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ABSTRACT 

STATISTICAL AND FINITE ELEMENT ANALYSIS OF THE EFFECTS OF 
RANDOM INPUT PARAMETERS ON THE MECHANICAL 

CHARACTERISTICS OF SHEETMETAL FORMING PROCESSES 
USING QUADRATURE METHOD 

by 
Yu Quan 

In this thesis, the computer aided finite element analysis is implemented in the 

analysis of sheetmetal forming process. To rationalize the experimentation and analysis, 

the statistical method is introduced to study the variability of sheetmetal deformation 

process and final shape with respect to the variation of different parameters. 

In Chapter 2, the basic characteristics and considerations of deep drawing operation 

is described with emphasis on the study of geometrical and physical variables of the 

forming process. 

Chapter 3 discussed the three phases which are encountered in the computer aided 

finite element analysis. As a typical representative of professional finite element software 

packages, ABAQUS is used through this work as the main programming environment and 

its language characteristics and programming techniques are investigated in great detail. 

As an example of its application, the modeling and analysis of a deep drawing part is 

specified. 



Chapter 4 delved with the application of statistical approaches in the experimentation 

of sheetmetal foaming. A comparison of different traditional methods for statistical 

analysis is given among which the Taguchi's method is discussed in detail because of its 

simplicity, practicality and relatively high accuracy. However, on the basis of analysis of 

its theory, it is found that the degree of central moment it can approximate accurately is 

too limited. Therefore, a new method for analysis of complex system - the quadrature 

method is introduced which can obtain the highest possible degree of accurate central 

moment of a distribution. Finally, by using the quadrature approach, the maximum 

stresses and reaction forces occurred during the deep drawing process is studies with 

respect to the change of three geometrical and interface parameters. The results of the 

experimentation proved the validity and applicability of this method. 
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CHAPTER 1 

INTRODUCTION 

Historically, the evolution of a sheetmetal stamping from conception through part design 

to die design to the final die tryout has been a slow, cautious process based on the trial-

and error experience and the skill of the artisan W. The press-shop today is successful 

only because of the technological skill developed over the years by the artisans. Under 

the present condition, it would be very difficult to duplicate the capability of the artisan in 

producing part by use of the scientific approach only. What we can provide so far limits 

to only an approximate analytical solution to the anticipated process performance of 

sheetmetal forming of only the simplest parts. 

However, a breakdown of the artisan system is beginning to occur for the following 

reasons [2]: 

(1) breakdown of the long-term apprenticeship train system; 

(2) the trend toward earlier retirement; 

(3) reduced lead time for die tryout and development; 

(4) increased complexity of parts; 

(5) introduction of new, unfamiliar materials; 

(6) greater emphasis on cost-effectiveness; and 

(7) the rapid development of computer aided design. 

1 
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It would be very difficult for the average die maker to function properly without the 

backup support from the process engineer. New developments are occurring at an ever-

increasing rate. The typical tool maker is no longer able to cope with these developments. 

There is definitely a need to replace the present experience-based, trial-and-error 

techniques with cost-effective, knowledge-based, analytical techniques in sheetmetal 

forming. Productivity increases in sheetmetal forming can be achieved if the part 

geometry, the fabrication method, the die design, and the material property parameters are 

correctly specified at the design stage. 

According to Keeler [1], the system of the future to replace the artisan should meet 

eight requirements. It must: 

(I) be an interactive system; 

(2) be modeled with known and unknown variables; 

(3) incorporate the material properties of real materials; 

(4) not be biased by historical rules of thumb; 

(5) provide predictive capability; 

(6) improve the interaction between design and manufacturing functions; 

(7) be responsive to new in-service requirements; and 

(8) be attuned to end-product economy. 

To meet the above requirements, it is necessary to develop the analytical models 

describing the material behavior under various forming conditions of temperature, strain, 

and strain rate, and the mathematical models simulating each specific sheetmetal foaming 

process of interest [3]. The analytical models for material behavior should enable the 
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calculation of the limits to which the material can be deformed. The mathematical model 

for the processes should describe the local states of the stresses and strains in the material 

during forming [4]. 

Table 1.1 	Summary of Various Analysis Methods [5] 

Method 
Input Output 

Comments Flow 
Stress 

Friction Velocity Stress 
Field 

Tempera- 
ture 

Stress 
on Tools 

Slab Average a, b No Yes No Yes Ignore 
redundant 
work 

Uniform 
Energy 

Average b No No No Average Redundant 
work can be 
included 
approximately 

Slip Line Average a, b Yes Yes No Yes Valid for 
plain-strain 
problem 

Upper- 
bound 

Distributed b Yes No No Average Gives upper-
bound loads, 
can determine 
free boundary 

Hill's Distributed a, b Yes No Yes Average Can treat 3D 
problems 

Finite 
Difference 

Distributed a, b Yes No Yes Yes Require 
considerable 
computer time 
Require 
considerable 
computer time 

Finite 
Element 

Distributed a, b Yes No Yes Yes 

Matrix 
Weighted 
Residuals 

Distributed a, b Yes No Yes Yes Treats rigid-
plastic material 
very general 
approach 
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As the basis of the metalworking process, plasticity theory is a macroscopic 

phenomenological theory based on mathematically described, large-scale behavior of a 

material continuum during plastic deformation. A brief summary of the most commonly 

used method of analysis is given in Table 1.1 [5]. 

In this thesis, the finite element method is utilized as a powerful tool for modeling 

and analysis of sheetmetal forming process by using a sophisticated software package --

ABAQUS. Different variables of sheetmetal forming operations are studied, and their 

influences on the deformation procedure and the final shape of the work piece are 

investigated. In order to rationalize the experimentation of sheetmetal forming processes, 

the statistical approaches of quadrature method are introduced to minimize the number of 

experiments of searching for the optimal conditions. It is basically a method of 

discretization and approximation of a symmetric distribution. The index for the accuracy 

evaluation is the highest degree of central moment it can approximate accurately. This 

method is used when the statistical distribution of each factor is known and all-

combination experiments are required to be conducted. Comparing to other statistical 

approaches, this method has greater significance in practice in that it can save a lot of 

efforts of experimentation when the experiments are either costly or time-consuming. 



CHAPTER 2 

ANALYSIS OF SHEETMETAL FORMING PROCESSES 

2.1 General Review of Sheetmetal Forming Processes 

In a manufacturing process, a given material, usually shapeless or of a simple geometry, is 

transformed into a useful part. This part usually has a complex geometry with well 

defined shape, size, accuracy and tolerances, appearances and properties [7]. 

There are five main characteristics of any manufacturing process -- namely geometry, 

tolerances, production, and human and environmental factors. The manufacture of metal 

parts and assemblies can be classified into five general areas: 

(1) Primary shaping processes, such as casting, melt extrusion, die casting and 

pressing of metal powder. In all these processes the material initially has no shape 

but through the process obtains a well defined geometry. 

(2) Metal forming process, such as rolling, extrusion, cold and hot forging, bending 

and deep drawing, where metal is formed by plastic deformation. 

(3) Metal cutting processes, such as sawing, turning, milling and broaching, where a 

new shape is generated by removing the metal. 

(4) Metal treatment processes, such as heat treating, anodizing and surface 

hardening, where the part remains essentially unchanged in shape but undergoes 

change in shape. 

5 
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(5) Joining processes, such as welding, diffusion bonding, mechanical joining as 

riveting, shrink fitting, where two parts of the same or different metals are joined 

together. 

In metal forming, an initially simple part, for example, a billet or a sheet blank is 

plastically deformed between dies to obtain the desired final configuration. Forces are 

applied to the sheetmetal blank to cause permanent change of contour: Metal forming 

processes usually produce little or no scrap and generate the final part geometry in a very 

short time, usually in one or a few strokes of a press or hammer. During forging, one area 

of the blank is usually held stationery on the die as the punch forces the other up or down 

to complete the change in contour. A given shape of a workpiece is converted into 

another shape without change in mass or composition of the material of the work piece. 

For a given weight, parts produced by metal forming exhibit better mechanical and 

metallurgical properties and reliability than do those manufactured by casting or 

machining. There are various forming processes such as rolling, extrusion, cold and hot 

forging, bending and deep drawing, where metal is formed by plastic deformation. 

Metal flow is influenced mainly by: 

(I) Tool geometry; 

(2) Friction condition; 

(3) Characteristics of the stock material; 

(4) Thermal conditions existing in the deformation zone. 

The details of metal flow influence the quality and properties of the formed product 

and the force and energy requirements of the process. 
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2.2 Characteristics and Considerations of Sheetmetal Drawing Processes 

2.2.1 	Basic Process Description 

Sheetmetal forming processes, broadly classified as deep drawing or stamping operations, 

include a wide spectrum of operations and flow conditions [2]. At one end of the 

spectrum is the forming of flat-bottomed cylindrical cups by radial drawing or cupping. In 

this case one of the principle strains in the plane of the sheet is positive and the other is 

negative with the change in thickness, if any, being small. At the other end of the 

spectrum are operations involving biaxial stretching of the sheet, at which two principle 

strains are tensile and thinning is required. The distinction between shallow drawing and 

deep drawing is arbitrary, although shallow drawing generally refers to the forming of a 

cup no deeper than one half of its diameter, with little thinning of the metal. In deep 

drawing, the cup is deeper than one-half of its diameter, and wall thinning, although not 

necessary intentional, may be more than in shallow drawing. 

In this thesis, conventional deep drawing of a cylindrical cup from a thin, flat, circular 

blank with a flat-bottom punch as shown in Fig. 2.1 will be discussed primarily. 

