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ABSTRACT

REDUCTION OF INERTIA-INDUCED FORCES IN A GENERAL SPATIAL
MECHANISM

by
Sahidur Rahman

A computer-aided design procedure has been developed for minimizing the

adverse effects of the inertia-induced forces by optimum mass redistribution amongst the

links of high speed general spatial linkages. The evaluation of an optimality criterion for

the mass redistribution of the mechanism will be carried out with the aid of a quadratic

programming technique. This has been found to be successful in minimizing inertia-

induced forces and torques. The validity of the optimization procedure will be

demonstrated by application to one kind of spatial linkage.

No literature has been found on the balancing of a general spatial mechanism, since

its kinematic equations are highly non-linear and therefore, are very difficult to solve. This

is the first analysis of inertia-induced forces and torques in a general spatial mechanism.

This method allows for the trade-offs necessary to achieve optimum dynamic response of

the linkage in design stage. These trade-offs involve a balance among the shaking force,

shaking moment, bearing reactions, and input torque fluctuations by mass distribution of

the moving links. The results will be reduced to design procedures and guidelines. These

have been outlined in a step-by-step fashion suitable for the non-specialist.
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CHAPTER 1

INTRODUCTION

Balancing of shaking forces and moments in high-speed machinery has been a challenging

problem for mechanism and machine designers. In recent years machines have been

operated at higher and higher speeds. Smoothness of operation is frequently a dominant

consideration in the design of high speed machines, but most mechanisms are not naturally

smooth in their operation. The objective of balancing a mechanism is to eliminate or

reduce the effect of the shaking force and shaking moment the mechanism exerts upon its

frame and surroundings, in order that the mechanism will attain improved dynamic, wear,

noise, precision of operation properties and extended fatigue life. The results of this study

will provide the designer an enhanced control over dynamic properties of reciprocating

machinery in the design stage. By this procedure, three sets of shaking force, shaking

moment, bearing force, bearing moment and input torque for main directions X, Y, Z will

be derived. The balancing condition is to be developed by combining the effects of all the

inertia-induced forces and torques. The objective function is the summation of non-

dimensionalized mean squared inertia-induced forces and torques with some weight

factors. The designer will be given enough flexibility to adjust the weight factors

depending upon different situations. The masses of the moving links will be kept constant.

A quadratic programming technique will be developed and numerical example will be used

to illustrate the methodology.

The dynamic balancing of machinery is essential for good high-speed performance.

A considerable amount of research on balancing of shaking force and shaking moment in

planar mechanisms has been carried out in recent years [22-30]. In contrast to rapid

progress in balancing theory and techniques for planar linkages, the understanding of

shaking force and shaking moment balancing of spatial linkages is very limited. Because
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of their complexity, it is generally not practical to perform an analysis of spatial linkages

by hand computation or by graphical methods. Spatial linkages have therefore attracted

much research interest in recent years following the advent of the high speed digital

computers. The complete shaking force and shaking moment balancing of spatial linkages

is a very difficult problem.

When operated at high speeds, the mass distribution in the links of a mechanism

give rise to forces and moments which are transmitted to the ground link of the machine.

These forces and moments shake the foundation upon which the machine is mounted,

causing vibration disturbing people and doing structural damage to the floor and often to

the entire building.

Our objective is to optimally distribute a given amount of mass within a link so to

reduce the shaking forces which disturb the foundation of a machine. Essentially what we

are doing is to represent the moment of inertia of the links by a collection of point masses

whose magnitudes are optimized to achieve the reduction in inertia-induced forces and

moments.

The methodology is novel and has the advantage over previous methods in that it

can be applied to spatial mechanisms rather than just to planar mechanisms. As an

example, it is applied to a generalized slider crank mechanism, which contains different

kinds of joints such as the cylindrical, spherical and prismatic types.

1.1 Background

In this chapter, existing techniques used for balancing high-speed mechanisms and

machinery are discussed. There has been a need to develop the optimum balancing of

general three-dimensional mechanisms.

An unbalanced linkage running at high speed transmits shaking forces and shaking

moments to its foundation (frame). The shaking force is the resultant inertia force exerted

on the frame and is equal to the vector sum of the inertia forces associated with the
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moving links of the mechanism. The shaking moment about an axis in the frame is the

vector sum of the inertia torques and the moments of the inertia forces about this axis.

These forces and moments cause vibrations, fluctuations in the input torque and stresses,

and therefore impose limitations on the performance of high-speed machinery.

1.1.1 Complete Balancing Techniques

Much literature [31] is available on the balancing of planar linkages. Complete shaking

force and shaking moment balancing is important in the dynamic balancing of mechanism,

both theoretically and practically. The major goal in this is full shaking-force balancing.

Complete balancing of shaking forces can be achieved if the center of mass of the

mechanism remains stationary. Various techniques have been developed for this purpose.

"The static balancing method" consists of replacing the masses of the links by a statically

equivalent system of point masses. By adding counterweights to the links, the center of

mass of all the moving links can be brought to rest, i.e. to coincide with a point in the

frame. "The method of principal vectors" consists of describing the motion of the center

of mass of a mechanism analytically and then determining the parameters by which the

total center of mass can be located at a stationary point. "The method of linearly-

independent vectors" by Berkof [4] requires the ability to redistribute the masses of the

links in such a way that the total center of mass becomes stationary. Lowen, Tepper, and

Walker et. al. further developed this theory to a higher degree [39, 40, 43, 44]. They

solved the problem of full shaking force balancing of general planar linkages by the

method of inertial mass distribution [39, 43, 44]. Ning-Xin Chen extended this method to

spatial linkages [6, 7]. Bagci made a special contribution on the "irregular force

transmission mechanism" for both planar and spatial mechanisms [1, 2]. "The method of

linearly-independent vectors" has been the most suitable method for full shaking force

balancing of mechanisms and has been applied to both planar and spatial mechanisms.

Therefore, the study of full shaking force balancing of mechanisms is satisfactory.
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Nowadays, the complete shaking force and shaking moment balancing still remains a

problem for some special planar mechanisms [22-30]. The complete shaking force and

shaking moment balancing is much more complicated than the full shaking force balancing

of a mechanism, and so only some special planar mechanisms could be completely

balanced. When the shaking force of a mechanism is fully balanced, the shaking moment

of the mechanism becomes a pure torque which is only relative to the rotations of the

moving links of the mechanism, but not to the translations of mass centers of the links.

"The method of linearly-independent vectors" of Berkof and Lowen is extended by Elliott

and Tesar [9] to the shaking moment and driving torque functions. These tools are

combined to completely eliminate shaking force and shaking moment with the addition of

a physical negative mass. In addition to redistributing the masses, additional moving

elements (cams, balance weights, etc.) can be introduced to eliminate shaking force and

moments.

Investigation of the complete shaking force and shaking moment balancing of

spatial mechanism has been very limited. In fact Yue-Qing's research [46-48] appears to

be the only study in this field, and an encouraging achievement dealing with some types of

mechanisms by the method of addition of balancing dyads. This paved the way to achieve

the complete shaking force and shaking moment balancing of various kinds of spatial

linkages.

1.1.2 Partial Balancing Techniques

Shaking force, shaking moment, inertia-induced joint reactions (bearing reactions) and

input torque fluctuation are dynamic characteristics of mechanisms. Complete balancing

of any one of these may result in an increased unbalance in the others. Hence partial

balancing techniques permit desirable design trade-offs. In high speed mechanisms this is

very essential. Some of the previously investigated techniques are described below.
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In 1971, Berkof and Lowen [5] have presented a least-square theory for the

optimization of the shaking moment of fully force-balanced planar four-bar linkages

running at constant angular velocity. Sherwood [37] has used equivalent masses to

minimize the kinetic-energy fluctuation of the coupler of a planar four-bar linkage having

drag-linkage and crank-and-rocker proportions. Hockey [19] later presented an approach

for the distribution of mass in the coupler to approximate a constant energy level for the

four-bar linkage, which implies the driving torque remains near zero. Tricamo and Lowen

[41, 42] introduced a two and three counterweight technique for simultaneously

minimizing the maximum values of such dynamic reactions as the bearing force, the input

moment and the shaking moment of a constant input-speed planar four-bar linkage, while

additionally obtaining a prescribed maximum value of shaking force. In 1991 Kochev [29]

performed optimum balancing of a well-known class of complex planar mechanisms which

remain kinematically invariant (function cognates) with respect to the angular

rearrangement of their sub linkages. His research revealed the potential of function

cognate transformation for optimum balancing of such mechanisms. Providing complete

shaking force balancing, he discussed two basic objectives: (i) minimization of the total

balancing mass and (ii) minimization of shaking moment. However, the concept is rather

general and may well contribute to other optimization problems, like minimization of a

given joint reaction, balancing of flexibly mounted machines, etc.

Relatively little research has been devoted to techniques for the partial balancing of

spatial linkages. Hockey [18] has minimized the fluctuation of kinetic energy and inertia

forces of a spatial slider crank (RSKP) mechanism by optimizing the mass distribution.

Symbol K denotes the universal joint. The exact solution of the optimized set of

equations, which were obtained by assuming ten point masses in a particular configuration

(to represent a three dimensional coupler), showed that for balancing purposes the coupler

ideally should be a perfectly thin rod (an impractical proportion) rather than a three

dimensional body. Hockey also obtained an approximate solution for a three dimensional
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coupler. Sherwood [36] dealt with the distribution of mass in the links of a simple

harmonic spatial slider crank mechanism in order to achieve constancy of total kinetic

energy and inertia force and torque balance during the motion cycle. He replaced the

coupler by three in-line point masses. For constancy of kinetic energy and inertia force

balance, Sherwood obtained the condition that the center of mass of the piston and

connecting rod should lie on the center of the crank pin. The inertia couple, however, was

not completely balanced.

Very few method [15, 16] can allow a trade-off among the shaking force, the

shaking moment, bearing reactions, and the input torque in three dimensional mechanism.

This method is limited to spherical mechanisms only. There is no general method which

can solve this problem for general linkages, especially for spatial mechanisms. Both

kinematic and dynamic properties of spatial mechanisms are much more complicated than

those of planar mechanisms. Many balancing methods for planar mechanisms can not be

applied to spatial linkages. Therefore, techniques for shaking force and shaking moment

balancing of general spatial mechanisms are still unavailable.

1.2 Motivation, Objective and Scope of Work

Kinematic and dynamic analyses of the generalized slider crank mechanism for a single

cylinder engine were accomplished by Fischer and Rahman [11, 12] in 1993. In this

mechanism the joint between frame and crank is cylindrical having one translational and

one rotational degree of freedom Both the joints between crank and connecting rod and

connecting rod and slider (piston, in case of an engine) are spherical (ball) having three

rotational degrees of freedom, one of which is passive, i.e. rotation about the connecting

rod longitudinal axis. The joint between slider and frame is prismatic, having one

translational degree of freedom. While conducting the dynamic analysis it is observed that

due to the presence of offsets, the forces and torques acting on the joints deviate from the

ideal case. Dynamic force and torque reactions in the mechanism were obtained using
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dual-number (6. 0, but 62 =0) techniques as developed by Yang [45] in 1971. The

particular formulation used in that study was developed by Pennock and Yang [33] in

1983.

The motivation for this research is to overcome certain difficulties involved in

balancing the inertia effects occurring in high speed mechanisms. An analysis or design

procedure should allow for trade-offs among various quantities and thus requires a new

formulation of the dynamic problem. This is likely to involve lengthy calculations, such as

matrix inversion or solution of simultaneous equations. Consequently for effective

modeling of a linkage, efficient numerical procedures are required. An optimality criterion

which can truly represent the dynamic characteristics of a linkage has to be developed and

subsequently, an efficient optimization technique is required to yield a solution. The

linkage balancing problem, although considered to be an old problem, certainly faces new

challenges, particularly in light of the rational design of linkages. It therefore warrants an

investigation from a global perspective, that is, a balancing of combined shaking force,

shaking moment, bearing reactions and torque fluctuations in high speed linkages. The

purpose of this investigation is to develop a balancing method which is capable of carrying

out the trade-offs that are necessary to achieve optimum dynamic response of the linkage.

The objectives of the research are as follows:

(i) Determination of the inertia force and inertia torque associated with each

moving link of the mechanism.

(ii) Determination of shaking force, shaking moment, bearing reactions and input

torque as a function of joint variables.

(iii) Optimization of the mass distribution with respect to shaking force, shaking

moment, bearing reactions and input torque fluctuation.

(iv) Application of these techniques for balancing a CSSP mechanism. This

includes determination of inertia forces and torques due to the entire mechanism and
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optimization of mass distribution for minimization of shaking force, shaking moment,

bearing reactions and input torque fluctuation.

(v) Development of suitable computer-aided design procedures with the help of

IMSL routines for the optimum mass distribution of high speed CS SP mechanism.

The result of this investigation will demonstrate that this method offers several

advantages. The procedure is so general that it is applicable to many linkages with no

restrictions. The method is efficient and can be easily utilized by practicing engineers

without requiring any specialized skills.

1.3 Summary of Research

In this research a computer-aided design procedure has been developed for minimization

of inertia-induced forces in an CSSP mechanism. Kinematic analysis data and dynamic

force and torque equations used are from Fischer and Rahman [11, 12].

In Chapter 2 the kinematics of the mechanism are developed. For this purpose,

one fixed coordinate system, three moving coordinate systems (each attached to a moving

link) and four dual number transformation matrices are established. The mass distribution

of each moving link (crank and connecting rod) is replaced by a dynamically equivalent

system of four point masses. Vector coordinates of point masses relative to the fixed

frame are determined by using "principle of transference" [21] and then direction cosines

of the principal axes with respect to distal frame attached to each moving link. Vector

coordinates of center of mass of the slider are determined by using the "principle of

transference" only. Acceleration of point masses relative to the fixed frame are

determined by the method as discussed in Fu, Gonzalez and Lee [14].

In Chapter 3 shaking forces, shaking moments, bearing reactions and input torques

are determined as a function of crank rotation. All the forces and moments are expressed

with respect to the fixed coordinate frame.
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Chapter 4 deals with the minimization of inertia-induced forces in the mechanism.

A quadratic objective function consisting of summation of non-dimensionalized, squared

shaking force, shaking moment, bearing reactions and input torque is formulated over one

complete cycle of rotation. Point masses are considered as designed variables. Design

constraints are formulated as a set of equations linear in the design variables. The

optimization of mass distribution is obtained by the application of IMSL routines.

In chapter 5 an example is presented to demonstrate the feasibility of the

technique. Results are discussed with the help of tables and graphs.

Finally, Chapter 6 describes the general conclusions of this study and outlines the

goals of future research.



CHAPTER 2

KINEMATICS OF THE MECHANISM

2.1 Coordinate Systems

Each link of the mechanism will be characterized by the relationship between the axes of

its joints. As seen in figure 2.1, the link connecting axes ri and n+1 can be characterized

by its length an, the shortest distance between axes n and n+1, and twist angle an , the

angle between axes n and n+1. On the distal end of each link n, there is a fixed coordinate

frame {n+1} such that the in+ / axis is aligned with a line of length an and the kn+ 1 axis is

aligned with the axis of joint n+1. The displacements at each joint n are the rotation On ,

representing the angles between the i-axes of frames {n} and {n+1 } and the translation sn

representing the shortest distance between those i-axes.

Figure 2.1 Generalized model of a link connecting two joints which are either cylindrical,
prismatic or revolute.

As seen in figure 2.2, the crank of the generalized slider crank, designated as link

1, has a length al and zero twist angle. The connecting rod is link 2, has length co and

also has zero twist angle. Link 3 is the slider, or piston, and it has zero length with a

10
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twist angle 61'3= 7T/2. The frame, or ground link, has a length a4, the offset, and the twist

angle cr4 which would have a value of 3 7T/2 for the planar case. At the joint between the

crank and the frame, there occurs rotation through angle .9] and translation through

distance si. At each end of the connecting rod is a ball joint where the displacements are

specified by two rotations, angles 02 and /77 at the connection with the crank, and angles

03 and 173 at the connection with the slider. The rotation of the connecting rod about its

own axis is a redundant degree of freedom which is neglected. The displacement of the

slider is a translation through distance s4.

Figure 2.2 The generalized slider-crank mechanism in which the cylinder and crankshaft
axes are offset and non-perpendicular.

2.1.1 Fixed Coordinate Frame

As seen in figure 2.2, coordinate frame { 1} is the fixed coordinate frame, it does not move

when the mechanism works. All forces and torques are expressed in terms of frame {1}.



-
c9„ -se„ 0

„,*=[z(9„)][x(a„)1= 	 0

0 	 0 	 1

1	 0

0 ca„
0 sa„

0

-sa„
ca„

(2.1)
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2.1.2 Moving Coordinate Frames

The coordinate frame {2} is located at the distal end of the crank, frame {3 }is located at

the distal end of the connecting rod and frame {4} is located at the distal end of the slider.

These are the moving coordinate frames. They move with respect to the fixed frame { 1 }.

2.1.3 Coordinate Transformation Matrices

A 3 x3 dual-number matrix can be formulated to express the transformation between

coordinate frames fixed on the distal ends of links comprising a mechanism. Referring to

figure 2.1, one can trace the path from the position of frame {n-1} to the position of frame

{n} as a rotation through the angle 6in and translation through distance sn about the kn

axis followed by rotation through angle an and translation through distance along the 4 72

or in+ 1 axis. These displacements can be combined into the dual angles a„ a„+ea„

and 9„ = 9„+ Es„ where letter E represents the dual number (6 2 = 0, e# 0). The

transformation between the coordinate frames can be considered as a screw motion

through dual angle k with respect to a k-axis followed by a screw motion through dual

angle a„ about an i-axis. All dual-number coordinate transformations are explained in

detail in Appendix A. These screw motions 2(9„ ) and .k(a„) can be combined into a

matrix ik and expressed in 3 x 3 form as

which expands to

ra9„ —ca„s0„ sa„s9„

=1s9„ ca„c9„ —sa„c9„
0	 sa„	 ca„



1 0 0	
...

0 —s4ca4 s4s a4

0 C a4 — s a4 + 6 S4 —a4 sa4 — a4 c a4

... 0 sa4 ca4 - 0 a4ca4 — a4sa4 _
M =

(2.4)

and the slider.There are ball joints on the proximal ends of the connecting rod
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(2.2)

(2.3)

	—s„s9„	 a„sa„s0„— s„canc9„ 	 anca„s9„+ s„sa„c9„ -
	+6 s„c0„	 —a„sa„cen— s„ca„s9„	 —a„ca„c9„+s„sa„se„

0	 ancan	 —„s a„
- 

For the crank, link 1, a, = 0, this specializes to

211Vr =
co,
sO,

- 0

-se,
c91

0

0-

0

1

+

-s,so,

s,c91

0

-s,c 91

—sI s 91

al

-apse,
—a l ct91

0-

and since the slider is constrained from rotating so that 94 = 0, we obtain

Thus the motion at those joints requires an additional rotation through an angle /hi for its

description so that the complete transformation through the joint and link takes the form

„, 1111, = [Z( )][176„)][X(a„)]	 (2.5)

For the connecting rod, link 2, lengths s2=0, e 2=0 and twist angle cr7=0, so that

2 is.
3 •`-'= + a

c92 c 77, —s02 c92 s772

s92 c772	ce,	 s92 s772

—s 772 	0	 c 772

o a2 c 02 s772 	a2 s (9,
0 a2s92 s772 —a2c92

0 	 a2 c772 	0 (2.6)

and for the slider, link 3, where lengths s3=0, e3=0, a3=0 and twist angle a3=Tr/2, we

have

C 03 C 773 C 03 S 773 	S93

SO3 C773 SO3 S773 	—0O3

- S 773 	C 773 	0

All the joint variables, their derivatives and their second derivatives were

developed by Fischer and Rahman [11].

43r...

(2.7)
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2.2 Replacement of the Mass Distribution of a Link by Four Point Masses

The mass distribution of each moving link of the mechanism can be represented by four

point masses [18, 38] . Magnitudes and the locations of the point masses are determined

on the basis of dynamical equivalence. For systems to be dynamically equivalent they

must have the same mass, the same center of mass, the same principal axes and same

principal moments of inertia about the center of mass. The details of the replacement of

the mass distribution of a moving link by four point masses is described below.

