
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

FACTORS EFFECTING CALCIFICATION 
OF BIOPROSTHETIC HEART VALVES 

by 
Sumei Yu 

Calcification is the most frequent cause of clinical dysfunction of 

glutaraldehyde treated bioprosthetic heart valves. In this study, we compared 

calcification of bioprostheses of the No-ReactTM  and the conventional 

glutaraldehyde treated pericardium by both in-vivo and in-vitro methods, and to 

further delineate the role of the host's inflammatory response in implant 

degeneration. 

In the in-vitro study, the two types of pericardial samples were placed in 

individual polystyrene tubes containing physiological concentrations of calcium 

and phosphate and incubated for 21 days at 37°C. In the in-vivo study, the two 

types of pericardial samples were implanted subcutaneously in rats and 

subsequently retrieved at 15, 21, and 35 days postimplantation. Calcium analyses 

were performed on each specimen. 

Experimental results showed that a significantly reduced in vitro 

calcification of No-ReactTM  treated pericardium compared to conventional 

glutaraldehyde pretreated tissue (mean calcium content, 1.3 ± 0.2 g/mg of No- 

ReactTM  treated tissue versus 5.8 ± 0.7 µg/mg of glutaraldehyde pretreated tissue) 

(p < 0.001). In-vivo test showed progressive calcification of glutaraldehyde treated 

pericardium over 5-week period (mean tissue calcium content increasing from 49.6 

± 9.6 µg/mg after 2-week to 134.3 ± 9.1 big/mg at 5 weeks postimplantation), 



while No-ReactTM treated pericardial tissue calcified significantly less (p < 0.05) in 

20-30 µg/mg level at each corresponding interval. 

All these lead to the conclusion that the calcification of conventional 

glutaraldehyde treated pericardium is more severe than No-ReactTM  treated 

pericardium both in vivo and in vitro tests. 
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CHAPTER 1 

INTRODUCTION 

Heart valve bioprostheses were introduced about 35 years ago to cope with the 

major disadvantage of mechanical valves. After 35 years of valve replacement, it 

is fair to state that the operation can be considered as a cure for the short term, 

especially if large-size valves can be used, but only palliative for the long-term, 

and for a certain group of patients this operation can not be considered curative in 

any stage after the operation (children , women in child-bearing age, etc.). Valve 

replacement with a mechanical valve can never be considered curative because of 

the continuous need for anticoagulation as well as the continuous risk (although 

small) of sudden death, while a biological valve can give excellent quality of life. 

There is also ample evidence today that anti-platelets may be sufficient in cases of 

atrial fibrillation, or when patient had an episode of thromboembolism after valve 

replacement with bioprostheses. The quality of life with well-functioning biologic 

prosthesis is reported to be better than that with a mechanical valve. 

Formaldehyde and particularly glutaraldehyde, are commonly used to 

control the physical and biological properties of a variety of collagen-based 

biomaterials such as heart valve and blood vessel prostheses, implantable collagen 

preparations and collagen dressings. 

The first porcine xenograft valves were treated with formaldehyde, 

unfortunately they failed relatively early (1). Although formalin solution is an 

excellent sterilizing agent with profound tanning effects, the alternation of 

collagen by formalin is thought to be caused by polycondensation of protein chains 

(2), and the polymerization is reversed after implantation, thus the deterioration is 

accelerated by the original formalin effect. Formalin preservation of heterograft 

aortic valves has proved unsatisfactory in both experimental and clinical trials (1). 
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Malfunctioning valves examined after implantation are identical in both series, 

showing a diffuse process of deterioration. Changes of formalin concentration and 

storage conditions do not influence the findings significantly. This nonviable tissue 

is rarely repopulated by host tissue over the period of time studied, making the 

likelihood of satisfactory extended function improbable. So the use of 

formaldehyde has been abandoned fairly quickly (1). 

The glutaraldehyde tanning method was proposed to solve the problem of 

availability with the allograft and tissue failure with the formalin treated 

xenograft. The use of weak glutaraldehyde solution did in fact provide more 

permanent fixation of porcine valve collagen, increasing tissue durability and 

enabling commercial marketing of this type of valves (3). 

Bioprostheses fabricated from glutaraldehyde-preserved porcine aortic 

valve or bovine pericardium are widely used to replace diseased human cardiac 

valves. Glutaraldehyde is used to control physical and biological properties of 

collagen structure by means of intermolecular and/or intermolecular cross-linking 

of collagen molecules. Solubility, antigenicity, and biodegradation of naturally 

occuring or reconstituted collagenous matrices are effectively reduced by 

glutaraldehyde treatment. Glutaraldehyde treatment decreased inflammatory 

reaction by reducing antigenicity and destruction of the implant. Contrary to the 

formaldehyde, the cross-linking is more stable (3). 

As the glutaraldehyde preserved porcine xenografts are widely used, 

durability remains the primary concern. Spontaneous, sterile deterioration of the 

glutaraldehyde preserved porcine xenograft appears to occur as a result of 

calcification, which may either stiffen and immobilize the valve leaflets or deform 

and stress them to the point of rupture. Calcification can be readily documented 

grossly by radiography and by histologic section, accurate measurement of the 

calcium content can be performed by atomic absorption spectrophotograpy. 

Calcification is proposed to occur by two basic mechanisms. One is the deposition 
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of crystalline material in denuded, disrupted exposed, or thrombosed regions of the 

leaflet, and the second is the presence of an innate, diffuse stippling of crystalline 

substances in the collagen bundles of the porcine leaflet itself (4, 5, 6, 7). 

Several factors are proposed to be related to this process: 

1. Calcium metabolism of the individual patient and host versus graft reaction, 

2. Turbulence of blood flow through the valve, 

3. The degree of valve tissue fixation, 

4. Valve leaflet flexibility , and 

5. The presence of thrombus on the valve leaflets. 

Another possible mechanisms suggested that it might be an immunological 

response. In addition to these the calcification may also occur in valves implanted 

in patients with no apparent risk factors. 

It was stated that the 5 year valve failure rate from spontaneous, sterile 

degeneration of valves manufactured from 1970 to 1975 is 7.1% (6/65) of those 

implanted (8). The number of patients is too small to predict a 10 year failure rate 

for valves implanted in the early 1970s, but there is some evidence to suggest that 

this failure rate is less than 20%. Nevertheless, commercial glutaraldehyde 

preserved porcine tissue valves have been shown to be functional in the twelfth 

year of implantation (3, 9)(reports of 20 years are available). At present , about 

20 ~ 25% of adult patients and 50% of children patients have to be reoperated in 

less than 10 years. The undefined durability is the major drawback of 

bioprostheses. Clinical regurgitation, stenosis, or both, are frequently caused by 

calcification , with or without cuspal tearing, necessitating reoperation with valve 

removal or causing death of approximately 25% of patients with porcine 

bioprostheses within 10 years postoperatively. 

While degeneration of bioprostheses is often a slowly progressing 

phenomenon that can allow for planned reoperation. The prosthetic valves made of 
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glutaraldehyde fixed porcine aortic valve and bovine pericardium have been used 

in more than 500,000 patients. 

However, the main problems associated with the failure of bioprosthetic 

valves are calcification which can lead to stenosis or insufficiency. Calcification 

in children remains a serious problem. Bioprosthetic valves are practically 

contraindicated in children and mechanical valves are contraindicated in patients 

who can not receive anticoagulants. Socioeconomic factors constitute a relative 

contraindication to the use of mechanical valves, a high incidence of 

thromboembolic complications in patients with mechanical cardiac valvular 

prostheses during the late 1960s and early 1970s generated interest in valves made 

of biologic materials, e.g., fascia lata, duramater, porcine aortic valves, and bovine 

pericardium. 

Glutaraldehyde treatment has been thought as main "villain" in 

calcification. Extensive clinical and pathological studies have demonstrated that 

these tissue valves treated with glutaraldehyde undergo degeneration and 

calcification, especially in children and adolescents (10, 11, 12). 

Schoen et al. (13), reported that subcutaneously implanted porcine aortic 

valve showed calcification from 2 — 56 days, after which, up to 126 days, there is 

no further increase. 	And the subcutaneously implanted porcine aortic 

bioprosthesis develops collagen calcification after 21 days if pretreated with 

glutaraldehyde, with fresh valve cusps implants demonstrated only a minimal 

necrosis without calcification during same period of implantation (13). 

Both porcine aortic valve and pericardium are rich in type I collagen, and it 

has been suggested that the inflammatory response is due to chemotactic potential 

of collagen peptides generated from the collagenase digestion. 

Schoen et al. have concluded that the presence of glutaraldehyde is a 

prerequisite for calcium deposition (13). 
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In this study, we compared calcification of bioprostheses by in vitro and 

vivo methods to study the effect of conventional glutaraldehyde treated and the 

No-ReactTM anticalcification treatment on calcification, and to correlate 

inflammation and calcification. 

