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ABSTRACT 

SILICON OPTICAL FIBER SENSOR 

by 
,Tian Pan 

A novel optical fiber pressure sensor based on a micromachined thin silicon 

diaphragm is proposed. Detail descriptions of the sensor structure, modulation principle 

and fabrication process are given. 

The device operates on the following principle: Pressure deflects a silicon diaphragm 

which moves the output end of a light source fiber. The emitted light intensity is picked up 

and shared by two receiving fibers placed side by side. The variation of the intensity ratio 

in the receiving fibers caused by the relative motion of the emitting fiber can be easily 

converted to a linear signal versus the deflection of the silicon diaphragm. This ratio is 

independent of the light source intensity so that fluctuations of a light source is 

automatically compensated. Having advantages of both a silicon sensor and a optical 

fiber sensor, such as compactness and immunity to electromagnetic field, the sensor works 

with good linearity and sensitivity. 
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CHAPTER 1 

INTRODUCTION 

1.1 Silicon Pressure Sensor 

With the development of precision silicon micromachining technology, various kinds of 

silicon sensors have been developed[1]-[10]. Due to their advantages such as 

compactness, high sensitivity and reliability, these sensors have become more and more 

important in many areas, including transportation, health care, and industrial process 

control. 

Of all these silicon sensors, the silicon pressure sensor is one of the most important 

and has been well studied. A lot of types of silicon pressure sensors have been proposed. 

All these sensors employ the deflection of a thin diaphragm etched in a silicon wafer, but 

the readout technologies are quite different. 

Piezoresistive and capacitive readouts are the most common methods used; 

resonance and magnetic induction have also been used in some silicon pressure sensors[2]. 

A prototype silicon piezoresistive pressure sensor is shown in Figure 1 . 1 [1 ]. It consists of 

a thin silicon diaphragm as a pressure sensing element and piezoresistive gauge resistors 

made by impurity diffusing. By connecting the resistors in a bridge circuit and exciting the 

bridge with electrical power, pressure-to-electric output conversion can be accomplished. 

Silicon diaphragms can be also used with another pressure-to-electrical transducer 

employed in capacitive sensors[4], as shown in Figure 1.2. Here, the diaphragm deflection 

modulates the capacitance of a parallel-plate capacitor. Since the output signals are often 

processed by circuits integrated on these sensors, the additional circuitry necessary to 

accomplish calibration is greatly simplified. For this reason these sensors are often called 

smart sensors[3]. But on the other hand, due to the built-in circuitry, piezoresistive 

sensors, capacitive sensors and other sensors with built-in circuitry have one main 
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drawback. They are subject to electromagnetic interference. Besides, most piezoresistive 

sensors and some capacitive sensors are quite temperature sensitive. Thus, additional 

thermal compensations are required. This increases the complexity of sensor structures 

and the cost of manufacturing. 

Figure 1.2 Silicon Capacitive Pressure Sensor 
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1.2 Silicon Optical Fiber Pressure Sensor 

Optical fiber sensors (OFS) show great advantages over most conventional sensors: 

® good electrical isolation 

 immunity to electromagnetic interference 

• safety in explosive environments 

• suitable for remote sensing 

• low temperature effect 

• low signal attenuation 

6 compactness 

By combining optical fiber sensing techniques with silicon microengineering, it is 

possible to fabricate new types of sensors which are ultra compact, highly sensitive, largely 

unaffected by temperature, immune to electromagnetic interference, and intrinsically safe. 

Several designs of silicon optical fiber pressure sensors have been proposed in the past few 

years [8]-[11]. 

Figure 1.3 shows several designs of silicon optical fiber sensors. In Figures 1.3a-e 

are intensity modulation type sensors; Figure 1-3f is an interference pattern modulation 

type, but in this device it is also the intensity of the output pattern that is measured. All 

these sensors are passive type optical fiber sensors. There are no output electrical signals 

and no electrical power supply needed. 

Some other type silicon optical fiber sensors are hybrids of silicon IC technology, 

silicon micromachining, and fiber optics[8]. These sensors have the advantages of silicon 

sensors and some advantages of optical fiber sensors. But some intrinsic disadvantages of 

integrated silicon sensors still remain. 

For the passive optical fiber sensors shown in Figure 1.3, there are also some 

problems in their applications. The outputs of these sensors are subject to the influence of 

light source fluctuations or are inherently nonlinear. For good accuracy and stability, 

some forms of referencing and calibration are needed. 
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Figure 1.3 Light Modulation in Passive Fiber-optic Silicon Sensors[8]&[9] 

In this thesis, a novel silicon optical fiber pressure sensor is described. The structure 

is quite simple and the fabrication process is relatively easy. The modulation principle is 

schematically shown in Figure 1.4. Light is emitted from the end of an optical fiber whose 

position is controlled by a pressure diaphragm. The ratio of light intensities picked up by 

two side-by-side receiving fibers is thus a function of pressure. The sensor needs no 

electrical supply. This makes the sensor very useful for remote sensing in a flammable 
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environment or environment having electromagnetic interference. The sensor's output can 

be easily converted to a linear signal proportional to the deflection of the silicon 

diaphragm. Furthermore, the light source fluctuations, which are often the main error 

source of intensity modulated optical fiber sensors, are automatically compensated. 

Figure 1.4 Modulation Principle of Silicon Optical Fiber Pressure Sensor 



CHAPTER 2 

SENSOR STRUCTURE AND PRINCIPLE 

2.1 Sensor Structure and Sensing Mechanism 

The structure of the sensor is schematically shown in Figure 2.1. It consists of the 

following parts: 

(1) A silicon micromachined die which has a bossed diaphragm for pressure sensing and 

has V-grooves for optical fiber alignment. 

