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ABSTRACT

PERFORMANCE ANALYSIS FOR GENETIC ALGORITHMS

by
Hermean Wong

Genetic algorithms have been shown effective for solving complex
optimization problems such as job scheduling, machine learning, pattern
recognition, and assembly planning. Due to the random process involved in
genetic algorithms, the analysis of performance characteristics of genetic
algorithms is a challenging research topic. Studied in this dissertation are
methods to analyze convergence of genetic algorithms and to investigate
whether modifications made to genetic algorithms, such as varying the
operator rates during the iterative process, improve their performance. Both
statistical analysis, which is used for investigation of different modifications
to the genetic algorithm, and probability analysis, which is used to derive the
expectation of convergence, are used in the study. The Wilcoxon signed rank
test is used to examine the effects of changing parameters in genetic
algorithms during the iterations. A Markov chain is derived to show how the
random selection process affects the genetic evolution, including the so called
genetic drift and preferential selection. A link distance is introduced as a
numerical index for the study of the convergence process of order-based
genetic algorithms. Also studied are the effects of random selection,
mutation operator, and the combination of both to the expected average link

distance. The genetic drift is shown to enforce the convergence exponentially



with increase in the number of iterations. The mutation operator, on the
other hand, suppresses the convergence. The combined results of these two
parameters lead to a general formula for the estimation of the expected
number of iterations needed to achieve convergence for the order-based
genetic algorithm with selection and mutation and provide important

insights about how order-based genetic algorithms converge.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Genetic algorithms have been shown effective for solving complex
optimization problems in job scheduling, machine learning, pattern
recognition, assembly planning, and others (Davis, 1985; Englander, 1985;
Leu, Wong, and Ji, 1992; Wong and Leu, 1993). The concept of the initial
genetic algorithm was based on the improvement of bit string representations
for real problems. An initial pool of solutions represented by bit strings,
called the mating pool, is created usually from a random process. The
solutions in the pool are then randomly selected to be applied with some
operations for creating new solutions. The improvement of the solutions was
made by the creation of new bit strings with better schemata than old ones.
A fitness value for each bit string representation is evaluated according to
the main concern in a real problem and is used as the solution improvement
criterion since it represents goodness of strings.

Some researchers have expanded the bit string representation
technique to other representation schemes. Grefenstette, et al., (1985) used a
node string to solve the traveling salesperson problem. Koza (1990) used a
LISP function and argument string as a non-linear genetic algorithm
problem solving technique. Shahookar, et al., (1990) used a character string
for solving the standard cell placement problem. Leu, et al., (1993) used
integer strings to solve the planning problem of printed circuit board

assembly.



The random process involved in genetic algorithms makes it difficult to
analyze their performance characteristics including the effects of some
parameters and their optimal values, the population size of the initial mating
pool, and the number of iterations needed to stop a genetic algorithm.
Random selection plays an important role in genetic algorithms. Due to the
probabilistic nature of random selection, there is always the existence of
selection drift or preferential selection accompanying a genetic algorithm.
The genetic drift is the selection induced bias due to the fact that a sequence
of selections with equal probabilities of different objects has a high
probability of resulting in unequal numbers of different objects. Preferential
selection is similar to genetic drift except that the probabilities of choosing
objects are different.

To analyze the performance of a genetic algorithm, it is essential to
analyze the effect of random selection. Goldberg and Segrest (1987) used
finite Markouv chain (Kemeny and Snell, 1960) to analyze the genetic drift
and preferential selection for a simple genetic algorithm with binary coding (0
or 1). They showed that Markov chain analysis in general is useful to
understanding the performance of finite genetic algorithms with binary
coding, sizing populations appropriately, and selecting proper operation rates.
Other researchers (Nix and Vose, 1992; Suzuki, 1993) extended the Markov
model for the integer representation. The effect of random selection in
general coding techniques, such as the permutation coding, remains an open
research issue. The Markov chain analysis is not ideal because the possible
constructions of the mating pool are tremendous and it is practically
impossible to calculate their results considering the enormous computations

required.



Some statistical analyses have been studied to find optimal
parameters in the genetic search. Schaffer, et. al., (1989) used statistical
results from a large number of experiments to show the effects of parameters
on the performance of some genetic algorithms. Instead of finding optimal
parameters globally, some researchers studied the adaptation of parameters
during the genetic evolution process. Focusing on operator rates, Davis (1989)
adapted the probabilities of operators during the genetic search when
multiple operators are used. In (Davis, 1989), only one operator was chosen
among the genetic operators to create the offspring according to their
associated probabilities. The sum of the probabilities of all operators is equal
to 100%. The adapting method raises the probabilities of the operators that
generate more of the offspring, compared with other operators, which are
better than the current best solution during the genetic iteration process.
Because of the flexibility of genetic algorithms, it is often desirable to add
more modifications to the algorithm to suit new applications. A general
scheme for analyzing the performance of an order-based genetic algorithm,

however, is not available from the literature.

