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ABSTRACT 

In this research, an effort was made to better understand light-dark cycles which 

influence the physiological and psychological rhythms, circadian rhythms and their 

behavior. The research concentrated on mathematically modeling circadian rhythms 

(specifically hamsters' circadian activity rhythms) and establishing a physical correlation 

and creating a meaningful relationship between the mathematical model's parameters and 

the real biological oscillators which are responsible for these rhythms. The internal 

nature of the circadian rhythms is unclear. There is insufficient information and 

empirical data that describe them. Indirect means have to be employed for the 

description and exploration of such rhythms. Extensive real data analysis must be 

performed in the time and frequency domains and every possible aspect of the circadian 

rhythms should be investigated. 

In our research, we studied and analyzed two types of circadian data, temperature 

and activity, which were extracted from rhesus monkeys and hamsters respectively by 

means of two separate data acquisition systems. The analysis which was accomplished 

in both the time and frequency domains revealed many important aspects of the circadian 

system and its characteristics. It was found that the circadian rhythms' period is 

approximately 24 hours. This period showed a small deviation when the animal was 

subjected to different environmental conditions (light, food, etc.). The frequency 

spectrum of the real circadian data showed its harmonics structure and revealed the 

existence of two distinct frequency components (bimodality). 

Based on our analysis results and the knowledge of previous researchers work, we 



developed a nonlinear two coupled-oscillator mathematical model to approach the real 

circadian data. The numerical solutions of the model were obtained by computer 

simulation and were compared to the real circadian data in both the time and frequency 

domains. Certain modifications of the model were necessary to achieve the desired 

outcome. These modifications not only included the changes in the value of the model's 

parameters, but also the addition of a high frequency oscillator. Later in the research, a 

periodic external stimulus was applied to the model in order to simulate entrainment. 

Our research has proven the ability of our mathematical model to simulate the circadian 

system. 
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CHAPTER 1 

AN OVERVIEW 

1.1 Introduction 

The theory of biorhythm states that from birth to death each of us is influenced by three 

internal cycles - the physical, the emotional, and the intellectual.[10]  Each cycle starts from 

a zero point and begins to rise in a positive phase, during which our energy and ability 

levels are both high. Gradually after reaching a peak point the cycle starts to decline 

towards the negative phase. During that phase, our energy level is replenished again. 

When the cycle reaches its negative peak, it begins to rise again toward the positive phase 

and the whole process repeats itself. Each cycle crosses the zero point midway through 

their complete periods. Our performance, physical or mental is a composite of these 

rhythms. 

Circadian rhythms or biological clocks are the body's daily rhythms.")  The rhythms 

are self-sustaining biological oscillations which repeat themselves every day throughout 

our life. Such oscillations comprise the temperature and activity in humans and animals 

(observation that the temperature of the human body is not constant throughout the day 

was reported as early as 1736). [43  Our bodies and minds are accustomed to these rhythms 

which in turn are affected by specific environmental cycles such as the light-dark cycles. 

It is no secret that periodic phenomena exist and contribute to the coordination of 
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life-processes.[6] The behavior of such systems in which every state is destined to recur at 

regular intervals has for so long been the interest of engineers, scientists and 

mathematicians. Many questions are encountered during the experimental study of 

biological rhythms such as: What is responsible for biological rhythms and their 

mechanisms? How can we recognize them if they were confronted? What are their 

physiological implications? and how can we mathematically model such systems?. 

1.2 Suprachiasmatic Nucleus 

Recently, a hypothesis has been accepted, which states that there are biological oscillators 

that exist in the living organisms and are responsible for the origination of biological 

rhythms [1] This was confirmed by an experiment which altered the basic biological 

rhythms of animals by transplanting brain tissue between hamsters with fundamentally 

different biological rhythms, which affirmed that a small area of the brain called the 

suprachiasmatic nucleus serves as the master clock. Normally, experimental hamsters 

wake up and start running approximately every 24 hours. When the suprachiasmatic 

nucleus was removed from the hamsters, the hamsters ran randomly at any time of the day 

or night. When the nucleus was implanted again, rhythms were restored. This experiment 

gave the idea of an existing organ controlling circadian rhythm. 

Biological rhythms are not confined to a specific period or frequency. Biological 

rhythms with high frequency are called ultradian. These rhythms have short period 

oscillations (less than 16 hours) and such oscillations are apparent in various physical 
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waveforms such as the ECG ( Electrocardiogram) which has an oscillation period between 

0.1 - 5 seconds. Rhythms with a lower frequency are called infradian which have periods 

longer than 32 hours. 

1.3 Circadian Rhythms ( 24 hour oscillations) 

The term circadian comes from the Latin circa, meaning "about," and dies, meaning "day" 

(About one day)) 	Rhythms, or cycles, can be defined as repetitions at regular time 

intervals of situations, events, and levels of activity. A process that consistently repeats 

itself every 24 hours is one that has a daily rhythm. If this rhythm persists with 

approximately the same period in the absence or existence of any external time stimulus 

(Zeitgeber), it is called circadian rhythm. Circadian rhythms are self-sustaining ( persist 

without a sign of damping) biological oscillations with a period of approximately 24 hours, 

they have been observed in the integrated organism and in cultured organs and tissues. 

Circadian rhythms are the rhythms of man's internal physiological clock or body clock. 

Perhaps, the most familiar biological rhythm is the light and dark rhythm of a period of 24 

hours which controls the phases of sleep, or rest, and wakefulness. The circadian clock 

also measures the rhythm of when we are most sensitive to pain, and how well we 

estimate the passage of time. 

Many experiments have been performed which substantiated the circadian 

oscillations existence. For example, experimental hamsters have been kept in a free-

running and entrained environment (a free-running state exists when an external time 
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stimulus (zeitgeber) does not exist, while an entrained state exists when the external time 

stimulus is present and controls the period and phase of the rhythm). In the free-running 

case, all elements that might advise the hamsters about the time or light and darkness were 

abolished. The hamsters were kept in continuous dark or light. The hamsters exhibited 

periodicity which ranged from 23 to 25 hours in their behavioral activity. Similar 

experiments produced parallel results and confirmed the sustained and endogenous 

(internal oscillator within the organism) behavior of the circadian oscillators. 

1.4 Mathematically Modeling Circadian Oscillators 

Most models of circadian oscillators have been vague in defining their parameters in terms 

of physiological or biochemical processes since these rhythms' internal nature is still 

unclear. The Van der Pol oscillator is an example of one of these models since its terms 

and variables fail to identify or correlate to physiological occurrences but it exhibits certain 

dynamics similar to the internal mechanism of circadian rhythms. 

All recent literature on circadian rhythms support the fact that the circadian 

processes are generated by more than one oscillator. Two separate oscillators were 

originally proposed by Pittendrigh to account for transient resetting patterns in the rhythm 

of pupal eclosion in fruit-flies.[3]  Pittendrigh proposed a model with two separate 

oscillators coupled to each other in a stable phase relationship that depends on the 

spontaneous frequencies of the two oscillators. This model was also proposed for the 

circadian activity rhythms in rodents. The model's purpose was to clarify the splitting of 
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the free-running rodents' activity rhythm into two distinct components which implied the 

existence of more than one oscillator. 

Throughout this research we concentrated on a two coupled oscillator model. 

Equations 1.1 and 1.2 are the mathematical representation of our basic model. In chapter 

4, we will present the analysis and development of our model, and provide a comparison 

between the real time data and our computer simulation in both time and frequency 

domains. This does not imply that the circadian processes are generated by only two 

oscillators. We simply state an assumption. The circadian oscillators are complex in 

nature. At the present time there is insufficient empirical data from well-controlled studies 

to enable us to fully understand and provide complete analysis of these oscillators that are 

responsible for generating the biological rhythms. Although this is true, our model's 

results were promising. It exhibited many similarities to the hamster's real activity data in 

the time and frequency domain, which substantiated its potential for further future 

development. 

1.5 Entrainment 

As mentioned earlier, an entrained state exists when an external stimulus (Zeitgeber) is 
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present and controls the phase and rhythm of the endogenous biological oscillators. 