During the deep drawing, a planar disk is transformed into a cup with flat bottom, 

cylindrical walls, and open top [8]. As shown in Fig. 2.1 (a) and (b), the disk is placed 

over the opening in the die and forced to deform by a moving punch. As the punch moves 

downward, it pulls the flange toward the center. The flange is held between the die and 

the blank holder, with the purpose of presenting the flange from folding upward. The 
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flange moves inward radically while its inner side bends over the rounded corner of the die 

and transformed from a flat disk to a circular tube. 

Figure 2.1(a) Beginning Stage of Deep Drawing 

Figure 2.1(b) End Stage of Deep Drawing 

At this point, the bottom is not deformed, while the cylinder is already deformed but 

is not undergoing further deformation. Friction prevails on the top and bottom flat 
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surfaces of the flange, and on the surface of the corner radii of the female die. Punch 

force supplies the motive power to overcome the deformation and friction resistance. The 

punch force is normally transmitted from the punch to the cup through pressure on the 

bottom of the cup. The punch pressure is transmitted from the bottom of the cup to the 

deformation region through tension on the wall of the cup. This tension must remain 

elastic. 

The punch is forced down through the die, pulling the blank inward while converting 

the flat disk into a cylindrical shape. When classical deep-drawing is performed, the gap 

between the punch and the die is designed to be larger than the thickest part of the wall of 

the cup, which occurs at the open top. Although modification of the process from 

classical deep drawing to stretching and wall ironing allow for smaller gaps, and other 

changes sometimes eliminate the hold-down ring, this always is addressed to the basic 

process as described above. 

2.2.2 	Analysis of Drawing Operation 

For use in the analysis of deep drawing, the flat blank may be divided into three zones: X, 

Y, and Z as shown in Fig. 2.2 [9]. 

The outer annular zone X consists of material in contract with the die, the inner 

annular zone Y is initially not in contact with either the punch or the die, and the circular 

zone Z is in contact with the flat bottom of the punch only. 

During the course of deep drawing, the following five processes take place [9]: 
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(1) Pure radial drawing between the die and the blankholder; 

(2) Bending and sliding over the die profile; 

(3) Stretching between the die and punch; 

(4) Bending and sliding over the punch profile radius; 

(5) Stretch and sliding over the punch nose. 

Various parts of zone X may go through some or all of the process 1, 2, and 3; those 

of Y through 2, 3, and 4; and those of Z through 3, 4, and 5. 

Figure 2.2 	Three Zones of Flat Blank 

To get a better understanding of deep drawing processes, it is necessary to find out 

those variables affecting the deformation of the workpiece. In the paper of Sirkirk [10], 

he identified thirty sheetmetal forming process variables as listed in Table 2.1. These 

variables can be roughly divided into three categories: 

(1) 	tooling variables, including the geometry and hardness of tools; 
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(2) workpiece variables, including the geometry and material property of the blank; 

(3) interface variables, including the friction and lubrication condition between the 

tools and workpiece. 

Table 2.1 	Major Sheetmetal Forming Process Variables 

Blank Variables 
1. Dimensions 
2. Positive in die (gaging location) 
3. Edge condition 

Lubrication 4. Type 
5. Coating thickness and distribution 

Press Variables 

6. Punch guidance 
7. Punch speed (as a function of press stroke) 
8. Binder force and its variation around the binder ring 
9. Counterbalance pressure where it can affect press load 
10. Rigidity 

Work Material Variables 

11. Thickness (normal and thickness profile) 
12. Mechanical properties 
13. Surface topography 
14. Coating and surface chemistry 

Die Variables 

15. Guidance 
16. Alignment; i.e., positive in press 
17. Surface finish 
18. Material 
19. Draw beads (change with wear) 
20. Hardness 
21. Punch radii (change with wear) 
22. Surface coating and surface chemistry 
23. Profile radii (change with wear) 
24. Rigidity 

Miscellaneous Variables 25. Dirt in the die or on the blank 
26. Blank pre-bend position (affects blank location) 

Interactive Variables 
27. Working material temperature 
28. Die temperature 
29. Atmospheric conditions (temperature, humidity) 
30. Shims on stop block (affect binder load distribution) 



12 

What we are interested here is the forces which occur during drawing and the punch 

force as a function of the independent process variables. 

Various forces which are generated during the process of drawing are: 

(1) Bending at radii Pb; 

(2) Friction between 

(a) blank holder and sheetmetal, FB; 

(b) die steel and sheetmetal, Fd; 

(c) punch steel and sheetmetal, Fp; 

(3) 	Compression at the flange area or extremity of the cup, Pc. 

The punch force is the sum of the above forces: 

As can be observed from the study by Avitzur [11] and from the findings in other 

processes, when the material is not sensitive to the strain-rate effects, the punch force 

becomes independent of the punch speed vf. Furthermore, the solution can be presented in 

dimensionless form. In symbolic terms the function relating the punch force (the 

dependent parameter) to the independent parameters can be represented as follows: 

where to  and R0  are the thickness and outer radius of the flange (Fig. 2.3); Rt is the radius 

of the surface separating the flange (region I) from the toroidal bending of region II; r, is 

the corner radius of the die, which is also the inner radius of the bead in the toroidal region 
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II; m is the friction factor acting between the workpiece and the tools; PH  is the hold-

down force acting on the hold-down ring. 

Figure 2.3 	The Parameters of the Workpiece 

In the Chapter 4 of this thesis, experimentation of the effects of various factors on 

punch force are conducted using statistical methods. 



CHAPTER 3 

COMPUTER AIDED FINITE ELEMENT MODELING AND ANALYSIS 

3.1 General Introduction of Computer Aided Finite Element Analysis 

The finite element method has been used in engineering analysis for many years. 

However, its use throughout the entire engineering design process has been limited by the 

cost of both the computing resources and the workforce to synthesize and manage the 

data needed for the multiple analyses required by design modifications [12]. The last two 

decades have witnessed an explosive growth in computer technology. The introduction of 

these new computing systems has made a strong impact on finite-element technology. The 

drastically reduced expense of computing resources and the development of more 

integrated design software are increasing the cost-effectiveness of finite element methods 

to the point that they can become an integral part of the design process, not just a check 

on the final design or a tool for post-failure analysis. 

In computer-aided design (CAD) the determination of the performance (e.g., stress 

or deformation) of a device using the finite element method during its design process is 

accomplished by analysis of the partial deferential equations which describe the given 

system. This involves the following three steps: 

(1) 	preprocessing: the description of the geometry, the physical characteristics and 

the mesh; 

14 
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(2) problem solving: the application of the finite element method; 

(3) postprocessing: 	the visualization and interpretation of the results of the 

simulation. 

3.1.1 	Preprocessor 

The generation of a finite element model ready for input to the desired analysis program 

can be considered a four-step process as shown in Fig. 3.1 [12]. 

Figure 3.1 	The Process of Pre-processing 

The first two steps are the most general since the definition and discretization of 

geometry are independent of the particular class of problem to be solved or the analysis 
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program to be used. The type of element geometries and the way a mesh is graded are 

dependent on the problem to be solved, the type of element to be selected, and the level of 

accuracy desired. 

Traditionally, the need to generate element meshes has been a drawback of using the 

finite element method. However, there are a number of software packages and methods 

available today to aid in the generation of finite element meshes. The mesh generation 

consists of collection of finite elements which form an acceptable discretization of the 

domain. Such a discretization must respect the boundaries of the domain and interfaces 

between two regions. The shape of the finite elements must not be too irregular 

(elongated) and should as much as possible resemble the reference elements (equilateral 

triangle or tetrahedra, squares or cubes, etc.), i.e., their aspect ratio should near 1:1. 

The element aspect ratio is a measure of the shape of an element. It is defined simply 

as the ratio of the length of the longest element side to the length of the shortest element 

side. The importance of this measure is that numerical ill-conditioning of the element 

stiffness matrix may result when an element becomes too elongated and/or the vertex 

angle become too small or too large. The degree of sensitivity to aspect ratio is a function 

of the element type and number of digits of accuracy available. 

The nodes are defined by their coordinates while the elements are characterized by 

their type and a list of their nodes. Certain formulations involve boundary integrals, not 

only interior finite elements (volume elements in three dimensions, surface in two), but 

also boundary finite elements in three dimensions (surface elements in dimensions, line 

elements in two) or the corresponding boundaries must be constructed. 
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The description of attributes include the specification of physical characteristics such 

as the material properties (e.g., Young's modules), sources (e.g., distributed or 

concentrated loads), and boundary conditions (for time dependent or time independent 

problems). 

3.1.2 	Problem Solver 

The solver computes the unknowns in a finite element problem, i.e., it solves the linear or 

non-linear system of equations coming from the variational or the projective formulation. 

Its input is the domain discretization, the physical characteristics and the boundary 

conditions. The output is the value of the unknown force or displacement at each of the 

node of the grid (Fig. 3.2 and 3.3). 

Figure 3.2 	Solver: Operation for a Linear Static Problem 
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Figure 3.3 	Solver: Operation for a Non-linear Static Problem 

Two large classes of methods are used to solve these sets of equations: point or 

block method of relaxation or global matrix methods. The latter, more popular today, 

requires several steps: 

(1) creation of sub-matrices and sub-vectors corresponding to each individual finite 

element; 

(2) assembly of these elementary matrices and vectors to build the system matrix 

and right hand vector, the bigger the system assembly matrix, the more powerful and 

expensive the software; 
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(3) 	solution of the linear system of equations. 

3A.3 	Postprocessor 

The reduction of finite element results to a manageable level of useful information is the 

function of a post-processor [12]. In general, postprocessing is concerned with the two 

separate questions of reducing and presenting results in an understandable fashion, and of 

ensuring that the results used are the most accurate results the given model can produce. 

To enhance the engineer's capabilities to interpret the results of a finite element 

analysis there are a number of ways to distill and present graphically the information 

obtained, e.g., displaced shapes, contour maps, vector display maps, animation, 

thresholding of results, automatic checks against design codes, and automatic generation 

of result reports. 

