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ABSTRACT 

DESIGN FOR QUALITY MANUFACTURABILITY ANALYSIS 
OF MISSING/MISPLACED PARTS 

AND PART INTERFERENCE 

by 
Altaf Yusuf Tamboo 

Design for Quality Manufacturability (DFQM) is an approach that addresses the 

issue of quality manufacturability (QM) - the likelihood that defects will occur during 

manufacture of a product in a standard plant. The DFQM methodology is based on the 

premise that defects found in assembled products are often influenced by some features of 

the design and/or assembly process (influencing factors). These influencing factors cause 

defects in the presence of certain error catalysts. 

One of the influencing factors is geometrical features such as shape and symmetry. 

A classification scheme for part shape and symmetry is developed. This scheme is 

summarized in a chart, in which each block bears a unique alpha-numeric code 

representing a class of parts. The chart is used to identify a given part with respect to its 

class. In DFQM analysis, the alpha-numeric code suggests potential problems which the 

part is likely to experience during its assembly. 

Missing/Misplaced parts and Part Interference are two defect classes that are 

analyzed for QM. Error catalysts that promote the occurrence of these defects are 

identified and related to affecting factor variables using catalysis graphs. Each catalysis 

graph leads to a value between "0" and "1", based on the factor variables for the given 

design, implying the likelihood of occurrence of that specific defect. These values are 

normalized to obtain a QM score for the design. Higher the score, better the design from 

QM perspective. 
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CHAPTER 1 

INTRODUCTION 

1.1 Modern Manufacturing 

Manufacturing is undergoing rapid changes due to the introduction of new technologies 

and new methods. Manufacturing enterprises are being required to react to global 

competition, rapid changes in consumer preferences, proliferation of products, and a 

variety of competitor strategies to increase market share. In this active mode of 

competitiveness, manufacturing enterprises are engaged continuously in process and 

design improvements to build better products and increase consumer confidence and 

satisfaction. 

Traditionally, the designing of products is the sole responsibility of the designer. The 

designer sends the final design with complete specifications and drawings to process 

planning. If conflict arises, the design is returned to the designer for modifications. The 

process is repeated until process planning is completed and the design is sent to the 

manufacturing department. Manufacturing ensures that the product can be made according 

to specifications. The design of a product and its production are thus traditionally 

performed sequentially, without concurrent consideration of the potential manufacturing 

procedures. This results in less satisfactory products being offered to the consumer. It is 

estimated that 80% of a product's cost is committed during the design stage. Moreover, 

consumers are becoming aware that quality, serviceability, and reliability are desirable 

features and are an important determinant of the price they are willing to pay. This has led 
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to added complexity to manufacturing and product design. Therefore, these aspects should 

be considered early and designed in the product. Thus, a thorough integration of 

manufacturing activities such as marketing, product design, production process design, 

and assembly, is required to shorten the cycle time from marketing studies, through 

prototyping and full production. This has necessitated the evaluation of Simultaneous or 

Concurrent Engineering (CE) in which all relevant components of the manufacturing 

system including outside suppliers are made active participants in the design effort from 

the start. The team approach helps ensure that total product knowledge is as complete as 

possible at the time each design decision is made. One of the techniques in the field of 

Concurrent Engineering is called Design for Manufacturability (DFM). 

1.2 Design for Manufacturability (DFM) 

DFM may be defined as an approach for designing products so that, (i) the design is 

quickly transitioned into production, (ii) the product is manufactured at minimum cost, 

(iii) the product is manufactured with minimum effort in terms of processing and handling 

requirements and (iv) the manufactured product attains its designed level of quality. DFM 

represents a new awareness of the importance of design as the first manufacturing step. It 

recognizes that a company cannot meet quality and cost objectives with isolated design 

and manufacturing engineering operations. The essence of DFM approach is the 

integration of product design and process planning into one common activity. There are 

many techniques that deal with (i), (ii), and (iii) of the above listed objectives of DFM. The 
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only technique that focuses explicitly on the manufactured quality of the product is known 

Design for Quality Manufacturability (DFQM). 

1.3 Design for Quality Manufacturability (DFQM) 

Quite frequently, a product can be found to be faulty not due to its basic design but 

due to the quality defects which were caused during its manufacture. Design for Quality 

Manufacturability is defined as a methodology involving the activities of product design, 

manufacturability analysis, process design and quality management for the efficient design 

of products which have a very low or almost no chance of producing defects. This also 

means that the products are so designed that they are most suited to manufacturing skills 

of the setup which thereby prevents the occurrence of defects. 

The basic objective of DFQM is to enable the user to improve the design so as to 

reduce the likelihood of defective product being manufactured. It is an approach which 

would analyze a design for the likelihood of quality problems that might arise during its 

manufacture. It focuses on eliminating or improving features which can influence a quality 

defect during assembly. For example, excessive number of mating surfaces are likely to 

influence misalignment between two parts in an assembly. DFQM focuses explicitly on the 

"Quality Manufacturability (QM)" of a product and not on the design quality. The design 

itself can be technically very sound, but it can also be prone to manufacturing quality 

defects. 
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1.4 Research Objective 

This thesis forms part of a three year research on DFQM which is currently underway. The 

research is partially funded by a grant from the National Science Foundation (NSF). Using 

the DFQM architecture, this project proceeds further by classifying parts with respect to 

their symmetry and geometry so that any given part is distinctly identified by the user for 

QM analysis. This thesis also provides an insight on the DFQM analysis of parts with 

respect to quality defects such as missing or misplaced parts and part interference. 

1.5 Organization of the Thesis 

This thesis consists of six chapters. The first chapter introduces concepts of DFM and 

DFQM and their importance in modern manufacturing. Chapter two gives a review of the 

literature pertaining to DFM, Design for Assembly (DFA), and current research in the area 

of DFQM. Classification of parts for QM analysis based on their symmetry and geometry 

is explained in chapter three. Chapter four deals with the QM analysis of missing and 

misplaced parts. QM analysis of part interference is shown in chapter five. Finally, chapter 

six contains conclusions and scope for further research in the area of DFQM. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Product Quality 

Continual product improvement and innovation are being widely practiced by successful 

manufacturers to stimulate consumption and to increase market share. The quality of a 

product undergoes a change at each value adding process in its manufacturing cycle. Quite 

frequently there is found on the market an inferior product or machine which owes its 

inferiority to the quality of the decisions made during the design. The attainment of high 

levels of product quality is a prerequisite for the success of a product. 