Let symbol in denotes the mass of the moving link and symbols /xx, Iyy and/zz

the moments of inertia of the moving link about principal axes through the center of mass.

Figure 2.3 The mass distribution of the moving link

Let symbols n11, in 2, m3 and m4 represent the point masses equivalent to the mass

distribution of the moving link. In order to have same center of mass before and after

mass distribution we use half point masses, each placed on the negative and positive side
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of each of the principal axes at equal distance from the origin. As shown below in figure

2.3, half point masses 7771/2, ni7/2 and n/3/7 are respectively located on the principal axes

of the link at distances Xi, Y2 and Z3 and at distances -Xi, -Y7 and -Z3 from the center of

mass. Mass 1174 lies at the center of mass of the moving link. We call this orientation a

four-point mass system because of the symmetrical nature of location of the masses.



The mass distribution of the crank, link 1, is replaced by four point masses mil,

1711 2,2, 111 13 and 17114. Point mass n714 lies at the center of mass of the crank and the half

point masses 11111%2, 171 .1 7/2 and 77713/2 lie on the negative and positive side of the principal

axes attached to the crank at distances /Li, 112 and /13, respectively from its center of

mass. The values of point masses m11,17712,n713 and m14 and distances ///, /12 and 113

can be evaluated from the equations (2.11), (2.12), and (2.13) for the known values of

moments of inertia of the crank.

The mass distribution of the connecting rod is replaced by four point masses 77721,

"722,77723 and m74. Point mass r1124 lies at the center of mass of the connecting rod and

the half point masses m21 %2, 711 22/2 and 1112 3i23/2 lie on the negative and positive side of the

principal axes attached to the connecting rod at distances 121, 122 and 123, respectively

from its center of mass. The values of point masses 77721, n722, 77723 and m24 and

distances 121, 122 and 123 can be evaluated from the equations (2.11), (2.12) and (2.13)

for the known values of moments of inertia of the connecting rod.

The mass distribution of the piston is replaced by a single point mass, m4. Point

mass 1114 lies at the center of the mass of the piston.
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2.3 Kinematics of the Point Masses

Now for each moving link, four point masses and their locations with respect to center of

mass can be computed using equations (2.11), (2.12) and (2.13). Having done that, the

equations for position, velocity and acceleration of each point mass with respect to fixed

coordinate frame can be formulated by the following method.

Figure 2.4 Distance between two frames {A} and {B}

If the transformation matrix pT describes unit vectors of frame {B } in terms of the

unit vectors of frame {A} as shown in figure 2.4 and can be decomposed into

= T +srp 	 d 	 (2.14)

then using the "principle of transference" developed by Hsia and Yang [21] the location of

distal coordinate frame on each moving link with respect to the fixed frame can be found:

[D] [Td][Tp
iT

(2.15)
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Where the vector D is the 3 x 1 primary-number column matrix describing

displacement of origin of frame {B } relative to origin of frame {A} such that

the displacement matrix
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As shown in figure 2.5 let the position vector of the distal frame {n} relative to the

fixed frame {1} be
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Let us consider the point masses mi. The vector locating the half point mass

nil/2, placed on the positive side of X-axis, relative to frame {n-cm} is
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The vector locating the half point mass /772/2, placed on the negative side of Y-axis,

relative to frame {n-cm} is
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We consider now point mass m4. The vector locating the point mass m4 relative

to frame {n-cm} is



Figure 2.6 Inertial and moving (translating and rotating) coordinate systems and moving

point mass mi.

As shown in figure 2.6, symbol /i (i=1, 2, 3 and 4) denotes the position vectors of

the moving masses mi (i=1, 2, 3 and 4) which are at rest in distal coordinate system {n+1}

which is moving (translating and rotating) relative to inertial coordinate system {1}.

Symbol Li (i=1, 2, 3 and 4) denotes the position vectors of the moving masses mi (i=1, 2,

3 and 4) relative to inertial coordinate system {1}. The acceleration of a moving mass mi

relative to coordinate frame 1 } can be expressed as

a = .1:+2coxii +cpx(coxl.)+— c2d
dt (2.32)

where symbol co is the angular velocity vector of the coordinate system

{Xn+lYn±iZn+i } with respect to fixed coordinate system {Xi Y ili } (see texts such as

Fu, Gonzalez and Lee [14]). The first term on the right-hand side of the equation (2.32) is

the acceleration relative to the coordinate system {Xn+iYn+1.Zn+1}. The second term is
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called the Coriolis acceleration. The third term is called the centripetal (toward the center)

acceleration. The fourth term points directly toward and perpendicular to the axis of

rotation. The last term is the linear acceleration of the frame {n+1 } relative to the inertial

frame { 1 } . The 3 X3 skew-symmetric matrix expression of vector w can be found from

the following equation as derived in Nikravesh [32].



As shown in figure 2.7, using the "principle of transference" we can find the

location of the origin of the distal coordinate frame {2} with respect to the fixed frame

{1}.



Figure 2.7 Crank is replaced by four point masses; D1 is the position vector representing
distance of distal frame {2} of the crank from frame {1}.



—c-tis0,91
{A} = a 1 c91 91

S'i
(2.45)

0
2r 1—cm 	 yi 0

Z10

(2.47)

The time derivative of the position vector, i.e. the velocity vector, is
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The second time derivative of the position vector, i.e. the acceleration vector, is

[—a,(cOM +,01 91 )
a1(c 91 91 — s6,1 k) (2.46)

The vector representing the location of the center of mass of the crank with

respect to the distal coordinate frame {2} is

and the direction cosines between the centriodal principal coordinate frame{ 1-cm} and the

distal coordinate frame{2} are represented by the matrix

L1,1 1

L1 , 21

L1,31

L1,12

L1,22

L1,32

L1,13

L1,23

L1,33

1—cn2I L = (2.48)

Point masses mil, m12, m13 and m14 are located on the principal axes X1, Y1,

Z1 and origin of the centroidal coordinate frame respectively. Therefore, coordinates of

half point masses 117 j/2, n717/2, m13/2 and point mass ni14 are respectively (±X11,0,0),

(0,+1'1a0), (0,0,±Z/3) and (0,0,0).



X10 - L

• 

1,11 X11

2411,N = Y10 - L

• 

1 ,2 1 X11 (2.49b)

Z10 - L

• 

1,31

X10 + 11,12 1 12
= Y + L10	 1,22 Y12

Z10 + L Y1,32 12

(2.50a)
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The location of half point mass m11/2, placed on the positive side of X-axis, with

respect to the distal coordinate frame {2} is

Z10 L1,31 L1,3., 	 L1,33 0

,{2d 	 2,„1-C12I 	 2 T 1 -C111 pll, P =
11 , P 	 F I -cnr"

L1,13L1, 1*,

L1,22	 L1,23 0

L1,1 1

L1,i1

X10 + L1,11 X11 }

10 + L1,21 X11

Z10 + L1,31 X11

(2.49a)

Similarly, the location of half point mass m11/2, placed on the negative side of X-

axis, with respect to the distal coordinate frame {2} is

The location of half point mass m1 2/2,2/2, placed on the positive side of Y-axis, with

respect to the distal coordinate frame {2} is

"10

I 2dp,p 	12r 1- cm + I- cn2iLl-cmp12,P = ylo

710

L1,11 L1,12 L1,13

111,71 L1,22 L1,23

L1,31 L1,32 L1,33



L1,12 	 L1,13

L1,23

L1,32	 11,33

L1,11

1'1,21

L1,31

0
0

X10 — L1,13 Z13

{ 2d13N1= Ylo — LL.,343

Z10 — L1,33213

(2.51b)
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Similarly, the location of half point mass m12/2, placed on the negative side of Y-

axis, with respect to the distal coordinate frame {2} is

{x10 — 4,12-1712

{ 26112,N} = Ko — 1,22 Y12

Z10 — L1,32 1 12

(2.50b)

The location of half point mass m13/2, placed on the positive side of Z-axis, with

respect to the distal coordinate frame {2} is

1x10
1 2d13,P 	1}:____2r 1-cni +1_0 2iLl-cnip13,P = ylo

Z10

X10 + 11,1343

110 L123Z13

Z10 + L1,33 Z13

(2.51a)

Similarly, the location of half point mass m13/2, placed on the negative side of Z-

axis, with respect to the distal coordinate frame {2} is

The location of point mass ml-  with respect to the distal coordinate frame {2} is

0
2d14 z___ 2r rn1-c +1_ cn2iLl-cni p14

(2.52)
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The position vectors of the half point masses m11/2, 111 12/2,	 3/2 and point mass

m14 with respect to frame { 1 } are respectively,

	

141,p = {4} +[21TR ]{ 2d11,p	 (2.53a)

fDI 1-F[2'TR ]edii,,} 	 (2.53b)

142,p = {D,	 PTR 2d12,p	 (2.53c)

	{R,,N} = {D, }+ [21TR if 2d,2, 	 (2.53d)

ID13,p = 	 [ 21TR it 2d13,p 	 (2.53e)

{-.013,N 	 } [ 2TR ]f 2d13,N	 (2.53f)

{DO =	 + [ TR]f 2d,41 	 (2.53g)

The acceleration of half point masses m1112, m12/2, 111 13/2 and point mass 11114

can respectively be written as follows. Since they are stationary with respect to distal

coordinate frame {2}, first and second time derivatives of their distances from {2} are

zero.

,aii , p = co l x (co i x 2 diu,) + 
 di
dcoi x-

,
d11,p A

de l 2
a = x (co x 2 d ) + 	 x d +D	11,4v	 1 	 11,N 	 di 	11N

a12,P = 01 x (CO 1 X2d12,P ) ±
dco 

dt
 1 	

X2 
d12P +D1

2apN = co l x (co 1 x 2 ,N ) +
dco

dpA, + D1
dt

do 1 
a13), = w i X (W i X 2 C/13,p ) -di, X -C/13,p + Dl

WI x (CO I X 2d13,N
d co
di' 

x2d13N :61

	a14	 x (co l x2d14) +
dco
	 X 2L4 14

dt

(2.54a)

(2.54b)

(2.54c)

(2.54d)

(2.54e)

(2.54f)

(2.54g)
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where vector co, = represents the angular velocity of frame {2} with respect to

frame (1 } and as previously discussed, the elements of this vector can be determined using

the relationship

=[ iR][ 21TR]=

where

--seA –ctO 0— c91 set 0-

c 0, i9, –se,e1 0 –s91 c el 0

0 0 0 0 0 1_ (2.55)

0
_

– °I.,. -wiz
_

0

61 = W12 0 –wix = (91

_ –cob, c0 11 0  0

– e1 0

0 0

0 0
(2.56)

Since crank is rotating only about the Z-axis, other rotation components are zero.

2.3.2 Kinematics of Connecting Rod

A connecting rod of mass 1147 is replaced by four equal point masses, nz 2 1, 171 72 ,
 17z23 and

ni 2 4, such that

17121 = 17722 = 17723 = 11124 M2
(2.57)= 

4

The position vector of the point mass 7119 lis

X.21
= 	 02- cmp 21

(2.58)

0

where

1	 f 7.
X21

2/7/21 k
l 2Y '2Z-4- 1.2X )— (2.59)



First the position vectors from the origin of the fixed coordinate frame at point 1 to the

moving point masses 177 2], 17122, 17723, 117 24 will be formulated. Since point 3 on the

connecting rod coincides with the point 4 of slider, the position of the distal coordinate

frame on the connecting rod can be obtained from matrix 41;4".



Figure 2.8 Connecting rod is replaced by four point masses; D2 is the position vector
representing distance of distal frame {3} of the connecting rod from frame {1}.

Using the "principle of transference" we can find the location of origin of distal

coordinate frame {3 } with respect to the fixed frame { 1 }.

1 	 O r0	 S4 	 0	 0	 0

[D3] -441MD [41114 = - S4c a4 —a4sa4 a4c a4 0 c a4 sa4

S4sa4 — a4c a4 —a4sa4 __0 —sa4 c a4

=

...
0

—S4ca4

S4sa4

S4C a4

0

—a4

...
—S4sa4

a4

0	 _
(2.65)

Position vector {M} representing the distance from origin of fixed frame {1} to

the origin of the coordinate frame at point 3 on the connecting rod or at point 4 on the

slider can be written as

S4

4

-aS a 4

—S4ca4
(2.66)
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The velocity vector of the origin of the coordinate frame at point 3 with respect to

the fixed frame { 1 } can be obtained by differentiating equation (2.66) with respect to time.

Therefore,
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The location of half point mass in 71/2, placed on the positive side of X-axis, with

respect to the distal coordinate frame {3) is

3r 2-cm+ ,_en3IL 2-cm p21,P
d21,P = 	 = y

{ 3 	J	 I
Z20 	

LT
2,21 	 L2,22	 L2,23

	

2,11	 L2,12 	 L2,13

-`-'

X20

20 +

	

_L2,31 	 L2,32 	 L2,33 i 	 _

x21

0

0
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Similarly, the location of half point mass m22/2, placed on the negative side of Y-

axis, with respect to the distal coordinate frame {3} is
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The position vectors of the half point masses m21/2, n722/2, m23/2 and point mass

m24 with respect to frame { 1 } are respectively,

1D21 ,p) = D2} +[3TR]f 3d2i,p}	 (2.75a)

tD21,N} = {D2} ±[3TR]f 3d2i,N}	 (2.75b)

tD22 ,p} = 021 ± [ 13TR]t 3d22,P 	 (2.75c)

ID22 ,N } = ID21 ± P3TRif 3d22,N} 	 (2.75d)

ID23 ,p — f-D2 + [ 3TR It 3d23,p J	 (2.75e)

f.D23 , N } = ID21+[ 13TR]t 3d23,N}	 (2.75f)
I 	 — tD2	 13TR if 3d24	 (2.75g)

where

[3TR]= RI3TRi=

c91 —s81 	0

C'91 	0

cO2cri2 	—s82

s 8, c 71,	 cO,

c82 s772

sO2 s772

0 0	 1 —s172 	0 c 772

C772C(91 + 82 ) —s(01 + 02 )	 siiic(01 +

= c772s(91 + 02 ) c(01 + 02 )	 s172 s(01 + 02) (2.76)
—s772 0	 c 772

The accelerations of half point masses m21/2, m22/2, M73/2, point mass m24 can

respectively be written as follows. Since they are stationary with respect to distal

coordinate frame (31, first and second time derivatives of their distances from {3} are

zero.,

a21,P = w2 X (W2 X3d,1,P) + dc°2 X
,
d2i,p +

dt

dco
a21,N = CO 2 X (W2X 3d,i,N)+

dt
2 x3d21,N + ti2

,,= 0, x (w, X 3
(Amp ) 

dt

do._
	x

3 
d22P + D,

-

(2.77a)

(2.77b)

(2.77c)



(2.78)

_
0 — (02z 0 2y

co2z 0 —02, (2.79)

where

C15 2
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w2	 X3d22,N +152a22N = W., X 	 )±
dt

a23,p = 0.)2 X (a.)2 x 3d23 , p ) + 	 2 X 3d23,p D2
dt

a,3,N = W 2 X (W 2 X 3d23,N )+ 	 2 X 3d 	 b23N 	 2dt

do 2  x 3d + b'3 e„7
24 	 2a,4 (D2 x (02 "24) + dt

(2.77d)

(2.77e)

(2.77f)

(2.77g)

where, w2 W2y represents the angular velocity of the origin of frame {3} with respect

C°2:

to frame { 1 } and the elements of this vector can be determined using the relationship

j)2 431RICITR1

—c772 s(01 + 02 )(01 + 02 )— sq2 i72c(01 + 02) — c( 01+ 02)( 01+ 02 )
cq2c(01 + 02 )( -191 b2 ) - SR2 il2s( + 192) —s(01 + 02 )(01 + 02 )

—c772 i72 	0

s712s(e1 +02)(01 + *92 )+ c 772 ;72 c( 01 + 02 )-

sq2c( + 02 )( .01 + .02 ) C772 ii2s( + 02 )

—s772 ;72

C 772C( + 02 ) C 712 ,5(01 + 02 ) -S712

—s(01 + 02 ) 	 c(91+82 ) 	 0
s77,c(01 + 02 ) s772s(01 + 02 ) cg,

(p ly 	 CD2x 	 0



(2.81)

(2.82)
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After multiplying the matrices in equation (2.78) and then equating with the matrix

in equation (2.79) angular velocity components can be determined.

2.3.3 Kinematics of the Slider

The slider motion is a translation along a straight line, no rotation is involved. Therefore,

we can consider it as a single point mass.

The position vector locating the center of mass of the slider with respect to the

fixed frame {1} is

The velocity of the slider is

—S4s a4

—S4ca4 (2.80)

0—S4 sa4 1
—S4ca,j

0
—:574sa4 }
—S;4ca4

[A

The acceleration of the slider is

[D3



CHAPTER 3

DYNAMICS OF THE MECHANISM

3.1 Dynamics of the Point Masses

The inertia forces and torques exerted on the frame link by the moving links of the

mechanism will be determined. By considering the inertia forces and external forces as

applied forces acting on the system it is possible to apply d'Alembert's principle and reduce

the analysis to the application of static equilibrium conditions. The mass distribution of

the moving links will be replaced by a dynamically equivalent system of point masses.

After calculation of their vector coordinates and accelerations, the inertia forces and

torques will be obtained as well.

3.1.1 Definition of the Inertia Force

Newton's law of motion for a particle is given by

F = ni:13 	(3.1)

where symbol F represents the sum of the external forces acting on the particle, symbol in

is its mass and /5" is the acceleration of the particle with respect to an inertial coordinate

system. We can write the above equation in the form

F mi3 0	 (3.2)

If we consider the term —ini3 to represent the inertia force, then equation (3.2)

states that the vector sum of external and internal forces vanishes (d'Alembert's principle).

3.1.2 Definition of the Inertia Torque

If a particle (point mass) moves relative to a fixed point, then the moment of inertia force

about the fixed point is given by

T = P x (—rni3) 	 (3.3)

40
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where T is the inertia torque and P is the position vector from the fixed point to the

particle m.

3.2 Inertia Forces and Torques Exerted by the Moving Links on the Frame

In the CSSP mechanism moving links are crank, connecting rod and slider. When the

mechanism runs in high speed the moving links exert huge amount of inertia-induced force

and torque on the frame.

Figure 3.1 Free body diagram of the crank

3.2.1 Inertia Force and Torque Calculation for the Crank

The inertia force of the crank is given by

mil 	 P + al 1,N) + 17112 (a12,p ±a12,N) + M13 (a13,P a13,N ) P = 	 + 11214a141 	 2	 (3.4)

and the inertia torque of the crank is given by

T = (D11,P xm11 a11,P ) + (D,2,p X M12a12,P 	 (D13,P Xn;3a13,P ) 

2

x milau,N) (Dp,N x mi2ap,N 	 (D13,N ninai3,N) 
-r w14 X iii i44.4 14 ) 	 (3 . 5)

2



T2 =
2

(D, 1 , 1, X 	 P) (D„ p x m77 a22 , p ) + (D73 , p x 117, 3a73 , p

F3i

Figure 3.2 Free body diagram of the connecting rod

3.2.2 Inertia Force and Torque Calculation for the Connecting Rod

The inertia force of the connecting rod is given by

P = (a21 P a21,N ) +n722 (a22,P a22,/V ) m23 (a23,P + '23,N) 
12 	 "24"242

The inertia torque of the connecting rod is given by
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(3.6)

(D21,N X 7/121 a21,Ar ) (D22,N X Mr C722,1v. ) (D23N X ni23a73 , 1,, )
+ (D74 x m24a24 )2 (3.7)

Figure 3.3 free body diagram of the slider (one point mass)



11121 (a21,p a21,11 )+n122( 4-122,p 	 a22,11) /1113 (a23,P 	 643,N ) + ni24a24

(3.10)

2

3.2.3 Inertia Force and Torque Calculation for the Slider

The inertia force of the slider is

P3 = n73,63

The inertia torque of the slider is

T3 = D3 X

43

(3.8)

(3,9)

3.3 Determination of Shaking Force and Shaking Moment

The shaking force is the sum of the forces exerted upon the frame by each moving link

F = + + P3

(a1 1,P 	 a11,N ) 11112 (a12,p 	 a12,N) + 11113 (a13,P 	 a13,N ) + 1911 4142

+ni3 A

The shaking moment is the sum of the torque exerted upon the frame by each

moving link
T = T, +T + T3

(D11,P  m a..	 + (D12 , p x mnapp ) + (Dux x 1111313,P )11,P 	11	 11,1"
2

+ (Du N x 1111a11,11) (Dp,N X inpa i2, „,/ ) + (43,1v X n1l3a13,A, )
4- (D14 x 19114a)4)2

(D21 ,p x n 121 6/21,p ) (D,, p x 117„a2, ,p ) + (D23, p X in23a23,p

2

+ 	 N X n121 ll21 , N )	.,(D72,N x n722a„,N ) + (D23 X 19,3a23N )N

2

+ D3 X 1913 153

D24 X 71124a24 )

(3.11)
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where all the variables except point masses mil, m12, m13, mph m21, m22, m23 m24,

and m3 are known from kinematic analysis.