(2) A silicon over pressure protection which has a symmetric structure to the die, except 

that a small portion of the boss has been etched off. 

(3) A multimode optical fiber as light source of the sensor. One end of the fiber is coupled 

to a laser diode or other light source, the other end is glued in the V-groove in the 

diaphragm. 

(4) Two multimode fibers as light detectors. One end of the twin receiving fibers is facing 

the output end of the source fiber, the other end is connected to photo diodes or other 

light detecting devices. 

(5) A silicon support. 

All these parts are bonded together by epoxy glue. 

When there is a pressure imposed on the diaphragm, the diaphragm will be deflected and 

the output end of the source fiber moves with the diaphragm. Because the source fiber is 

illuminating the twin receiving fiber, the light intensity received by the twin receiving fibers 

will also change due to the deflection of the diaphragm. By detecting the output of the twin 

receiving fibers, the displacement of the light source or the deflection of the diaphragm can be 

determined[24]. If the relationship between the deflection of the diaphragm and the applied 

pressure is known and calibrated, the pressure can be determined by detecting the output ratio 

of the twin receiving fibers. 

6 
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Figure 2.1. Structure of Sensor 

1. die with sensing diaphragm 
3. light source optical fiber 
5. support  

2. over pressure protection 
4. light receiving optical fibers 



8 

2.2 Deflection of Silicon Diaphragms 

2.2.1 Introduction 

The outstanding mechanical properties of silicon make it ideal as a pressure sensing 

diaphragm material[12]. Having less mechanical hysteresis is one and possibly the most 

important advantage of silicon over other materials for pressure sensing applications. In 

addition, by using the well developed silicon microengineering technology, different 

structures of silicon with very compact sizes can be created in a precisely controllable and 

reproducible manner. For these reasons, more and more attention has been paid to silicon 

sensors, and currently a large variety of silicon pressure sensors are manufactured 

commercially. 

To obtain pressure sensors with good characteristics and optimum the designs, 

people have made consistent efforts to get the precise load-deflection relations of silicon 

diaphragms. During the years, a lot of studies and experiments have been conducted on 

the load-deflection relations of silicon diaphragms with different geometries[13]-[21]. 

For any diaphragm, regardless of the shape and profile, we can express its load-

deflection relation as: 

where P is applied pressure, y is the center deflection of the diaphragm, a is a dimension 

parameter of the diaphragm(for a circular diaphragm, a is the radius; for a square 

diaphragm, a is the half side length), E is Young's modulus, and h is the diaphragm 

thickness. AP  and B are called linear and cubic coefficients, respectively. They are 

constants depending on the profile of the diaphragm and Poisson's ratio v of the diaphragm 

material. 
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2.2.2. Flat Circular Diaphragm and Flat Square Diaphragm 

The load-deflection relation of a flat, clamped circular diaphragm is given by [13]: 

and the load-deflection relation of a flat square diaphragm is[14] 

where P, a, E, h and v are defined as in Equation (2.1). For the same value of a, a circular 

diaphragm is about 30% stiffer than the square diaphragm for small deflection. The ratio 

of linear to cubic coefficients of the two diaphragms are nearly equal, this means the non-

linearity is similar. For deflections more than 25% of the thickness of the diaphragms, the 

non-linearity of both diaphragms is significant regardless of the dimensions of the 

diaphragm. 

2.2.3. Non-Planar Diaphragm 

To avoid or reduce the non-linearity caused by membrane stresses, which becomes 

significant for both square and circular diaphragms for large deflection, more elaborate 

schemes have been proposed to enhance linearity[5][16]-[22]. The most often used 

method is the employment of a stiffening boss and/or corrugations on a diaphragm. Detail 

discussions of these non-planar diaphragm are given in the following sections. 
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2.2.3.1 Bossed Circular Diaphragm 

For a circular diaphragm with a center boss the linear term as in Equation (2.1) is 

dominant for small deflection, the non-linear term is negligible. The center deflection can 

be expressed as[13]: 

Reflecting the stiffness of the diaphragm, Ap  is a function of the so called "solidity ratio of 

boss and diaphragm radii" (b/a). In (2.5), v is Poisson's ratio and b is the boss radius. In 

these two equations, the effects of a finite diaphragm boss thickness and internal stress are 

not taken into account. Experiments do show that a bossed circular diaphragm displays 

good linearity[5]. 

2.2.3.2 Corrugated Circular Diaphragm 

Corrugations introduced into a diaphragm alter the coefficients of the linear and cubic 

terms in Equation (2.1). The load-deflection relation of a corrugated diaphragm is given 

by[13]: 
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where q is the corrugation quality. For sinusoidal corrugation profiles, q is defined 

with H being the corrugation depth, s the corrugation arc length and / the corrugate spatial 

period. For a flat diaphragm, q=1. 

Figure 2.2 Load-deflection Characteristics of Flat and Corrugated Diaphragms[16] 
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Experimental studies of corrugated diaphragms show that in the small deflection 

region, the introduction of corrugations extends the linear portion of the load-deflection 

characteristics[16]. Figure 2.2 shows the comparison of three diaphragms all with 

diameter a=0.5mm, h=1µm and E=3Gpa (polyimide diaphragm). 

2.2.3.3 Bossed and Corrugated Circular Diaphragm 

If a center boss is introduced into the corrugated structure, modifications of the linear and 

non-linear coefficients are needed. Load-deflection relations can be expressed by adding 

two modify factors in Equation (2.6) to reflect the influence of the boss. For a small 

deflection, the load-deflection relation can be written as[20] 

and r is the ratio of boss radius to diaphragm radius. For large deflection, the influence of 

a boss on the cubic term should be considered. A modification factor similar in magnitude 

to np but of more complicated form, should be added to Bp. 