Quality of any product can be broadly defined into two categories, namely: design 

quality and manufactured quality. Design quality is defined as the utility of a product as 

perceived by the customer. On the other hand, manufactured quality is defined as the 

extent to which a product deviates from its design specifications. Most of the available 

literature talks about either improving the design quality or the quality of the entire 

business process both inside and outside the manufacturing environment. Several 

approaches have stressed on building quality in the design, in the product, in the process, 

rather than develop it after the product has been produced. 

5 
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2.2 DFM Techniques 

Several DFM techniques have been proposed by various researchers, the primary objective 

of all is to identify product concepts that are inherently easy to manufacture, to focus on 

component design for ease of manufacture and assembly, and to integrate manufacturing 

process design and product design to ensure the best matching needs and requirements. A 

typical DFM process proposed by Stoll (1988) is shown in figure 2.1. The DFM process 

begins with a proposed product concept, a proposed process concept, and a set of design 

goals (both manufacturing and product goals). Each of the activities within the DFM 

process addresses a particular aspect of the design. 

Figure 2.1 Typical DFM Process for Continuous Optimization of Product and Process 
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Numerous DFM methodologies are proposed by various authors. The most 

commonly used is the Design for Assembly (DFA) method developed by Boothroyd and 

Dewhurst (1983). Details of this methodology are presented in their handbook on DFA. 

The DFA method developed by Boothroyd and Dewhurst minimizes the cost of assembly 

by first reducing the number of parts and then ensuring that the remaining parts are easy to 

assemble. The Axiomatic Approach proposed by Suh, Bell and Gossard (1978) is based 

upon a hypothesis that there exists a small set of global principles, or axioms, which can be 

applied to decisions made throughout the synthesis of a manufacturing system including 

evaluation of a design decisions leading to a good design. Other DFM methodologies 

include DFM guidelines (Stoll 1988, 23), Designers Toolkit, Computer-Aided DFM, 

Group Technology, Failure Mode and Effects Analysis, Value Analysis, and Hitachi 

Assemblability Evaluation Method. 

2.3 DFM and Quality 

Most of the literature available on DFM talks about minimizing cost and integrating design 

and manufacturing. Taguchi Methods and concepts of Robust Design (Phadke 1989) 

provide a valuable insight into the role of design in determining the quality of a product or 

system i.e they address the issue of design quality. The term Taguchi Methods (Sullivan 

1987, 76) refers to the parameter design, tolerance design, the quality loss function, on-

line quality control, design of experiments using orthogonal arrays, and methodology 

applied to evaluate measuring systems. These methods were developed by Genichi 

Taguchi, a noted Japanese engineering specialist, to simultaneously reduce cost and 



8 

improve quality. Taguchi's method of parameter design has changed the meaning of 

quality improvement from problem solving to reducing variability around target values, 

with the important point being how to measure quality improvement. Cause-Effect 

diagrams (Ishikawa 1980) and Total Quality Management (TQM) concepts promoted by 

Deming (1986) all consider prevention rather than problem solving. Daetz (1990) in his 

article on the effect of product design on product quality and cost has identified several 

factors of the design which contribute to defects. A set of guidelines for quality 

improvement are provided by Daetz (1990). Accordingly, from the quality standpoint, a 

design should be so simple that correct assembly and use of product are foolproof and 

should have as few options as possible. 

The closest that has been done to tackle the QM issue is the "Variation Simulation 

Analysis" developed by Westinghouse Corporation (Prasad 1992, 14). It is a simulation 

technique used to analyze complex assemblies prior to prototype production. This enables 

measuring the variations and correcting them well before the actual model is developed. 

But this technique is limited to the dimensional measure of the design. Quality problems 

due to other factors such as material interrelationships, assembly process compatibility, 

fastening system, etc. cannot be analyzed by this technique. 

The U.S. Department of Navy released a document describing two manufacturability 

evaluation tools (DoN 1991). The first computes the Producibility Assessment Worksheet 

Index (PAW-I). The second evaluation tool assesses the impact of product and process 

variation on the product quality. It identifies three causes of variation, namely: design 

margins, process control, and material instability. The likelihood of one of these causes 
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resulting in a quality problem is computed via simple probability expressions. The 

drawback of this evaluation is that it restricts the causes of variations to a short list. Other 

research addressing manufactured quality issues include work on design representation by 

Wozny (1991) and identification of relationship between manufacturability and production 

lead times by Ulrich, Sartorius, Pearson, and Jakiela (1993). Ulrich et. al. (1993) have 

ignored product functionality and quality in their analysis and are unable to provide any 

clear insight on relationship among DFM, functionality and quality. 

2.4 DFQM Methodology 

The relationship between the design of a product and its manufactured quality is addressed 

by Das (1993) and Prasad (1992); introducing a methodology that focuses exclusively on 

evaluating a design from the "manufactured quality" perspective. A new method for 

evaluating designs based on their quality manufacturability is proposed. This methodology 

identifies a set of defects at the assembly stage of manufacture of the product. A set of 

factors responsible for the occurrence of these defects are investigated. The relationships 

to bring about an effective link between the defects and the factors is also proposed. The 

proposed methodology provides a means of relating the activities of quality improvement, 

product design, and manufacturability analysis. The objective of this methodology is to 

enable the user to improve the design so as to reduce the likelihood of defective product 

being manufactured. 

General structure of DFQM methodology proposed by Das (1993) is shown in figure 2.2. 

This structure is a sort of reverse cause-effect analysis i.e. the effects are predicted after 
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after identifying the causes. The overall logic of this DFQM methodology is summarized 

as follows: 

1. The manufactured quality of a product is an aggregate representation of 

several classes of defects that are commonly seen in assembled products. Any 

attempt to assess or improve the QM of a design must focus on these classes of 

defects. These defect classes can be further subdivided into specific defects. 