3.4 Determination of Bearing Force and Bearing Moment

The inertia forces and inertia torques of the moving links with respect to the fixed

coordinate frame { 1 } were formulated in section 3.2. They are to be converted with

respect to the distal coordinate frame of each moving link to determine the bearing

reaction forces and moments using the formulas developed by Fischer and Rahman [11,

12]. Then these reaction forces and torques will be expressed with respect to the moving

coordinate frames located at the distal end of the moving links. To express those forces

and torques with respect to fixed coordinate frame we shall premultiply the force and

torque vectors by the rotational part of the transformation matrix expressed in terms of

frame {1}. All these operations are mathematically expressed in the following equations.

Step 1: Inertia forces and torques are expressed in terms of the distal coordinate frame:

{F}=Pij{i)1}

{-213F)=P3TRr{p}

i':F}=P4TR] T {P3}

Ci-A//}=kTRffril

filll=p3TRy{T2}

l'3v)=[14TRYIT31

(3.12)

(3.13)

Step 2: Equations developed by Fischer and Rahman [12] are used to determine the

bearing reaction forces Fl , F7, F3 and F4 and torques Ml , M7, M3 and M4 in terms of

the distal coordinate frames.
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Step. 3: The bearing reaction forces and torques determined in step 2 in terms of frame

{ 1 } are

{ 2F } = [21TR}IF21

f31F1=[3i7:RifF31 	
(3.14)

{41F} [41 TR]fF41

{ -2*}= [Z ]{ivf2}

{M=P3id{m3}
1 1141 =[ 14TR ]{m4}

(3.15)

Therefore, the sum of all bearing forces in terms of frame { 1 } can be expressed as

R = { 11F} + { 2iF}+ {;F} + LF1
(3.16)

Similarly, the sum of all bearing moments in terms of frame { 1 } can be expressed

as

M ilM) f21M) ;M} {2114}	 (3.17)

3.5 Determination of Input Torque

The external torque required to operate the mechanism is the Z-component of moment

{ 11M}. Let To represent the input torque. Then

To= ilMz	 (3.1S)



CHAPTER 4

MINIMIZATION OF INERTIA-INDUCED FORCES IN THE MECHANISM

4.1 Problem Formulation

An objective function is to be formulated for the purpose of minimizing the adverse effect

of inertia-induced forces and torques. A quadratic objective function consisting of shaking

forces, shaking moments, bearing reaction forces, bearing reaction torques and input

torque is minimized by optimum mass redistribution of the links of the mechanism. The

objective function involves the sum of the squared non-dimensionalized shaking force,

shaking moment, bearing reactions and input torque over one cycle of operation of the

mechanism. Then the magnitudes of the active point masses are chosen as design

variables, and design constraint equations are formulated which are linear in the point

masses.
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4.2 Objective Function

Let F, T,	 M and To denote the non-dimensionalized mean squared values of the

shaking force, shaking moment, bearing forces, bearing moments and input torque,

respectively for one complete cycle of operation (360 degrees rotation of input crank).

Then

1
	 (F .F)dt91
2 772/7 a 2 i94 0

2,r1T = 2 	 a4 	 (.	 T
0

1
2,r

R = 	 f (R1 R1
	.R, + R3 . R3 +R4 . R4 )d9,2 Tan 12 a12 -64 0  

2'r
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In this analysis, integration over a complete cycle has been performed numerically

by dividing the cycle into L equal intervals. The non-dimensionalized values then become

as follows:

(4.1)

F = :• E(F.Fi)L in - a 2 6i'.1 	 i=1

T= 	
1

T 
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1
2,2 •414

1-"/ "1 Li1 i=1

70=T
2,
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where distance B1 denotes the length of each bearing. Expressions for the shaking force,

shaking moment, bearing forces, bearing moments and input torque have been determined

earlier.

(4.2)
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In the formulation of the objective function, weight factors Wl , W2, W3, W4 and

W5 are assigned to the shaking force, shaking moment, input torque, bearing force and

bearing moment respectively. Weight factors are adjusted according to the designer's will,

depending upon different circumstances and applications. Let the symbol G represent the

objective function which can be optimized using an IMSL package (described in the

appendix B).

G=WiF+W27+W770+W4i?+W,M 	 (4.3)

This quadratic function optimization algorithm QPROG is based on M.J.D.

Powell's implementation of the Goldfarb and Idnani [17] dual quadratic programming

(QP) algorithm for convex QP problems subject to general linear equality/inequality

constraints, i.e., a problem of the form

min

x 6R"

Aix =b1

subject to	 A2x

given the vectors b1, b2 and g and the matrices H (Hessian Matrix), AI and A2. Matrix H

is required to be positive definite. In this case, a unique vector x solves the problem or the

constraints are inconsistent. If H is not positive definite, a positive definite perturbation of

H is used in place of H. For more details, see Powell [34, 35].

4.3 Design Variables

The mass distribution of each moving link is replaced by four point masses. One point

mass lies at center of mass. The remaining three point masses are termed active point

masses. The objective function consists only of active point masses and these will be

chosen as design variables. By varying these point masses systematically it is possible to

minimize the inertia-induced forces. The column vector of the design variables is then

given as follows:

gT x
 2

xT llx
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X =

(4.4)

where x	 1, x? ----m12, x3=m13, x4=n714, x5=1701, x6=n772, x7=77723, x8—n74 and

x9=m3.

4.4 Design Constraints

The design constraints will be a set of equations, linear in the design variables, which will

allow the point masses to vary within prescribed limits. Each active point mass will be

allowed to decrease a certain percentage of its original magnitude. The sum of the

optimized active point masses of each link will be kept either less than or equal to the sum

of the original active point masses for the same link. The constraint equations are given in

their general form. For a particular problem these equations can be modified depending

upon the characteristics of the linkage. The constraints are formulated as follows:

x1 mil (1—w) (4.5a)

x, M I , (1 —Iv) (4.5b)

x3 __ 77713 ( 1 - I)') (4.5 c)

x4 ->: mi4 ( 1— w') (4.5d)

x5 n 121 ( 1 — w ' ) (4. 5 e)

x6 11722 ( 1 — ii") (4.5f)

x7 	... 77723 (1— w') (4. 5g)
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xs > n 124( 1 _ w')

x9 = ni3

x l + X2 + X3 < 	 + 11112+ 1A13

x5 +x +x <- ni + 111 + 1115 	 6 	 7 	 21 	 22 	 23

where 0 < w' <1.

(4.5h)

(4.5i)

(4.5j)

(4.5k)



CHAPTER 5

RESULTS

5.1 Example

A numerical example will be presented to demonstrate the effectiveness of the balancing

method developed in this investigation. The designer has been given enough flexibility to

adjust the weight factors involved in the objective function G and to change the magnitude

of the point masses of the crank and connecting rod, depending upon different

circumstances and applications. The following numerical results are calculated setting all

weight factors to 1. In this process the magnitude of the optimized point masses change

(decrease or increase) slightly within the limits of the design constraints.

5.2 Dimensions of Example CSSP Mechanism and Other Necessary Data

Length of the crank a = 2.0 inches

Mass of the crank M1 = 1.9 lbs

Center of mass is at the midpoint of the crank

Length of the connecting rod a? = 8.0 inches

Mass of the connecting rod .A42 = 7.6 lbs

Center of mass is at the midpoint of the connecting rod

Mass of the slider m 3 =6.0 lbs and its center of mass is at the joint between itself and

connecting rod

Offset a4 = 1.0 inch

Offset s = 0.4 inch

Offset a4 = 250 degrees

Acceleration due to gravity = 386.4 inches/second 2

Crank speed = 3000 RPM

51
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Mass moments of Inertia (lb-sec 2-inch) of the crank about its center of mass

/./xx= 2.048826E-04, I Hy= 1.741503E-03, _fizz= 1.741503E-03

Mass moments of Inertia (lb-sec2-inch) of the connecting rod about its center of mass

I2x,y= 8.195304E-04, 2yy = 0.105310, 12zz= 0.105310

Mass moments of Inertia (lb-sec2-inch) of the slider about its center of mass

/3xx= 4.20548E-03, I 3yy = 4.20548E-03, 13zz= 7.76397E-03

The active point masses of the crank are inn = m12= 111 13 = m14 = 1.9/4 lbs.

The active point masses of the connecting rod are n221 = n122 = ni23= m24 = 7.6/4 lbs.

The magnitude of the active point masses of the crank and connecting rod were

allowed to decrease by five percent while the sum of the point masses associated with each

moving link was kept constant. The mass of the slider is considered as one point mass and

kept constant.

5.3 Discussion of Results

Results are given in the form of tables and graphs. The variations of the objective

function, shaking force, shaking moment, bearing force, bearing torque and input torque

are shown. The improvements in the magnitude of inertia-induced forces are described

below in detail.

Comparative values of the mass properties of the moving links before and after

optimization, are tabulated in table 5.1. The crank and the connecting rod are modified to

match the design characteristics obtained from the optimized values of point masses. It

has been found that after optimization /xx of the crank and connecting rod slightly

decreases and /yy and Izz slightly increase.

Comparative values of the objective functions before and after optimization, are

tabulated in table 5.2. Percentage variations of the objective function over a complete

rotation of the crank are given in the form of a graph in figure 5.1. As shown in figure 5.1

the decrement of objective function G varies from +4.59% to -0.128%. It increases only
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at crank angle 20 degrees. The average optimized value of the objective function has been

decreased by 2.283%.

The shaking forces before and after optimization are compared and are tabulated in

table 5.3. Percentage variations of the shaking force over a complete rotation of the crank

are given in the form of a graph in figure 5.2. As shown in figure 5.2 the decrement of

shaking force F varies from +0.7248% to +0.732%. It never increases and decreases

very steadily. The average optimized value of the shaking force has been decreased by

0.728%.

Comparisons of the shaking moments before and after optimization are tabulated

in table 5.4. Over a complete rotation of the crank percentage variations of the shaking

moment are given in the form of a graph in figure 5.3. As shown in figure 5.3 the

decrement of shaking moment T varies from +22.8% to -26.355%. Most of the time the

decrement is in positive direction, it only goes negative a few times. The average

optimized value of the shaking moment has been decreased by 5.3 89%.

Comparative values of the bearing forces before and after optimization, are

tabulated in table 5.5. Over a complete rotation of the crank percentage variations of the

bearing force are given in the form of a graph in figure 5.4. As shown in figure 5.4 the

decrement of bearing force T? varies between +2.936% and -1.33%. It increases only at

an angle of 110 degrees. The average optimized value of the bearing force has been

decreased by 1.3%.

The bearing moments before and after optimization are tabulated in table 5.6 to

demonstrate the comparison. A graph in figure 5.5 shows the percentage variations of the

bearing torque over a complete rotation of the crank. It is found that the decrement of

bearing torque M varies from +3.535% to -0.26%. Most of the time the decrement is in

positive direction, it only goes negative a few times. The average optimized value of the

bearing torque has been decreased by 1.19%.
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Comparative values of the input torques before and after optimization, are

tabulated in table 5.7. Percentage variations of the input torque over a complete rotation

of the crank are given in the form of a graph in figure 5.6. As shown in figure 5.6 the

decrement of input torque To varies from +35.552% to -2.725%. Most of the time the

decrement is in positive direction, it only goes negative a few times. The average

optimized value of the input torque has been decreased by 2.157%.

The average values of the objective function, shaking force, shaking moment,

bearing force, bearing torque and input torque always decrease after optimization while

the mass of the moving links remains unchanged. This demonstrates the effectiveness of

this optimum balancing method.

The weight factors used in the objective function are Wi — W2 - W3 — W4 — W5 —

1.0

Table 5.1

Mass moment of inertia
(lb-sec2-inch)

Before optimization After optimization

Crank

XX 2.048826E-04 1.946666E-04
_ Iyy 1.741503E-03 1.899999E-03
I77 1.741503E-03 1.899999E-03
Connecting rod

'XX 8.195304E-04 7.783330E-04
Iyy 0.105310 0.115802
177 0.105310 0.115802

Comparative values of the mass properties before and after optimization
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Table 5.2

Crank angle (degrees)  Before optimization After optimization
0 10.670883 10.180821
10 28.359000 28.270926
20 47.249014 47.309470
30 45.508196 45.419730
40 37.900430 37.683624
50 26.849201 26.613307
60 17.079143 16.856237
70 13.005502 12.772193
80 14.755094 14.487766
90 15.272538 15.038194
100 10.053970 9.931598
110 8.420173 8.216053
120 24.990859 24.128653
130 58.059051 55.988413
140 86.648568 83.427017
150 95.701605 91.965717
160 91.394264 87.743183
170 78.125154 75.025988
180 25.443404 24.280701
190 2.062062 2.021815
200 8.214458 8.078112
210 24.620364 24.049713
220 33.528715 32.601859
230 31.787401 30.815644
240 28.471811 23.696789
250 16.912072 16.400460
260 11.818102 11.515033
270 9.668070 9.485531
280 10.297789 10.161332
290 14.054016 13.894905
300 21.725833 21.452218
310 33.417686 32.909414
320 47.184986 46.335525
330 58.468741 57.261149
340 61.003306 59.579073
350 48,494153 47.188659
360 10.670883 10.180821

Comparative values of the objective functions before and after optimization
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Table 5.3

Crank angle (degrees) Before optimization (lbs) After optimization (lbs)
0 3099.388258 3076.830267
10 4635.095971 4601.482231
20 5781.337225 5739.414084
30 5962.427821 5919.183360
40 6206.192680 6161.172538
50 6562.647144 6515.033022
60 7026.045556 6975.060344
70 7540.065702 7485.341719
80 7983.161538 7925.215606
90 8233.565698  8173.801370
100 8225.679136 8165.977758
110 7949.340452 7891.656783
120

_
7438.673855 7384.712598

130 6773.218081 6724.102242
140 6086.169716 6042.049809
150 5550.444030 5510.211404
160 5288.091484 5249.752908
170 5105.093191 5068.068468
180 3854.506059 3826.543209
190 3161.939012 3138.925873
200 3414.219109 3389.330760
210 3753.027874 3725.612994
220 4117.481055_ 4087.373741
230 4436.924639 4404.467266
240 4692.866943 4658.530489
250 4886.549827 4850.792879
260 5024.927163 4988.155764
270  5115.038661 5077.606489
280 5160.970215 5123.200602
290 5162.038924 5124.259961
300 5111.967111 5074.552727
310 4999.097532 4962.507022
320  4807.765822 4772.573514
330 4520.841527 4487.748298
340 4123.210973 4093.031545
350 3608.123100  3581.731929
360 3099.388258 3076.830267

Comparative values of the shaking forces before and after optimization
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Table 5.4

Crank angle (degrees) Before optimization (lb-in) After optimization (lb-in)
0 5039.187267 4665.623716 _
10 6330.150772 5938.667031
20 6560.050713 6159.998457
30 6016.932033 5662.362265
40 5687.040104 5374.276958
50 5342.042478 5072.316978
60 4878.863267 4657.443846
70 4239.657846 4073.767555
80 3420.556277 3316.518078
90 2457.133427 2818.983390
100 1393.313383 1423.417473
110 331.225814 418.521638
120 973.759370 831.523493
130 2110.606046 1897.616807
140 3168.005695 2896.533259
150 4064.936671 3742.045786
160 4780.183988 4410.185893
170 5343.114970 4936.789780
180 5500.814700 5129.849155
190 5950.426284 5608.086387
200 5901.083511 5547.409987
210 5713.303856 5376.559658
220  5334.542624 5030.833209
230 4818.038260 4555.563347
240 8199.925194 3984.282275
250 3507.755362 3343.005509
260 2763.903874 2652.964113
270 1986.262955 1931.125630
280 1189.910736 1191.575202
290 402.954655 456.625697
300 481.819104 371.960595
310 1269.449366 1096.038651
320 2052.914043 1824.886629
330 2805.910043 2528.243745
340 3516.277275 3195.648331
350 4191.590709 3836.822548
360  5039.187267 4665.623716

Comparative values of the shaking moments before and after optimization
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Table 5.5

Crank angle (degrees)  Before optimization (lbs) After optimization (lbs)
0 4818.165352 4746.038558
10 5662.175071 5566.946313
20 6735.796959 6633.176259
30 7188.526004 7092.245537
40 7557.524300 7465.486683
50 7667.467644 7580.964162
60 7354.020493 7276.052303
70 6529.350434 6464.435739
80 5337.113183 5289.514945
90 4028.706407 4001.393480
100 2610.484637 2606.349589
110 1108.617449 1123.388280
120 1749.457304 1701.812355
130 _3507.717862 3419.265434
140 4616.748989 4500.302883
150 4819.158583 4690.501084
160 4396.018468 4272.358673
170 3484.619713 3382.313047
180  2089.492959 2050.586062
190 4347.560539 4311.843354
200 6428.682323 6346.527083
210 8055.307193 7947.614061
220 8434.472145 8317.160523
230 7990.046870 7877.373301
240 7110.634962 7013.522042
250 6116.724903 6040.279817,
260 5233.419938 5178.274837
270 4580.639885 4542.795687
280 4179.270264 4153.460318
290 3977.529618 3958.407089
300  3875.827531 3858.636554
310 3755.305505 3736.349455
320 3523.522855 3500.201981
330 3181.113797 3150.752421
340 1 2915.052534 2872.925620
350 3185.321390 3126.609204
360 4818.165352 T 4746.038558

Comparative values of the bearing forces before and after optimization
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Table 5.6

Crank angle (degrees) Before optimization (1b-in) After optimization (lb-in)
0 5839.550869 5685.426140
10 9861.576982 9873.119249
20 12980.229748 13014.013037
30 12451.089925 12467.810435
40 10878.745631 10879.836862
50 8464.746618 8459.624771
60 5858.150434 5842.874067
70 4825.801084 4784.069144
80 6012.721210 5957.951164
90 6481.704897 6438.427068
100 4754.018594  4740.452504
110 3912.213656 3851.302770
120 8788.174345 8613.498415
130 14197.910955 13924.841522
140 17564.286822 17217.514954
150 18483.583607 18101.162375
160 18012.398516 17630.990836
170 16560.777872 16213.109726
180 9207.085839 8971.416183
190 585.994252 565.281262
200 4642.398522 4611.826266
210 9190.782607 9078.510952
220 10859.193934 10699.841534
230 10534,091207 10362.331431
240 9130.628454 8975.205351
250 7431.564347 7309.891672
260 6051.322028 5968.522286
270 5406.485749 5356.777636
280 5698.015983 5667.787205
290 6918.532536 6890.414777
300 8875.663837_ 8832.473137
310 11217.959107 11146.135290
320 13469.212386 13361.555643
330 15071.688245 14929.000711
340 15413.488560 T 15245.127579
350 13670.554078 13495.726699
360 5839.550869 1 5685.426140

Comparative values of the bearing torques before and after optimization
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Table 5.7

Crank angle (degrees) Before optimization (lb-in) After optimization (lb-in)
0 -2818.377026 -2745.318356
10 4474.134067 4484.028263
20 5727.618873 5750.326562
30 5190.198720 5209.394603
40 4137.555697 4153.164485
50 2628.177235 2641.403952
60 787.212608 808.662738
70 -1103.244484 -1077.045376
80 -2518.137877 -2490.807790
90 -2856.414871 -2836.856151
100 -1806.105371 -1807.146193
110 442.720797 408.132681
120 3232.808145 3156.583379
130 5694.420829 5577.441362
140 7157.472382 7010.462378
150 7545.023226 7384.540466
160 7341.948578 7183.608216
170 6744.511384 6602.050696
180 3782.044012 3683.868960
190 99.086368 63.859355
200 -1878.216703 -1863.682742
210 -3787.426955 -3738.193055
220 -4507.351907 -4437.850594
230 -4401.762853 -4326.556288
240 -3844.629266 -3776.054987
250 -3159.963961 -3105.807650
260 -2609.211236 -2572.144366
270 -2378.568569 -2356.558607
280 -2568.412403 -2555.811176
290 -3188.666217 -3177.733611
300 -4160.348369 -4142.977912
310 -5322.837210 -5292.257731
320 -6447.565166 -7399.790839
330 -7258.676605 -7193.493159
340 -7450.217835 -7371.649489
350 -6617.333858 -6534.421796
360 -2818.377026 -2745.318356

Comparative values of the input torques before and after optimization
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CHAPTER 6

CONCLUSION

6.1 Conclusions

The principal objective of this dissertation has been the development of computer-aided

design procedures for minimizing the adverse effect of the inertia-induced forces in a high-

speed general spatial mechanism by optimum redistribution of the mass of the links.