Biological oscillators, as many other non-linear oscillators, can be entrained. Circadian 

rhythms can only be entrained by periodic environmental time cues that are within 1-2 h of 

the free running period [10]. For example, if we consider an endogenous free-running 

oscillator with a period of 23 hours, and we apply an external stimulus with a period of 24 

hours to the free-running oscillator, the oscillator's period will shift towards the external 

stimulus period and synchronization will occur. This so called entrainment, will occur 

only if the external stimulus period is close to the free-running oscillator period or an 

integer multiple or submultiple of it. So, theoretically it is possible to change the rhythm 

of an oscillator and its period by applying to it the right stimulus with the proper 

amplitude, duration, and frequency. One of the applications to which entrainment can be 

applied is jet lag or jet syndrome. Jet syndrome is the result of circadian rhythm alteration 

which can be caused by shift work, transmeridian flight, or altered day length. It is an 

uncomfortable feeling which affects performance and well-being, including digestive 

disturbances and general malaise that could last for a few hours or a few days. The 

desynchronized individual may experience states of irritability, disorientation or confusion, 

distortion of time and distance, aches of various types, digestive upsets which include 

constipation, decrements of physical and mental efficiency, and disturbances in sleep 

habits. Considerable attention is focused on jet lag since it affects the ability to operate jet 

aircraft and manned spaced vehicles. There also has been a great deal of interest in trying 

to design schedules that would minimize the adverse effects of shift work on human health 
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and performance. [10]  Circadian rhythms are believed to be disrupted when shift workers 

rotate from day to evening shift schedules or vise versa, which can cause internal temporal 

dissociation. Designing work schedules that would minimize the jet syndrome effect has 

been, and will be, a special concern. The disruption in the circadian rhythms is not only 

limited to internal desynchronization. It is believed that desynchronization from the 

external environment will also occur after a shift rotation because the worker might be 

asked to perform mental or physical activities at different times than is optimal according 

to his/her internal circadian clock. Many suggestions have been proposed in minimizing 

the jet syndrome effect on shift workers and the accelerated readjustment of the circadian 

clock. For example, Czeisler et al [12] has proposed a shift work schedule incorporating 

circadian principles. He suggested that work schedules should be rotated by lengthening 

the day (successive phase delays) instead of shortening it (successive phase advances). He 

supported the hypothesis with experiments which were performed on several shift 

workers, and demonstrated improvement in the adaptation rate of the workers to the new 

schedule. 

It is extremely beneficial economically and medically to design a process that will 

minimize the side effects of such desynchronization and improve productivity. In 

principle, it is possible to design a special device with the right stimulus at the proper 

period, amplitude, and duration, that can be applied at the right time to disrupt the rhythm 

of the biological oscillator and change its period to synchronize to the new schedule, or 

the new time zone in the case of jet lag. 



CHAPTER 2 

CIRCADIAN TEMPERATURE AND ACTIVITY DATA 

2.1 Circadian Data Acquisition 

In order for any data acquisition system to be efficient, it should accumulate adequate and 

accurate information. To do so, enough information has to be gathered that can precisely 

describe the process at any instant. Needless to say, our collected data has to 

accommodate both. 

Two types of circadian data, temperature and activity data, were acquired from 

rhesus monkeys and hamsters respectively by monitoring long term experiments. Long 

term experiments are needed because the period of the biological oscillators is 

approximately 24 hours (one cycle), so the length of the data recorded should be at least 

240 hours (10 cycles) for each analysis. This long period of recording is essential for 

capturing adequate information needed from the temperature and activity rhythms for time 

and frequency analysis. 

Accuracy on the other hand, is governed by many elements such as the sampling 

rate. The sampling rate should be high enough to be accurate, but at the same time it 

should not be too high to consume large storage capacity. We determined the sampling 

rate for our system to be 6 samples/hour. We believed that this sampling rate is 

practical and satisfies both requirements. 

The activity experiments were performed primarily on hamsters. The hamsters 

8 
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were kept in a controlled, isolated environment with food and water continuously 

available. It is very important for the experiment's environment to be well maintained in 

order to eliminate noise and other factors that might disturb the accuracy of the data. 

Also, all the factors that might inform the animals about time of day were eliminated. This 

is particularly important, since it inhibits any chance of the existence of external stimuli 

which might affect the free-running , self- sustained oscillators. As mentioned earlier, self-

sustained oscillation means that oscillation will persist in the absence of any external 

stimulus and no damping will exist. 

The temperature experimental data were acquired from Rhesus monkeys. These 

monkeys were kept in cages under carefully controlled light, temperature and noise 

conditions. [1]  The circadian rhythm of body temperature is a very important topic in 

physiological research since it involves both the regulation of body temperature and the 

mechanisms of biological timing. Also, since temperature is considered to be the most 

stable and regulated circadian rhythm, and since the phase of the temperature cycle is an 

important determinant of sleep onset and sleep length and has been linked to circadian 

performance effects, it becomes desirable to be investigated. 

2.2 Data Acquisition System Overview 

2.2.1 DATAQUEST III  Overview 

DATAQUEST III (Data Sciences Incorporation) is a hardware and software package that 

provides a tool for collecting and analyzing data from the laboratory. The system is 
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particularly effective in monitoring physiological data from laboratory animals. The 

strength of this system comes from its effectiveness in applications that require counting 

events, and its ability to log low frequency data signals such as temperature, heart rate, 

and oxygen consumption. 

Since our application involves counting events (counting the revolutions of the 

running wheel as the hamster is running), the DATAQUEST III system was well suited. 

It provided us with continuous 24-hour monitoring of the hamsters' activity data and was 

capable for data online analysis. Also, the system provided 24 channels of data and 

enabled us to monitor many animals concurrently. Figure 2.1 is an overview of the system 

and its inter-connection. 

Figure 2.1 Data collection process overview. 
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2.2.2 Infrared Module Overview 

The infrared LED transmits light onto the running wheel. Behind the running wheel there 

Figure 2.2 Infrared Circuit Module. 

exists a metal piece that reflects the incident light, and on the front of the wheel is a 

vertical rod that has been painted in black in order to absorb the incident light and inhibit 

reflection. Depending on the actual position of the running wheel, light is reflected back 

to the infrared module or is absorbed through the black rod and reflection is inhibited. 

When the hamster is active and running, the running wheel is turning. Because of the 

nature of the system's structure, light is allowed to be reflected every half revolution 

interval. Hence, one point is collected every 1/2 revolution. When the light is reflected 

back to the infrared module, it energizes the infrared transistor (figure 2.2). The infrared 

transistor becomes active which results in Vc  being low (=0 V). As light is absorbed and 
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is not reflected back to the module, the transistor becomes inactive and this results in Vc  

being high ( z1-3V) by the action of the pullup resistor Rc and the cycle repeats itself. 

This alteration in the amplitude of Vc  generates a pulse train. Vc  is supplied to the 

positive input of the comparator and is compared to the comparator's threshold or 

reference voltage. The value of the threshold voltage V, can be increased or decreased via 

a potentiometer. Typically, V, is set to 2.5V. As Vc  exceeds the threshold voltage (V,) 

the comparator's output Vo  is high (≈5V). Vo  is supplied to both, the LED and the 

DATAQUEST III system. 

As mentioned earlier, each 1/2 revolution of the running wheel is represented by a 

pulse. DATAQUEST III accumulates the total number of pulses that have occurred 

during our sampling interval (6 samples/hours). When the sampling interval elapses, 

Figure 2.3 Hamster's activity data. Each cycle is approximately 24 
hours. 
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DATAQUEST III stores the total count in a permanent record. In our case, the records 

were stored on the computer's hard disk. Figures 2.3 is an example of activity data 

obtained from the system. 

Unlike the activity data, the temperature data were acquired from Rhesus 

monkeys.[1] A separate acquisition system was developed at the VA Medical Center, East 

Orange, New Jersey. Figure 2.4 illustrates an overview of the circadian temperature data 

acquisition system and a sample plot of the data acquired. 

Figure 2.4 Monkey's temperature data. Each cycle is 
approximately 23.76 hours. 
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The monkeys were kept in cages in a well controlled environment (lights, 

temperature, and noise). Two types of experiments (free-running, or entrainment) were 

performed. This was accomplished by controlling the lights and their duration in the 

cages either by a timer or computer controlled switches. The monkey's temperature was 

transmitted from his body by means of a temperature transducer and transmitter module 

(carrier frequency 27 - 28 MHz) which were surgically implanted in the monkey's body. 