Figure 2.3 shows the characteristics of two 3.5mm diameter, circular diaphragms 

with 80% center bosses, one being flat and the other corrugated[21]. The thickness of the 

diaphragms are about 1.2µm and the corrugation depth is 12µm. We can see that the 

diaphragm having corrugations has an apparently improved linearity. 
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Figure 2.3 Comparison of Flat and Corrugated Diaphragm Response[21] 

2.2.3.4 Non-Planar Square Diaphragm 

For a bossed or corrugated square diaphragm, and a square diaphragm with both boss and 

corrugations, due to the complexity of geometry, no simple simulation models can be 

established. It is very difficult to obtain analytical expressions of load-deflection relations 

for these diaphragms. X. Ding has reported his studies of the behavior of square silicon 

diaphragms with a boss and corrugations[20], see Figure 2.4. 

Figure 2.4 Measured and FEA(finite element analyses) Calculated Diaphragm Deflection 
versus Pressure for a Diaphragm with a Boss and Corrugations Used for Low-pressure 
Sensor. [20] 
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Y. Zhang, S. B. Crary, and K. D. Wise have reported a workstation-based 

simulation module-CAEMENS-D for micromachined silicon diaphragm structures, which 

can be used to simulate non-planar sensors[19]. Their research shows that the linearity in 

the midrange response is improved by using a bossed diaphragm and the overall response 

characteristics are smoothed. But the sensitivity in the low and middle pressure ranges is 

reduced. Some experimental results regarding the performance of non-planar square 

diaphragms are shown in Figure 2.5. 

Figure 2.5 Deflection vs. Pressure for Various Square Diaphragm Structures [18] 

Based on these studies, we can conclude that bossed and corrugated diaphragms 

have better response characteristics than the conventional planar diaphragms but at the 

expense of reduced sensitivity. By using appropriate deflection sensing techniques with the 

non-planar structures discussed above, it is possible to fabricate pressure sensors with 

higher sensitivity, larger dynamic range and better linearity than sensors with conventional 

planar diaphragms. 

The sensor described in this paper employs a bossed structure. The boss works both 

as a linearity-enhancing method and as an ideal optical fiber support with the V-groove 

micromachined on it. 
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2.3 Principles of Modulation and Compensation 

For a multimode optical fiber as shown in Figure 2.6, the luminous flux distribution 

formed by its output end is given by [24] 

where I0  is the intensity of the light source coupled into the fiber, K0  represents the 

losses in the source fiber, and Ф(r,z) represents the luminous flux density at point (r , z) 

R(z) is called effective radius of the output optical field, which is defined by 

Here, ao  is the radius of the fiber core, 00  is the maximum incident angle of the fiber, and 

k is a constant depending on the coupling condition of the light source. 

Figure 2.6 Multimode Optical Fiber in Radially Symmetric Coordinates 
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When a light detecting fiber is put in the output optical field formed by the source 

fiber, the light intensity output from a receiving fiber positioned at (r, z) is 

where K represents the loss in the receiving fiber, exp(-Ʃni,ri)  represents the additional 

losses in the receiving fiber caused by fiber bends[25], and s is the receiving fiber core 

area. 

To avoid the integral in Equation (2.10), the intensity at the fiber center can be used 

approximately to denote the average light intensity on the end face of the receiving fiber. 

Thus, the output signal from a detecting fiber positioned at (r,z) can be written as: 

Based on this equation for the optical fiber system shown in Figure 1.4, an analytical 

modulating function can be derived by defining a coordinate system as shown in Figure 

2.7. 

The intensities coupled from the source fiber positioned at (0,x) into the two 

receiving fibers as shown in Figure 2.6 can be expressed, respectively, as 
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and 

where x is the displacement of source fiber from z-axis, a is the radius of the fiber. From 

above equations the ratio of output intensities is 

Figure 2.7 Light Source Fiber and Receiving Fibers in Rectangular Coordinates 

If the two receiving fibers are the same kind and are taken from the same optical 
• 

fiber cable, the two receiving fibers can be considered identical. Then, the losses and the 

receiving core areas of the two fibers can be canceled in Equation (2.14). For small 

displacement of the source fiber, the logarithm of the light intensities ratio of the two 

receiving fiber can be expressed as 
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It shows that the logarithm of the intensity ratio has a linear relation with the 

displacement of the source fiber, and furthermore, it is independent of the light source 

intensity I0 , independent of the losses in the fibers, and independent of the losses caused 

by fiber bends. These are the great advantages of this simple sensing mechanism. 



CHAPTER 3 

FABRICATION 

1.1 Introduction of Silicon Micromachining 

Silicon is being increasingly employed in a variety of miniature sensors and actuators. In 

these devices silicon plays multidiciplinary roles. Besides its conventional usage as an ideal 

semiconductor, it is silicon's excellent mechanical properties that is emphasized in these 

devices. Micromechanical structures of silicon in the forms of diaphragms, cantilevers and 

beams are the most important components of these miniature devices. For the fabrication 

of these silicon based microsystems, silicon michromachining is a key technology. 

Etching is the main method of silicon micromachining. There are several different 

types of etching. They are classified as wet chemical etch, plasma etch(PE), reactive ion 

etch(RIE) and dual PE and RIE. According to the properties of silicon and other 

materials, by using appropriate enchant or etching method, the required microstructures 

can be attained starting from a standard silicon wafer. For the fabrication of the silicon 

optical fiber pressure sensor discussed here, a typical fabrication process is required. The 

process sequence is shown in Figure 3.1. 

