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ABSTRACT

This study investigates the behavior of High Strength Concrete (HSC) under

uniaxial state of stresses. Emphasis is placed on experimental evaluation of important

mechanical and fracture properties, Owing to high brittleness of HSC, experimental

results especially on tensile behavior have been largely limited and scarce, In this

research, direct uniaxial tension tests are employed for determination of the post-peak

tensile softening characteristics of HSC, The softening characteristics of high strength

concrete is found to be considerably different than that of normal strength concrete

(NSC). Fracture energies evaluated form the descending branch of the stress softening

reveal significant drop in the post peak compliance of the high strength concretes, Such

relationships of stress-crack separation are vital input for developing a model capable of

accurately predicting behavior of HSC in tension,

The obtained softening relationship is incorporated into an non-linear finite

element model using ABAQUS program. The model is shown to be successful in

predicting the test results of the present study as well as the ones of other researchers,

The predictions are of equal degree in accuracy for both the load-crack mouth opening

displacement (CMOD) and load-Deflection (LPD) responses. Performing of a parametric

study as well as development of a methodology that suggests the use of load-CMOD

response in beam fracture tests as an alternative method of determining the fracture

toughness (GF) from beam tests are undertaken, Important parameters such as flexural

strength, size of process zone of normal and high strength concrete are also determined

using the FEM model, It is found that for an increase of about 30% in the fracture



toughness GF and the tensile strength f t of HSC, the reduction in the difference between

flexural strength and tensile strength is considerable and the size of process zone is also

significantly smaller in HSC as compared to NSC. It is shown that to apply Linear Elastic

Fracture Mechanics (LEFM) principles, a minimum size (depth) of beam of HSC is about

9.0" whereas for NSC the minimum depth of the beam is almost twice as much i,e,

about 18,0". An important recommendation for determining the fracture energy GF from

load-CMOD curves instead from the conventional Load-Deflection response is shown to

produce lesser variation in GF values since CMOD measurements are less likely to be

affected by experimental setups and errors, Errors that are known to generally affect the

load-line deflection (LPD) measurements can cause significant inflated values of fracture

energy GF to be reported, Finally based on the test results of beam bending tests, a

recommendation is made regarding a suitable size of beam specimen that can be used as

a standardized fracture test specimen, The beam specimen of span depth (S/D) ratio of 4

is found to be more suitable than the RILEM recommended beam size S/D = 8,
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CHAPTER 1

INTRODUCTION

1.1 General

The tensile capacity of concrete is only a small portion of the compressive strength

capacity (about 1/10 for normal concrete), In order to raise the tensile capacity,

reinforcement of various kinds are often used. When the reinforcement is anchored or

spliced the tensile and shear strength of the concrete will be very critical for the strength

of the structure, In all structures we have to rely on the tensile and shear capacity of the

concrete whether it is reinforced or not,

When the tensile strength of a material is reached in a structure, cracking will

occur, The study of the conditions around the crack tip is called "Fracture Mechanics".

In this dissertation, the application of fracture mechanics to various structural

(unreinforced) members is studied, Emphasis is given to the experimental determination

of various important fracture parameters and also to study the behavior of High Strength

Concrete (HSC) members,

Fracture mechanics is a theory of failure which was originated in 1920 by Griffith

(1920, 1924) and was for a long period applied only to metallic structures and ceramics,

Concrete structures, on the other hand, have been so far successfully designed and built

without any use of fracture mechanics, even though the failure process involves crack

propagation, This is not surprising since fracture mechanics takes into account the

growth of distributed cracking and its localization which was unknown until about 1980,

During the 1980's however the study of fracture mechanics in concrete has emerged and
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as a result there is an explosion in research activities. The application of fracture

mechanics to concrete is important for various reasons (ACI 446,1 R-91 1991),

Important and compelling reasons for using fracture mechanics are:

• Energy is used as a failure criterion, in conjunction with stresses and strains

• It takes into account crack propagation

• It accounts for effect of size of structures on their nominal strength

The science of fracture mechanics can be divided into two general categories:

Linear Elastic Fracture Mechanics (LEFM) and Elastic Plastic Fracture Mechanics

(EPFM), The theory of LEFM has been well developed for the past thirty years and has

been successfully applied to metallic structures, Its application to concrete was first

attempted long ago, The idea of using stress intensity factors had already appeared in

early 1950's and serious investigation started in the 1960's by Kaplan et, al. (Kaplan

1961). Initially the application of LEFM to concrete did not yield good results (Kesler,

Naus and Lott 1971). The reason, it is now understood, is that in concrete there is a

large microcracking zone (also known as the process zone) in front of the crack tip.

Failure of concrete involves stable crack growth in the large cracking zone and formation

of a large process zone even before the maximum load is reached, To take into account

the size of the process zone one must consider the softening behavior of concrete, This

modification to the LEFM theory has only been developed during the last fifteen years,
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1.2 General Background about High Strength Concrete

1.2.1 Introduction

High Strength Concrete (HSC) is a relatively new material and its development has been

gradual over the past few decades. The uses of microsilica, fly ash and high range water

reducers (superplasticizers) along with carefully selected materials have made the

production of HSC easier and more economical, Currently, more and more structures

are being constructed using High Strength Concrete, Besides higher strength, HSC

material also offers favorable properties with regards to frost, abrasion, durability and

permeability, Due to lower porosities and higher densities, HSC usage in the

construction of storage tanks and pipes carrying hazardous substances is becoming more

appropriate, Life-cycle cost effectiveness of HSC will result in more widespread usage

in transportation structures and high-rise buildings all over the world,

As the development of HSC has continued, the definition of HSC has changed

from time to time. In the 1950's, concrete with compressive strength over 5000 psi (34

MPa) was considered as high strength concrete. In the 1960's, high strength concrete

with 6000 and 7500 psi (41 and 52 MPa) were commercially used, In 1970's, 8000 psi

concrete was frequently being produced and used, Presently, concrete with compressive

strength exceeding 20,000 psi (138 MPa) has been reported to have been used in high

rise buildings, Currently, according to ACI, High Strength Concrete is defined as

concrete having a compressive strength r e of 6000 psi (41 MPa) and greater (ACI 363),

Two examples of usage of high strength concrete in construction are Chicago's Water

Tower Place and 311 South Wacker Drive buildings. The long span cable swayed
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bridges such as East Huntington, W.V. bridge over the Ohio River would not have been

possible without the availability of high performance concrete.

In spite of its valuable properties, high strength concrete has a reputation of being

more brittle than normal concrete, which may be a penalizing factor with respect to its

use in certain structures, This observation, along with the fact that at present there is no

quantitative measure for this presumed brittleness of high strength concrete, accounts for

the increasing amount of research being carried out on crack propagation in this new

material,

It has been observed that the cracking in high strength concrete is more localized

and that it approaches the behavior of an homogeneous material as compared to cracking

in normal strength concrete, It is also observed that in normal strength concrete cracks

generally develop between the interface of aggregates and the cement paste. This leads

to a distinct interlocking of the crack faces resulting in increased resistance to failure,

On the other hand, in high strength concrete cracks propagate through the aggregates

and consequently there is less resistance across crack surfaces due to reduced

interlocking. High strength concrete exhibits a very linear load-deformation response

prior to peak load and a very brittle behavior after the peak, This observation, has made

many researchers (John and Shah 1989b; Gettu, Bazant and Karr 1990) believe that

LEFM may be more applicable to high strength concrete,

1.2.2 Mechanical Properties of High Strength Concrete

The reputation of brittleness in HSC stems from the uniaxial compressive tests which

indicate that its post peak behavior is less stable (steeper downward slope) than in
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normal concrete, Thus for HSC, it is practically very difficult to obtain the post peak,

even with very rigid presses and displacement control, This aspect was discussed by

Rukugo et. a1. (Rokugo, Ohno and Koyanagi 1986) who used the catastrophe theory to

develop a new method for allowing the control of the descending part of the stress-strain

curves. By contrast, the results of three point tests on HSC beams (John and Shah 1987,

1989b) seemed to have indicated very stable post peak behavior of HSC, These results

are important because they appear to confirm the fact that the post peak behavior

obtained during tests are dependent on geometrical and mechanical type boundary

conditions of specimens (Desai, Krempl, Kiousis and Kundu 1987).

During the last decade or so, most of the research was concerned with increasing

the "strength" of HSC. The need for research directed towards understanding the

mechanical and fracture behavior of HSC is lacking, Very few researchers have

attempted to quantify HSC fracture properties, The present scope of study includes

determination of fracture properties and the application of the fictitious crack model for

study of crack propagation in HSC members,

1.3 Research Significance

It is now clear that the presence of the "fracture process" zone ahead of the crack tip has

necessitated the consideration of the tensile softening characteristic of concrete, The

area (energy) under the tensile softening curve is defined as the fracture energy GF of

concrete, The tensile behavior of concrete can only be captured by performing the direct

uniaxial test, In the past it was difficult to obtain tension test results and hence it was

proposed by Hlllerborg et. al. (Hlllerborg, Modeer and Petersson 1976; Irdlerborg 1980,
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1983, 1985a, 1985b and 1985c) to use the beam bending test for determination of the

fracture energy, Fracture energy determined from beam tests and indirect tensile

strength (obtained from split cylinder test) were used to assume different shapes (linear,

bilinear) of the post peak softening behavior of concrete. It has been clearly

demonstrated in the past by many researchers (Ratanalert and Wecharatana 1988) that

the shape of tension softening curve has significant effect on the post peak behavior of

specimens as obtained by using standard finite element calculations.

Presently, the RILEM committee (RILEM 1985-TC 50) has adopted Hillerborg's

"Work of Fracture Test" (WFT) as the "standard test method" for calculating the

fracture energy G; for plain concrete using the three point test on notched beam

specimens(Hillerborg 1985b), In addition, two other methods have been proposed in

evaluating the fracture parameters of concrete, These two methods are based on

Bazant's size effect method (SEM) (Bazant and Kazemi 1988, 1989a, 1989b) and Jenq

and Shah's two parameter model (TPFM) (Jenq and Shah 1985a, 1985b), Although the

validity of a direct comparison of the fracture energies obtained according to the above

methods may be questionable, the evaluation of the effect of the geometrical macroscale

(geometry and size), testing method (measurement technique), effect of concrete mix

(compressive strength) on the fracture energy is crucial in defining a size-independent

fracture energy parameter,

Hillerborg's Work of Fracture method was developed, as mentioned earlier, as

an alternative means of determining the fracture energy. The ideal way of determining

the fracture energy is by means of a direct uniaxial tension test, Since the direct tensile

tests are not easy to perform especially in most laboratories, an alternative of testing
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three point bend beam specimens is recommended by RILEM, In this method the

fracture energy is computed from the area under the load-deflection response of the

specimen. A literature survey of fracture test results conducted at numerous universities

around the globe indicates that the load-deflection responses are significantly affected by:

• Specimen size (depth, span, and notch depth)

• Loading configuration (three point, four point, etc,)

• Test control type (load-point displacement, crack mouth opening control,

etc,)

• Loading rate

The observed size dependency of G; reported by researchers (Hillerborg,

1985c) can be attributed to many factors, For instance, neglecting the area under the

load-deflection tail responses can cause an appreciable error in the values of fracture

energy, Major causes of overestimation of fracture energy can also be linked to errors in

measurements particularly the load-point displacements. Support crushing contributes to

the total displacement of the beam, These extraneous deformations can be of equal

magnitudes as compared to the actual displacement of the beam,

This study deals with the application of non-linear fracture mechanics concept to

study the fracture behavior of High Strength Concrete, It is proposed that better

estimates of fracture energy of concrete can be obtained by relating the fracture energy

to load and crack mouth opening displacement responses (P-CMOD), since CMOD

measurements automatically exclude all extraneous sources of deformations typically

associated with deflection measurements. Among other potential advantages of using
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CMOD to characterize the fracture energy is that CMOD deformations can be readily

related to crack width levels and, as a result, to levels of serviceability,

1.4 Objectives of Present Study

The objectives of the present study are:

1. To develop an experimental program to evaluate the fracture properties of high

strength concrete (10,000 psi < f c < 14,000 psi range), To evaluate important

fracture parameters for high strength concrete, including the fracture energy, GF,

Tensile strength, f t, and the critical crack tip opening displacement, w e by

performing tension tests, beam bending tests and compression tests,

2. To implement the tensile softening characteristics obtained from the direct uniaxial

tests into the commercially available finite element program - ABAQUS ver, 5.4, To

perform a parametric study on normal strength and high strength concrete members

using ABAQUS,

3, To propose a methodology for the calculation of Fracture Energy, GF, of Concrete

from Load-CMOD responses of three point bend beam tests instead of using

traditional Load-Deflection responses as outlined by the Work of Fracture Test

(RILEM WFT),

1.5 Limitations

The fracture of materials is studied at a macroscale, at which the composite materials

like cement paste, concrete etc, are treated as homogeneous and isotropy is assumed,
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The Finite Element analysis considers presence and propagation of only one crack

along a path pre-determined. The specimens studied are assumed to be in a state of

plane stress. Time dependency of material properties are not taken into account.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Fracture Mechanics

Fracture mechanics deals with the mechanical responses of a flawed or a cracked

member subjected to the application of forces or stresses, The mechanical response of a

cracked member is described in terms of crack extension which in isotropic materials,

occurs along a direction normal to the maximum principal tensile stress, Most structural

members have discontinuities of some type, for example, holes, notches, cracks etc.

These discontinuities produce stress concentrations near the crack tip. Using theory of

elasticity it can be shown that the stress fields are singular at the crack tip, the stress

components approach infinity as the radial distance 'r' from the crack tip approaches

zero (see Figure 2,1).