At room temperature, pulses were transmitted from the module at a rate of 100 - 200 

pulses/min to the SONY ICE-2010 PLL synthesized high sensitivity receivers. The signal 

was then passed to an analog low-pass receiver (3dB cut off at 1 kHz for noise filtering) 

and subsequently transferred to the PDP-11 computer. The PDP-11 counted and stored 

the pulses received during a 2 minute segment in each 10 minute interval, producing a 

sampling rate of 144 samples/24hr. 

2.3 Pre-processing 

Since the two types of data (temperature and activity) differ in nature, different methods 

of data pre-processing were applied. Data pre-processing is required since the raw data 

may be accompanied by noise and some interruption even in a controlled environment. 

Such pre-processing may involve filtering, and averaging or other means. Although the 

two types of data differ they exhibit one similarity which is their periodicity. The period of 

these rhythms varied between 22 and 26 hours. 

Filters are most often used to enhance signals by removing unwanted components 
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from them such as noise. Unlike the activity data, temperature data was subjected to 

interruption and contained noise interference. A specially designed filter was created to 

accomplish the task of noise removal. Since our temperature data points have a certain 

amplitude range, data points that were out of the normal range were eliminated. In order 

to accomplish this task, a five data points window was created. Data points' amplitude 

within the window were compared to each other and averaged, thus eliminating the very 

high or very low amplitude data points (can be related to noise interference). Then, the 

window would be moved by one data point increment and the process repeated until the 

end of the data file. This process is often referred to as scaling. The filter was written in 

C language and the program is listed in appendix A. 

Figure 2.5 shows the temperature data of a rhesus monkey prior to any pre-

processing and noise removal. Figure 2.6 shows the same temperature data after pre-

processing. 

Figure 2.5 Temperature data of a Rhesus monkey prior to filtering. 



Figure 2.6 The same temperature data as it appears after 
processing. 
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CHAPTER 3 

FREQUENCY ANALYSIS 

3.1 Frequency Analysis Tools 

Spectral analysis on the activity and temperature data was performed using the FFT. FFT 

(Fast Fourier Transform) is an algorithm for computing the discrete Fourier transform of 

a data series at all of the Fourier frequencies. Fourier analysis can be treated as a 

decomposition of the time series into a sum of sinusoidal components. 

Prior to performing the FFT on the time series set of data, certain frequency 

analysis techniques have to be employed in order to significantly increase the accuracy of 

the outcome. 

3.1.1 Zero Padding 

Zero padding was incorporated to extend the data length. Zero padding is used to 

enhance the resolution of the frequency spectrum. The frequency resolution is 

17 
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As we increase the length of the signal by the addition of zero points at the beginning or 

the end of the data series, the precision of the frequency resolution will significantly 

improve. 

As mentioned earlier, temperature and activity data were obtained at a sampling 

rate of 6samples/hour. As a result, the sampling frequency is determined by the following: 

∆F  = 6  samples 
x 
 1hour 

x 
 1minute 
	 = 0.00167 samples/sec. If we use 1024 points for 

hour 	60 minutes 60 seconds 

the Fourier transform, the frequency resolution is 8.134 x10 -7  samples/sec, but will be 

reduced to 5.09x10 -9  samples/sec. if 16384 points are used. [1]  

3.1.2 Detrending 

Detrending, a process which involves the removal of the low frequency components was 

also applied to the circadian data. Since very low frequency components (0 - 2.5 x 10-6 

Hz) may seriously affect the amplitude of the desired signal in the frequency domain, they 

either have to be removed, or the data frequency spectrum can be plotted following the 

low frequency components therefore ignoring their effect. Several factors can cause these 

low frequencies such as the instruments used, or the long term trend of data (monkey's 

circadian rhythms). The circadian activity data contained minimal low frequency 

components and noise. This was due to the nature of the acquisition system (counting the 

revolutions of the running wheel), unlike the temperature data acquisition system which 

was subjected to varying forms of interference. Therefore, the frequency spectrum of the 

circadian activity data was not smeared at low frequencies. In order to eliminate any 
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possibility of a low frequency component affecting our power spectrum, the power 

spectrum was usually plotted excluding the first 20 points. This method should be used 

with care in order not to bypass the real data's desired signal. 

3.1.3 Windowing 

In this research, a Hanning window was used in order to increase the smoothness of the 

Fourier transform and to limit the duration of the time series data. The Hanning window 

is defined as: 

In the time domain, windowing is accomplished by multiplying ω(t) by our time series 

data. 

Figure 3.1 A 2000 point Hanning window. 
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Figure 3.1 shows an example of a Hanning window with an amplitude of 1 and a 

duration of 2000 points. Depending on the desired length of data transformed, the 

duration of the window can be increased or decreased. 

3.2 Temperature data 

Body temperature oscillates on a daily basis. A consistent elevation of body temperature 

during daytime, and lowering during nighttime occurs. For example, in human beings 

under natural conditions of lighting and social interaction, with wakeup time at 7 a.m. and 

bedtime at 11 p.m., body temperature starts rising from the nighttime low of 

approximately 36.5°C by 9 a.m. keeps rising slowly to a peak of 37.4°C at about 2 p.m. 

and then falls to reach the initial level of 36.5°C at 4 a.m. [4]  We obtained temperature 

data from several rhesus monkeys. Figure 3.2 shows a plot of one of the temperature 

Figure 3.2 Temperature record of a rhesus monkey. 
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records acquired. The duration of each cycle was slightly under 24 hours (23.76hr.). The 

period stability of the core temperature rhythm was consistent. This stability enabled us to 

accurately determine the period of each rhythm. 

To further explore the data, their spectral functions must be analyzed. The spectral 

function allows us to identify and measure frequencies (fundamental and harmonics) and 

their amplitude. Phases of decomposed sinusoids in a time series are more apparent in the 

frequency domain than the time domain. Consequently, spectral analysis provides a tool 

to better understand the characteristics of the system. 

Figure 3.3 Frequency Spectrum of the temperature data. 

Figure 3.3 shows the frequency spectrum of the temperature record of a rhesus 

monkey shown in figure 3.2 where the main frequency component (fundamental 

frequency) peak occurred at ≈ 1.17x10 -5 cycle/sec. The following computations will 
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determine the period of the cycle: 

all future discussion will be focused on activity circadian rhythms. This evolved from the 

following reasons: 

• Temperature circadian rhythms have been analyzed and simulated by previous researchers.[1] 

• Activity circadian data was available and was easy to obtain. 

• Many interesting experiments have been performed to obtain various types of 
circadian activity data (free-running, and under different entrainment conditions). 

3.3 Activity Data (Light/Dark) 

Figure 3.4 shows plots of hamsters' activity data (time series). The four hamsters were 

exposed to a 12hr.-light/12hr.-dark environment (entrained condition). Further analysis of 

the experimental data emphasizing their frequency characteristics is depicted in figure 3.5. 



Figure 3.4 Records of 4 Hamsters' activity data 
placed in a light/dark environment (12h. light -
12h. dark) 

The spectrum shows the fundamental frequencies and the 2nd, 3rd and higher 

harmonics. The fundamental period was derived from the fundamental frequency as 

follows: 

Since the fundamental frequencies of the 4 hamsters were = 1.156 x10 -5 cycle/second, 

1.156 x10 -5x3600 seconds =   4.16 x10 -2 cycle/hour, 	
1 	=24.02 hours/cycle. 

1 hour 	4.16x10 -2cycles /hour 

Our spectral analysis results show that the circadian rhythms structure of temperature and 

activity consist of harmonics and sub-harmonic frequencies. Although the amplitudes and 

shapes of the harmonics differed, their frequency peak occurred at 2.312 x10 -5,3.481 x10-5, 

and 4.623 x10 -5 cycles/sec. consecutively. Similar computations were performed in order to 
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determine the period of each harmonic. Results are shown in figure 3.5. 

Figure 3.5 Frequency spectrum. 