2. The design of a product is characterized by several factors that influence the 

occurrence of these defects. Each of these influencing factors can be further 

broken down into factor variables. 

3. There are certain error catalyst which promote the occurrence of a particular 

specific defect due to one or more factor variables inherent in the design. 

2.5 Summary 

Many available DFM techniques do not address the issue of manufactured quality. Several 

effective tools and methods have been developed in the quality area, but the majority of 

these are focused on process control and improvement. The proposed methodology for 

evaluation of a design to determine its quality manufacturability by Das (1993) focuses 

predominantly on the design-manufacturing interface. This methodology needs to be 

further developed to formulate a model that can evaluate QM of a design based on its 

factor variables. The research leading to the documentation of this thesis goes a step 

forward from the basic DFQM structure proposed by Das (1993). This work relates the 

class of defects influenced by the design parameters and catalyzed by the error catalysts. It 
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is an attempt to identify the error catalysts linking the various factor variables and specific 

defects and quantify the likelihood of occurrence of a certain defect by determining a QM 

score for the design. 



CHAPTER 3 

DFQM CLASSIFICATION OF PARTS 
BY SYMMETRY AND GEOMETRY 

One of the most important influencing factors of any given product is the geometry of its 

components. This chapter deals with the influencing factor Geometrical Features. The two 

main factor variables of this influencing factor, namely: shape and symmetry, are discussed 

in detail. A classification scheme, based on shape and symmetry, is developed. 

3.1 Geometrical Features 

Geometrical features are those standard and nonstandard geometrical parameters, both 

internal and external, which are found in every part that goes into an assembly. 

Geometrical features such as edges, corners, surfaces etc., play a very important role in 

the assembly of parts. The position of mating surfaces, the factor of symmetry, the area of 

contact, the presence of constraining surfaces with respect to the dimensions and 

geometry of the body are very important concerns. The compatibility and finish of each 

feature influences the quality of assembly. This also includes the standard features like 

holes, grooves, slots and other nonstandard features like curves. The two factor variables 

of this influencing factor are shape classification and symmetry. 

3.2 Classification of Parts by Symmetry and Geometry 

Symmetry and basic shape are two parameters that play a very significant role in the 

processing and assembly of any part. The manufactured quality of a product is an 

13 
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aggregate representation of several classes of defects that are commonly seen in assembled 

products. The occurrence of these defects is influenced by several factors or 

characteristics that are inherent in the product's design. Shape and symmetry of 

components are two factor variables that have a strong influence on the quality 

manufacturability of a product. 

It is possible that several times a particular shape selected by the designer for a 

certain component may have the potential of creating quality problems. This could 

manifest in any form, either directly or indirectly. For example, the effect of shape is also 

evident in missing and misplaced parts where shape similarities or size causes parts 

interchange during assembly. Symmetry of the part is also a very important feature of the 

assembly. The various kinds of symmetries, directly and indirectly, affect the specific 

defects especially in case of misalignments. 

An individual can identify a given part with respect to its geometry and symmetry in 

numerous ways. This is because parts are being designed with increasing complexity. It is 

very essential that parts that would have similar effects on the quality manufacturability of 

the assembled product should be grouped together as a family. This necessitates 

classification of parts, based on symmetry and geometry, for the purpose of DFQM 

analysis. Classification with the objective of DFQM analysis cannot treat geometrical 

features and symmetry in isolation and thus needs to consider family of parts for both 

these factor variables simultaneously. 
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3.3 Classification Chart 

The classification chart, shown in figure 3.1, identifies a part on the basis of its symmetry 

and shape. Shape by nature is a complex characteristic of a design in terms of measuring it 

as a dimension. The classification chart identifies any given part by a unique code 

depending on its geometrical features. It consists of six rows and twenty three columns. 

The rows classify a part based on its basic shape and the columns identify its symmetry 

and main features affecting symmetry. Rows are denoted using suitable letters (R, B, etc.) 

indicating the shape and the columns bear numbers from 1 through 23. Each block of the 

chart represents a family of parts with a unique alpha-numeric code. Thus any given part, 

classified first on the basis of its shape and then symmetry, shall have a unique alpha-

numeric code for DFQM analysis. The figures shown on the chart represent a family of 

parts with similar features. Some notations or terms used on the chart are explained 

below: 

A : Length of the rectangular envelope that would enclose the entire part. 

Alpha-symmetric : An alpha-symmetric part is one that does not require orientation 

end-to-end. 

Beta-symmetric : A beta-symmetric rotational part is one that does not require 

orientation about its principal axis. 

Envelope : The smallest cylinder or rectangular prism that can enclose the part. 

L : Length of the rectangular envelope enclosing the transverse element. 

Silhouette : The smallest simple geometric outline that encloses the view of a part 

or its envelope. 
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Figure 3.1 DFQM Classification of Parts by Symmetry & Geometry 
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: Implies that the axis of symmetry is perpendicular to the plane of the paper. 

X : Indicates the axis of symmetry wherever it is difficult to identify. 

• : Indicates blind hole/groove. 

3.3.1 Shape Classification 

The DFQM classification chart broadly classifies the basic shape into six categories, 

namely: Round (R), Box (B), Section (S), Tubular (T), Flat (F), and Spherical (P). Any 

given part shall be identified with one of the six rows of the chart based on its basic shape 

- the shape which would cover the maximum volume when enclosed in a rectangular or 

cubical envelope. 

1. Round (R): Circular cylindrical and conical parts belong to this category. 

Elliptical or oval cross-sections are also identified as a round shapes. Regular 

polygonal shapes (more than 8 sides) are also classified as rounds. 

2. Bar or Rectangle (B): Any part with basic cross-section as a rectangle, square, 

rhombus, parallelogram, etc. is classified as a bar. Exceptions in this case are 

cross-sections with extremely low thickness as compared to its length and 

width. These are termed as flats (F). 

3. Section (S): Parts with C-shaped, L-shaped, H-shaped and I-shaped cross-

sections belong to this group broadly classified as sections. 

4. Tubular (T): Circular as well as regular polygonal tubes belong to this 

category. 
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5. Flats (F): Flats are bars with extremely low thickness as compared to its length 

and width. They are identified separately compared to bars because these parts 

may require different treatment during DFQM analysis. 