EE
a

Figure 2.1 Stress State Close to the Crack Tip

10
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The presence of cracks (flaws) and stress concentrations have been proven to be

responsible for failures of many structures even under conditions of low stresses. Due to

repeated application of loads or a combination of loads and environmental attacks, the

flaws within the structures grow with time, The longer the crack extends, the higher the

stress concentration exists, This means that the rate of propagation will increase with

time, Due to the continuos growth of cracks the strength of the structure is continually

reduced, Under normal service loads this growth may reduce the strength of the

structure to such an extent that fracture occurs causing a sudden failure,

2.1.1 Modes of Fracture

Fracture behavior can be classified into three categories, depending on the modes of

failures (see Figure 2,2), Mode I also known as the opening mode, Mode II which is the

sliding mode or the planar shear mode and Mode III which is also known as the tearing

mode or antiplane shear mode. In general, fracture is a linear combination of these three

modes, As far as fractures of homogeneous materials are concerned, it is in practice

difficult, if not impossible, to develop pure mode II or mode III fractures, Therefore,

besides pure mode I, modes of failure are often a combination of basic modes which are

called mixed mode.

2.1.2 Linear Elastic Crack Propagation

In a linear and isotropic material, the in plane stress state close to the crack tip in polar

coordinates can be expressed by means of equation 2,1 (Broek 1982),
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In this equation, K is the stress intensity factor and the indices denote the mode of the

stress state, the other terms are described in Figure 2.1

In pure mode I, 1Q-=--0, and pure mode II, K i=0. The condition for crack

propagation is fulfilled when the stress intensity factor assumes a critical value, which is

denoted Kr in mode I and Kuc in mode II,

For a structure (specimen) with given geometry and loading conditions, the

relation between remote stress and stress intensity factor is given by the following

equation (Broek 1982):

=
oaf

where a, is either remote tensile stress or remote shear stress, calculated according to

the linear elastic theory for the case of a non-cracked body, K is either the mode I or

mode II stress intensity factor, a is the crack length and f is a factor which is a function

of loading conditions and the geometry of the body, Expressions for f, for simple

loading conditions and geometries, can be derived analytically, whereas other methods

should be utilized for complicated cases,

Besides the stress intensity criterion, the energy release rate is also utilized.

When the energy release rate criterion is utilized, the condition for crack propagation is

fulfilled when the energy release rate (G) assumes a critical value (G c), The relationship

(2,2)
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between K the stress intensity factor, and G is given by the following equation (Broek

1982),

IC2
= —

E

In mixed mode K2 = K?+1(112+Km2 and E is the Modulus of Elasticity,

In LEFM it is assumed that all of the fracture processes happen at the crack tip

and the entire volume of the body remains elastic, Under these circumstances, the

method of elasticity is useful in predicting fracture growth and failures,

Fracture researchers have at present no doubt that the introduction of fracture

mechanics into design criteria will bring significant benefits. It will make it possible to

achieve the following :

a. Uniform margin of safety,

b. Introduction of new materials like HSC and Fiber Reinforced Concrete (FRC),

c, Improved structural reliability and economy,

The conventional design concepts are based on tensile strength, yield strength

and buckling strength, These criterion are sufficient for flawless structures, but are

insufficient when cracks are present, Fracture mechanics offers the methodology to

compensate for the inadequacies of the design or strength concept, Fracture mechanics

also takes the structural size and geometry effect into account, As seen in Figure 2.3,

the classical strength theories, such as elastic analysis with allowable stress, plastic limit

analysis, as well as any other theories which use some type of strength limit in terms of

stresses (e.g,, viscoelasticity, viscoplasticity) do not study any size effect, This is

because the nominal stress aN which is defined as shown below :

(2,3)
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(2,4)
PU

N 
= 

bd

(where , Pu = failure load , b and d are the dimensions of the structure) remains constant

and equal to the tensile capacity `f,' of the material (concrete). By contrast, failures

governed by fracture mechanics exhibits a rather strong size effect which in Figure 2.3 is

described by the dashed line of slope -1/2, But in reality, concrete structures exhibit

transitional behavior illustrated by solid curve in Figure 2,3, This curve approaches

horizontal line for the strength criterion if the structure is small (typical laboratory

specimens), and approaches the inclined straight line for linear elastic fracture mechanics

if the structure is very large, Although this size effect is obviously important in codes it

is generally ignored by the current codes because these codes are usually based on
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2.2 Recent Advances in Fracture Mechanics for Concrete

Due to the presence of a large micro-cracking process zone ahead of the crack tip in

concrete, LEFM principles cannot be directly applied. A relationship which describes

strain softening must therefore be included in the fracture analysis, Modeling this

behavior can be done in two ways:

(1) In terms of Stress - Deformation (a-o) relationship,

(2) In terms of Stress -Strain (a-s) relationship.

In general, there are two types of non-linearity, ductile, as exhibited by metals,

and non-ductile, as exhibited by ceramics, glass and concrete, Compared to the ductile

fracture mechanics, in which, most of the non-linear zone undergoes plastic hardening,

the fracture process zone in normal concrete is large and occupies nearly the entire non-

linear zone.

Normal concrete, when subjected to tensile loads, behaves elastically until about

40%-60% of its tensile strength, Pre-critical crack growth and micro-cracking have been

observed to be the cause of pre-peak non-linearity, When the maximum stress is

reached, these microcracks coalesce to form one localized crack, In this local region of

cracking after the peak stress, the crack is still able to transfer decreasing levels of

stresses as the crack widens, In the other regions away from the region of localized

cracking, the material simply unloads elastically. This localization of the deformation is

referred to as the strain softening behavior of concrete, The post-peak tensile response of

concrete can be incorporated into LEFM in a similar manner to the cohesive force
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models of Dugdale (1960) and Barenblatt (Barenblatt 1962), To date there are three

well known fracture models for concrete, they are :
•

(1)Fictitious Crack Model

(2) Crack Band Model

(3) Two Parameter Fracture Model

2.3 Non-Linear Fracture Mechanics for Concrete

Several fracture mechanics approaches have been proposed to characterize failure of

concrete structures, These approaches primarily include the Fictitious Crack Model

(FCM) by Hillerborg et, al,, the size effect model by Bazant and Kazemi(1988), the two

parameter fracture model by Jenq and Shah (1985a and 1985b), Each of these non-linear

fracture models introduces some material fracture properties regardless of structural

geometry and size. In order to use any of these models, material fracture parameters

defined in the model must be experimentally determined,

The Fictitious Crack Model (FCM) by Hillerborg et. al, takes the softening stress

separation curve as the material property. To completely determine the softening stress

separation curve, one needs at least three fracture parameters such as the fracture

toughness GF, which is defined as the area under the curve, the tensile strength P t and the

critical crack opening displacement co c. A given stress separation curve can be

conveniently combined with a finite element code to predict fracture response of a

concrete structure, Difficulty with FCM lies in being able to experimentally determine

the values of GF, ft and we for a material. A method using three point bend beams has

been proposed by RILEM to obtain the values of Gr, However, a round robin test has
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shown that the values of CIF obtained are size dependent, No method for evaluating the

other two parameters have been proposed, Additionally, some inconsistency may be

introduced by separately measuring the values of f t and co..

The size effect model (SEM) by Bazant and Kazemi(1988) introduces two

material parameters OF and cf, where GF and cf are the critical energy release rate and the

critical effective crack length extension for an infinite specimen, respectively, A method

has been proposed by RILEM to measure the values of GF and cf by testing several three

point bend beam specimens, These beams must be geometrically similar but must have at

least three different sizes, Values of GF and cf are obtained from an extrapolation of the

peak loads of the tested specimens by a statistical regression, In this case a slight error

in the calculation of the extrapolation slope can significantly alter the values of Gr and cf,

Therefore, extreme care has to be exercised in determining the extrapolation slope. The

beams should be of substantially different sizes for this method to yield accurate and

reliable results,

The two parameter fracture model (TPFM) of Shah and Jenq proposes the stress

intensity factor Kfc , and the critical crack tip opening displacement CTODC as material

fracture parameters, According to the RILEM proposal, only one single size three point

bend beam is needed for measuring the values of Kfc. and CTODC , However, the testing

procedure commands an unloading when the load passes the maximum load but is not

less than 95% of the peak load. To achieve a stable unloading after the peak load a

closed-loop testing system is usually required, This requirement on testing facilities has

somehow restricted the application of TPFM,
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2.3.1 Fictitious Crack Model (FCM)

Hillerborg, Moodier and Petersson (1976) modified Dugdale (1960) and Barenblatt's

(1962) model to incorporate the stress-softening behavior of concrete and called it the

fictitious crack model (FCM), They proposed that on a certain length ahead of the crack

tip, the yielded zone, cohesive forces must act such that the stresses from the fracture

process zone cancel the stress singularity present ahead of an equivalent crack tip. In

this model, which has been widely applied in finite element analysis of concrete fracture,

the fracture properties are defined by the stress-deformation (a-co ) relationships, The

fracture energy, GF, is defined as the area under the (5-0) curve.

G, = Jado
0

The FCM assumes the effect of microcracked zone to be confined to a narrow

band of line crack where the total fracture energy is consumed. The material outside of

the process zone behaves elastically based on the stress-strain relationships (see Figure

2.4a), The crack tip begins to open when the stress at the tip of the crack reaches the

tensile strength, ft, of the concrete. As the crack opens, closing forces based on the

amount of opening are introduced across the crack faces (see Figure 2,4b), When the

crack opens more than the critical crack opening displacement (p c, the closing traction

across the crack face drops to zero, The length of crack over which the closing forces

act is known as the fictitious crack. The fracture parameters are completely

characterized by two parameters GF and f t, The shape of the a-co curve has been shown

(2.5)



20

to have a profound influence on the results of the model, Linear, bilinear and even

exponential a-co curves have been used,
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Hlllerborg's fictitious crack model was verified and calibrated by various

comparisons of test data. However, it seems that an exhaustive comparison with all the

important concrete data from the literature has not yet been presented, But due to

equivalence with the crack band model, the extensive comparisons of the latter with test

data (Bazant and Oh 1983a, 1983b) indirectly validated the fictitious crack model.

2.3.2 Crack Band Model (CBM)

Inspired by the work of Hillerborg et, al., Bazant developed the crack band model

(Bazant and Oh, 1983a, 1983b), In this model the fracture process zone is modeled as a

system of parallel cracks that are continuously distributed (smeared) in the finite element,

The material behavior is characterized by the constitutive stress strain relationship, The

width of the fracture process zone (wc) is assumed to be constant. For example, in

concrete it is assumed to be three times the aggregate size, The width of the crack band

is held constant in order to avoid spurious mesh sensitivity, This assures that the energy

dissipation due to fracture per unit length of crack is a constant which is equal to the

fracture energy of the material (G F),

In this model, the crack is modeled by changing the isotropic elastic moduli

matrix to an orthotropic one, thereby reducing the stiffness in the direction normal to the

cracking plane, The softening behavior of concrete is modeled by superimposing the

fracturing strain, sf, on the elastic strain,

A brief mathematical background (Bazant and Oh 1983a) of this model is given

below by considering a system of Cartesian coordinates as shown in Figure 2.5. If
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concrete is idealized as homogeneous material, the triaxial stress-strain relationship can

be expressed as follows:

where, Ef , is the fracturing strain, i.e., additional strain caused by opening microcracks.

of is superimposed strain on the elastic strain ez, u is Poisson's ratio and E is Young's

Modulus of Elasticity, Since as the microcracks develop in the material the effect of

these opening microcracks does not cause any effect on the strains in 'x' and 'y'

directions (`y' axis perpendicular to the plane, see Figure 2.5),

A

	lo■ Xwe

a

Figure 2.5 The Cartesian Coordinates for Crack Band Model,
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The width of the fracture front ,wc, is assumed to be a material constant which

can be determined from experiments, w„ is proportional to the aggregate size and for

plain concrete it is equal to three times aggregate size,

The fracturing strain, cf, is determined by summing all the deformation or

openings of individual microcracks, 8f =	 f , intersecting 'z' axis over the width wc.

Ef=3fWc	 (2.7)

The fracture starts when the stress at the crack tip reaches the tensile strength, at

which point cf is still zero. As the crack opens, 8f, starts to increase and a, starts to

gradually decline, A simple choice for modeling this could be a linear function as shown

in Figure 2,6,

Fracturing strain, cf, can be represented as a function of stress, az, as follows:

,	 1
f(	

,,
ff	 crz = -Cf t —crz

where, Cf = f tko, slope of the softening curve.

Substituting equation (2,8) into (2,6), one obtains :

(2.8)

where, co, is the maximum fracturing strain, ef, at which the stress, a, goes to zero and

the microcrack forms a continuous crack,

The post-peak tensile stress-strain relationship is described by the tangent

modulus, Et, which is defined as:
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The fracture energy, GF, which is defined as the energy absorbed in creating

(opening) of all cracks is given by:

GF =":11, c 32 z (e)dE 	 (2.11)
0

The integral represents the area under the stress strain curve after the stress has

reached f' t (start of microcracking), If a linear relationship between stress-strain is

assumed, then

1	 (12

	G F =Wc-2feo or G
F
 = 

2
ft	 w e2CCf

If OF, f t and w, are known from experiments, then the basic parameters of the

stress-strain relation can be calculated as follows :

(2.12)

Alternatively, it is also possible to express the fracture energy as the total area

under the stress-strain relationship (see Figure 2,6), Using equation 2.10, it can be

shown that :

Both the Fictitious Crack Model and the Crack Band Model require complete

stress-deformation or stress-strain relationships. Such relationships can be obtained only

by performing direct uniaxial tension tests. Both these models are well suited for

numerical techniques such as finite elements,
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Figure 2.6 Stress-Strain Relationship for Crack Band Model,
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2.3.3 Two Parameter Fracture Model (TPFM)

The two parameter fracture model was developed by Shah and Jenq (1985a, 1985b).

This model was derived under the category of special non-linear fracture models without

using the complete concrete stress-deformation (a-e) and stress-strain (a-s) softening

relationships, It is based on the pre-peak nonlinear behavior of concrete. LEFM

principles are modified to approximately reflect the fracture behavior of concrete.

