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ABSTRACT

EXPERIMENTAL AND ANALYTICAL INVESTIGATION
OF WATERJET CLEANING PROCESS

by
Ping Meng

This doctoral dissertation is concerned with the development of water based

cleaning technology required by industry which may substitute the traditional approach

based upon the use of various chemical cleansers.

The experimental study involves the waterjet removal of various coatings (rust,

oil and epoxy based paints, etc.). Cleaning was carried out under a wide range of

operational and geometrical conditions (standoff distance, travel speed, water pressure,

diameters of sapphire nozzle and focusing tube, nozzle body type). A new designed spiral

nozzle body was tested in this work. The use of surfactant was also investigated.

Microscope and SEM surface were used to evaluate the degree of coating removal. The

effect of various operation conditions on water consumption and cleaning rate are

determined. Two new process characteristics, critical cleaning and damage standoff

distances, which determine the admissible range of process variables, are first introduced

in this study.

The theoretical study pioneers an analytical description of waterjet cleaning.

Simple equations relating the cleaning width of stationary and moving jets, which can be

used to determine the optimal cleaning standoff distance, were constructed. These



relations show that the maximal cleaning rate and consequently minimal water

consumption can be attained at a position of 0.55-0.7 of the critical cleaning standoff

distance. Experimental data substantiate the results of the theoretical study.

The acquired results of the theoretical and experimental studies identify the

practical range of process variables which assure complete paint removal from glass or

metal surface without inducing any damage to the substrate. The spiral nozzle body was

shown to provide the optimal cleaning performance. The principal result of this study,

however, is a demonstration of the feasibility and effectiveness of using a high-velocity

and low-volume waterjet as the single cleaning agent, and a "cleanser-free" technology.

Also methods of development are outlined. Another major finding is the demonstration of

the feasibility of using a conventional analytical description of turbulent liquid jets for the

simulation of the behavior of a high speed stream of water droplets, which constitute the

jets used in this study.
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CHAPTER 1

INTRODUCTION

Removal of various contaminates, deposits and coating materials from the surface of

parts or manufacturing equipment is a basic industrial technology. The shortcomings of

conventional cleaning processes, however, are relatively low productivity, use of different

hazardous chemicals, and high-rate of water consumption. The existing approach is being

challenged by the increased concerns expressed by the Department of Energy, the

Environmental Protection Agency, and the Food and Drug Administration. Much

attention, for example, is being paid to the consequence of pollution caused by the

volatile solvents used in cleaning. Because of this, the development of novel, more

economical and technologically advanced cleaning technologies has become a major

challenge in the engineering community.

In the late of 1970's, commercial high-pressure low-volume waterjet systems were

successfully introduced for shaping of hard-to-machine materials, such as steel, alloys,

composites, etc.. Waterjets represent a competitive alternative cleaning technology.

Various cleaning applications of waterjets are found almost everywhere, from the

aerospace industry to water wells and sewer lines. Waterblasting is used to clean tanks,

chemical reactors, floors, and grates, unplug tubes, prepare surface for painting, descale

billets, remove marine growth, deburr castings, strip off coatings, and more. Globally,

waterblasting cleaning constitutes a multi-billon-dollar business. By eliminating the use
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of solvents, this technology will reduce the cost of cleaning, minimize air pollution, and

significantly decrease the volume of liquid waste which must be treated.

Effective waterjet cleaning or coating removal without substrate damage is the most

promising direction in the development of the surface processing technology. However,

there are several issues to be addressed. There is no systematic and reliable data base

describing deposit/coating removal. The present knowledge base consists of mostly

unrelated case studies. It is very difficult to apply the acquired information to new cases.

Waterjet cleaning consists of several complicated phenomena such as turbulent jet flow,

and a large number of variables, for example, water pressure, travel speed, types of

nozzle, nozzle body, nozzle diameter, impact angle, coating and substrate properties, etc.

are needed to identify these phenomena. It is obvious that a limited number of empirical

information is not sufficient to infer a combination of these variables acceptable for a

case in question. Despite the obvious demand for this industrial practice, a thorough

theoretical base of the cleaning technology has yet to be developed.

Conventional waterj et cleaning is a rapid process which is quite difficult to observe and

analyze. Probably, cleaning is due to material erosion by liquid impact and material

peeling along the preexisting or initiated macro and micro cracks. Although useful

knowledge has been generated by the previous experimental studies, there is no

theoretical model capable of integrating this knowledge and presenting it in a form

acceptable to practice. There exists no information about the correlation between

operation parameters and productivity or standoff distance, which can be used for

technology design. The lack of understanding of the process mechanism makes it difficult
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to utilize the technology's potential. Improvement of the nozzle design, conditions of the

jet-workpiece interaction, and even the way of deposit formation will substantially

improve the process performance.

A series of experiments were carried out to set up a data base representing waterjet

removal of two coatings, oil and epoxy based paints. This data base can be used for

waterjet deposit removal in various cases. In order to apply the acquired information to

the cleaning of pharmaceutical reactors, removal of aspirin deposit from the material used

for the lining of pharmaceutical reactors was examined. Optical and SEM examinations

prove that waterjet removal of a coating material can be complete. Phenomena of crack

initiation and coating erosion during the waterjet cleaning are explored. It is also shown

that under definite conditions, waterjet cleaning will damage a substrate.

In order to identify a safe range of operation conditions in the course of waterjet cleaning,

we put forward and define two parameters, critical cleaning standoff distance and critical

damage standoff distance, which exist and make effective working space. An economical

index, water consumption per unit of cleaned area, is also offered. An improved cleaning

technology was used in the course of data acquisition. The improvements include a

modification of the nozzle body, use of surfactant and optimization of operating

conditions.

Through an analytical and experimental study of cleaning by stationary and moving

waterjets, a mathematical model for stationary waterjet cleaning and a semi-empirical

model for moving waterjet cleaning are established to express the cleaning width as a

function of standoff distance, water pressure, and nozzle size .These models are based on
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assumptions which are pertinent to waterjet structure and the cleaning mechanism. We

assume that removal of coating material by a stationary waterjet occurs when the impact

force generated by water droplets exceeds the coating strength due to unlimited impact

time. In the course of cleaning by a moving waterjet, the cleaning mechanism is based on

Springer's semi-empirical model of material erosion by liquid impacts. According to

Springer's erosion mechanism, the material erosion rate is related to the impact force of

water droplet, material property, water droplets flow rate, time of impingement, etc.. The

maximum cleaning width is shown to exist at a certain standoff distance which is the

function of the critical cleaning standoff distance for both cases. The mathematical

relations derived are verified experimentally.

A brief summary of the dissertation presentation is given in the following. Chapter 2

gives a general review of cleaning methods and corresponding equipment. Chapter 3

reviews the process of cleaning or material removal, as well as waterjet cleaning

mechanisms. Chapter 4 presents an experimental study of cleaning by stationary and

moving waterjet. Chapter 5 details the setup, and procedures used in this work for the

experimental study of waterjet cleaning. Chapter 6 discusses the theory of turbulent jet,

particularly jet structure, and conducts the theoretical investigation of cleaning by the use

of a stationary jet. An analytical investigation of moving jet cleaning is described in

Chapter 7. An analysis of this investigation is given in Chapter 8. Chapter 9 concludes the

research work and provides recommendations for further research.



CHAPTER 2

REVIEW OF CLEANING TECHNOLOGY
.

2.1 General Description

Cleaning is the removal of an unwanted material from a surface to which it clings. Many

methods and techniques have been extensively used in cleaning. General ways of

cleaning are usually categorized as follows (Spring, 1974):

1. By detergency;

Cleaning by detergency is the lifting of the unwanted material from the surface by

displacing it with surface active materials which have a greater affinity for the surface

than the unwanted material. A detergent such as surfactant or surface active agent has

the property of concentrating at surfaces or interfaces because it contains two

dissimilar portions in its structure: one having a stronger affinity to the surface of the

substrate is soluble in water, and the other can cause modules of the coating close

packing to the surfactant modules. Thus, the detergent will result in floating the

coating, and the loose coating is readily removed. The selection of the surfactant

depends on the property of the substrate and the coating. A good example is using an

alkaline cleaner to remove a variety of fatty oil.

2. By solution in a solvent;

Cleaning by solution in a solvent is dissolving and mixing the solvent with the

unwanted material uniformly, which evaporates easily and can be wiped off. Coating
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types may need special solvent to be dissolved. One of the organic solvents,

chlorinated hydrocarbon solvent, can rapidly attack paint.

3. By chemical reaction;

Cleaning by chemical reaction is yielding soluble or non-interfering products of the

unwanted material. Some acid converts iron oxide to a soluble salt while reaction with

iron yields hydrogen gas and iron salt.

4. By mechanical removal;

Cleaning by mechanical removal is wiping or brushing the unwanted material from the

surface by machining or abrasion. Waterjet cleaning or material removal is the

spraying of parts being carried through a machine equipped with sprays that impinge

on the work. Details of this technology will be discussed in Chapter 3. Another

example is using mechanical brushes in automobile and railroad cleaning.

The processes described above are not mutually exclusive, and are often used in

combination. Usually, industrial cleaning methods are classified as general methods of

cleaning and special methods of cleaning.

2.2 Mechanism of Adhesion

Coating or deposit material removal is related to the properties of the coating or deposit

material itself, substrate material, as well as the adhesion between the coating and

substrate. The adhesive force (Table 2.1) is expressed as the sum of the three components

of the attraction between the coating and substrate (Louis and Schikorr, 1982; Hiruma,

1986).
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Calculation or direct measurement of adhesion is very difficult, so the cleaning

parameters are usually obtained experimentally.

Table 2.1 Adhesive forces

2.3 Basic Principles of Industrial Cleaning

The following are generic principles of cleaning:

• Temperature increasing usually improves cleaning.

• Agitation moving the unwanted material improves cleaning.

• A minimum concentration of cleaner is needed; above a critical level cleaning

improves when the cleaner concentration increases, but each increment of this

concentration has a lesser effect until a point is reached, beyond which increase in

concentration has little effect.

• Adequate time must be provided for detergency or reaction of the cleaner with the

unwanted material.
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• Rinsing away of the unwanted material and cleaner is necessary and must be taken

into consideration. This can keep the unwanted materials and cleaner from

redepositing on the surface of the substrate.

• The unwanted material redepositing of the work must be prevented.

• The cleaning or solution should not harm the item being cleaned.

• Methods of handling the cleaner depend on the properties of the cleaner.

2.4 General Methods of Cleaning and Equipment

Generally applicable methods and equipment used in industrial cleaning include:

• Immersion or soaking with limited agitation

Immersion (soaking) cleaning usually works with the parts immersed in the tank

filled with the cleaner. The bottom of the tank can be equipped with the agitator to stir

up the sludge and debris which overflow away. Steam coils, plate coils, direct-firing

burners or immersion electric heaters can be used to aid the cleaning process.

• Spray Cleaning

Certain pressure cleaners can impinge against the surface of the part through the pipe

or nozzle, followed by drain-off to a collecting tank. Parts can be conveyed through

the belt, and they need rinsing after spraying.

• Tumbling Barrel or Screw Conveyor Machines

The tumbling action, combined with rubbing is used to clean the irregular shaped

parts which are not effectively cleaned in the immersion tank. This type of cleaning

depends on the types of equipment which have three forms:
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0 Rotating barrel in an immersion tank

0 Tiltable barrel

The parts and cleaner need to be discharged together many times.