The experiment consists of the following tests: 

I. Static In-Vitro calcification tests. 

2. Pronase digestion tests. 

3. Rats subcutaneous implantation of pericardial strips. 

This study is part of a larger investigation performed at the UMDNJ-NJMS 

Cardiothoracic Research Laboratory, to try to elucidate the different factors 

responsible for the degeneration and calcification of xenograft tissues. 



CHAPTER 2 

METHOD OF STATIC IN-VITRO CALCIFICATION TESTS 

In-vitro systems are simpler, cheaper and more easily controlled than in-vivo 

systems. Static in-vitro test systems can be used to study small samples of 

material in large numbers relatively quickly, and has a useful role to play in the 

economic screening of new materials or modifications of existing materials prior 

to in-vivo testing . It may also aid the definition of the mechanism of calcification 

and hence the development of solutions to the problem. 

In the test, solution composition was specifically chosen to be as simple and 

as close to physicologic concentrations as possible, and still achieve calcification, 

allowing the parameters involved in the process to be kept at a minimum. 

In this test, we compared the calcification of conventional glutaraldehyde 

treated and No-ReactTM treated pericardium. 

2.1 Preparation of Instruments and Solutions 

1. Vials 

clean , sterile, screw-top polystyrene sample vials. 

2. Tissue samples 

a. pericardium treated with conventional glutaraldehyde treatment, 

b. No-ReactTM treated pericardium. 

3. Solution 

a. solution A: 

15782 mg NaCl, 738.7mg CaCl2  2H20, 326 mgKH2PO4, 20.9mg MOPS were 

weighed. Solution were made in 2 liters millipore water. Solution containing 135 

mM NaCl, 2.88 mM CaCl2  2H20, 1.2 mM KH2 PO4, 0.05 mM MOPS. Certain 

amount of 0.25 M NaOH was added to adjust the pH to 7.40, while the solution 

6 
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was stirred. Then, under aseptic condition, the solution was forced through a filter 

(0.2 µm) as a method sterilization. 

b. solution B (saline solution): 

0.9 % NaCl, pH = 7.40, autoclave to sterilize the solution 

2.2 Procedure 

1. Basin, scissors, clasps , towels etc were autoclaved. 

2. Under laminar flow hood, the No-ReactTM treated pericardium was cut into 3 cm 

x 1 cm, washed with solution B in the sterile basin, stirred gently for 30 min. 

Same process for the glutaraldehyde treated pericardium samples in a different 

basin was performed. 

3. Each sample was placed in individual vial with 20 ml solution A, 

4. The experiments were divided by following groups: 

Group 1----temperature of 37°C, 21 days, the solution was changed every week. 

(5 vials of each type of tissue) 

labelled as: G1-1 G1-2 G1-3 G1-4 G1-5 

N1-1 Ni-2 N1-3 N1-4 N1-5 

where, G, represents the conventional glutaraldehyde treated samples, 

N, represents the No-React'TM treated samples, 

Group 2----temperature of 37°C, 21days, the solution was not changed at any time. 

(5 vials of each type of tissue). 

labelled as: G2-1 G2-2 G2-3 G2-4 G2-5 

(conventional glutaraldehyde treatment) 

N2-1 N2-2 N2-3 N2-4 N2-5 

(No-ReactTM treated tissues) 

Group 3----temperature of 25°C, 56 days, the solution was changed every week. 
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(5 vials of each type of tissue) 

labelled as: G3-1 G3-2 G3-3 G3-4 G3-5 

(conventional glutaraldehyde treatment) 

N3-1 N3-2 N3-3 N3-4 N3-5 

(No-ReachTM treated tissues) 

Group 4----temperature of 37°C, 56 days, the solution was changed every week. 

(5 vials of each type of tissue) 

labelled as: G4-1 G4-2 G4-3 G4-4 G4-5 

(conventional glutaraldehyde treatment) 

N4-1 N4-2 N4-3 N4-4 N4-5 

(No-ReactTM treated tissues) 

Group 5---- control group. Use solution B instead of solution A as a control 

solution for both glutaraldehyde and No-ReachTM treated pericardium samples. 

Temperature of 37°C, 21 days, the solution was not changed at any time. 

(5 vials of each type of tissue) 

labelled as : SG1 SG2 SG3 SG4 SG5 

(conventional glutaraldehyde treatment) 

SN1 SN2 SN3 SN4 SN5 

(No-ReactTM treated tissues) 

5. For group 1, the previous solution was replaced by a fresh solution every week, 

monitored every week. After 21 days the tissues were removed and washed with 

solution B, dried and digested with nitric acid and perchloric acid (with ratio of 

3:1) , then analyzed for calcium content. 
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6. For group 2, after the period of 21 days, the concentration of calcium in the 

solution was monitored by atomic absorption spectroscopy. The tissue was 

removed, washed with solution B, and then dried, digested with nitric acid and 

perchloric acid (with ratio of 3:1), then analyzed for calcium content by atomic 

absorption spectroscopy. 

7. For group 3 and 4, the old solution was replaced by a fresh solution, and 

monitored every week. After 56 days , the tissue was removed from the vials, 

washed with solution B, dried and digested with nitric acid and perchloric acid 

(with ratio of 3:1), then analyzed for calcium content by atomic absorption 

spectroscopy. 

8. For the control group, the tissue was removed from the vials after 21 days, 

dried and digested, then analyzed for calcium content by atomic absorption 

spectroscopy. 



CHAPTER 3 

METHOD FOR PRONASE DIGESTION TESTS 

Subcutaneously implanted porcine aortic bioprostheses develop collagen 

calcification after 21 days if pretreated with glutaraldehyde, while fresh valve cusp 

implants demonstrate only a minimal necrosis without calcification during same 

period of implantation. Both porcine aortic valve and pericardium are rich in type 

I collagen , and it has been suggested that the inflammatory response is due to 

chemotactic potential of collagen peptides generated from the collagen digestion. 

Three groups of differently treated pericardiums were digested with pronase 

in this study to compare the weight lost by each group of pericardium during the 

pronase digestion process and correlate that information with the inflammation 

and calcification. 

3.1 Materials 

1. Chemicals 

a. Pronase P5147 5.5 units/mg solid, Type XIV Bacterial 

from Streptomyces griseus. Lot# 34H0331ordered from SIGMA Company 

b. Glycine G6388 	Lot# 84H05445 ordered from SIGMA Company 

c. HEPES H9136 Lot# 64H5725 ordered from SIGMA Company 

d. CaC12·2H20 

2. Pericardial samples 

a. Fresh pericardium Lot# 941026 

b. No-ReactTM treated pericardium Lot# 950102-11 

c. Glutaraldehyde treated pericardium Lot# 950103 

3. Sterile single-use polystyrene tubes 

10 
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3.2 Procedure 

1. Solution preparation 

75 mg CaC12.2H20, 1.125 g glycine, 1g HEPES were weighed, mixed in 150 ml 

millipore water. Certain amount of 0.25 M NaOH was added to adjust the pH to 

7.40, then 75 mg protease was added. 

2. Pericardial samples preparation 

The samples (n = 10 for each fresh pericardium, No-react'" pericardium and 

conventional glutaraldegyde-treated pericardium) were cut into 1cm x 3cm shape. 

These samples were labelled and blotted with clean, dry towel, then each piece was 

cut into two pieces, one was about 1cm x 1cm, another was about 1cm x 2 cm. Each 

piece was weighed simultaneously. The weights were recored as "initial wet weight 

of the large piece" and "initial wet weight of the small piece". 

3. Dry sample 

The small pieces were put into clean polystyrene plates (the plates were labelled 

from Fl to F10 for fresh pericardial samples, from N1 to N10 for No-ReactTM 

treated pericardial samples, from G1 to G10 for conventional glutaraldegyde 

treated pericardial samples), these plates (without cover) were put into 37°C oven 

and dried for at least 2 hours or until the weight was constant. Then the samples 

were weighed and recorded as "dry weight of the small piece". 

4. Digestion 

The large pieces were put into polystyrene tubes. 3m1 solution made in procedure 

1 was added into each tube. Tubes were covered, labelled and put in 50 °C 

shaking bath for 22 hours. 
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5. Weight recording 

After 22 hours, the tubes were removed out of the shaking bath. The samples were 

taken out, blotted with clean towel to remove the free water, weighed and recorded 

as "wet weight of large piece after digestion". These samples were put in the 

clean polystyrene plates and dried in 37 °C oven for at least 2 hours or until 

constant weight. These weight were record as "dry weight of large piece". 

3.3 Calculation 

1. The "dry weight of small pieces" divided by "initial wet weight of small pieces" 

is the ratio of blotted/dry weight of the small samples, and this will be used to 

calculate the initial dry weight of the large samples based on their initial blotted 

weight. These steps are necessary because: 

a. The samples can not be dried before the protease digestion, 

b. During protease digestion, the hydrophilic ability of the tissue will change, 

thereby increasing considerably the blotted weight of the sample, leading to 

erroneous results. 