Many studies measured activity and body temperature simultaneously and their 

rhythms exhibit very similar characteristics. The high phase of the temperature circadian 

rhythms coincided with the active phase of the activity circadian rhythm.[4]  Since physical 
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activity can raise the body temperature, one might think that the temperature circadian 

rhythm is a consequence of the activity circadian rhythm. Although this discussion 

appears to be valid, facts on the other hand, suggest that the two rhythms are independent 

but maybe controlled by the same timing mechanism. First, body temperature in humans 

and animals starts to rise before the subject wakes up and becomes active. Second, 

studies in humans showed that it is possible to maintain the same level of activity during 

the full circadian cycle. Finally, it has been found in several studies that some subjects, 

under some conditions, may show a dissociation of the two rhythms so that the two 

rhythms proceed with different periods and , consequently, with a constantly changing 

phase relationship. These studies suggest that despite the fact that body activity and 

exercise can affect body temperature, body temperature circadian rhythm is not merely a 

result of circadian rhythm of activity and is generated independently. 

3.4 Activity Data (Dark/Dark) 

All lights were extinguished and the hamsters were placed in a completely dark 

environment. This experiment was performed in order to eliminate any simulated 

environmental synchronizing cycles (zeitgeber) and allow the hamsters to free-run. _Figure 

3.6 shows plots of the activity data obtained. Figure 3.7 shows the spectra transformed 

from these activity circadian rhythms under free-running circumstances. 

Hamsters (17b & 18b) show a fundamental period of 24.3h., while hamsters (27b & 

29b) show a fundamental period of 24.03h. 
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Figure 3.6 Activity data for 4 hamsters (Dark/Dark) 
environment. 

Unlike the spectra of the light/dark environment, which showed a consistent 

fundamental period of 24 hours, the fundamental period for hamster 17b & 18b was 

slightly different from the fundamental period of hamsters 27b & 29b. This fact becomes 

particularly important when we discuss entrainment in detail in chapter 5. 
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Figure 3.7 Spectral functions of hamsters 17b, 18b, 27b, and 29b. The amplitude and 
structure of the fundamental periods and harmonics for the 4 hamsters are slightly 
different. The 3rd harmonic for a and b is not obvious while it is evident in c and d. 

3.5 Activity Data (Light/Light) 

Figure 3.8 shows the activity rhythms for hamsters 31a, 33a who were in a free-running 

condition (light/light environment). Figure 3.9 shows the spectral functions of the two 

hamsters. The fundamental frequency for both hamsters is 1 .13 x10 -5 cycles/sec., and the 3 

harmonics occurred at 2.273 x10 -5,3.403 x10 -5, and 4.532 x10 -5 cycles/sec. respectively. The 

fundamental period is 24.582 hours. Both spectral functions show clear 2nd, 3rd and 4th 

harmonics. Although the harmonic structure is similar, they had different amplitudes. 



Figure 3.8 Activity data (Light/Light) for two different hamsters.. 
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Figure 3.9 Frequency spectrum (Light/Light). 



CHAPTER 4 

MATHEMATICAL MODELING 

4.1 Introduction 

Modeling of systems serves as a useful tool to understand and describe especially unclear 

processes. It allows the development and the establishment of optimized mathematical 

equations. Optimization is accomplished by the iteration process (by adjusting the model 

and its parameters repeatedly). Modeling also provides us with the ability to perform 

certain tests which normally would present a risk to animals or humans. 

In this research, we emphasize the modeling of circadian activity rhythms. The 

output of our simulated model should be equivalent, or closely related to, the real 

experimental activity data in both the time and frequency domains. In summary, our 

model should accomplish the following tasks: 

• Simulate and describe the biological process that is responsible for the activity 
circadian rhythm and other biological rhythms. 

• Provide us with the ability to investigate special properties and characteristics of 
the biological system. 

• Possess flexibility to the addition of mathematical modules that describe 
complicated phenomena, such as entrainment and desynchronization. 

Previous researchers pointed out that circadian rhythms may be generated by 

nonlinear oscillators, specifically, two coupled oscillators. For example, Phillippa Gander, 
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Richard Kronauer, Charles Czeisler and Martin Moore-Ede created a coupled Van der Pol 

oscillator model that describes the action of zeitgebers on the human circadian system.[12]  

Shi Xiong Yang developed a two coupled oscillator model to describe the temperature 

circadian system of rhesus monkeys.[1]  These researchers and others created mathematical 

models for the circadian rhythms which exhibit the following properties: 

• The endogeneity in circadian rhythms (self-sustainment). 

• More than one oscillator is responsible for circadian rhythms which are coupled to 
each other (direct coupling, velocity coupling, etc.). 

• The coupled oscillators are of Van der Pol oscillator type. 

• The oscillators are nonlinear with varying levels of nonlinearity. 

We will include all of these common features in our model. In addition, we will 

include an external stimulus that will simulate the action of zeitgebers and investigate 

entrainment. Also, we will simulate ultradian rhythms accompanied by noise (higher 

frequency rhythms) that may be responsible for the intermittency of the activity cycles . 

Chapter 5 will discuss these features in detail. 

4.2 VISSIM 

VisSim is a modeling software that uses graphical interface and is available on the 

MS/Windows and UNIX/X computer platforms. VisSim, provides the ability to design, 

simulate and plot mathematical models. VisSim provides the user with its own function 

blocks such as integration, summation, limiters, etc,. Also, it enables the user to create 

and implement his/her own custom block functions using C, Pascal, or Fortran. 
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In this research, VisSim was used for the coupled oscillator model simulation. All 

the simulation time series data were acquired from the simulation model and were saved as 

ASCII files. The ASCII files were then exported to MatLab and all the frequency analysis 

was performed using MatLab. Refer to appendix A for an example of a single Van der Pol 

oscillator simulation. 

4.2.1 Van der Pol Oscillator and the Effect of µ (The nonlinear coefficient) 

In order to better understand the mathematical model and the effect of µ (the non-

linearity parameter) on the period and the overall system , the one dimensional Van der 

Pol oscillator was first simulated and analyzed with different µ values. 

µ

= The non-linearity parameter 

K = Fixed time parameter 

ω

 = Characteristic frequency of the system 

K is used to normalize the characteristic frequency of the system, such that for ω =1 the 

system has a period of 24 hours, and for T = 24 hours: 



32 

As µ is increased the non-linearity of the system increases and as µ is decreased the non-

linearity of the system decreases. If we let µ= 0, the system becomes a linear system. 

Figures 4.1 and 4.2 show plots of the waveforms that were obtained from the 

simulation using different µ values. 

Figure 4.1 Time series waveforms of Van der 
Pol Oscillator: a) µ = 0. b) µ = 0.2. c) µ = .5 d) 
µ =1 



Figure 4.2 Time series waveforms of Van der 
Pol Oscillator e) µ = 2. f) µ = 5. 

To acquire the numerical solution of the system, the Van der Pol oscillator was 

simulated using VisSim. The numerical solution (time series data) of the simulation was 

saved as an ASCII file and exported to MatLab. The FFT (Fast Fourier Transform) was 

then performed on the data to transform it to the frequency domain. Figure 4.3 shows the 

spectra of the time series data for different values of µ shown in figures 4.1 and 4.2. 

As µ was increased from 0 to 5, the period increased from 24 hours to 126.23 

hours. Also, higher order harmonics became more obvious as the nonlinearity coefficient 

was increased. The results can be summarized as follows: 

• With µ = 0, the output waveform of the Van der Pol oscillator was a cosine-like 
waveform with a period of 24 hours. Asµ increased, the output waveform 
deviated from the cosine-like waveform. 

• The period of the system increased as p increased, and became large as µ became 
large. 

33 



34 

As pi increased from a zero value, the output waveform and harmonic structure of 
the Van der Pol oscillator began to resemble the real circadian data waveform and 
its harmonic structure. 

Figure 4.3 Spectral functions of the time series data obtained from VisSim. (a) µ=0 
(b) µ=0.2 (c) µ=0.5 (d) µ=1 (e) µ=2 (f) µ=5. As µ is increased the period T is 
increased. 

The amplitude of the fundamental frequencies and the harmonic components 
increased as µ increased. 

The following table compares the various values of the system's fundamental period 

as a result of different µ values. 



0 24 

0.2 25.46 

0.5 25.88 

1 38.09 

2 
 

58.84 

5 126.23 

Table 4.1: The period of the Van der Pol oscillator with different µ values. 

Figure 4.4 Period deviation as µ increases. 

As mentioned earlier, the oscillator's fundamental period increased as µ increased. 