1.2 Research Objectives and Tasks

The objectives of this dissertation are two-fold : (1) to investigate whether
modifications added to genetic algorithms improve their performance or not
and (2) to build a foundation for analyzing the convergence of order-based
genetic algorithms.

Both statistical analysis and probability analysis are made in this
study. A Wilcoxon signed rank test (Lawer, 1985; Mosteller, 1973) is used to
compare an adaptive operator production ratio method with the

corresponding fixed operator production ratio method. The genetic drift and



preferential selection in genetic algorithms are analyzed without regard to
specific coding methods. Instead of the use of genes which is coding method
related, the selection of links is considered in the development of a new
method for the convergence analysis. A link distance is defined for order-
based genetic algorithms as the measure of difference between two links.
The average link distance of the mating pool is then used as the reference of
convergence in the analysis of order-based genetic algorithms. The changes
of average link distance due to the individual effects of random selection and
mutation operation are investigated. By combining the effects of both
random selection and mutation operation, the expected average link distance
is formulated and used to estimate the expected number of iterations needed

for the convergence of a genetic algorithm.

1.3 Outlines of Dissertation

The remaining of the dissertation is organized as follows. Chapter 2 gives a
description of the genetic algorithm and describes a statistical analysis for
comparing variations in an order-based genetic algorithm with an increasing
mating pool. In Chapter 3, the Markov chain analysis based on the states of
the mating pool is discussed. In Chapter 4, an index called the link distance
is created for studying the convergence of the order-based genetic algorithm,
and the expected average link distance of the initial mating pool is discussed.
Chapter 5 discusses the expected average link distance change due to
random selection. Chapter 6 discusses the expected average link distance
change due to mutation operation. Chapter 7 combines the effects of both
random selection and mutation operation and formulates an equation for
estimation of the expected number of iterations needed for order-based

genetic algorithms. Chapter 8 concludes the study.



CHAPTER 2

STATISTICAL ANALYSIS

In this chapter, we will provide the description of a general genetic algorithm
and a methodology for statistically investigating the effect of adapting the
production ratios of genetic algorithms to an increasing-mating-pool order-
based genetic algorithm (Wong, 1991). For a rigorous discussion of the

genetic algorithm we give the following definitions:

Definition 1:  Let ¥ be a set of ! continuous positive integers starting from
1,ie. N ={1,2, .., 0} and C be a set of [ genes, i.e. C ={c,, ¢y, ---, ¢},
where each element c; is a gene. C, = {c|, c,, ---, ¢} is called binary
codedifc, € {0, 1} Vie N, Cp ={c,, ¢,, ---, ¢} is said to be permutation
codedifc;e Nand ¢, #¢ifi#jVie N,

Definition 2:  Alink is defined as s = {s,, s,, ..., 5}, where s, is the gene at
the k-th position (called locus) of the link, and s is the mapping s :
C. lis called the link length.

Definition 3:  The set U is the collection of all possible links, i.e. U= {5}, 5,,

§¢}, where ¢ is the total number of all possible links. ¢ = 2! for
binary coded genes and ¢ = ! for permutation coded genes.

Definition 4:  Let U, denote a subset of U containing n links, i.e. U, = {5,
Sy, ---, 8}, where n is the number of links in U,

Definition 5: The mating pool M, is defined as M, = {(5,, ®)), (5, @), ---,
(5, )} where s; € U, and o, is the probability for 5, being chosen in

the genetic algorithm optimization process. Zco,. =1.

i=]

N —



Definition 6:  The cost function is defined as f: U — R, where N is the set
of real numbers. f(3)) =, is the cost of solution 3.

Definition 7:  An operator is a mapping G : U, — U,, where m is the
number of parents and n is the number of offspring generated by the
operator.

A traditional genetic algorithm usually consists of the following steps:

1. Randomly generate a set of initial parents, U,, that forms a mating pool
M, . Select the operators used for the genetic algorithm. Set an operator
rate, r;,, 0 < r; < 1, for each operator. Find f; for each 5, Assign the
selection probability, ,, for link §; according to its cost f,.