2. "Initial wet weight of large piece" times "ratio of blotted/dry weight "gave the 

"initial dry weight of large piece", which was the weight of large piece before 

digestion. 

3. The proportion of the final dry weight/initial dry large weight for the large 

pieces represented the weight left after digestion. And (1 - proportion ) x 100% 

gave the weight loss during the incubation process due to the enzymatic 

degradation induced by the non-specific protease agent. The results were 

expressed for each experimental condition as mean ± SEM weight lost (% of 

initial weight). 



CHAPTER 4 

METHOD OF SUBCUTANEOUS IMPLANTS AND EXPLANTS IN RATS 

This in-vivo study was performed to compare the calcification of conventional 

glutaraldehyde treated pericardium and No-ReactTm treated pericardium. 

Samples of the two types of pericardiums were implanted in the rats under 

different side of the skin in abdominal wall. After few weeks, the samples were 

retrieved and analyzed. The pericardial samples were treated with the Biocor 

processes. 

4.1 Preparation 

1. Rats 

20 male sprague-dawley rats of 4 weeks old, 60 ~ 80 grams 

2. Pericardial samples 

20 conventional glutaraldehyde treated samples, with size of cm x 2cm, 

Lot # 950202, 

20 No-React" treated samples , with size of 1cm x 2cm, Lot # 950102-II 

3. Anesthesia reagents 

The animals were injected intrabdominally with a cocktail of a total of 1-3 ml of 

Ketamine (20 mg/ml ), Xylazine (2.5 mg/ml ) and Pentobarbital. 

4. Other 

5-0 coated vicryl suture, 

1cc syringes , 

Scissors, clamp, basin, clean towel etc. 

13 
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4.2 Procedure 

4.2.1 Implantation Procedures 

1. The surgical tools have been autoclaved. 

2. Pericardial samples were washed in separate saline bath. 

3. The rats were anesthesized with 1 ml ketamine cocktail, with the rats head 

down. 

4. Once in deep sleep, the rats were prepared and wrapped. 

5. Anterior abdominal wall was prepared sterilly with betadine solution and draped 

with sterile towels. Two subcutaneous pockets were created on anterior abdominal 

wall for accommodation of 1 cm x 2cm pre-cut segments of conventional 

glutaraldehyde treated and No-ReactTM treated pericardium. The pericardium strips 

were implanted subcutaneously in the abdominal wall, the No-ReactTM treated 

tissue was implanted in the right side, while the conventional glutaraldehyde 

treated pericardium strip was implanted in the left side. 

6. The skin was closed with labelled 5-0 vicryl sutures. 

7. The rats were fed Lab Rodent Diet (Purina Meals Inc.) and received humane 

care in compliance with the "Principles of Laboratory Animal Care" formulated by 

the National Society For Medical Research and the "Guide For the Care and Use 

of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources 

and published by National Institutes of Wealth (NIH Publication No. 86-23, 

revised 1985). 

4.2.2 Explantation Procedures 

1. The rats were sacrificed by intraperitoneal overdose injection (300 mg /kg ) of 

pentobarbital after 2, 3, 5 weeks, respectively. 

2. The pericardial samples were retrieved from abdominal wall, 	labeled 

appropriately for both conventional glutaraldehyde treated and No-ReactTM treated 

pericardium as G(i) or N(i), where i stands for each rat. 
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3. Small strips were cut from each sample, placed in 10% buffer formalin for 

histological examination . 

4. Each sample was washed with sterile 0.9 % NaCI before analysis. 



CHAPTER 5 

CALCIUM DETERMINATION BY ATOMIC ABSORPTION 
SPECTROPHOTOMETER 

Both in-vitro and in-vivo test, the calcium content of samples were measured by 

atomic absorption spectrophotometry. Flame atomic absorption spectrophptometer 

was used to perform the analysis. The wavelength used to measure the calcium 

was 428 nm. National Institutes of standards and Technology bovine Liver (SRM 

1577a, Gaithersburg, MD) was used as a quality control sample for all calcium 

content analyses. 

5.1 Apparatus and Reagents 

1. Apparatus 

a. Flame Atomic Absorption Spectrophotometer 

Perkin-Elmer model 603, Perkin-Elmer, Norwalk, CT. 

b. Analytical balance 

2. Reagents 

a. Calcium standard 1000ug/ml, ordered from Fisher co. 

b. Hydrochloric acid, ACS Reagent Grade, ordered from Fisher co. 

c. Lanthanum oxide, ACS Reagent Grade, ordered from Fisher co. 

d. Deionized-distilled water, made by Medical Preventive Lab, UMDNJ 

e. Nitric acid (70% and 20%), ordered from GFS Chemicals, Columbus, OH 

f. Perchloric acid (70%), ordered from GFS Chemicals, Columbus, OH 

3. Glassware 

a. Beaker 	 (24) 40m1 

b. Eppendorf/repipet 	(1) 12.5 ml reservoir 

16 



c. Graduated cylinder 

d. Graduated cylinder 

e. Volumetric flask 

f. Volumetric flask 

g. Volumetric flask 

h. Volumetric flask 

i. Plastic tube 

(1) 25m1 

(1) 250m1 

(24) 25m1 

(7) 100m1 

(2) 500m1 

(1) 1000m1 

(48) 	10m1 
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5.2 Solution Sample Acquisition and Preparation 

This analysis was to monitor the calcium in the solution which were changed 

every week in the in-vitro test. The range of the atomic absorption analysis data 

from the spectrophotometer was 0 ~ 200 µg / dl. The reading data was 

proportional to the calcium concentration in the above range. Therefore, the 

solution sample need to be diluted to fall into the range if.their concentration were 

higher than 200 µg / dl. 

Since the calcium concentration was around 2.9 mM (i.e. 11600 µg/dl ), 

the solution should be diluted at the ratio of 1:100. 

5.3 Tissue Sample Acquistition and Preparation 

Before being analyzed, tissue samples need to be digested with 3:1 nitric acid 

(70%) / perchloric acid (70%), diluted with 1% lanthanum. The preparation and 

analytical process takes 5 days. It was performed for 20 samples at the time. The 

processes were as following: 

1st day: 

24 beakers were soaked with 20 % nitric acid overnight; 
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2nd day: 

a. The 20 % nitric acid was returned to the original acid bottle; 

b. Each beaker was rinsed 5 times inside and outside thoroughly with distilled 

water; 

c. Each beaker was labelled; 

d. Each beaker was dried in 90 °C oven overnight; 

e. 24 flasks of 25 ml volume were soaked with 20 % nitric acid; 

f. 48 plastic tubes were soaked with 20 % nitric acid; 

3rd day: 

a. The beakers were removed from the oven quickly, placed in desiccator for 10 

minutes; 

b. Each beaker were weighed and recorded; 

c. Each beaker was returned to oven for another I hours; 

d. Steps a and b were repeated, till constant weight; the weight was recorded as 

WI; 

e. The samples were placed into beakers; 

f. 0.25g NBS was put in oven at 90°C overnight; 

g. All beakers were placed in oven at 90°C overnight; 

h. 20% nitric acid was returned from flasks and tubes to the original acid bottle. 

Flasks and tubes were rinsed 5 times with distilled water, then air dried. 

4th day: 

a. Beakers were removed from the oven and placed in desiccator to be cooled to 

room temperature (10 minutes); 

b. Beakers were weighed and recorded; 

c. Beakers were put in 90 °C oven for 1 hour; 
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d. Repeat steps a and b, till the weight was constant. Then the weight was recorded 

as W2, (the dry sample weight equal to W2 - WI); 

e. Samples were digested at 150 —175 °C with 10 ml mixture acid solution of 3 : 1 

nitric acid (70%) / perchloric acid (70%), till 0.5 ml liquor left in the beaker; 

f. The liquor was washed 5 times with millipore water and quantitatively transfer 

into 25 ml volumetric flask. Each time, the inside wall of beaker was washed as 

completely as possible. Then the 25 ml volumetric flask was shaken to make the 

solution sample uniform; 

g. The contents of volumetric flask was transferred to a plastic test tube. 

5th day: 

The sample solution was diluted with 1% lanthanum to prevent interference from 

silicon, aluminum, phosphate and sulfate, etc. Dilution ratio was chosen according 

to the calcium concentration in the sample. 

5.4 Standard Solution Preparation 

1. Preparation of 5% Lanthanum solution 

a. 29.32 grams of Lanthanum Oxide was transferred to a 500 ml volumetric flask; 

b. 25 ml of distilled water was added and swirled; 

c. 125 ml of concentrated hydrochloric acid was added slowly to the 50 ml 

volumtric flask; 

d. The solution was diluted with deionized-distilled water to 500 ml. 