6. Spherical (P): All spherical shapes, including imperfect spheres, belong to this 

category. 

3.3.2 Classification by Symmetry 

The more symmetrical a part is, the more quickly it can be oriented during the handling 

phase of assembly. Thus achieving symmetry should be the first consideration during 

design. But this might have an adverse impact on another DFM consideration - reducing 

the number of parts; because reduction in the number of parts essentially leads to the 

complexity of remaining parts thus leading to asymmetry. An equally important 

consideration is to assure that if asymmetry must exist, then it should be clearly and easily 

recognized. Parts which must be avoided are those with only slight asymmetry i.e. parts 

with features which appear to be equi-spaced or symmetrically positioned but are not. If 

the functional features cannot be made asymmetrical, then a clearly visible non-functional 

feature should be added to define the orientation. 

Symmetry of a part about an axis can be explained as: "if the part is rotated 180 

degrees about that axis, the resulting orientation is exactly same as the original one." The 

basic shape of any component will always be symmetrical. It tends to loose its symmetry 

as more and more geometrical features like steps, grooves, holes, and transverse elements 

are added. Obviously, these features have a certain role to play in the assembly, at the 
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same time these features individually or simultaneously can increase the possibility of 

quality defects. Thus, the classification of parts by symmetry takes into account the 

geometrical features that cause asymmetry. Parts are broadly classified on the basis of 

symmetry as : symmetrical parts, non-symmetrical parts, and parts symmetrical about only 

one axis. 

3.3.2.1 Symmetrical Parts 

Parts are said to be symmetrical if they are symmetrical about all three axes. Such parts are 

very easy to handle and pose very few problems during handling and assembly. They can 

be further sub-divided into uniform cross-section and non-uniform cross-section. Any 

further detailed sub-division of symmetrical parts is not necessary. This category occupies 

columns 1 and 2 on the classification chart 

3.3.2.2 Non-symmetrical Parts 

Parts that are not symmetrical about any axes are termed as non-symmetrical or 

asymmetrical. Although there might be numerous features causing asymmetry, the feature 

which if removed will make the part symmetrical about at least one axis; is considered as 

main feature causing asymmetry. This category is further sub-divided into three broad sub-

classes depending on the main feature causing asymmetry. They are (i) spatial curvature, 

(ii) steps, holes, grooves, and transverse elements; and (iii) complex elements. 

There is a possibility that the part would have more than one feature responsible for 

its asymmetry. In that case the part shall be identified with the feature which is most 
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prominent and is likely to have considerable impact on assembling and handling i.e. such a 

feature which if removed will increase its assemblability. Asymmetry due to non 

geometrical features such as differences in surface coatings, lettering, differences in 

surface finish, etc. are ignored for the purpose of simplicity. This category occupies 

columns 21, 22, and 23 of the classification chart. 

3.3.2.3 Parts Symmetrical About Only One Axis 

It can be noticed that maximum area of the chart is covered by this category. This is due 

to the fact that if a part is symmetrical about only one axis, the main feature causing 

asymmetry is of interest from DFQM perspective. For example, parts with numerous 

mating surfaces are always prone to misalignments. Holes are likely to cause radial and 

axial misalignments, whereas grooves are more susceptible to linear misalignments. 

Degree of difficulty in orienting also depends on these geometrical features. This category 

occupies columns 3 through 20 of the classification chart. Parts symmetrical to only one 

axis are further classified on the basis of the main feature causing asymmetry, as follows: 

A. Step, Corner, Protrusion (Columns 3 through 6) : 

Step or protrusion is a geometric feature that results in a deviation of the 

silhouette of a part from the silhouette of its envelope. For DFQM analysis any 

step with its largest dimension greater than 1/4 A is considered as a transverse 

element except for beta-symmetric steps in case of round or tubular shapes. 
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B. Transverse Elements (Columns 7 through 10) : 

A transverse element is defined as an external projection other than a beta-

symmetric step that can be seen in a silhouette with length of projection greater 

than 1/4 A. Transverse elements are further identified as perpendicular or 

parallel to the axis of symmetry because they behave differently from DFQM 

perspective. For example the orientation of a part would be less difficult if the 

axis of insertion is coincident to the axis of symmetry and parallel to the 

transverse element. Finally, transverse elements are further subdivided 

depending on their protruding lengths. This classification, although redundant 

in certain cases, may help in designing the anti-locators or assembly fixtures. 

C. Grooves and Holes (Columns 11 through 20) : 

A groove is a cut that results in deviation of a part from the silhouette of its 

envelope and the direction of groove cutting means the direction in which the 

length of the groove runs (not the depth of cut). Holes are also considered in 

the same class as grooves because both these features have relatively similar 

influence on quality manufacturability of a part in the presence of certain error 

catalysts. Thus, classifying them separately is not required. Multiple 

grooves/holes (more than two) are separated from grooves/holes less than two. 

This is done to account for the difficulty posed in assembly due to multiple 

mating surfaces. Grooves/holes are further divided into three sub-classes 

depending on the direction of cut with respect to the axis of symmetry, namely: 

concentric, cut parallel to the axis of symmetry, and cut perpendicular to the 
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axis of symmetry. Concentric grooves are only related to round (R), tubular 

(T), and spherical (P) shapes. The three sub-categories are further subdivided 

depending on number and type of cuts i.e. blind or through. 

Parts symmetrical to only one axis of symmetry may contain more than one feature, 

i.e. step, groove/hole, or transverse element. In such cases, the following rules are to be 

applied to uniquely identify the part: 

i) The part shall be identified with respect to the main feature that causes 

asymmetry; i.e. the part will be symmetrical if this feature is removed 

ii) If rule (i) stated above does not yield a unique identification, the part shall 

belong to the respective column based on the following order of preference: 

a. groove/hole 

b. transverse elements 

c. steps. 