Step 1: Formation of etching mask. Approximately 1µm SiO2 is produced by high-

temperature oxidation. It will be used as mask for KOH etching. For other enchants or 

etching methods, different materials may be used as etching mask, and the thickness and 

the formation method of the mask layer may be different. 

Step 2-4: Photolithography. Patterns are transferred to the etching mask. 

Step 5: Mask Etching. Without protection of photoresist, patterned SiO2 is etched 

off by buffered hydrofluoric acid (HF). 

Step 6: KOH deep etching. After striping off the remaining photoresist, the wafer is 

dipped in KOH water solution for etching of the substrate. The etch depth is determined 

19 



Figure 3.1 Fabrication Process Sequence for Pressure Sensing Silicon Diaphragm 
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by etching time, KOH concentration and temperature. 

For a more complex silicon microstructure some steps of the process will be 

repeated one or several times and some other steps may be involved. 

Details of mask making and etching process of the silicon pressure sensor are 

described in the following sections. 

3.2 Mask Design and Making 

To get a sensor structured as Figure 2.1, two photo masks are needed. The second mask 

is needed only for the formation of the over pressure protection. To lower the cost and 

simplify the fabrication process, one mask is enough to get the fundamental structure of 

the sensor without sacrificing the characteristics of the sensor. 

Figures used as mask are shown in Figure 3.2. 

In Figure 3.2, (a) is to be used to get the top cover of the sensor; (b) is to be used 

for creating V-grooves which are symmetric to the grooves in the die with a sensing 

diaphragm.(to obtain the function of over-pressure protection, another mask is needed); 

(c) is used for the silcon support and (d) is used for the silicon die with bossed diaphragm 

and V-grooves. 

The unit for the dimensions shown in Figure 3.2 is µm. 

Figure 3.3 shows the side views of fibers in V-grooves. 

Due to the anisotropic property of silicon, a V-groove can be gotten by etching the 

(100) oriented silicon wafer[25].When a V-groove is formed, the etching will be almost 

stopped. Detailed discussion is given in Section 3.4. 

The dimensions of the V-grooves depend on the window width on the mask layer 

and the etch rate ratio of differently oriented plane of crystalline silicon. The dimensions of 

V-grooves should be designed to fit optical fibers exactly as shown in Figure 3.3. 

A nonstandard method is used to make the mask. 

First, the precise figures shown in Figure 3.3 are created by using Mentor Graphic 
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Figure 3.2 Figures for Mask Design (Dimensions are in µm) 



Figure 3.3 Optical Fibers in V-grooves 

IC station software and are printed out with enlargement. 

Secondly, the printout figures are arranged and posted on a flat board. Using a SLR 

camera with a zoom lens, the figures are exposed on 35mm film. Since the dimension of 

35mm film is standard and known, the figures can be roughly reduced to required sizes by 

adjusting the position and the focus length of the camera according to the position of the 

figure in the view finder of the camera. See Figure 3.4. 

The developed film is used directly as a mask. For more precise dimensions or for 

smaller structures, standard mask making methods should be used. 

23 
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Figure 3.4 Mask Created by SLR Camera 

3.3 Wafer Processing 

3.3.1. Wafer Cleaning and Oxidation 

5" 50-cm n-type (100) oriented single side polished silicon wafers are used. To get a 

better etching surface, double side polished silicon wafers are preferred. 

The wafer is processed in a cleanroom according to the procedures below: 

• scribe identification 

• P-clean, 5:1 H2SO4  :H20, 110 °C, 10 minutes 

• Rinse in HOT DI water, 10 minutes 

• Rinse in COLD DI water, 5 minutes 

• Spin Dry 

• Furnace pre-clean, 100:1 H2O:HF, 1 minute 

• Rinse in COLD DI water, 10 minutes 

• Spin dry 

• Steam oxidation 
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3.3.2 Photolithography 

• Photoresist application. Spin time: 20 second; Spin speed of vacuum spindle: 3000 

rpm. Photoresist: Micro Posit® Resist S1400-30. 

• Pre-exposure baking. Temperature: 80°C; Baking time: 20 minutes. 

• Exposing. System: Model-800 Wafer to Mask Alignment and Exposure System, 

manufactured by Applied Materials Cobilt Division. Exposing time: 35 Seconds. 

• Developing. Developer : Micro Posit®Developer MF®-320. 

• Post baking. Temperature: 120°C; Baking time: 20 minutes. 

3.3.3 Oxide Etch 

After photolithography, the wafer is put in buffered hydrofluoric acid (1-IF), which etches 

SiO2 fast but without attacking the photoresist and Si02 under the photoresist which is 

going to be used as etching mask. 

3.4 Anisotropic Etching of Crystalline Silicon 

3.4.1 Introduction 

Some aqueous alkaline solutions dissolve a given crystal plane of silicon or other 

semiconductors much faster than other planes. This is known as anisotropic etching and 

has been studied for a long time [27]. The reason of the orientation-dependence is that in 

lattices, the arrangement of atoms on some planes are different from the others. For a 

plane which is more closely packed than the other planes, more energy is needed to 

dissolve the atoms on such a plane, so that the etch rate of the plane is slower than the rate 

of other planes. But the etch rate ratio for different planes depends on not only the atom 

arrangements, but also the properties of etchants and the temperature. 