2. Preparation of calcium standards in 0.5 % Lanthanum solution 

a. 100m1 of 5% lanthanum solution was diluted with 900m1 deionized-distilled 

water to form a 0.5% lanthanum solution; 
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b. 5.0 ml of calcium stock solution 1000 µg / ml was diluted to 100 ml in a 

volumetric flask with deionized-distilled water. The solution is equivalent to 50 

µg calcium / ml ; 

c. The 50 jig Ca/ml solution was diluted with 0.5 % Lanthanum solution according 

to the following ratios: 

Ca Standard 
	

Ca 
	

0.5 % 

µg/100ml 50 µg/ml Lanthanum 

0 0 100 

50 1 99 

100 2 98 

150 3 97 

200 4 96 

5.5 Analytical Procedures 

1. Samples and standard solutions were prepared; 

2. The power was turned on, appropriate lamp and burner head were installed; 

3. The lamp current, read on the Lamp Current Meter (in the lamp compartment), 

was set to the proper value with the lamp current control; 

4. The slit and wavelength were set to proper values; 

5. The SIGNAL control switch was set to CONC. (EM CHOP for flame emission 

measurements) and the MODE control switch to HOLD ; 

6. The BKGD CORR switch was set to AA-BG; 

7. The gas controls was set up and the gas was ignited; 

8. An integration time was selected by entering the desired value through the 

numerical keyboard and the INT key was pressed (the initial integration interval 

was set at 0.5 second when the instrument was turned on) ; 
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9. A blank solution was aspirated and the A2 key was pressed to zero the digital 

display; 

10. Calibration of the instrument. 

a. The desired value for Standard 1 was entered through the numerical keyboard 

and the Si key was pressed; 

b. Step a was repeat for S2 and S3; 

c. Si was aspirated and the Si key was pressed; 

d. Step c was repeated for S2 and S3. The standards must be aspirated in order of 

increasing concentration, during the calibration of the instrument. 

11. A sample solution was aspirated and the READ button was pressed. The 

indicator dot above the READ button would be lit until measurement is 

completed. 

12. Analysis was performed at 428 nm using air-acetylene flame, and read on the 

Perkin-Elmer model 603 atomic absorption spectrophotometer. 

5.6 Calculation 

5.6.1 Calcium Content in Solution Samples 

If the dilution ratio was 20µl sample : 2000 µl 1 % lanthanum and the reading on 

the atomic absorption spectrophotometer was 80 (µg / dl), then the calcium content 

in the solution sample would be : 

80 (µg/dl) x (2000 + 20 ) x10 (dl/l) 

40 (g/mol) x 20 x 1000 (µg/mg) 

2.02 mM. Ca 

5.6.2 Calcium Content in Tissue Samples 

If the dilution ratio was X, the reading on the atomic absorption spectrophotometer 

was 80 (µg/dl), then the calcium content in the tissue sample would be: 



X x 80 (µg/dl) x 25 ml  

100 (ml/d1) x (W2 - W1) 

with the unit of µg Ca / mg dry tissue. 
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CHAPTER 6 

RESULTS 

6.1 In Vitro Calcification 

6.1.1 Solution Sample Analysis Result in Vitro Studies 

Table 6.1 summarizes the results of the solution analysis for calcium 

concentration. Concentrations were expressed as mM. The average values were 

expressed as mean ± stantard error of the mean (SEM). Statistical significance was 

determined by two-tailed independent t-test. 

The calcium concentration in the original fresh solution A was 2.88 mM. 

There were two groups for each kind of pericardium in this test. For group 1, the 

solutions were changed with fresh solution A and analyzed every week. The 

results show that the average calcium concentration in the glutaraldehyde group is 

significantly higher than that in the No-ReactTM group ( p < 0.01 ). For group 2, the 

solution were not changed until the end of the test period (21 days). After 21 days, 

the solutions were analyzed, the calcium concentration in the glutaraldehyde group 

is also significantly higher than that in the No-ReactTM group ( p < 0.02 ). All these 

illustrate that there is more calcium transfer to the glutaraldehyde treated 

pericardium from solution A than to the No-React treated pericardium. 

6.1.2 Tissue Sample Analysis Result in Vitro Test 

1

. 21 days result 

In this test, the calcium concentration of solution A was 2.88 mM. Table 6.2 

summarises the result of the calcification of the two types of pericardium after 21 

days incubation at 37°C. The average calcium content of the control (pre-

incubation) conventional glutaraldehyde treated pericardial samples was 0.12 

µg/mg dry tissue, the average calcium content of the control (pre-incubation) No- 
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Table 6.1 In-Vitro Calcification Data: Calcium Content 
in the Incubation Solution (mM) 

Run # lth week 2nd week 3rd week Run # 3rd week 

N1-1 2.70 2.80 2.80 N2-1 2.80 

N1-2 2.88 2.88 2.75 N2-2 2.53 

N1-3 2.88 2.78 2.85 N2-3 2.78 

N1-4 2.80 2.88 2·88 N2-4 2.88 

N1-5 2.88 2·83 2.88 N2-5 2.78 

m ea n±SEM 2.83±0.04 2.83±0.02 2.83±0.03 2.75±0.06 

G1-1 2.60 2.47 2.50 G2-1 2.63 

G1-2 2·50 2·47 2.35 G2-2 2.50 

G1-3 2.50 2.37 2.50 G2-3 2·42 

G1-4 2.63 2·50 2.50 G2-4 2·53 

G1-5 2·63 2.53 2·50 G2-5 2.40 

mean +SEM 
2.57±0.03 2.47+0.03 2.47+0.03 2.49+0.04 
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ReactTM treated pericardial samples was 0.11 µg/mg dry tissue. After 21 days 

incubation in solution A, the calcium content in group 1 of conventional 

glutaraldehyde treated sample was 5.84 ± 0.67 µg/mg, that of No-React" samples 

was 1.28 ± 0.17 µg/mg. The difference is statistically significant ( p < 0.001). 

The calcium deposition on conventional glutaraldehyde treated sample is higher 

than that on No-React" samples. The data in group 2 shows that the calcium 

deposition in the group that the solutions were changed is much higher than that of 

the group which the solutions were not changed, demonstrating the calcium 

concentration of the solution as a factor which can affect the rate of calcium 

deposition. Statistc shows the difference is very significant ( p < 0.001 ). 

Figure 6.1 shows the test result. 

2. 56 days result 

In this test, calcium concentration of solution A is 1.8mM. 

Table 6.3 summarises the result of calcification at different temperature. 

Group 3 was incubated at 25 °C. The average calcium concentration in No-

React" group is 0.58 ± 0.04 µg/mg, while that in conventional glutaraldehyde 

group is 0.94 ± 0.07 µg/mg. The difference between these two types of percardium 

is very significant ( p < 0.01). 

Group 4 was incubated at 37 °C. The average calcium concentration in No-

React group is 8.78 ± 1.02 µg/mg, while that in conventional glutaraldehyde 

group is 14.58 ± 1.40 µg/mg. The difference between these two types of 

percardium is significant ( p < 0.03 ). 

The results show that the higher temperature the higher calcification rate. 

The difference of calcification between two types of pericardium is more 

significant at 37 °C than that at 25 °C. The temperature at which the incubation is 

done plays a significant role in this calcification process in vitro test. 



26 

Figure 6.2 shows the result of the in-vitro test after 56 days incubation as 

well as other parameters. 

6.1.3 Macroscopic Observation 

In 21 days in-vitro test, from the 8th day of incubation, we began to watch the 

pericardium surfaces. There were some white calcium spots attached on both 

surfaces of the conventional glutaraldehyde treated pericardial samples. There 

was almost no spot could be observed on the No-ReactTM treated pericardial 

samples. 

Table 6.4 is the record of the macroscopic observation. The spots on the 

conventional glutaraldehyde group 1 (solution were changed every week) were 

more than that oh group 2 ( solution were not changed during the test period). 

6.2 Pronase Digestion Test 

Table 6.5, 6.6 , 6.7 summarise the results of pronase digestion test of No-ReactTM, 

glutaraldehyde , and fresh pericardial samples , respectively . 

The results show that the weight loss of the above three types of pericardial 

samples are 10.3 ± 0.6%, 14.8 ± 1.1%, and 62.4 ± 1.3% respectively. The 

difference between any two of them is very significant ( p < 0.001). 

6.3 In-vivo Test---Subcutaneously Implants in Rats 

Table 6.8, 6.9, 6.10 summarise the results of calcification in pericardial samples 

explanted at 15, 21 and 35 days, respectively. The calcium concentrations of the 

pericardial samples were expressed as microgram calcium per milligram dry tissue 

weight. Statistical significance was determined by two-tailed independent t-test. 