CHAPTER 4 

DFQM ANALYSIS OF MISSING/MISPLACED PARTS 

In assembled products 90% of the common defects can be classified into few categories 

known as Classes of Defects. Specific defects are more detailed descriptions of particular 

defects within each defect class. The DFQM structure (figure 2.2) identifies six classes of 

quality defects. They are: 

1. Missing or Misplaced Parts 

2. Part Misalignments 

3. Part Interference 

4. Fastener Related Problems 

5. Total Nonconformity 

6. Damaged Parts 

The scope of this thesis is limited to DFQM analysis of the defect classes 

missing/misplaced parts and part interference. This chapter initially describes the 

methodology for QM analysis and subsequently applies it to the defect class 

missing/misplaced parts. DFQM analysis of part interference is covered in chapter five. 

Missing/misplaced parts is one of the most common defects occurring in assembly. 

Specific defects in this class are absence of parts, part interchange, and mispositioning of 

parts. 
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4.1 Relationship between Specific Defects, 
Error Catalysts, and Factor Variables 

The general structure of the DFQM methodology suggests that the occurrence of any 

manufactured quality defect is influenced by several factors or characteristics that are 

inherent in the product's design. These defects must be related to the processes via which 

the product is assembled or manufactured. Typically, specific defects belonging to the 

same class will be similar in their overall effect on the quality of the product and their 

general nature. They will differ in terms of what causes them and their specific 

orientations. 

The presence of any defect influenced by the factor variables of the design is 

catalyzed by the presence of certain error catalysts. Error catalysts define when and how 

the specific factor variables are likely to cause manufacturing defects. Presence of an error 

catalyst by itself will not induce quality defects unless certain characteristics of the design 

or process support it. Thus it is necessary to relate each specific defect to the affecting 

factor variables with due consideration to the error catalysts that catalyze the occurrence 

of the specific defect. This needs to be done for each individual specific defect. The factor 

variables are linked to the error catalysts using catalysis graphs. Each factor is weighed on 

the basis of perceived importance and relative likelihood of causing a particular defect. 

4.2 Catalysis Graph 

A Catalysis graph is a diagram similar to a decision tree used for systematic evaluation of 

factor variables to determine their relative effects on the occurrence of the specific defect 
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under study. This helps in determining for a given design, what is the likelihood that the 

error catalyst will cause a particular specific defect. Based on the factor variables of a 

design, each catalysis graph leads to a score between '0" and "1". This score is indicative 

of the relative likelihood of the error catalyst influencing the specific defect under study. 

As a part of this project, catalysis sheets are being prepared for each error catalyst 

under each specific defect. The purpose of preparing these sheets is to summarize the 

description of each error catalyst and simplify the catalysis process into decision graphs. 

Since this thesis is part of an ongoing research, the format used for catalysis sheets not 

only provides consistency, but also helps as an easy reference for other areas of the 

research. It will be of utmost important in the final stages of this project during the 

compilation phase. Identifying all error catalysts that can cause a specific defect and 

developing catalysis graphs for each error catalyst are the initial steps for QM analysis. 

Chapter three describes the importance of unique identification of parts based on 

shape and symmetry for DFQM. Similarly other factor variables also need to be identified 

or quantified using metrics that shall be followed consistently for the entire DFQM 

analysis. Table 4.1 gives metrics that are used for other factor variables. These metrics are 

used in the catalysis graphs for measuring factor variables affecting the error catalysts. 

Figures 4.1 through 4.10 illustrate the catalysis graphs for the defect class 

missing/misplaced parts. Absence of parts, part interchange, and mispositioning of parts 

are the three specific defects under this class. 
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Table 4.1 Metrics Involved in Quantification of Factor variables 

FACTOR VARIABLES MEASUREMENT or IDENTIFICATION 
SCHEME 

I Shape and Symmetry DFQM Classification of Parts by Symmetry and 
Geometry (Figure 3.1) 

2 Mating Features Number of Mating Surfaces and Number of Mating 
Parts 

3 Coefficient of Thermal 
Expansion 

Ratio of Coefficients of Two mating Parts 

4 Hardness Hardness Number Ranges 

5 Stress Properties Ranges of Traditional Strength Measuring Units 

6 Assembly Fixturing 
Method 

Automatic, Manual, or Robotic Assembly 

7 Assembly Sequence Chronological 

8 Functional and Motion 
Relationship 

DFQM Classification of Functional Relationships 
(Appendix B) 

9 Fitting Relationship Press Fit, Loose Fit, and Running Fit 

10 Positional Relationship Positional Relationship Chart (Appendix A) 

11 Fastening Sequence Sequence 

12 Fastening Type, Strength Fastener Classification and Identification Chart 

4.3 Quality Manufacturability Analysis 

The purpose of quality manufacturability (QM) analysis is to obtain a matrix called the 

Quality Manufacturability Matrix (QMM) for the overall assembly and also to determine a 

final QM index for the design. This score will be indicative of the likelihood of the design 

leading to manufactured quality defects. Defect class to which the given design is more 

prone can also be deduced from this analysis. The QMM will serve as a strong tool in 



27 

addressing the manufactured quality of a product and highlighting the parts that require 

attention from DFQM perspective. 

The terms used in the equations for QM analysis are given below: 

CD 	- Class of Defects 

SD 	- Specific Defect 

EC - Error Catalyst 

k 	- 	1,2,....6 

m - 	number of specific defects under CDk 

n 	- 	Total number of error catalysts influencing SD; 

j - 1,2, 	m 

i 	- 	1,2, 	n 

p 	- 	number of parts in an assembly 

L - 1,2, 	 

- 	Score for EC; influencing SD;  

W;;  - Weightage on S;; based on importance of EC; for SD;  

Qjk - QM score for each SD; under CDk  

Fjk  - Multiplication factor for Qjk  based on relative importance of SD; belonging 

to CDk 

Ck 	QM score for each CDk 
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The following steps need to be taken for QM analysis. 

STEP 1: 

Identify all error catalysts (ECi) and the affecting factor variables for each specific 

defect (SDj). Refine these error catalysts to remove redundancy and to make them 

independent. 

STEP 2: 

Prepare catalysis graphs based on the factor variables affecting each of the n error 

catalysts. Thus, prepare n catalysis graphs for each SD;  (j = 1,2,...m). 

STEP 3: 

Select any one component of the assembly at a time. Based on the characteristics 

of the design, use each catalysis graph to determine a score (Sij) between '0" and 

"1". Obtain n values between "0" and "1" for each SDj (j = 1,2,...m). 

