 
Opp

  AP
Oa 	 OP	 Oa	 OP

SOD 	

OP
OCMOD)Ap= Of p OCMOD  As )A a

Oa	 Oa

OSp OCMOD As
0, ea	 Oa 

AP Pmax 1 = OCMOD	 06.p Aa
OP	 OP
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P = Pmax

K
3s2 	v 6s 

2Ebd3 11-2 Ebd2 AS Aa p = p
OCMOD 	ma`

OP 	 OP

KP

where
3s 2 	6sK i 	  K 	 AS

K =  2Ebd 3 	2 Ebc/2 	Aa
OCMOD 	 05 AS 	 '

OP 	 OP

Therefore the load at the starting point of microcracked process zone can be expressed
as follows.

P= 'max 

1+ K
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Figure A la Load-CMOD relationship (N2L1)

Figure A lb Load-deflection relationship (N2L1)
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Figure A id Load-CMOD-deflection (LVDT2) relationship (N2L1)
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Figure A 2c Load-CMOD-deflection (LVDT1) relationship (N2L2)

Figure A 2d Load-CMOD-deflection (LVDT2) relationship (N2L2)
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Figure A 4a Load-CMOD relationship (N2M1)
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Figure A 6a Load-CMOD relationship (N2S 1)

Figure A 6b Load-deflection relationship (N2S1)
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Figure A 6d Load-CMOD-deflection (LVDT2) relationship (N2S1)
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Figure A 8b Load-deflection relationship (N3L1)
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Figure A lld Load-CMOD-deflection (LVDT2) relationship (N3M1)
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Figure A 13d Load-CMOD-deflection (LVDT2) relationship (N3M3)
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Figure A 14c Load-CMOD-deflection (LVDT 1) relationship (N3 Si)

Figure A 14d Load-CMOD-deflection (LVDT2) relationship (N3 Si)
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Figure A 17d Load-CMOD-deflection (LVDT2) relationship (N4L1)
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Figure A 21b Load-deflection relationship (N4M2)
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Figure A 22d Load-CMOD-deflection (LVDT2) relationship (N4M3)
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Figure A 30d Load-CMOD-deflection (LVDT2) relationship (N5M2)
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Figure A 31d Load-CMOD-deflection (LVDT2) relationship (N5M3)
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Figure A 34d Load-CMOD-deflection (LVDT2) relationship (N5S3)
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