The mean calcium content ± SEM of conventional glutaraldehyde treated 

pericardium after 15, 21 and 35 days of subcutaneous implantation were 49.58 ± 

9.60, 82.45 ± 10.40, and 134.32 ± 9.10 µg/mg, respectively. Comparatively, the 
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mean calcium content of No-ReactTM treated pericardium was signigicantly lower 

(p < 0.05) at each correstponding interval (19.58 ± 6.01, 32.27 ± 12.22, 21.43 ± 

5.21µg/mg, respectively). 

Figure 6.4, 6.5, 6.6 show the difference of calcificaiton in the two types of 

pericardial samples and show the significant variance among each individual rats. 

From these data, clearly the calcium content of the conventional glutaraldehyde 

treated pericardium is significantly higher than that of No-ReactTM treated 

pericardium. The calcium content increased significantly in conventional 

glutaraldehyde treated pericardium as the time of implantation is increased, but 

the No-ReactTM  treated sample did not behave likewise. 

Comparing these two types of pericardium, while for the conventional 

glutaraldehyde treated pericardium the calcium content have increased with the 

time of implantation, for the No-ReactTMtreated sample at 3 weeks, the calcium 

content have increased slightly. For unclear reason, however, decreased at 5 

weeks of implantation. 



CHAPTER 7 

DISCUSSION 

In order to understand and interpret calcification both in-vitro and in-vivo, it is 

necessary to know some of the properties of the valve materials and the current 

hypotheses of normal and pathologic calcification processes. 

Bioprosthetic valves --- bioprosthetic valves encompass all valves in which 

the leaflet function is carried out by materials derived from animal sources. These 

include homograft (allograft) valves derived from human cadavers, autografts 

derived from the recipient's own body (the utilization of the pulmonary valve in 

the aortic position) and heterografts derived from sources such as chemically-

modified bovine pericardium or whole porcine valves. In general, these valves are 

mounted on some type of frame or scent for use. Therefore, they contain synthetic 

materials such as metals and I or polymers in addition to animal tissue that has 

usually been modified in some way. 

The synthetic parts of these valves are more durable than the biologic parts. 

Stent failure is reported as less than 0.001% per annum, compared with tissue 

failure at a rate of 1% per annum. The latter is much higher than the failure rate 

reported for mechanical valves and raises serious questions about the long-term 

durability of these types of valves, with the exception of autograft valves which 

performed best overall, but are not widely used. Overall, the quality of life with a 

well-functioning biologic prosthesis is reported to be 'better than that with a 

mechanical valve and degeneration is often a slowly progressing phenomenon that 

can allow for planned reoperation. 

Degenerated allograft valves have developed calcification, whereas 

autografts are reported to have no evidence of calcification processes. Some 

attempts have been made to construct valves out of human-source biomaterials 
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such as fascia lata or dura mater, but with limited success as both these materials 

tended to degenerate and calcify. 

The first heterograft valves in use were chemically modified porcine aortic 

valves. These valves have good commissural supports but the valve orifice is 

increasingly restricted by a muscle shelf on the right coronary cusp, as valve size 

decreases. Improved valve orifice and pressure characteristics were achieved by 

using modified bovine pericardium to fabricate stent-mounted trileaflet valves. 

The dialdehyde, glutaraldehyde, is commonly used to introduce a stable cross-

linking network into the tissue, reducing its antigenicity and sterilising the tissue. 

All heterograft valves calcify at varying rates after implantation and this 

introduces a serious limitation on their useful life. This limitation is particularly 

stringent in the case of valves implanted into children when the rate of 

calcification of biologic prostheses is unacceptably high, resulting in early 

malfunction of the valve. 

Normal and pathologic calcification --- Normal calcification essentially 

equates with bone formation. Bone is formed extracellularly in collagenous 

matrices with deposition of hydroxyapatite, a crystalline form of calcium 

phosphate containing 10 calcium atoms, six phosphate molecules and two 

hydroxyl groups. Under normal conditions, the body's extracellular fluid is in a 

metastable state i.e. spontaneous precipitation of calcium phosphate does not occur 

although sufficient quantities of calcium and phosphate are present to allow 

growth of crystal structures once precipitation is initiated. One hypothesis 

proposes that the normal mineralization process is initiated by matrix vesicles: 

small, membranous, extracellular particles which have been observed in 

physiologic calcification as well as in some pathologic processes (14). 

Three classes of abnormal calcification in the body have been identified: 

heterotopic true.bone formation and two classes of soft tissue calcification, with 

no distinct bone matrix structure, i.e. metastatic calcification associated with 
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hypercalcaemia or hyperphosphataemia and dystrophic calcification associated 

with normocalcaemia and normophosphataemia (15). 

Heterotopic bone formation is often associated with the deposition of 

cartilage and generation of new osteoblasts. The initial stimulus for this process is 

unknown but may involve specific proteins e.g. bone morphogenic protein. 

Alkaline phosphatase is often elevated. Heterotopic bone formation after hip 

replacement surgery is more common in male than female patients. Studies of 

cartilage calcification have observed deposition of the protein chondrocalcin, 

identified as the c-propeptide of type II collagen, which is thought to bind to 

proteoglycan aggregates and is known to bind calcium and hydroxyapatite (16). 

Proteoglycan aggregates are not detected in non-calcifying cartilage. An ion-

exchange mechanism of cartilage calcification has also been suggested (17); 

calcium is present in high concentration in cartilage, but, normally, is largely 

bound to anionic groups of proteoglycans and hence inhibited from precipitating. 

This hypothesis suggests a local increase in phosphate concentration to release 

calcium from the proteoglycans, thus raising the calcium-phosphate product above 

the threshold for hydroxyapatite precipitation. 

Metastatic calcification occurs more frequently at sites where the local pH 

is abnormally high, with a higher probability of the calcium-phosphate product 

rising above the precipitation threshold. This commonly occurs in patients with 

renal disease and can be prevented by reducing plasma phosphate with ingested 

aluminum hydroxide. Ingestion of large amounts of phosphate has been shown to 

result in metastatic calcification in animal experiments and may do the same in 

humans (15). 

Hypotheses of bioprosthetic heart valve calcification --- Calcification of 

artificial heart valves is of the dystrophic type and may be intrinsic (directly 

associated with the biomaterial) or extrinsic (superficial to the biomaterial and 

associated with debris attaching to the surface of the material) to the material 
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involved (18). The mechanism is obscure and there are several current hypotheses. 

It has been reported that calcium is deposited earliest in connective tissue cells of 

the valve material and later in collagen fibrils-calcification also occurred in 

acellular collagen sponge implants. It is likely, therefore, that calcification is not 

specific in terms of the gross picture of initiation sites, but may be specific to 

molecular binding sites available on a variety of macromolecular structures. 

Calcification may be mediated by extracellular vesicles. These could be 

matrix vesicles as observed in physiologic mineralization, membranous cell 

fragments produced as by-products of tissue damage or mitochondria of damaged 

cells (14). Such vesicles have been proposed as a means of achieving locally high 

concentrations of calcium and phosphate, with the initial site of crystal formation 

being inside the vesicle. The presence of calcium-phosphate-acid phospholipid 

complexes has been demonstrated in matrix vesicles and membrane fractions (19). 

These complexes, in vitro, were capable of nucleating hydroxyapatite but, in vivo, 

there is no evidence of crystalline calcium phosphate being stored in intact 

vesicles. It is thought that magnesium present in vivo stabilises amorphous calcium 

phosphate in the vesicles and that nucleation of hydroxyapatite does not occur 

until the membrane is ruptured, releasing the magnesium and exposing the 

complex to the extracellular fluid. 

When tissue damage occurs, the normal homeostatic mechanisms for 

removing intracellular calcium may break down resulting in a massive build-up of 

calcium within the damaged cell or cell fragment by passive diffusion from the 

extracellular fluid. The calcium-phosphate product is then exceeded and 

spontaneous crystal precipitation occurs within the membrane. This hypothesis 

could account for both intrinsic and extrinsic calcification observed in artificial 

heart valves: extrinsic calcification would occur when dead or damaged cells or 

cell fragments lodged on the surface of valve leaflets and then calcified, whereas 

intrinsic calcification would occur to the damaged cells present in the leaflet tissue 
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itself due to the pretreatments with chemicals such as glutaraldehyde, or because 

of mechanical damage resulting from leaflet flexion. By this mechanism, it would 

be obvious that calcification of valves made from artificial polymers e.g. 

polyurethanes could only be of the extrinsic type. 

In leaflet samples implanted subcutaneously in rats and enclosed in 

Millipore filters, calcification still occurred, implying that host cellular factors, at 

least, are not involved although damaged cells present in the leaflet material may 

still be a factor. This work also implies that calcification is not related to host 

immunologic processes, as does work with athymic mice in which implants 

calcified as readily as in normal mice. In vitro experiments have shown that 

collagen is capable of taking up calcium and phosphate. 