In order to restore the original fundamental period of the oscillator, we multiplied the 

oscillator's frequency (ω2) by a correcting factor (€) which was determined empirically. 
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For example, when µ was set to 1.0, the period of the oscillator increased from its original 

value (24 hours) to 38.09 hours. We multiplied the term ω2 by an E value of 1.8 

(increasing the frequency, decreases the period) which restored the fundamental period 

to its original value (24 hours). This is particularly essential for our coupled-oscillator 

model (section 4.3.2), since the coupling of the oscillators will also produce an effect on 

the period of the output, we needed to isolate the two effects ( the effect ofµ and the 

coupling). 

4.3 VisSim Mathematical Model 

The circadian system is assumed to be composed of a dual-oscillator mechanism which 

drives secondary oscillators responsible for the expressions of circadian rhythms. This 

suggests that any given circadian rhythm is jointly controlled by two endogenous 

oscillators. As mentioned in section 4.1, a coupled Van der Pol oscillator was used to 

generate an outcome similar to the circadian activity rhythm. Different means of coupling 

methods ( direct or position coupling, velocity coupling )have been employed in an effort 

to determine the best model that will approximate the circadian system. Also, the model 

was expanded to include an external stimulus "Zeitgeber" which simulates the light 

stimulus applied to the subject and induces its external rhythm with a 24 hour cycle on the 

internal oscillator to entrain it. Other interesting prospects were introduced in the model 

which included the relaxation and ultradian oscillator theories. 
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4.3.2 Coupled Van der Pol Oscillator 

where: 

µx = nonlinear coefficient of the x oscillator. 

µy = nonlinear coefficient of the y oscillator. 

K = normalized time constant. 

F.3,, Fyx = coupling coefficients. 

By adding a second oscillator, coupling functions (Fxy, Fr), different coupling modes 

(velocity or direct coupling), and additional nonlinear coefficients GO are introduced to 

the model. These additions might help us in producing the desirable time series and 

spectral structures. In order for our model to replicate as closely as possible the hamster's 

activity data, the oscillator (primary Y) had to be coupled to another oscillator (Secondary 

X). The most logical evidence for the use of a coupled oscillator model is the existence of 

two distinct frequency components. This occurrence of two sharply defined non-harmonic 

frequencies is not evident in a single oscillator. Figure 4.5 illustrates the difference 

between the time and frequency domains of the single Van der Pol oscillator model and 

the hamster's activity data. 



Figure 4.5 Comparison of frequency spectrums. a) Real activity data b) 
Spectral function . c) Single Van der Pol oscillator model with µ = 0.5 
(time series data) d) Spectral function of the Van der Pol oscillator model. 

A model for circadian pacemakers consisting of two coupled oscillators has been 

proposed by Pittendrigh and Daan [6]  in qualitative terms. The basic propositions of this 

model are the following: 

Since it was not possible for a single oscillator to simultaneously produce two sharply 

defined non-harmonic frequencies, and because the free-running activity rhythms in 

rodents splits into two distinct components, two separate oscillators ( X and Y) coupled 

to each other in a stable phase relationship (ϕEM, established prior to coupling) are 

38 



39 

assumed to be responsible for the rhythms. The two oscillators control the onset and end 

of activity (evening and morning peaks respectively) in nocturnal animals. The period of 

the system (T) changes as the phase relationship is changed. 

In our model, we investigated two types of coupling (velocity and direct coupling). 

The following two equations are an example of a direct coupling model: 

The following two equations are an example of a velocity coupling model: 

The two modes of coupling have similar effects on the system, but velocity coupling 

is much weaker than the direct coupling mode. For example, in the direct coupling 

system, the primary oscillator Y showed a stronger influence on the frequency of the 

secondary oscillator x, and sub-harmonic entrainment was more apparent (figure 4.6). 



Figure 4.6 a) Velocity coupling (time series). b) 
spectral function. c) direct coupling (time series). 
d) spectral function. In both coupling modes Fxy  
= Fyx  = 0.2, and µ = µy= 2. 

These differences evolve from the nature of their interaction which affects the behavior of 

the two oscillators and their influence on each other. Selection of the characteristic 

frequencies for the two coupled oscillators was such to represent the bimodality of the 

circadian rhythms. The two frequencies always consisted of the fundamental and the 

second harmonic. For example, if the fundamental period was chosen to be 24 hours, the 

second period would be 12 hours. 

The fundamental frequencies for: 

T= 12 hours 

40 



.11 

and for T = 24 hours 

4.4 Velocity Coupling Simulation 

Many experiments suggest that the circadian rhythms are generated by two or more 

interacting oscillators.[6]  As indicated by our single Van der Pol oscillator simulation, we 

were unable to approach the real time activity data. The inability of the single dimensional 

Van der Pol oscillator to simulate circadian rhythms is related to the following facts: 

The frequency spectrum of the circadian activity data consisted of 2nd, 3rd, and 
higher harmonics which are not integer multiples of the fundamental frequency. 
Another oscillator is needed to account for these harmonics. 

The waveform structure of the circadian activity rhythms are nonlinear and complex 
in nature. In order for us to obtain similar waveforms from our model, our model 
should not be limited and should include other nonlinear parameters. 

Prior to coupling the two oscillators, we determined the correction factors (ɛx and 

y)  needed to maintain the fundamental periods of the oscillators as the non-linear 

coefficients (µx and µy) were increased. Table 4.2 lists the corresponding values: 
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0 0 None None 

1.5 0.6 1.36 1.4 

3 1 2 1.8 

4 2 3 2.8 

6 3 4 4 

Table 4.2: The correcting factors (Ex , Ey) needed for different (µx , µy) values. 

Our first attempt involved the coupling of two Van der Pol oscillators (velocity 

coupling). Figure 4.7 shows the structural diagram and equations for this particular 

mathematical model. 

Figure 4.7 Structural diagram and equations for a 
mathematical model of hamsters' circadian activity 
system, consisting of two coupled Van der Pol 
oscillator model. Fyx coupling of Y onto oscillator 
X, Fxy  coupling of X onto oscillator Y. µy , µx are 
the nonlinear coefficients of the Y and X oscillators 
respectively. 
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Since the fundamental period of the real activity data was approximately 24 hours, we let 

the period T for the Y oscillator be 24 hours. Since ω=2
II 

ω 
 = 0.06854 rad/sec 2 . We 

multiplied ω2y by the correcting factor ɛy (for µy=0.6, ɛy=1.4) to account for 

the change in the Y oscillator's fundamental period as a result of µy. The remaining 

parameters were set to the following: 

= 1.5, Fxy=Fyx=0.2, and ω2x= 0.3728 rad/sec2 with a correcting factor (ɛx=1.36, table 

4.2). Figure 4.8 compares the results of the simulation and the real circadian activity 

data. 

Figure 4.8 A comparison between the simulation and the real 
circadian activity data in time and frequency domains. 
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The comparison reveals the following differences: 

1. The period (T) of the simulation is smaller than the period of the real activity rhythms. 

2. The time series waveforms are dissimilar in shape and amplitude. 

3. The spectral function of the real activity data is comprised of many harmonics unlike 
the spectral function of the simulation. 

This particular mathematical model of velocity coupling is based on the work of 

Kronauer. In Kronauer 's model, the two oscillators x and y drive two different activity 

rhythms - temperature and sleep wake.[1] In our model we are assuming that both 

oscillators are contributing to only one rhythm (activity rhythm). 

We tried to approach the real activity data in our model by continuously adjusting the 

non-linear coefficients and the strength of the coupling functions (Fxy, Fyx). Figure 4.9 

shows the same model's output with 3 additional adjustments. First, the linear coupling 

drive (Fxy) of oscillator x onto oscillator Y was increased from 0.2 to 0.5. Second, the 

non-linear coefficient of oscillator Y (l) was increased to 2.0. Third, the non-linear 

coefficient of oscillator X GO was increased to 3.0. The fundamental period of the real 

activity data was 24.26 hours, 

while the fundamental period of the simulation data was 21.2 hours. The obvious 

advantage of this model is the introduction of the 2nd and higher harmonics as can be seen 

in figure 4.9. We continued adjusting the parameters to optimize the model but where 
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Figure 4.9 A comparison between the simulation and the real 
circadian activity rhythm. The model's parameters were set to the 
following values: F, = 0.5, Fyx = 0.2, µx = 3.0, and µy), = 2.0. 

unsuccessful in obtaining the desired outcome. Based on our results, we concluded that in 

the velocity coupling model, the increase of the coupling drive of the X oscillator onto the 

Y oscillator (Fxy) generated the required level of 2nd and higher harmonics. 