To achieve this objective, the mass distribution of each moving link has been

replaced by a dynamically equivalent system of point masses. Having calculated the vector

coordinates with the help of the "principle of transference" and the accelerations, the

shaking forces, shaking moments, bearing reactions and input torque are obtained. A

quadratic objective function consisting of shaking forces, shaking moments, bearing

reactions and input torque is then formulated. This function is generally a convex

function. Choosing active point masses as design variables and forming the constraints as

linear in the design variables, the optimum mass distribution is obtained using the IMSL

routine.

The optimality criterion for the mass distribution of the links by using a quadratic

programming technique has been found to be successful in minimizing the inertia-induced

forces in a high-speed CS SP mechanism. An average decrease of 2.283% was achieved in

the value of the objective function by allowing point masses to decrease upto five percent

of their magnitudes while total mass of the links remained constant.

Much work has been conducted by many researchers to balance wide variety of

mechanisms. Most of them [1, 4, 9, 22-30, 31, 39, 40, 43, 44] are on complete balancing

of planar mechanisms. Relatively little research [2, 6, 7, 46-48] have been done on the

complete balancing of spatial mechanisms because of its complicated kinematic and

dynamic properties. Complete balancing of shaking forces can be achieved if the center of

64
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mass of the mechanism remains stationary as developed by Berkof. Most of the time a

stationary center of mass is obtained by adding counterweights to the moving links or by

introducing additional moving elements as for example cams, etc. As a result of that,

other dynamic characteristics deteriorate. Therefore, partial balancing techniques by

optimum distribution of mass caught many researchers interest.

In the existing literature, optimal-mass distribution criteria have been used to

minimize a few of the inertia-induced forces and has been limited to specific mechanisms.

The least-square technique developed by Berkof and Lowen [5] for the optimization of the

shaking moment of fully force-balanced four-bar linkages is applicable to planar

mechanisms only.

Tricamo and Lowen's [41, 42] method for optimization of dynamic reactions such

as the bearing force, the input moment and the shaking moment with prescribed maximum

shaking force is restricted to only planar mechanisms. Tricamo and Lowen [41] describes

a two-counterweight method for partially force balancing a four-bar linkage which allows

the realization of a prescribed value for the maximum shaking force anywhere between

zero and an inherent upper limit. In that paper it was found that a 50 percent reduction of

the shaking force results in small amount of increases in bearing forces, shaking moments

and input moments over a considerable portion of the design range. Tricamo and Lowen

[42] introduces simultaneous optimization of the maximum values of the bearing forces,

input moment and shaking moment of a constant speed four-bar linkage while additionally

obtaining a prescribed maximum shaking force. The optimization technique determines

the parameters of the three counterweights which must be attached to input link , coupler

and output link.

Gill and Freudenstein [15,16] minimized the inertia-induced forces in general

spherical four-bar mechanisms. Their method allows an optimum trade-off among shaking

forces, shaking moments, bearing reactions and input torque fluctuations; but it is limited
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to one particular type i.e. spherical mechanism in which kinematic and dynamic analyses

are relatively simple.

Hockey [18, 19] and Sherwood's [36, 37] research on the optimum distribution of

mass in the link of a spatial slider crank mechanism and a planar four-bar mechanism dealt

with the minimization of fluctuation of kinetic energy and inertia force and torque balance

during the motion cycle. Such an analysis is inadequate for high-speed machinery because

it does not permit the trade-offs necessary for an effective design.

This is the first analysis which is capable of minimizing combined effects of all the

inertia-induced forces and torques in a general spatial mechanism without any restriction,

by optimum mass redistribution and allows for trade-offs among different inertia-induced

forces and torques. In case of a general spatial mechanism kinematic and dynamic

analyses are very complicated. Use of the dual number method and the "principle of

transference" make this method generalized so that it can be used to design any spatial

mechanism.

The results presented here, it is hoped, will be an aid to practicing engineers in the

rational design of high-speed three dimensional mechanisms.

6.2 Future Work

Since this is the most generalized method of balancing of three dimensional mechanism,

any other three dimensional mechanisms can be analyzed by similar means. Other types of

design constraints, e.g. based on the yield strength of the link may be developed.

Computer programs may be developed for synthesizing realistic proportions from

optimized point mass distribution.



1 0 0 0 0 0

0 ca„ —sa„ +8 0 —a„sa„ —a„ca„
_O sa„ ca„ _ ... 0 a„ca„ —ti„sa„ _

[x(a„)]. (A.3)

APPENDIX A

Dual-number Coordinate Transformations

The trigonometric functions of dual angle b can be obtained by using the Taylor

expansion.

sin e= sin 9+ escos

	

cos b= cos 0- 6S sin 9 	 (A. 1)

tan t9= tan 0+ es sec' 9

where 9= 9+ ES, symbol 0 being the primary component of dual angle 9 denotes

rotational displacement and symbol s being the dual component denotes translational

displacement. All formal operations, except division by pure dual number, of dual

numbers are the same as those of ordinary algebra followed by the setting

E2 = 63 = 64 =.  0. All identities for ordinary trigonometry hold true for dual angle.

Sines and cosines are respectively abbreviated as s and c.

Screw motion through dual angle a„ (a„. a„+ ea„) about the X axis can be

written in a 3 x 3 transformation matrix form as

-	 0	 0

	[X(a„)] = 0 ca„ —sa„	 (A.2)
0 sa„ 	 ci3c„

which, by separating primary and dual components, expands to
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c';7„

0 (A.4)

0 sri„

1 0

0 c'ii„
[Y(i7„ )] =

	C 77„ 	 0

	

0 	 1

_ — S 77„ 0

S 77,7

-

—e„s 71„ 0 Te„c 77„

0 + e 0 0 0

C 77,1_— e„c 77,7 0 — C» 571,1

P7C17„)] = (A.5)

0- - —s„se„ —s„c9 0-

o + e s„ce„ —s„s9„ 0

1 _	 0 0 0_

c9„ —se„

	

[z(9, 7 )], son 	c9,,

	0 	 0
(A.7)
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Screw motion through dual angle ;711 (;i„ = 77„ + cen ) about Y axis can be written in

a 3 x 3 transformation matrix form as

which, by separating primary and dual components, expands to

Screw motion through dual angle 9„ (b„ = 9„+ es„) about Z axis can be written in

a 3 x 3 transformation matrix form as

con —s9„ 0

	[z(9 „)] = s911 	c:9„	 0	 (A.6)

	

0	 0	 1

which, by separating primary and dual components, expands to

Screw motions 2(9„ ) followed by screw motion :k(a„) can be combined into a

matrix if4„ and expressed in 3 x 3 form as

c9„
sk

0

--59„

ce„
0

0

0

1

1

0

0

0

ca„

sa„

0	 -
—sa„
ca„ _

(A.8)71
,',7X%1 = [ z(e„)][x(a„ )] =



which, by observing that e2 = 0, expands to

=„ ÷ ',1

c9„

sO„

—ca„s8„

ca„c9„

san se„
—sa„c9„

_ 0 sa„ ca„	 _

e

—s„s0„

s„c8„

_	 0

a„sa„s8„— s„ca„c0,

—a„sa„ce„— s„ca„s9„

ancan

a„ca„s8„+snsa„c0„ -

—a„ca„c0„+s„sa„s0„

—man
(A.9)

The motion at ball joint requires an additional rotation through an angle	 for its

description so that the complete transformation through the joint and link takes the form

„, 1111 =[Z( 8„)][Y(;1„)][X(a„)]	 (A.10)

which can also be expanded and simplified for different link-joint parameters.
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APPENDIX B

FORTRAN Program for optimum balancing of the CSSP mechanism

C**************************MAIN pRoGRAm**********************

C PROGRAM FOR OPTIMUM BALANCING OF THE GENERALIZED SLIDER
C CRANK MECHANISM (CSSP). KINEMATICS IS PERFORMED USING
C UICKER-DENAVIT-HARTENBERG METHOD.
C************************************************************

C*************Declaration of the variables*******************
C Joint variables

REAL*8 THT1,THT2,ETA,ETA2,THT3,ETA3,ALP4,S4
C Derivatives ofjoint variables

REAL*8 THT1D,THT2D,ETA2D,THT3D,ETA3D,S4D
C Double derivatives ofjoint variables

REAL*8 THT2DD,ETA2DD,THT3DD,ETA3DD,S4DD
C Transformation matrices

REAL*8 M1R(3,3),M1D(3,3),L2R(3,3),L2D(3,3),
1 L3R(3,3),L3D(3,3),M4R(3,3),M4D(3,3)

C Differential operators of transformation matrices
C	 Q1=operator of Ml, L2(wrt THT2) & L3(wrt THT3)
C	 Q2=operator of L2(wrt ETA2)
C	 Q3=operator of M4
C	 Q4=operator of L3(wrt ETA3)

REAL*8 Q1R(3,3),Q1D(3,3),Q2R(3,3),Q2D(3,3),
1 Q3R(3,3),Q3D(3,3),Q4R(3,3),Q4D(3,3)

C Derivatives, transpose, multiplications, etc of
C	 transformation matrices

REAL*8 M1Q1R(3,3),M1Q1D(3,3),TM1R(3,3),TM1D(3,3),
1 H2R(3,3),H2D(3,3),M1Q2R(3,3),M1Q2D(3,3),H2DR(3,3),
1 H2DD(3,3),M1L2R(3,3),M1L2D(3,3),TM1L2R(3,3),
1 TM1L2D(3,3),H6R(3,3),H6D(3,3),H3R(3,3),H3D(3,3),
1 H7R(3,3),H7D(3,3),H3DR(3,3),H3DD(3,3),H5R(3,3),
1 H5D(3,3),H5Q3R(3,3),H5Q3D(3,3),TH5R(3,3),TH5D(3,3),
1 H4DDR(3,3),H4DDD(3,3),BR(3,3),BD(3,3),A(6,5),V(6),
1 AT(5,6),ATA(5,5),IATA(5,5),DELTA(5),IA(5,6),
1 L3M4R(3,3),L3M4D(3,3),TL3M4R(3,3),TL3M4D(3,3),
1 TL3R(3,3),TM4R(3,3),L3RD(3,3),L3RDD(3,3),
1 TM4L3R(3,3),TM4L3RD(3,3),TM4L3RDD(3,3)

C L3RD & L3RDD are the diff and double dill of TL3R
C Joint angles in degrees
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REAL*8 TH1,TH2,TH3,ET2,ET3,AL4
C Velocity components

REAL*8 V2XP,V2XD,V2YP,V2YD,V2ZP,V2ZD
C Velocity and acceleration matrices

REAL*8 VM(6,5),VMT(5,6),VMTVM(5,5),IVMTVM(5,5),
1 IVM(5,6),VV(6),AV(6),DOT(5),DDOT(5)

C Mass properties (Radii of gyration, C.G.'s, masses & MOD
C	 of the moving links

REAL*8 K1X,K1Y,K1Z,K2X,K2Y,K2Z,K3X,K3Y,K3Z,
1 K1XCG,KlYCG,K1ZCG,K2XCG,K2YCG,K2ZCG,
1 Gl,G2,G3,M1,M2,M3,11X,I1Y,I1Z,I2X,I2Y,I2Z,
1 13X,I3Y,I3Z,NUI1X,NUIlY,NUI1Z,NUI2X,NUI2Y,NUI2Z

C Momentum components and their derivatives
REAL*8 H2XP,H2XD,H2YP,H2YD,H2ZP,H2ZD,
1 H2DXP,H2DXD,H2DYP,H2DYD,H2DZP,H2DZD

C Inertia force and torque components
REAL*8 R1P(3),R2P(3),R3P(3),R1D(3),R2D(3),R3D(3),
1 M1R1P(3),M1R1D1(3),M1R1D2(3),M1R1D(3),
1 M1L2R2P(3),M1L2R2D1(3),M1L2R2D2(3),M1L2R2D(3),
1 TM4R3P(3),NUR1XP,NUR2XP,NUR1YP,NUR2YP,NUR1ZP,NUR2ZP,
1 NLTR1XD,NUR2XD,NLTR1YD,NUR2YD,NUR1ZD,NUR2ZD

C Reaction force and torque components
REAL*8 T1I,T1J,T1K,F1I,F1J,F1K,F2I,F2J,F2K,
1 F2K1,F2K2,F3I,F3J,F3K,T4I,T4J,T4K,F4I,F4J,F4K

C Location of point masses and their derivatives
REAL*8 D(3),DD(3),DDD(3),LL(3),LL1(3),LL2(3),
1 Ll1DD(3),L12DD(3),L13DD(3),L14(3),L14D(3),L14DD(3),
1 L111(3),L11D1(3),temp,
1 Ll1DD1(3),L121(3),L12D1(3),L12DD1(3),L131(3),
1 Ll3D1(3),L13DD1(3),L112(3),L11D2(3),
1 Ll1DD2(3),L122(3),L12D2(3),L12DD2(3),L132(3),
1 L13D2(3),L13DD2(3),L21DD(3),
1 L22DD(3),L23DD(3),L24(3),L24D(3),L24DD(3),
1 L211(3),L21D1(3),L21DD1(3),L221(3),L22D1(3),
1 L22DD1(3),L231(3),L23D1(3),L23DD1(3),
1 L212(3),L21D2(3),L21DD2(3),L222(3),L22D2(3),
1 L22DD2(3),L232(3),L23D2(3),L23DD2(3)
REAL*8 X10,Y10,Z10,X1,Y1,Z1,L1(3,3),

1	 X20,Y20,Z20,X2,Y2,Z2,L2(3,3)
REAL*8 M1RD(3,3),M1RDD(3,3)
REAL*8 PI,DEGRAD
real*8 mll,m12,m13,m14,m21,m22,m23,m24,m(9)
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C Variables required for optimization
real*8 px(9),fx(9),fxsq(9,9),py(9),fy(9),fysq(9,9),

1	 pz(9),fz(9),fzsq(9,9),qx(9),tx(9),txsq(9,9),
1	 qy(9),ty(9),tysq(9,9),qz(9),tz(9),tzsq(9,9),
1	 flx(9),f1xsq(9,9),fly(9),f1ysq(9,9),
1	 flz(9),flzsq(9,9),tlx(9),tlxsq(9,9),
1	 t1y(9),t1ysq(9,9),t1z(9),t1zsq(9,9),
1	 f2x(9),f2xsq(9,9),f2y(9),f2ysq(9,9),
1	 f2z(9),f2zsq(9,9),f3x(9),f3xsq(9,9),
1	 f3y(9),Sysq(9,9),f3z(9),f3zsq(9,9),
1	 f4x(9),f4xsq(9,9),f4y(9),f4ysq(9,9),
1	 t4x(9),t4xsq(9,9),t4y(9),t4ysq(9,9),
1	 t4z(9),t4zsq(9,9),f4z(9),f4zsq(9,9),
1	 fsq(9,9),tsq(9,9),rsq(9,9),msq(9,9),t0sq(9,9),
1	 F(9,9),OF(9,9),C1,C2,C3,OBJFUN,NIJOBJFUN,
1	 mfx,nufx,mfy,nufy,mfz,nufz,mtx,nutx,mty,nuty,
1	 mtz,nutz,mflx,nuflx,mfl y,nufly,mfl z,nuflz,
1	 mtlx,nutlx,mtly,nutly,mtlz,nutlz,mf2x,nuf2,x,
1	 mf2y,nuf2y,mf2z,nuf2z,mf3x,nuf3x,mf3y,nuf3y,
1	 mf3z,nuf3z,mf4x,nuf4x,mf4y,nuf4y,mt4x,nut4x,
1	 mt4y,nut4y,mt4z,nut4z,shf,nushf,sht,nusht,
1	 brf,nubrf,brt,nubrt,int,nuint,DOBJFUN,dshf,
1	 dsht,dbrf,dbrt,dint

integer lda,ldh,ncon,neq,nvar
parameter (ncon=11,neq=3,nvar=9,1da=ncon,ldh=nvar)
integer iact(nvar),k,nact,nout
real aa(lda,nvar),alamda(nvar),b(ncon),diag,gg(nvar),

1	 h(ldh,ldh),sol(nvar)
external qprog,umach
data aa/1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

1	 1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,
1	 1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,
1	 0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,
1	 0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,
1	 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,
1	 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,
1	 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,
1	 0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0/

data b/0.003688,0.01475,0.01553,4*0.001168,4*0.00467/
data gg/9*0.0/

C Weight factors and bearing length
PARAMETER (W1=1,W2=1,W3=1,W4=1,W5=1,BL=0.4)

C LINK PARAMETERS ARE AS FOLLOWS
PARAMETER (A1=2.0,A2-----8.0,A4=1.0,AL4=250.0,S1-0.4)
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PARAMETER (G=386.4,RPM=3000.0,THT1DD=0.0,
1	 S1D=0.0,S1DD-0.0)

OPEN (6,FILE=tdint.dat',STATUS='new)
PI=4.0*ATAN(1.0)
DEGRAD=PI/180.0

C Mass properties of the original links

G1=-1.0
G2=-4.0
G3=0.0

M1=1.9/G
M2=7.6/G
M3=6.0/G

C Radii of gyration about C.G. & about distal coordinate frame
K1XCG=0.2041241
K1YCG=0.595119
K1ZCG=0.595119

K1X=0.2041241
KlY=1.1636867
K1Z=1.1636867

K2XCG=0.2041241
K2YCG=2.3139072
K2ZCG=2.3139072

K2X=0.2041241
K2Y=4.6210569
K2Z=4.6210569

K3X=0.5204165
K3Y=0.5204165
K3Z=0.7071067

C Mass moment of inertia about C.G.
I1X—M1*K1XCG**2
I1Y=M1*K1YCG**2
I1Z=M1*K1ZCG**2
I2X=M2*K2XCG* *2
I2Y—M2*K2YCG**2
I2Z=M2*K2ZCG* *2
I3X=M3*K3X**2
I3Y=M3 *K3Y* *2
I3Z=M3*K3Z**2

X10=G1
X20=G2
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C Magnitude of point masses
ml 1=M1/4.0
ml 2=m11
m13=m11
m14—M1-(mll+m12+m13)
m21=M2/4.0
m22=m21
m23=m21
m24=M2-(m21+m22+m23)

m(1)=m11
m(2)=m12
m(3)=m13
m(4)—m14
m(5)=m21
m(6)=m22
m(7)=m23
m(8)=m24
m(9)=M3

C Direction cosines between distal & principal coordinate frames
L1(1,1)=1.0
L1(2,2)=1.0
L1(3,3)=1.0
L2(1,1)=1.0
L2(2,2)=1.0
L2(3,3)=1.0

C Location of point masses
X1=((I1Y+I1Z-I1X)/(2.0*m11))**0.5
Y1=((I1X+I1Z-IlY)/(2.0*m12))**0.5
Z1=((I1X+IlY-I1Z)/(2.0*m13))**0.5
X2=((I2Y+I2Z-I2X)/(2.0*m21))**0.5
Y2=((I2X+12Z-I2Y)/(2.0*m22))**0.5
Z2=((I2X+I2Y-I2Z)/(2.0*m23))**0.5

C	 Initialization of the objective function OF(9,9)
DO 100 12=1,9
DO 110 J2=1,9
OF(I2,J2)=0