2. Select n links (with replacement) from the mating pool M, according to
the selection probability of each link to form an intermediate mating pool
M.

3. For each operator, do step 3.1.
3.1For each link 3;'in M’ , randomly draw a real number between 0 and 1.

If the drawn number is less than r;, apply the operator to the link to
create a new link and replace ;' with this link.

4. Replace M, with M',.
5. Repeat steps 2, 3, and 4.

There are many variations in practical applications of the genetic
algorithm in terms of constitution of genes, selection, replacement, and the
operators used. Selection of parameters such as population size and operator
rate are also important study issues. In this Chapter, we will use a
statistical method called Wilcoxon signed rank test to compare different
genetic algorithms.

Based on the experience in using the genetic algorithm for printed

circuit board assembly planning (Leu, Wong, and Ji, 1993), we will compare



an adaptive operator production ratio method with a fixed operator
production ratio method for an order-based genetic algorithm with an
increasing mating pool. The adaptive operator production ratio method uses
a set of adaptive operator production ratios instead of using fixed numbers of
operator production ratios during the iterative process. The operator
production ratios are adjusted according to the proportions of survived
offspring generated by individual operators. Since the genetic algorithm is a
heuristic search method, the results of different trials are usually different,
even using the same values of parameters. Instead of comparing the means
of the best solutions, what should be compared are the differences between
the best solutions obtained from different methods for a broad range of
similar problems. A Wilcoxon signed rank test is applied for this comparison.
We will show the obtained experimental results from the Wilcoxon signed
rank test after describing the fixed operator production ratio method and the

adaptive operator production ratio method in the following sections.

2.1 The Fixed Operator Production Ratio Method

Let n, denote the number of initial parent links, # denote the number of
operators, n; denote the number of links in the mating pool Mnj after
applying operator G;, 1 <j < h. Instead of using the operator rate in the
traditional genetic algorithm just described, we assign an operator
‘production ratio to each operator G; as ¢; = n;/ n;_,. g;1is used to control the
number of offspring links created by each operator in the iteration. g; must
be greater than 1 to guarantee the production of offspring links by operator
G.

J



For the two genetic algorithms tested in this chapter, we assign the
selection probability of each link according to the rank of the link compared
to the other links in the mating pool. The ranking of the mating pool before

the operations is defined as follows.

Definition 8:  The ranking of the set U, is defined as R, = {ra,, ra,, ..., ra,}
where ra, is a positive integer between 1 and n representing the rank
of 3;in U, based on the cost of 5;,i.e. /. R.is a permutation of integers

from 1 to n such that ra;, = 1if £, is the minimum cost.

The ranking of the mating pool after the genetic operations is defined

as follows.
Definition 9:  The ranking of the set U,,, = {s|, 54, -+, 5., S,up» = Spupt 1S
defined as R,,, ={ra, ra,, ..., ra,, ra,.,, ra, ., ---, a,,,}, where k is the

total number of new offspring links generated by the operators. For

every 3, ., 1<is<k ra ., =n+i.

n+i

n+i?

Figure 2.1 The Process of Genetic Algorithm in Each Iteration

We will assign the selection probability of link 3, proportional to (n - ra; + 1).
That is, the selection probabilities are assigned such that : (1) the lower the



rank of a link, the higher the selection probability, and (2) the selection
probabilities of all links have the ratio 1 : 2 : 3: ... : n. This is better than
assigning the selection probabilities of the links proportional to the fitness
values of these links, because it avoids the possibility that selection
probabilities of some links may be unreasonably high. The fixed operator

production ratio method is as follows:

1. Let the total number of iterations for the genetic algorithm be T.
Randomly generate a set of initial parents, U, ” that forms the mating

pool M, . Findthecostf,2=1,2,...,n, FindR

e i.e. the ranking of U, .

ngy’

The probability ©, is proportional to (n, - ra, + 1). Since Zw,- =1, we can
(=1
find that

n,-ra,+1 _ 2(n,~ra;+1)
(1 = ra, +1) ny(n, +1)
k=1
Select the production ratio g of each operator Gj,j =1, 2, ..., h, where h is

the total number of operators.

2. Select parent link(s) from the mating pool M“j._l according to the selection
probability of each link. Sequentially apply the operators to create
offspring links for each operator GJ- with production ratio a,J=12, ..., h
The mating pool is sequentially enlarged to Mnj's as shown in Figure 2.1.
The ranks of the newly created links are assigned as described before.