Although the model improved, we were still unable to replicate the time series activity 

rhythms and the distinct appearance of their harmonics. In section 4.5, we will discuss an 

important factor which was introduced to the model and resulted in a substantial 

improvement of our model's output. 
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4.5 Ultradian Rhythms 

In order to improve our coupled Van der Pol oscillator model, the discontinuity or 

intermittency observed in the hamsters' activity data cycles (time series) must be 

understood, and possibly associated to a physical behavior. Researchers believe that 

other higher frequency rhythms exist 	2-16 hours) that influence, or, are part of the 

circadian system, which drive such effects. These rhythms are referred to as Ultradian 

Rhythrns.[4]  Ultradian rhythms have periods shorter than 16 hours. They can be produced 

by alterations in endogenous and exogenous factors. Ultradian rhythms have been 

observed in various rodents, and oscillations with periods of 2-4 hours have been 

discovered in hamsters and rats. Other theories exist and attempt to provide an 

understanding to these mechanisms. One such theory assumes an existence of an 

independent relaxation oscillator that produces these rhythms (the relaxation oscillator is a 

result of a substance in the body which fluctuates in concentration and is responsible for 

these consistent oscillations). The mechanisms still remain unknown. 

Our ultradian rhythms model was associated with the relaxation oscillator model and 

we simulated ultradian rhythms as high frequency (T=4 hours) sawtooth-like waves. In 

order to accomplish this, a sawtooth function was first generated using MatLab which 

produced an ASCII file. Figure 4.10 shows the output waveform. 
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Figure 4.10 A 100 point Sawtooth waveform. 

Second, the sawtooth data file was exported as an ASCII file to VisSim where it was 

modified . Modification of the sawtooth waveform consisted of the following: 

Noise was applied as a random gaussian function with 0 mean and a standard deviation 
of 1 to the model to simulate the substance's fluctuation (non-linear) in reaching its 
peak. This is especially important in order to establish a meaningful model that is 
linked to a physical process. 

The output is turned on (substance concentration is high) and off (substance 
concentration is low) at an equivalent time interval. 

Figure 4.11 shows the results. 
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Figure 4.11 Ultradian Rhythms simulation. The 
fundamental period is 4 hours. 

The relaxation oscillator was incorporated in our coupled Van der Pol oscillator 

model. Figure 4.12 shows the result of this modification and compares it to the real 

circadian activity data, and figure 4.13 shows the frequency spectrum comparison. 



Figure 4.12 a) hamster's activity data (Light/Dark) cycle. b) 
Simulation results after the addition of the ultradian oscillator. 
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Figure 4.13 a) Frequency spectrum of hamster's activity 
data (Light/Dark) cycle. b) Frequency spectrum of 
coupled Van der Pol oscillator model. 

The improvement of the model in simulating the circadian activity rhythms of 

hamsters, inspired us to use it for further analysis and to explore complex behaviors such 

as phase shifting and entrainment (discussed in chapter 5). Also, it justified the use of the 

coupled Van der Poi oscillator model and the capability of the model in simulating the 

circadian system in animals. 
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CHAPTER 5 

ENTRAINMENT 

5.1 Introduction 

Daily entrainment which insures internal coupling and synchronization is an important and 

an active process. The phase and amplitude of circadian rhythms are related to both 

elapsed time and to certain repetitive events that occur daily. Temporal isolation or non-

entrainment and entrainment studies suggested distinct phase relationships among 

circadian rhythms. In 1965, Aschoff reported that free-running humans showed 

significantly different periods in their circadian rest-activity and core temperature rhythms. 

This phenomenon has been termed spontaneous internal desynchronization.[13]  Other 

non-entrainment studies demonstrated a phase advance of REM (Rapid Eye Movement) 

sleep, performance and alertness fell and reached a minimum prior to the self-selected 

sleep onset time. Biological organisms developed daily activity-sleep cycles with periods 

slightly greater or less than the circadian cycle (24 hours) and biological oscillators 

became desynchronized (have different periods). The preferred free-running period was 

approximately 25 hours, and prolonged sleep episodes up to 18 hours occurred in normal 

human subjects. On the other hand, when biological organisms were entrained by the 24 

time cues (Zeitgebers), they developed a 24 hour activity- rest cycle, human subjects had 

a normal pattern of cortisol secretion, and performance remained high prior to sleep onset 
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time. Biological oscillators became synchronized as well. 

An environment with or without time schedules such as lights out, lights on and meal 

times and other scheduled behaviors can confine or release the biological oscillators. In 

the case of our experimental hamsters another constraint or schedule was added which 

was the limited access to the tread mill apparatus. 

Many studies suggest that entrainment of the circadian system can be accomplished by 

applying external stimuli to the endogenous biological oscillators. By selecting the proper 

period and amplitude of the external stimulus, it can control the phase and rhythm of the 

biological oscillators "During entrainment, the self -exciting oscillator adopts the period of 

the driving periodic stimulus and maintains a particular phase relation with the entraining 

cycle." [1]  Environmental synchronizing cycles have been identified in 

various experiments. These environmental cycles include ambient temperature, 

electromagnetic field strength, food availability, social cues, and light-dark (LD) 

cycles. In our two-coupled oscillator model we incorporated an artificial zeitgeber agent 

(sinusoidal function) which simulated the real environmental LD cycle. Basically, this was 

accomplished by adding an external input (cosine function) that turned on and off for the 

duration of the specified intervals. For example, in order to simulate a 12h. light/ 12h. 

dark cycle, the cosine function was attached to the two-coupled oscillator model (using a 

switch) and generated an output at the specified frequency and amplitude for 12 hours. It 

was then, disengaged (0 output) for the rest of the cycle's duration (12 hours). 
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In our work, we will examine the effects of the simulated zeitgeber on our model's 

performance and attempt to provide a detailed comparison between the model's output 

and each of the LD experimental circadian activity data. 

5.2 Understanding Entrainment 

Figure 5.1 shows the activity data obtained from various hamsters. Each hamster was 

subjected to a unique condition. Hamster #17B (figure 5.1a) was kept in continuous dark 

cycle for 28 days. Hamster #26a (figure 5.1b) was subjected to a light stimulus for 

Figure 5.1 Activity data of various hamsters placed in 
different environments. a) Dark/Dark. b) Light/Dark. c) 
Light/Light 
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14 consecutive days and then the stimulus was removed and the hamster was kept in dark 

for an additional 14 days. Hamster #31a (figure 5.1c) was kept under a light stimulus for 

28 days. Figure 5.2 shows the correspondent frequency spectrums. In the case of the 

dark/dark condition, the fundamental frequency was 23.76 hours while the other 

conditions had slightly different fundamental frequency which was 24.76 hours. 

Figure 5.2 Spectral functions. 

In order for us to simulate entrainment, an external input was applied to our coupled 

oscillator model. This input was connected and was removed at different hours. 
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In one of the simulations, a cosine wave with a period of 24 hours was applied to our Van 

der Pol coupled-oscillator model for a simulated duration of 240 hours and then was 

removed for another 240 hours. Such behavior simulated the transition from light to dark. 

Mathematically, this is equivalent to the following: 

E(t)= Acos a (t) where A is the amplitude of the stimulus, µ, the nonlinear parameter of the 

system, and K, the fixed time parameter. E(t) (external stimulus) is not confined to a 

cosine function, it can be any other periodic stimulus. 

We will first derive some assumptions which will be extracted from our single Van der 

Pol oscillator analysis example. We begin by applying an external input which acts on the 

nonlinear Van der Pol equation. This system is described by the following equation: 

Where E(t)= Acos (t) If we assume that µ (the nonlinearity parameter) is very small 

(n.0), the system can be approximated by the following solution: 
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where G = 	, A and B are constants, ω is the natural frequency of the system ω2-ω2  

(intrinsic), G and ω are the amplitude and frequency of the external input (extrinsic) 

respectively. As can be seen, the solution will be dominated by the cos ω t term if either A 

is large or the two frequencies difference (∆-ω 2-ϖ  2 ) is small. Theoretically, in order for 

entrainment to occur, the following three assumptions are fundamental to our model: 

• ∆ω  (the frequency difference) is relatively small. 