Ever since the concept of LEFM has been applied to concrete testing (Kaplan,

1961), it was found that the fracture toughness or the stress intensity factor (Kic)

appeared to be size dependent, In recent years, it has been recognized that if Kic is

determined based on maximum load (P e) and effective crack length (ae), then the results

are essentially independent of size and geometry effects, The effective crack length, ae,

is defined as the length over which all the pre-peak non-linear behavior of concrete takes

place,

In general, the crack path in concrete is tedious, Furthermore cracks in concrete

may not be traction free as a result of so called aggregate interlock, As a result, the

experimental determination of effective crack length on surface extension is not useful

for determining Kic, An alternate method to determine effective crack length, ac, is by

the 'compliance' technique, Compliance is defined as the value of crack mouth opening

displacement (CMOD) per unit load, The notched beam specimen is unloaded (see

Figure 2,7) just after the peak load, and the compliance C. is determined. Comparing

this compliance with Ci and using LEFM readily available relationships between

compliance and crack lengths, one can determine the effective crack length, If Kic, is

calculated based on peak load and the corresponding effective crack length, then, Kic,
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and ae become the two parameters that characterize the fracture toughness of concrete.

However, it was found that the value of a e depends on the material properties and on the

specimen's geometry, Therefore the value of ae determined from one particular size

cannot be used to predict fracture behavior of other sizes, To overcome this problem,

Shah and Jenq proposed to use the critical crack tip opening displacement, CTOD C, as a

fracture parameter, Their measurements showed that CTOD C was essentially

independent of the size and geometry of specimens. They calculated CTOD from the

compliance measurements and the available LEFM equations, The brief procedure

involved in the calculation of the two parameters K ID and CTODC for three point bend

specimens is as follows,

The Young's modulus 'E' is determined from the initial slope C1 (compliance) by

using the formula :

where, C i = Initial compliance from the load-CMOD, V(a) = Size correction factor

obtained from handbooks (Tada, Paris and Irwin 1985) for different (S/d) ratios,

a = a,,/d, S = Testing Span, d = depth of the beam, b = width of the beam,

and au = initial notch,

The effective crack length, ae, is calculated by using 'E' calculated by equation 2,16 and

by knowing the unloading compliance Cu, Using an iterative procedure 'ae' is found such

that the following equation is satisfied:

6Sae V(a) 
E

— C li d 2 b
(2.16)
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where, a. is the effective crack length and a = a cid and the rest of the terms are as

described before, Once ae is determined K1c is calculated by using the following

relationships:
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(2.17)

where,

F(a) = Size correction factor obtained from handbooks (Tada, Paris and Irwin 1985) for

different (S/d) ratios,

a = add

W = w.S/L, where wo is the self weight of the beam , L is the length and S is the testing

span,

Next the critical crack tip opening displacement CTOD C is calculated using the

following equation,

CTOD C
6P Sa e V(a) f(a,fl

Ed 2 b
(2,18)

where f(cc,f3) = Size correction factor obtained from in handbooks (Tada, Paris and Irwin

1985) for different (S/d) ratios and where a = add and 13=ada e ,

In the two parameter model the maximum applied load and the corresponding

CMODe (used to calculate CO are experimentally determined, With known specimen

geometries and Young's modulus, the effective crack ae can be determined using the

LEFM formulae, It should be noted that the an iterative procedure is needed to calculate

ae , Once ac is calculated, Kic and CTODC can be obtained.

2.4 Direct Uniaxial Tension Tests

The direct tension test for concrete is not commonly performed despite the fact that the

test is of considerable theoretical and practical significance for understanding the
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structural behavior of concrete, Although not recommended as a standard test, its

validity and general characteristics have been studied by numerous investigators,

The non-linear fracture models, such as the fictitious crack model and the crack

band model, used an assumed portion of the post peak tensile softening since no data

were available from these tension tests, Therefore the accuracy of the assumptions made

in order to arrive at such models cannot really be ascertained without uniaxial tension

test results, The reasons for lack of information on this subject at the time when the

models were developed are the brittleness of the material and unavailability of closed

loop control systems which are sensitive enough to conduct tension tests,

Evans and Marathe (1968) tested a number of plain concrete specimens in direct

tension and their results indicated that the stress-strain curves did not contain any

appreciable inelastic deformation, Sudden failures at the peak stresses resulted in

collecting information only till the peak load, To resolve this problem, they tried to

increase the stiffness of the equipment by testing four steel rods in parallel with the

concrete specimen, This effort also failed to yield complete stress strain curves since

they could only obtain information in the post peak region to about one fifth of the peak

stress after which abrupt failure occurred. Petersson (1981), also used the approach by

externally increasing the stiffness of the testing system, This was done by placing

aluminum columns parallel to the concrete test specimen. These aluminum columns

were then electrically heated causing them to expand, This made the cross head of the

machine move upwards and thereby applying tensile force to the specimen, However,

these tests were not carried out far enough to yield complete stress-strain curves, They

obtained only the peak stresses, No information on the descending part of the stress-
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strain was available until Rusch and Hllsdorf (1963) demonstrated the existence of a

complete stress-strain relationship for concrete in direct tension. Hughes and Chapman

(1966) further supplemented the findings,

It is accepted now that the shape of the stress-strain curve is a property of the

material. But it can be affected by the experimental conditions, namely, alignment of the

specimen and gage length over which the deformation or strains are measured, Blackley

and Beresford (1970) studied some of these aspects,

Testing of brittle materials in tension posed two main problems, In addition to

the higher stiffness requirements for the testing machine and closed-loop control

capability, tests had to be carried out at relatively slower deformation rates for stable

control, Other problems are associated with the possibility of specimen failures at or

near the grips due to possible stress concentration effects and improper alignment of the

specimen in the test setup,

To overcome the problems associated with specimen grips, Reinhardt and

Comelissen (1984) tried gluing the top and bottom of the test specimen to metal plates,

which in turn were bonded to bearing blocks allowing for free lateral movement of the

specimen and better alignment. Shah and Gopalaratnam (1985) designed special wedge

type frictional grips made out of aluminum and they used serrated rubber padding

between the grips and specimen surface to more evenly transfer the load, This method

proved to be restrictive. If the size of the specimen was increased beyond that which

they used, the friction force would not be sufficient to hold the specimen in order to

avoid slippage.
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Although some of these researchers had the capabilities for conducting the

uniaxial tensile tests to its entirety, they did not, however, Shah and Goparatnum (1985)

terminated their tests at 1600 micro-inch or at 2400 micro-inch deformation. They

assumed that after this value of deformation the behavior of concrete is asymptotic,

They also assumed that the addition to the fracture energy, GF, which is defined as the

area under the total stress-deformation curve, from the untested part of the stress-

deformation curve would be insignificant, This assumption is questionable since the

stress level at a value of 1600 micro-inch or at a 2400 micro-inch deformation is still

relatively high, To obtain a correct value of Gf, tension tests should be conducted to

complete separation of the specimen,

All these researchers, as mentioned above, have carried out their tensile tests on

normal strength concrete, There is not much information available at present on the

softening response of high strength concrete,

A few models are available which describe the softening response of normal

concrete under uniaxial tension, These are mentioned below,

1, Reinhardt (1984)

ral[-i-c 1+ 	 =1,0 (2.19)

where, a = Tensile stress, P t = Tensile strength (Peak), co = Crack opening displacement,

(oc = Critical crack opening displacement, and k = empirical constant for concrete =

0,248,
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2. Cornelissen (1985)

co 3 	w CO= (1+ c l (—coc ) exp(–c2 	)–	 (1+ c i 3 )exp(–c 2 )	 (2.20)
we

where, a = Tensile stress, f t = Tensile strength (Peak), w = Crack opening displacement,

= Critical crack opening displacement, c 1 , c2 = empirical constants, c 1= 3.981 and c2 =

8.359 respectively,

3. Hillerborg (1978)

	ft = exp(–p l coP2 )	 (2.21)

a = Tensile stress, f t = Tensile strength (Peak), o = Crack opening displacement, and pi,

P2 = empirical constants, p i= 0,074 and p2 = 0,756 respectively,

4. Shah (1985)

	

—
a 

= exp(–k oA)	 (2.22)
f;

a = Tensile stress, f t = Tensile strength (Peak), co = Crack opening displacement

measured in micro-inch and k, k = empirical constants, k = 1,544 x 10 -3 and = 1.01

respectively.

Note : The above equation is valid only till 2400 micro-inch,

5. Wecharatana and Chou (1986)

a = -T O - e -Nc - 	 (2.23)
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where, a = Tensile stress, ft = Tensile strength (Peak), = ratio of crack opening

displacement to critical crack opening displacement w e, and A, B, C and D are empirical

constants, A = 0.052, B = 400, C = 1,75 and D = 0.5 respectively, The above equation

holds for mortar as well as for normal concrete,

2.5 Need for a Standard Test for Determination of Fracture Parameters

No study has been reported in the literature which has evaluated the existing fracture

models predictions for the behavior of high strength concrete, But it is felt that among

the models discussed above, the most promising model for high strength concrete is the

Hillerborg's Fictitious Crack Model, To model the fracture behavior of HSC, one must

realize this model has been used in the past with assumed portions of the stress softening

curves which mostly were determined by a trial and error method, The prime reason for

using beam tests is the unavailability of direct tension tests on concrete. In recent years,

however, some researchers have been successful in measuring the softening behavior of

normal strength concrete and the need for assuming the shape of softening curves is no

longer necessary, One of the objectives of this study has been to experimentally

determine the softening characteristics for high strength concrete and to incorporate such

relationships into ABAQUS finite element program to numerically study the behavior of

high strength concrete members, Another aspect of the present study is concerned with

the experimental determination of the fracture parameter GF. As mentioned, GF values

have been known to be size dependent (test results based on 700 beams, (1-fillerborg

1985c)). The main reasons for this size dependency are believed to be:
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• Experimental errors (incomplete record of Load-Deflection measurements,

support crushing)

• Energy dissipation in the bulk of the specimen.

• Crack propagation into a high compressive stresses regions (at ultimate

failure loads), thereby requiring higher energy for crack propagation

It has been observed in fracture tests that the load point deflection measurements

are strongly affected by the support conditions. The crack mouth opening displacements

on the other hand are not to be affected by the test setups in any way, Based on this

fact, it is realized that if there was a way to relate the "true deflection" measurements to

the crack mouth measurements then it would be possible to use load-crack mouth

opening measurements for evaluations of the fracture energy of concrete, In this study, a

methodology will be developed which will allow the use of the load-crack mouth

opening displacements responses to determine the fracture energy of concrete,

The next chapter deals with the experimental program designed in this study for

the evaluation of fracture and mechanical properties of high strength concrete. Chapter

4 deals with the finite element modeling of high strength concrete members and

parametric study, The theoretical background for deflection-CMOD relationships are

presented in Chapter 5. Also in Chapter 5, important fracture parameters and fracture

energy of high strength concrete are developed.



CHAPTER 3

EXPERIMENTAL PROGRAM AND RESULTS

3.1 Introduction

In this chapter the details of the experimental program developed to evaluate the

mechanical as well as the fracture parameters of high strength concrete are presented.

High strength concrete of compressive strengths ranging between 6000 psi to 12000 psi

were tested. The experimental program (Table 3,2) was designed so as to yield the

various material properties required by the proposed finite element model, such as the

tensile strength ft, fracture energy GF and the complete tension softening curve of high

strength concrete. An improved experimental setup for conducting three point bend

beam tests was developed. Test data comprising of Load Point Displacement (LPD) and

Crack Mouth Opening Displacement (CMOD) were used in developing a method for the

determination of the fracture energy GF (Beam Test - RILEM) based on the load and

crack mouth opening displacement response, The relationship between CMOD and LPD

is established for that purpose. The number of specimens tested are listed in Table 3.2,

The types of tests that were included in the experimental study are:

• Direct uniaxial tension test

• Compression test

• Beam bending test

36
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3.2 Details of Concrete Mix and Materials Used

Details of the mix design used for the concrete mixtures are presented in Table 3.1.

Coarse aggregates chosen for this study were 3/8th" basalt, Fine aggregates were river
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3.3 Direct Uniaxial Tension Tests

In the past decade extensive attention has been focused on the strain softening behavior

of concrete in tension. There are two alternate approaches to determine the tensile

fracture energy of concrete: the direct tension test (Reinhardt, 1984, Gopalaratnam, et.

al. 1984, Wecharatana, et. al 1986, Navalurkar, et. al. 1994) and the notched beam test -

R1LEM (Hillerborg and Peterson, 1980). The tests available in the literature are mainly

on low to normal strength concrete. At the present time no such test results of uniaxial

tensile properties on high strength concrete are available,

In this study direct uniaxial tension tests were specifically undertaken for

understanding the general tensile behavior of high strength concrete and for the

determination of the following properties:

(1) The uniaxial tensile strength (f t).

(2) Fracture Energy (GF), which is defined as the amount of energy absorbed for

total failure i.e. area under the stress-separation curve.

(3) Critical Crack Opening Displacement (w e), where wc, is defined as the crack

opening displacement at which the tensile stress attains a value of zero,

Due to its highly brittle nature, testing of high strength concrete in tension poses

two main problems, In addition to the higher stiffness requirements of the testing

machine, and closed-loop control capability, tests have to be carried out at relatively

slower deformation rates for stable control. Other problems are associated with the

possibility of specimens failures at or near grips due to possible stress concentration

effects and improper alignment of the specimen in the test setup.
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3.3.1 Design of Test Specimen and Testing Setup

To overcome these problems, end tapered specimens were designed. A typical specimen

is shown in Figure 3.1. The cross section in the constant width zone has a rectangular

cross section of 3.25"x 1.75", the height of the specimen is 12". The tapered slope of

the specimen ends is 0,4166. PVC shims were employed to fit the specimen within the

metal grips, The load was transferred to the grip via a universal joint connected through

the top, Loads were transferred from the metal grips to the specimen through PVC

shims. Another universal joint was used at the bottom end to allow for free rotation of

the specimen, Tests were performed in an MTS closed loop system under deformation

control, The test setup used in the present study was modified from the work of earlier

researchers at NJIT (Wecharatana 1986). Details of the complete test setup are shown

in Figure 3.2 and Figure 3.3, The average rate of crack tip opening displacements across

the notches was employed as the feedback signal for the closed-loop testing system,

Deformations were measured across the notches using clip gages, the signal was then

electronically averaged for the feedback control, In the pre-peak region, specimens were

loaded under deformation control at the rate of 6.7x10 -8 inch per second, Past the peak

load the deformation rate was gradually increased at regular intervals depending on the

load level. Typically, it took approximately 35 to 40 minutes to reach the peak load and

around 3 hours to complete the entire test, A data acquisition board was employed for

storage and processing of data via a microcomputer.