The anisotropic etching of silicon has been used for creating a variety of silicon 

structures in a highly controllable and reproducible manner. Typical structures created by 

anisotropic etching include thin planar diaphragms, corrugated diaphragm, bossed 
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diaphragms, V-grooves, beams, and cantilevers. These structures have been used for 

fabrication of passive mechanical elements, sensors and actuators, and micro-optical 

components. 

Figure 3.5 Orientation Dependent Etching 

(a) Through window patterns on <100>-oriented silicon 
(b) Through window patters on <110>-oriented silicon [25] 

Figure 3.5 shows a typical structure created by orientation-dependent etching of 

crystalline silicon. In Figure 3.5a, The V-shaped groove in <100>-oriented silicon wafer is 

formed by opening a window in the silicon oxide mask and etching long enough. If the 

window is sufficiently large and etch time is short , a U-shaped groove will be obtained, as 

shown in the right of the figure. The edges of the two grooves are (111)-planes at an angle 

of 54.7° from the (100)-surface. If etching begins from a <110>-oriented silicon wafer, 

straight-walled grooves with sides of (111)-planes will be obtained, as shown in Figure 

3.5b. 
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3.4.2 Etchants for Anisotropic Etching of Silicon 

The important properties of anisotropic etchants of silicon are anisotropy, selectivity, 

handling, and IC process compatibility. All silicon anisotropic etchants are aqueous 

alkaline solutions. They can be classified as organic etchants and inorganic. Solutions 

consisting of ethylenediamine, water, and pyrocatechol(EDP) are the most widely used 

organic etchants. Aqueous solutions of KOH are the most popular inorganic etchants. 

From both kind etchants, a smooth surface can be obtained with fast etching rate and 

satisfying selectivity of different orientations. But they also have their own disadvantages. 

EDP is highly toxic and thus requiring special facilities for handling. KOH is less toxic and 

easy for handling, but having a fast etching rate for SiO2. For deep etch of silicon, a thick 

thermal oxidation layer is required. 

3.4.3 Etching Process 

In the fabrication process of the silicon pressure sensor discussed here, KOH and 

water solution is used for its adequate etch rate and ease of handling. 

Ammonium hydroxide-water (AHW) solutions are also tried for its low etching rate 

of SiO2. But experiments show it could not be used as substitutes for KOH. Etching rate 

for silicon is too slow, and a coarse etching front is observed. 

To create a silicon diaphragm with required thickness, the etch rate and etch time 

should be controlled. For aqueous KOH solutions with concentration in the range of 10-

60%, an empirical formula can be used for calculation of the silicon etch rate[27]: 

Square brackets 	denote "concentration". 

For a <100>-orientation, Ea= 0.595eV and 4)=2480 µm/h*(mol/liter)-4.25; for 

<110>-orientation, Ea= 0.60eV and k0=4500 µm/h*(mol/liter)-4.25. 
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According to calculated results from (3.1), and by experiments, a 10% concentration 

KOH solution is chosen. The temperature is controlled at 60°C. Although the 

concentration and temperature are not at the optimum values for silicon anisotropic 

etching, considering the thickness of SiO2 is about 0.5p.m, this is an appropriate 

combination. 

The finished wafer is expected to be as Figure 3.6. But in the fabrication process, 

apparent corner recessing effect is observed. To obtain silicon structures close to Figure 

3.6, compensations of corners should be considered in mask design. A modified mask 

design is shown is Figure 3.7. 

3.4 Assembly and Packaging 

The finished wafers, including a die, a support and a silicon frame with V-grooves, and the 

optical fibers are bonded by epoxy glue. Then the bonded structure is glued on a metal 

support which has a pressure inlet and a protection shell. 

Figure 3.6 Finished Wafer 
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Figure 3.7 Modified Mask Design 



CHAPTER 4 

SIGNAL PROCESSING 

4.1 An Overview of the Sensor 

The working system of the silicon optical fiber pressure sensor is schematically shown in 

Figure 4.1. It consists a light source, the sensor element, an input optical fiber, two output 

optical fibers, two detectors and a signal processing part. Except that it has one extra 

output fiber and one extra detector, its structure is almost the same as any other typical 

optical fiber sensor system. 

Unlike an optical fiber communication system, which is very selective about the 

light sources and detectors, various light sources and detectors have been used in different 

optical fiber sensors. In general, the determinant factors about the selections of light 

sources, detectors and fibers used in a sensor are often the modulation method and 

economy consideration. For modulation of phase and polarization, single mode fibers and 

coherent light sources are required, such as lasers, semiconductor laser diodes; for 

modulation of intensity or spectral distribution, multimode fibers and non coherent light 

source can be used. 

For signal processing, there are two basic ways. One is using a dedicated circuit for 

signal processing. The main tasks of the circuit is signal pre-amplification and logarithm 

operation. The advantage is low cost and compact size. The other one is using the 

computer for signal processing. The advantage is high precision, ease of signal calibration 

and handling. Furthermore, if one uses a computer, it is very convenient to store data for 

future applications. 

Another possibility is the combination of these two ways. Using a microprocessor 

with necessary circuits, it is possible to get a high precision sensor which has digital ready 

output and can be easily used for automatic control. 
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Figure 4.1 Block Diagram of the Silicon Optical Fiber Pressure Sensor 
(C: connector, P: pressure) 

3
1

 



32 

4.2 Light Source 

Since the sensor discussed in this thesis is an intensity modulation type, almost all types of 

light sources can be used: incandescent lamps(tungsten lamp), gas lasers(He-Ne lasers), 

light emitting diodes(LED), and semiconductor laser diodes. 

In our tests of the sensor, a tungsten light and He-Ne laser are used and the results 

are compared. 