• E(t), the external input, is not confined to a cosine function. The stimulus' wave shape 
is irrelevant. 

• The external input is directly acting on the primary oscillator Y and indirectly (by 
means of coupling) on the secondary oscillator X. 

We assumed that ω=0.2856 rad (22 hours), the natural frequency) of the endogenous 

oscillator, and ϖ= 0.2618 (24 hours) rad, the frequency of the external stimulus. First, we 

simulated the single Van der Pol oscillator model without the external input. Next, we 

performed the same simulation with the external input applied and acting on the model. 

Figures 5.3 and 5.4 show the results of VisSim simulation in the time domain. Figure 

5.5 shows the spectral function analysis. 



Figure 5.4 Time series simulation of the single Van der 
Pol oscillator with an external stimulus acting on it. 

Figure 5.3 Time series simulation of the single Van der Pol 
oscillator model with no external stimulus. 
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For this particular case, where µ = 0, A = 3, T=22 hours (period of the endogenous 

oscillator), and Te=24 hours (period of the external stimulus), the resulting oscillation's 

frequency was very close to the frequency of the external stimulus. 

Figure 5.5 Spectral functions. a) Single Van der Pol oscillator, ω= . -
0.2856 rad (22 hours) the natural frequency of the model. b) Single Van 
der Pol oscillator with an external stimulus applied to it. us = 0.2618 rad 
(24 hours) the frequency of the external stimulus. 

Previous researchers work revealed several factors that influenced the quality of 
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entrainment.[1]  Mainly, entrainment is affected by three fundamental elements: 

• Frequency of the external stimulus. 

• Amplitude of the external stimulus (directly proportional to entrainment). 

• Nonlinearity of the system (µ). The larger the nonlinearity, the easier the system can 
be entrained. 

5.3 Light/Dark to Dark/Dark Transition 

In order to obtain real entrained data to be able to compare it with our model's results, 

various experimental hamsters were subjected to distinct entrainment environments. For 

example, 3 experimental hamsters were exposed to a light/dark environment (lights on for 

12 hours and lights out for 12 hours) for a period of 14 days. After the 14 days, lights 

were removed and the hamsters were kept in continuous dark for an additional 14 days. 

24 hr 

144 Samples  14 Days * 	= 2016 Samples, we expect the transition to occur roughly around 
Day 

that point. Figure 5.6 shows the time series data. As can be seen from the figure, there is 

a change in the waveform shape and amplitude around the 2016 Sample. In order to 

further explore the data, the FFT was applied to the time series data and the frequency 

spectrum was plotted before and after the transition. Figure 5.7 shows the time series 

sections (before and after transition) and figure 5.8 shows the fundamental and sub-

harmonics frequencies for the two sections. 

Since activity data was acquired at a sampling rate of 144 Samples 



Figure 5.6 Time series activity data of an experimental hamster. The point 
labeled 2016 Sample is the point of transition from Light/Dark to Dark/Dark. 

Figure 5.7 Time series plot of the activity data 
(light/dark to dark/dark transition). a) Light/dark 
b)Dark/dark. 
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Figure 5.8 Spectra light/dark to dark/dark transition. a) Spectra of 
the light/dark section which shows a fundamental period of 23.76 
hours. b) Spectra of the dark/dark section which shows a 
fundamental period of 24.75 hours. 

A simple explanation for the fundamental period change in the two sections is that the 

hamster adopted the period of the driving external stimulus (light/dark environment) and 

maintained a phase relationship with this particular entraining cycle. As we release him 

from this entraining cycle, the hamster preferred to run at his free-running period of his 

endogenous oscillator which was (24.76 hours). 

Shi Ziong Yang [1] performed considerable work on entrainment and arrived at 

several important conclusions. His results revealed that, in order for entrainment to 
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occur, there is a lower stimulus amplitude threshold level and this level varies with 

different values of p.s (nonlinearity parameters) and ∆  ω  (the difference between the 

endogenous oscillators natural frequency and the external input's frequency). For 

example, when the amplitude of the external stimulus was less than 0.1, entrainment did 

not occur. Also, as we have seen in chapter 3, as we increased , the natural frequency 

of the system was shifted. This shift in the natural frequency will certainly introduce 

further complications to the model. 

5.4 Entrainment Simulation 

We begin by introducing our Van der Pol coupled oscillator model incorporating the 

external stimulus. Figure 5.9 shows VisSim representation of the model, and figure 5.10 

shows a block diagram of the entire model. 
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Figure 5.9 VisSim presentation of the Van der Poi coupled- 
oscillator model. The model include an external input which 
was applied and removed at specified intervals. 
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Figure 5.10 Structural diagram and equations for the final mathematical model. 
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The free-running period of the coupled oscillator model was determined to be 22.2 hours 

prior to applying the external stimulus. We assigned the external stimulus a period of 24 

hours. In order to simulate entrainment, we engaged the external stimulus for a simulated 

period of 240 hours and then removed it for an additional 240 hours. We then used the 

spectral function as a tool to determine the entrainment characteristics. As figure 5.11-a 

shows, the coupled internal oscillators were entrained by the 

Figure 5.11 Coupled oscillator model a) External input with a 
period of 24 hours was applied for 10 simulated days. The 
figure shows the fundamental frequency and the harmonics. b) 
After 10 simulated days the input was removed and the system 
was allowed to free-run. 
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external input. Synchronization took place as the period of the system approached the 

period of the external input(24hr). As the external input was removed and the coupled 

internal oscillators were free-running, desynchronization took place (between the external 

stimulus and the coupled internal oscillators), and the period of the system was restored 

to its original period (22.2hr). It should be noted that synchronization will occur only if 

the period of the external oscillator is close to the free-running oscillator or an integer 

multiple or submultiple of it. Synchronization did not occur when the period of the two 

oscillators were very different from each other. Figure 5.12 is the real circadian activity 

data and figure 5.13 is the model's output. 

Figure 5.12 Records of real circadian activity data. 



Figure 5.13 Simulation output. 

5.5 Light/Light to Dark/Dark Transition 

In this experiment, a hamster was subjected to a light stimulus continuously for 14 days. 

Then, the light stimulus was removed and the hamster was kept in a dark environment for 

14 days. Figures 5.14 and 5.15 show the frequency spectrums before, after, and during 

the transitional phase. As a consequence of the transition, the circadian activity period was 

shifted by approximately 1 hour 24.75hr. Light/Light vs 23.8hr. Dark/Dark), additional 

harmonics were introduced or became more prominent, and the amplitude of the spectrum 

became smaller. 
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Figure 5.14 Frequency Spectrum of time series activity data. 
a) Light/Light before transition. b) Dark/Dark after 
transition. 

Figure 5.15 Frequency spectrum of time series activity data 
during the transitional phase from Light/Light to Dark/Dark. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

In an effort to understand complex systems and processes such as the circadian system, 

different means have to be employed. Our main tool for understanding such a system was 

accomplished by mathematically modeling the circadian activity process of various 

hamsters. The mathematical model was established and developed based on the 

knowledge of previous researchers work in this field, and on our acquired real circadian 

activity data. A data collection system was developed in order to obtain the hamster's 

circadian activity data. The data was pre-processed and analyzed in both time and 

frequency domains in order to initiate bases for the basic mathematical model. For 

example, our data frequency spectral analysis showed that the circadian rhythms frequency 

structure consisted of harmonics and sub-harmonics. We used the frequency 

characteristics of the circadian rhythms as our building block in developing our model. 

Our main objective and emphasis was to develop a flexible mathematical model that will 

approach the real circadian activity rhythms. After successfully accomplishing this task, 

the model was further enhanced to simulate more complex phenomena such as 

entrainment. 
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Existing circadian rhythm models did not utilize ultradian rhythm pacemakers. As our 

model showed, ultradian rhythms were essential to the model's structure in order to 

approach the real circadian activity data in both the time and frequency domains. Through 

frequency spectral analysis, we acquired valuable knowledge about the activity circadian 

rhythms' characteristics. For instance, we showed that the main frequency peak of the 

activity rhythms always occurred at approximately 24 hours which was accompanied by 

2nd 3rd and higher harmonics. We investigated the effect of the nonlinearity on the 

system's harmonic structure. As we increased the nonlinearity coefficient (µ), the 

harmonic amplitude increased. Also, the frequency spectrum showed the bimodality (two 

distinct frequency components) that exists in the circadian rhythms. 