For every batch of concrete and strength type, a total of four tension specimens

were cast in plexi-glass molds, The specimens were demolded after 24 hours and
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transferred to lime saturated water for curing. Notches of 0.5" were cut using a circular
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Figure 3.3 Photograph of the Tension Test Showing the Specimen Within the Metal
Grips and PVC Shims
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3.3.2 Results of Direct Uniaxial Tests

The test results are summarized and are presented in Tables 3,4 through 3,6, To

calculate the fracture energy, the complete stress-deformation curves were transformed

to stress-separation (a-co) curves. The separation deformation is defined as the total

deformation minus the elastic deformation and an irreversible deformation represented by

an unloading line from the top of the a-5totai curve parallel to the first loading branch

below the stress level of cr - 3.6f t, Figures 3,4 through 3.12 presents typical stress

deformation and a-w relationships for the three different strength concrete tested in the

present study. The corresponding Gro curves are also shown. As seen from Figures 3.4

through 3,12, for increasing compressive strengths, the a-co curves become more steeper

in the initial region with correspondingly lower o c values. For HSC-C concrete, the

cracks always propagated through the cement matrix and through the aggregate particles

whereas in HSC-A and HSC-B concretes, the cracks were observed to propagate

through the cement matrix, along the grain surfaces (bond phase) and sporadically

through the aggregates,

Based on the experimental data the following model which describes the

softening portion of tensile stress separation curve was developed. It should be noted

that other types of mathematical equations were tried and were found to be inadequate

to model the behavior of HSC softening characteristics.

(f, 	--coc
a jr n	 w

+	 — 1.0
)n

(3.1)
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where, a = Tensile stress, f t = Tensile strength (Peak), w = Crack opening displacement,

and m, n are empirical constants and are listed in Table 3.3 below:
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Figure 3.7 Typical Stress-Deformation Curve for HSC-B Concrete (Specimen - B1)
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Figure 3.12 Normalized Stress-Crack Opening Displacement Curves of HSC -C
Concrete with Regressed Curve Fit (equation 3.1)

In Chapter 4, wherein the finite element analysis is performed, softening curve for HSC-

A concrete is referred to as curve A and for HSC-B and HSC-C as curve B and curve C

respectively.

3.4 Compression Tests

Information about compressive stress strain response is of direct practical interest in the

design of reinforced concrete structures. The primary objective of conducting

compressive tests on high strength concrete was to determine the following properties:

1. The uniaxial compressive strength (f c)

2. The Modulus of Elasticity (E,), and

3, The peak strain (ci,)
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Due to the brittle nature of high strength concrete, compression tests were

performed at a relatively slower rate compared to the testing rate for normal strength

concrete. The details of the actual method used for testing differed depending upon the

type of high strength concrete. For HSC-A and HSC-B concrete the tests were

performed in an 100 kip capacity MTS closed loop system under deformation (axial

strain) control. The details of the test setup is as shown in Figure 3.13

The average rate of axial deformation was measured by the two clip gages. The

signal was then electronically averaged and used as the feedback control. The uniaxial

deformations were converted to strains by dividing the deformation by the gage length.

In this setup the gage length was 6,0 inches (height of the specimen), Strains were

employed to calculate the Modulus of Elasticity (Ec) of concrete in compression. In the

pre-peak region, specimens were loaded under deformation (axial strain) control at the

rate of 4,167 x10-7 in./in. per second Past the peak load the deformation rate was

gradually increased at regular intervals depending on the load level. It took

approximately 10 to 15 minutes to reach the peak load and around 45 minutes to

complete the entire test,

For HSC-C concrete tests, using the above test setup it was found to be

extremely difficult to obtain a stable post-peak response. Sudden failure at peak loads

caused by loss of feedback control of the machine often resulted in explosive failure of

the test sample and termination of the test at the peak level stresses. To overcome this

problem, HSC - C cylinders were tested using circumferential strain (displacement)

control. A high resolution MTS circumferential gage (range 0.3 in.) was utilized. The
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average rate of axial deformation was also measured by the two strain gages (4 in. gage).

The specimens were loaded initially under load control until around 40 kip (7000 psi)

and then switched to circumferential control at the rate of 2 x10 4 in. per second. Past

the peak load, when the circumferential gage ran out of its range, the test was continued

by switching to axial displacement control mode, Availability of such a unique capability

in the 1000 kip MTS (model 815) testing system made the testing of HSC-C concrete

possible. It took approximately 2 to 3 minutes to reach the peak load and around 45

minutes to complete the entire test. Details of the test setup is shown in the Figure 3.14

and photograph of the test setup is shown in the Figure 3.15.

At least 3 cylinders (3 x 6) for every strength (Table 3,2) were cast in plastic

molds from the same batch of concrete that was used for casting the tension specimens,

and beam specimens. After 24 hours the cylinders were demolded and transferred into

lime saturated water for curing until the testing age of 28-35 days.

3.4.1 Results of Compression Tests

Typical stress-strain curves are shown in Figures 3.16 through 3.18, As can be seen from

these graphs, the stress-strain curves for HSC-A and HSC-B are very much consistent as

far as the post peak behavior is concerned. For HSC -C the post peak response is highly

unpredictable. The descending part of stress-strain curves become steeper for HSC-B

and HSC-C type of concrete because of increased compressive strengths, For HSC-C the

post peak is most dynamic. This could be due to the differance in failure mode of each

type of concrete. For HSC-A the failure mode was the usual cone type, This is probably

because of lesser influence of the restraining effect (end effects) at the ends of the sample
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and the loading platens. In HSC - C, the end effects are more evident, owing to higher

rigidity of the samples and the larger effect of lateral restraint, the mode of failure was

major splitting along the length which caused the load (stresses) to drop whenever

splitting occurred and to build up again whenever splitting occurred again. The

compressive stress-circumferential strain is shown in Figure 3.19. There are no

similarities in the peak values of circumferential strains, One possible explanation is the

failure (bulging) of the specimen may or may not occur at the location of the

circumferential gage. Nonetheless, the complete stress strain curve can be captured only

if circumferential deformation control is used. Furthermore, the Modulus of Elasticity

values obtained for HSC-A concrete and HSC-B concrete are significantly lower than

expected, The reason for that is due to the extraneous strain measured during the tests,

As seen in Figure 3.13, the deformation of the specimen was measured by the two clip

gages, Since these gages were mounted on the top of the metal platen, it is possible that

the deformations included not only the true strains of the specimen but also the end

effect and the deformation of the metal platens causing higher strain readings to be

recorded, To overcome such errors, while testing HSC-C concrete, the axial strains were

measured away from the end effects and the platens as is shown in Figure 3,14. The

strain measurements were made over a gage length of 4". The calculated values of

Modulus of Elasticity are more realistic and were used in the finite element calculations

presented in the next chapter and in Chapter 5. Similar conclusions regarding low values

of Modulus of Elasticity obtained due to extraneous deformations if the strains are

measured including the full depth of the sample and the machine platen were also
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observed by Hsu et. al, (Hsu and Hsu, 1994) and Mansur et. al, (Mansur, Wee and Chin,

1995).
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Figure 3.15 Photograph of the Compression Test Setup for HSC-C Conti etc

Table 3.7 Compression Test Results
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Figure 3.16 Compressive Stress-Strain Curve for HSC-A Concrete
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Figure 3.17 Compressive Stress-Strain Curve for HSC-B Concrete
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3.5 Beam Tests

Three point beam bending tests were performed to evaluate the following parameters:

1. The fracture Energy GE, which according to the RILEM recommendation, is

defined as the area under the load and load point displacement curve divided

by the uncracked ligament length, The GE values from the tension tests will

be compared with the RILEM GF obtained from the beam tests.

2. To develop a relationship between the crack mouth opening displacement and

load point displacement,

All beam tests were performed using crack mouth opening displacement (CMOD)

control in a MTS closed loop system at a deformation rate of 5 x in/sec, Along with

the load point displacement measurements off a reference frame (bar), deflection

measurements off the beam were also recorded in selected tests. The test data consisting

of load, crack mouth opening displacement and the two measurements of deflections

were recorded using DAS 8 PGH data acquisition board and Labtech Notebook

program, A total of 18 beam tests were performed. The dimension of the test specimen

and the details of the test setup are shown in Table 3.2 and Figure 3.20. Actual

photograph of the test setup is shown in Figure 3,21, The dimensions of the size C

beams were chosen based on the RILEM recommendation. The beam specimens were

cast in plod-glass molds in the direction shown (see Figure 3,20). After 24 hours they

were demolded and transferred into lime-saturated water for curing. Prior to testing the

beams were notched using a circular diamond saw. All beams were tested at the age of

28 -35 days,
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3.5.1 Results of the Beam Tests

Typical load-deflection and load-crack mouth opening displacement curves are shown in

Figures 3,22 and 3.23. All other graphs are presented in the appendix. In chapter 5, a

method is developed that uses load and crack mouth opening displacement responses to

calculate the fracture energy of concrete, Relationship between the crack mouth opening

displacement and load point displacement is shown in Figure 3.24. Such a relationship is

utilized for calculating fracture energy of concrete and will be presented after the

theoretical background is developed in Chapter 5. Tables 3,8 through 3.10 summarize

the test data.



Figure 3. 21 Photograph of the Beam Test Setup

59



60

Table 3.8a Test Results Size A -a o/D = 0.25 Beams (A = Area of ligament = 10,125 in 2)

Specimen

Name

Peak

Load

(pounds)

Peak

CMOD

(inch)

Peak

Deflection

(inch)

Fracture Energy

(lb,/in)

1 8- -ii f pa

All 1320 0.001816 0.004345 (0.615) 0.655

Al2 1143 0.001445 0.002148 (0.685) 0,758

A13 1101 0,001621 0.002295 (0.625) 0.695

AVERAGE 1188 0.001627 0.002929 (0.642) 0.703

( ) indicates fracture energy without considering self wt.

Table 3.8b Test Results Size A -ao/D = 0.50 Beams (A = Area of ligament = 6.75 in 2)

Specimen

Name

Peak

Load

(pounds)

Peak

CMOD

(inch)

Peak

Deflection

(inch)

Fracture

(lb.

1	 8i.
2T-10

Energy

/in)

Pa

A21 548 0.002715 0.003027 (0,622) 0,707

A22 551 0.002324 0.003076 (0,700) 0.803

A23 589 0.002891 0.002637 (0,625) 0.719

AVERAGE 563 0.002643 0.002913 (0.649) 0.743

( ) indicates fracture energy without considering self wt,
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Table 3.9a Test Results Size B	 = 0.25 Beams (A = Area of ligament = 6.75 in 2)

Specimen

Name

Peak

Load

(pounds)

Peak

CMOD

(inch)

Peak

Deflection

(inch)

Fracture Energy

(lb,/in)

1 spa
-A- 0

B11 437 0,001640 0.003320 (0.587) 0.659

B12 480 0,002402 0,005127 (0,724) 0,808

B13 472  0.001738 0.003418 (0,642) 0.715

AVERAGE 463 0.001926 0.003955 (0.651) 0.727

indicates fracture energy without considering self wt,

Table 3.9b Test Results Size B -ajD = 0.50 Beams (A = Area of ligament = 4.5 in 2)

Specimen

Name

Peak

Load

Peak

CMOD

Peak

Deflection

Fracture Energy

(lb./in)

(pounds) (inch) (inch) 1 1 pdo
71 0

B21 251 0,001914 0.003223 (0.578) 0,724

B22 271 0,001934 0.003613 (0,652) 0.770

B23 258 0.001621 0.002832 (0.547) 0.667

AVERAGE 260 0.001823 0.003223 (0.592) 0.720

0 indicates fracture energy without considering self wt.
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Table 3.10a Test Results Size C -ao/D = 0.25 Beams (A = Area of ligament = 12.0 in)



Figure 3.23 Typical Load-Crack Mouth Opening Displacement (CMOD) Response of
Size A Beam - HSC-C Concrete



Figure 3.24 Typical CMOD-LPD Relationship of Size A Beam - HSC-C Concrete



CHAPTER 4

FINITE ELEMENT ANALYSIS

4.1 Introduction

The major part of this chapter deals with the method of finite element calculations used

in the present study for fictitious crack analysis of concrete members. Alternate methods

of calculations are also discussed briefly,

The present approach of modeling the crack and its propagation is based on the

fictitious crack model developed by Hillerborg (Hillerborg, Modeer and Petersson 1976),

Spring elements with softening characteristics located along the crack path are employed

in modeling the crack opening during the load-deflection analysis of unreinforced

concrete members, The details of the modeling approach are explained in this chapter, It

should be noted that the purpose of the present study has been to only utilize the finite

element method for performing parametric study on the behavior of concrete members

(normal and high strengths) and not for the evaluation or development of a new finite

element method,

It is appropriate to mention that different methods and types of calculations may

be utilized during the fictitious crack analysis. To mention a few: the finite element

method, the boundary element method, the finite difference method and if special

problems are to be studied, other less general methods such as modified linear elastic

fracture mechanics concepts may be utilized, It seems that the finite element method is

the most flexible and most well known, These reasons made finite element method an

obvious choice for the present study.
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Finite element computer programs are readily available such as ANSYS, ADINA,

ABAQUS etc, The FEM program chosen in this study is ABAQUS ver. 5.4. Such a

choice was necessary because of the capability of ABAQUS in treating "a negative

stiffness" in the modeling of non-linear spring elements in the fracture zone, A brief

description of ABAQUS is shown in Section 4.2 and details of the algorithm used in the

solution phase is discussed in section 4.3.