4.3 Light Detecting 

Light detecting is one of most important processes of a optical sensing system. In 

this process, a light signal is converted to an electrical signal for further processing. High 

sensitivity, fast response and linearity are the fundamental requirements for light detecting 

devices. 

For the sensor discussed here, the most important property of detectors we are 

concerned with is its linearity. And we hope we can get two identical detectors. 

For their compactness and ease of use, semiconductor photo detectors are the most 

often used detecting devices in optical fiber sensors. There are currently four principal 

types of semiconductor photo detectors: the PIN-diode, the avalanche photo diode(APD), 

the PIN-FET hybrid module, and photo conductors. 

Silicon photo diodes are the most common detectors used in instrumentation. The 

spectral response covers the visible and near infrared. The linearity and dynamic range is 

excellent and obtaining a signal is simple. In the testing experiments of the sensor, two 

silicon photo diodes(SD1420-002) provided by Micro Switch are used. 

4.4 Signal Amplification and Processing 

The method of signal processing is schematically shown in Figure 4.2. The photo currents 

from two photo diodes are pre-amplified first and then input into two logarithmic 

amplifiers. The difference of the logarithm is obtained from the output of a voltage 



Figure 4.2 Block. Diagram of Signal Amplification and Processing 3
3
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difference amplifier. This signal is proportional to the logarithms of the ratio of light inputs 

of the two photo diodes. The circuit to fulfill the above function is shown in Appendix A. 

In the testing experiments of the sensor described here, a computer connected to 

two digital multimeters by IEEE-488 interface is used for signal processing. A detailed 

description is given in Chapter 5. 



CHAPTER 5 

EXPERIMENTS 

5.1 Experimental Set-Up 

A series of experiments have been performed to test the sensor. The basic experimental 

set-up for testing is schematically shown in Figure 5.1. 

A He-Ne laser or tungsten lamp is used as light source. The light from the source is 

focused to the input end of a multimode optical fiber. The optical signal is modulated by 

the inlet pressure which is varied by changing the height of a water column in a vertically 

mounted glass tube. The modulated signals are received by other two multimode optical 

fibers and conducted to two silicon photo diodes. Then the received optical signals are 

Figure 5.1 Schematic Depiction of the Experimental Set-Up for the Testing of Sensor 
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converted to two voltage signals by the photo diodes and transmitted to two digital 

voltmeter (Keithley 195A Digital Multimeter). Through the IEEE-488 interfaces between 

a computer and digital voltmeters, the signals are transmitted to a computer. 

A computer program used for data acquisition and calculation is shown in Appendix 

B. By expanding the program, the computer's function in the system can be extended for 

signal processing, data analysis, data storage and transmission. 

To obtain more precise quantitative measurements, a mechanical chopper and a 

lock-in-amplifier should be used. The chopper modulates the input light beam at a fixed 

frequency and at the same time provides the lock-in-amplifier the same frequency as 

reference. The outputs from the photo diodes are fed into the lock-in-amplifier, and the 

output of the amplifier can be input to the computer for calculation and further processing. 

5.2 Measurement of Characteristics of Sensor 

5.2.1 Measurement of Deflection and Response Characteristics 

It is necessary and more convenient to perform several experiments before the bonding of 

optical fibers to the silicon diaphragm and even before the design of the silicon sensor. The 

linear response range can be obtained from experiments of the optical fiber system 

discussed in Chapter 2. And then, based on the load-deflection relation of the silicon 

diaphragm, we can decide the dimensions, thickness and the pressure range of a silicon 

diaphragm in our design. 

Figure 5.2 shows the relation of deflection versus sensor output from experiments. 

The deflection is simulated by moving the output end of source fiber with a micro 

manipulator. The light source is a tungsten lamp. Multimode optical fibers with core 

diameter 200p.m and cladding diameter 220µm are used as source fiber and receiving 

fibers. The distance between the output end of the source fiber and the input end of the 

receiving fibers is approximately 250pm. The experimental results agree with the theory 

we discussed in Chapter 2. For the range of total 300µm in two directions, the output 
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readings change linearly with the transversal displacement of source fiber or the deflection 

of a silicon diaphragm. Non-linearity occurs only at very large deflections for a silicon 

diaphragm deflections. Most silicon diaphragm's deflection will not exceed this linear 

region. 

Figure 5.2 Output Signal vs. Diaphragm Deflection 

The plot shows a little bit asymmetry. This is due to the fact that we set a position as 

zero point when the output reading is zero. Because of the asymmetry of the two 

detectors, the zero reading may occur when the source fiber is not in the center position of 

the two receiving fibers. Another possible reason is the cutting defects of the fiber ends. In 

general, since the linearity is unchanged no matter which point we choose as zero, a little 

asymmetry of the response will not affect the sensitivity and the precision of the sensor. 

But to optimize the sensor's working range, the alignment of the three fibers is important. 
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Light detectors and amplification should be chosen to be as closely matched as possible, if 

they could not be made identical; and the fiber end should be processed without defect to 

ensure good characteristics of the sensor. 

5.2.2 Comparison of Different Light Source 

Figure 5.3 shows the output signal versus the deflection of two different light sources, 

tungsten lamp and 6328A He-Ne laser. Light intensities from the output end of the source 

fiber are kept unchanged. Other parameters such as fiber end distance and coupling 

condition of fiber to detectors are also unchanged. 

Figure 5.3 Comparison of Sensor's Characteristics for Different Light Sources 
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It is apparent that the response corresponding to white light from a tungsten lamp 

has better linearity than He-Ne laser and the dynamic range is wider than that for the laser. 

But the laser source gives a higher sensitivity. For the same deflection, using a laser a 

larger output signal will be obtained. 