110	 CONTINUE
100	 CONTINUE

do 41 13=1,2
C INITIAL ESTIMATE FOR DISPLACEMENTS
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S4=(A2**2-(A1+A4)**2)**0.5
temp=S4/(A4+A1)
THT2=PI-ATAN(temp)

C	 THT2=PI-ATAN2(S4,(A4+A1))
THT3=2*PI-THT2

DO 400 J=1,37
TH1=J*10.0-10.0
THT1—TH1*DEGRAD
ALP4=AL4*DEGRAD
THT1D=6.0*RPM*DEGRAD

C STEP 1
I=1

10 IF (I.LE.150) THEN

C SPECIFICATION OF M1,L2,L3,M4 MATRICES RESPECTIVELY
M1R(1,1)=COS(THT1)
M1R(1,2)=-SIN(THT1)
M1R(1,3)=0.0
M1R(2,1)=SIN(THT1)
M1R(2,2)=COS(THT1)
M1R(2,3)=0.0
M1R(3,1)=0.0
M1R(3,2)=0.0
M1R(3,3)=1.0

M1D(1,1)=-S1*SIN(THT1)
M1D(1,2)=-S1*COS(THT1)
M1D(1,3)=A1*SIN(THT1)
M1D(2,1)=S1*COS(THT1)
M1D(2,2)=-S1*S1N(THT1)
M1D(2,3)-----A1*COS(THT1)
M1D(3,1)=0.0
M1D(3,2)=A1
M1D(3,3)=0.0

C
L2R(1,1)=COS(THT2)*COS(ETA2)
L2R(1,2)=-SIN(THT2)
L2R(1,3)=COS(THT2)*SIN(ETA2)
L2R(2,1)=SIN(THT2)*COS(ETA2)
L2R(2,2)=COS(THT2)
L2R(2,3)=SIN(THT2)*SIN(ETA2)
L2R(3,1)=-SIN(ETA2)
L2R(3,2)=0.0
L2R(3,3)=COS(ETA2)

L2D(1,1)=0.0

75



L2D(1,2)=A2*COS(THT2)*SIN(ETA2)
L2D(1,3)=A2*SIN(THT2)
L2D(2,1)=0.0
L2D(2,2)=A2* SIN(THT2)* SIN(ETA2)
L2D(2,3)=-A2*COS(THT2)
L2D(3,1)=0.0
L2D(3,2)=A2*COS(ETA2)
L2D(3,3)=0.0

L3R(1,1)=COS(THT3)*COS(ETA3)
L3R(1,2)=COS(THT3)*SIN(ETA3)
L3R(1,3)=SIN(THT3)
L3R(2,1)=STN(THT3)*COS(ETA3)
L3R(2,2)=SIN(THT3)*SIN(ETA3)
L3R(2,3)=-COS(THT3)
L3R(3,1)=-SIN(ETA3)
L3R(3,2)=COS(ETA3)
L3R(3,3)=0.0

L3D(1,1)=0.0
L3D(1,2)=0.0
L3D(1,3)=0.0
L3D(2,1)-0.0
L3D(2,2)=0.0
L3D(2,3)=0.0
L3D(3,1)=0.0
L3D(3,2)=0.0
L3D(3,3)=0.0

M4R(1,1)=1.0
M4R(1,2)=0.0
M4R(1,3)=0.0
M4R(2,1)=0.0
M4R(2,2)=COS(ALP4)
M4R(2,3)=-SIN(ALP4)
M4R(3,1)=0.0
M4R(3,2)=SIN(ALP4)
M4R(3,3)=COS(ALP4)

M4D(1,1)=0.0
M4D(1,2)=-S4*COS(ALP4)
M4D(1,3)=S4*SIN(ALP4)
M4D(2,1)=S4
M4D(2,2)=-A4*SIN(ALP4)
M4D(2,3)=-A4*COS(ALP4)
M4D(3,1)=0.0
M4D(3,2)=A4*COS(ALP4)
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M4D(3,3)=-A4*SIN(ALP4)
C
C SPECIFICATION OF PARTIAL DERIVATIVE OPERATORS

Q1R(1,2)=-1.0
Q1R(2,1)=1.0

Q2R(1,3)=COS(THT2)
Q2R(2,3)=SIN(THT2)
Q2R(3,1)=-COS(THT2)
Q2R(3,2)=-SIN(THT2)

Q3D(1,2)=-1.0
Q3D(2,1)=1.0

Q4R(1,3)=COS(THT3)
Q4R(2,3)=SIN(THT3)
Q4R(3,1)=-COS(THT3)
Q4R(3,2)=-SIN(THT3)

C
CALL PRODUCTDUAL (M1R,M1D,Q1R,Q1D,M1Q1R,M1Q1D)

CALL TRANSPOSE (M1R,M1D,TM1R,TM1D)
CALL PRODUCTDUAL (M1Q1R,M1Q1D,TM1R,TM1D,H2R,H2D)
CALL PRODUCTDUAL (M1R,M1D,Q2R,Q2D,M1Q2R,M1Q2D)
CALL PRODUCTDUAL (M1Q2R,M1Q2D,TM1R,TM1D,H2DR,H2DD)
CALL PRODUCTDUAL (M1R,M1D,L2R,L2D,M1L2R,M1L2D)

CALL TRANSPOSE (M1L2R,M1L2D,TMIL2R,TM1L2D)
CALL PRODUCTDUAL (M1L2R,M1L2D,Q1R,Q1D,H6R,H6D)
CALL PRODUCTDUAL (H6R,H6D,TM1L2R,TM1L2D,H3R,H3D)
CALL PRODUCTDUAL (M1L2R,M1L2D,Q4R,Q4D,H7R,H7D)
CALL PRODUCTDUAL (H7R,H7D,TM1L2R,TM1L2D,H3DR,H3DD)
CALL PRODUCTDUAL (M1L2R,M1L2D,L3R,L3D,H5R,H5D)
CALL PRODUCTDUAL (H5R,H5D,Q3R,Q3D,H5Q3R,H5Q3D)

CALL TRANSPOSE (H5R,H5D,TH5R,TH5D)
CALL PRODUCTDUAL (H5Q3R,H5Q3D,TH5R,TH5D,H4DDR,H4DDD)
CALL PRODUCTDUAL (H5R,H5D,M4R,M4D,BR,BD)
CALL PRODUCTDUAL (L3R,L3D,M4R,M4D,L3M4R,L3M4D)

CALL TRANSPOSE (L3M4R,L3M4D,TL3M4R,TL3M4D)

C SPECIFICATION OF A & V MATRICES
A( 1, 1)=H2R( 1,2)
A( 1 ,2)=H2DR( 1 ,2)
A(1,3)=H3R(1,2)
A( 1,4)=H3DR( 1,2)
A(1, 5)=H4DDR( 1,2)

A(2, 1 )=H2R( 1 ,3 )
A(2,2)=H2DR(1,3)
A(2,3)=H3R(1,3)
A(2,4)=H3DR( 1 ,3 )
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A(2, 5)=H4DDR( 1,3 )
A(3,1 )=H2R(2,3)
A(3 ,2)=H2DR(2,3)
A(3,3 )=H3R(2,3 )
A(3 ,4)=H3DR(2,3 )
A(3 , 5)=H4DDR(2,3 )

A(4, 1)=H2D ( 1,2)
A(4,2)=H2DD( 1,2)
A(4,3)=H3D(1,2)
A(4,4)=H3DD( 1,2)
A(4,5)=H4DDD( 1,2)

A(5, 1)=H2D(1,3 )
A(5,2)=H2DD( 1,3)
A(5,3)=H3D(1,3)
A(5,4)=H3DD(1,3)
A(5,5)=H4DDD(1,3)

A(6,1)=H2D(2,3)
A(6,2)=H2DD(2,3)
A(6,3)=H3D(2,3)
A(6,4)=H3DD(2,3)
A(6,5)=H4DDD(2,3)

C
V(1)=BR(2,1)+BR(1,1)+BR(2,2)-2.0
V(2)=BR(3,1)+BR(1,1)+BR(3,3)-2.0
V(3)=BR(3,2)+BR(2,2)+BR(3,3)-2.0
V(4)=BD(2,1)
V(5)=BD(3,1)
V(6)=BD(3,2)

C Determination of joint variables
CALL TRANS (A,AT,6,5)
CALL MULTI (AT,A,ATA,5,5,6)
CALL INVERSE (ATA,IATA)
CALL MULTI (IATA,AT,IA,5,6,5)
CALL MULMAVEC (IA,V,DELTA,5,6)

C
IF ( ABS(DELTA(1)) .LE. 0.0000001 .AND.

1	 ABS(DELTA(2)) .LE. 0.0000001 .AND.
1	 ABS(DELTA(3)) .LE. 0.0000001 .AND.
1	 ABS(DELTA(4)) .LE. 0.0000001 .AND.
1	 ABS(DELTA(5)) .LE. 0.0000001 ) THEN

TH2=THT2/DEGRAD
TH3=THT3/DEGRAD
ET2=ETA2/DEGRAD
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ET3=ETA3/DEGRAD

C Derivative ofjoint variables
VM(1,1)=-SIN(ETA2)
VM(1,3)=SIN(THT2)*COS(ETA2)
VM(2,5)=SIN(THT3)
VM(3,3)=COS(THT2)
VM(3,4)=1.0
VM(4,1)=A2*COS(ETA2)
VM(4,3)=A2*SIN(THT2)*SIN(ETA2)
VM(4,5)=-COS(THT3)
VM(5 , 1 )=C0 S (ETA2)
VM(5,2)=1.0
VM(5,3)=SIN(THT2)*SIN(ETA2)
VM(6,3)=-A2*COS(THT2)

VV(1)=THT1D*SIN(ETA2)
VV(2)=S1D*SIN(ETA2)-A1*THT1D*SIN(THT2)*COS(ETA2)
VV(4)=-THT1D*(A1*COS(THT2)+A2*COS(ETA2))
VV(5)=-THTID*COS(ETA2)
VV(6)=-THT1D*A1*SIN(THT2)*SIN(ETA2)-S1D*COS(ETA2)

CALL TRANS (VM,VMT,6,5)
CALL MULTI (VMT,VM,VMTVM,5,5,6)
CALL INVERSE (VMTVM,IVMTVM)
CALL MULTI (IVMTVM,VMT,IVM,5,6,5)
CALL MULMAVEC (IVM,VV,DOT,5,6)

THT2D=DOT(1)
THT3D=DOT(2)
ETA2D=DOT(3)
ETA3D=DOT(4)
S4D=DOT(5)

C Double derivative ofjoint variables
AV( 1 )=THT 1 DD* SIN(ETA2)+ETA2D *(THT 1D+THT2D)*C 0 S (ETA2)
1 -ETA2D*(THT2D*COS(THT2)*COS(ETA2)-ETA2D*
I SIN(THT2)*SIN(ETA2))
AV(2)=A 1 *(THT 1D* SIN(THT2)* S IN(ETA2)*ETA2D-THT 1DD*
1 SIN(THT2)*COS(ETA2)-THT1D*THT2D*COS(THT2)*COS(ETA2))
1 +S 1DD*SIN(ETA2)+S 1D*ETA2D*COS(ETA2)-S4D*THT3D * COS(THT3)
AV(3)=THT2D*ETA2D*SIN(THT2)
AV(4)=A1*SIN(THT2)*THT1D*THT2D+A2*SIN(ETA2) *ETA2D *
1 (THT 1D+THT2D)-THT 1DD* (A 1 *COS (THT2)+A2* COS (ETA2))
1 -A2*ETA2D*(COS(THT2)*SIN(ETA2)*THT2D+SIN(THT2) *
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1 COS(ETA2)*ETA2D)-SIN(THT3)*THT3D*S4D
AV(5)=THT1D*ETA2D*SIMETA2)-THT1DD*COS(ETA2)+SIN(ETA2)*
1 ETA2D*THT2D-ETA2D*(COS(THT2)*SIN(ETA2)*THT2D+
1 SIN(THT2)*COS(ETA2)*ETA2D)
AV(6)=S 1 D* S IN(ETA2)*ETA2D-A1 *THT1DD*SIN(THT2)*SIN(ETA2)
1 -Al*THT1D*THT2D*COS(THT2)*SIN(ETA2)-S1DD*COS(ETA2)
1 -Al*SIN(THT2)*COS(ETA2)*THT1D*ETA2D
1 -A2*THT2D*ETA2D*SIN(THT2)

CALL MULMAVEC (IVM,AV,DDOT,5,6)
THT2DD=DDOT(1)
THT3DD=DDOT(2)
ETA2DD=DDOT(3)
ETA3DD=DDOT(4)
S4DD=DDOT(5)

C Inertia forces and torques of original links
V2XP=0.0
V2XD=-S4D*SIN(THT3)
V2YP=-ETA3D
V2YD=S4D*COS(THT3)
V2ZP=-THT3D
V2ZD=0.0
H2XP=-S4D*SIN(THT3)
H2XD=0.0
H2YP=-G2*THT3D+S4D*COS(THT3)
H2YD=-(K2Y**2)*ETA3D
H2ZP=ETA3D*G2
H2ZD=-(K2Z**2)*THT3D+G2*S4D*COS(THT3)

C
H2DXP=-S4DD*SIN(THT3)-S4D*THT3D*COS(THT3)
H2DXD=0.0
H2DYP=-G2*THT3DD-THT3D*S4D*SIN(THT3)+
1 S4DD*COS(THT3)
H2DYD=-(K2Y**2)*ETA3DD
H2DZP=G2*ETA3DD
H2DZD=-(K2Z**2)*THT3DD+G2*(S4DD*COS(THT3)-SIN(THT 3 ) *
1THT3D*S4D)

C
R1P(1)=-M1*(THT1D**2)*(Al+G1)
R1D(1)=0.0
R1P(2)=M1 *THTIDD*(A1+G1)
R1D(2)=-M1*G1*S1DD
R1P(3)=M 1 *S 1DD
R1D(3)=M1 *THT1DD*((K1Z* *2)+G1 *A1)
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CALL MULMAVEC (M1R,R1P,M1R1P,3,3)
CALL MULMAVEC (M1R,R1D,M1R1D 1,3,3)
CALL MULMAVEC (M1D,R1P,M1R1D2,3,3)
CALL ADDVEC (M1R1D1,M1R1D2,M1R1D)

C
R2P( 1 )=M2* (H2DXP-V2ZP *H2 YP+V2 YP *H2ZP)
R2D(1)=M2*(H2DXD-V2ZP*H2YD-V2ZD*H2YP+V2YP*H2ZD+V2YD*H2ZP)
R2P(2)=M2*(H2DYP-V2XP*H2ZP+V2ZP*H2XP)
R2D(2)=M2*(H2DYD-V2XP*H2ZD-V2XD*H2ZP+V2ZP*H2XD+V2ZD*H2XP)
R2P(3)=M2*(H2DZP-V2YP*H2XP+V2XP*H2YP)
R2D(3)=M2*(H2DZD-V2YP*H2XD-V2YD*H2XP+V2XP*H2YD+V2XD*H2YP)

C CALL MULMAVEC (M1L2R,R2P,M1L2R2P,3,3)
C CALL MULMAVEC (M1L2R,R2D,M1L2R2D1,3,3)
C CALL MULMAVEC (M1L2D,R2P,M1L2R2D2,3,3)
C CALL ADDVEC (M1L2R2D1,M1L2R2D2,M1L2R2D)

CALL MULMAVEC (TL3M4R,R2P,M1L2R2P,3,3)
CALL MULMAVEC (TL3M4R,R2D,M1L2R2D1,3,3)
CALL MULMAVEC (TL3M4D,R2P,M1L2R2D2,3,3)
CALL ADDVEC (M1L2R2D1,M1L2R2D2,M1L2R2D)

R3P(1)=0.0
R3D(1)----0.0
R3P(2)=0.0
R3D(2)=M3 *G3 *S4DD
R3P(3)=-M3*S4DD
R3D(3)=0.0
CALL TRANS (L3R,TL3R,3,3)
CALL TRANS (M4R,TM4R,3,3)
CALL MULMAVEC (TM4R,R3P,TM4R3P,3,3)
CALL MULTI (TM4R,TL3R,TM4L3R,3,3,3)

C Joint forces and torques of the original links
F3J=-(R2P(2)+R2D(3)/A2)
F3K=R2D(2)/A2-R2P(3)
T4I--R3D(1)
T4J=-R3D(2)
T4K--R3D(3)
F3I=(F3J*COS(THT3)-F4K-R3P(3))/SIN(THT3)
F4J=-(COS(THT3)*S1N(ETA3)*F3I+SIN(THT3)*S1N(ETA3) *F3J+
1 COS(ETA3)*F3K+R3P(2))
F4I=-(COS(THT3)*COS(ETA3)*F3I+SIN(THT3)*COS(ETA3) *F3J-

1	 SIN(ETA3)*F3K+R3P(1))
F2J=-(F3J+R2P(2))*COS(THT2)-R2D(2)*SIN(ETA2) * STN(THT2)/A2
1 -(F3I+R2P(1))*SIN(THT2)*COS(ETA2)



F2I=(F3J+R2P(2))*S1N(THT2)-R2D(2)*SIN(ETA2)*COS(THT2)/A2
1 -(F3I+R2P(1))*COS(THT2)*COS(ETA2)
F2K1=-(F2I*COS(THT2)*SIN(ETA2)+F2J*SIN(THT2)*SIN(ETA2)+
1 F3K+R2P(3))
F2K2=(F2I*COS(THT2)*COS(ETA2)+F2J*SIN(THT2)*COS(ETA2)+
1 F3I+R2P(1))

temp=F2K2/F2K 1
ETA=ATAN(temp)

C ETA=ATAN2(F2K2,F2K1)
if ( ABS(COS(ETA)) .GT. ABS(SIN(ETA)) ) then
F2K=F2K1/COS(ETA)
else
F2K=F2K2/SIN(ETA)
endif
F1K--(F2K+R1P(3))
FlI=-(F2I+R1P(1))*COS(THT1)+(F2J+R1P(2))*SIN(THT1)
F1J=-(F2I+R1P(1))*SIN(THT1)-(F2J+R1P(2))*COS(THT1)
T1K=COS(THT1)*A1*F1J-SIN(THT1)*Al*F1I-R1D(3)
T1J=S1*F1I-R1D(1)*SIN(THT1)-(Al*F1K+RlD(2))*COS(THT1)
TH=-SI*F1J-R1D(1)*COS(THT1)+(Al*F1K+R1D(2))*SIN(THT1)

C************************************************************

C USE OF POINT MASSES
C* ***********************************************************

C For Crank (link 1)
D(1)=A1 *COS(THT1)
DD(1)=-A1*SIN(THT1)*THT1D
DDD(1)=-A1 *(COS(THT 1)*THT 1D* *2+SIN(THT 1)*THT 1DD)
D(2)—A1*SIN(THT1)
DD(2)=Al *COS(THT1)*THT1D
DDD(2)=A1*(COS(THT1)*THT1DD-SIN(THT1)*THT1D**2)
D(3)=S 1
DD(3)=S1D
DDD(3)=S1DD

C Derivative and double derivative of M1R
M1RD(1,1)=-SIN(THT1)*THT1D
M1RD(1,2)=-COS(THT1)*THT1D
M1RD(2,1)=COS(THT1)*THT1D
M1RD(2,2)=-SIN(THT 1)*THT 1D
M1RDD(1,1)=-SIN(THT1)*THT1DD-COS(THT1)*(THT1D **2)
M1RDD(1,2)=-COS(THT1)*THT1DD+SIN(THT1)*(THT1D ** 2)
M1RDD(2,1)=COS(THT1)*THT1DD-SIN(THT1) * (THT1D **2)
M1RDD(2,2)=-SIN(THT1)*THT1DD-COS(THT1)*(THT1D **2)

C Point mass mll
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LL1(1)=X10+Xl*L1(1,1)
LL1(2)----Y10+X1*L1(1,2)
LL1(3)=Z10+X1*L1(1,3)
LL2(1)=X10-X1 *L1(1,1)
LL2(2)=-Y10-X1*L1(1,2)
LL2(3)=Z10-X1*L1(1,3)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL1,