4.2 ABAQUS

ABAQUS is a general purpose finite element program which was developed by Hibbitt,

Karlsson & Sorensen, Inc, 1994. The ABAQUS/Standard version 5.4 has been installed

on the UNIX based Spark workstation at the New Jersey Institute of Technology

computer facilities.

In this thesis, ABAQUS finite element program was used for developing a model

which will simulate the crack propagation and other characteristics of concrete behavior

in tension, As crack propagates in concrete, the stresses acting around the crack still

transfer across the interface of the crack. To simulate such behavior, spring elements

with decreasing stiffness as the crack widens are utilized, ABAQUS offers a non-linear

spring element which can be defined with negative stiffness, In the following sections,

details , of this FEM model are presented.

4.3 Modeling Inside and Outside the Fracture Region

The material outside of the fracture zone is assumed to be linear elastic and has been

modeled by using 4-node rectangular and quadrilateral shaped plane stress elements, In
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the transition regions from a coarser mesh to a finer mesh, 3-node plane stress triangular

elements were utilized. Higher order elements were not utilized. This has partly to do

with the presently adopted simple approach of modeling of the fracture zone and partly

to do with the possibility of an irregular displacement distribution close to the fracture

zone, which may not fit smooth displacement distribution of the high order polynomial

shape functions. Where the modeling of the fracture zone is concerned, two approaches

have been debated for more than two decades: the discrete method and the smeared

method, The fictitious crack model is a material model and it clearly belongs to the

discrete models. The present study is based on the fictitious crack material model and

hence belongs to the discrete modeling category.

The smeared method approach in the sense of a material model is defined with a

descending branch in the stress - strain curve without attention being paid to the strain

localization during fracture process, The smeared cracking model was first introduced by

Rashid (1968) and has prevailed in finite element analysis of concrete since the 1970's.

The popular applications are attributed mainly to two computational conveniences: They

are (1) automatic generation of cracks without the redefinition of the finite element

topology and (2) complete generality in possible crack direction. In spite of all the

conveniences and widespread use of the smeared approach, there is no consensus as to

its superiority relative to the discrete approach. Furthermore, in recent years the use of

smeared approach has declined rapidly, this is probably because of increasing awareness

of the phenomena of strain instability and strain localization and the knowledge of the

unfortunate influence of the size of the finite elements.
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In Figure 4,1, few examples of different methods or possibilities for the finite

element modeling of a fracture zone with a known crack propagation path are shown,

The approach denoted in Figure 4.1(d) is used in the present analysis, Figure 4.1(a)

corresponds to the method used by Hillerborg et, al, (Hillerborg, Modeer and Petersson,

1976). Similar approach, but more modulated modeling, is shown in Figure 4.1(b), This

type of modeling has been used by Ingraffea and Gerstle (1985). Alternative approach

shown in figure 4.1(c) is smeared based approach and has been used extensively by

Bazant and Oh (1983a and 1983b) and Rots (Rots and Blaauwendraad 1989) and many

other researchers, During the application of this alternative, the absolute size of the finite

element is taken into account in the assumed part of the descending stress-strain curves,

A major advantage in the proposed method of modeling is that during incremental load-

deflection analysis, the topology of the finite elements does not need to be updated,

4.4 Properties of the Fracture Process Zone (Spring elements)

As described in chapter 2, presence of a fracture process zone and post cracking

softening are the characteristics of concrete. These characteristics also dominate the

modeling methods of finite element analysis of concrete cracking, As a result,

implementing the post cracking softening relationships into analytical procedure becomes

an essential part of finite element analysis of concrete structures.

In smeared crack analysis, the softening relationship is realized through the

stress-strain relations at the integration points inside the solid element. In the discrete

approach (present case), the crack is simulated by splitting the nodes along a common

boundary between the two elements (see Figure 4.1(d)),
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Figure 4.1 Finite Element Models with a Known Crack Path (a) Hillerborg, Modeer et,
al. (b) Ingrafea, Gerstle et, al, (c) Bazant and Oh et. al. (d) Present Approach
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In this study, force displacement relationships (spring properties) at discrete

crack faces are assigned based on the direct uniaxial tension test data obtained from

experimental investigation. The normal stress across the cracks is assumed to be related

to the crack width. Shear stresses, which might be transferred across the interfaces have

been neglected.

As described in Figure 4,1(d), a pair of unsplit nodes represent a material point in

a structure. The node pair is allowed to split when the force or the stress within the

element equals or exceeds the tensile strength of concrete, The magnitude of the tensile

force across the section where a crack is forming reduces or decreases as the crack width

increases or widens. This is achieved by defining the non-linear spring element properties

in accordance with the stress-separation curves obtained from direct tension tests and are

declared in the input parameters in model definition module of ABAQUS. In order to

have zero displacement across the crack path before the tensile strength is reached at the

nodes, the spring elements are assigned a very high initial stiffness. The value of the

initial stiffness was calculated such that the stiffness (initial) of the beam model without

the spring elements located along the crack path deflects the same amount for a given

load as the beam model with spring elements assigned along the pre-defined crack path

(see Figure 4.2 (a) and (b) and Figure 4.3). In this study a value of 1 x 10 10 lb./in was

found suitable, By defining a high initial stiffness, the overlapping of elements in the

compression region is also prevented. The non-linear properties of the springs are shown

in Figure 4.2 (c).



Figure 4.2 (a) Method used for Determination of Initial Stiffness of the Spring Elements
(b) Convergence of the Model Deflection Compared to Actual Deflection as Initial

Spring Stiffiless is Increased (c) Material Properties of the Spring Element
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Figure 4.3 Convergence of Beam Deflection as Spring Stiffness is Increased

4.5 Modified RIKS Solution Algorithm Used in the FEM Analysis

4.5.1 General Background

It is often necessary to obtain nonlinear static equilibrium solutions for unstable problems

where the load-displacement may exhibit the type of behavior shown in the Figure 4.4

below. During the periods of the response, the load and/or the displacement may

decrease as the solution evolves, The modified RIKS method is an algorithm which

allows an effective solution of such cases.

It is assumed that the loading is proportional, that is, that the load magnitudes

vary with a single scalar parameter. Also, it is assumed that the response is reasonably

smooth, that is, sudden bifurcations do not occur. Several methods have been proposed

and applied to such problems, Of these, the most successful seems to be the modified
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RIKS method (Crisfield 1981; Ramm 1981; Powell and Simons 1981) and a version of

this has been implemented in ABAQUS. The essence of this method is that the solution

is viewed as the discovery of a single equilibrium path in the space defined by the nodal

variables and the loading parameter. Development of the solution requires traversing this

path as far as required. The basic algorithm remains the Newton method, and therefore

at any time there will be finite radius of convergence, Further, many of the materials of

interest will have path dependent responses. For these reasons, it is essential to limit the

increment size, In the modified RIKS method (as implemented in ABAQUS) this is done

by moving a given distance (determined by ABAQUS' standard, convergence rate

dependent, automatic incrementation algorithm for the static cases) along the tangent

line to the current solution point, and then searching for equilibrium in the plane that

passes through the point thus obtained and is orthogonal to the same tangent line, Here

the geometry referred to is the space of displacements, rotations and load parameters

mentioned above,

Figure 4.4 Typical Unstable Static Response
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4.5.2 Basic Variable Definitions

Let PN , where N is the degree of freedom of the model and P is the variable used for

control, for instance the using CMOD control or the load-point displacement control as

defined in the model. Let X. be the load magnitude parameter, so that at any time the

actual load state is A, PN , and let uN be the displacement at that time.

The solution space is scaled to make the dimensions of approximately the same

magnitude on each axis. In ABAQUS, this is done by measuring the maximum absolute

value of all displacement variables, U 0, in the initial linear iteration. Also define P a = (PN

PN) 1/2. Then the scaled space is spanned by:

load = Ai PN ,

	 = PN /P° 	(4,1a)

displacements =	 (u7 	 (4.1b)uo )'

and the solution path is then continuous set of equilibrium points as described by the

vector (up ; X ) in this scaled space, All components of this vector will be of order unity,

The algorithm for this is shown in Figure 4,5 and is described below,

Suppose the solution has developed to the point A° =(ii;;A.0 ), The tangent

stiffness, K 1' , is formed, and solved in the following equation:

KNmv04 = PN	(4,2)

The increment size A° to A l in Figure 4.5 is chosen from a specified path length,

Al, in the solution space, so that:
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6..120()-0N ;1) : (VoN ;1) = Al2 	(4.3)

and hence

NN 	 1)1/2
o(Vo V +1)

The value of Al is initially suggested by the user and is adjusted by the ABAQUS

automatic load incrementation algorithm for the static problems, based on the

convergence rate. The sign of A? — the direction of response along the tangent line —

is chosen so that the dot product of Ai1,2„(VoN ;1) on the solution to the previous

increment (Az7N, ;	 ), is positive:

A21,0R ;1) : (thi-1; 6111 -1) > 0 ,

that is

AA. 20 0-	 Ni 	 A ) >

It is possible that in some cases, where the response shows very high curvature in

the (iiN ; 2) space, this criterion will cause the wrong sign to be chosen, This rarely

happens in practical cases, unless the increment size is too large, or the solution

bifurcates sharply. For further details regarding the theoretical background of the RIDS

method the reader is referred to ABAQUS theoretical manual.

(4.4)

(4,5)

(4.6)
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4.6 Convergence

To develop an understanding of the convergence rate and the influence of the mesh

refinement on the predicted outputs of the model, the following conditions were

investigated,

1. The minimum number of elements required to converge to exact elastic load

point deflection in un-notched beams and to exact load point deflection and

crack mouth opening displacements in the notched beams.

2. The effect of mesh refinement along the crack path on the calculated ultimate

load values for both notched and unnotched beams.

For unnotched beams, the number of 4-node plane stress elements along the

crack path were equal to 12, 24, 48 and 96, correspondingly 13, 25, 49 and 97 spring

elements were used, For notched beams (ratio a/D=0,5), the number of spring elements
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were 7, 13 ,25 and 49, respectively, In other parts of the beam, similar 4-node coarser

mesh was defined. Triangular (3-node) elements were used in the transition regions. A

fairly coarse mesh (12 elements along the crack path) and a very fine mesh (96 elements)

are shown in Figure 4,6.

The elastic deflection and CMOD were calculated for different mesh spacing

using ABAQUS ver. 5.4 computer program. A beam size of 6,0" depth with width of

3,0" and span length of 24" was analyzed using the material properties of high strength

concrete (HSC -C , f = 12,000 psi). The results are tabulated in Table 4.1. The values

of K1 and K2 represent the stiffness of the beam with respect to the load point

displacement and crack mouth opening displacement. These results seem to suggest a

parabolic type of convergence of the elastic deflection and CMOD values. It is

interesting to note that the effect of mesh spacing has considerable effect on the crack

mouth opening displacement values.

In concrete, the development of process zone in front of the crack tip plays an

important role and affects the peak load calculations considerably. The influence of mesh

spacing on the computed peak loads was studied, It was found that the minimum number

of elements required to get within engineering accuracy in predicting peak load values

depended on the effect of the process zone length development, i.e., the number of nodes

opened due to stress equaling or exceeding the tensile strength limit at the peak load.

The size of process zone development depends on the size or the depth of the beam,

hence it is not the number of elements required but the influence of the size (depth of

beam / total number of elements) of elements defined along the crack path that affects

the accuracy of the predicted peak loads. This is because the stresses across the crack
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path is represented in parts in which they are constant. The finer the mesh the more

accurate is the profile of stress distribution along the crack path, A very important result

observed is that the load converges to a certain values when the size of element is

decreased. For instance, for a beam depth of 3,0" (B = 3.0" and S = 12.0") as compared

to beam depth of 6.0" (B = 3,0" and S = 24.0"), the size of process zone at peak load is

expected to be higher (% of depth of the section) in the smaller beam. This implies that

the length over which non-linear stress distribution is occurring in smaller beam is larger

(% wise) in small depth beams as compared to that in larger depth beams. Also, it must

be mentioned that this will also depend on the shape of the stress-separation curves used

in the analysis, The above reason help explain why the error or difference in the

computed peak loads of smaller beams is higher as compared to that of larger beams.

This indicates that to achieve a reasonable degree of accuracy in peak loads in small

depth beams, it is necessary to use smaller size of elements as compared to that in larger

beams or specimens, However there is a minimum size (largest size) of element that

should be used beyond which there can be considerable difficulties in convergence and

achieving stable post-peak responses, Computational results are presented in Table 4,2

and in Figures 4,7 through 4.9. In this study it was found that for a range of depth of

beams studied an element size of 0.125" with aspect ratio of 1:1 to 1:2 is sufficient,

In this study, the number of elements used and the size of elements for the

various size of specimens studied are listed in Table 4.3,

In the next chapter, the application of the proposed finite element model is

presented, Finite element solutions are used there to develop the background for
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proposing the use of load - crack mouth opening displacement response of three point

bend specimens in computing fracture energy of concrete,

T.hi. A 1 1;ircw4 INC1\44.01,12 4:Alitivrszwri+ nn T 	 Devirt+ T-IsaLartirvn (R\ anti Cr,irlr VGA, rth
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Figure 4.6(a) Finite Element Mesh - Coarse Mesh (12 Elements Along the Crack Path)
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Figure 4.6(b) Finite Element Mesh - Fine Mesh (96 Elements Along the Crack Path)
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Figure 4.7 Influence of Mesh Refinement on Peak Load Calculations (a) D = 3.0"
and (b) D = 6,0" Un-notched Beam a/D = 0.0
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igure 4.8 Influence of Mesh Refinement on Peak Load Calculations (a) D = 3,0"
and (b) D = 6.0" Notched Beam a/D = 0.5



Figure 4.9 Error in Peak Load Calculations vs, Element Size
(a) Un-notched Beam a/D = 0,0 and (b) Notched Beam a/D = 0,5



CHAPTER 5

FRACTURE PARAMETERS AND FRACTURE ENERGY
OF NORMAL AND HIGH STRENGTH CONCRETE

5.1 Introduction

In this chapter, the results of the proposed finite element model for predicting the

flexural strengths, calculation of size of process zone in beams of different depths and

calculation of nominal strengths are presented. A discussion on the effect of deflection

measurements on fracture energy computations and development of the methodology

that uses crack mouth opening displacements instead of load point deflections in

calculating the fracture energy are also described, In this study, Finite Element Analysis

was used to study the fracture properties of normal and high strength concrete and, for

determination of various fracture parameters, The following parameters have been

studied.