The main sites of calcific deposition in porcine bioprostheses were shown 

to be within the cuspal connective tissue and in small surface thrombi (20). The 

initial form of deposition was amorphous calcium phosphate and the concept 

proposed was that phosphate formed covalent bonds connecting inorganic and 

organic components through the E-amino groups of lysine and hydroxylysine in 

collagen. Many hydroxylysine groups are normally glycosylated and it was 

suggested that proteoglycans and glycoproteins normally mask such binding sites 

and that these are lost during glutaraldehyde processing thus unmasking calcium 

phosphate binding sites in the tissue. Calcium phosphate uptake by collagen has 

also been associated with proteolipid bound to collagen. Collagen plus proteolipid 

calcified in a metastable calcium phosphate solution whereas collagen minus 

proteolipid failed to calcify and proteolipid alone did calcify. The proteolipids 

concerned were composed of hydrophobic protein with acidic phospholipid and 

had high affinity for collagen. Neither the hydrophobic protein nor the acidic 

phospholipid fraction was capable of initiating calcium phosphate crystallization 

alone and, even in complex, some of the lipid components seemed to possess an 

inhibitory function and may perform a regulatory function in vivo. Proteolipids, of 
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course, are present in all membrane structures and may be relevant to the proposed 

mechanism of nucleation of calcification by membranes and matrix vesicles. 

Proteins, such as osteocalcin, which contain the amino acid gamma-

carboxyglutamic acid, have a strong affinity for calcium. The synthesis of such 

proteins are dependent on vitamin K. They have been found in close association 

with regions of extending mineralization, and quantities of these proteins in 

implants have been found to increase proportionally with calcium (21). Warfarin, 

however, as an inhibitor of vitamin K-dependent processes did not block 

calcification, although osteocalcin found in implants was reduced (22). This 

protein may act as a metabolic control of calcification by binding calcium and 

hence making it unavailable for proliferation of hydroxyapatite. Another gamma-

carboxyglutamic acid-containing protein, atherocalcin, has been found in 

atherosclerotic plaques and, unlike osteocalcin, had been observed to enhance 

hydroxyapatite formation. 

Studies of calcified human aortas have shown significant increases in the 

cross-linked peptide, histidinoalanine, which occurs in an acidic protein probably 

associated with collagen or elastin. The histidinoalanine was concentrated in the 

mineralized regions of the aortic tissues. It is unknown whether this peptide is part 

of the calcified elastin in the aortic tissue or is part of a discrete peptide present in 

the tissue (23). 

The concept of "neutral binding site/charge neutralization" has been 

proposed to explain calcification of aortic elastin. This hypothesises that the 

binding sites for calcium are the carbonyl oxygens of the peptide backbone. The 

positively charged bound calcium would then sequester phosphate to maintain 

charge neutrality, thus developing the potential for hydroxyapatite formation. 

Support for this concept was obtained by chemically blocking purified elastin to 

achieve neutrality and obtaining significant binding of calcium: exposure of 

blocked elastin to calcium and phosphate solutions resulted in calcification of the 



34 

elastin distributed throughout its bulk (24). It is also suggested that , normally in 

vivo, elastin is protected from calcification by the close association of 

proteoglycans and glycoproteins. Model peptides were shown to bind calcium via 

the carbonyl oxygens of their peptide backbones. Collagen has the potential to 

react similarly. 

It has been suggested that calcification results from the removal of specific 

inhibitors. This mechanism implies that, under normal physiologic conditions, 

calcification is regulated by the presence of inhibitors and that mineralization only 

occurs locally where these inhibitions have been removed. Proteoglycans have 

previously been noted in this context. Nucleotide di- and tri-phosphates, low 

molecular weight metabolites with two ester phosphates, and pyrophosphate 

inhibit the transformation of amorphous calcium phosphate into hydroxyapatite 

(25). Alkaline phosphatase reverses this inhibition and has been suggested as a 

possible agent for promotion of mineralization. The action of alkaline phosphatase 

is of particular interest in view of the accelerated calcification of artificial heart 

valves implanted in children and the elevated amounts of the 'bone' isoenzyme of 

alkaline phosphatase found in this group compared with the adult population (26). 

Early experimental work on synthetic elastomeric heart valves indicates that 

calcification may also be a problem for these materials. A polytetrafluoroethylene 

valve developed progressive calcification associated with an expanded form of the 

material and infiltration of the material by host cells (27). Polyurethane valves 

implanted in calves calcified primarily at the material surfaces. Similar valves 

calcified in sheep but no descriptive detail was reported (28). The problem has 

also been observed in polyurethane-coated blood pumps, such as ventricular assist 

devices and artificial hearts, in which the calcification has been associated with 

stresses and defects in the material. The association of calcification in such valves 

with the material itself (intrinsic calcification) or with host factors attaching to the 

material (extrinsic calcification) is not yet clear· If the synthetic elastomer is 
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directly involved, then the calcification mechanisms suggested so far seem 

inadequate. The features common to all these valve types include flexibility, 

permeability and the ability to adsorb I absorb certain blood components. 

A physico-chemical hypothesis of calcification has been proposed by Bruck 

(29), and it relates to the penetration and absorption of blood components by 

flexing, deforming elastomers. Relevant factors in this process include 

thermodynamic solubility parameters, domain structures, defects and porosity. All 

these factors are functions of chemical composition, molecular weight and its 

distribution, branching and cross-linking, the presence of amorphous and 

crystalline domain structures, chain stacking and kinking. Absorption of blood 

substances into the elastomer is closely related to the thermodynamic solubility 

parameters of the biomaterial and the absorbed substance. By this principle, 

absorption of water, native proteins and phospholipids by either valve type is 

unlikely. Glutaraldehyde-treated tissue valves could absorb lipid-soluble vitamins 

as could polyurethanes. The polyurethane soft segments, however, would also 

absorb triglycerides, cholesterol and esters. Bruck concludes that these materials 

will always absorb some blood components and that this process, over time, will 

lead to biomaterial degradation. The direct relationship to calcification is not clear, 

but it has been suggested that lipid components absorbed in this way by polyether 

soft segments of polyurethanes initiate calcification in vivo by complexation. 

The effect of polyurethane porosity has been studied. As porosity of the 

material increased, the degree of tissue ingrowth increased, but there was no 

relationship between porosity and calcification, at least in materials implanted 

infra-muscularly in rats up to 12 weeks. Specimens seeded with calcium, however, 

showed extensive calcification with limited tissue ingrowth (30). 

Several groups postulate a close connection between the mechanical stress 

applied to the xenograft valve and the calcification process. It is unclear whether 

damage caused by the mechanical stress initiates calcification or calcification 
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caused increased stress resulting in membrane rupture. It has been shown that 

calcification occurs in regions of highest stress-strain (31). 

This relationship has been more closely investigated by Deck et al. (32) and 

Thubrikar et al. (33), who postulated that collagen breakdown is initiated by 

excessive wear caused by mechanical stress. These authors implanted porcine or 

pericardial valves into calves with or without radio-opaque markers tagging the 

leaflets. Calcification occurred at regions of highest stress for both types of valve, 

but there appeared to be a difference in mechanism. The porcine valves developed 

visible calcification later than the pericardial valves and appeared to be subject to a 

mode of deformation resembling pure bending i. e. with the formation of internal 

voids within the leaflet tissue in which the calcium was initially deposited. 

Pericardial valves, in contrast, showed early visible calcification and a deformation 

mode of internal shearing, creating clefts between layers of collagen with 

calcification of the collagen along the planes of shear. Suggested mechanisms for 

the calcification include exposure of calcium-binding sites of collagen, or the 

appearance of collagen breakdown products capable of initiating calcification. 

Simple surface damage to the leaflets as caused by the radio-opaque tags did not 

appear to enhance calcification. 

Work with valved ventricular assist devices implanted in calves found 

microscopic calcification within the pseudoneointimal layer which was closely 

associated with the flexing region of the pump. It was proposed that intrinsic 

calcification was of mechanical origin and that high cyclic strains disrupted the 

pseudoneointimal structure, thus initiating calcification in some way. They tested 

several tissue valves, finding that bovine pericardial valves gave the highest 

incidence of calcification compared with porcine or human dura mater valves. 

The relationship between mechanical stress and calcification is supported 

by reports that implants in the right side of the heart are less subject to 

calcification than those in the left side (34). The stress levels on closed valves in 
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the mitral position are greater than in the aortic position, both of which are greater 

than those in the tricuspid position. One study of bioprosthetic valves explanted 

from juvenile sheep contradicts theses findings, with valves explanted from the 

tricuspid position being more heavily calcified than valves from the mitral 

position (35). 

An accelerated rate of mechanical damage, caused by increased stresses due 

to relatively small valve orifices combined with higher resting heart rates in 

children compared with adults may contribute to the accelerated calcification of 

bioprosthetic valves seen in this group. 