We investigated entrainment which is fundamental to the circadian system. This was 

accomplished by obtaining complex circadian activity data. The data contained 

information about the transition from synchrony to desynchrony by subjecting the 

hamsters to an external stimulus at specific time intervals. We were able to simulate these 

transitions by applying an external stimulus to our model. As the nonlinearity of our 

system increased, the system was easier to entrain. In fact, we were able to fully entrain 

the system by correctly setting its frequency and parameters. 

In summary, based on our results we can state that the circadian system is regulated 

by complex endogenous interacting oscillators. These oscillators are normally 

synchronized by specific environmental cycles as discussed in previous chapters, and our 

coupled-oscillator model has the capacity of simulating the hamster's activity circadian 
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system and perhaps other circadian systems in temporal isolation and in artificial zeitgeber 

cycles. The success of our simulation can open unlimited paths for future development. 

6.2 What May Come? 

We can never emphasize enough the importance of circadian pacemakers and rhythms 

especially in human beings. The circadian system has a large influence in controlling our 

health, and mental activities. It is of great interest medically and economically to solve 

many disorders ( shift work, jet lag, sleep disorders etc.,) that influence us and minimize 

our productivity and have an adverse effect on our health. We have not yet reached the 

end of the road; actually we have just started our journey in exploring circadian rhythms. 

The circadian oscillators are nonlinear and complex in nature. With the continuous 

advancement in technology and computer techniques, it is easier than ever to obtain 

complicated solutions for complex equations. More mathematical models have to be 

considered and studied, and these models should not be restricted to two interacting 

oscillators. Also, several other techniques such as coherence and bispectrum have to be 

employed in order to fully understand the system. Bispectrum will assist in further 

analyzing the phase relationship between harmonics of circadian rhythms, and coherence 

to obtain any correlation that exists between different rhythms. 



Appendix A 

Temperature Filter 

#include <stdio.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <string.h> 

#define MAXLIN 20 
#define FILTER SIZE 5 
#define MAX NAME SIZE 20 
#define CR Ox0D 
#define LF 0x0A 

main(argc,argv) 

int argc; 
char *argv[]; 

{ 
FILE *fptr, *file out; 
char string[MAXLIN]; 
char out string[MAXLIN]; 
char name[MAX NAME ST7E]; 
int count=0, value=0, loop=0; 
int number[FILTER SIZE]; 
int temp number[FILTER ST7E]; 
int top, search, temp; 
int numb,i; 

if(argc != 2) 

(printf("Format: c>filter filename")); 
exit(1); 
} 

if( (fpti—fopen(argv[1], "r")) == NULL) 
{ 
printf("Cannot open file %s.", argv[1]); 
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exit(1); 

} 
strcpy(name,argv[1]); 

for (i=0 ; i < MAX NAME ST7E ; i++) 
{ 
if (name[i] == '.') 

{ 
name[i]=0x00; 
break; 

} 
} 

strcat(name,".flt"); 
file out = fopen(name,"w"); 

while( loop==0 ) 
{ 
if (count > 0) 

{ 
for ( numb = 0; numb < FIT  TER ST7E-1; numb++) 

{ 
number[numb] = number[numb+1]; 
temp number[numb] = number[numb]; 
} 

if (fgets(string, MAXLIN, fptr) == NULL) 
exit(1); 

number[FILTER SIZE-1] = atoi(string); 
temp number[FILTER SIZE-1] = number[FILTER ST7E-1]; 
count++; 

} 
if (count == 0) 

{ 
for ( numb = 0; numb < FILTER SIZE; numb++) 

{ 
fgets(string, MAXLIN, fptr); 
number[numb] = atoi(string); 
temp number[numb] = number [numb]; 
count++; 

} 
for ( top = 0 ; top < FILTER SIZE - 1 ; top++) 

for ( search = top + 1; search < FILTER ST7E ; search++) 
if (temp number[search] < temp number[top]) 

73 



temp = temp number[top]; 
temp number[top] = temp number[search]; 
temp number[search] = temp; 
} 

if( (temp number[FILTER SIZE/2] < 450) && (temp number[FILTER SIZE/2] 
> 380) ) 

{ 
temp number[FILTER SIZE/2] = temp number[FILTER SIZE/2] - 426; 
itoa(temp number[FILTER SIZE/2], out string, 10); 
fputs(out string, file out); 
fputc(CR, file out); 
fputc(LF, file out); 
printf("mid value of array[%d] is %d.\n",count,temp number[FILTER SIZE/2]); 
} 

} 
fclose(fptr); 
fclose(file out);} 
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MatLab Example File 

#################################################################### 
# This program is used to compare VisSim simulation Vs the hamster's activity data (12h. 
# light/12h. dark). 
##################################################################### 

coupled=coupled-mean(coupled); 
n=2000; 

W=hanning(n); 
subplot(4,1,1),plot(coupled,'b'); 
C=W.*(coupled(1:2000)); 
C1=fft(C(1:2000)); 

f=0.00167*(0:(length(C1)-1)/2)/length(C1); 
P=C1.*conj(C1)/length(C1); 
subplot(4,1,2),plot(f(1:50),P(1:50),'b'); 
load c:\hamsters\1dham25a.asc; 
ldham25a=ldham25a-mean(ldham25a); 
subplot(4,1,3),plot(1dham25a(1:2000),'b'); 

C2=W.*(1dham25a(1:2000)); 

C3=fft(C2(1:2000)); 
P1=C3.*conj(C3)/length(C3); 
subplot(4,1,4),plot(f(1:50),P1(1:50),'b'); 
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Simulation of a Single Van der Pol Oscillator Using VisSim 

To help the reader understand our Van der Pol oscillator simulation, one point must be 

kept in mind: VisSim does not provide a differential function block. Instead, VisSim 

provides an integration function block. All the differential equations had to be transferred 

into ones that use integration operators. Therefore, to enter an ordinary differential 

equation (ODE) in VisSim, first algebraically solve the equation for the highest derivative, 

and insert the number of integrator blocks that equals the order of the highest derivative. 

For example, to simulate a single Van der Pol oscillator (equation A.1),. 	the following 

steps have to be accomplished. 

• Algebraically solve the equation for the highest derivative 

• In VisSim, insert the number of integrator blocks that equals the order of the highest 
derivative. 

Assuming that K =1 (the fixed time parameter) and algebraically solving the equation for 

the highest derivative, the equation is equivalent to: 

Since the highest derivative is of second order, we need to insert two integrator blocks in 

VisSim. 



Convert the original equation into a form that can be entered into VisSim. For the 
single Van der Pol equation we need the following VisSim blocks: 

1. Two integrator blocks (second order differential equation) 

2. Two multiplication blocks 

3. Three variable blocks (d2x/dt2,dx/dt,x) 
dt 2  dt 

4. A power block (x 2 ) 

5. A constant block (µ) 

6. A gain block (co) 

7. A summation block 

8. A plot block 

After wiring the blocks and inserting the blocks in their proper positions, the simulation 

shown in figure A.1 results. 
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Figure A.1 VisSim model of the single Van der Pol oscillator. 
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Figure A.2 Output of the single Van der Pol oscillator simulation, µ = 3.0, and T = 24 
hours. 

Figure A.2 is the output waveform of the simulation. If needed, rearrange the blocks for 

better viewing. To satisfy the original equation (equation A.1), set the value of the 

constant, power, and gain blocks to the desired values. 

Prior to simulation, set the simulation parameters. From the Simulate Menu, choose 
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Change Parameters and set the Range Start, End and Step Size. In our model, the step 

size (∆τ )was set to 0.0167. This value originates from the real time sampling rate, 

6Samples 1Hour 1 Minute 
	* 	  = 0.00167 Sample/Second. If the step size value was 

Hour 	60 Minutes 60 Seconds 

chosen to be 0.00167, it will produce too many points. In order to limit the number of our 

simulated data points, a step size of 0.0167 was selected. The simulated data points can 

be collected via an export block. VisSim provides such a block in order to export ASCII 

data. The fixed interval for exporting data can be adjusted. For example, in our 

simulation, ∆τ  = 0.0167 sample/sec., range start = 0, and range end = 480. This will 

force the simulation to generate 28742 data points. If we set the fixed interval parameter 

in the export block to 0.167, only 2874 data points will be written to the file. 
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