Displaced shapes are typical of composite vector displays in that all components of a 

vector response are shown by an exaggerated, deformed mesh. Contour maps can be used 

to display scalars such as temperatures and concentrations of pollutants, or one 

component of vectors or tensors such as maximum principle stress or horizontal flow. 

Color is widely used in the display of stress contours because it not only adds impact to 

the display of results but can also be used as an added dimension to transmit additional 

information. The understanding of time-dependent or harmonic results can be greatly 

enhanced with animation. For example, the dynamic display of natural-vibration modes 

gives an improved understanding of vibrational tendencies of a structure, and the time- 
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history display of displaced shapes or temperature contours greatly improves the 

understanding of the time-dependent results. 

Since the major function of postprocessing is to give the user an understanding of 

the results, which is done best in a pictorial manner, and to allow the user to interpret the 

results as desired, interactive computer graphics is the ideal medium for postprocessing. 

An interactive-graphic postprocessor allows the user to obtain quickly plots of deformed 

shapes, stress, contours, and other desired parameters. Instead of scanning columns of 

numbers, the user can use overall display to determine the basic trends and then can 

concentrate on the critical areas to determine the desired values. The user also can 

exercise real-time control over all the factors that affect perception of the results, 

including viewing directions, magnifications, parameters, displayed, scale factors, 

contour intervals, and color maps. 

3.2 Finite Element Programming in ABAQUS 

3.2.1 	An Overview of Finite Element Software Packages and ABAQUS 

The significant advances made in finite element technology, coupled with the rapid 

developments in computer hardware and software, provided the foundation from which 

general-purpose finite element program have involved. After many years of development, 

a wide variety of finite element programs are currently being used in government and 

industry for the solution of a widely variety of practical problems. The analysis 
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capabilities and user features vary considerably from one code to the other, and, therefore, 

it is often difficult to identify the proper code that meets a specific need. A number of 

factors which affect the selection of a code are enumerated as follows [13, 14]: 

(1) Analysis capabilities: include the range of applications and limitations of the 

code, which include both those implied by the formulation aspects and numerical 

selection procedures adopted by the code as well as the element library available in 

the code; 

(2) Adequacy of user-oriented features: such as automatic (or semi-automatic) 

mesh (or model) generation, error checks, and displays of original model and of 

various intermediate results; 

(3) Maintainability: include updating the computational modules, extending the 

capabilities of the code, and improving its performance; 

(4) Adequacy of user-support facilities, such as users' manuals, sample problems 

and help interactive commands, etc.; 

(5) Portability: compatibility between different computer systems. 

Among numerous finite element software packages, ABAQUS, a general-purpose 

finite element system developed by the Hibbit, Karlsson and Sorensen, Inc., is chosen as 

the tool of analysis in this work because of its advantages of large library of capabilities, 

including large element library and wide range of non-linear feature, ease of use (very 

simple, readable keyword and parameter input, automatic time stepping for non-linear 

application, extensive graphical output), efficiency and high level support. 
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ABAQUS is designed as a production tool of maximum generality. Its major 

capabilities are focused on reliability in practical cases. Since much of the program's use is 

in the nonlinear range, it has an extensive library of nonlinear features that will provide 

solutions for wide range of problem parameters, with minimum guidance from the user. 

For example, a strong emphasis is placed on automatic incrementation schemes for static 

case (including unstable postbuckling response), dynamics (including impact), fully 

coupled stress problems, pore-fluid-flow-porous-medium deformation cases, etc. Four 

principal ideas form the basis of the user interface in ABAQUS: simple input, careful 

documentation, extensive plotting capability, and automatic time stepping. 	Input is 

organized by keywords and "sets". Keywords introduce blocks of data; keyword cards 

often include parameters. The set concept is an effective data organizer for the user, 

especially in large models. It allows collection of nodes or elements to be addressed by a 

user-defined name. Sets can be assembled into other sets, to any level. Sets are used for 

most specifications -- material properties, loading and boundary conditions, output edits, 

etc. 

ABAQUS is designed for advanced applications, especially in the nonlinear range. 

Because it is one of the easiest large-scale finite element programs to learn and use, and it 

is one of the most computationally efficient, even in simple, linear applications, ABAQUS 

is used as the main media of finite element analysis in this work. 
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3.2.2 	ABAQUS Programming Techniques 

ABAQUS runs as a batch application. The main input is a file which options are required 

and gives the data associated with these options [15, 16]. 	There may also be 

supplementary files, such as restart or results files from previous analyses. The main input 

file is discussed in the terminology of a card image file (a "card file"). For analysis, the file 

consists of two sections: model input and history input. For postprocessing in batch 

mode, the file contains output commands. 

Since ABAQUS is a batch program, the objective is to assemble a "data deck" which 

describes a problem so that ABAQUS can provide an analysis. Data decks for complex 

simulations can be large, but can be managed without too much difficulty by using the 

convenient features built into the program's input structure. 

A data deck for ABAQUS contains model data and history data. Model data define a 

finite element model: the elements, nodes, element properties, material definitions, and so 

on - - any data that specify the model itself. History data define what happens to the 

model -- the sequence of event to loadings for which the model's response is sought. 

Model input 

A finite element model consists of a geometric description, which is given by the 

element and their nodes (the "bulk data") and a set of properties associated with the 

elements, describing their attributes. These properties include material definitions, cross-

section definitions in the case of structural elements like beam and shells, and other 

parameters for interface elements, springs, dashpots, etc. There may also be constraints 



24 

that must be included in the model -- "multi-point constraints" or "equations" (linear or 

nonlinear equations involving several of the fundamental solution variables in the model), 

or simple "boundary conditions" that are to be imposed throughout the analysis. 

Environment properties, such as attributes of a fluids surrounding the model, must also be 

defined in some cases. Non-zero initial conditions, such as initial stresses, temperatures or 

velocities, may also be required. All of these are classified in ABAQUS as "model 

definition data" and are given as the first part of an ABAQUS analysis data deck. 

The data structure of model input in ABAQUS is shown in Fig. 3.4. 

One of the most useful features of the ABAQUS data definition method is the 

availability of "sets". A set can be a set of nodes or a set of elements. The user provides a 

name for each set. That name then provides a means of referencing all of the members of 

the sets. Sets are the basic reference throughout ABAQUS, and the use of sets is 

recommended. Choosing meaningful set names makes it simple to identify which data 

belong to which part of the model. By using sets and some other options provided in 

ABAQUS, it is possible to define and mesh a complex geometry shape without much 

difficulty. 

The material library in ABAQUS is intended to provide comprehensive coverage of 

both linear and nonlinear, isotropic and anisotropic material models. The use of numerical 

integration in the elements, especially the numerical integration across the cross-section of 

shells, means that this flexibility in material modeling can be used to full advantage to 

analyze the most complex composite structures. 
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Figure 3.4 	Data Structure of Model Input 

Most materials of engineering interest initially respond elastically. Elastic behavior 

means that the deformation is fully recoverable, so that, when the load is removed, the 

specimen returns to its initial shape. In the case of linear elasticity, the total stress is 

defined from the total elastic strain as: 
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where σ is the total stress; Dd  is the elasticity matrix; and ɛel  is the total elastic strain. 

The simplest form of linear elasticity is the isotropic case: Del  is defined by giving Young's 

modules and Poisson's ratio. If the load exceeds some limit (the "yield load") the 

deformation is no longer fully recoverable. Some part of the .deformation will remain 

when the load is removed, as, for example, when a paperclip is bent too much, or when a 

billet of metal is rolled or forged in a manufacturing process. 

Plasticity theories model the material's mechanical response as it undergoes such 

nonrecoverable deformation in a ductile fashion. 

Most of the plasticity models in ABAQUS are "incremental" theory, in which the 

mechanical strain rate is decomposed into an elastic part and a plastic (inelastic) part. For 

example, the stress-strain relation for a certain kind of material is shown in Fig. 3.5. The 

first yield occurs at 200 MPa. The material then hardens to 300 MPa at one percent 

strain, after which it is perfectly plastic. Assuming the Young's modules is 2x105  MPa, 

the plastic strain at the one percent strain point is 

Thus, the plasticity model for the material can be listed as Table 3.1. Note that 

plastic strain values, not the total strain values, are used in define the hardening behavior. 

Note also that the yield stress remain constant for plastic strains exceeding the last value 

given. 
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Figure 3.5 	The Stress-strain Relation for a Certain Kind of Material 

Table 3.1 	Plasticity Model for a Certain Material 

yield stress (N) plastic strain (mm) 
200. 0. 
300. 0.0085 

• History Input 

The purpose of an analysis is to predict the response of a model to some form of 

external loading or to some non-equilibrium initial conditions. ABAQUS is designed as a 

flexible tool for finite element modeling. An important aspect of this flexibility is the 

manner in which ABAQUS allows the user to step through the history to be analyzed. 
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A basic concept in ABAQUS is the division of the problem history into steps. A step 

is any convenient phase of the history -- a thermal transient, a creep hold, a dynamic 

transient, etc. In each step the user choose a procedure, thus defining the type of analysis 

to be performed during the step: dynamic stress analysis, eigenvalue buckling, transient 

heat transfer analysis, etc. The procedure choice may be changed from step to step in any 

meaningful way, so that the user has great flexibility in performing analysis. 

The data structure of history input in ABAQUS is shown in Fig. 3.6. 

Figure 3.6 	Data Structure of History Input 
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ABAQUS provides both linear and nonlinear response options. The problem is truly 

integrated, so that linear analysis is always considered as linear perturbation analysis about 

the state at the time when the linear analysis procedure in introduced. This linear 

perturbation approach allows general application of linear analysis techniques in cases 

where the linear response depends on preloading, or the nonlinear response history of the 

model. 