0 Screw conveyor

The conveyor usually operates at low speeds to provide moderate tumbling action

to minimize the damage.

• Cleaning by Circulation

This action is based on exposing the part surface to a fresh cleaner rather than on a

high level of agitation, which is usually done to clean a large diameter parts such as

pipes.

• Brushing

Different types of brushes are used for automobile and railroad cleaning.

• Steam Cleaning with Detergent

This method gives a hot detergent solution mixed with steam under considerable

pressure through a gun-like tube ending in a relatively large nozzle. A typical steam

cleaner machine pumps water mixed with detergent, under positive pressure, through

a heat exchanger which superheats the solution.

2.5 Special Methods of Cleaning and Equipment

Several special methods of cleaning for obtaining high quality clean surface, are

introduced in the following:
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• Cleaning by Vapor Degreasing

Cleaning by vapor degreasing is done by introducing the part into a chamber saturated

with the vapors of a chlorinated hydrocarbon distilled from a vat of the boiling

solvent. This is capable of yielding clean surfaces under controlled conditions.

• Electrocleaning

The part to be cleaned is made an electrode in a solution of electrolyte. Upon passage

of direct current, water is electrolyzed into hydrogen gas at the cathode and oxygen

gas at the anode. The generation of gas in large volumes provides a high level of

agitation which is prepared to remove the unwanted material.

• Ultrasonic Cleaning

Ultrasonic cleaning is based on the mechanism of cavitation or collapse of gas

bubbles formed by the compression and expansion of the liquid. This high level

agitation becomes available through the use of high frequency sound.

2.6 General Methods of Cleanness Evaluation and Examination

Evaluation of cleanliness boils down to rigidly testing those characteristics related to end

use. Some such tests from one industry might be used as testing devices in another.

Methods of evaluation of cleanliness may be classified as follows:

• Visual Observation

This requirement would normally have to be fulfilled before any other criteria are

applied. Cleanliness can be observed using the naked eye, or by techniques of

microscope and electron microscope.
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• Wiping

The wipe test can be easily done using cleansing tissue, filter paper, or a white cloth.

This method is especially capable of detecting particulate matter which can be missed

by many of the other methods that are more sensitive in other respects.

• Water Break Test

The water break test is based on the capacity of a metal surface to hold a complete

film of water when it is free of oily soil because the surface is hydrophilic. The test is

convenient, easy to apply, non-destructive and widely used.

• Spray Pattern or Mist Test

The surface is sprayed with a mist of clean, cool water through an atomizer. The

soiled glass side can be classified if breathed upon. Once discrete droplets condense

from the breathed "fog", the side is dirty.

• Atomizer Test

This test is similar to the spray pattern or mist test, but the difference is that this test is

only applied to a dry surface. Usually a dye is added to the spray water to leave a

more permanent pattern after drying so that the uncleared areas can be measured

conveniently.

• Fluorescence Test

A Fluorescence dye is added to the examined surface by exposure of the part to

ultraviolet light, followed by photographic or even visual inspection.
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• Contact Angle

By measurements on a droplet of water placed on the part, people can examine the

clean surface with the drop flattening out in an almost perfect circle with scalloped

edges, and the oily surface with drops not spreading out.

• Radioactive Tracer Test

The unwanted material is detected after cleaning by measurements with a Geiger

Counter in order to find the soils having radioactive components.

• Corrosion Test

Paper is impregnated with potassium ferricyanide and sodium chloride. Corrosion of

the steel yields ferrous ions which react to form a blue deposit of Prussian Blues.

• Gravimetric Tests

Parts are weighed with analytical balance to exam the weight loss after cleaning.

• Chemical Swab Test

A piece of sterile absorbent cotton at the end of stick is rubbed over the surface and is

then placed in some chemical solvent to exam the ingredient.

• Microbiological Cleanliness Test

This detection method is similar to chemical swab test but is usually used in testing

the bacteria. The collection sample is placed in or on a nutrient medium, growth and

reproduction are promoted by incubation until there are enough present be evident as

visible.
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2.7 Summary

There are many available techniques for cleaning and evaluation of the cleanliness, and a

lot of cleaners can be chosen for use. But cost, cleaning time, labor, equipment,

detrimental effect, environmental protection, as well as a number of subsidiary factors

may need to be balanced against one or another. Sometimes one of these factors is so

important that the decision is relatively simple. Of increasing importance is the disposal

of wasters from a cleaning operation; this may become a limiting factor in the selection of

cleaning materials and may necessitate expensive cartage of chemicals, or equipment to

render the waste innocuous. Water has also become expensive and the reduction of its

volume may be significant.



CHAPTER 3

HIGH PRESSURE WATERJET CLEANING

Desirable waterjet cleaning is complete coating or deposit material removal without any

erosion or damage to the substrate surface using high pressure waterjets (Louis, et al.,

1982). In the course of waterjet coating removal, a high speed water stream pressurized

previously exits from the nozzle, then impinges on the coating surface and removes the

coating materials. It is the combination of water volume and high velocity that does the

work of cleaning (Wolgamott, 1993). Waterjet coating removal or cleaning is a highly

complex process. The process depends on a number of operation and design parameters

which determine, such as jet structure, interaction between waterjet and coating and

between substrate and coating, etc.. It is believed that erosion is the dominant reason for

material removal by waterjets. Since waterjet cleaning has become more and more useful,

understanding of the mechanism of this technology is necessary.

3.1 Applications of Waterjet Cleaning

Pure waterjets have been widely used for various cleaning applications such as the

removal of different coatings or deposits from the substrate. Singh, et al. (1992) and

Watson, et al. (1993) applied ultra-high pressure water jets to remove thermal spray

during aircraft engine overhaul. The use of chemical solvents was eliminated. Conn

(1992) discussed the use of water servojet in cleaning coke oven doors in a steel mill,

14
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cleaning Teflon filter mandrels and removal of cement-builders from railroad hopper

cars. Minden, et al. (1990); Hofacker (1993); Leu, et al. (1994); Geskin, et al. (1995,

1996) and Meng, et al. (1995, 1996a, 1996b, 1996c) discussed their experience in

waterjet paint removal. Xue, et al. (1993), Conn and Chahine (1985) described

applications of waterjet in rust removal from the ship hull. Louis et al. (1984) discussed

cleaning of polymeric model layers. Also Vijay (1989) reviewed waterjet medical

applications such as wound cleaning and oral hygiene. A General summary of the

waterjet cleaning and decoating was made by Schikorr and Louis (1982); Summers

(1993) and Wolgamott (1993) as follows (Table 3.1):

3.2 Parameters of Waterjet Cleaning

The effects of various parameters on the results of waterjet cleaning are discussed by a

number of researchers. (Springer, 1976; Hashish and duPlenssis, 1978; Kim and Labus,

1993; Wu and Kim, 1995; Leu, et al., 1994; Geskin, et al., 1995; Meng, et. al., 1995,

1996a, 1996b, 1996c). Table 3.2 summarizes this discussion.

3.3 Mechanism of Waterjet Cleaning

In the course of waterjet cleaning, the continuous water flow exiting from the nozzle

gradually becomes a stream of water droplets. This disintegration is due to a continuous

interaction between the water and surrounding air (Chapter 6). Water droplets impinging

a target create impact forces. The impinged area of the substrate surface experiences

repeated impacts of the droplets. This enables coating removal from the substrate. It has



Table 3.1 Industrial applications of waterjet cleaning and material removal
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Table 3.2 Parameters of waterj et cleaning and material removal
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been reported that erosion is the dominant mechanism for material removal. The erosion

is generally initiated by macro or micro cracks caused by the impact forces from the

water droplets (Springer, 1976; Erdmann-Jesnitzer, et al., 1978; Louis and Schikorr,

1982; Haferkamp, et al., 1984; Ramulu, et al., 1991; Li, et al., 1992; Kang, et al., 1993;

Watson, 1993).

Material failure during water] et cleaning may occur in the coating, in the substrate or in

the coating-substrate interface (Springer, 1976). Adler (1979) reported that material

removal by waterjets consists of four primary damage modes: direct deformation, stress

wave propagation, lateral outflow jetting, and hydraulic penetration. The first two modes

are responsible for initiation of cracks in the material to be removed. Lateral outflow

jetting does not contribute to the initiation of cracks but can lead to the extension and

enlargement of pre-existing cracks. Hydraulic penetration could cause propagation of

existing cracks. One or more damage modes may coexist in a particular erosion process,

which is material dependent. Coating materials may be brittle or ductile. Brittle materials

are shown to fail first at the surface immediately with the cracks being initiated and

propagated, and with the absence of a deformation area at the crack tip. Cracks initiated

can run a small distance or a large distance which result in small or large piece of coating

removal. Ductile materials are found to fail below the surface with no apparent failure on

the surface. These materials posses the ability to deform under the influence of externally

applied pressures, and significantly higher impact pressure is shown to cause a ductile

solid to deform as a highly viscous liquid, (Peterson, 1973; Field, at el., 1979, 1983;

Erdmann-Jesnitzer, et al., 1980; Evans, et al., 1979, 1983; Wu and Kim, 1995). In the
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coating material removal, the adhesive situation between the coating and substrate must

also be considered.

Erosion by liquid impacts was theoretically investigated by Springer (1976). He found

material erosion to be related to impact velocity and material property, and used a semi-

empirical model to describe the coating erosion behavior (i.e. mass erosion rate, etc.).

Based on the idea that fatigue plays an important role in the erosion process, he used the

fatigue theorem of repeated bar torsion and bending to yield the quantitative results of

material erosion by repeated impacts of liquid droplets with an assumption that the two

failure mechanisms are sufficiently similar.

3.4 Previous Study of Waterjet Cleaning and Material Removal

To date, a number of investigations of waterj et cleaning have been so far reported.

Explanation of the correlation between process parameters and performance was based on

the various experimental observations. The parameters in question include water pressure,

travel speed, nozzle size, jet structure, and standoff distance. These are the key operation

parameters in the processes of waterjet cleaning or material removal (Singh, et al., 1992;

Wu and Kim, 1995). The previous studies on parameters investigation are summarized

and discussed below:

3.4.1 Water Pressure

It was found that there exists a threshold pressure, below which no material removal

occurs no matter how large a water flow rate is and how long a process duration is
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(Erdmann-Jesnitzer, et al., 1980; Minden, et al., 1990; Singh, et al., 1992; Wu and Kim,

1995). Water pressure determines jet velocity and turbulent properties, which may

influence on jet cleaning. When water pressure increases, material removal rate, cleaning

width and depth also increase, as it was shown in various experimental studies (Galecki

and Vicker, 1982; Haferkamp, et al. 1984; Singh, et al., 1992; Kang, et al. 1993; Xu and

Summers; 1994; Leu, et al.; 1994; Geskin, et al., 1995, 1996; Wu and Kim, 1995; Meng,

et al., 1995, 1996a, 1996b, 1996c).