Finite element analysis has been used to show a similar strong correlation 

between stress-strain distribution and calcification in polyurethane diaphragms of 

blood pumps, with surface defects forming in the flexing regions. It has been 

further suggested that substantial heat is generated by flexing polyurethane 

membranes which would accelerate any chemical process, e.g. calcification, 

occurring in the vicinity. It is also possible that disruption of the surface structure 

of the polymer during flexion would expose calcium binding sites and thus 

enhance calcification. This is important particularly in view of the propensity of 

polyurethane materials to creep over time, resulting in thinning of the polymer 

structure and ,probably, greater exposure of segment components normally buried 

within the polymer which might have increased affinity for calcium phosphate. 

This process is likely to be enhanced in flexing structures. 

There are many hypotheses relating to the process of biomaterial 

calcification. Many of these would seem to be more in the nature of promoting or 

inhibiting factors affecting the process, and the primary event has not yet been 

clearly defined. It is not clear whether calcification is intrinsic to the biomaterial 

itself or due to extrinsic factors, e.g. calcification of cell debris attached to 

biomaterial surfaces. In the latter case, procedures to improve biocompatibility, 

particularly with polyurethane materials, might prove beneficial. 
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It would seem logical to expect a similar mechanism of calcification to 

operate, whatever the biomaterial involved and if, of course, that material calcifies. 

Thus a likely candidate for a general calcification mechanism is cation chelation 

by groups present in the material, containing lone pairs of electrons susceptible to 

interactions with electron-deficient species. Such groups are available in both 

biologic and synthetic elastomeric materials: the carbonyl oxygens of the backbone 

of collagen and the polyether/polyester oxygens of the soft segments of 

polyurethanes. Carbonyl oxygens of the urethane and urea linkages of 

polyurethanes potentially could also be involved. Phosphate would be carried 

along in the process as the accompanying anion to maintain charge neutrality. 

This mechanism could explain both intrinsic and extrinsic calcification, as 

cell debris causing extrinsic calcification would have similar binding sites to 

initiate calcification. By this mechanism, other factors would simply shift the 

equilibrium of the calcium-binding process in one direction or the other; if the 

shift were towards calcium binding , then the degree to which that occurred might 

influence mineralization by increasing the local calcium-phosphate product above 

the level needed for precipitation. Once hydroxyapatite was formed the reaction 

would be irreversible as the product is insoluble. 

A further implication of this hypothesis is that calcification would not be 

dependent on biologic processes but should also occur in vitro under relatively 

simple reaction conditions. If this proved to be the case, it should be possible to 

obtain a clearer definition of the primary process involved in calcification. The 

development of controllable in vitro calcification systems should enable the 

advance of understanding of calcification and its control. 

The results presented here indicate that much greater calcification is 

produced by in vivo than in vitro methods, although significant calcification is 

produced in vitro. Calcification in vivo occurs relatively rapidly and thus it is 

difficult to produce controlled low degrees of calcification for investigation of the 
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early stages of the process. Selection of specific degrees of calcification is much 

simpler in the in vitro systems in which the specimens may be observed 

continually. 

Static tests in vitro did produce calcification, but the degree of calcification 

produced under these test conditions was extremely low, although significantly 

greater than uncalcified control material. The testing time could extended and the 

test solutions replenished at intervals, thus maintaining the supply of calcium and 

phosphate to the test material over long periods of time and increasing the degree 

of calcification achievable by this system. The prime disadvantage of such static 

systems is their inability to test the biomaterial in similar configuration and stress 

conditions under which it would be expected to function as a heart valve. 

Calcification has been studied both in vivo and in vitro. The in vitro tests 

have demonstrated that specific blood factors are not required for calcification to 

take place, although theses may influence the rate of reaction. The hypothesis of 

Levy et al (35). regarding the role of localized tissue phosphate as a focus of initial 

calcification may be supported by the erratic early uptake of phosphate from the 

calcifying solution in this study, which does not begin to parallel calcium uptake 

until the calcification process is well established. 

The association of calcification with surface trauma may be a result of 

exposure of free binding sites for calcium within the pericardial tissue, previously 

protected by the intact pericardial surface. It is not known whether this is a feature 

of damage to collagen fibres perse or related to a difference in the quality of 

chemical modification of the pericardium, by glutaraldehyde, between the surface 

and sub-surface regions of the tissue. It is worth, however, emphasizing the need 

for careful handling of bioprostheses prior to and during implantation, to minimize 

the likelihood of compromising the lifetime of the valve. 

The No-ReactTM anticalcification treatment as well as the conventional 

glutaraldehyde process are two different modifications of the pericardial tissue. In 
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this test series, both in vitro and vivo test show that glutaraldehyde treated 

pericardium sample calcified to a much greater extent than No-ReactTM treated 

pericardium sample. This also illustrates the ability of the No-ReactTM treatment to 

significantly delay the degenerative mineralization of bovine pericardial tissue. 

Therefore, the way of modification plays an important role in the calcification 

process. 

The pronase digestion test shows that the No-ReactTM samples have less 

weight loss after digestion, and glutaraldehyde samples are richer in type I 

collagen. It has been suggested that the inflammatory response is due to 

chemotactic potential of collagen peptides generated from the collagenase 

digestion. Furthermore, our experiments show that although initiation of tissue 

mineralization does not require host mediated response, the in-vivo milieu has 

potentially an important role in accelerating the calcification process. This 

phenomenon is further illustrated by the intense inflammatory reaction and the 

resulting tissue disruption noted in our morphological examinations of 

glutaraldehyde treated pericardium, and the remarkable absence of such 

destructive features in No-ReactTM treated tissue. Probably, this is one of the 

reasons that No-ReachTM treated samples are less calcified than that treated by 

glutaraldehyde. Further experiments needed to be performed to investigate the 

mechanism of the calcification and their difference between the two kind 

modifications. 

Materials which calcify rapidly in these systems are unlikely to do better in 

humans. Material which show promise in these test systems may be selected for 

more intensive investigation in-vivo to decide whether or not their promise will 

extend to the ultimate, human implanted valve. 



CHAPTER 8 

SUMMARY 

In this study, we compared calcification of bioprocess of No-ReactTM and 

conventional glutaraldehyde treated pericardium by both in-vivo and in-vitro 

methods. The results presented here indicate that much greater calcification is 

produced by in-vivo method than by in-vitro method. Static test in-vitro did 

produce calcification maintaining the supply of calcium and phosphate to the test 

material increase the calcification. Temperature is one of the factors affecting 

calcification. The calcification of glutaraldehyde treated pericardium is more 

severe than No-ReadTM treated pericardium both in-vivo and in-vitro test. The in-

vivo test also shows that there is a substantial variance in the rate of calcification 

of tissues implanted in apparently the same group of animals (rats). 
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APPENDIX A 

Appendix A contains the tables of the experimental results in Chapter 6. 
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Table 6.2 In-Vitro Calcification Data: 21 Days Incubation 
Results (Tissue Samples) 

Run 

# 

Solution 

change 

tissue dry 

weight(mg) 

initial Ca 

(ug / mg) 

final Ca 

(ug/mg) 

Ca increase 

percentage 

G1-1 yes 80.9 0.12 7.48 6031% 

G1-2 yes 83·4 0.12 6.66 5372% 

G1-3 yes 87.2 0.12 4.29 3459% 

G1-4 yes 76.1 0.12 4.55 3672% 

G1-5 yes 101.5 0.12 6·20 5004% 

mean±SEM 5.84±0.67 4707% 

G2-1 no 72.5 0·12 4.82 3885% 

G2-2 no 101.5 0.12 1.65 1333% 

G2-3 no 102.8 0·12 2.94 2373% 

G2-4 no 69.1 0.12 4.38 3530% 

G2-5 no 87.2 0·12 3.94 3179% 

mean±SEM 4.02±0.34 2860% 

N1-1 yes 58.1 0.11 1.47 1287% 

N1-2 yes 94·1 0·11 0.94 820% 

N1-3 yes 77.5 0·11 1·85 1619% 

N1-4 yes 77.1 0.11 1.07 939% 

N1-5 yes 66·4 0.11 1.08 945% 

mean±SEM 1.28±0.17 1122% 

N2-1 no 61.6 0.11 1·03 901% 

N2-2 no 69·2 0·11 1.19 1046% 

N2-3 no 77.8 0.11 0.92 806% 

N2-4 no 73.6 0·11 1·05 918% 

N2-5 no 58·3 0·11 1.13 993% 

mean±SEM 1.06±0.05 933% 
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Table 6.3 In-Vitro Calcification Data: 56 Days Incubation 
Results (Tissue Samples) 

Run 

# 

Temperature 

( C) 

Ca (µg/mg) 