In nonlinear problems the challenge is always to a convergent solution at a minimum 

cost. The nonlinear procedure in ABAQUS offer two approaches to this. Direct user 

control of increment size is one choice, whereby the user specifies the incrementation 

scheme. This is sometimes useful in repetitive analyses, where the user has a good "feel" 

for the problem. Automatic control is the alternate approach: the user defines the step 

and specifies certain tolerances or error measures. ABAQUS then automatically selects 

the increments as it develops the response in the step. This approach is usually more 

efficient, because the user cannot predict the response ahead of time. Automatic control 

may sometimes increase the cost of analysis over the cost when the response is essentially 

predictable and direct user specification of increments is adopted, but automatic control 

can save enormously over repeated user controlled running of a problem to obtain a 

satisfactory incrementation scheme. Automatic control is particularly valuable in cases 

where the time or load increment varies widely through the step. Ultimately, automatic 

control allows nonlinear problem to be run with confidence without extensive experience 

with the problem. 
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3.2.3 	Case Study 

	Finite Element Modeling 

The geometry of the workpiece before deforming is very simple which can be 

represented by two parallel straight lines with a certain distance apart. However, the 

shape of the tools is relatively complex. The blankholder consists of two straight lines 

while the die is made up of two straight lines with an arc between them. Since relatively 

larger displacement occurs between the punch and the workpiece than the interface of die 

and blankholder, the shape of the punch is designed so that one straight line and two arcs 

which are connected smoothly. 

The basic configuration and geometry of the deep drawing problem is shown in Fig. 

3.7. 

Figure 3.7 	Configuration and Geometry for the Deep Drawing Problem 
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The basic configuration and geometry of the deep drawing problem is shown in Fig. 

3.7. 

The definition of nodes and elements are shown in Fig. 3.8. 

Figure 3.8 	Definition of Nodes and Elements 

• Finite Element Analysis 

This project is a problem of large deformation whose process cannot be determined 

before hand. Therefore, the automatic control method is implemented in this project. The 

ABAQUS program for the deep drawing process is listed in Appendix I. 

The analysis process is divided into five steps: 
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(1) push the blank holder down by a prescribed displacement; 

(2) apply the prescribed force on the blank holder and release the displacement; 

(3) move the punch down; 

(4) fix all nodes and remove the IRS elements; 

(5) replace the boundary conditions by the regular set. 

Detailed analysis and statistical experimentation of this problem will be discussed in 

Chapter 5. 



CHAPTER 4 

APPROACHES FOR STATISTICAL ANALYSIS OF COMPLEX SYSTEM 

4.1 Traditional Methods for Statistical System Analysis 

Statistical analysis is widely used by engineers and scientists to study the effect that 

component variations have on the output variability of a mechanism or system. Two 

classes of methods have been applied for variability analysis, i.e., high/low method which 

specifies threshold by high/low or go/no-go values, and statistical method which specifies 

threshold by probability distributions. There is a critical difference between these two 

kinds of methods [17]: namely, except for the most simple mechanisms high/low method 

poses analytical difficulties in principle as well as in practice; statistical method does not 

generally pose a problem in principle, although it may very well do so in practice. The 

essence behind this statement is that since in statistical method component variations are 

given as probability distributions, the response of a mechanism has a well defined 

probability distribution under conditions common in practice, and further, one can write 

down expressions for the moments of this distributions and thus characterize it. On the 

other hand, one does not have this machinery or some equivalent available when working 

with high/low method. 

The important technical problem is the determination of the probability distribution of 

the response of a mechanism for a given set of component distributions [17-19]. There is 
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a known relationship between the response of a mechanism and the value of the 

component in the mechanism: 

where f(.) is some known function and X1, X2, ... , Xn are the values of the n components. 

The component values, X1, X2, ... , X, are usually assumed to be statistically independent 

random variables, and the problem is to determine (or approximate) the probability 

distribution of Y. The relationship (4.1) may exist in any form of which it is possible to 

ascertain a value for Y for given values of the Xi; as an analytical expression -- either 

implicit or explicit, or engineering calculations of an involved sort may be required, or Y 

may have to be determined by experiment or by analog, or so on. In other words, f is a 

function of the Xk  in the most general sense of the word. The form in which it is 

expressed has a great bearing on the way a complex problem can be handled. 

The normalized rth central moments of the system response can be computed as 

follows: 

where Y,, i=1, 2, 	N are N values of Y; p(Y,) is the probability density function, which 

is often taken as 	; MI, the first moment, is the mean of Y which is given by 
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According to Evans [20, 21], if the moments are known with sufficient precision for 

Y = 1, 2, 3, 4, then the Pearson system can be used for the distribution of Y. Therefore, a 

principle problem of statistical analysis research is to find methods of approximating the 

moments for a distribution. 

In [18], different methods for estimating these moments have been described, i.e., 

(1) The linear case; 

(2) The extended Taylor series approximation; 

(3) Approximation by numerical integration (quadrature methods); and 

(4) Monte Carlo methods. 

The linear case which is often called stack tolerancing is the problem in which n 

components are Xi  and the response Y is given by the weighted sum of the Xi, 

where the ak  are constants. The mean and variance of Y can be obtained by 

 and 

where µi and o are the mean and standard deviation of X ;, i = 1, 2, ..., n. The distribution 

of X can usually be treated as normal with mean and variance as shown. The linear case 
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∂f  can also be used for the determination of derivative, 	, in which the linearized Taylor ∂Xk 

series expansion can be implemented [18]. 

When the linear approximation is not accurate enough, more advanced techniques are 

needed. If the functional relationship (4.1) can be expressed in analytical form, the 

extended Taylor series approximation can be used. The basic idea is to start with the 

Taylor series expansion for f of (4.1) about the mean of the X up to the sixth order: 

where fk, f jk, etc., are the partial derivatives of f with respect to the Ak, Xj, etc., all 

evaluated at the point Ai  = 	= 1, 2, ..., n, and the sums are over all indices from 1 to n, 

sufficient differentiability is assumed. The last term represents the neglected terms and it 

is understood that it includes all monomials of the sixth order and higher. In [23], [24] 

and [25], Turkey gave an algorithm by which the first four central moment of Y can be 

calculated without much effort. 

On the other hand, however, when f cannot be written in analytical expressions, the 

above method is inapplicable and the Taylor series approximation cannot be used. In this 

case, for any given values of Xi, there is a way of finding the Y, e.g., by measuring it, by 

analog computation, by numerical calculations, by engineering methods, etc. For any 

function f(X1, A2, ..., An), the expected value off is given by the integral 
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where the Xi, i = 1, 2, ..., n are independent random variables with known density pi  (Xi). 

It can be shown that E(Y) can be approximated by the quadrature expression. The basic 

technique developed for this circumstance is described explicitly in [20 - 22]. 

Theoretically, any mechanism which is to be analyzed on a statistical basis can be 

solved by one of the method mentioned above [18]. However, except for some stack 

tolerancing analysis, in most cases their precision is too limited, the linear case most of all. 

Therefore, the most popular method is the Monte Carlo method because it allows 

unlimited precision. 

The way Monte Carlo analysis is done is to have a population of numbers available 

for each Xi, i = 1, 2, ..., n, which are true to the distribution assumed for Xi, draw a 

random sample {X1, X2, ..., Xn} from this set of populations, evaluate Y = f(X1, X2, ..., 

Xn) for this sample, and then replicate this procedure N times. This gives a random 

sample for Y, 	1, Y Y {Y1,Y2, ... , Yn} • Standard method of statistics are then available to analyze 

the distribution of Y. Since the usual behavior is for the precision of the statistical analysis 

to get better as N increases -- usually proportionally to AN -- the precision of the method 

is unlimited. 

Suppose the probability density function of Xi is p(Xi) which is given via elementary 

function or is specified graphically (Fig. 4.1) [26]. 



38 

Figure 4.1 	Probability Density Function for Xi 

Let us assume that the value of Xi  limited within a finite interval (a, b) and its density 

is limited, i.e., 

The value of Xi  may be drawn as follows: 

(1) Select two values y' and y " of the random variable y and generate a random 

point T(ὴ , η") with coordinate 
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(2) If the point T lies below the curve p(X), assume X;  = η '; otherwise reject the 

pair (y', y ") and select a new pair (r, y "). 

(3) Repeat procedure (1) and (2) N times, thus obtain N samples of Xi. 

Although the Monte Carlo method is relatively simple and straightforward, it will 

require a lot of experiments or calculations. In most applications, the number of random 

values must be very large (usually more than 100,000) to obtain satisfactory 

approximation. This makes it too costly or time consuming to be practical for some kinds 

of situation. Therefore, a more recent method, the Taguchi's method, has become widely 

used in engineering applications, which will be investigated in the rest of this work. 

4.2 	Taguchi's Method of Statistical Analysis 

For a given mechanism with a set of components X1 , X2, 	Xn, the response of the 

mechanism Y with respect to the input of the components can be determined by Equ. 

(4.1) if the function f can be expressed in analytical form or by N experiments from 

which a series of values of Y: Y1 , Y2, ..., YN  can be obtained. 

Taguchi's method is an experimental design approach which is to design the levels 

of each components so that one can approximate the moments of the probability 

distribution of the system response efficiently through a limited number of experiments. 
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To apply the method, a three-level factorial experiment is created. The mean of each 

component µi is the center level and µi  ± √3/2  • σi are the high and low levels, respectively, 

with µi, as the standard deviation of the ith component. Note that each level has equal 

probability 1/3. The function (4.1) is evaluated at all N = 3" combinations of level, giving 

the values Yi, i = 1, 2, 	N (Fig. 4.3). The first rth moments of the system response can 

be computed directly from the N data points according to Equ. (4.2) and (4.3). The 

mathematical justification of Taguchi's method is given in the next chapter. 