• Calculation of peak loads (flexural strength) and size of process zone of high

strength and normal strength concrete beams of rectangular cross sections

subjected to three point bending,

• Effect of size and effect of increased compressive strength on the fracture

behavior of notched concrete beams,

• Effect of approximate stress separation relation on the predicted load

deflection and load CMOD responses.

• Establishing a relationship between crack mouth opening displacements

(CMOD) and load point displacements (LPD) for the purpose of calculating

fracture energy, GF, of concrete,
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• Establishing relationship between fracture energies obtained from three point

bending tests and uniaxial tension tests,

Concrete structural members subjected to bending are usually reinforced. In

spite of this, analysis of unreinforced concrete beams has been the subject of many

experimental and theoretical investigations, One reason for this is that the flexural, or

bending test conveniently provides information about a very important property of

concrete, namely the tensile strength of concrete and hence the modulus of rupture.

Another reason that bending specimens are often used for experimental research is the

determination of the flexural strength for different materials, Flexural strength of

unreinforced concrete is of direct practical importance to some mass produced concrete

structures, such as in dams, pavements, airfield runways, In reinforced concrete

structures, flexural strength of concrete is used in calculating the cracking, yielding and

ultimate loads and, for strength design,

The flexural test is one of the three standard tension tests, The first two are the

direct uniaxial tension test and the indirect tension test (or spitting tension test), It is

well known that the flexural strength of concrete in general does not equal the tensile

strength of concrete, Experimental evidence also supports the fact that flexural strength

is not constant but depends on the depth of the beam or, more general, it depends on the

geometry of the specimen. It is also accepted that the fracture energy determined from

the RILEM recommended notched beam tests is not the true fracture energy (assumed to

be the fracture energy determined from the tensile test). Tension tests are more difficult

to carry out so beam tests are usually used for the determination of fracture energy

instead,



88

In this study, a correlation between the fracture energies determined from the

above mentioned first two tests was developed, Another aspect of the present study was

the development of a method to correct the errors involved in beam tests, particularly

errors in load-line deflection measurements, which cause appreciable errors in the

experimentally measured fracture energy. In section 5.3, the effect of improper or

erroneous deflection measurement on fracture energy is investigated.

5.2 Fracture Analysis of Unreinforced Structural Members (Beams) - Size Effect

The first published study of flexural strength analysis of unreinforced concrete beams

using the fictitious crack model was presented by I-Ellerborg, Modeer and Petersson,

1976), Computational results regarding the effect of beam depth on flexural strength

were presented and the results indicated that the flexural strength decreases with

increased beam depth. During these analysis, the shape of the stress separation curves

was assumed. Indirectly obtained tensile strengths from splitting cylinder tests were

combined with the fracture energy obtained from the RILEM beam tests, to define the

stress separation curves.

In this study, a three point bend beam, as shown in Figure 5.1, with the length to

depth ratios varying between 4 to 8 were studied. Plane stress, with Poisson's' ratio v =

0,2, was assumed, The exact non-linear stress separation curves determined from the

experimental investigation (Chapter 3) were used in defining the non-linear properties of

the spring elements, The rest of the beam was modeled by using regular 4 node linear

elastic plane stress elements as explained in Chapter 4.



where, Pu = peak load, B, D and L are (width, depth and length) dimensions of the beam

The finite element computational results are shown in Table 5,1. The numerical

results are plotted in Figure 5.2, For both the high strength concrete and normal strength

concrete, a relationship between the flexural strength as a function of the depth of the

beam is shown in the Figure 5.2. As can be seen from Figure 5.2, the flexural strength of

normal strength concrete is about 1.6 times the tensile strength for smaller depth beams

(D = 3.0") and the flexural strength gradually approaches the tensile strength as the

depth of the beam increases. This was found to occur for a beam depth of 18.0" for
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normal strength concrete. For high strength concrete, the flexural strength is about 1.4

times the tensile strength for smaller depth beams (D = 3,0"), The flexural strength

approaches very rapidly and equals the tensile strength for a beam depth of 9.0". This

observation indicates that high strength concrete behaves much more like a linear elastic

material.

2

fa 1,8 —
=
vs 1.6 —

„c1) 1,4 —

HSC fc =12,000 psi
NSC fc = 4,500 psi

1.2 +

0,8 I 	
8 	 12
Beam Depth (in.)

-e- HSC NSC

Figure 5.2 Theoretical variations of Flexural Strength Versus Depth Of The Beam,
(Beam Dimensions -Width : B=3,0", Span : S = 4xDepth, Depth as indicated above)

The reason for this can be explained on the basis of the stress softening

characteristics of concrete. In concrete, even when a crack propagates (stress level

exceeds its tensile strength), the crack continues to transfer stresses due to an effect of

aggregate interlock. This zone, in which the stress transfer is taking place, is known as

the process zone. In Figure 5.3 the size of process zone at peak load is shown for

different depth of beams, The size of the process zone decreases as the beam depth
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increases. As the size of process zone decreases, the region of non-linear stress

distribution decreases and it approaches a stress distribution of linear elastic brittle

material (small or no process zone). This is predicted to occur for normal strength beams

of greater than 18" depth, For high strength concrete beams, due to their brittleness, the

size of the process zone is significantly smaller than that as compared to the same depth

beam of normal concrete. Hence, the ratio of flexural strength and tensile strength is

lower for high strength concrete. The initial slope of the post peak stress-separation

curve for high strength concrete is very steep compared to normal strength concrete,

This steepness drops after the tensile stress is reached greatly influences the development

of the size of the process zone and the of peak load and thence the flexural strength. The

stress distribution along the crack path of normal and high strength concrete for un-
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Table 5.1a Flexural Strength Results For Normal And High Strength Concrete Beams
(Finite Element Analysis)

Span/Depth = 4,0

Beam Depth
D (in)

Normal Strength
Concrete ff/f' t

High Strength
Concrete ffif t

1.5 1,612 1,443

3.0 1.416 (1.833*, 1,643**) 1.250 (1.660*, 1.450**)	 1

6.0 1.236 1.083

9.0 1,136 ( 1.445*, 1.308**) 1.0034 (	 1.322*, 1.159**)

12,0 1,074 1,002

18,0 1.020 1,000

Calculations performed using 0* linear and ()** bi-linear stress-separation curves
(Beam Dimensions -Width : B=3.0", Span : S = 4xDepth, Depth as indicated above)

Overestimation of flexural strength between 15-30% can occur in analysis

performed considering linear or bi-linear stress softening curves. This variation is due to

the fact that the initial slope (segment) of stress softening curve plays an important role

in the stress distribution at the peak load and therefore affects the peak load calculations.

Most of the bi-linear and linear stress softening curves used by researchers (Hillerborg

1981, Gustaffson 1985) are defined in terms of the fracture energy of concrete. Figure

5,4 presents a comparison between an exact stress softening relationship (present finite

element analysis) and approximate relations. Note that in this figure the fracture energy

Gp has been maintained constant (the area under stress-separation curve). Use of inflated

values of GF in defining the stress separation curve will result in further errors in the

results of the finite element models. To illustrate the over prediction, the flexural

strengths (see Table 5.1) were calculated for two beam depths of 3 and 9 inches, the

stress softenings were assumed to be linear (constant GF) and bi-linear, The effect of

approximate stress-separation curves on the predicted load-deflection and load-CMOD
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is shown in Figures 5.6a and 5.6b, As can be seen from these figures, the shape of the

stress-separation curves has a profound influence on the predictions of the peak load as

well on the post peak behavior.

V 	 V.VVZ 	 V,VV.1. 	 V ,VV.V 	 V .VVO 	 V.V I

Crack opening displacement, w, (in)

Figure 5.4 Different Shapes Of Stress Separation Curves Commonly Employed
(Note: The Area Under the Curves are same)

To study the effect of notch depth on peak load capacity of beams with varying

depths was undertaken. Nominal strength as defined in equation 5.2 was used to plot a

stress contour for normal and high strength concrete beams. The notch to depth ratio

was varied between 0,0 to 0,5. The results are presented in Table 5.1b and are plotted in

Figures 5,7a and 5.7b,

3.L,a = C	 C = 
	N  N BD	 2D

(5.2)
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where, P. = peak load, B, D and L are (width, depth and length) dimensions of the beam.

Interesting observation from this study concerns the computed lengths of the

process zone, Illlerborg introduced a length parameter known as the characteristic

length, leh, as a measure of the process zone size or of the ductility of the material. This

parameter 4, as defined in equation 5.3 , is calculated for the present employed material

properties.

For normal strength concrete, the material properties used were: f' t = 400 psi,

GF m,55 lb/in, and E = 3,8 x 106 psi, shape of stress-separation curve is curve A (see

Chapter 3), Substituting in equation 5,3, yields the characteristic length L it = 13.0625 in.

Whereas for high strength concrete, using the material properties of f t = 650 psi , GF =

0,73 lb/in, and E = 5,25 x 10 6,. shape of stress-separation curve is curve C ( see Chapter

3), yields la = 9.07 in,. Both results are significantly higher than the process zone size

calculated in this study, In this study it was found that the size of the process zone

reaches its maximum extent at the peak load and varies for different depths of the beam,

This clearly means that the process zone is not a material constant. The parameter l eh,

can only be used for characterizing the ductility of the material,



Figure 5.5a Stress Distribution At Peak Load For Normal Strength Concrete
(t'., -  4,500 psi - Unnotched Beams)
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Figure 5.5b Stress Distribution At Peak Load For High Strength Concrete
(f c =12,000 psi - Unnotched Beams)



Linear Stress-Separation Curve -big- Bi-Linear Stress-Separation Curve
Exact Stress-Separation Curve

Figure 5.6a Comparison of Predicted Load-Deflection Behavior Depending Upon the
Employed Stress-Separation Curves, (Beam Dimensions - Width: B=3 ,0",Depth D

=6.0", Notch Depth Ratio a/D0.25 and Span = 4xD)

0 	 0,005 	 0.01 	 0,015 	 0,02 	 0.025
Crack Mouth Opening Displacement (in.)

Linear Stress-Separation Curve -0*-- Bi-Linear Stress-Separation Curve
-§e- Exact Stress-Separation Curve

Figure 5.6b Comparison of Predicted Load-CMOD Behavior Depending Upon the
Employed Stress-Separation Curves, (Beam Dimensions - Width: B=3.0",Depth D

5.0", Notch Depth Ratio a/D=0.25 and Span = 4xD)
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Table 5.1b Nominal Strength Results For Normal And High Strength Concrete Beams
(Finite Element Analysis)

(a) Normal Strength Concrete (f" = 4,500 psi)
Depth D (in,) an/ft

a/D=0.0 a/D=0.25 a/D=0,25 a/D=0.416 a/D=0,5
1,5" 1,61 1.148 0.940 0,608 0.451
3" 1.416 0,998 0.822 0,525 0.396
6" 1.236 0,860 0.710 0.454 0,344
12" 1.075 0.728 0.602 0.386 0.295
18" 1,02 0.654 0.541 0.348 0.266

(b) High Strength Concrete (f.= 12,000 psi
Depth D (in,) anift

a/D=0.0 a/D=0.25 a/D=0- .25 a/D=0.416 a/D=0,5
1,5" 1.44 1,019 0.8394 0.5378 0,4133
3" 1.249 0.86 0.71 0.461 0.35
6" 1.085 0.7446 0.6148 0,394 0.3
9" 1.02 0.6745 0.556 0.357 0.273
12" 1 0.625 0.516 0.3318 0.253
18" 1 0.559 _	 0,392 0,2977 0.227
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Figure 5,7a Theoretical Variations of Nominal Strength of Normal Strength Concrete
Beams Versus Depth of the Beam.

(Beam Dimensions -Width: B=3.0", Span: S 4xDepth, Depth as indicated above)

Figure 5.7b Theoretical Variations of Nominal Strength of High Strength Concrete
Beams Versus Depth of the Beam .

(Beam Dimensions -Width : B=3.0", Span : S = 4xDepth, Depth as indicated above)
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Based on the finite element solutions of this study, the following conclusions can

be made regarding the behavior of normal and high strength concrete beams,

1. Flexural strength of beam does not equal the tensile strength of concrete.

2. As the depth of the beam increases, the flexural strength decreases and it approaches

the tensile strength,

3. The ratio of flexural to tensile strength depends on the compressive strength of

concrete. The ratio is lower for high strength concrete than for normal strength

concrete.

4. The shape of the stress-separation curve affects the predicted peak load values as

well as the post peak behavior.

5.3 Effect Of Load Point Displacement Measurements On Fracture Energy (GF )
As Measured From Beam Tests (RILEM)

The Fracture Energy (GF) determined from the notched beam test as recommended by

RILEM can be significantly higher than its true value due to inaccurate load-point

deflection measurements. Erroneous deflection measurement can occur due to crushing

of the specimen over the supports, support settlement, machine deformation to mention a

few (see Figure 5.8), Another possible factor that causes errors in GF is negligence of tail

portion of the load deflection data.

Based on the RILEM recommendations, GF is determined by computing the area

under the load deflection curve and by using the following formula:

= 1
6

° 0 Pa + mg6 o

(5,4)
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where, P = load, 8 = load line deflection and 8 o the final deflection at termination of the

test, mg = self weight of the beam and Alig = cross section area of the ligament = B (D-

ao), B = width, D= depth and a s is the initial notch depth, The main restrictions of the

RILEM method are the use of a span to depth ratio of eight, and a notch depth ratio of

0,5, Lower notch depth ratios have been reported to yield higher GE.