3.4.2 Travel Speed (traverse rate)

Investigations of correlation between cleaning width and depth with process conditions

were discussed by Hilaris and Labus, (1978); Hashish and duPlessis, (1978); Saunders

and Barton, (1986); Singh, et al., (1992); Leu, et al., (1994); Xu and Summers, (1994);

Wu and Kim, (1995); Hlavac, (1995); Geskin, et al., (1995); Meng, et al., (1995, 1996a,

1996b, 1996c). These experimental results show that width or depth of material removal

decrease with the increase of travel speed. An increase of travel speed may result in a

decrease of energy or drople tnumbers which are delivered per unit of coating area.

Singh, et al., (1992) discussed complete coating removal envelop at various travel speeds

for a given standoff distance and pressure. Traverse speed during decoating is divided

into three regions: incomplete coating removal, complete coating removal, and substrate

damage.
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3.4.3 Nozzle Type

There are two types of commonly used nozzles, round-jet nozzles, and flat-jet nozzles.

The jet out of a round jet nozzle is in the shape of rotational symmetry, which is to

minimize the divergence of the round-jet to reach a good efficiency at a greater distance

from the nozzle. Contrary to this, the flat-jet enlarges only in one direction, the

divergence orthogonal to this direction is less. Flat-jets are used in smaller distances from

a nozzle to load large area (Louis and Schikorr, 1982). Harbaugh and Fincher (1993)

designed a specific nozzle for complex surfaces with improvement of jet coherency and

higher energy. This nozzle improvement was attained due to a combination of flat and

round nozzles with translation and rotation around the centerline. A Similar application

was once mentioned by Saunders and Barton, (1986). A Long cohesive nozzle is used to

form the jet without losing energy. Fan jets work better at low travel speed compared to a

round jet and a shorter standoff distance for removal of a large area (Wu and Kim, 1995;

Xu et al. 1994). Multiple-orifice of small size, which may be preferable to single-orifice

of large nozzle with more efficiency of energy distribution, works more effectively

(Waston, 1993, Harbaugh, 1993; Gracey, 1989), but cleaning quality may not be as good

in the swirl patterns due to the possible weakening jet (Singh, et al., 1982).

3.4.4 Nozzle Diameter

At a given pressure, large nozzles are more efficient than smaller ones. Experimental

results have shown that width and depth of decoationg, and thus material loss increase

with the increase of nozzle diameter (Wu and Kim, 1995). Similar results are also shown



22

in the experimental studies of Watson, (1993); Leu, et al., (1994); Malavc, (1995);

Geskin, et al., (1995, 1996) and Meng, et al., (1995, 1996a, 1996b, 1996c).

3.4.5 Modification of Jet

Jet structure and properties could be modified through formation of the resonant cavity,

addition of outside oscillation, etc.. Applications of several special jets are discussed

below:

Percussive jet impact has various favorable features for material removal, such as

increased impact area per unit of water volume, repetitive initial-impact water hammer

pressure, and high lateral outflow velocity (Nebeker and Rodriguez, 1976). The use of the

specially designed oscillating device show that a significant drop of power input for the

same work can be achieved when the water jet is oscillated either in the direction of the

feed or perpendicular to this direction for paint removal. The oscillation in the same

direction of the feed, improves the water jet performance due to the increased number of

water passes on the same surface region (Veltrup, 1976; Erdmann-Jesnitzer, et. al., 1976),

Using a cavitating waterjet to remove marine fouling and rust from the surface can reduce

the power significantly, and the cavitating jets can also provide faster rates of cleaning or

cutting in comparison to a conventional waterjet (Conn, et. al., 1976, 1984). A self-

resonating nozzle has been found to have higher inceptions for cavitation than

conventional in cleaning. Self-resonating cavitating and pulsed jets can be obtained

through nozzle or nozzle body design and improvement to reach better stripping
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efficiency which were mentioned by Conn (1982, 1992), and similar tests were made by

Hiruma et al. (1986); Saunders et al. (1986) and Sanders et al. (1984).

3.4.6 Standoff Distance

A new concept of critical cleaning standoff distance was first reported by Leu, et al.,

(1994), then discussed by Geskin, et al., (1995, 1996) and Meng, et al., (1995, 1996a,

1996b, 1996c). This concept implies that there exits a standoff distance, above which the

cleaning becomes ineffective. A similar concept of effective standoff distance was also

used in the selection of the standoff distance in jet cleaning (Wu and Kim, 1995).

Experimental observations have shown that there exists an optimal standoff distance at

which the volume of material removal is the greatest at a given travel speed (Louis and

Schikorr, 1982; Kang, et al., 1993). They have also shown that the cleaning rate increases

with the increase in standoff distance until it reaches the maximum at a certain standoff

distance, after that the cleaning rate declines with increased standoff distance (Hashish

and duPlessis, 1978; Galecki and Vickers, 1982; Haferkamp, et. al. 1984; Leu, et al.,

1994; Xu and Summers, 1994; Geskin, et al., 1995; Wu and Kim, 1995). The optimal

standoff distance is related to coating and substrate materials, jet structure and properties,

and operation parameters such as nozzle size, water pressure, travel speed, etc.. Wu and

Kim (1995) commented that it is difficult to determine an optimum standoff distance for

universal use due to the effects of a number of parameters. Until recently, Meng, et al.,

(1996b, 1996c) firstly introduced mathematical models for the evaluation of the optimal
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standoff distance for the cases of stationary and moving waterjet cleaning. This analysis

was verified experimentally.

3.4.7 Mixing Chamber

Use of an integral small attenuation chamber loaded above the orifice, was reported to

improve stream quality and deliver maximum stripping at fixed flow rate (Johnson,

1993).

3.4.8 Surfactants

Duration of the jet-surface interaction is in an order of 0.0001-0.001 seconds. This time

is too short for completion of chemical reaction. The chemical should therefore be

applied to the surface before impact (Summers, 1993), but surfactant added in the jet can

provide corrosion inhibition on the cleaned surface (Hall, 1986). The effect of the

surfactant (1% FC-722) coating surface pretreatment was tested and reported by Geskin,

et al., (1995), which proved that good cleaning performance could be achieved by this

method.

3.4.9 Economics

Comparison of the economics of waterjet cleaning with those of grit blasting in rust

removal is given by Conn, (1985) and Shunk, (1995). This study suggested using water

consumption as a criterion for the evaluation of the cleaning process. It not only

represents the cost factor, but also reflects wastage creation during the cleaning itself
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(Leu, et al., 1994; Geskin, et al., 1995, 1996; Meng, et al., 1995, 1996). Similar analysis

was also presented by Remisz (1993).

3.4.10 Other Factors

The use of high temperature water as opposed to cold water is more effective in removing

the grease (Summers, 1982), and temperature influence on the jet cleaning or material

removal process was mentioned by Neusen and Schramm, 1978; Louis and Schikorr,

1982. Improvement of the nozzle geometry (1/d ratio and conical angle) may influence on

jet cleaning or material removal rate (Minden, et al., 1990, Bury, et al., 1974). Of course,

past or present investigation of other factors can be found in the literature concerned.

3.5 Summary

Although useful knowledge has been generated from various experimental studies

previously done, understanding of waterjet cleaning is still insufficient.. This study

addresses several concerns needed to improve the understanding of the process.

1. Effective cleaning region determined by critical cleaning and damage standoff

distances was not clearly defined and investigated with relation to the operation

parameters. This was first reported by Leu, et al., 1994, then discussed and

investigated by Geskin, et al., 1995, 1996 and Meng, et al., 1995, 1996a, 1996b,

1996c),

2. Water consumption is not only related to the cost, but also to the wastage creation.

This was not clearly defined and investigated previously. Correlation between water
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consumption and other parameters was not identified (this was first defined and

reported by Leu, et al., 1994, then discussed by Geskin, et al., 1995, 1996 and Meng,

et al., 1995, 1996a).

3. Development and improvement of waterjet cleaning technology to achieve good

cleaning performance is important, and can be attained through modification of the jet

formation or surfactant treatment of coating surface before cleaning.

4. Waterjet cleaning technology can be developed empirically through systematic

investigation of influence of various parameters on the cleaning performance, but the

present knowledge is not sufficient for such a development.

5. There is no theoretical model which is capable of explaining the observed

experimental results and optimizing process conditions (until recently, Meng, et al.,

1996b, 1996c made the first attempt to establish mathematical models of stationary

and moving waterj et cleaning processes, respectively).



CHAPTER 4

EXPERIMENTAL STUDY OF WATERJET CLEANING

A series of experiments have been conducted to investigate the waterjet cleaning

processes, as well as the performances of cleaning influenced by various parameters.

These parameters include types of coating and substrate materials, pressure, travel speed,

nozzle diameter, standoff distance, surfactant treatment of coating surface, and

modification of the jet structure through improvement of nozzle body design. The

parameters in question and range of their variations are listed in Table 4.1. Evaluation of

the cleaning performance is listed in Table 4.2, The phenomena of erosion leading to

coating removal and substrate damage by waterjets are given in Table 4.3. Cleaning

results will be presented and analyzed in Chapter 8.

Table 4.1 Parameters of waterjet cleaning



Experimental investigation of process parameters demonstrates that the standoff distance

is a critical control variable. An excessive standoff distance results in ineffective

cleaning, while an insufficient standoff distance might bring about substrate damage. We

use the terms "critical cleaning standoff distance" and "critical damage standoff

distance" to capture these effects. These notions were firstly put forward by Leu, et al.,

(1994), then investigated and discussed by Geskin, et al., (1995, 1996), and Meng, et al.,

(1995, 1996 a, 1996b, 1996c).
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4.1.1 Critical Cleaning Standoff Distance

The basic goal of waterjet cleaning is complete coating/deposit removal without any

damage to the substrate surface. It has been observed that there exists a certain standoff

distance above which the coating or deposit can not be effectively removed. Thus,

beyond this critical standoff distance cleaning becomes ineffective because waterjet

energy gradually decays with increased standoff distance. We term this standoff distance

as the "critical cleaning standoff distance". This critical cleaning standoff distance was

found experimentally to be related to the parameters of coating and substrate, water

pressure, nozzle diameter, jet structure, travel speed, and focusing tube diameter, and also

theoretically proven to be related to travel speed, water pressure, nozzle diameter, and jet

structure. Investigation of the critical cleaning standoff distance was carried out with a

series of experiments, which are categorized in different groups shown in Table 4.4.

4.1.2 Critical Damage Standoff Distance

The term "critical damage standoff distance" is introduced to emphasize that damage

may occur when the standoff distance is insufficient. Although the yield strength of the

substrate material in waterjet cleaning is usually much higher than that of the coating

material, the energy of the waterjet may be so powerful that it can cause damage to the

substrate surface if the surface is very close to the jet exit. Investigation of critical

damage standoff distance was tested with experiments, which are shown in Table 4.5.

The samples were examined using an optical microscope for the study of waterj et

erosion.



Table 4.5 Investigation of critical damage standoff distance

Group No.
of

Experiment

Substrate Pressure
(MPa)

Travel
Speed

(m/min.)

Nozzle
Diameter

(No.)

Focusing
Tube
(No.)

Type of
Nozzle
Body

1
(Moving)

Glass-lined
_	 #3008

204 —
311

0.635 —
15.24

10, 12, 14 63, 93 Modified
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4.1.3 Effective Working Space for Waterjet Cleaning

An area on the substrate surface where the coating is completely removed without any

substrate damage by the impinging waterjet is termed "Effective working space for

waterjet cleaning". So actually the effective working space is enveloped by the critical

cleaning standoff distance and the critical damage standoff distance. These two critical

standoff distances also divide the entire space into three regions, namely, incomplete

coating removal, effective working space for complete coating removal, and substrate

damage. The experimental investigation on effective working space is based on

Experimental Group No. 3 in Table 4.4 and Experimental Group No. 1 in Table 4.5.