Figure 4.2 	Distribution of Taguchi's Method 

Taguchi's method has the following advantages over the more traditional statistical 

methods that we described in Section 4.1. 
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(1) Taguchi's method does not required the function f to be expressed in analytical 

form; 

(2) The method does not require the use of partial derivatives of the function; 

(3) The method is easily described to scientists and engineers; 

(4) The total number of evaluations of the function is significantly less than that 

required by a Monte Carlo simulation. 

However, based on the justification of Taguchi's method as explained in the next 

chapter, it is found that this method can match the third central moment only which 

significantly affect the approximation accuracy. Thus, a new method for statistical 

analysis - quadrature method is introduced to obtain the highest possible accuracy of 

approximation with a limited number of experiments. 



CHAPTER 5 

THE QUADRATURE METHOD AND THE EXPERIMENTATION OF 
SHEETMETAL FORMING PROCESSES 

 

5.1 The Quadrature Method in Statistical Analysis 

5.1.1 	The Theory of Quadrature Method 

Good quality and reliable performance are generally associated with small variability of the 

desired features of products or systems. As a rule, reducing the variability of the input 

variables, reduces the variability of the output, but generally, this results in higher costs. 

The trade-off between high quality at higher cost and vice versa is an ever present problem 

in the design of products. As mentioned in the last chapter, Taguchi introduced the 

concept of "loss function", and established a quantitative method to deal with the 

economics of this tradeoff 

Quality improvement can also be achieved by reducing the effect of the variability of 

input variables on the variability of the output, by proper design of the system. Taguchi 

refers to the approach as "quality improvement by proper values of design parameters". 

The approach leads to the concept of "robust design" whereby a design is robust with 

respect to a parameter, if it conserves good performance for a wide range in the value of a 

parameter. 
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A simple example shows the difference between the two approaches used to reduce 

the output variability. Figure 5.1 shows a product of height H made of three parts, A, B, 

and C. The tolerance of H is affected by the tolerances of the parts through the tolerance 

accumulation (variability propagation) and is always larger that each of the tolerances of 

A, B and C. If we need to reduce the tolerance of H we have two options: The first is to 

reduce all the tolerances of A, B and C, but this involves higher costs. Another way is to 

design the part H in two pieces or one piece (if acceptable): the tolerance of H can be 

reduced and at the same time the cost is decreased. The two options gradually reduce the 

tolerance of H by reducing the accumulation or the variability propagation in the product 

H. This designing with proper design parameters is essentially an approach to control the 

propagation of the variability of the input by changing the design of the product. 

Figure 5.1 	A Product Made of Three Parts 

In more complex products, it is often necessary to study the effects of the variability 

of the components in an assembled product, on the variability of the final product to find 

economical ways of improving quality, or of increasing robustness of performance. 
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In many systems where the relations between input and output are well defined in a 

mathematically closed form, it is possible to apply the method of Taylor series expansion. 

The Monte Carlo method is also applicable although the number of input-output instances 

must be very large (usually more than 100,000), to obtain good approximation. However, 

in most real world systems the input-output relation is not known and many variables are 

known to affect the output. Many chemical processes involve many input variables that 

interact in very complicated ways. To study the effect of an input variable, a simulation 

run often requires large computation if carried out. Other examples are the complex 

structures interacting with randomly distributed external forces and for their analysis we 

need finite element simulation which involves heavy computation. Obviously, in such 

cases both of the above mentioned methods are not applicable. The Taylor Series method 

is not applicable because the mathematical relation is not available. The Monte Carlo 

method which, as mentioned earlier, requires a large number of cases and hence a 

significantly large amount of computations will not be practical. The quadrature method, 

on the other hand, can be very useful for the analysis of such systems. 

Generally, a system with the function f(X1, X2, ... , X„) given by Equ. [4.1] is not 

known explicitly. The output f is a random continuous variable which is either calculated 

through simulation or through computational methods such as Finite Element techniques 

which will be discussed later this chapter, or numerical solution of differential equations. 

Information about the average value of f and its variance is always required. Often, the 

probability density function of f is also required, and moments of higher ranks are 

required. 
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For simplicity, we begin with a function with one symmetrically distributed 

component A (not necessarily normally distributed), by definition, the kth moment (if it 

exists) about the origin of the system response function is 

where p(A) is the probability density function of A. 

When the centered moment integration are evaluated, the function f is (X-µ), and 

E(fk) becomes 

where µ is the average given by equation the first central moment to zero: 

Now the problem is to find the most efficient numerical quadrature formula for Equ. 

(5.2). 

Since the probability density function of X is symmetric about its average, the 

distribution of X after discretization will also be symmetric, with equal number of discrete 

levels located around the average. If there are m levels on each side, the total number of 

levels of X is 
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Because of the symmetric distribution, each level on the one side of the average has a 

corresponding level located on the other side of the average with equal distance from the 

average and same probability (except the level coincident with the average when it is 

used). The discrete levels can be denoted by xj with j negative if the level is on the left 

side of the average and positive if it is on the right side. Similarly, their weights and 

distance to the average can be represented by wj  and Aj, respectively. Therefore, the 

expressions of the discrete levels and their probabilities are shown as follows 

Note that for each pair of levels, their weights as well as their distances to the 

average are the same. 

The polynomial order of a method is defined as the highest-order polynomial for 

which all polynomial of that order or less are integrated exactly by a given method. To 

determine the unknowns (the locations and the probabilities) in Equ. (5.5), we require that 

the moments up to a certain rank of the discrete distribution must be equal to the moment 

of the same rank of the corresponding continuous distribution, i.e., 
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Substitution in Equ. (5.6) from Equ.(5.5) and taking into account the symmetry and that 

A0=0, we obtain 

Note that for odd ranks, the equation reduce to zero because of symmetry. These 

equations are not used to calculate the unknowns because they have no informational 

content beyond the symmetry condition. 

In the following we show the detail of the generation of a two-level discrete random 

variable distribution to replace a normally distributed continuous variable with average µ 

and variance a2. Since we have two unknowns, i.e., w-1  (=w+1) and A1 , two equations are 

needed to get the solutions. The first equation expresses the condition that the sum total 

of the probabilities or weights of the discrete variables is equal to unity. The second 

equation expresses the requirement that the moments up to the second rank of the discrete 

distribution must be equal to the moment of the same rank of the corresponding 

continuous distribution. (The central moments of the uniform distribution and normal 

distribution are given in Table 5.1.) The equations are shown as follows: 

The solution of the above equations is 
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From the solution the two discrete levels are 

Now we derive the case of using a three-level discrete random variable to replace a 

normal distribution. Since in this case we have three unknowns, i.e., w-1(=w+1), w0, and 

A1 , one more equation is needed to express the requirement that the moments up to the 

fourth rank of the discrete distribution must be equal to the moment of the same rank of 

the corresponding continuous distribution. The equations are shown as follows: 

The solution of the above equations is 

From the solution the three discrete levels are expressed as 



Table 5.1 	Central Moments of Two Symmetric Distributions 

Distribution Uniform Distribution Normal Distribution 

Central +2a k 1   -4.2 a 	k X — 1-L  
Moment 

Mk = (X— 1-1 . ?ct  
Mk = (X —  0 • 

- 
( 	)c/X 

a 
Central a 

k k! 
• 

k 
a Moment k + 1 

21,12 . 
(k 1  2)!  

Value 

In Chapter 4, the solution of Taguchi's method is 

Engel showed that (5.6) must hold true for each value of k from 0 to the order of the 

method. The polynomial order of Taguchi's method is shown in Table 5.1. 

It is found that the discrete distribution in Fig. 4.3 have the same first three centered 

moments as the normal distribution of component A but have the fourth moment of 3a 
2 

instead of 3σ4. On the contrast, the derivation of the quadrature method mentioned above 

ensures that this discrete distribution will reproduce correctly the first five moments of a 

normal distribution with meanµ and variance a2  (Figure 5.3). 
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Table 5.2 	Approximation of Centered Moment Using Taguchi's Method 

k Exact value of centered moment Taguchi's approximation value 
1 0 0 
2 σ2  σ2 

 
3 0 0 
4 _3a4 

—
3

a 
4 

7 

If the central moments of the continuous distribution up to the kth rank are known, it 

is easy to obtain from Equ. (5.6) the values for the set of parameters {w-m, 	w0, 

A0, A1 , 	Am}. For example, assuming A is normal distributed, Table 5.3 gives 

the different values of the parameter set when A is discretized into 2, 3 or 4 levels. 

Table 5.3 	Discretization of a Normal Distribution at Different Levels 

No. of 
Levels 

Probability Distance to the average 

2 1 a 

2 
3 I 4 I 3 a, 0, √3 a 

6 
4 3 - √6 3 + √6  3 + √6 3 

-

√6 
12 	' 12 ' 12 ' 12 
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Figure 5.2 	Distribution of Quadrature Method 

5.1.2 	Discussion 

(1) The formulation above can be extended to the case of n components which are 

independent and normally distributed. The expectation becomes an integral over n 

dimensions: 

(2) We should note that all the central moments with odd rank are automatically 

equal to zero due to the symmetry condition. Therefore, equations that express this fact 

have no information content and cannot be used to help obtain the solution. 

(3) As can be seen from comparing the two and three level problems, that the 

addition of one level coincide with the average increased the rank of the central moment 
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from two to four. Non-centrally located levels have to be added in pairs to conserve the 

symmetry. An addition of a pair generates two unknowns: the distance from the average 

A and a weight w. Two added equations will guarantee the matching of two additional 

ranks of the central moments. 