No-React group 

Ca (ug/mg) 

glutaraldehyde group 

3-1 25 0·44 0.69 

3-2 25 0.67 0·92 

3-3 25 0.54 0.98 

3-4  25 0·66 1·14 

3-5 25 0.58 0.96 

mean±SEM 0.58±0.04 0.94+0.07 

4-1 37 7.54 18·78 

4-2 37 5.78 11.48 

4-3 37 9.57 11.71 

4-4 37 9.12 16.45 

4-5 37 11.87 14.49 

mean±SEM 8.78±1.02 14.58±1.40 
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Table 6.4 In-Vitro Calcification Data: Calcium Spots 
on the Pericardium Samples 

day # 1 8 9 12 13 14 15 16 19 21 

G1-1 0 5 6 8 9 10 11 11 11 12 

G1-2 0 2 2 5 5 5 6 6 7 8 

G1-3 0 5 7 7 8 8 9 9 9 9 

G1-4 0 3 3 4 4 4 5 5 6 6 

G1-5 0 2 2 3 4 4 4 4 4 4 

G2-1 0 7 8 8 8 8 8 8 8 9 

G2-2 0 0 0 0 2 2 2 2 3 3 

G2-3 0 0 1 2 2 2 2 2 3 4 

G2-4 0 1 2 3 3 3 3 3 3 3 

G2-5 0 6 6 6 6 6 6 6 6 6 

N1-1 0 0 0 0 0 0 0 0 0 0 

N1-2 0 0 0 0 0 0 0 0 0 0 

N1-3 0 0 0 0 0 0 0 0 0 0 

N1-4 0 0 0 0 0 0 0 0 0 1 

N1-5 0 0 0 0 0 0 0 0 0 0 

N2-1 0 0 0 0 0 0 0 0 0 0 

N2-2 0 0 0 0 0 0 0 0 0 0 

N2-3 0 0 0 0 0 0 0 0 0 0 

N2-4 0 0 0 0 0 0 0 0 0 0 

N2-5 0 0 0 0 0 0 0 0 0 0 

G1-1 to G2-5 -- Conventional glutaraldehyde treated pericardium 

N1-1 to N2-5 -- No-React treated pericardium 



Table 6.5 Pronase Digestion Data: No-ReactTM Treated Sample 

Run 

No. 

initial 

wet big 

wet 

small 

dry 

small 

Ratio of 

small dry/wet 

initial 

dry big 

final 

dry big 

after digest 

wet big 

Ratio of 

fin/ini dry big 

Weight 

loss 

1 107·8 38.1 13·2 0·35 37.3 32.8 95.7 0.88 12.2% 

2 99·4 34.5 12.5 0·36 36.0 31.5 93.6 0.87 12.5% 

3 128.5 35.8 12.8 0.36 45.9 41.5 111·3 0.90 9.7% 

4 154·6 77.4 25.6 0·33 51.1 47·4 147.8 0.93 7.3% 

5 125.4 42·5 15.5 0·36 45.7 41.8 124.8 0·91 8.6% 

6 126.9 39·2 13·7 0.35 44.4 40.1 115.3 0.90 9.6% 

7 128.0 53·1 17.9 0·34 43.1 38.7 130.0 0.90 10.3% 

8 128.7 43·6 16·6 0.38 49.0 43·3 129.1 0.88 11.6% 

9 154·1 78.4 29.3 0.37 57.6 52.5  169.7 0.91 8.8% 

10 119·8 50.3 16.7 0.33 39·8 34.9 114.2 0.88 12.3% 

mean±SEM 10.3+0.6% 



Table 6.6 Pronase Digestion Data: Glutaraldehyde Treated Samples 

Run 

No. 

initial 

wet big 

wet 

small 

dry 

small 

Ratio of 

small dry/wet 

initial 

dry big 

final 

dry big 

after digest 

wet big 

Ratio of 

fin/ini dry big 

Weight 

loss 

1 157.8 34·8 9.2 0.26 41·7 37.3 129.0 0.89 10.6% 

2 196.0 76.3 20.8 0.27 53·4 46 160.2 0.86 13.9% 

3 104.7 46.3 13·1 0.28 29.6 27 94.6 0.91 8.9% 

4 142.0 58.1 16·2 0.28 39·6 32.3 118.8 0.82 18.4% 

5 134.6 46.6 13·5 0.29 39.0 31.1 120.1 0.80 20.2% 

6 210.2 67.4 18.7 0.28 58.3 50.1 180.2 0.86 14.1% 

7 98.2 40.7 12.6 0·31 30.4 25.8 94.6 0.85 15.1% 

8 178.8 51.7 15.0 0·29 51.9 44.7 171.8 0.86 13.8% 

9 143.5 49.6 14.3 0.29 41.4 34.8 112.5 0.84 15.9% 

10 175.2 75.3 22.1 0.29 51.4 42·7 162.6 0.83 17.0% 

mean±SEM 14.8±1.1% 



Table 6.7 Pronase Digestion Data: Fresh Pericardial Samples 

Run 

No 

initial 

wet big 

wet 

small 

dry 

small 

Ratio of 

small dry/wet 

initial 

dry big 

final 

dry big 

after digest 

wet big 

Ratio of 

fin/ini dry big 

Weight 

loss 

1 210.1 111·7 33.9 0.30 63.8 27.9 76.0 0·44 56.2% 

2 179·2 67.3 21.9 0.33 58.3 20.1 40.7 0.34 65.5% 

3 137.2 101·2 30·7 0·30 41·6 14.6 42.8 0.35 64.9% 

4 117.2 49.5 17 0.34 40.3 15.1 40·8 0.38 62.5% 

5 180.3 78.7 24.7 0.31 56·6 21.9 65·1 0.39 61.3°A) 

6 309 101.6 32.2 0·32 97.9 42.7 136.0  0·44 56.4% 

7 122.3 55.2 19·9 0·36 44.1 15.2 37·0 0.34 65.5% 

8 315 144.7 44 0·30 95.8 38.9 191.3 0.41 59.4% 

9 92.7 36.7 13.9 0.38 35.1 12.4 38·9 0.35 64.7% 

10 79 41 13.6 0.33 26.2 8.5 20.9 0·32 67.6% 

mean±SEM 62.4±1.3% 
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Table 6.8 In-Vivo Calcification Data: Comparison of Calcium 
Content between No-React and Glutaraldehyde 
Treated Tissue Samples (15 Days) 

specimen 

# 

initial Ca 

(ug/mg) 

tissue 

dry weight(mg) 

final Ca 

(ug/mg) 

N1 0.11 39.7 18.63 

N2 0.11 33.7 7.63 

N3 0.11 42.6 34.62 

N4 0·11 40.5 1.46 

N5 0.11 49.7 35.56 

mean±SEM 19.58±6.01 

G I 0.12 43.6 87.13 

G2 0.12 47.8 46·91 

G3 0·12 49.6 40·31 

G4 0.12 42·6 33·43 

G5 0.12 29·7 40·13 

mean±SEM  49.58±9.60 
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Table 6.9 In-Vivo Calcification Data: Comparison of Calcium 
Content between No-React and Glutaraldehyde 
Treated Tissue Samples (21 Days) 

specimen 

# 

initial Ca 

(ug/mg) 

tissue 

dry weight(mg) 

final Ca 

(ug/mg) 

N1 
0.11 49.6 60.07 

N2 0.11 43·4 17.45 

N3 0·11 42.4 44.66 

N4 0.11 54.9 6.90 

mean±SEM 32.27±12.22 

G1 0·12 34.2 64·97 

G2 0.12 43.1 64.01 

G3 0.12 42.1 101·96 

G4 0.12 47·1 98.85 

mean±SEM 
82.45±10.40 
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Table 6.10 Comparison of Calcification In-Vivo Test between No-React 
and Glutaraldehyde Treated Tissue Samples (35 Days) 

specimen 

# 

initial Ca 

(ug/mg) 

tissue 

dry weight(mg) 

final. Ca 

(ug/mg) 

N1 0.11 34·5 14.6 

N2 0.11 39.7 29.1 

N3 0.11 53.4 32.0 

N4 0.11 32.2 14·0 

N5 0.11 60.7 7.5 

N6 0.11 50.8 8·9 

N7 0.11 37.9 43.8 

mean±SEM 21.43±5.21 

G1 0.12 35·7 140.8 

G2 0·12 68·3 125.1 

G3 0.12 85·9 169.6 

G4 0.12 47.4 91·2 

G5 0.12 54·4 135·8 

G6 0.12 69.0 128·9 

G7 0.12 52·3 148·9 

mean±SEM 134.32±9.10 



APPENDIX B 

Appendix B contains the figures of the experimental results in Chapter 6. 



Figure 6.1 21 Days In-Vitro Tests (Pericardial Samples) 



Figure 6.2 Comparison of Calcification Rate between No-React and Glutaraldehyde Treated 

Tissue Samples (56 days) 



Figure 6.3 Calcium Spots on Pericardium Sample 



Figure 6.4 Comparison of Calcification Rate In-Vivo Tests (15 days) 



Figure 6.5 Comparison of Calcification Rate In-Vivo Tests (21 days) 



Figure 6.6 Comparison of Calcification Rate In-Vivo Tests (35 days) 
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