4.1.4 Optimal Cleaning Standoff Distance

Optimal cleaning standoff distance which is responding to the maximum cleaning width

occurred with coating removal by water] et, is existed. In practice, this standoff distance

should be located in the effective working space because it is possible to cause the

damage to the substrate if it is too close to the nozzle exit. Testing the optimal cleaning

standoff distance is made for different types of coatings under various operation

conditions, which are listed in Table 4.6.

4.1.5 Effect of Surfactant Pretreatment

The effect of coating surface pretreatment with a surfactant on waterjet cleaning was

studied. Surfactants were deposited on the substrate surface prior to cleaning. Another

experimental procedure involved the addition of a surfactant into water prior to the
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compression in the intensifier. The results of the investigation of the effect of surfactant

pretreatment are shown in Table 4.7.

rIP-1-1- A 	 -1



4.2 Investigation of Waterjet Cleaning Performance

Three criteria, cleaning width, cleaning rate, and water consumption, have been

investigated for the evaluation of waterjet cleaning performance. Cleaning width and

maximum cleaning width, are closely correlated with operational parameters as well as

properties of coatings and substrates Cleaning rate is a linear function of the cleaning

width related. This work firstly used the term "water consumption" as a the criterion for

the evaluation of the cost of cleaning and wastage generation.

4.2.1 Cleaning Width and Maximum Cleaning Width

Investigation of the effect of operation parameters, coating and substrate properties on the

cleaning width variation is a main task of our research. Various tests were systematically

carried out to acquire information necessary for the evaluation of the desired correlation.

The investigation of parameters on cleaning width and maximum cleaning width is listed

in Table 4.8.
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4.2.2 Effect of Surfactant Treatment

The effect of coating surface pretreatment with surfactant under different duration is

studied. Also studied is the effect of surfactant premixed with resource water in the tank.

Investigation of the effect of surfactant on cleaning width is listed in Table 4.9.



4.2.3 Cleaning Rate

The rate of cleaning is an important criterion determining the effectiveness of waterjet

decoating. Cleaning rate for a single jet, is defined as follows:

Cleaning Rate (m 2/h) H = wV *(0.06 m min./mm h)	 (4.1)

where w is cleaning width (mm), and V is travel speed (m/min.).

It can be seen that cleaning rate is cleaning width and the corresponding travel speed

related. The cleaning rate increases as the cleaning width or the travel speed increases.

Except for stationary situations, the cleaning rate can be calculated by the use of

information presented in Table 4.8.

4.2.4 Water Consumption

Another important criterion determining the effectiveness of waterjet cleaning is volumetric

water consumption per unit of the cleaned area. Higher water consumption not only results in

a higher cleaning cost, but also brings about environmental problem. Disposing contaminated
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water is expensive and an environmental damaging process. Water consumption is defined as

follows:
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4A Summary

The discussions above outline the architecture of the study reported in this dissertation.

The performed experimental study was decomposed into several substudies with

individual objectives, but with a common mission. The details of experimental

procedures, examination and measurement will be discussed in Chapter 5, and

experimental results, as well as analysis will be presented in Chapter 8.



CHAPTER 5

EXPERIMENTAL SETUP, METHODS AND EXAMINATION

5.1 Waterjet Cleaning System

The cleaning experiments with stationary and moving jet were carried out with an

Ingersoll-Rand waterjet system (Fig. 5.1). The cleaning head is mounted on a 5-axis

gantry robot whose movement is controlled by an Allen Bradley 8200 series CNC

controller. The translation along the X-axis is controlled by a rack and pinion system, and

the translation along the Y- and Z- axes are controlled by two motorized ball-screws.

Two rotary axes, one in the horizontal (i.e. the pitch motion) and the other one in the

vertical direction respectively (i.e. the roll motion), permit angular displacements

between 200 and 360 degrees.

The high pressure water supply system includes a water softener, a booster pump, and an

intensifier. The water softener is used to remove the iron and calcium, and dissolve solids

that will cause damage to the sapphire nozzle. Then softened water is fed to the booster

pump which produces the pressure of 10.4 MPa (1,500 psi), then this water is further

pressurized by an intensifier using a hydraulically driven, double acting, reciprocating

plunger pump and carried through a stainless steel pipe to the cleaning head (Fig. 5.2).

The pressure of water can be increased to as high as 414 MPa (60,000 psi), and the

maximum operating pressure of the intensifier is maintained at 345 MPa (50,000 psi).

38
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The intensifier system also contains a water accumulator that is used to reduce pressure

pulsation at the nozzle.

5.2 Nozzle, Focusing Tube and Nozzle Body

Four different diameters of round sapphire nozzles, four different diameters of focusing

tubes, and three different nozzle bodies were used in the experiments. Nozzle nos. 14, 12,

10 and 7 were used, which correspond to the nozzle diameters of 0.014, 0.012, 0.010 and

0.007 inches, respectively. The focusing tubes are made by carbide with 2 inches in

length each. The used are nos. 30, 33, 63, and 93, which correspond to the tube diameters

of 0.030, 0.033, 0.063, and 0.093 inches, respectively. Using a focusing tube is aimed at

increasing watejet core length and width. Involved in the tests are three types of nozzle

bodies: the conventional, modified, and spiral ones. Fig. 5.3(a) shows the conventional

nozzle body. To modify the jet stream, we have taken two approaches to replace the

conventional nozzle body. The first one is to block the inlet nipple as shown in Fig.

5.3(b). By this modification, the jet is expected to have more uniform vortex density and

water pressure distribution. The second approach is to modify the jet flow by using a

spiral body placed inside the nozzle body as shown in Fig. 5.3(c). Through this

modification, a wider jet formation (jet width) is expected.



Fig. 5.1 Schematic of waterjet setup.

40

Fig. 5.2 Cleaning head.
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Fig. 5.3 Schematic of (a) conventional, (b) modified, and (c) spiral nozzle bodies.
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Details of paints, surface coatings and their properties are discussed by Lambourne,

(1987), Taylor and Marks, (1969), and Gaynes, et al., (1967).

5.3.3 Surfactant

A transparent solution of fluorochemical surfactant, FC-722, made by 3M Industrial

Chemical Products Division, is used for surface pretreatment of the of epoxy-based paint,

and mixed with water in the tank for the waterjet cleaning test. The main contents of this

surfactant include Perfluoro Compounds (C5-C18) and Fluoroaliphatic Copolymer.

5.4 Procedure of Sample Preparation

The Reference for coating preparation related to the experiment is taken from the book

edited by Gavnes. et al.. (19671. and listed in Table 5.2.
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Sample of oil-based paint is produced by the use of brush, while the epoxy-based paint is

deposited by spray painting. The conditions of coatings preparation are listed in Table

5.3.

5.5 Matrix Videometrix Econoscope and Coating Thickness Measurement

The coating thickness of oil-based and epoxy-based paints coated on AISI1018 substrate

is measured by the Matrix Videometrix Econoscope shown in Fig. 5.4. The Econoscope

uses non-contact techniques to provide rapid dimensional verification of complete parts

or specified features of a part. It comprises a general purpose computer (HP-9000 series),

a 3-axis positioning control system, a digital image processor and part monitor section.
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Fig. 5.4 Photo of matrix videometrix econoscope

The software is divided into six major functions. The Topo function is used in this study.

During measurement. the points to he measured on the coating and substrate surfaces are

the distances between the lens and the point by magnification lenses and the light

intensity. Measurement of this distance in Z-coordinate can be executed automatically.

and the data of the measurement result will be shown on the computer screen. The

average thickness of different groups of coating is listed in Table 5.3.
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5.6 Procedure of Experiments on Critical Standoff Distance

In all of our cleaning tests, the waterjet stream is perpendicular to the surface of coating

material. The sample is located in a sample griper which is put facing the cleaning head.

The nozzle body is clamped in the cleaning head, and a sapphire nozzle is inserted inside

the nozzle body. A focusing tube which is assembled with the nozzle exit, is also griped

in the nozzle body. Three nozzle bodies, conventional, modified, and spiral are used for

the test.

The first step in the performance of each group of experiments was identification of the

critical cleaning standoff distance and the critical damage standoff distance. The

operational conditions in the course of experiment were selected from the field

determined by two critical states. The selected experimental information is presented in

Table 4.4 and 4.5.

5.7 Procedure of Experiments on Cleaning Width and Cleaning Rate

Cleaning rate is determined by cleaning width (i.e. strip width) or travel speed, In our

experiments, cleaning width was used as an independent variable and the corresponding

travel speed is recorded. As the first stage of the experiments, the maximum cleaning

width that can be achieved at the conditions in question and the operational parameters

which bring about the maximum cleaning width were identified. Using focusing tube, we

determined the maximum cleaning width can be attained at the standoff distance equal to

0.65 of the critical cleaning standoff distance (refer to Experiment Groups 4, 6, and 10 in

Table 4.8). Thus, experiments were carried out at this optimal value.
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For the cleaning width tests of the stationary waterjet without the focusing tube

mentioned in Experiment Groups 3 and 7 of Table 4.8, the optimal standoff distance lied

at 56.6% of the critical cleaning standoff distance (refer to the theoretical analysis in

Chapter 6). While for the cleaning width tests of the moving waterjet without the

focusing tube listed in Experiment Groups 5 and 9 of Table 4.8, the optimal standoff

distance lied at 58.8% of the critical standoff distance (refer to the theoretical analysis in

Chapter 7). Cleaning width tests for other standoff distances were also made for reference

and analysis. The influence of the focusing tube was also tested.

5.8 Coating Material Erosion Test

Erosion tests of two types of coating materials, oil-based paint and epoxy-based paint,

were made. During the cleaning process, the intensifier was suddenly turned off which

stoped the water stream impact on the coating surface, then the tip of the cleaning path

(position where jet stops coating impact), boundary of cleaning width, as well as cleaned

surface were observed by microscope and SEM for the study of coating erosion (refer to

Table 4.10 in Chapter 4).

5. 9 Measurement and Examination

Cleaning width is measured by dial calipers. Water mass flow rate (GPM) test was

measured for four nozzles (no. 14, 12, 10 and 7) at 311 MPa and for nozzle no. 12 at four

pressures (311, 207, 138 and 69 MPa). The study of surface topography prior to and after

the waterjet cleaning was carried out using the Olympus Optical Microscope with
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magnification from 7.5 to 64. The camera on the top of the microscope was used to take

the picture with fixed the magnification. This microscope was also used to identify the

completeness of the deposit removal by the impinging waterjet. The evaluation of the

completeness of the cleaning was validated by the use of Scanning Electric Microscope

(SEM).



CHAPTER 6

MATHEMATICAL MODELING OF STATIONARY
WATERJET CLEANING PROCESS •

6.1 General Description

An analytical study of cleaning by stationary waterjets is made. A mathematical model is

established to express the cleaning width as a function of standoff distance, water

pressure, and nozzle radius based on the waterjet structure and cleaning mechanism. In

the cleaning mechanism, removal of material occurs when the impact force generated by

the water droplet flow exceeds the coating strength. The maximum cleaning width is

shown to exist at a certain standoff distance which has a certain ratio with the critical

cleaning standoff distance. The mathematical relations derived are verified

experimentally (Chapter 8).