(4) If an input variable is generated through measurements or other means, there is 

no need to know exactly its distribution. Suffice to calculate from data samples the 

moments to ranks that are needed by the analysis. In other words the method of 

generating the discrete levels and their weights is general and is applicable to any 

distribution provided, of course, that the distribution is symmetric or reasonably close to 

one. 

(5) It should be noted that to solve Equ. (5.7), we can assume some of the weights 

or some of the locations of the discrete levels as long as we abide by the constraints on the 

sum of the weights or the symmetry condition. However, any such assumption will reduce 

the number of the equations that can be posed, and hence the highest rank of the central 

moment that can be marched. It is clear that the efficiency of the discretization is 

diminished, because we end up with the same number of discrete levels and consequently 

with the same number of computations or experiments while we have reduced the 

accuracy of the output statistical characteristics. In other words, the 'natural solution' of 

Equ. (5.7) is the most efficient solution in that it gives moments with the highest rank for a 

given number of discrete variables. For example, Table 5.4 gives the three-level 

approximation of centered moment using quadrature method where the highest rank 

matched is fifth. 



Table 5.4 	Approximation of Centered Moment Using Quadrature Method 

k Exact value of centered moment Quadrature approximation value 
1 0 0 
2 σ2  σ2  

3 0 0 
4 3σ4 3σ4  3σ4 

5 0 0 
6 15σ6 

270.6  

(6) 	The relation between the number of levels n and the highest rank of the central 

moment M is given by 

Equ. (5.13) shows the relationship between the rank of the moment that is matched 

and the number of the discrete variables for one continuous random variable. But the 

main concern is to determine accurately the statistical characteristics of the output. The 

average, and the variance of the output are often all the required information, but 

occasionally higher ranks of the central moments are required to fit known distributions to 

the output statistical distribution. The problem is to find the relation between the highest 

rank matched by an input variable and the accuracy of the output statistical 

characterization. 

Let PST  be a polynomial of degrees S and T in the variables X and Y respectively. 

The highest term will be the term XsYT. The moment of rank U of the polynomial is given 

by 
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The integrand contains a highest term which is given by 

It is clear that to match the moment of rank U of the polynomial, we need to match 

the moments of rank S •U for X and of rank T •U for Y. Reference to Equ.(5.13) shows 

that the required numbers Nx  and Ny for X and Y respectively are given by 

For example, for a function with two variables f(X1 , X2 ) = X12  • X2 , if we require the 

moment off of rank k, the required moments for X1  and X2 are 2k and k, respectively. 

5.2 Application of Quadrature Method in the Experimentation of Sheet Metal 
Forming Process 

5.2.1 	Description of Experiments 

In Section 2.2, the characteristics of the sheetmetal drawing operation and various 

variables that affect the processes have been identified. For the three categories of 

variables, the geometry of the tools and the material property of the blank is usually 
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designed according to the geometric specification of the workpiece, and thus, is generally 

considered as fixed variables at the early stage of design. Therefore, the variables that are 

adjustable during the design process are the interface variables which include the friction 

and lubrication condition between the tools and the workpiece. Repetitive experiments 

also indicated that the thickness of the blank is another important variable which to a great 

extent will affect the quality of the deep drawing so that deformation defects such as 

cracks, orange-peel, etc. can be avoided. 

Compared to the sliding between the punch and the workpiece, the sliding 

displacements between the holder and the workpiece as well as between the die and the 

workpiece are relatively small and about the same value. The friction coefficients of these 

two interfaces are set equal values in this experimentation. Therefore, three variables are 

chosen in the experiments which include the thickness of the blank (t), the friction 

coefficient between the die (the blank holder) and the workpiece (df), and the friction 

coefficient between the punch and the workpiece (pf). 

5.2.2 	Statistical Experimentation 

The results of the five steps deep drawing are shown in Fig. 5.2. During the statistical 

experimentation, the standard deviation of thickness  σ1 is defined as 5% of the mean of 

thickness µt. The standard deviation of the friction , i.e., σdf and σ pf, are defined 10% of 

their respective means, i.e., µdf and µpf  (Table 5.4). According to the quadrature method, 



56 

the normal distribution is approximated with the set of parameters {1/6, 4/6, 1/6, - 	6, 0, 
6 6 6 

-11σ}. The three-levels for the three meshing parameters are listed in Table 5.5. 

Figure 5.3 	The Result of Deep Drawing 

Table 5.5 	Three-levels for the Meshing Parameters 

µ σ 

µ

µ-  √3σ  µ µ+ √3σ  
thickness (t) 0.00082 0.000041 0.0007490 0.00082 0.0008910 

die (blank holder) 
friction (df) 

0.1 0.01 0.08268 0.1 0.1173 

punch friction (pf) 0.25 0.025 0.2067 0.2500 0.2933 
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There are 3x3x3 = 27 different combinations of the three parameters, which can be 

developed into 27 experiments of deep drawing (Appendix II). These experiments can be 

easily simulated on SUN workstation using ABAQUS. The purpose of the study is to 

study the effect of different parameters on the final shape of workpiece as well as the 

distribution of the maximum principle stresses and the reaction forces on the tools, so that 

the weak points on the workpiece can be located and the requirements for the tooling can 

be determined. 

The results of experiment is listed in Table A2.1 of Appendix II. 

5.2.3 	Analysis of Experimentation Results 

In order to find the effect of different parameters on the maximum principle stresses and 

the reaction force applied on the tools during deformation, it is necessary to separate them 

and study them individually. The analysis is performed by isolating the experimental data 

for the each level of each parameter and finding the average, which gives the value that 

combines the information of different levels of the other two parameters, and thus, can 

approximate the relative realistic value under that specific deformation condition. 

For example, the sequence of finding the maximum principle stress (+) for the 

parameter t = 0.0008910 is explained as follows: 

(1) find the nine cases of experiments in which the thickness of sheet metal is 

0.0008910, i.e., case 1 through 9; 
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(2) multiply the nine values of maximum principle stress (+) with their respect 

weights; 

(3) add up the nine weighted values; 

(4) since the weight for the thickness value 0.0008910 is 
1
/6 , the sum obtained from 

6 

(3) has to be divided by 1/6 the result is the average of the maximum principle stress 

(+) for the parameter t = 0.0008910. 

Table 5.6 	Statistical Characteristics of Stresses and Reaction Forces 

max 
principle 
stress (+) 

(x108) 

max 
principle 
stress (-) 
(x108) 

R reac 
force on 

the punch 
(x104) 

Z reac 
force on 

the punch 
(x104) 

R reac force 
on the die 
(holder) 
(x104) 

Z reac force 
on the die 
(holder) 
(x104) 

µ 3.150597 -4.16708 -6.15157 17.5442 6.53129 -7.5441 
M2  0.061218 0.003795 0.11685 0.32400 0.22349 0.3239 
M3 0.006193 -0.00028 0.01439 -0.0876 0.04769 0.0874 

M4 0.022852 0.000071 0.04701 0.26862 0.17035 0.2684 

Skew- 
ness 

0.408889 -1.20497 0.36017 -0.4750 0.45134 0.4744 

Kurt- 
osis 

2.99237 3.000024 2.98426 2.9072 2.9422 2.9073 

By the same token, the maximum principle stresses (-) as well as the tool reaction 

forces for the nine parameters levels can also be calculated, which are listed in Table A2.2 

of Appendix II. The variation of stresses and reaction forces with respect to the three 

parameters are listed in the Figure A3.1 - A3.3. 
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In order to study in depth the variation of stresses and forces, their changes with 

respect to the friction of die (holder) and the friction of punch are displayed at the same 

time in three-dimensional drawings as shown in Figure A3.4(a) - (f), in which the x-axis is 

the die (holder) friction and the y-axis is the punch friction. 

In the following analysis, only the absolute values of the stresses and forces will be 

considered, and since the Z force on the holder is always zero it will not be discussed. 

(1) With the decrease of the thickness of sheet metal, only the positive maximum 

principle stresses will increase, all the rest stresses and forces will decrease except for 

the R force on the holder which gets a minimum point at the average of thickness. It 

is also found that most of the stresses and forces change nearly linearly with respect 

to the thickness. From these results, it is suggested that the thickness of raw material 

should be made as thin as possible provided that the positive maximum principle 

stresses will not exceed the strength limit of the material and the geometrical and 

physical characteristic requirements of the final workpiece should be satisfied. 

(2) For the friction coefficient between the die (the blank holder) and the 

workpiece, the negative maximum principle stress gets a minimum value at its 

average while the R force on the die gets a maximum value at its average, all the rest 

parameters will decrease with the decrease of the friction coefficients. This implies 

that the surface finish of the die and blank holder should be made smooth enough to 

reduce the stress within workpiece and the reaction force on the tools, and facilitate 

the flow of sheet metal during deformation. At the same time, however, it should be 
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controlled to ensure that the workpiece can be held firmly between the die and the 

blankholder. 

(3) Due to the relatively large sliding between the punch and the workpiece, with 

the decrease of the punch friction, the behaviors of the stresses and the reaction 

forces are quite different from the case when die (blank holder) friction changes: 

most of these parameters get a maximum point at their respect average while the 

negative maximum principle stress and the R force on the punch will increase 

continuously. This fact suggests that the friction coefficient between the punch and 

the workpiece will have to be kept to a certain value to allow relatively smooth metal 

flow during the deformation process. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This thesis mainly consists of three parts, i.e., analysis of sheetmetal forming processes, 

computer aided finite element modeling and analysis of sheetmetal forming, and the 

introduction of quadrature method in the experimentation of sheet metal forming. The last 

part is one of the major contributions of this work. 