STEP 4: 

Assign weightages, based on relative importance of the error catalysts, to each of 

these Sij values obtained in step 3. Determine QM score for each SD; under CDk 

using the following formula: 
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STEP 5: 

Multiply each of them values of Qjk obtained in step 4 by a factor Fjk  depending on 

the relative importance of SD;  (j = 1,2,...m). Calculate QM score (Ck) for each 

CDk  as follows: 

STEP 6: 

Repeat steps 3 through 5 to obtain Ck (k = 1,2,...6) values for all components in 

the assembly. Constitute a matrix (QMM) with p rows and 6 columns. 

STEP 7: 

Normalize the QMM  obtained in step 6 to obtain a final QM score for the design. 

4.4 DFQM Analysis of Missing/Misplaced Parts 

4.4.1 Absence of Parts 

This defect is most commonly found when fasteners, parts, locking mechanisms, lining 

materials, gaskets, spacers, etc. are specified in the design. This defect is more common in 

case of manual assembly as compared to automated assembly. Primary influencing factors 

for this defect are geometrical features and assembly procedure. Number of small parts in 

any assembly plays a major role in the occurrence of this defect. Similarity of parts also 

enhances the possibility of this defect. Figures 4.1 through 4.4 show the catalysis graphs 

for the four error catalysts that influence this defect. 
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Figure 4.1 Catalysis Graph for Manual Assembly of Too Many Similar Components 
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Figure 4.2 Catalysis Graph for Robotic Assembly at Difficult Locations 
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Figure 4.3 Catalysis Graph for Fixture Hiding Part Location 
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Figure 4.4 Catalysis Graph for Unbalanced Fixturing Force 
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Four independent error catalysts are identified as the ones which influence absence of 

parts. They are : 

1 	Too many similar components - EC111 

2 Robotic assembly at difficult locations - EC211  

3 Fixture hiding part location - EC311  

4 Unbalanced fixturing force - EC411  

Analytically analyzing these error catalysts with respect to their relative influence, it 

is inferred that too many similar components is the one which mostly influences absence of 

parts. Thus it would get the highest ranking. Unbalanced fixturing force and part hidden 

by fixture can be considered to be relatively at the same level and are given the second 

highest weightage. Missing parts due to incapability of the process during robotic 

assembly is given the lowest weightage as compared to the other three error catalysts 

because its likelihood is relatively less. 

Relative weightages for the four error catalysts causing the specific defect absence of 

parts are given as follows : 

W11  = 1; 	W21 = 0.7; 	W31 = 0.4; 	W41 = 0.7 

Therefore, the QM score for the specific defect absence of parts (SD11) is given as: 
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4.4.2 Part Interchange 

Part interchange may occur in most assemblies due to great similarity between two parts. 

Lack of evident distinguishing features, human inconsistency, absence of anti-locating 

elements are the primary reasons for the occurrence of this defect. Figures 4.5 and 4.6 

illustrates the catalysis graphs for this defect. Part interchange has two error catalysts as 

follows: 

1 	Absence of positioning elements - EC121 

2 Congruent mating features in automatic fixturing - EC221 

Referring to the error catalyst descriptions on figures 4.5 and 4.6, it is noted that 

absence of positioning elements is more prominent as compared to congruent mating 

features. From the nature of the second error catalyst itself it appears less probable as 

compared to the first one. 

Based on relative importance, their weightages are as follows: 

W12 = 1 ; 	W22 = 0.5 

Therefore, the QM score for the specific defect part interchange (SD21) is given as: 

4.4.3 Mispositioning 

Mispositioning can be defined as placing a part with a different orientation or placing it at 

a location other than the desired one. This should not be mistaken for misalignments. Part 

geometry, positional relationship, fitting relationship, assembly method, fastening method 
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Figure 4.5 Catalysis Graph for Absence of Positioning Elements 
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Figure 4.6 Catalysis Graph for Congruent Mating Features in Automatic Fixturing 
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are some factor variables that greatly influence this defect. Figures 4.6 through 4.9 

describe the error catalysts for this defect. Error catalysts influencing this defect are: 

1 Congruent mating features - EC131  

2 Weak part forced in undesirable positions - EC231 

3 	Absence of alignment checking features - EC331 

4 Unfinished surfaces - EC431 

Mispositioning of small parts with similar configuration and congruent features is the 

most common cause of mispositioning errors. Absence of alignment checking features is 

likely to go unnoticed in most cases, but yet it is not as effective as the first error catalyst. 

Unfinished surfaces can be considered at the third relative level. Weak parts forced in 

undesirable positions is likely to happen, but at the same time more likely to be noticed. 

Thus the relative weightage of the four error catalysts can be given as follows: 

W13  = 1; 	W23  = 0.4; 	W33 = 0.8; 	W43 = 0.6 

Therefore, the QM score for the specific defect mispositioning of parts (SD31) is given as: 

4.5 QM Score for Defect Class Missing/Misplaced Parts (CD1 ) 

The QM score for any defect class is obtained using formula given in Step 5 of QM 

analysis (section 4.3). Each of the three specific defects under the defect class 

missing/misplaced parts need to be analyzed on the basis of their relative importance 

depending on the functional requirements and nature of the product. These ratings are to 
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Figure 4.7 Catalysis Graph for Congruent Mating Features 
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Table 4.2 Error Catalysis Scores for Congruent Mating Features (EC13 ) 

c/d b ab 

21...23 

ac 

- 

ad 

- 

ϕ1(ab,b) 

0 

ϕ2(ac,c); 