6.2 Structure of Waterjet

Discussions of the structure of waterjet in air can be found in (Yanaida and Ohashi, 1978;

Yanaida and Ohashi, 1980; Zou, et al., 1985). Generally speaking, there exist three

waterjet regions: the initial, main, and final regions, as illustrated in Fig. 6.1. The initial

region is close to the nozzle exit. In this region the instability of the tangential surface

separation in the continuous flow stream causes eddies, which bring about an exchange of

matter between the water and air. The surrounding air medium is entrained into the water

stream and separates the water stream into water particles due to an intensive transverse

49
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transfer of mass, momentum, heat, and constituents. Inside the jet there is a wedge-like

region known as the potential core, which is surrounded by a mixing layer (Fig. 6.2

shows the photo study of waterjet in air). The velocity inside the core is equal to the jet

exit velocity. In the initial region the waterjet can be regarded as a continuous flow

having very little air inside the jet. At the end of this region, the effect of air dynamics

and continuous interaction of the waterjet with the air medium results in the breakup of

the waterjet stream into droplets. This begins the main region. In this region, the mixing

of the water stream with air medium continues to the full extent, and the jet stream is

disintegrated continuously into droplets due to the entrained air particles. The smaller the

distance to the center line of the waterj et stream, the bigger the water droplet size, and the

more concentrated the droplet flow. This results in a gradual expansion of the cross

section and reduction of the velocity and pressure of waterjet. Between the droplet zone

and the surrounding air, there is a mist zone consisting of very fine droplets. The droplets

at the boundary of the droplet zone and the mist zone can be considered to have zero

velocity. The final region is a diffusion region in which the waterjet is totally broken up

into small droplets.

From the investigation of Yanaida and Ohashi (1978) and Zou, et al. (1985), the radius of

the jet in the droplet zone, R , is related to the distance from the nozzle exit, x , as follows

(refer to Fig. 6.3 for the parameters):

R Cx (6.1)

where C is the spreading coefficient. Its value was experimentally observed by Yanaida

and Ohashi (1978) to be about 0.03 in the main region and increased to about 0.06 in the



Fig. 6.1 Structure of waterjet in air.

5

Fig. 6.2 Photo of waterjet in air.

L



Fig. 6.3 Schematic of waterjet cleaning.

diffusion region. Strictly speaking, C is a function of water pressure and nozzle radius.

However, this dependence relationship is highly complex and is not available from the

literature. For our present work we will assume C to be independent of water pressure

and nozzle radius in the cleaning parameter study, and will show that despite this

simplification, the numerical results from our analytical model agree well with

experimental results.

According to Erastov's experimental observation (Abramovich, 1963), the mass flow rate

in a waterjet has the following relationship
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(6.2)= (1 — 4 1.5 ) 3

m

where m is the mass flow rate of water droplets per unit area at some point in the flow

•field, mn, is the mass flow rate of water droplets per unit area at the center of the same

cross section (in the yz — plane), and is a dimensionless parameter defined by

\I y2 +z2 	r
= 	 = 	 (6.3)

where r is the distance of the point of consideration from the jet center line, and y and z

are the y — coordinate and z — coordinate of this point. The jet moves along the z

direction. These parameters are depicted in Fig. 6.3.

During the spreading process of the waterjet, the total mass flow rate in each cross section

must be equal to the total mass flow rate at the exit of the nozzle. Therefore, the

following relation holds:

R	 • R
In 77 2 = 2n fmrdr = 27cm,,,	 rdr0 0	 (6.4)

o 	 0 m in

where mo is the mass flow rate per unit area at the nozzle exit and ro is the radius of the

nozzle.

Substituting Eqs. (6.2) and (6.3) into Eq. (6.4) results in

• r 2

m in = 5.62 m o (-2-iR )	 (6.5)
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6.3 Analysis of Cleaning with Stationary Waterjets

Cleaning by stationary waterjets is the process of coating material removal by a waterjet

at zero travel speed. Experimental observations have shown that the cleaning width is not

as wide as the jet width, and the maximum cleaning width exists in the main region. The

variation of cleaning width as a function of standoff distance is influenced by two factors.

One is the jet structure. As the waterjet propagates with continuous air entrainment, the

jet width grows linearly as the standoff distance increases. The other is the impact

pressure. The impact pressure generated by water droplets decreases with increase in the

standoff distance. There exists a critical standoff distance at which the coating can not be

removed due to the impact pressure becoming too small. The distribution of impact

pressure has the shape shown in Fig. 6.3. The impact pressure is the strongest in the

middle and decreases to zero at the jet edge. By the influence of these two factors, the

maximum cleaning width occurs somewhere between the nozzle exit and the critical

cleaning standoff distance. At the critical standoff distance, the jet loses its capability to

create enough impact pressure that can exceed the coating strength (Meng, et al., 1996).

The impact pressure is not only a function of standoff distance, but is also related to the

water pressure and nozzle radius.

Our mathematical model follows the cleaning mechanism that material removal occurs

due to the impact of water droplets on the coating material equaling or exceeding a

certain strength. The impact pressure at a point in the waterjet is m , where m is the

flow rate of water droplets per unit area as discussed before, and r is the sound speed in

water. There are two strength factors to be considered in the process of cleaning. These
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are the strength of coating material, S c., and the adhesive strength between the coating

and substrate, Sc, . Let S represent the larger of Sc, and Sc, . Removal of the coating occurs

when the impact pressure of the water droplets is greater or equal to the strength S, i.e.

cleaning occurs when

•my S	 (6.6)

6.3.1 Critical Cleaning Standoff Distance

The critical cleaning standoff distance is defined as the distance between the coating

surface and the nozzle exit, at which the waterjet has lost its ability to remove the coating

material. Theoretically, cleaning at the critical cleaning standoff distance happens at a

single point (with zero cleaning width) which is the center of a certain cross section. Thus

mn, y = S at the critical standoff distance. By the use of Eqs. (6.1), (6.5) and (6.6)

together with the relationship m 0 = pUo , where p is the water density, it can be shown

that the critical cleaning standoff distance, x, , is related to the cleaning parameters as

follows:

Uo ro2 	S

C 2 x,2 5.62 py

The waterjet velocity, U0 , at the nozzle exit is related the water pressure, P , generated

by the pump or intensifier as follows:

(6.7)
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where k is the coefficient of the waterjet system and is usually around 0.960.99. Thus

the critical cleaning standoff distance can be expressed as

(IA 0 ro 	 0.25x = 2.82( 	 —XPP)S C

6.3.2 Cleaning Width vs. Standoff Distance

If the coating surface is placed somewhere between the nozzle exit and the critical

cleaning standoff distance, the cleaning width w satisfies the following equation

(6.9)

w 	) 3 U oro2 	S
2Cx	 C2x2 5.62p4r

(6.10)

where x is the standoff distance. The above equation can be obtained by using Eqs. (6.1),

(6.2), (6.5), and (6.6) and letting y = —
w 

. Substituting Eq. (6.7) into Eq. (6.10) results in

-

2

2 —(-
2

)

141 = 2Cx 1– (—
x

)
(-3)

(6.11)
x,

As a check, the cleaning width at the critical cleaning standoff distance is 0 , i.e.

w = = 0 , when x = x , from the above equation.

The maximum cleaning width w = w„, can be obtained by letting 
dw 

= 0 . By
dx

differenting Eq. (6.11) with respect to x and letting x = x,,„ we obtain

X
= 0.576

x,

Substituting Eq. (6.12) back into Eq. (6.11) results in

(6.12)

w,,, = 0.912Cx,„ = 0.525Cx,	 (6.13)
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If the critical cleaning standoff distance x e is known, the optimal standoff distance x„,

can be calculated using Eq. (6.12), and the maximum cleaning width w„, can be

calculated from Eq. (6.13).

6.3.3 Effects of Water Pressure and Nozzle Radius on Critical Cleaning Standoff

Distance

To investigate the effects of water pressure and nozzle radius on the critical cleaning

standoff distance, we start by noting that the maximum impact pressures at the critical

cleaning standoff distances of two cleaning processes are the same, i.e. the values of

rn„, W are the same. By the use of Eqs. (6.7) and (6.8), we have

n0.5 2 	 n0.5 2r r	 r roi = 2 	 02 

Cl
	c-I2 2

L.,  Xcl 	 U 2 xc2

(6.14)

where P, , P2 rol , r02 , C1 , C2 xd and x c2 represent the water pressures, nozzle radii,

spreading coefficients, and critical standoff distances of the two cleaning processes.

By assuming the spreading coefficient to be constant and thus C1 = C2 , Eq. (6.14) can be

rewritten as

With the consideration of the same nozzle radii, i.e. rol = 1'02 Eq. (6.15) becomes

xc2 = ( P2 )0.25	 (6.16)
xci

Also, with the same water pressures, i.e. P2 = P, , Eq. (6.15) becomes
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Xc2 = r02

xc 1 	 r01

(6.17)

Therefore, we have shown that the critical standoff distance is linearly proportional to the

nozzle radius and is proportional to the one-fourth power of water source pressure. It

should be noted that these relations are only "approximate" because we have assumed a

constant spreading coefficient. Strictly speaking, C is a function of water pressure and

nozzle radius as discussed before.



CHAPTER 7

AN ANALYTICAL STUDY OF CLEANING WITH MOVING WATERJETS

7.1 General Review

An analytical study of cleaning by moving waterjets is made. A mathematical model is

established using Springer's semi-empirical model of material erosion by liquid impacts.

Based on this model, semi-empirical relations are derived to show the cleaning width and

critical cleaning standoff distance as functions of various waterjet cleaning parameters,

and these relations are verified experimentally (refer to Chapter 8).

7.2 Model of Cleaning with Moving Waterjets

Cleaning by moving waterjets is the process of coating material removal by a waterjet at

a certain travel speed. Our experimental observations have shown that the cleaning width

is not as wide as the jet diameter and is affected by factors including standoff distance, jet

travel speed, water pressure, nozzle diameter, and coating material (Leu, et al., 1994,

Geskin, et al., 1995, Meng, et al., 1996a, 1996b). Our observations have also shown that

there exists a critical standoff distance, above which jet loses its capability to remove the

coating, and that optimal cleaning (with the maximum cleaning width) occurs at a

standoff distance somewhere (i.e. between the nozzle exit and the critical cleaning

standoff distance). A mathematical model is to be established in this section, and next

used to derive relations among the various cleaning variables and compare those from

experimental observations.
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Our mathematical modeling for waterjet cleaning is based on Springer's erosion model

(1976). Springer used a semi-empirical equation to formulate the phenomenon of material

erosion by impact of water droplets. The mass loss of the coating material per impact per

unit area in his erosion model is proportional to (—
f )"(!rt-)p„ where f is the impact

6

pressure due to water droplets, S is a parameter representing the material strength, 8 is

the diameter of the water droplet, p, is the density of the removed material, and n is an

empirical constant.