Sheetmetal forming is basically a process of converting a given shape of a sheetmetal, 

often as cold rolled steel strip, to the required shape of the workpiece through multi-

station dies, where operations such as cutting, bending and drawing are performed 

sequentially to produce the part. From metal flow point of view, this is a process of large 

deformation, which is influenced by many factors such as geometry of tools, friction 

coefficients, physical property of the stock material and the thermal conditions of the 

deformation zone, etc. With all these variables are concerned, it is very difficult to obtain 

the part with right dimensions at one time, which in the machining shop environment 

entails a slow process of repeated fine readjustment of the dies. The process is often time 

consuming and labor intensive [30]. 

To acquire sufficient understanding of the process, the finite element analysis is 

introduced to simulate the metal forming process. There are many commercially available 
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software packages for finite element analysis. However, as far as the characteristics of the 

sheet metal forming processes are concerned, the program should have the following 

capabilities: 

(1) the ability to deal with large displacement and large strain; 

(2) the ability to deal with metal-tool contact and relative sliding; 

(3) the ability to deal with friction; 

(4) the ability to accept user-defined material property; and 

(5) the ability to calculate the energy dissipation and to solve coupled thermal-

elastic-plastic analysis. 

Based on the above requirements for the software, the ABAQUS program is chosen 

as the primary tool to model and analyze the sheetmetal forming process. The ABAQUS 

program proved to be capable of dealing with almost all the complexities of the process. 

Moreover, the program is very efficient in dealing with metal-tool interactions. Its 

algorithm is very efficient and results in very short CPU time for reasonably complex 

process. 

One of the major objectives of finite element analysis is to rationalize specifications 

of the model and the process. A good understanding of the process could help avoid too 

stringent or too loose specifications and thus strike an economically sound balance 

between the two extremes. In this work, the study is mainly concentrated on the changes 

of the maximum principle stresses in the workpiece and the maximum reaction forces on 

the tools with respect to the variations of the sheetmetal thickness and the metal-tool 

frictions during deformation. In fact, it is possible to find the most important physical and 
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geometrical properties of the workpiece through the study of parameters mentioned 

above. 

(1) Material ductility: Material ductility is measured by the magnitude of the tensile 

strain in a tensile test that the material can sustain before breaking. This can be used 

as a basis to predict the behavior of the material in the forming cup. The strain builds 

up with the progress of the drawing. If the accumulated strain increase beyond the 

ductility of the material, it is expected that cracks may occur during the process and 

which will appear in the final product. 

(2) Material strain hardening index: This material property has an important effect 

on the deformation distribution in the part. High strain hardening index prevents 

localization of the deformation and instead, tends to spread the strain. Thus, because 

the strain is more homogeneous and less localized, the overall attainable deformation 

can be larger. In general, higher strain rate hardening are preferable. 

(3) Uniformity of sheetmetal thickness: Non-uniform thickness, combined with low 

strain hardening index can promote localization of strain a premature cracking or 

localized orange-peel. 

(4) Friction at metal-tool interface: Friction has a major role in shaping the part. 

When friction is high, the relative movement between the deformed metal and the tools 

will become more difficult and could thus change the final dimensions and shape of the 

part. 

Since this study is to relate the variability of the system response (i.e., stresses, 

reaction forces) to the variability of the input (i.e., thickness, friction) through computer 
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simulation, it is not possible to express the relations between input and output variables in 

closed mathematical form. The Taylor series method is not possible and the Monte Carlo 

method will require too many experiments and calculations to be practical. The Taguchi's 

method, however, is suitable for such cases since it reduces the number of interests to be 

considered in the statistical analysis to a manageable level [31]. It does so by replacing the 

continuous random variables with corresponding probabilities known usually as weights. 

The discrete distribution matches some of the global statistical features of the original 

variables distributions, such as symmetry, and moments of chosen ranks. 

Taguchi's method is basically a discretization of a normal distribution with a three- 

rank of centered moment that Taguchi's method can reach is three. The quadrature 

method, with three levels at µ-√3σ, µ and  µ+√3σ, and with weight of 1/6, 4/6 and 
6 

1
, respectively, can match up to the fifth rank of centered moment. And thus, the 

approximation errors are greatly reduced in the quadrature method than in Taguchi's. 

Moreover, with the method suggested in this work, the improved set of parameters can be 

expanded to N-level variables, which will give up to 2 • (N -1) rank of the centered 

moments. 

The quadrature method is implemented in the experimentation of sheetmetal forming 

process. It is a set of three-level factorial experiments. Therefore, the total number of 

experiments is 33  = 27. 
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In order to study the influence of one individual input on a specific output, it is 

necessary to isolate the output from the effects of other inputs. This is achieved through 

weighted isolation which has been explained in detail in Chapter 4. The analysis of 

experiment results is also discussed. 

6.2 Future Work 

Up to now the discussion is based on the assumption that all of the input variables are 

normally distributed. In the actual world, however, there are a lot of variables whose 

distribution is not normal, instead, their distribution may be other symmetrical or non-

symmetrical ones. In the future study, ways will have to be found to deal with these 

classes of problems. 



APPENDIX I 

THE ABAQUS PROGRAM FOR DEEP DRAWING 

*HEADING, UNSYMM 
DEEP DRAWING OF CYLINDRICAL CUP WITH CAX4R 
*RESTART, WRITE, FREQ=25 
*NODE 
101, 
181, 0.1 
301, 0.0, 0.00082 
381, 0.1, 0.00082 
*NGEN, NSET=BOT 
101, 181, 2 
*NGEN, NSET=TOP 
301, 381, 2 
*NSET, NSET=WRKPC 
BOT, TOP 
*NODE, NSET=DIE 
100, 0.1, -0.05 
*NODE, NSET=PUNCH 
200, 0.0, 0.05 
*NODE, NSET=HOLDER 
300, 0.1, 0.05 
*NSET, NSET=TOOLS 
PUNCH, DIE, HOLDER 
*NSET, NSET=CENTER 
101, 301 
*ELEMENT, TYPE=CAX4R, ELSET=BLANK 
201, 101, 103, 303, 301 
*ELGEN, ELSET=BLANK 
201, 40, 2, 2 
*ELEMENT, TYPE=IRS21A 
441, 341, 343, 300 
*ELGEN, ELSET=HOLDER 
441, 20, 2, 2 
* ELEMENT, TYPE=IRS21A 
131, 131, 133, 100 
*ELGEN, ELSET=DIE 
131,25,2,2 
*ELEMENT, TYPE=IRS21A 
301, 301, 303, 200 
*ELGEN, ELSET=PUNCH 
301, 25, 2, 2 
*ELSET, ELSET=TOOLS 
PUNCH, DIE, HOLDER 
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*ELSET, ELSET=ALL 
BLANK, TOOLS 
*SOLID SECTION, MATERIAL=STEEL, ORIENTATION=LOCAL, ELSET=BLANK 
*ORIENTATION, NAME=LOCAL 
1.0, 0.0, 0.0, 0.0, 1.0, 0.0 
0, 0.0 
*MATERIAL, NAME-STEEL 
*ELASTIC 
2.1E11, 0.3 
*PLASTIC, HARD=ISO 
0.91294E+08, 0.00000E+00 
0.10129E+09, 0.21052E-03 
0.11129E+09, 0.52686E-03 
0.12129E+09, 0.97685E-03 
0.13129E+09, 0.15923E-02 
0.14129E+09, 0.24090E-02 
0.15129E+09, 0.34674E-02 
0.16129E+09, 0.48120E-02 
0.17129E+09, 0.64921E-02 
0.18129E+09, 0.85618E-02 
0.19129E+09, 0.11080E-01 
0.20129E+09, 0.14110E-01 
0.21129E+09, 0.17723E-01 
0.22129E+09, 0.21991E-01 
0.23129E+09, 0.26994E-01 
0.24129E+09, 0.32819E-01 
0.25129E+09, 0.39556E-01 
0.26129E+09, 0.47301E-01 
0.27129E+09, 0.56159E-01 
0.28129E+09, 0.66236E-01 
0.29129E+09, 0.77648E-01 
0.30129E+09, 0.90516E-01 
0.31129E+09, 0.10497E+00 
0.32129E+09, 0.12114E+00 
0.33129E+09, 0.13916E+00 
0.34129E+09, 0.15919E+00 
0.35129E+09, 0.18138E+00 
0.36129E+09, 0.20588E+00 
0.37129E+09, 0.23287E+00 
0.38129E+09, 0.26252E+00 
0.39129E+09, 0.29502E+00 
0.40129E+09, 0.33054E+00 
0.41129E+09, 0.36929E+00 
0.42129E+09, 0.41147E+00 
0.43129E+09, 0.45729E+00 
0.44129E+09, 0.50696E+00 
0.45129E+09, 0.56073E+00 
0.46129E+09, 0.61881E+00 
0.47129E+09, 0.68145E+00 
0.48129E+09, 0.74890E+00 
0.49129E+09, 0.82142E+00 
0.50129E+09, 0.89928E+00 
0.51129E+09, 0.98274E+00 
0.52129E+09, 0.10721E+01 