ϕ3(ad,d) 
R, T, B, 
F, S, P 

0 

2 21...23 0.5 
3 22 - - 0.6 - 

> 3 22 - - 0.7 - 

3 23 0.7 - 
> 3 23 0.9 

R, T 3,4 3, 4, 9, 10 0 

- 9,10 12 - 0.2 

- - 6...8, 	12 5...8, 	11 - 0.4 

- - 5, 11, 14, 
17...20 

17...20 0.6 

- 13 13...16 - 0.8 

- 15, 16 - 0.9 

B, F - -  9,10 - 0 

3, 4, 7.. 	0 4 - 0.2 

- - 13, 14, 
16...20 

7, 8, 17, 18, 
19, 20 

0.4 

- - 5, 6, 15 3, 5, 6, 13, 
14, 16 

0.6 

- - 15 - 0.8 

S - - 4, 6...10 3, 4, 9, 10 - 0 

- 3, 5 5....8, 
17...20 

- 0.2 

- - 13...16 - 0.4 

- 17...20 13...16 - 0.6 

P 5, 6, 9, 10 5...13; 	15 - 0 

- - 7, 8, 11, 12, 
15 

- 0.2 

- 17, 19, 20 14, 16, 17, 
18, 20 

0.4 

- - 13, 18 - 0.6 

- - 14,16 - - 0.8 

c/d : This column indicates the basic shape of the component (refer to classification chart 
figure 3.1) 

ab; ac; ad : These columns indicate the symmetry of components (refer to classification 
chart figure 3.1) 
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Figure 4.8 Catalysis Graph for Weak Parts Forced in Undesirable Positions 
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Figure 4.9 Catalysis Graph for Absence of Alignment Checking Features 
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Figure 4.10 Catalysis Graph for Unfinished Surfaces 
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be judged by the user. In general, mispositioning of parts (SD31) can be considered as most 

troublesome, but depending on the significance of the missing part, SD11 can turn out to 

be the most important. In another case, part interchange may have serious effect on the 

quality of the product. 

If F11, F21, and F31 are the multiplication factors assigned to SD11, SD21, and SD31, 

respectively, based on their relative importance; the QM score for the defect class 

missing/misplaced parts is given by: 



CHAPTER 5 

DFQM ANALYSIS OF PART INTERFERENCE 

Interference is caused whenever there is undesired physical contact between two moving 

parts. Interference has a significant impact on the functionality of a product as well as its 

perceived quality. It can occur due to several factors at different stages of the product's 

manufacturing cycle. In some cases interference may be absorbed by parts due to the 

nature of the material, but in other cases, part interference may have a cascading effect 

thus resulting in several other defects. This chapter deals with the DFQM analysis of the 

defect class Part Interference. 

5.1 DFQM Analysis of Part Interference 

DFQM analysis of part interference is performed using the same methodology as described 

in section 4.3. It is not repeated in this chapter to avoid redundancy. Part interference is 

listed as third defect class in the DFQM methodology. Thus for the sake of consistency, k 

= 3 is used as a subscript for this defect class. The same concept of catalysis graph (refer 

to section 4.2), used to obtain a score for each error catalyst, is used to analyze every 

specific defect under this class. Based on the frequency of their occurrence, three specific 

defects are identified under this defect class. They are (i) constant interference, (ii) 

occasional interference, and (iii) intermittent interference. Figures 5.1 through 5.5 

illustrate all catalysis graphs for the three specific defects under this class. 
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5.1.1 Constant Interference 

This is the type of interference which is observed constantly during the entire motion cycle 

of the moving part. A rotating pulley constantly touching a surface of the nearest part is an 

example of constant interference. The occurrence of this defect is mainly attributed to 

designing of the product where the moving members are in close proximity to the 

stationary parts. This defect is also influenced by assembly related factors such as 

divergence from assembly procedures. In the insertion process, geometrical features, 

assembly procedure, and material properties, are the influencing factors related to this 

defect. Fastening system and assembly procedure are the influencing factors pertaining to 

constant interference in welded assemblies. Constant interference in fastened assemblies 

are due to deficiencies in the fastening system and assembly procedure. Deformation of 

parts during handling or assembly may lead to constant interference. 

Three independent error catalysts influencing constant interference are identified. 

They are: 

I 	Proximity of rotating members to stationary part - EC113  

2 	Method of fastening rotating member - EC213 

3 	Bending of shafts - EC313 

Catalysis graphs for the above mentioned error catalysts are shown in figures 5.1 

through 5.3. Scores obtained from the catalysis graphs are S11, S21, and S31. Analyzing 

these error catalysts, it is inferred that rotating members being too close to the stationary 

parts is the most prominent one; such that it would require an extremely high degree of 

accuracy during assembly. The error catalyst of method of fastening the rotating member 
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Figure 5.1 Catalysis Graph for Proximity of Rotating Members to Stationary Parts 
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Figure 5.1 (Continued) Catalysis Graph for Proximity of Rotating Members to Stationary Parts 
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Figure 5.2 Catalysis Graph for Method Of Fastening the Rotating Member 
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Figure 5.3 Catalysis Graph for Bending of Shafts During Handling 
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is ranked second followed by bending of shafts. Relative weightages for the three error 

catalysts leading to the specific defect constant interference are given as follows: 

W11 = I, 	W21 = 0.75; 	= 0.5 

Therefore the QM score for the specific defect constant interference is given as: 

5.1.2 Occasional Interference 

Occasional Interference is encountered randomly once in a while. This interference is 

observed at varied points in time and does not follow any particular cyclical pattern. It can 

also be termed as random interference. Flexible part in the vicinity of moving parts 

influence this defect. This is due to the fact that it is difficult to completely define the 

positional relationship between the flexible part and other parts in an assembly. 

This type of defect predominantly occurs when flexible parts like hoses, ducts, wires, 

etc. are close to moving parts. It is unlikely that the assemblyman ensures proper 

positioning and fastening of these parts envisaging the probability of them interfering with 

moving parts when the product is used. Even if extra care is taken, parts being flexible 

may revert to undesirable positions; thus interfering with moving members in an assembly. 

There is only one significant error catalyst identified for this defect, namely : flexible parts 

in the vicinity of moving parts (EC123). Analysis of this error catalyst is illustrated in figure 

5.4. 



52 

he QM score for this specific defect is equal to the score (S12) obtained from the catalysis 

graph (figure 5.4) for the single error catalyst. QM score for occasional interference is 

given as: 

Q23 = S12 

5.1.3 Intermittent Interference 

Intermittent interference is the type of interference which is encountered at fixed intervals 

in the motion cycle. It is also termed as periodic or cyclic interference because it is 

observed in the assembled product at specific intervals of time, each observation related to 

the previous by the duration of occurrence. 