In the moving waterjet cleaning process, the continuous water stream breaks up into a

flow of droplets in the main region. As the flow moves across the surface, it delivers a

certain amount of water droplets on the surface and removes some coating from the

surface. This process is similar to the erosion process described in Springer's model. By

using Springer's model, the loss of material mass is related to the impact pressure of the

water droplet flow and number of droplets received. The removal of coating material

mass per droplet by moving waterjet, (3 , can be written as follows:

R = a
f„

(

7c83
)PS 	 6

where a is an empirical constant. The impact pressure due to the water droplet, f , can

be expressed as

f = m yi	 (7.2)

(7.1)



6 1

where m is the water mass flow rate per unit area at some point in the flow field as

mentioned before, and tv is the sound speed in the water. The number of water droplets

.	 ,



62

1 - INN = (a)( s )(1( 1n
V p w S

"+ 1 dz	 (7.5)

(5.62) 12+1 (7,  )(WPri .) n ( 1"70,) 2n+2 u on+i	 R2-Y2

V 	 0 	 A 	 -

Iy2 + z 2

1 — 
R	 )11 clz 	(7.6)

3n+3

- 3n+3
Vy 2

1	 ( 	 )1.5
R2 -y2

A ro 211+2 	 +0.5) )
= ( V )( R

)	 (P °
3,a

j .1? 2 - y 2

dz (7.7)

where the integration with respect to z is from	 R2 y2 to v R 2 y2 . Substituting

Eqs. (6.2) and (6.5) into Eq. (7.5) and using mo = p U0 lead to

According to the relation of waterjet velocity at the nozzle exit U 0 to the water pressure

P in Eq. (6.8), Eq. (7.6) becomes

where A= a (7.95k) "+1 	p s p un -0.5
S

7.3 Effects of System Parameters on Cleaning

We assume that there is a complete cleaning for an area of concern if the loss of the

coating material in terms of mass per unit area is larger than a certain value, 1 o .

Otherwise, the area is not completely cleaned. Mathematically, complete cleaning is

achieved when

	

11 110	 (7.8)
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7.3.1 Critical Cleaning Standoff Distance

The critical cleaning standoff distance is defined as the distance between the coating

surface and the nozzle exit above which the waterjet is unable to remove the coating

material completely at a given travel speed. Theoretically, cleaning at this critical

standoff distance results in a line with zero width. Under this situation, r1 = ri o at y = 0 .

By the use of Eqs. (6.1) and (7.7), it can be shown that the critical cleaning standoff

distance, x c , is related to the travel speed, V , and other cleaning parameters as follows:

iiwhere B = 2 (1— 15 ) 3 "+ 3 ck

To investigate the effects of system parameters including travel speed, water pressure and

nozzle radius on critical cleaning standoff distance, we note that the coating mass loss per

unit area at the critical standoff distance of a cleaning process is always rl = T1 0 at y = 0 .

Thus, applying Eq. (7.9) to two cleaning processes leads to

Vni-1 	 ( 	 N2n+2( z..,\2n+2\ 2n+1 	 no "\ 0.5n+0.5 	 r ,
Xe2

= 102 LI i 2 vl (7.10)
x ci )	 7"'ol) 	 C2 1 	 PI 1 	 V2 j

where VI , V2 , Pi , P2 , roi , r02 , C1 , C2 , xcl and xc2 represent the waterjet travel speeds,

water pressures, nozzle radii, spreading coefficients, and critical standoff distances of the

two cleaning processes. By assuming the spreading coefficient to be constant and thus

= C2 , Eq. (7.10) becomes
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64

From Eq. (7.11) we have shown the critical cleaning standoff distance variation to the jet

travel speed, nozzle radius, and water source pressure. The empirical constant n can be

obtained by taking logarithm on both sides of Eq. (7.11) and then performing regression

on the ratio of critical standoff distance vs. one or more of the ratios of jet travel speeds,

nozzle radii, and water pressures.

7.3.2 Cleaning Width vs. Standoff Distance

If the coating surface is placed somewhere between the nozzle exit and the critical

cleaning standoff distance, the cleaning width, w, is such that the material erosion rate

per unit area at the edge of this width is the same as that at y = 0 at the critical cleaning

standoff distance. Mathematically, this means that = ri o at y = 2—
w 

when R = Cx . By

utilizing Eq. (7.7) and the above relation, we can obtain the relation between cleaning

width w and standoff distance x in terms of the following equation:

By using Eq. (7.9), the above equation becomes
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Fig. 7.2 Cleaning width vs. standoff distance, both dimensionalized
with respect to critical cleaning standoff distance.



CHAPTER 8

RESULTS AND DISCUSSION

8.1 Waterjet Coating Removal

Experimental investigation of waterjet removal of various coatings was carried out. The

experimental results of the removal of rust, aspirin deposit, oil, and epoxy based paint by

waterjets are shown in Figs. A.1, A.2, and A.56. These photos indicate that high speed

waterjet cleaning is a practical technology which can be successfully used for the removal

of various coatings and deposits. Development of this technology can be used to

substitute the traditional chemical based cleaning.

8.2 Experimental Verification of Analytical Results

The relationships of cleaning width with standoff distance, critical standoff distance with

water pressures and nozzle diameter enable us to predict cleaning width and optimal

cleaning standoff distance only using one empirical data, the critical cleaning standoff

distance for a given condition. These developed relations are based on the commonly

acceptable anatomy of turbulent water jet submerged in the air. The constructed equations

contain one empirical coefficient, the waterjet spreading coefficient, which was

determined using the equation of linear regression between the radius of the jet and

standoff distance (Eq. 6.1). Obtained value of the jet spreading coefficient, 0.0335,

complies with literature data. Another empirical constant, n, is 2.875, which is obtained
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from regression analysis of the measured critical standoff distance vs. jet travel speed.

The analytical results shown below for the stationary jet is using the data measured at 311

MPa with nozzle no. 14 for the removal of each type of paint, while for the moving jet,

the data is measured at 138 MPa and 10.16 m/min. with nozzle no. 10 for each type of

paint removal. A good agreement between analytical and experimental results for the

stationary and moving waterjet cleaning processes was found.

8.3 Analysis of Critical Standoff Distance and Effective Working Space

It has been observed in the course of experimental studies that there exist two critical

standoff distances: Critical Cleaning Standoff Distance and Critical Damage Standoff

Distance.

8.3.1 Cleaning at the Critical Cleaning Standoff Distance

Figures A.3 shows typical paint removal at the critical standoff distance by stationary and

moving jets. It can be noticed that the cleaning width and a small spot at this condition is

minimal. Beyond this critical standoff distance, cleaning becomes ineffective and no

clearly identified decoated region is observed. These peculiarities of the jet behavior are

due to the pattern of energy dissipation in a turbulent jet which is well understood and

documented. Waterjet energy gradually decays with the increase of the standoff distance,

and only when the effective jet energy is greater than or equal to the larger one of the

adhesive strength or coating strength, coating can be removed.
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8.3.2 Cleaning at the Critical Damage Standoff Distance

Figures A.4 shows the surface damage and erosion of the Glass Lined #3008 substrate

impinged by a moving jet. Although the yield strength of the substrate material in

waterjet cleaning is usually much higher than that of the coating material, the energy of

the waterjet may be sufficient to cause damage on the substrate surface if the surface is

very close to the jet exit. This standoff distance is below the critical damage standoff

distance. There is no substrate surface erosion occurring beyond this critical cleaning

standoff distance.

8.3.3 Effective Working Space

The effective working space for waterjet cleaning should be a region between the critical

cleaning standoff distance for coating removal and the critical damage standoff distance

for free of substrate damage processing. A substrate surface of AISI1018 prior to a jet

impingement is shown in Fig. A.5, and the same surface after waterjet paint removal in

the effective working space is shown in Fig. A.6. There is no coating left and also no

damage found.

8.3.4 Analyses of the Critical Cleaning and Damage Standoff Distance

Experimental studies of the critical cleaning and damage standoff distances using

focusing tube are based on Group No. 1, 2 and 3 of Experiment in Table 4.4, and Table

4.5. The experimental results are shown in Figs. A.7 to A.22 (Appendix A).



69

It can be observed that the critical standoff distance is influenced by the diameter of the

focusing tube, and for the same size of the sapphire nozzle, larger diameter of the

focusing tube yields a greater critical standoff distance, and a greater critical standoff

distance is obtained with a larger sapphire nozzle diameter due to the higher energy

content of the jet. These two standoff distances also increase with increased in water

pressure because more energy is delivered by the waterjet at the sample surface.

Commercial nozzle body assures a larger critical standoff distance than that of the

modified nozzle body at the same size of the nozzle from the experimental results.

Compared with the results of the other two nozzle bodies at the same water pressure, the

spiral nozzle body yields the shortest critical cleaning standoff distance. This

phenomenon is due to widening the jet by the screw located prior to the orifice and

transferring certain energy across the jet from the moving direction. A larger critical

cleaning standoff distance was received for the epoxy-based paint removal from the

substrate of the Glass Lined #3008 than that of the same coating removal from the

substrate of AISI1018 at the same operation conditions. The obvious reason for this

phenomena is a weaker adhesive strength between the coating and the smooth surface of

the Glass Lined #3 008 than that between the coating and substrate surface of AISI1018

steel.

From the figures discussed above, it is clear to see that the critical cleaning and damage

standoff distance decreases with the increase of the travel speed. The increase of the

travel speed results in less energy delivered per unit area of the coating surface (less

number of the droplets impact), so the standoff distance needs to be reduced (droplet
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velocity increase with the reduction of the standoff distance) to compensate for the

reduction of droplets.

8.3.5 Experimental Verification of Analytical Results

A series of systematic experimental investigations of the coating removal by stationary

and moving waterjets without the use of focusing tubes were carried out to verify the

analytical results. Also a comparison of coating removal using the modified nozzle body

with and without a focusing tube at otherwise same operating conditions was made.

Experiments are based on Group No. 4-11 of Experiment in Table 4.4. The experimental

results are shown in Figs. A.23 to A.52 and A.140 (Appendix A).

Theoretical analysis and experimental studies prove that the critical cleaning standoff

distance increases as the water pressure and nozzle number increases for the stationary

and moving jet cleaning processes, because more energy is delivered with the increase in

the water pressure and nozzle number. Also, the critical cleaning standoff distance

decreases when the travel speed increases for the moving jet cleaning process. The

experimental data show that with focusing tubes no. 93 and 63, critical cleaning standoff

distance increases compared to testing without using a focusing tube but not significantly.

Optimal cleaning standoff distance follows the theoretical investigation, which

constitutes 0.576 of the critical cleaning standoff distance for the stationary jet, and 0.588

of the critical cleaning standoff distance for the moving jet. All the analytical and

experimental results agree fairly well.
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8.3.6 Effect of Surfactant Pretreatment

Figure A.53 shows the comparison between epoxy-based paint removal with and without

surfactant FC-722 coating sample pretreatment at the otherwise same operating

conditions, i.e. modified nozzle body, sapphire nozzle no. 14, focusing tube no. 63, 172

MPa water pressure, and travel speed of 10.16 m/min. The duration of surfactant

pretreatment is 2 minutes. It is found that the cleaning width with surfactant pretreatment

is much wider than that without surface pretreatment. Using surfactant like FC-722 can

be helpful in increasing the critical cleaning standoff distance because the reaction of the

surfactant to the coating may weaken the adhesive strength between the coating and

substrate or strength of the coating itself.