The difference of sensitivity and linear range comes from the coherent and non-

coherent properties of the light sources. For non-coherent white light, the distribution is 

more stable and relatively flat. For coherent laser, the light distribution is concentrated in a 

smaller spatial range for the same light intensity. This means the gradient of intensity is 

larger, so that the ratio of light received by two receiving fiber is greater than the ratio for 

white light source and thus the output will be greater for the same deflection. Also for the 

relatively sharper distribution, the light detectable region is narrowed. This is why the laser 

source has a higher sensitivity but a narrower linear region. 

5.2.3 Characteristics of Light Intensity Compensation 

With two detecting fibers, without any other elaborate compensation method, the output 

of the sensor shows almost no variations for the fluctuations of light source intensity. For 

the same He-Ne laser but with intensity coupled into the source fiber being changed as 

much as 50%, plots of the output signal vs. deflection or the lateral displacement are 

shown in Figure 5.4. The two sets of data are very consistent with one another. This 

agrees with the theoretical analysis in Chapter 2. 

5.2.4 Effect of End Distance Between Source Fiber and Receiving Fibers 

To determine the effect of the distance between the source fiber and the two receiving 

fibers, experiments have been made using the same laser source and same parameters 

except the end distance z is changed 200µm (from about z=50µm to z= 250µm). Results 

are shown in Figure 5.5. Similar to the earlier comparison of laser source to white source, 

a small distance results in a large slope of the curve, i.e. high sensitivity; a large distance, 
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on the other hand, results in less sensitivity but with a little expansion of the linear range.  

In fact, by defining the sensor's sensitivity as 

We can see that the sensitivity depends on the end distance z and source fiber's diameter. 

Figure 5.4. Characteristics of Light Intensity Compensation 
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Figure 5.5 Response Comparison of Different Distances between Ends of Source Fiber 
and Receiving Fibers. 

5.3 Discussion of Non-linearity and Application Limitations 

From all experimental curves discussed above, a common feature is observed. All the 

curves have similar non linear tails, the tails curve to the same direction, no matter what 

kind of light sources are used, what is the end distance and what is the light source 

intensity. This disagreement with the conclusion we made in Chapter 2 comes from the 

approximation we made in the calculation of light intensity received by the testing fiber 

and possibly comes from the approximation of the fiber end light distribution described by 

Equation (2.8). 

In the calculation of received light intensity of a receiving fiber, the center intensity is 

used to represent the average intensity over the fiber receiving end, for a linear light 

intensity distribution, this is not an approximation, it exactly equals the average intensity. 

For a non linear distribution, this may sometimes cause serious error. For example, when a 
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fiber is facing the source fiber, based on Equation (2.8), the light intensity at the center of 

the receiving fiber is far greater than the average intensity. At the same time, the 

calculation of the received light of the other fiber also has some error. The value of 

Ln(I1/I2) may be higher than the real value at some position and be lower at some 

other position. But since the error is much less than the difference of light intensities 

received by two receiving fibers, it will not change the overall linear characteristics. 

Another possible error source is the non linearity of the detectors. But since the 

same phenomenon appears for both small light intensity and large light intensity (Figure 

5.4) without changing, this should not be the reason of the tails. 

Since the non-linearity is apparent only at large deflection, this will not cause much 

trouble for sensor application. For most micro silicon sensors, the diaphragm deflection is 

much less than the diameters of a fiber used here. The linear response range is of the 

magnitude of fiber diameter, but it depends on the fiber end distance and the type of the 

light source. 

An possible way to reduce the non-linearity is to use receiving fibers with smaller 

diameter. But the sensitivity will be also be reduced. By separating the two receiving fiber, 

the sensitivity can be raised, but the total linear region will be narrowed. 

For a silicon diaphragm which is less than or about the dimension of 1 x 1 mm2, its 

deflection may be too small to be detected by this kind sensing mechanism, and it is almost 

impossible to make alignment of fibers on such a diaphragm. For example, for a bossed 

square diaphragm, dimensions 0.5mmx0.5mm, 3µm thickness, boss side length 500µm, 

subjected to a pressure change of 0-600mmHg the center deflection is approximately 10 

µm[18]. The corresponding response of the optical fiber system used here would be less 

than 1. 

For a silicon diaphragm with dimensions of several millimeters, and several tens of 

microns thickness, this optical fiber sensor will work very well with satisfactory sensitivity 
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and linearity. For a 6mmx6mm diaphragm, with 20pm thickness, the total deflection of the 

diaphragm is 500µm for pressure about 1200mmHg or 160cmH2O (1.6 bar)[8]. For 

sensors with similar dimensions, the twin receiving fibers can work very well. 



CHAPTER 6 

CONCLUSION 

A rugged silicon optical fiber sensor has been fabricated utilizing a silicon micro structure 

created by KOH anisotropical etching. The sensing head of the sensor is a micro machined 

silicon diaphragm, of which the deflection modulates the intensity of input light signal. 

Both theoretical analysis and experimental results demonstrate a satisfactory linearity 

within a deflection range of the diaphragm from about -100µm to 100µm. The 

corresponding pressure range depends on the dimension and profile of the diaphragm. The 

output readings which is the logarithm of the output ratio of two photodiodes are in the 

range about -10 to 10. With well controlled signal-to-noise ratio, very good sensitivity and 

resolution can be obtained. 

The most striking feature of the sensor is that the output signal is independent on the 

light source intensity, which means the light source fluctuations can be automatically 

compensated. 

Based on experiments, we can see that the optical fiber sensing mechanism used here 

is compatible with the well developed silicon micromachining technology, considering the 

possibility of precision fiber alignment and the compatible linear response range. 