1	 L111,L11D1,L11DD1)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL2,

1	 L112,L11D2,L11DD2)
CALL ADDVEC (L11DD1,L11DD2,L11DD)

C Point mass m12
LL1(1)=X1O+Y1*L1(2,1)
LL1(2)=Y10+Y1*L1(2,2)
LL1(3)=Z10+Y1*L1(2,3)
LL2(1)—X10-Y1*L1(2,1)
LL2(2)=Y10-Y1*L1(2,2)
LL2(3)=Z10-Y1*L1(2,3)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL1,

1	 L121,L12D1,L12DD1)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL2,

1	 L122,L12D2,L12DD2)
CALL ADDVEC (L12DD1,L12DD2,L12DD)

C Point mass m13
LL1(1)=X10+Z1*L1(3,1)
LL1(2)=Y10+Z1*L1(3,2)
LL1(3)=Z10+Z1*L1(3,3)
LL2(1)=X10-Z1*L1(3,1)
LL2(2)=Y10-Z1*L1(3,2)
LL2(3)=Z10-Z1*L1(3,3)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL1,

1	 L131,L13D1,L13DD1)
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL2,

1	 L132,L13D2,L13DD2)
CALL ADDVEC (L13DD1,L13DD2,L13DD)

C Point mass m14
LL(1)=X10
LL(2)=Y 10
LL(3)=Z 10
CALL KINEMATIC (M1R,M1RD,M1RDD,D,DD,DDD,LL,

1	 L14,L14D,L14DD)
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C New inertia forces and torques of crank using point masses
NUR1X13=(-m11*L11DD(1)-m12*L12DD(1)-m13*L13DD(1))/2
1	 -m14*L14DD(1)
NUR INP=(-ml 1*L11DD(2)-m12*L12DD(2)-ml 3*L13DD(2))/2
1	 -m14*L14DD(2)
NUR1ZP=(-m11*L11DD(3)-m12*L12DD(3)-m13*L13DD(3))/2

1	 -m14*L14DD(3)
NUR1XD=-m11*(L111(2)*L11DD1(3)-L111(3)*L11DD1(2))/2
1 -m 1 1*(L112(2)*L11DD2(3)-L112(3)*L11DD2(2))/2
1 -m12*(L121(2)*L12DD1(3)-L121(3)*L12DD1(2))/2
1 -m12*(L122(2)*L12DD2(3)-L122(3)*L12DD2(2))/2
1 -m13*(L131(2)*L13DD1(3)-L131(3)*L13DD1(2))/2
1 -m13 *(L132(2)*L13DD2(3)-L132(3)*L13DD2(2))/2
1 -ml 4*(L14(2)*L14DD(3)-L14(3)*L14DD(2))
NUR1YD=-m11*(L111(3)*L11DD1(1)-L111(1)*L11DD1(3))/2

1 -m11*(L112(3)*L11DD2(1)-L112(1)*L11DD2(3))/2
1 -m12*(L121(3)*L12DD1(1)-L121(1)*L12DD1(3))/2
1 -m12*(L122(3)*L12DD2(1)-L122(1)*L12DD2(3))/2
1 -ml 3*(L131(3)*L13DD1(1)-L131(1)*L13DD1(3))/2
1 -m13*(L132(3)*L13DD2(1)-L132(1)*L13DD2(3))/2
1 -m14*(L14(3)*L14DD(1)-L14(1)*L14DD(3))
NUR1ZD=-m 1 1*(L111(1)*L11DD1(2)-L111(2)*L11DD1(1))/2
1 -ml 1*(L112(1)*L11DD2(2)-L112(2)*L11DD2(1))/2
1 -m12*(L121(1)*L12DD1(2)-L121(2)*LI2DD1(1))/2
1 -ml 2*(L122(1)*L12DD2(2)-L122(2)*L12DD2(1))/2
1 -m13*(L131(1)*L13DD1(2)-L131(2)*L13DD1(1))/2
1 -m13*(L132(1)*L13DD2(2)-Ll32(2)*L13DD2(1))/2
1 -m14*(L14(1)*L14DD(2)-L14(2)*L14DD(1))

C For Connecting rod (link 2)
D(1)=-A4
D(2)=-S4*SIN(ALP4)
D(3)=-S4*COS(ALP4)
DD(1)=0.0
DD(2)=-S4D*SIN(ALP4)
DD(3)=-S4D*COS(ALP4)

DDD(2)=-S4DD*SIN(ALP4)
DDD(3)=-S4DD*COS(ALP4)

C********Derivative of (TM4R)(TL3R)=TM4L3RD* ***************
L3RD(1,1)=-COS(THT3)*SIN(ETA3)*ETA3D
1	 -SIN(THT3)*COS(ETA3)*THT3D
L3RD(1,3)=-COS(ETA3)*ETA3D
L3RD(1,2)=COS(THT3)*COS(ETA3)*THT3D
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I	 -SIN(THT3)*SIN(ETA3)*ETA3D
L3RD(2,1)—COS(THT3)*COS(ETA3)*ETA3D

	

1	 -SIN(THT3)*SIN(ETA3)*THT3D
L3RD(2,3)=-SIN(ETA3)*ETA3D
L3RD(2,2)=COS(THT3)*SIN(ETA3)*THT3D

	

1	 +SIN(THT3)*COS(ETA3)*ETA3D
L3RD(3,1)=COS(THT3)*THT3D
L3RD(3,3)=0. 0
L3RD(3,2)=SIN(THT3)*THT3D

CALL MULTI (TM4R,L3RD,TM4L3RD,3,3,3)
C* * * *** * *Double derivative of (TM4R)(TL3R)=TM4L3RDD*********

L3RDD(1,1)=2*SIN(THT3)*SIN(ETA3)*THT3D*ETA3D

	

1	 -COS(THT3)*COS(EAT3)*((THT3D**2)+(ETA3D**2))

	

1	 -SIN(THT3)*COS(ETA3)*THT3DD

	

1	 -COS(THT3)*SIN(ETA3)*ETA3DD
L3RDD(1,3)=SIN(ETA3)*(ETA3D**2)-COS(ETA3)*ETA3DD
L3RDD(1,2)=-2*SIN(ETA3)*COS(THT3)*THT3D*ETA3D

	

1	 - SIN(THT3)*COS(EAT3)*((THT3D* *2)+(ETA3D* *2))

	

1	 -SIN(THT3)*SIN(ETA3)*ETA3DD

	

1	 +COS(THT3)*COS(ETA3)*THT3DD
L3RDD(2,1)=-2*SIN(THT3)*COS(ETA3)*THT3D*ETA3D

	

1	 -COS(THT3)* SIN(EAT3)*((THT3D* *2)+(ETA3D* *2))

	

1	 +COS(THT3)*COS(ETA3)*ETA3DD

	

1	 -SIN(THT3)*SIN(ETA3)*THT3DD
L3RDD(2,3)=---COS(ETA3)*(ETA3D**2)-SIN(ETA3)*ETA3DD
L3RDD(2,2)=2*COS(THT3)*COS(ETA3)*THT3D*ETA3D

	

1	 -SIN(THT3)*SIN(EAT3)*((THT3D**2)+(ETA3D**2))

	

1	 +COS (THT3 )*SIN(ETA3)*THT3DD

	

1	 +SIN(THT3)*COS(ETA3)*ETA3DD
L3RDD(3,1)=-SIN(THT3)*(THT3D**2)+COS(THT3) * THT3DD
L3RDD(3,3)=0.0
L3RDD(3,2)=COS(THT3)*(THT3D**2)+SIN(THT3)*THT3DD

CALL MULTI (TM4R,L3RDD,TM4L3RDD,3,3,3)

C*******************************************************

C Point mass m21
LL1(1)=X20+X2*L2(1,1)
LL1(2)=Y20+X2*L2(1,2)
LL1(3)=Z20+X2*L2(1,3)
LL2(1)=X20-X2*L2(1,1)
LL2(2)=-Y20-X2*L2(1,2)
LL2(3)=Z20-X2*L2(1,3)
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL 1 ,

	

1	 L211,L21D1,L21DD1)



CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL2,
1	 L212,L21D2,L21DD2)
CALL ADDVEC (L21DD1,L21DD2,L21DD)

C Point mass m22
LL1(1)=X2O+Y2*L2(2, 1)
LL1(2)=Y20+Y2*L2(2,2)
LL1(3)=Z2O+Y2*L2(2,3)
LL2(1)=X20-Y2*L2(2,1)
LL2(2)=Y20-Y2 *L2(2,2)
LL2(3)=Z20-Y2*L2(2,3)
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL1,

1	 L221,L22D1,L22DD1)
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL2,

1	 L222,L22D2,L22DD2)
CALL ADDVEC (L22DD1,L22DD2,L22DD)

C Point mass m23
LL1(1)=X20+Z2*L2(3,1)
LL1(2)=Y20+Z2*L2(3,2)
LL1(3)=Z20+Z2 *L2(3,3)
LL2(1)=X20-Z2*L2(3,1)
LL2(2)=Y20-Z2*L2(3,2)
LL2(3)=Z20-Z2*L2(3,3)
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL1,

1	 L231,L23D1,L23DD1)
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL2,

1	 L232,L23D2,L23DD2)
CALL ADDVEC (L23DD1,L23DD2,L23DD)

C Point mass m24
LL(1)=X20
LL(2)=Y20
LL(3)=Z20
CALL CORRLS (TM4L3R,TM4L3RD,TM4L3RDD,D,DD,DDD,LL,

1	 L24,L24D,L24DD)

C New inertia forces and torques of connecting rod using point masses
NUR2X13----(-m21*L21DD(1)-m22*L22DD(1)-m23*L23DD(1))/2
1	 -m24*L24DD(1)

C NUR2XP=-M2*L24DD(1)
NUR2YP=(-m21*L21DD(2)-m22*L22DD(2)-m23*L23DD(2))/2
1	 -m24*L24DD(2)

C NUR2YP=-M2*L24DD(2)
NUR2ZP=(-m21*L21DD(3)-m22*L22DD(3)-m23*L23DD(3))/2
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1	 -m24*L24DD(3)
C NUR2ZP=-M2*L24DD(3)

NUR2XD---m21*(L211(2)*L21DD1(3)-L211(3)*L21DD1(2))/2
1 -m21*(L212(2)*L21DD2(3)-L212(3)*L21DD2(2))/2
1 -m22*(L221(2)*L22DD1(3)-L221(3)*L22DD1(2))/2
1 -m22*(L222(2)*L22DD2(3)-L222(3)*L22DD2(2))/2
1 -m23 *(L231(2)*L23DD1(3)-L231(3)*L23DD1(2))/2
1 -m23 *(L232(2)*L23DD2(3)-L232(3)*L23DD2(2))/2
1 -m24*(L24(2)*L24DD(3)-L24(3)*L24DD(2))
NUR2YD=-m21*(L211(3)*L21DD1(1)-L211(1)*L21DD1(3))/2
1 -m21*(L212(3)*L21DD2(1)-L212(1)*L21DD2(3))/2
1 -m22*(L221(3)*L22DD1(1)-L221(1)*L22DD1(3))/2
1 -m22*(L222(3)*L22DD2(1)-L222(1)*L22DD2(3))/2
1 -m23*(L231(3)*L23DD1(1)-L231(1)*L23DD1(3))/2
1 -m23 *(L232(3)*L23DD2(1)-L232(1)*L23DD2(3))/2
1 -m24*(L24(3)*L24DD(1)-L24(1)*L24DD(3))
NUR2ZD=-m21*(L211(1)*L21DD1(2)-L211(2)*L21DD1(1))/2
1 -m21*(L212(1)*L21DD2(2)-L212(2)*L21DD2(1))/2
1 -m22*(L221(1)*L22DD1(2)-L221(2)*L22DD1(1))/2
1 -m22*(L222(1)*L22DD2(2)-L222(2)*L22DD2(1))/2
1 -m23 *(L231(1)*L23DD1(2)-L231(2)*L23DD1(1))/2
1 -m23*(L232(1)*L23DD2(2)-L232(2)*L23DD2(1))/2
1 -m24*(L24(1)*L24DD(2)-L24(2)*L24DD(1))

C******************OPTIMIZATION EQUATIONS********************
px(1)=-L11DD(1)
px(2)=-L12DD(1)
px(3)=-L13DD(1)
px(4)=-L14DD(1)
px(5)=-L21DD(1)
px(6)=-L22DD(1)
px(7)=-L23DD(1)
px(8)=-L24DD(1)
px(9)=0.0

py(1)=-L11DD(2)
py(2)=-L12DD(2)
py(3)=-L13DD(2)
py(4)=-L14DD(2)
py(5)=-L21DD(2)
py(6)=-L22DD(2)
py(7)=-L23DD(2)
py(8)=-L24DD(2)
py(9)=M3*S4DD*SIN(ALP4)

pz(1)---L11DD(3)
pz(2)=-L12DD(3)



pz(3)=-L13DD(3)
pz(4)=-L14DD(3)
pz(5)=-L21DD(3)
pz(6)=-L22DD(3)
pz(7)=-L23DD(3)
pz(8)=-L24DD(3)
pz(9)=M3*S4DD*COS(ALP4)

qx(1)=-(L111(2)*L11DD1(3)-L111(3)*L11DD1(2))/2
1	 -(L112(2)*L11DD2(3)-L112(3)*L11DD2(2))/2
qx(2)=-(L121(2)*L12DD1(3)-L121(3)*L12DD1(2))/2

1	 -(L122(2)*L12DD2(3)-L122(3)*L12DD2(2))/2
qx(3)=-(L131(2)*L13DD1(3)-L131(3)*L13DD1(2))/2

1	 -(L132(2)*L13DD2(3)-L132(3)*L13DD2(2))/2
qx(4)=-(L14(2)*L14DD(3)-L14(3)*L14DD(2))
qx(5)=-(L211(2)*L21DD1(3)-L211(3)*L21DD1(2))/2

1	 -(L212(2)*L21DD2(3)-L212(3)*L21DD2(2))/2
qx(6)=-(L221(2)*L22DD1(3)-L221(3)*L22DD1(2))/2

1	 -(L222(2)*L22DD2(3)-L222(3)*L22DD2(2))/2
qx(7)=-(L231(2)*L23DD1(3)-L231(3)*L23DD1(2))/2

1	 -(L232(2)*L23DD2(3)-L232(3)*L23DD2(2))/2
qx(8)=-(L24(2)*L24DD(3)-L24(3)*L24DD(2))
qx(9)=0. 0

gy(1)=-(L111(3)*L11DD1(1)-L111(1)*L11DD1(3))/2
1	 -(L112(3)*L11DD2(1)-L112(1)*L11DD2(3))/2

gy(2)=-(L121(3)*L12DD 1(1)-L121(1)*L12DD1(3))/2
1	 -(L122(3)*L12DD2(1)-L122(1)*L12DD2(3))/2

ciy(3)=-(L131(3)*L13DD1(1)-L131(1)*L13DD1(3))/2
1	 -(L132(3)*L13DD2(1)-L132(1)*L13DD2(3))/2

gy(4)=-(L14(3)*L14DD(1)-L14(1)*L14DD(3))
gy(5)=-(L211(3)*L21DD1(1)-L211(1)*L21DD1(3))/2

1	 -(L212(3 )*L21DD2(1)-L212(1)*L21DD2(3))/2
gy(6)=-(L221(3)*L22DD1(1)-L221(1)*L22DD1(3))/2

1	 -(L222(3)*L22DD2(1)-L222(1)*L22DD2(3))/2
gy(7)=-(L231(3)*L23DD1(1)-L231(1)*L23DD1(3))/2

1	 -(L232(3 )*L23DD2(1)-L232(1)*L23DD2(3))/2
gy(8)=-(L24(3)*L24DD(1)-L24(1)*L24DD(3))
qy(9)=A4*fz(9)

qz(1)=-(L111(1)*L11DD1(2)-L111(2)*L11DD1(1))/2
1	 -(L112(1)*L11DD2(2)-L112(2)*L11DD2(1))/2
qz(2)=-(L121(1)*L12DD1(2)-L121(2)*L12DD1(1))/2

1	 -(L122(1)*L12DD2(2)-L122(2)*L12DD2(1))/2
qz(3)=-(L131(1)*L13DD1(2)-L131(2)*L13DD1(1))/2

1	 -(L132(1)*L13DD2(2)-L 132(2)*L13DD2(1))/2
qz(4)--(L14(1)*L14DD(2)-L14(2)*L14DD(1))
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qz(5)=-(L211(1)*L21DD1(2)-L211(2)*L21DD1(1))/2
1	 -(L212(1)*L21DD2(2)-L212(2)*L21DD2(1))/2
qz(6)=-(L221(1)*L22DD1(2)-L221(2)*L22DD1(1))/2

1	 -(L222(1)*L22DD2(2)-L222(2)*L22DD2(1))/2
qz(7)=-(L231(1)*L23DD1(2)-L231(2)*L23DD1(1))/2

1	 -(L232(1)*L23DD2(2)-L232(2)*L23DD2(1))/2
qz(8)=-(L24(1)*L24DD(2)-L24(2)*L24DD(1))
qz(9)=A4*fy(9)

DO 30 K=1,4
fx(K)=TM1R(1,1)*px(K)+TM1R(1,2)*py(K)+TM1R(1,3)*pz(K)
fy(K)=TM1R(2,1)*px(K)+TM1R(2,2)*py(K)+TM1R(2,3)*pz(K)
fz(K)=TM1R(3,1)*px(K)+TM1R(3,2)*py(K)+TM1R(3,3)*pz(K)
tx(K)=TM1R(1,1)*qx(K)+TM1R(1,2)*(iy(K)+TM1R(1,3)*qz(K)
ty(K)=TM1R(2,1)*qx(K)+TM1R(2,2)*gy(K)+TM1R(2,3)*qz(K)
tz(K)=TM1R(3,1)*qx(K)+TM1R(3,2)*cly(K)+TM1R(3,3)*qz(K)

30 CONTINUE
DO 40 K1=5,8
fx(K1)=TM1L2R(1,1)*px(K1)+TM1L2R(1,2)*py(K1)+TM1L2R(1,3)*pz(K1)
fy(K1)=TM1L2R(2,1)*px(K1)+TM1L2R(2,2)*py(K1)+TM1L2R(2,3)*pz(K1)
fz(K1)=TM1L2R(3,1)*px(K1)+TM1L2R(3,2)*py(K1)+TM1L2R(3,3)*pz(K1)
tx(K1)=TMIL2R(1,1)*qx(K1)+TM1L2R(1,2)*gy(K1)+TM1L2R(1,3)*qz(K1)
ty(K1)=TM1L2R(2,1)*qx(K1)+TM1L2R(2,2)*gy(K1)+TM1L2R(2,3)*qz(K1)
tz(K1)=TM1L2R(3,1)*qx(K1)+TM1L2R(3,2)*gy(K1)+TM1L2R(3,3)*qz(K1)

40 CONTINUE
fx(9)=M4R(1,1)*px(9)+M4R(1,2)*py(9)+M4R(1,3)*pz(9)
fy(9)=M4R(2,1)*px(9)+M4R(2,2)*py(9)+M4R(2,3)*pz(9)
fz(9)=M4R(3,1)*px(9)+M4R(3,2)*py(9)+M4R(3,3)*pz(9)
tx(9)=M4R(1,1)*qx(9)+M4R(1,2)*gy(9)+M4R(1,3) * qz(9)
ty(9)=M4R(2,1)*qx(9)+M4R(2,2)*gy(9)+M4R(2,3)*qz(9)
tz(9)=M4R(3,1)*qx(9)+M4R(3,2)*(iy(9)+M4R(3,3)*qz(9)

f3y(5)---(fy(5)+tz(5)/A2)
f3y(6)=-(fy(6)+tz(6)/A2)
13y(7)=-(fy(7)+tz(7)/A2)
f3y(8)=-(fy(8)+tz(8)/A2)

f3z(5)=-(fz(5)+ty(5)/A2)
f3 z(6)=-(fz(6)+ty(6)/A2)
f3z(7)=-(fz(7)+ty(7)/A2)
f3 z(8)=-(fz(8)+ty(8)/A2)

f3x(5)=cos(THT3)*f3y(5)/sin(THT3)
f3x(6)=cos(THT3)*f3y(6)/sin(THT3)
f3x(7)=cos(THT3)*f3y(7)/sin(THT3)
f3x(7)=cos(THT3)*f3y(7)/sin(THT3)
f3x(9)=fz(9)/sin(THT3)
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f4x(5)=(sin(ETA3)*Sz(5)-cos(THT3)*cos(ETA3)*f3x(5)
1	 -sin(THT3)*cos(ETA3)*f3y(5))
f4x(6)--(sin(ETA3)*f3z(6)-cos(THT3)*cos(ETA3)*f3x(6)
1	 -sin(THT3)*cos(ETA3)*f3y(6))
f4x(7)=(sin(ETA3)*f3z(7)-cos(THT3)*cos(ETA3)*f3x(7)