8.4 Investigation of Geometry and Productivity of Cleaning

Cleaning rate is a linear function of cleaning width and travel speed. Cleaning width is

related to jet structure and impact conditions, and decreases with the increase of travel

speed. The admissible standoff distance maximizes the cleaning width for a stationary jet,

and rate of cleaning at a given travel speed for a moving jet. The theoretical prediction

was substantiated experimentally.

8.4.1 Cleaning Width

Figure A.54 shows the correlation between cleaning width and the standoff distance for

stationary and moving jet cleaning in photo, which clearly identifies the existence of the

extremism at this correlation. By the use of a focusing tube, maximum cleaning width
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was attained at 0.67 times the critical cleaning standoff distance at a water pressure of

138 MPa, while it was 0.63 times the critical cleaning standoff distance at a water

pressure of 69 MPa. These results are shown in Fig. A.55. The experimental studies with

using focusing tube were carried out at optimal cleaning standoff distance which was

assumed to be equal to 0.65 of the critical cleaning standoff distance.

Figure A.56 shows that the cleaning width can be significantly increased by the

improvement of the conditions of the jet formation. The use of the spiral nozzle body had

a strong effect on the deposit removal. A screw inserted in the nozzle body in front of the

sapphire nozzle substantially increases the cleaning width, which evidently demonstrates

the potential of the enhancement of the deposit removal by the improvement of the jet

anatomy. One of the most effective means of such an improvement is optimization of the

nozzle body design.

8.4.2 Investigation of Surfactant Influence on Cleaning Width

A 1% solution of fluorochemical surfactant FC-722 is applied to an epoxy-based paint on

a substrate of AISI 1 018 for duration ranging between 2 minutes and 24 hours, the paint is

then removed by the moving jet at 172 MPa. The correlation between the cleaning width

and the duration of surfactant pretreatment is shown in Fig. A.53, which clearly indicates

that coating surface pretreatment by the FC-722 solution leads to a larger cleaning width

and hence an increased cleaning rate. When the duration of the fluorochemical solution

treatment was for two minutes, the cleaning width increases as much as 2.5 times

compared to without surfactant pretreatment. However, further increase of the
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pretreatment duration has no practical effect on the cleaning width. Figure A.57 shows

the effect of the surfactant FC-722 pretreatment on the cleaning result. The effectiveness

of such a pretreatment is clearly demonstrated. Also shown in Fig. A.53 is result of

comparison of surfactant FC-722 premixed with and without mixing source water in tank.

There is no obvious cleaning width increase for the both cases.

8.4.3 Experimental Verification of the Analytical Results

Experiments of the investigation of cleaning width enable us to verify the analytical

results obtained in Chapters 6 and 7. The results based on Table 4.8 are shown in Figs.

A.58 to A. 97 and A.141 (Appendix A).

Cleaning width is proved theoretically and experimentally to increase as standoff distance

increases until the maximum cleaning width is obtained. After that, cleaning width

decreases as the standoff increases until to zero. Increased water pressure and nozzle

number, which delivers more energy, results in the increase of the critical cleaning

standoff distance, and thus cleaning width. Maximum cleaning width occurs at 0.576

times of the critical cleaning standoff distance for the case of the stationary jet cleaning,

and at 0.588 times of the critical cleaning standoff distance for the case of the moving jet

cleaning. Also, the maximum cleaning width decreases as travel speed increases due to

less energy received per unit area of coating. An agreement between the analytical and

experimental results is obtained for all presented cases.
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8.4.4 Analysis of Cleaning Rate

Calculation of the cleaning rate is the maximum cleaning width multiplied by the

corresponding travel speed. Shown in Figs. A.98 to A.118 (Appendix A) are the

experimental data, as well as experimental verification of the analytical results for the

moving jet removal of oil-based and epoxy-based paint for various operating conditions

with and without the use of focusing tubes. Selected numerical data are given in Tables

A.1 and A.2.

For the concern of the travel speed range, it is clearly shown in these figures that the

cleaning rate increases with increased travel speed, water pressure for the cases using or

without using focusing tubes, and also nozzle number for the cases without using

focusing tube. It is easier to remove oil-based paint than epoxy-based paint as expected.

Spiral nozzle jet, which is modified by inserting a screw in the nozzle body, leads to

increased jet width and also increased the cleaning width.

It has to be mentioned that for the concerned range of the travel speed, the cleaning rate

still increases as the travel speed increases although the cleaning width decreases as the

travel speed increases. This can be explained by the influence of the cleaning width

reduction on the cleaning rate due to the increase of travel speed is being smaller than that

of travel speed increase on the cleaning rate.

8.5 Investigation of Water Consumption

Water consumption is an important criterion of the evaluation of the waterjet cleaning

technology. This parameter is determined by the rate of cleaning and water flow.
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8.5.1 Water Flow Rate

Water flow rate is measured at various process conditions for the evaluation of water

consumption in experimental Groups 1 and 2 (refer to Tables 4.8). The results of the

measurement are shown in Table A.3, compiled with data suggested by Flow Inc. (Table

A.4).

8.5.2 Analysis of Water Consumption

The information concerning water consumption and experimental verification of the

analytical prediction are shown in Figs. A.119 to A.139 (Appendix A).

The acquired data shows that minimal water consumption is attained with the use of the

spiral nozzle body. It has been shown that water consumption decreases with the increase

of travel speed or cleaning rate as well. Water consumption is almost the same for

different pressures, and decreases a little bit as water pressure increases, due to the fact

that the cleaning width increases as water pressure increases, but not as much in

proportion to water flow rate increases. Also, water consumption decreases with the

decreases in nozzle diameter because the water flow rate decreases in proportion much

more than the cleaning width decreases as the nozzle size decreases. The experimental

data also complies very well with the theoretical prediction.

8.6 Investigation of Coating Erosion by Impingement of the Waterjet

Oil-based and epoxy-based paint erosion by waterjet impingement was experimentally

investigated. Micrograph of Fig. A.142 shows oil-based paint erosion in the front of the
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moving jet. It can be clearly observed that there are cracks, tears and lifting at the

coating/substrate boundary. Shown in Fig. A.143 is the epoxy-based paint removal.

Plastic deformation is found at the coating/substrate boundary.

The oil-based paint belongs to elastic coating materials, and its adhesion strength is

comparatively small. There are two feasible mechanisms for removal of this paint by the

impinging water] et. The paint can be destroyed by the later water flow from the

impingement zone. The flow enhances cracks developed in the coating due to impact .

This results in the lifting and tearing of the coating. Another mechanism involves the

droplets erosion of the deposit which eventually results in the paint tear. We suggest that

both mechanisms take place in the course of removal of the oil paint.

Microscopic study of the typical epoxy-based paint identifies mussel-like pits which are

believed to be caused by the droplets impingement. This kind of coating is more brittle,

and the adhesion strength is very strong. There are no cracks, lifting or tearing found at

the jet boundary during the removal of this paint We suggest that the removal of the

epoxy based paint is due to the droplets erosion.

Micrograph of Fig. A.144 shows at the jet boundary during the removal of the epoxy

paint pretreated by the surfactant FC-722. It can be observed that cracks are developed at

the rather smooth jet. The change of mechanism of the decocting (crack vs. erosion) is

probably due to the change of paint properties in the course of the pretreatment.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

Experimental and theoretical studies have been carried out to investigate the precision

cleaning of steel and glass surfaces using high-pressure, low-volume waterjets. Deposit

removal by stationary and moving jets under a wide range of operational conditions was

investigated experimentally. The theory of turbulent jets was used to develop a theoretical

description of the deposit removal. A good agreement between the theoretical prediction

and experimental results was attained. The following conclusions are drawn as the results

of the performed research:

1. It is demonstrated that a generic precision cleaning technology can be created by the

use of a high-pressure waterjet. The feasibility of the replacement of chemical

cleansers currently used for precision cleaning of various parts by-high pressure low-

volume waterjet is shown.

2. The conditions of jet formation and impingement which assure reduction of the

deposit amount down to an acceptable level, are readily attainable. No special

condition for precision cleaning using the high speed waterjets is needed. High speed

jet cleaning is much less expensive than the traditional chemical cleaning. Most

important, this technology is environmentally benign and meets the existing and

pending environmental regulations.
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3. Two critical standoff distances, the critical cleaning standoff distance and the critical

damage standoff distance are used to identify the effective working space for a given

process condition (travel speed, nozzle design, water pressure). The effective working

space assures desired deposit removal without substrate damage.

4. A mathematical description of deposit removal by stationary and moving waterjets

was pioneered using the conventional model of turbulent jets. Theoretical predictions

were validated by the acquired experimental data. This demonstrates the feasibility of

using the existing theory of turbulent jets for description of a high speed stream of

water droplets in air.

5. Equations for the prediction of the critical cleaning standoff distance and cleaning

width are constructed. Besides readily available information (traverse speed, water

pressure, nozzle diameter) and constants determined in this study, the developed

equation contains only one empirical number, the critical cleaning standoff distance,

for the prediction under a given process condition.

6. Equations determining the optimal standoff distance for cleaning by moving and

stationary waterjets were derived. The optimal standoff distance constitutes 0.6-0.7 of

the critical cleaning standoff distance.

7. Cleaning width and thus productivity can be substantially increased by the

improvement of the condition of jet formation. The spiral nozzle body developed in

this work significantly increases process productivity and reduces water consumption.

8. Deposition of the surfactant EC-722 for a short duration (2 minutes) prior to water

impact increases cleaning width significantly.
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9. Analysis of micrographs of the boundary between the impingement zone and the

remaining coating shows existence of two mechanisms of the deposit removal by the

impinging jets. The lateral jets generated in the impingement zone bring about peeling

of the deposit already weakened by cracks which are developed due to the impact

stresses. Deposits can also be eroded by impacting droplets. It is suggested that the

combination of these two mechanisms brings about surface cleaning.

10. The result of the experimental study and theoretical analysis provides an adequate

database for design of commercial cleaning systems.

9.2 Recommendations

For the future work we recommend:

1. To design practical water based systems for precision cleaning of components and

equipment, which eliminate the use of solvents for cleaning in chemical and

pharmaceutical reactors.

2. To use the methods of fracture mechanics to develop a theoretical model of deposit

destruction by the impinging jets.

3. To Integrate the theory of jet development and deposit destruction to result in the

creation of a comprehensive theory of waterj et cleaning.

4. To Integrate the theory of waterjet cleaning and nozzle guidance to result in the

development of the comprehensive knowledge base of cleaning.

5. To consider a practical implementation of the environmentally benign cleaning

technology as an urgent and achievable task.
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OF WATERJET CLEANING
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Fig. A.1 Rust removal by waterjet.
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Fig. A.2 Aspirin deposit removal by waterjet.



Fig. A.3 Cleaning by waterjet at the critical cleaning standoff distance
(the small spot at the right side of the right sample was made by stationary jet.
the very narrow line on the left sample was made by moving jet).
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Fig. A.4 Surface of Glass Lined #3008 damaged by waterjet.



Fig. A.5 Substrate surface of AISI1018 prior to a jet impingement.
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Fig. A.6 Substrate surface of AISI1018 after a jet impingement
(no coating left and no damage found).



■•••••

Fig. A.8 Critical cleaning standoff distance vs. travel speed for oil-based paint removal
with the modified nozzle body, nozzle no. 12 and three focusing tubes at 311 MPa.