The QM score for intermittent interference is equal to the score obtained from the 

catalysis graph (S13) for the single error catalyst described in figure 5.5. Therefore, QM 

score for this specific defect is given as: 

Q33 = S13 

5.2 QM Score for the Defect Class Part Interference 

The three specific defects under this class are analyzed with respect to their relative 

importance. It is evident that constant interference is the most important one and needs to 

be eliminated completely. Any product with its moving parts constantly interfering with 

the neighboring fixed surfaces is definitely not acceptable from quality and functionality 

perspective. Intermittent interference also affects the quality and functionality of the 

product, but it can be considered relatively less troublesome as compared to constant 
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Figure 5.4 Catalysis Graph for Flexible Parts in the Vicinity of Moving Parts 
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Figure 5.5 Catalysis Graph for Improper Installation of Bearings 
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interference. Occasional interference is also not desirable from the quality perspective, but 

it has comparatively much lesser impact on the functionality of the product. 

Overall, it is inferred that constant interference must get the maximum rating 

followed by intermittent interference and finally occasional. Comparing on a scale of 0 to 

1, the following multiplication factors are assigned to the three specific defects, namely: 

constant interference (SD13), occasional interference (SD23), intermittent interference 

(SD33), respectively. 

F13 = 1; 	F23  = 0.7; 	F33  = 0.4 

Therefore, the QM score for the defect class Part interference is given by : 



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

The DFQM methodology helps in bridging the gap between product design and its 

manufactured quality. The feature by feature analysis of the design and assembly process 

exposes the strengths and weaknesses of the design. In this thesis, parts are classified on 

the basis of their symmetry and geometry. This enables unique identification of parts for 

DFQM analysis of all the specific defects belonging to the six defect classes. This research 

presents a methodology for evaluating the quality manufacturability (QM) of a design. 

Specific defects under the defect classes missing/misplaced parts and part interference are 

analyzed in detail. Error catalysts influencing these specific defects are identified. The 

error catalysts are further quantified based on their relative likelihood of influencing the 

specific defect being analyzed. The methodology to determine QM score for each defect 

class is presented this thesis. QM analysis of the defect classes missing/misplaced parts 

(CD1) and part interference (CD;) are discussed in detail. QM scores for these two defect 

classes can be obtained for any given part using the proposed methodology. 

Another research in the area of DFQM is being presented by Mr. Suriyanarayanan 

Ramachandra. This work is process-driven whereby various assembly processes are 

analyzed in detail to identify the factors influencing the occurrence of quality defects. The 

analysis focuses on justification of the DFQM structure (figure 2.2) by determining the 

error catalysts relevant to the various assembly processes. The research presented in this 
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thesis moves in the direction of quantifying the DFQM structure after synthesizing the 

error catalysts into a functionally independent set. It is defect-driven approach where each 

error catalyst is related to the defects and evaluated based on the factor variables of a 

design. 

6.2 Quality Manufacturability Matrix (QMM) 

The Quality Manufacturability Matrix (QMM) is obtained as a result of the QM analysis of 

the defect classes discussed earlier. This is final outcome of using the DFQM 

methodology. It contains the QM scores (Ck) for each defect class for all p parts in an 

assembly. Thus, the QMM has k = 6 columns and p rows. Table 6.1 shows an example of 

a QMM. 

Table 6.1 Quality Manufacturability Matrix (QMM) 

 
0.5 	0.9 0.8 	0.3 0 	1 

1 	0.2 	0 0.5 0 

0 0.3 0 0.7 0 

CIL 	C2L C3L C4L C5L C6L 

This matrix contains QM scores for all parts with respect to each of the six defect 

classes. The values shown in Table 6.1 are for the sake of illustration. These scores will 

assist the designer in focusing attention on parts which are more susceptible to certain 

defects. At the same time, if a certain defect is not perceived as significant considering the 

function of the respective part, the defect can be ignored. This will help the designer to 
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concentrate only on parts which are most prone to defects that are intolerable from the 

quality and functionality perspective. For example, consider parts P2  and P3  from the 

matrix. 

P3  has QM score C2  = 0.8 (for CD? i.e. misalignment) 

P2 has a QM score C3  = 0.5 (for CD3  i.e. interference) 

Now, the designer has to analyze parts P2  and Ps  with respect to their functions. It is 

possible that although part P3  is more prone to misalignments, it may not be a matter of 

concern for that part. At the same time, part P2  having relatively less score for interference 

may still be unacceptable. Thus the QMM is a strong tool which would aid the designer in 

modifying the design based on the needs and priority of the problem associated with 

certain parts. Values from the QMM can be normalized to obtain a singular QM index for 

the whole assembly. This index would be on a 0 to 100 scale. Higher the index, better the 

design from quality manufacturability perspective. 

The Boothroyd-Dewhurst method computes the design efficiency of an assembly. 

The design efficiency signifies the difficulty associated with handling and assembling 

various components of a product. It does not take into consideration the quality defects 

that might arise during its manufacture. DFQM methodology proposed in this thesis 

focuses on the issue of quality manufacturability. The QMM and QM index obtained as a 

result of the quality manufacturability analysis serve as effective tools that can be used to 

improve the manufactured quality of a product. 
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6.3 Future Work 

The scope of this thesis is limited to two defect classes out of six classes identified in the 

DFQM structure. Immediate future research is required to be done on the other four 

defect classes, namely: Part Misalignments, Fastener Related Problems, Total 

Nonconformity, and Damaged Parts. Similar analysis as described in chapters four and five 

of this thesis is required for these four defect classes. It is evident from the methodology 

that the user would have to go through a lot of queries and lengthy calculations to reach 

the final QMM. Thus this methodology is planned to be computerized. The software to be 

developed for DFQM analysis would require the user to answer certain questions 

indicative of the factor variables of the design and based on this input the program would 

run a routine and come up with the QMM and QM index. In addition it will also generate 

a set of inferences for the user. The step of computerization is subsequent to the DFQM 

analysis of all the remaining defect classes. Further advancement in this area would be 

integrating the DFQM software with CAD package like ProEngineer. In this case, the 

CAD drawings itself would be analyzed from DFQM perspective. 
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