1	 -sin(THT3)*cos(ETA3)*f3y(7))
f4x(8)=(sin(ETA3)*f3z(8)-cos(THT3)*cos(ETA3)*f3x(8)

1	 -sin(THT3)*cos(ETA3)*f3 y(8))
f4x(9)=(-cos(THT3)*cos(ETA3)*f3x(9)-fx(9))

f4y(5)=-(cos(ETA3)*f3z(5)+cos(THT3)*sin(ETA3)*f3x(5)
1	 +sin(THT3)*sin(ETA3)*f3y(5))

f4y(6)=-(cos(ETA3)*f3z(6)+cos(THT3)*sin(ETA3)*f3x(6)
1	 +sin(THT3)*sin(ETA3)*f3y(6))

f4y(7)=-(cos(ETA3)*f3z(7)+cos(THT3)*sin(ETA3)*f3x(7)
1	 +sin(THT3)*sin(ETA3)*f3y(7))

f4y(8)=-(cos(ETA3)*f3z(8)+cos(THT3)*sin(ETA3)*f3x(8)
1	 +sin(THT3)*sin(ETA3)*Dy(8))

f4y(9)—(cos(THT3)*sin(ETA3)*f3x(9)+fy(9))
t4x(9)=T4I
t4y(9)=T4J
t4z(9)=T4K

f2x(5)----((-f3x(5)-fx(5))*cos(THT2)*cos(ETA2)+(f3y(5)+fy(5))
1	 *sin(THT2)-ty(5)*sin(ETA2)*cos(THT2)/A2)
f2x(6)=((-f3x(6)-fx(6))*cos(THT2)*cos(ETA2)+(f3y(6)+fy(6))

1	 *sin(THT2)-ty(6)*sin(ETA2)*cos(THT2)/A2)
f2x(7)=((-f3x(7)-fx(7))*cos(THT2)*cos(ETA2)+(f3y(7)+fy(7))

1	 *sin(THT2)-ty(7)*sin(ETA2)*cos(THT2)/A2)
f2x(8)=((-f3x(8)-fx(8))*cos(THT2)*cos(ETA2)+(f3y(8)+fy(8))

1	 *sin(THT2)-ty(8)*sin(ETA2)*cos(THT2)/A2)
f2x(9)=-f3x(9)*cos(THT2)*cos(ETA2)

f2y(5)=((-f3x(5)-fx(5))*sin(THT2)*cos(ETA2)-(f3y(5)+fy(5))
1	 *cos(THT2)-ty(5)*sin(ETA2)*sin(THT2)/A2)

f2y(6)=((-f3x(6)-fx(6))*sin(THT2)*cos(ETA2)-(f3y(6)+fy(6))
1	 *cos(THT2)-ty(6)*sin(ETA2)*sin(THT2)/A2)

f2y(7)=((-f3x(7)-fx(7))*sin(THT2)*cos(ETA2)-(f3y(7)+fy(7))
1	 *cos(THT2)-ty(5)*sin(ETA2)*sin(THT2)/A2)

f2y(8)=((-f3x(8)-fx(8))*sin(THT2)*cos(ETA2)-(f3y(8)+fy(8))
1	 *cos(THT2)-ty(8)*sin(ETA2)*sin(THT2)/A2)

f2y(9)=43x(9)*sin(THT2)*cos(ETA2)
if ( ABS(COS(ETA)) .GT. ABS(SIN(ETA)) ) then

f2z(5)=-(fz(5)+f3z(5)+f2y(5)*sin(THT2)*sin(ETA2)+
1	 f2x(5)*cos(THT2)*sin(ETA2))/cos(ETA2)
f2z(6)=-(fz(6)+Oz(6)+f2y(6)*sin(THT2)*sin(ETA2)+
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1	 f2x(6)*cos(THT2)*sin(ETA2))/cos(ETA2)
f2z(7)=-(fz(7)+f3z(7)+f2y(7)*sin(THT2)*sin(ETA2)+
1	 f2x(7)*cos(THT2)*sin(ETA2))/cos(ETA2)
f2z(8)=-(fz(8)+f3 z(8)+f2y(8)* sin(THT2)* sin(ETA2)+
1	 f2x(8)*cos(THT2)*sin(ETA2))/cos(ETA2)
f2z(9)=-(f2y(9)*sin(THT2)*sin(ETA2)+
1	 f2x(9)*cos(THT2)*sin(ETA2))/cos(ETA2)

else
f2z(5)=(fz(5)+f3z(5)+f2y(5)* sin(THT2)* cos(ETA2)+

1	 f2x(5)*cos(THT2)*cos(ETA2))/sin(ETA2)
f2z(6)=(fz(6)+f3z(6)+f2y(6)* sin(THT2) * cos(ETA2)+

1	 f2x(6)*co s(THT2)* co s(ETA2))/sin(ETA2)
f2z(7)=(fz(7)+f3z(7)+f2y(7)*sin(THT2)*cos(ETA2)+
1	 f2x(7)* co s(THT2)* co s(ETA2))/sin(ETA2)
f2z(8)--(fz(8)+f3z(8)+f2y(8)*sin(THT2)*cos(ETA2)+

1	 f2x(8)*cos(THT2)*cos(ETA2))/sin(ETA2)
f2z(9)=(f2y(9)* sin(THT2)* co s(ETA2)+

1	 f2x(9)*cos(THT2)*cos(ETA2))/sin(ETA2)
endif

DO 50 K2=5,8
f3x(K2)=M1L2R(1,1)*f3x(K2)+M1L2R(1,2)*f3y(K2)+M1L2R(1,3)*f3z(K2)
f3y(K2)=M1L2R(2,1)*f3x(K2)+M1L2R(2,2)*f3y(K2)+M1L2R(2,3)*f3z(K2)
f3z(K2)=M1L2R(3,1)*f3x(K2)+M1L2R(3,2)*f3y(K2)+M1L2R(3,3) * f3z(K2)

50 CONTINUE
DO 60 K3=5,8
f2x(K3)=M1R(1,1)*f2x(K3)+M1R(1,2)*f2y(K3)+M1R(1,3)*f2z(K3)
f2y(K3)=M1R(2,1)*f2x(K3)+M1R(2,2)*f2y(K3)+M1R(2,3)*f2z(K3)
f2z(K3)=M1R(3,1)*f2x(K3)+M1R(3,2)*f2y(K3)+M1R(3,3) *f2z(K3)

60 CONTINUE
DO 70 K4=5,8
f4x(K4)=TM4R(1,1)*f4x(K4)+TM4R(1,2)*f4y(K4)
f4y(K4)=TM4R(2,1)*f4x(K4)+TM4R(2,2)*f4y(K4)
f4z(K4)=TM4R(3,1)*f4x(K4)+TM4R(3,2)*f4y(K4)

70 CONTINUE
t4x(9)=TM4R(1,1)*t4x(9)+TM4R(1,2)*t4y(9)+TM4R(1,3) * t4z(9)
t4y(9)=TM4R(2,1)*t4x(9)+TM4R(2,2)*t4y(9)+TM4R(2,3) * t4z(9)
t4z(9)=TM4R(3,1)*t4x(9)+TM4R(3,2)*t4y(9)+TM4R(3,3) * t4z(9)

flz(1)=-fz(1)
11 z(2)=-fz(2)
fl z(3)=-fz(3)
fl z(4)=-fz(4)
fl z(5)=-12z(5)
flz(6)=42z(6)



f1z(7)=42z(7)
fl z(8)=42z(8)
fl z(9)=42z(9)

fl x(1)=(-fx(1)*cos(THT 1)+fy(1)* sin(THT 1))
fl x(2)=(-fx(2)*cos(THT 1 )+fy(2)*sin(THT 1))
flx(3)=(-fx(3)*cos(THT 1 )+fy(3)*sin(THT 1))
f1 x(4)=(-fx(4)* cos(THT 1 )+fy(4)* sin(THT 1))
fl x(5)=(-f2x(5)*cos(THT 1 )+f2y(5)*sin(THT 1))
fl x(6)=(-f2x(6)*co s(THT 1 )+f2y(6)* sin(THT 1))
fl x(7)=(-f2x(7)*co s(THT 1 )+f2y(7)*sin(THT 1))
flx(8)=(-f2x(8)*cos(THT 1 )+f2y(8)* sin(THT 1))

x(9)=(-f2x(9)*co s(THT I )+f2y(9)* sin(THT 1))
fly(1)=-(fx(1)*sin(THT1)+fy(1)*cos(THT1))
fl y(2)=-(fx(2)*sin(THT 1 )+fy(2)* co s(THT 1 ))
fl y(3 )=-(fx(3 )*sin(THT 1 )+fy(3 )*cos(THT 1))
fl y(4)=-(fx(4)* sin(THT 1 )+fy(4)*cos(THT 1))
f1 y(5)=-(f2x(5)* sin(THT I )+f2y(5)*cos(THT 1))
fl y(6)=-(f2x(6)* sin(THT 1 )+f2y(6)*cos(THT 1))
f1 y(7)=42x(7)* sin(THT 1 )+f2y(7)*cos(THT 1))
fl y(8)=-(f2x(8)*sin(THT 1 )+f2y(8)*cos(THT 1))
fl y(9)=-(f2x(9)*sin(THT 1 )+f2y(9)*cos(THT 1))

t lz(1)=(fly(1)*A l*cos(THT 1 )-fl x(1)*A1*sin(THT1)-tz(1))
tlz(2)=(fl y(2)*A1 *cos(THT 1 )-fl x(2)*A1*sin(THT1)-tz(2))
t 1 z(3)=(fl y(3 )*A1 *cos(THT 1 )-fl x(3 )*A1 *sin(THT1)-tz(3))
t 1 z(4)—(fly(4)*A 1 *cos(THT 1)-fl x(4)*A1*sin(THT1)-tz(4))
tlz(5)---(fly(5)*A1*cos(THT1)-f1x(5)*A1*sin(THT1))
t lz(6)=(fl y(6)*A1 *cos(THT 1)-fl x(6)*A1 *sin(THT 1))
t lz(7)=(fly(7)*A1 *cos(THT 1 )-fl x(7)*A1 * sin(THT1))
t1 z(8)=-(f1y(8)*A1 *cos(THT 1 )-fl x(8)*A1 *sin(THT 1))
tl z(9)=(f1 y(9)*A 1 *cos(THT 1 )-fl x(9)*A1 * sin(THT 1))

t lx(1)=(-fl y(1)*S 1-tx(1)*cos(THT1)+fl z(1)*A1+
1	 ty(1 )* sin(THT 1))

t 1 x(2)=(-fl y(2)* S 1-tx(2)*cos(THT1)+fl z(2)*A1+
1	 ty(2)*sin(THT 1))

t 1 x(3)=(-fl y(3 )* S 1 -tx(3 )*cos(THT1)+fl z(3)*A1+
1	 ty(3 )*sin(THT 1))

t 1 x(4)=(-fl y(4)* S 1 -tx(4)*cos(THT 1 )+fl z(4)*A1+
1	 ty(4)*sin(THT 1))

tlx(5)=t1z(5)*A1 -fl y(5)*S 1
t 1 x(6)=t1 z(6)*A 1 y(6)* S 1
t 1 x(7)=t1z(7)*A 1 -fl y(7)* S 1
tl x(8)=t1z(8)*Al-fly(8)*S 1
tlx(9)=t1z(9)*A1 -fl y(9)*S 1

t 1 y(1)=f1x( 1)*S 1 -fl z( 1 )*A 1 -tx( l)*sin(THT 1 )-ty(1)*cos(THT1)
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t1y(2)=f1x(2)*S1-fiz(2)*A1-tx(2)*sin(THT1)-ty(2)*cos(THT1)
t 1 y(3)=f1x(3)*S 1-fl z(3)*A 1 -tx(3)*sin(THT1)-ty(3)*cos(THT1)
tly(4)=f1x(4)* Si -flz(4)*Al-tx(4)*sin(THT1)-ty(4)*cos(THT1)
tly(5)=f1x(5)*S1-flz(5)*A1
tly(6)=f1x(6)*S1-flz(6)*A1
t 1 y(7)=f1x(7)*S1-f1z(7)*A1
tly(8)=flx(8)*S1-flz(8)*A1
t1y(9)=f1x(9)*S1-flz(9)*A1

CALL SQUARE (fx,fxsq)
CALL SQUARE (fy,fysq)
CALL SQUARE (fz,fzsq)
CALL SQUARE (tx,txsq)
CALL SQUARE (ty,tysq)
CALL SQUARE (tz,tzsq)
CALL SQUARE (flx,f1xsq)
CALL SQUARE (fly,flysq)
CALL SQUARE (fl z,flzsq)
CALL SQUARE (tlx,tlxsq)
CALL SQUARE (tly,tlysq)
CALL SQUARE (t1z,t 1 zsq)
CALL SQUARE (f2x,f2xsq)
CALL SQUARE (f2y,f2ysq)
CALL SQUARE (f2z,f2zsq)
CALL SQUARE (f3x,f3xsq)
CALL SQUARE (f3y,f3ysq)
CALL SQUARE (f3z,f3zsq)
CALL SQUARE (f4x,f4xsq)
CALL SQUARE (f4y,f4ysq)
CALL SQUARE (t4x,t4xsq)
CALL SQUARE (t4y,t4ysq)
CALL SQUARE (t4z,t4zsq)

C1=37*(M1**2)*(A1**2)*(THT1D**4)
C2=C1 *(A1 **2)
C3=C1*(BL**2)

DO 80 11=1,9
DO 90 J1=1,9

fsq(I1J1)=(fxsq(I1,J1)+fysq(I1, J1 )+fzsq(I1,J1))/C1
tsq(I1,J1)=(txsq(I1,J1)+tysq(I1,J1)+tzsq(I1,J1))/C2
rsq(I1,J1)=(fixsq(11,J1)+flysq(I1,J1)+flzsq(I1J1)

1	 +f2xsq(I1,J1)+f2ysq(I1,J1)+f2zsq(I1,J1)
1	 +f3xsq(I1,J1)+f3ysq(I1,J1)+f3zsq(I1,J1)
1	 +f4xsq(I1,J1)44ysq(I1,J1)+f4zsq(I1,J1))/C1
msq(I1,J1)=(tlxsq(I1,J1)+tlysq(I1,J1)
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94

1	 +t4xsq(I1,J1)+t4ysq(I1,J1)+t4zsg(I1,J1))/C3
t0sq(I1,J1)=t1zsg(I1,J1)/C2
F(I1,J1)---WI*fsq(I1,J1)-FW2*tsci(I1,J1)+W3*rsq(I1,J1)

1	 +W4*msq(I1,J1)+W5*tOsq(I1,J1)
OF(I1,J1)=0F(I1,J1)+F(I1,J1)
h(I1,J1)=2*OF(I1,J1)

90 CONTINUE
80 CONTINUE

C	 write (6,1) F(1,1)
C	 write (6,1) OF(6,8),OF(8,6),OF(9,9)
C	 write (6,1) fx(1),fx(2),fx(3)
C	 write (6,1) Ll1DD(1),L12DD(1),L13DD(1)
C	 write (6,1) fx(4),fx(5),fx(6)
C	 write (6,1) fx(7),fx(8),fx(9)
C	 write (6,1) fxsq(1,1),fxsq(1,2),fxsq(1,3)
C	 write (6,1) fxsq(1,4),fxsq(1,5),fxsq(1,6)
C	 write (6,1) tsq(1,7),tsq(1,8),tsq(1,9)
C	 write (6,1) NUR2XP,NUR2YP,NUR2ZP
C	 write (6,1) M1L2R2P(1),MIL2R2P(2),M1L2R2P(3)

ELSE
THT2=THT2+DELTA(1)
ETA2=ETA2+DELTA(2)
THT3=THT3+DELTA(3)
ETA3=ETA3+DELTA(4)
S4=S4+DELTA(5)
I=I+1
GO TO 10
ENDIF
ELSE
WRITE(6,2) I
STOP
ENDIF

C 1 FORMAT('SLIDER VELOCITY=',F10.5,2X,'WHEN CRANK ANGLE='
C	 1,F7.2,1X,'S1=',F7.2,1X,'NO OF ITERATIONS -=',I3)

1 FORMAT(3F20.5)
2 FORMAT ('THE METHOD FAILS AFTER',I3,'ITERATIONS)

C	 Determination of the objective function
OBJFUN=0 0
NUOBJFUN=0.0

if (I3 .EQ. 2) then
do 42 14-1,9
do 43 J4=1,9

if (I4 .NE. J4) then



F(I4,J4)=2.0*F(I4,J4)
endif

OBJFUN=OBJFUN+m(I4)*m(J4)*F(I4,J4)
NUOBJFUN=NUOBJFUN+sol(I4)*sol(J4)*F(I4,J4)

43	 continue
42	 continue

call dotprod(m,fx,mfx)
C

	

	 call dotprod(sol,fx,nufx)
call dotprod(m,fy,mfy)

C

	

	 call dotprod(sol,fy,nufy)
call dotprod(m,fz,mfz)

C

	

	 call dotprod(sol,fz,nufz)
call dotprod(m,tx,mtx)

C

	

	 call dotprod(sol,tx,nutx)
call dotprod(m,ty,mty)

C

	

	 call dotprod(sol,ty,nuty)
call dotprod(m,tz,mtz)

C

	

	 call dotprod(sol,tz,nutz)
call dotprod(m,flx,mflx)

C

	

	 call dotprod(sol,flx,nuflx)
call dotprod(m,fl y,mfl y)

C

	

	 call dotprod(sol,fly,nufly)
call dotprod(m,fl z,mfl z)

C

	

	 call dotprod(sol,f1z,nuflz)
call dotprod(m,tlx,mtlx)

C

	

	 call dotprod(sol,tlx,nutlx)
call dotprod(m,tly,mtly)

C

	

	 call dotprod(sol,tly,nutly)
call dotprod(m,t1z,mtlz)

C

	

	 call dotprod(sol,t1z,nutlz)
call dotprod(m,f2x,mf2x)

C

	

	 call dotprod(sol,f2x,nuf2x)
call dotprod(m,f2y,mf2y)

C

	

	 call dotprod(sol,f2y,nuf2y)
call dotprod(m,f2z,mf2z)

C

	

	 call dotprod(sol,f2z,nuf2z)
call dotprod(m,f3x,mf3x)

C

	

	 call dotprod(sol,f3x,nuf3x)
call dotprod(m,f3y,mf3y)

C

	

	 call dotprod(sol,f3y,nuf3y)
call dotprod(m,f3z,mf3z)

C

	

	 call dotprod(sol,f3z,nuf3z)
call dotprod(m,f4x,mf4x)