Fig. A.10 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with modified nozzle body, nozzle no. 14 and three focusing tubes at 311 MPa.



Fig. A.12 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with modified nozzle body, nozzle no. 7 and three focusing tubes at 311 MPa.
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Fig. A.14 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with the commercial and modified nozzle body, nozzle no. 10 and focusing tubes
at 311 MPa.



Fig. A.16 Critical cleaning standoff distance vs. travel speed for oil-based paint removal
with the modified nozzle body, nozzle no. 12 and focusing tube no. 63 at different water
pressures.
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Fig. A.18 Critical cleaning standoff distance vs. travel speed for oil-based paint removal
with the modified nozzle body, different nozzles and focusing tube no. 63 at 311 MPa.
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Fig. A.20 Critical damage standoff distance vs. travel speed for Glass Lined #3008
surface erosion with the modified nozzle body, different nozzles and focusing tube no. 93
at 311 MPa.



Fig. A.22 Critical damage and cleaning standoff distance vs. travel speed for Glass Lined
#3008 surface erosion and epoxy-based paint with the modified nozzle body, nozzle no.
14 and focusing tube no. 93 at 311 MPa.



Water Pressure (MPa)

Fig. A.24 Critical cleaning standoff distance vs. water pressure for stationary jet epoxy-
based paint removal with four different sapphire nozzles.



Fig. A.26 Critical cleaning standoff distance vs. sapphire nozzle number for stationary jet
epoxy-based paint removal under four different water pressures.



with sapphire nozzle no. 12 under four different water pressures.
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Fig. A.30 Critical cleaning standoff distance vs. travel speed for oil-based paint removal
with sapphire nozzle no. 7 under four different water pressures.
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Fig. A.32 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with sapphire nozzle no. 12 under four different water pressures.
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Fig. A.34 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with sapphire nozzle no. 7 under four different water pressures.
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Fig. A.36 Critical cleaning standoff distance vs. water pressure for oil-based paint
removal with sapphire nozzle no. 12 at three different travel speeds.
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Fig. A.38 Critical cleaning standoff distance vs. water pressure for oil-based paint
removal with sapphire nozzle no. 7 at three different travel speeds.
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Fig. A.40 Critical cleaning standoff distance vs. water pressure for epoxy-based paint
removal with sapphire nozzle no. 12 at three different travel speeds.
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Fig. A.42 Critical cleaning standoff distance vs. water pressure for epoxy-based paint
removal with sapphire nozzle no. 12 at three different travel speeds.
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Fig. A.44 Critical cleaning standoff distance vs. water pressure for epoxy-based paint
removal with sapphire nozzle no. 7 at three different travel speeds.
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Fig. A.46 Critical cleaning standoff distance vs. nozzle number for oil-based paint
removal at 207 MPa water pressure at three different travel speeds.
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Fig. A.48 Critical cleaning standoff distance vs. nozzle number for oil-based paint
removal at 69 MPa water pressure at three different travel speeds.
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Fig. A.50 Critical cleaning standoff distance vs. nozzle number for epoxy-based paint
removal at 207 MPa water pressure at three different travel speeds.
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Fig. A.51 Critical cleaning standoff distance vs. nozzle number for epoxy-based paint
removal at 138 MPa water pressure at three different travel speeds.
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Fig. A.52 Critical cleaning standoff distance vs. nozzle number for epoxy-based paint
removal at 69 MPa water pressure at three different travel speeds.
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Fig. A.53 Comparison of epoxy-based paint removal with and without surfactant 1 2 C-722
pretreatment on coating (nozzle no. 14, focusing tube no. 63, 172 MPa water pressure and
travel speed of 10.16 m/min. difference in up and bottom part of right sample).

Fig. A.54 Correlation between cleaning width and the standoff distance
(left sample was made by moving .jet. and right two samples were made by stationary jet).
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Fig. A.55 Cleaning width vs. standoff distance for oil-based paint removal with the
modified nozzle body. nozzle 12 and focusing tubes at travel speed of 10.16 m/min. and
two different water pressures.

Fig. A.56 Comparison in cleaning width by the use of spiral and modified nozzle body
(the left and right samples were made by using the spiral nozzle body, the middle one was
made by using the modified nozzle body).
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Fig. A.58 Cleaning width vs. standoff distance for stationary jet oil-based paint removal
with nozzle no. 14 under four different water pressures.



0.0 	 0.1 	 0.2 	 0.3 	 0.4 	 0.5

Standoff Distance (m)

Fig. A.60 Cleaning width vs. standoff distance for stationary jet oil-based paint removal
with nozzle no. 10 under four different water pressures.
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Fig. A.62 Cleaning width vs. standoff distance for stationary jet epoxy-based paint
removal with nozzle no. 14 under four different water pressures.
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Fig. A.64 Cleaning width vs. standoff distance for stationary jet epoxy-based paint
removal with nozzle no. 10 under four different water pressures.
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Fig. A.66 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 14 at 276 MPa and three different travel speeds.
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Fig. A.68 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 14 at 138 MPa and three different travel speeds.
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Fig. A.70 Cleaning width vs. standoff distance for moving jet epoxy-based paint removal
with nozzle no. 14 at 276 MPa and three different travel speeds.
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Fig. A.72 Cleaning width vs. standoff distance for moving jet epoxy -based paint removal
with nozzle no. 14 at 138 MPa and three different travel speeds.
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Fig. A.74 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 12 at 276 MPa and three different travel speeds.
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Fig. A.76 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 12 at 138 MPa and three different travel speeds.
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Fig. A.78 Cleaning width vs. standoff distance for moving jet epoxy-based paint removal
with nozzle no. 12 at 276 MPa and three different travel speeds.
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Fig. A.80 Cleaning width vs. standoff distance for moving jet epoxy -based paint removal
with nozzle no. 12 at 138 MPa and three different travel speeds.
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Fig. A.82 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 10 at 276 MPa and three different travel speeds.
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Fig. A.84 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no 10. at 138 MPa and three different travel speeds.
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Fig. A.86 Cleaning width vs. standoff distance for moving jet epoxy-based paint removal
with nozzle no. 10 at 276 MPa and three different travel speeds.
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Fig. A.88 Cleaning width vs. standoff distance for moving jet epoxy -based paint removal
with nozzle no. 10 at 138 MPa and three different travel speeds.
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Fig. A.90 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 7 at 276 MPa and three different travel speeds.
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Fig. A.92 Cleaning width vs. standoff distance for moving jet oil-based paint removal
with nozzle no. 7 at 138 MPa and three different travel speeds.
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Fig. A.94 Cleaning width vs. standoff distance for moving jet epoxy-based paint removal
with nozzle no. 7 at 276 MPa and three different travel speeds.



Fig. A.96 Cleaning width vs. standoff distance for moving jet epoxy -based paint removal
with nozzle no. 7 at 138 MPa and three different travel speeds.
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Fig. A.98 Cleaning rate vs. travel speed for oil-based paint removal with the modified
nozzle body, nozzle no. 14 and three focusing tubes at 311 MPa.
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Fig. A.100 Cleaning rate vs. travel speed for oil-based paint removal with the modified
nozzle body, nozzle no. 7 and three focusing tubes at 311 MPa.
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Fig. A.102 Cleaning rate vs. travel speed for epoxy-based paint removal with modified
nozzle body, nozzle no. 12 and three focusing tubes at 311 MPa.
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Fig. A.104 Cleaning rate vs. travel speed for oil-based paint removal with the commercial
and modified nozzle body, nozzle no. 10 and focusing tubes at 311 MPa.



Fig. A.106 Cleaning rate vs. travel speed for oil and epoxy based paint removal with the
spiral nozzle body, nozzle no. 12 at 311 MPa.
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Fig. A.108 Cleaning rate vs. travel speed for epoxy-based paint removal with the
modified nozzle body, nozzle no. 12 and focusing tube no. 63 at different water pressures.



Fig. A.110 Cleaning rate vs. travel speed for epoxy-based paint removal with the
modified nozzle body, different nozzles and focusing tube no. 63 at 311 MPa.
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Fig. A.112 Cleaning rate vs. travel speed for oil-based paint removal with sapphire nozzle
no. 12 under four different water pressures.
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Travel Speed (mimin.)

Fig. A.114 Cleaning rate vs. travel speed for oil-based paint removal with sapphire nozzle
no. 7 under four different water pressures.



Fig. A.116 Cleaning rate vs. travel speed for epoxy-based paint removal with sapphire
nozzle no. 12 under four different water pressures.
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Fig. A.118 Cleaning rate vs. travel speed for epoxy-based paint removal with sapphire
nozzle no. 7 under four different water pressures.
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Fig. A.120 Water consumption vs. travel speed for oil-based paint removal with the
modified nozzle body, nozzle no. 12 and three focusing tubes at 311 MPa.
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Fig. A.122 Water consumption vs. travel speed for epoxy-based paint removal with
modified nozzle body, nozzle no. 14 and three focusing tubes at 311 MPa.
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Fig. A.124 Water consumption vs. travel speed for epoxy-based paint removal with
modified nozzle body, nozzle no. 7 and three focusing tubes at 311 MPa.
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Fig. A.126 Water consumption vs. travel speed for epoxy-based paint removal with the
commercial and modified nozzle body, nozzle no. 10 and focusing tubes at 311 MPa.
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Fig. A.128 Water consumption vs. travel speed for oil-based paint removal with the
modified nozzle body, nozzle no. 12 and focusing tube no. 63 at different water pressures.
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Fig. A.130 Water consumption vs. travel speed for oil-based paint removal with the
modified nozzle body, different nozzles and focusing tube no. 63 at 311 MPa.
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Fig. A.132 Water consumption vs. travel speed for oil-based paint removal with sapphire
nozzle no. 14 under four different water pressures.



Fig. A.134 Water consumption vs. travel speed for oil-based paint removal with sapphire
nozzle no. 10 under four different water pressures.
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Fig. A.135 Water consumption vs. travel speed for oil-based paint removal with sapphire
nozzle no. 7 under four different water pressures.
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Fig. A.136 Water consumption vs. travel speed for epoxy-based paint removal with
sapphire nozzle no. 14 under four different water pressures.
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Fig. A.139 Water consumption vs. travel speed for epoxy-based paint removal with
sapphire nozzle no. 7 under four different water pressures.
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Fig. A.140 Critical cleaning standoff distance vs. travel speed for epoxy-based paint
removal with and without focusing tube for nozzle no. 14 under two different water
pressures.
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Fig. A.141 Cleaning width vs. standoff distance for oil-based paint removal with and
without focusing tube for nozzle no. 14 under two different water pressures.

Fig. A.142 micrograph of cracks, tearing at boundary of oil-based paint and substrate

after waterjet coating removal.
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Fig. A.143 Micrograph of erosion at boundary of epoxy-based paint and substrate after
waterjet coating removal.

Fig. A.144 Micrograph of erosion at boundary of epoxy-based paint and substrate after
waterjet coating removal (the coating was pretreated with surfactant FC-722, the smooth
boundary with some cracks is shown).
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Table A.1 Cleaning rate and water consumption for the removal of oil and epoxy paint at
311 MPa water pressure with two different sets of nozzles and focusing tubes



Table A.3 Water flow rate (LPM) as a function of pressure and nozzle size
(measurement)
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