In this study, the various possible reasons for the problems associated with

experimentally determined GE values are analyzed, Among all causes, the main reason for

a higher value of GF is inaccurate measurement of the load-line deflections. A procedure

for using crack mouth opening displacement instead of load point deflection is developed

in the present study for calculating fracture energy from the load-CMOD data. The use

of CMOD responses is preferable because the CMOD measurements are generally not

affected by any settlements, crushing of the beam specimens or deformations of the test

setup,

In this study, the methodology that calculates the fracture energy, GF, from load -

CMOD data is developed in the following two ways:

• Relating accurately measured load point displacement (LPD) to crack mouth

open displacements (CMOD) of the beam.

• Establishing a relationship between the plastic components of the load point

displacement (LPD) and crack mouth opening displacement (CMOD) of the

beam

The above two mentioned relationships can also be experimentally determined,



(b) Improper method of measuring deflections

Figure 5.8 Methods Of Measuring Load-Line Deflection

In the following sections, the theoretical basis for such relationships is presented,

The theoretical analysis is obtained using the solutions of the present finite element

model,

The effect of inaccurate deflection measurements on the computed fracture

energy is demonstrated by means of an idealized load-deflection response. In Figure 5.9

the curve represented by the solid line represents an accurately measured load-line

deflection versus load response, the dashed line represents the load-deflection response

of the same specimen, which includes extraneous deformations, The pre-peak non-

linearity has been ignored. Post peak responses are described in terms of the normalized
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values of the peak load and displacement. The brittleness index, f3, defines the shape of

the post peak curve, Values between 0.2 to 0.8 were considered to investigate the effect

of the "steepness" of the post peak curve on the fracture energy. Typically, 0, is

approximately equal to 0.2 for fiber reinforced concrete and 0,8 for high strength

concrete, These values of 0 were found by evaluating a number of experiments, see

Figure 5,10, The parameter 'n' represents the end point of the load deflection curve

(displacement at which the load is negligible). Usually for normal concrete, n is 8 to 12

times the peak displacement, As shown in Figures 5.9 and 5,10, most of the extraneous

deformations occur prior to the peak load. The parameter, y, relates the extraneous peak

deflection to the actual true deflection at peak load (experiments reported in the

literature indicate the possibility of ' being as high as 3 to 4). Based on experimental

evidence (Kim, 1991), the end point on the erroneous load-deflection response curve

seems to lie somewhere in between the true end point (n) and the point which would

correspond to a point where the erroneous load deflection curve is parallel to the true

load deflection curve (n + y -1). To account for this the end point of the erroneous load

deflection curve is defined by using a parameter as shown in the Figure 5,9, The post

peak response of the true load-deflection curve can be written as

P Pee 13(' ) , 1 < m < n	 (5.5)

where Pe is the peak load, and m varies between 1 and n,
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Based on this load-deflection curve the true fracture energy (area under the load-

deflection curve, cross sectional area of the beam considered as a unit area for simplicity)

can be written as:
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deflections. The results are shown in Figure 5.11 and tabulated in Table 5.2, which

clearly demonstrates the importance of measuring the load-line displacements accurately.
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5.4 Determination of Fracture Energy Based on Load and CMOD Relationships

5.4.1 Relationship Between Load Point Deflection (LPD) and Crack Mouth
Opening Displacement (CMOD)

The first study to report a relationship between the two quantities LPD and CMOD was

by Kim (Kim, 1991), In Kim's study only specimens of span to depth ratio of 4 were

analyzed, In this study, the concept is extended to different span to depth ratios. Span

depth ratios varying between 4 to 8 were studied. Figure 5.12a illustrates a typical load

deflection response of the beam, As seen in Figure 5,12b, a typical relationship between

accurately measured LPD and CMOD is bilinear in shape, The initial slope S 1 is valid in

the linear portion of the load-deflection response (Figure 5,12b), The slope S 1 then

gradually changes to S2 during the formation of the process zone in the viscinity of the

crack tip, Around the peak load the process zone reaches a certain size after which the

specimen exhibits a linear relationship between LPD and CMOD with a constant slope

S2, The values of S 1 and S2 can be experimentally evaluated, In Kim's study the value of

S2 was reported to be 0.875,

Using ABAQUS computer analysis, the values of S1 and S2 were computed by

combining the predicted finite element solutions of deflection, load and crack mouth

opening displacements, It was found in this study that the values of S 1 are dependent on

the initial notch depth and, the values of S2 depend on the span to depth ratio. The

results of the numerical analysis are presented in the Table 5.3, The relationship of S 1, S2

and notch depth for different span-depth ratios is shown in Figures 5.13 and 5,14.

To calculate the fracture energy from the P-CMOD curves, the following

equation is used:



Figure 5.12b Relationship between Crack Mouth Opening Displacement and Load Line
Deflection (Kim, 1991)



Table 5.3 Values Of S1 And S2 Obtained From Finite Element Analysis
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5.4.2 Relationship Between Plastic Components of Load Point Deflection (LPD p)
and Crack Mouth Opening Displacement (CMOD p)

Similar to the method developed above, it is possible to eliminate the initial slope S 1 by

considering only the plastic components of the displacements (load point deflection and

CMOD). To derive a relationship for determining the fracture energy from Load-CMOD

responses of a beam test, the following assumptions are utilized:

1. The elastic components of both the load point displacement and crack mouth

opening displacement (8, CMOD) can be calculated (estimated) at any instant of load

by considering:

(a) Material unloads-reloads elastically with constant initial stiffness K - see

Figure 5,15a

(b) Material unloads-reloads with stiffness degradation, and the rate of stiffness

degradation is assumed to be linearly dependent on the displacements - see

Figure 5,15b

2, Fracture Energy can be defined as the accumulation of the plastic energy which

reaches a steady state value as the beam specimen finally separates in two halves,

3. The ratio of the plastic components of load point displacement and crack mouth

opening displacements is a constant,

The beam displacement, u, (load line deflection and CMOD) can be separated

into two components, namely the elastic component and the plastic component which

occurs due to crack propagation.

UT = tie ± Up 	 (5,12)



=, CMOD,
K2

(5.13)
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where, up = plastic component of the displacements (either deflection or CMOD) due to

crack propagation, uT and ue are the total and elastic component of the displacement

respectively.

The elastic component of the displacement as a function of total displacement can

be determined by using either assumption number 1 above or, by performing cyclic tests.

It was shown by Jenq and Shah (1985) that the elastic components of both load point

displacement and crack mouth opening displacements as a function of total displacement

is a material property, Using assumption 1(a), the elastic component of displacements

can be written as:

where K1 and K2 are the stiffness of the beam with respect to load point and crack mouth

opening displacements before the start of the fracture process growth,

Knowing the elastic component of the displacement, the plastic component of

displacement can be estimated by subtracting from total displacements the elastic part as

determined from Equation (5.13), The relation between plastic component of

displacement and fracture energy can be obtained by considering the energy equilibrium

of beam under bending at any instant of time, At. The external energy (or work) of load

and deflection is equated to the strain energy and the energy absorbed in the fracture

process zone,

External Work = Plastic Energy (Fracture) + Elastic Energy (Strain) 	 (5.14a)



Figure 5.15 (a) Assumption Of Elastic Unloading-Reloading Behavior (B) Inelastic
Stiffness Degradation Assumption
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Pd8 = f f cr pckodA +1 j ededV 	 (5.14b)
0 	 A to 	 V e

where P is the load acting on the beam, d8 is the incremental deflection at the considered

time At, ap is the stress in the fracture process zone, dco is the amount of displacement in

the fracture process zone, Cre is the stress in the elastic region, d& is the amount of change

of strain, A is the area of the fracture process zone and V is the volume of the specimen.

If during the studied instant of time, the fracture process has not started, then the first

term in the right hand side of the equation is still zero, In this case, the external energy is

balanced by the elastic strain energy alone, As the specimen fractures the external energy

is divided into two components, viz. the elastic strain energy and the plastic energy that

is dissipated in the fracture process. Integrating the left hand side of the Equation (5,14b)

between 8=0 and 8=809 and using the relationship between the total. deflection (8) and its

elastic and plastic components:

8.— 	 8... 	 D2P(5=0.) 	 .5=c. 	 P(S=..)

fPda = fPd3 + —
I 1PdP = PcM p +[ rk,„ 	 Pc15 	 (5.15)

8=0 	 0 	 P 	 K1 P(8=0) 	 0 	 1 p(&=0) 	8.p=0

Refer to Figure 5,16 which illustrates the energy participation during beam

bending. As seen in the Figure 5,16, the plastic energy is zero till the elastic limit after

which the elastic as well as the plastic energy increase, The elastic energy reaches its

maximum value at the peak load after which it starts to reduce and eventually vanishes

when the load attains a value of zero, This leads to an important conclusion that the area

under the load-plastic component of deflection also yields the fracture energy of

concrete. As shown in Figure 5,16, the elastic external work is small compared to the



114

plastic external work, therefore as a simplification, it may be assumed that the total

external work is equal to the plastic external work as indicated in Equation (5.15),

Integration of the two terms on right hand side of Equation (5.14b) over the

entire displacement response (between 6=0 and 8=00) can be dealt with individually, The

first term by definition is GF which yields:

J a pdwdA = GFB(D — a0 ) 	 (5,16)
AO

For the second term, the integration gives:

J a ededV = 1 jr - E 	 1 cr e -e dVle(s .,0)

Ve	 2 v	 2 v
(5,17)

The sum of cudV is zero at 8 = 0 (since P = 0), As no external forces act on

either of the two halves of the beam, considered individually, either at 6 = 0 or at 8 = 00,

Furthermore no plastic deformations are assumed to occur outside of the fracture zone,

thus the sum of accdV is zero at 6 = 00 (since at 6 = 00, P = 0). For any other situation a

closed form solution for the strain energy cannot be easily made.

In reality, the stiffness 'K' of the beam specimen for concrete like material will

decrease as the crack propagates, To account for this, a simplified assumption is utilized

and the stiffness K (both K1 and K2) is assumed to be linearly degrading as the

displacement of the specimen increases, The stiffness at any value of displacement is

calculated by using the equation given below:

K1 = K 0(
u — u

i)

Un — U0

(5.18)
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where, K. is the initial stiffness, uo = displacement prior to start of fracture process, u n is

the final displacement ( load, P 0), ui is the current total displacement and Ki is the

stiffness at the displacement value of Il i ,

0 	 0.005 	 0,01 	 0,015 	 0,02 	 0,025 	 0,03
Total Deflection (inch)

—0— Energy-Load-Defl.	 Plastic Energy	 Elastic Energy

Figure 5.16 Energy Participation During Fracturing Of Beam

Relation between the plastic part of CMOD and fracture energy GF can be

developed by utilizing assumption no. 3. Using the finite element solutions for load,

deflection and crack mouth opening displacements for the various sizes of beam studied,

the plastic components of deflection and crack mouth opening displacements were

calculated, They were found to have a linear relationship for any given S/D. In Figure

5.17, a typical linear relationship between plastic component of load-line deflection and

plastic component of crack mouth opening displacement is presented. Using the constant

S3, the relationship between Crp and plastic CMOD is developed.



0 	 0.005 	 0,01 	 0,015 	 0,02 	 0,025 	 0,03
Plastic Component of CMOD (inch)

Figure 5.17 Typical Relationship Between Plastic Components Of Deflection And
CMOD OEM Solution)

Alternatively, an upper bound solution for the constant S3 can also be developed

by considering the collapse mechanism of the beam specimen at failure stage (see Figure

5, 1 8), Since the relationship between the plastic component of displacement and CMOD

is linear, only the final displacement (total displacement = plastic displacement) is

considered. At initial position, i.e,, when no cracking (elastic stage) has occurred, both

the plastic components of load-line deflection and crack mouth opening displacement are

zero. At the failure stage, this constant is found to be equal to:

CMOD = DO 8 = 
LO
4

(5,20)



Figure 5.18 Collapse Mechanism of Beam at Failure Stage

In the next section, prediction of load-CMOD and load-deflection responses of

other researchers as well as of the present study are given.

5.5 Performance of Present Finite Element Model - Comparison with Test Data of
Other Researchers

In this section, comparisons of test data of few researchers with the predictions of the

present finite element model are presented. Although a large number of fracture test data

is available in the literature, they are mainly for normal strength concrete. Reliable and

exhaustive test data on high strength concrete is lacking and very limited. Test data

referred in this section were specifically chosen to highlight the importance of the correct

measurement of load point deflections. As mentioned previously, error in deflection

measurement greatly affects the fracture energy Gr. The test data referred to are from:

1. Kim (1991), Medium strength concrete f', = 7000 to 8000 psi
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2. Gettu et. al. (Gettu, Bazant and Karr 1990), High strength concrete f > 12000 psi

3. Xie et, al. (Xie, Elwi and MacGregor 1994), High strength concrete f c = 12000 psi

Figures 5.19 through 5,21 present the test data adapted from Kim's study

(1991), As seen from these figures, larger discrepancies are seen to be associated with

the load-deflection curves compared to the load-CMOD responses, The finite element

model (material properties used: Curve B softening curve, f t = 550 psi and E = 4.7 x 106

psi, GF = 0,65 lb./in) generally compares favorably with the load-CMOD responses, The

variations in the load-deflection responses are associated with the measurement

technique employed in the tests, The deflections were measured from a reference frame,

and the LVDT (deflection measuring transducer) was attached to a roller (used for

transmitting the load) placed under the load application point and the deflection was

measured as the movement of the roller with reference to the frame (bar), In Kim's

study, independent deflections (off the beam) measurement were also recorded. It was

shown that the deflections measured independently were higher in magnitude as

compared to the measurement from the reference frame,

The reason the observed deflection (reference frame measurements) values were

higher than the finite element prediction, and tests on the same size of beams done for

this study is probably due to concrete crushing that took place under the load application

point, Even though the deflections were measured off a "floating" reference frame, the

deflections did not totally exclude the effect due to crushing of concrete. It is interesting

to note that if it is assumed that this was the cause, then the concrete crushing that takes

place at the supports is higher in magnitude (independent deflection measurements were

higher) than that occurring at the load application point,
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Figure 5.19a Load - CMOD Response of Kim (1991) test data

Figure 5.19b Load - Deflection Responses of Kim (1991) test data



120



Figure 5.21b Load - Deflection Responses of Kim (1991) test data



122

In Figure 5.22a and 5.22b, test data adapted from the study of Gettu et. al.