It is possible to apply this optical fiber sensing technique to other silicon micro 

sensors which involve deflections of diaphragms or beams, for example a silicon 

accelerometer. 
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APPENDIX A 

SIGNAL AMPLIFICATION AND PROCESSING CIRCUIT 
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APPENDIX B 

DATA ACQUISITION AND PROCESSING PROGRAM 

CLS 
OPEN "\DEV\IEEEOUT" FOR OUTPUT AS #1 
OPEN "\DEV\IEEEIN" FOR INPUT AS #2  
IOCTL #1; "BREAK" 
PRINT #1, "RESET" 
PRINT #1, "CLEAR" 
PRINT #1; "REMOTE 24" 
PRINT #1, "REMOTE 25" 

'Open IEEE488 output path 
'Open IEEE-488 output path 
'Reset interface 
'Warm start interface 
'Send device clear 
'Put unit 1 in remote 
'Put unit 2 in remove 

REM **********UNIT 1  SETUP ************************************* 

PRINT #1, "OUTPUT 24;FOX" 	 'DC volts 
PRINT #1, "OUTPUT 24,ROX" 	 'Auto range 
PRINT #1, "OUTPUT 24;P1X" 	 'Front panel filter on 
PRINT #1, "OUTPUT 24;GlX" 	 'Data format, without prefix/suffix 
REM **********UNIT 2 SETUP ************************************* 

PRINT #1; "OUTPUT 25;FOX" 	 'DC volts 
PRINT #1; "OUTPUT 25;ROX" 	 'Auto range 
PRINT #1, "OUTPUT 25;P1X" 	 'Front panel filter on 
PRINT #1, "OUTPUT 25;G1X" 	 'Without prefix/suffix 
CLS 	 'Clear CRT 
REM ***********Title Display and Key Board Control******************** 
LOCATE 10; 10 
PRINT CHR$(201); 
FOR K = 1 TO 60 
PRINT CHR$(205); 
NEXT K 
PRINT CHR$(187) 
FORK= 11 TO 20 
LOCATE K; 10 
PRINT CHR$(186) 
NEXT K 
FOR K = 11 TO 20 
LOCATE K; 71 
PRINT CHR$(186) 
NEXT K 
LOCATE 20; 10 
PRINT CHR$(200); 
FOR K = 1 TO 60 
PRINT CI-M(205); 

46 



NEXT K 
PRINT CHR$(188) 
LOCATE 12, 13 
PRINT " 	DEPARTMENT OF PHYSICS, NJIT " 
PRINT 
LOCATE 14, 13 
PRINT " 	SILICON OPTICAL FIBER PRESSURE SENSOR" 
PRINT 
LOCATE 18, 13 
PRINT " 	DATA ACQUISITION AND PROCESSING SYSTEM " 
PRINT 
LOCATE 22, 28 
PRINT "PRESS ANY KEY TO BEGIN." 
DO WHIT  E INKEY$ = "". LOOP 
CLS 
PRINT "STARTING 	" 
100 PRINT #1, "ENTER 24" 
INPUT #2, D 
FOR J = 1 TO 1000 
NEXT J 
PRINT #1, "ENTER 25" 
INPUT #2, E 
FOR J = 1 TO 1000 
NEXT J 
CLS 
PRINT "DATA1="; D 
PRINT "DATA2="; E 
F = D / E 
F = LOG(F) 
IF A$ = "E" OR A$ = "e" THEN 200 
GOTO 100 
200 CLOSE #1: CLOSE #2 
END 
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'Waiting for command 
'Waiting for key press 

'Address Unit 1 to talk 
'Get Voltage from detector 1 
'Delay 

'Address Unit 2 to talk 
'Get Voltage from detector 2 
'Delay 

'Clear CRT 
'Display Voltage from detector 1 
'Display Voltage from detector 2 
'Calculation of voltage ratio 
'Waiting for key press 
'Exit command 



APPENDIX C 

EXPERIMENTAL DATA OF SENSOR TESTING 

Table C.1 Experimental Data 

Deflection 
(x10µm)  

White Light 

(output 
reading) 

He-Ne Laser 
(output 
reading) 

Small gap of 
Fiber 
Ends.(Laser) 
(output 
reading) 

Intensity 
Reduced 
(50%) He-Ne 
Laser 
(reading) 

-24 
-22 

-6.15 
-6.01 

-20 -5.71 -8.13 -9.28 -9.07 

-18 -5.25 -7.71 -9.23 -8.99 
-16 -4.70 -7.06 -8.95 -8.77 

-14 -4.02 -6.17 -8.21 -8.32 
-12 -3.35 -5.44 -7.29 -7.40 
-10 -2.71 -4.47 -6.14 -6.14 
-8 -2.13 -3.47 -4.74 -5.00 

-6 -1.56 -2.51 -3.32 -3.55 

-4 -1.02 -1.51 -2.02 -2.20 

-2 -0.50 -0.79 -0.94 -1.09 

0 0 0 0 0 
2 0.52 0.71 0.87 0.77 

4 1.00 1.46 1.78 1.66 

6 1.52 2.27 2.81 2.70 

8 2.07 3.19 4.06 3.85 
10 2.58 4.16 5.46 5.26 

12 3.16 5.20 6.74 6.60 

14 3.75 6.07 7.83 7.72 

16 4.35 6.82 8.80 8.70 

18 4.95 7.41 9.65 9.61 

20 5.50 7.39 10.27 10.23 

22 6.03 8.44 10.45 10.31 

24 6.50 

26 6.86 
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