C 	 call dotprod(sol,f4x,nuf4x)
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call dotprod(m,f4y,mf4y)
C	 call dotprod(sol,f4y,nuf4y)

call dotprod(m,t4x,mt4x)
C	 call dotprod(sol,t4x,nut4x)

call dotprod(m,t4y,mt4y)
C	 call dotprod(sol,t4y,nut4y)

call dotprod(m,t4z,mt4z)
C	 call dotprod(sol,t4z,nut4z)

shf=(mfx**2+mfy**2+mfz**2)**0.5
sht=(mtx* *2+mty* *2+mtz* *2)* *0.5

brf=((mf1x+mf2x+mf3x+mf4x)**2
1	 +(mfly+mf2y+mf3y+mf4y)**2
1	 +(mfl z+mf2z+mf3 z)* *2)* * 0 . 5

brt=((mt1x+mt4x)**2
1	 +(mtly+mt4y)**2
1	 +(mt 1 z+mt4z)**2)* *O. 5

int=mt 1 z

C	 write (6,*) OBJFUN,NIJOBIFUN
C	 write (6,*) mfx,nufx
C	 write (6,*) mfy,nufy
C	 write (6,*) mfz,nufz
C	 write (6,*) fl x(3 ),f1 x( 1 ),m(3)*fx(3),sol(3)*fx(3)

nufx=0.0
nufy=0.0
nufz=0.0
nutx=0.0
nuty=0.0
nutz=0.0

nufl x=0.0
nufl y=0.0
nuflz=0.0
nut lx=0.0
nutly=0.0
nut I z=0.0

nuf2x=0.0
nuf2y=0.0
nuf2z=0.0

nuf3x=0.0
nuf3y=0.0
nuf3z=0.0

nuf4x=0.0
nuf4y=0.0
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nut4x=0.0
nut4y=0 0
nut4z=0. 0

do 233 i10-1,9
nufx=nufx+sol(i10)*fx(i10)
nufy=nufy+sol(i10)*fy(i10)
nufz=nufz+sol(i10)*fz(i10)
nutx=nutx+sol(i10)*tx(i10)
nuty=nuty+sol(i10)*ty(i10)
nutz=nutz+sol(i10)*tz(i10)

nufl x=nufl x+sol(i10)*fl x(i10)
nufl y=nuf1y+sol(i10)*fl y(i 10)
nufl z=nufl z+sol(i10)*fl z(i10)
nut 1x----nut1x+sol(i I O)*t1x(i 1 0)
nut1y=nut1y+sol(i10)*tly(i 1 0)
nut 1z=nut lz+sol(i1 0)* t1z(i10)

nuf2x=nuf2x+sol(i10)*f2x(i10)
nuf2y=nuf2y+sol(i10)*f2y(i10)
nuf2z=nuf2z+sol(i I 0)*f2z(i10)

nuf3x=nuf3x+sol(i10)*f3x(i10)
nuf3y=nuf3y+sol(i10)*f3y(i10)
nuf3z=nuf3z+sol(i10)*f3z(i10)

nuf4x=nuf4x+sol(i10)*f4x(i10)
nuf4y—nuf4y+sol(i10)*f4y(i10)

nut4x=nut4x+sol(i10)*t4x(i10)
nut4y=nut4y+sol(i10)*t4y(i10)
nut4z=nut4z+sol(i10)*t4z(i 10)

233 continue

nushf=((nufx* *2)+(nufy* *2)+(nufz* *2))* *0.5
nusht —(nutx* * 2+nuty* *2+nutz* *2)* *0.5

nubrf=((nufl x+nuf2x+nuf3x+nuf4x)* *2
+(nufl y+nuf2y+nuf3 y+nuf4y)* *2

1	 +(nufl z+nuf2z+nuf3 z)* *2)* *0.5
nubrt=((nutlx+nut4x)* *2

1	 +(nutly+nut4y)* *2
+(nut1 z+nut4z)* *2)* *0.5

nuint=nutlz

DOB JFUN=(0B JF UN-NUOBJFUN)*100/OBJFUN
dshf=(shf-nushf)*100/shf
dsht—(sht-nusht)*100/sht
dbi f—(brf-nubrf)*100/brf
dbrt=(brt-nubrt)*100/brt
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dint=(int-nuint)*100/int

write(6,*) TH1,dint
endif

400 CONTINUE

C	 write (6,1) OF(6,8),OF(8,6),OF(9,9)
call qprog (nvar,ncon,neq,aa,lda,b,gg,h,ldh,diag,sol,

	

1	 nact,iact, alamda)
call umach (2,nout)

C	 write (nout,999) (sol(k),k=1,nvar)
C 999 format ('the solution vector is',/,'sol---( 1 ,9F12.6,7)
C	 write(6, *) m(1),m(2),m(3),m(4),m(5),m(6),m(7),m(8),m(9)

	

41	 continue

NUI1X=(Y1* *2)* sol(2)±(Z1* *2)* sol(3)
NUI2X=(Y2* *2)*sol(6)+(Z2* *2)*sol(7)
NUI 1 Y=(X1**2)*sol(1)+(Z1* *2)*sol(3)
NUI2Y=(X2**2)*sol(5)+(Z2**2)*sol(7)
NUI1Z=(X1**2)*sol(1)+(Y1**2)*sol(2)
NUI2Z=(X2**2)*sol(5)+(y2**2)*sol(6)

C	 write(6,*) IlX,NUI 1X
C	 write(6, *) IlY,NUIlY
C 	 write(6,*) I1Z,NUI1Z
C	 write(6,*) I2X,NUI2X
C	 write(6,*) I2Y,NUI2Y
C 	 write(6,*) I2z,NUI2Z

STOP
END

C*********************SUBROUTINES START HERE**************** * *

SUBROUTINE PRODUCTDUAL (AR,AD,BR,BD,RESLTR,RESLTD)
real*8 AR(3,3),AD(3,3),BR(3,3),BD(3,3),TEMP1(3,3)
real*8 RESLTR(3,3),RESLTD(3,3),TEMF'2(3,3)

CALL MULTI (AR,BR,RESLTR,3,3,3)
CALL MULTI (AD,BR,TEMP1,3,3,3)
CALL MULTI (AR,BD,TEMP2,3,3,3)
CALL ADDMAT (TEMP1,TEMP2,RESLTD)

RETURN
END

C
SUBROUTINE CORRLS (MTRX,MTRXD,MTRXDD,D,DD,DDD,
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99

1	 LL,L,LD,LDD)
real* 8 MTRX(3 , 3 ),MTRXD (3 , 3 ),MTRXDD (3 ,3 ),D (3 ),DD (3 ),

1	 DDD(3 ),LL(3 ),L(3 ),LD(3 ),LDD(3),
1	 TMTRX(3 , 3 ), TMTRXD (3 , 3 ),OMEGA(3 , 3 ),
1	 ALPHAl (3 , 3 ), ALPHA2 (3 ,3),ALPHA(3 ,3 ),
1 WX,WY,WZ,ALPX,ALPY,ALPZ,MTRXL(3),MTRXDL(3)
CALL KINEMATIC (MTRX,MTRXD,MTRXDD,D,DD,DDD,

1	 LL,L,LD,LDD)
CALL MULMAVEC (MTRX,LL,MTRXL,3,3)
CALL MULMAVEC (MTRXD,LL,MTRXDL,3,3)

CALL TRANS (MTRX,TMTRX,3,3)
CALL TRANS (MTRXD,TMTRXD,3,3)
CALL MULTI (MTRXD,TMTRX,OMEGA,3,3,3)
CALL MULTI (MTRXDD,TMTRX,ALPHA1,3,3,3)
CALL MULTI (MTRXD,TMTRXD,ALPHA2,3,3,3)
CALL ADDMAT (ALPHA1,ALPHA2,ALPHA)

WX=OME GA(3 , 2)
WY=OMEGA( 1 , 3 )
WZ=OIVIEGA(2, 1)

ALPX=ALPHA(3 , 2)
ALP Y=ALPH A( 1 , 3 )
ALPZ=ALPHA(2, 1)

LDD( 1 )=WY*(WX*MTRXL(2)-WY*MTRXL(1))
1 -WZ*(WZ*MTRXL( 1 )-WX*MTRXL(3))

C 1 +2*WY*MTRXDL(3)-2*WZ*MTRXDL(2)
1 +ALPY*MTRXL(3 )-ALPZ*MTRXL(2)
1 +DDD(1)
LDD(2)=WZ*(WY*MTRXL(3 )-WZ*MTRXL(2))
1 -WX* (WX*MTRXL(2)-WY *MTRXL( 1 ))

C 1 +2*WZ *MTRXDL( 1 )-2 *WX *MTRXDL(3 )
1 +ALPZ*MTRXL( 1 )-ALPX*MTRXL(3)
1 +DDD(2)
LDD(3 )=WX* (WZ *MTRXL( 1 )-WX*MTRXL(3 ))
1 WY* (WY *MTRXL(3 )-WZ *MTRXL (2))

C 1 +2*WX*MTRXDL(2)-2*WY*MTRXDL(1)
1 +ALPX*MTRXL(2)-ALPY*MTRXL( 1 )
1 +DDD(3)

RETURN
END

C
SUBROUTINE KINEMATIC (MTRX,MTRXD,MTRXDD,D,DD,DDD,



100

1 	 LL,L,LD,LDD)
real*8 MTRX(3,3),MTRXD(3,3),MTRXDD(3,3),D(3),DD(3),

1	 DDD(3),LL(3),L(3),LD(3),LDD(3),
1 MTRXL(3),MTRXDL(3),MTRXDDL(3)

CALL MULMAVEC (MTRX,LL,MTRXL,3,3)
CALL ADDVEC (D,MTRXL,L)
CALL MULMAVEC (MTRXD,LL,MTRXDL,3,3)
CALL ADDVEC (DD,MTRXDL,LD)
CALL MULMA'VEC(MTRXDD,LL,MTRXDDL,3,3)
CALL ADDVEC (DDD,MTRXDDL,LDD)

RETURN
END

SUBROUTINE SQUARE (A,ASQ)
real*8 A(9),ASQ(9,9)
DO 10 1=1,9

DO 20 J=1,9
ASQ(I,J)=A(I)*A(J)

C IF (I NE. J) THEN
C	 ASQ(I,J)=2*ASQ(I,J)
C ENDIF

20 CONTINUE
10 CONTINUE

RETURN
END

C
SUBROUTINE ADDMAT (A,B,C)
real*8 A(3,3),B(3,3),C(3,3)
DO 20 1=1,3

DO 10 J=1,3
C(I,J)=A(I,J)+B(I,J)

10 CONTINUE
20 CONTINUE

RETURN
END

C
SUBROUTINE ADDVEC (A,B,C)
REAL*8 A(3),B(3),C(3)

DO 10 1=1,3
C(I)=A(I)+B(I)

10 CONTINUE
RETURN
END

C
SUBROUTINE TRANSPOSE (AR,AD,TANSAR,TANSAD)



C

C

C

real*8 AR(3,3),AD(3,3),TANSAR(3,3),TANSAD(3,3)
CALL TRANS (AR,TANSAR,3,3)
CALL TRANS (AD,TANSAD,3,3)
RETURN
END

SUBROUTINE TRANS (A,AT,m,n)
real*8 A(m,n),AT(n,m)

DO 1, I=1,m
DO 1, J=1,n

1	 AT(J,I)=A(I,J)
RETURN
END

SUBROUTINE MULTI (A,B,C,1,m,n)
real*8 A(1,n),B(n,m),C(1,m)

DO 1, 1=1,1
DO 1, J=1,m

C(I,J)=0.0
DO 1, K=1,n

1	 C(I,J)=C(I,J)+A(I,K)*B(K,J)
RETURN
END

SUBROUTINE MULMAVEC (A,B,C,1,m)
real*8 A(1,m),B(m),C(1)

DO 1, 1=1,1
C(I)=0.0

DO 1, J=1,m
1	 C(I)=C(I)+A(I,J)*B(J)

RETURN
END

subroutine dotprod(a,b,c)
real*8 a(9),b(9),c

c=0.0
do 10 i=1,9
c=c+a(i)*b(i)

10 continue
return
end

C
SUBROUTINE INVERSE (S,B)
REAL*8 S(5,5),B(5,5),C(5,10)
REAL*8 TEMP
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C SPECIFICATION OF C MATRIX(AUGMENTED ATA MATRIX)
DO 10 L=1,5
DO 20 J=1,5
C(L,J)=S(L,J)

20 CONTINUE
10 CONTINUE

DO 11 1=1,5
C(I,I+5)=1.0

11 CONTINUE
C TO CHECK WHETHER PIVOT C(1,1) IS NONZERO

IF (C(1,1).EQ.0.00000000)THEN
DO 30 J=1,10
TEMP=C(1,J)
C(1,J)=C(2,J)
C(2,J)=TEMP

30 CONTINUE
ELSE
DO 61 1=2,5
DO 71 J=2,5
C(I,J)=C(I,J)-(C(1,1)*C(1,J)/C(1,1))

71 CONTINUE
61 CONTINUE

GO TO 75
END IF
IF (C(1,1).EQ.0.00000000)THEN
DO 31 J=1,10
TEMP=C(1,J)
C(1,J)=C(3,J)
C(3,J)=TEMY

31 CONTINUE
ELSE
DO 62 1=2,5
DO 72 J=2,5
C(I,J)=C(I,J)-(C(I,1)*C(1,J)/C(I,1))

72 CONTINUE
62 CONTINUE

GO TO 75
END IF
IF (C(1,1).EQ.0.00000000)THEN
DO 32 J=1,10
TEMP=C(1,J)
C(1,J)=C(4,J)
C(4,J)=TEMP

32 CONTINUE
ELSE
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DO 63 1=2,5
DO 73 J=2,5
C(I,J)=C(I,J)-(C(1,1)*C(1,J)/C(1,1))

73 CONTINUE
63 CONTINUE

GO TO 75
END IF
IF (C(1,1).EQ.0.00000000)THEN
DO 33 J=1,10
TEMP=C(1,J)
C(1,J)=C(5,J)
C(5,J)=TEMP

33 CONTINUE
ELSE
DO 64 1=2,5
DO 74 J=2,5
C(I,J)=C(I,J)-(C(I,1)*C(1,J)/C(1,1))

74 CONTINUE
64 CONTINUE

GO TO 75
END IF
IF (C(1,1).EQ.0.00000000)THEN
WRITE(6,*)'MATRIX IS SINGULAR'
STOP
ELSE

C DETERMINATION OF NEW C(I,J)
DO 60 1=2,5
DO 70 J=2,5
C(I,J)=C(I,J)-(C(I,1)*C(1,J)/C(1,1))

70 CONTINUE
60 CONTINUE

END IF
75 C(2,6)=-C(2,1)/C(1,1)

C(3,6)=-C(3,1)/C(1,1)
C(4,6)=-C(4,1)/C(1,1)
C(5,6)=-C(5,1)/C(1,1)

C TO CHECK PIVOT C(2,2)
IF( C(2,2).EQ.0.00000000)THEN
DO 100 J=2,10
TEMP=C(2,J)
C(2,J)=C(3,J)
C(3,J)=TEMP

100 CONTINUE
ELSE
DO 111 1=3,5
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DO 121 J=3,6
C(I,J)=C(I,J)-(C(I,2)*C(2,J)/C(2,2))

121 CONTINUE
111 CONTINUE

GO TO 114
END IF
IF( C(2,2).EQ.0.00000000)THEN
DO 80 J=2,10
TEMP=C(2,J)
C(2,J)=C(4,J)
C(4,J)=TEMP

80 CONTINUE
ELSE
DO 112 1-3,5
DO 122 J=3,6
C(I,J)=C(I,J)-(C(I,2)*C(2,J)/C(2,2))

122 CONTINUE
112 CONTINUE

GO TO 114
END IF
IF( C(2,2).EQ.0.00000000)THEN
DO 90 J=2,10
TEMP=C(2,J)
C(2,J)=C(5,J)
C(5,J)=TEMP

90 CONTINUE
ELSE
DO 113 1=3,5
DO 123 J=3,6
C(I,J)=C(I,J)-(C(I,2)*C(2,J)/C(2,2))

123 CONTINUE
113 CONTINUE

GO TO 114
END IF
IF( C(2,2).EQ.0.00000000)THEN
WRITE(6,*)MATRIX IS SINGULAR'
STOP
ELSE

C DETERMINATION OF NEW C(I,J)
DO 110 1=3,5
DO 120 J=3,6
C(I,J)=C(I,J)-(C(1,2)*C(2,J)/C(2,2))

120 CONTINUE
110 CONTINUE

END IF
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114 C(3,7)=-C(3,2)/C(2,2)
C(4,7)=-C(4,2)/C(2,2)
C(5,7)=-C(5,2)/C(2,2)

C TO CHECK PIVOT C(3,3)
IF (C(3,3).EQ.0.00000000)THEN
DO 150 J=3,10
TEMP-C(3,J)
C(3,J)=C(4,J)
C(4,J)=TEMP

150 CONTINUE
ELSE
DO 161 1=4,5
DO 171 J=4,7
C(I,J)=C(I,J)-(C(I,3)*C(3,J)/C(3,3))

171 CONTINUE
161 CONTINUE

GO TO 430
END IF
IF (C(3,3).EQ.0.00000000)THEN
DO 130 J=3,10
TEMP=C(3,J)
C(3,J)=C(5,J)
C(5,J)=TEMP

130 CONTINUE
ELSE
DO 162 1=4,5
DO 172 J=4,7
C(I,J)=C(I,J)-(C(I,3)*C(3,J)/C(3,3))

172 CONTINUE
162 CONTINUE

GO TO 430
END IF
IF (C(3,3).EQ.0.00000000)THEN
WRITE(6,*)'MATRIX IS SINGULAR'
STOP
ELSE

C DETERMINATION OF NEW C(I,J)
DO 160 1=4,5
DO 170 J=4,7
C(I,J)=C(I,J)-(C(I,3)*C(3,J)/C(3, 3 ))

170 CONTINUE
160 CONTINUE

END IF
430 C(4,8)=-C(4,3)/C(3,3)

C(5,8)=-C(5,3)/C(3,3)
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C TO CHECK PIVOT C(4,4)
IF (C(4,4).EQ.0.00000000)THEN
DO 200 J=4,10
TEMP=C(4,J)
C(4,J)=C(5,J)
C(5,J)=TEMP

200 CONTINUE
ELSE
DO 220 J=5,8
C(5,J)=C(5,J)-(C(5,4)*C(4,J)/C(4,4))

220 CONTINUE
GO TO 190
END IF
IF (C(4,4).EQ.0.00000000)THEN
WRITE(6,*)'MATRIX IS SINGULAR'
STOP
ELSE

C DETERMINATION OF NEW C(I,J)
DO 180 J=5,8
C(5,J)=C(5,J)-(C(5,4)*C(4,J)/C(4,4))

180 CONTINUE
END IF

190 C(5,9)=-C(5,4)/C(4,4)
C TO CHECK PIVOT C(5,5)

IF (C(5,5).EQ.0.00000000)THEN
WRITE(6,*)'MATRIX IS SINGULAR'
STOP
ELSE
C(5,10)=1.0
C(4,10)=-C(4,5)/C(5,5)
C(4,9)= 1. 0-(C(5,9)*C(4,5)/C(5,5))
C(4,8)=C(4,8)-(C(5,8)*C(4,5)/C(5,5))
C(4,7)=C(4,7)-(C(5,7)*C(4,5)/C(5,5))
C(4,6)=C(4,6)-(C(5,6)*C(4,5)/C(5,5))
C(3,10)-----C(3,5)/C(5,5)
C(3,9)=-C(5,9)*C(3,5)/C(5,5)
C(3,8)=1.0-(C(5,8)*C(3,5)/C(5,5))
C(3,7)=C(3,7)-(C(5,7)*C(3,5)/C(5,5))
C(3,6)=C(3,6)-(C(5,6)*C(3,5)/C(5,5))
C(2,10)=-C(2,5)/C(5,5)
C(2,9)=-C(5,9)*C(2,5)/C(5,5)
C(2,8)=-C(5,8)*C(2,5)/C(5,5)
C(2,7)=1.0-(C(5,7)*C(2,5)/C(5,5))
C(2,6)=C(2,6)-(C(5,6)*C(2,5)/C(5,5))
C(1,10)=-C(1,5)/C(5,5)
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C(1,9)=-C(5,9)*C(1,5)/C(5,5)
C(1,8)=-C(5,8)*C(1,5)/C(5,5)
C(1,7)=-C(5,7)*C(1,5)/C(5,5)
C(1,6)=1.0-(C(5,6)*C(1,5)/C(5,5))
DO 250 1-3,1,-1
DO 260 J=5,10
C(I,J)=C(I,J)-(C(I,4)*C(4,J)/C(4,4))

260 CONTINUE,
250 CONTINUE

DO 270 1=2,1,-1
DO 280 J=4,10
C(I,J)=C(I,J)-(C(I,3)*C(3,J)/C(3,3))

280 CONTINUE
270 CONTINUE

DO 300 J=3,10
C(1,J)=C(1,J)-(C(1,2)*C(2,J)/C(2,2))

300 CONTINUE
C TO DETERMINE ELEMENTS OF B

DO 310 1=1,5
DO 320 J=1,5
B(I,J)=C(I,J+5)/C(I,I)

320 CONTINUE
310 CONTINUE

END IF
RETURN
END
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