(Gettu, Bazant and Karr 1990) are presented. In the tests the deflections . were measured

totally independent of the beam. It is obvious that the deflection measurements included

the erroneous deflections caused by concrete crushing at the supports, It is interesting to

note that the difference in the measured peak deflection of the tests compared to the

present finite element model predictions is almost four times, Since the high strength

concrete tested was of higher strength than those studied in the present study ( > 12000

psi), the tensile strength was assumed to be 700 psi, E = 5,5 x 106 psi and Curve C



U.UU1 	 U.OU2 	 UMW 	 0,004 	 WAX)
Deflection (inch)

Test Data -0- FEM Model

Figure 5.22b Load - Deflection Response of Gettu et, al, (1990) test data

Test data (Figure 5,23) reported by Xie et, al, (Me, Elwi and MacGregor 1994)

consists of fracture energy determination from beam tests as per RILEM specifications,

The load point deflection was measured or recorded as the movement of the steel platen

(Stroke) attached to the load cell, The calculated fracture energy reported in their study

was 0.98 lb,/in, which is about 35% higher than the value obtained in the present study

for a similar compressive strength concrete (12000 psi), In their study, recording of load-

CMOD measurements was not undertaken.

Based on the discussions above it is clear that the deflection measurement

is very sensitive to the technique used. In this study, the load point deflection was

measured with reference to a frame mounted on the beam "floating" with the beam, at

the level of the initial neutral axis, on pivots attached over the supports (see Figure
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3.20). Deflection measurements were also monitored independently of the beam. In

Figure 5.24, a typical response of load-deflection is shown, As can be seen, there is a

profound effect on the deflection from the crushing of concrete, It is picked up by the

deflection measured independent of the beam (LVDT 2, Figure 3.20). In Figures 5,25

through 5.30, the results of the beam tests (present study) with the finite element

predictions are shown. Note the consistency in both the deflection and CMOD

measurements. Also the finite element predictions are found to be in good agreement

with the tests.

0	 0,01	 0,02	 0,03	 0,04	 0,05	 0,06
Deflection (inch)

	--•—• Test # 1	 —0— Test 4 2

	

—o— Test # 3	 —o— Present FEM Model

Figure 5.23 Load - Deflection Responses of Xie et, al. (1994) test data
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In the next section, calculation of fracture energy from the load-CMOD data is

presented, The purpose for developing a correlation between CMOD and accurately

measured load point displacement will help accomplish the following:

• To improve experimental determination of Cam, from load-CMOD data. Since

the CMOD measurements are generally unaffected by any movement of the

specimen or crushing of concrete at the supports. This will result in less

variation in OF.

• To offer a method to correct the fracture test data available in the literature

by using the relationship between CMOD-Deflection to re-calculated GF from

the load and newly obtained deflection measurement,

0 	 0.01 	 0.02 	 0.03 	 0,04 	 0.05 	 0.06
Deflection (inch)

Accurate Dell	 Erroneous Del

Figure 5.24 Effect of Crushing of Concrete at Supports as Shown By Measuring the
Load Point Deflections at Two Locations. (a) With reference to the frame (Accurate

Defl,) (b) Independent of the Frame (Erroneous Defl.).
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Figure 5.26a Comparison with Load-CMOD Responses
(Present Study - Size A specimen, A21 through A23)
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Figure 5.29a Comparison with Load-CMOD Responses
(Present Study - Size C specimen, C11 through C13)
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Figure 5.30b Comparison with Load-Deflection Responses
(Present Study - Size C specimen, C21 through C23)
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5.6 Evaluation Of Fracture Energy GT From Load-CMOD Test Data

In this section the evaluation of fracture energy (G) from the Load-CMOD data is

presented. The correlated constants SI, S2 and S3 were experimentally evaluated as

discussed in sections 5,4.1 and 5,4.2. The present test and FEM results are summarized

in Table 5.4.

Table 5.4 Correlated Constants (average values - 3 tests)

* After applying correction Ah = 0.3"

As can be seen from the above table, S1, S2 and S3 obtained experimentally are

somewhat different from the FEM and LEFM values. The difference is even higher

when compared with the values presented in Table 5.3, One of the reason for this is that

in FEM and LEFM analysis, crack mouth opening displacements (CMOD) was

calculated exactly at the beam's crack mouth (see Figure 5,31). However, in

experiments, CMOD is always measured at a small distance below the beam bottom face

(see Figure 5,31). If this distance is taken into account i.e., CMOD is calculated at a

small distance below the beam's bottom fiber, the difference in the constants S1, S2 and

S3 gets smaller. Also, in theoretical analysis (present FEM model) the crack path was
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assumed along a straight line. In reality, i.e, in experiments, the crack path is not

necessarily along a straight line, Slight deviations in the crack path (see photograph in

Figure 5.32) can also contribute to the observed differences between theoretically

calculated constants and experimentally obtained values, Using LEFM, an equation

which relates CMOD and Load and takes into account the location of the measurements

of CMOD in the elastic portion was proposed by Shah et, al. (Shah 1990), This equation

is given below:

Pe	 EBD2
	 = K = 	 (5,22)
CMOD 2 6Sa ,,V (a)

where, Pe = Elastic Load, E = Young's Modulus, B , D , S and a o are the width, depth

span and initial notch depth, The factor V(a) is given by:

V(a) 0.76 — 2,28a + 3,87a 2 — 2,04a 3 +
0,66	

a = 
a 0 + Ah

(1— a) 2 	D + Ah

In the present experimental study, the CMOD was measured at a distance of

0.3"-0,4" below the bottom of the beam. Substituting Ah = 0.3" in the above equations,

it can be shown that the stiffness (K2) of the beam with respect to CMOD can change by

more than 10% to 25% depending on the initial notch depth, In computing S3, K1 and K2

are both used, and the values of S2 and S3 are significantly affected if K2 changes, To

determine the extent of influence of Ah on the values of S I, S2 and S3, finite element

analysis was performed by defining a pair of stiff elements on either side of the crack

path at the bottom face of the beam, The height of the element was varied between 0.1"

to 0,4" and the corresponding changes in K2 (P./CMOD.) were computed. The

influences on S1, S2 and S3 were then determined. The following equation which is valid

(5.23)
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for ao/D (notch depth ratio) of 0.1 to 0.5 and for eh of 0.1" to 0.4" was developed from

the numerical results,

(5.24)
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Figure 5.32 Photograph of a Cracked Beam Showing the Tendency for the Crack Path
to Deviate From a Straight Line.

Figure 5.33 Influence of Ah on the Pre-Peak S i Constant
(h = Location of the CMOD Gage)
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As discussed in sections 5,4.1 and 5.4.2, the fracture energy GF was determined

using the correlated constants S1, S2 and S3 and the results are presented in Table 5,5, As

can be seen the GF values evaluated based on the load-CMOD data compare favorably

with the fracture energy calculated using the conventional load-deflection basis, In this

study, the beam deflections were recorded accurately, i,e,, excluded the effect of

crushing of concrete at the supports.

Although all precautions were observed, during some tests there were some

erroneous measurements of deflection, Such data was not used in computing the

constants S1, S2 and S3, In Figure 5,36, comparison of GF values obtained from load-

CMOD data, load-deflection results and also the GF obtained from tension tests is

presented.
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As seen from the results, the GF obtained from the beam tests compare very well

with the GF obtained from the tension tests indicating that the GF obtained from the

experimental study should be considered as a material property and since it is found to be

independent of the type of test used for evaluating as well as the specimen size (beams)

used further validates GF as a true material property,

Table 5.5 Computed Values of OF from Load-CMOD Data (Experimental)



CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

A test program designed for determination of the mechanical and fracture properties of

high strength concrete is proposed herein. High strength concretes with compressive

strengths ranging from 6000 psi to 12000 psi were used, Important material properties

such as Young's Modulus, tensile strength and complete softening curve, fracture energy

are some of the parameters studied,

In testing high strength concrete, the interaction of the testing machine and the

specimen is critical due to high brittleness of high strength concrete, To obtain stable

post peak responses during compression, tension and beam tests, suitable rates of

loading as well as a good choice of feedback control are very crucial, In this study, better

testing techniques, such as use of special grips for tension test, and use of a

circumferential extensometer gage in compression tests enabled successful determination

of the material's softening properties,

The complete post peak response obtained from direct uniaxial tension tests for

high strength concrete reveals significant drops in the compliance of stress-crack opening

curves as the compressive strength increases, It is observed that the fracture energy and

tensile strength of high strength concrete increases as the compressive strength increases,

but the increase is not proportional. Fracture energy obtained in this study is found to be

about 35% higher than that in normal strength concrete and, is seen to reach a constant

value for I', = 9000 to 12000 psi range concrete (see Figure 6.1). It will be of interest to

139
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study whether or not the fracture energy will change for a much higher compressive

strength concrete than those studied here (i,e., higher than 12,000 psi)

0.9 +

s 0,8 -

0,7 e

0,6 -

0,5

0,4 --

0,3--

0.2 	 11+1 	 I 	 II 

6000 	 7000 	 8000 	 9000 	 10000 	 11000 	 12000
Compressive Strength (psi)

Figure 6.1 Fracture Energy of Concrete versus Compressive Strength

Using the experimental results, a new relationship for tensile stress as a function

of crack opening displacement is developed, in Figure 6,2, the new relationships for the

three different compressive strengths HSC is shown, Existing models developed mainly

for normal strength concretes are also shown for comparison.

A simpler and efficient finite element model based on the Fictitious Crack Model

concept (discrete method) is developed using commercially available ABAQUS

computer program. To model the crack propagation and frictional effects at the tip of

initial crack, non-linear spring elements are defined (pre-inserted). The spring element

properties are defined with high initial stiffness with post tensile strength-crack width
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properties as per the exact shape of the tensile softening curve obtained from

experiments. It is shown that this model is able to predict successfully the test data of

load-deflection and load-CMOD of beam tests with good accuracy. Test data of other

researchers are also matched satisfactorily. A key observation from this study is that the

shape of the softening curve plays a significant role affecting the flexural strength, size of

process zone, the shapes of post peak load-deflection and, load-CMOD responses. The

FEM model is capable of handling an intermediate size beam (2500-+- elements)

efficiently. The complete analysis takes only about 20 minutes. This is attributed to the

superior method of solution strategy used in the FEM analysis. RIKS modified algorithm

is found to be very efficient. Also, this FEM model does not require any topologyupdating.

Figure 6.2 Comparison of the Tension Softening Model of Present Study with Existing
Softening Models developed for Normal Strength Concrete.
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Survey of experimental results available in literature on fracture tests reveals that

a large number of tests have been carried out in which the deflection measurements have

often included the crushing of concrete at supports (includes extraneous deformation),

This problem although not recently discovered, has not been taken into consideration, In

this study, an alternative means of calculating the fracture energy of concrete based on

the load-CMOD response is developed. It is found that better estimates of the fracture

energy can be obtained by using the load-CMOD response. Based on the experimental

results of this study, it is found that sizes of test specimen is important when considering

suitable beam size for testing, It is also found that specimens with span to depth ratio of

four are easy to handle and produce more accurate results. The test results also have

lesser scatter (in particular shape of load-CMOD and load -deflection responses) as

compared to the RILEM beam test results, The RILEM beam, having a span to depth

ratio of eight, is found to be difficult to handle especially due to its relatively high self

weight, In this study, the fracture energy of high strength concrete was obtained from

two test methods, It is important to note that in both cases, all data consist of complete

load-deflection responses. Incomplete information on the responses affects the

computed fracture energy values.

6.2 Recommendation for Future Work

1. Influence of shear stresses on crack propagation in beams are often neglected in

many models (including the present model). It will be an interesting investigation to

determine the relationship of normal and shear stresses as a function of crack opening

displacement experimentally.
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2. It was found in this study, that the finite element models based on fictitious crack

model concepts are more successful predicting load-deflection than the load-CMOD

responses, A more detailed investigation of this issue may help resolve the matter and

improve modeling,

3. The experimental setups developed in this study can be easily be extended to test

higher compressive strength concrete such as f' > 12,000 psi,
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Figure A.3b Stress - Separation Curve and Fracture Energy for HSC-A (Specimen A3)
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Figure A.4b Stress - Separation Curve and Fracture Energy for HSC-A (Specimen A4)
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Figure A.5b Stress - Separation Curve and Fracture Energy for HSC-A (Specimen A5)



500

400

300

ct9

ct'cl) 200

100 4-

0 	 0,002 	 0.004 	 0,006 	 0.008 	 0,01
Crack Opening Displacement (inch)

0
0,012

0,7

0,6

0,5

0,4

0,3

0,2

0.1

400 Fracture
Energy

100

500

0 4—f-1-1—i I 1
0,002 	 0,004 	 0,006 	 0,008 	 0,01 	 0,012

Deformation (inch)

Figure A.6a Stress - Deformation Curve for HSC -A (Specimen A6)

150

Figure A.6b Stress - Separation Curve and Fracture Energy for HSC-A (Specimen A6)
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Figure B.2b Stress - Separation Curve and Fracture Energy for HSC-B (Specimen B2)
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Figure B.3b Stress - Separation Curve and Fracture Energy for HSC-B (Specimen B3)
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Figure C.2b Stress - Separation Curve and Fracture Energy for HSC-C (Specimen C2)
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Figure C.6b Stress - Separation Curve and Fracture Energy for HSC-C (Specimen C6)
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Figure E.6b: Load - Deflection Response (Size B beam, Specimen B23)
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Figure F.lb Load - Deflection Response (Size C beam, Specimen C11)
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Figure F.5b Load - Deflection Response (Size C beam, Specimen C22)
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