*RIGID SURFACE, TYPE=SEGMENTS, ELSET=DIE 
START, 0.05125, -0.060 
LINE, 0.05125, -0.005 
CIRCL, 0.05625, 0.0, 0.05625, -0.005 
LINE, 0.1, 0.0 
*RIGID SURFACE, TYPE-SEGMENTS, ELSET=HOLDER 
START, 0.1, 0.00082 
LINE, 0.05630, 0.00082 
CIRCL, 0.05625, 0.00087, 0.05630, 0.00087 
LINE, 0.05625, 0.06 
*RIGID SURFACE, TYPE=SEGMENTS, ELSET=PUNCH, •SMOOTH=0.013 
START, 0.05, 0.060 
LINE, 0.05, 2.250782E-3 
CIRCL, 0.0, .001, 0.0, 1.001 
*INTERFACE, ELSET=DIE 
*FRICTION 
0.1 
*INTERFACE, ELSET=HOLDER 
*FRICTION 
0.1 
*INTERFACE, ELSET=PUNCH 
*FRICTION 
0.25 
*STEP, INC=10, NLGEOM 
PUSH THE BLANKHOLDER DOWN BY A PRESCRIBED DISPLACEMENT 
*STATIC 
1.0, 1.0 
*BOUNDARY 
CENTER, 1, 1 
DIE, 1, 1 
DIE, 2, 2 
DIE, 6, 6 
PUNCH, 1, 1 
PUNCH, 2, 2 
PUNCH, 6, 6 
HOLDER, 1, 1 
HOLDER, 2, 2, -1.75E-8 
HOLDER, 6, 6 
*MONITOR, NODE=200, DOF=2 
*PRINT, CONTACT-YES 
*NODE PRINT, NSET=TOOLS, FREQ=100 
COORD, U, RF 
*EL PRINT, ELSET=ALL, FREQ=500 
S, E 
*EL PRINT, ELSET=ALL, FREQ=500 
PRIN 
*NODE FILE, NSET=TOOLS, FREQ=10 
U, RF 
*END STEP 
*STEP, INC=10, NLGEOM 
APPLY THE PRESCRIBED FORCE ON THE BLANKHOLDER AND RELEASE 
THE DISPLACEMENT 
*STATIC 
1.0, 1.0 
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*BOUNDARY, OP=NEW 
CENTER, 1, 1 
DIE, 1, 1 
DIE, 2, 2 
DIE, 6, 6 
PUNCH, I, 1 
PUNCH, 2, 2 
PUNCH, 6, 6 
HOLDER, 1, 1 
HOLDER, 6, 6 
*CLOAD 
HOLDER, 2, -100000.0 
*END STEP 
*STEP, INC=500, NLGEOM 
MOVE THE PUNCH DOWN 
*STATIC 
0.01, 1.0, 1.0E-6 
*CONTROLS, ANALYSIS=DISCONTINUOUS 
*BOUNDARY, OP=NEW 
CENTER, 1, 1 
DIE, 1, I 
DIE, 2, 2 
DIE, 6, 6 
PUNCH, 1, 1 
PUNCH, 2, 2, -0.06 
PUNCH, 6, 6 
HOLDER, 1, 1 
HOLDER, 6, 6 
*CLOAD 
HOLDER, 2, -100000.0 
*END STEP 
*STEP, INC=100, NLGEOM 
FIX ALL NODES AND REMOVE THE IRS ELEMENTS 
* STATIC 
1.0, 1.0, 1.0, 1.0 
*BOUNDARY, FIXED 
WRKPC, 1, 2 
*MODEL CHANGE, REMOVE 
TOOLS 
*CLOAD, OP=NEW 
HOLDER, 2, 0.0 
*END STEP 
*STEP, INC=50, NLGEOM 
REPLACE THE BOUNDARY CONDITIONS BY THE REGULAR SET 
*STATIC 
0.1, 1.0, 1.0E-6 
*BOUNDARY, OP=NEW 
181, 2 
CENTER, 1, 1 
*END STEP 
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APPENDIX II 

EXPERIMENTAL DATA 

Table A2.1 	Different Combinations of Three Parameters 

case thickness die (holder) 
friction 

punch friction weights 

1 0.0008910 0.1173 0.2933 1/216 
2 0.0008910 0.1173 0.2500 4/216 
3 0.0008910 0.1173 0.2067 1/216 
4 0.0008910 0.1000 0.2933 4/216 
5 0.0008910 0.1000 0.2500 16/216 
6 0.0008910 0.1000 0.2067 4/216 
7 0.0008910 0.08268 0.2933 1/216 
8 0.0008910 0.08268 0.2500 4/216 
9 0.0008910 0.08268 0.2067 1/216 
10 0.0008200 0.1173 0.2933 4/216 
11 0.0008200 0.1173 0.2500 16/216 
12 0.0008200 0.1173 0.2067 4/216 
13 0.0008200 0.1000 0.2933 16/216 
14 0.0008200 0.1000 0.2500 64/216 
15 0.0008200 0.1000 0.2067 16/216 
16 0.0008200 0.08268 0.2933 4/216 
17 0.0008200 0.08268 0.2500 16/216 
18 0.0008200 0.08268 0.2067 4/216 
19 0.0007490 0.1173 0.2933 1/216 
20 0.0007490 0.1173 0.2500 4/216 
21 0.0007490 0.1173 0.2067 1/216 
22 0.0007490 0.1000 0.2933 4/216 

23 0.0007490 0.1000 0.2500 16/216 
24 0.0007490 0.1000 0.2067 4/216 
25 0.0007490 0.08268 0.2933 1/216 
26 0.0007490 0.08268 0.2500 4/216 
27 0.0007490 0.08268 0.2067 1/216 
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Table A2.2 	Results of Experiments 

case maximum principle 

stress (+) (x 108) 

maximum principle 

stress (-) (x108) 

R, Z reaction forces 

on the punch (x104) 

R, Z reaction 
forces on the die 

(x104) 
1 3.2010 -4.1201 -6.9938, 18.253 7.0688, -8.2528 
2 3.0307 -4.2071 -6.8538, 17.835 7.6134, -7.8352 
3 3.2359 -4.1061 -6.7454, 18.366 8.0365, -8.3663 
4 3.1237 -4.1548 -6.3787, 18.187 6.5922, -8.1867 
5 3.1324 -4.1500 -6.6577, 18.219 6.9627, -8.2195 
6 3.1326 -4.1316 -6.8930, 18.224 7.2875, -8.2242 
7 2.6934 -4.3486 -6.3472, 17.155 6.0866, -7.1554 
8 2.7422 -4.3571 -6.2952, 17.280 6.3336, -7.2804 
9 2.8178 -4.3745 -6.1808, 17.486 6.6813, -7.4864 
10 3.0474 -4.1956 -6.3420, 17.186 6.6959, -7.1865 
11 3.3113 -4.1685 -6.2196, 17.808 7.2058, -7.8075 
12 3.9585 -4.0282 -5.9682, 18.814 7.7628, -8.8139 
13 3.2589 -4.1460 -6.1297, 17.819 6.2714, -7.8190 
14 3.2590 -4.1371 -6.2588, 17.835 6.5617, -7.8346 
15 2.6462 -4.1829 -6.3106, 16.364 6.4347, -6.3643 
16 2.8477 -4.2917 -5.7699, 16.938 5.7453, -6.9382 
17 2.8949 -4.2902 -5.6828, 17.063 5.9475, -7.0634 
18 2.9511 -42235 -5.7608, 17.200 6.3214, -7.2002 
19 3.3753 -4.1684 -5.7948, 17.081 6.3361, -7.0808 
20 

J  
3.6392 -4.1413 -5.6724, 17.703 6.8460, -7.7018 

21 4.2864 -4.0010 -5.4210, 18.709 7.4030, -8.7082 
22 3.2834 -4.1216 -5.7836, 17.171 5.8329, -7.1714 
23 3.1878 -4.1096 -5.8335, 16.967 6.0482, -6.9667, 
24 3.0469 -4.1954 -5.7329, 16.652 6.4177, -6.6521 
25 3.0169 -4.2341 -5.0478, 16.697 5.3440, -6.6971 
26 3.0327 -4.2184 -5.2348, 16.731 5.5554, -6.7313 
27 3.0778 -4.1417 -5.5621, 16.830 5.9116, -6.8304 



APPENDIX III 

THE RELATIONS BETWEEN DIFFERENT PARAMETERS AND THE 
MECHANICAL CHARACTERISTICS OF THE PART 

Figure A3.1(a) 	Maximum Principle Stresses (+) vs. Thickness 

Figure A3.1(b) 	Maximum Principle Stresses (-) vs. Thickness 
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Figure A3.1(c) 	R Force on the Die vs. Thickness 

Figure A3.1(d) 	Z Force on the Die vs. Thickness 

Figure A3.1(e) 	R Force on the Punch vs. Thickness 
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Figure A3.1(f) Z Force on the Punch vs. Thickness 

Figure A3.2(a) Maximum Principle Stresses (+) vs. Die Friction 

Figure A3.2(b) Maximum Principle Stresses (-) vs. Die Friction 
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Figure A3.2(c) 	R Force on the Die vs. Die Friction 

Figure A3.2(d) 	Z Force on the Die vs. Die Friction 

Figure A3.2(e) 	R Force on the Punch vs. Die Friction 
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Figure A3.2(f) Z Force on the Punch vs. Die Friction 

Figure A3.3(a) Maximum Principle Stresses (+) vs. Punch Friction 

Figure A3.3(b) Maximum Principle Stresses (-) vs. Punch Friction 
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Figure A3.3(c) 	R Force on the Punch vs. Punch Friction 

Figure A3.3(d) 	Z Force on the Punch vs. Punch Friction 

Figure A3.3(e) 	R Force on the Punch vs. Punch Friction 
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Figure A3.3(f) Z Force on the Punch vs. Punch Friction 

Figure A3.4(a) Maximum Principle Stresses (+) vs. 
Die Friction (X) and Punch Friction (Y) 
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Figure A3.4(b) Maximum Principle Stresses (-) vs. 
Die Friction (X) and Punch Friction (Y) 

Figure A3.4(c) R Force on the Die vs. Die Friction (X) and Punch Friction (Y) 

79 



80 

Figure A3.4(d) 	Z Force on the Die vs. Die Friction (X) and Punch Friction (Y) 

Figure A3.4(e) 	R Force on the Punch vs. Die Friction (X) and Punch Friction (Y) 
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Figure A3.4(f) Z Force on the Punch vs. Die Friction (X) and Punch Friction (Y) 
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