The selection probabilities of the links are updated as

n,-ra;+1 2(nj—ra,.+1)

0; = — =
(n, -ra; +1) nyln, +1)

)

k=1
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3. After all the operators are applied, find £, of M, , i = ny+1, ng+2, ..., n,.

ny
Rerank M, .
4. Define the new mating pool M’, such that §;in M’ is the same as 3; in
M, for1=1,2, ..., n, Replace M, with M, .
5. If the number of iterations is equal to 7', stop; else go to step 2.

We will call the fixed operator production ratio method as the fixed
method later in the text. It should be noted that the population size of the
mating pool is increased after each operation. After all the operations are
applied, we then create a new mating pool from the collection of the best
solutions among the original mating pool and the newly created offspring.
The new mating pool has the same size as the initial mating pool. The newly
created links are not evaluated until all the operators have been applied.

The probability of having the combined effect of different operators is
controlled by both the number of initial parents and the total number of
offspring generated by the various operators in each iteration. The selection
probability of the links for the last operation is

n,, —ra;+1  2(n,, -ra; +1)

X raen) el D

k=1

The probability of the links in the initial mating pool U, being selected as

parent(s) for the last operator G, is

(2n,l_, -ng + l)no
< & n,, —ra;+1 _ 9 (2n,_, —ny +1)n,
() ; = - = = (2 1)
; by (nh—l + 1)”/.-1 (nh-l + l)n’h—]

Z“ 2
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Let n,, =kny, k> 1, and n; >> 1, (2.1) becomes

nom _(2k-Dn, 2k-1

il kn,  k* 2.2)

Equation (2.2) represents the probability that the parent link of the
offspring generated by the last operator G, is from UHO. If the number of
offspring links generated in each iteration is the same as the number of links
in the initial mating pool, 2 # 2. Then the probability for the links in Uno
being chosen as the parent links for the last operator is around 75%. The
larger the number of offspring links is generated in each generation, the
more the emphasis is placed on the effect of combined operators. It should be
noted that the first operator uses only the mating pool M, without any

unevaluated parents.

2.2 The Adaptive Operator Production Ratio Method

In this section, we will describe a heuristic approach to adjust operator
production ratios during the iterative process of the order-based genetic
algorithm. The main idea of the adaptive operator production ratio method is
that during the iterations we raise the production ratios of the operators that
generate more survived offspring links and reduce the production ratios of
the operators that generate less survived offspring links. The total number
of parent links and the total number of offspring links in each generation are
fixed; that is, n, and n, are fixed during the genetic evolution process.
Although the larger n, in each generation, the more improvement is expected,

but the total computation time is also increased. So, the efficiency of the
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genetic algorithm is not necessarily improved by increasing n,. We will
denote the adaptive operator production ratio method as the adaptive method.
To fix the population size in each iteration, with a given set of operator
h
production ratios {q,, q, ---, q,, ]_[qj should be kept constant. If an
j=1
offspring link is created by a sequential combination of several operators,
credits are given to all operators involved in generating this link.
Let the production ratios of operators be updated after every =
iterations. Also let N, be the total number of offspring links created by
ng

operator G; that are contained in the mating pool M, in the next iteration,

for each of these T iterations. To adjust the operator production ratios in the

iterations, we let

t~(nj -n;, ) ©.3)

q;'=kq; | 1+-

where g is the operation production ratio of operator j in the following
iterations, j = 1, 2, ..., h. The proportional factor £ in (2.3) should be such
that the number of offspring links generated in each iteration remains

unchanged. For this condition to hold, it is required that
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Therefore,
M N w
N, N, /
' T inj—nj_lj h t~inj.—nj._lj
q;'=q;|1+ - N H 1+ - N (2.4)
i=1 T (n’i - n‘i-[) _ i=1 T (nL - n’;—l) i

Another consideration in the adaptive method is that the productions
of some of the operators may keep decreasing to the degree that these
operators no longer affect the iterative process. An operator can not create
offspring if its production ratio is equal to or less than 1. So the production
ratio of each operator should be given a lower bound which is larger than 1,
ie. L; > |, where L; is the lower bound of the production ratio of operator G;.

The process of the adaptive method is thus as follows:

1. Let the total number of iterations for the genetic algorithm be 7.

Randomly generate a set of initial parents, U, , that forms a mating pool

nyp’
M, Findf,i=1,2, ..., n, Find R, . The probability o, is proportional

to (n, - ra, + 1). Since Y o, =1, we can find that

i=1

o =TT+l _2n, -ra; +1)
S (n, —ra; +1) no(1to +1)
0 i
k=1

Select the initial operator production ratio a5J=1,2, ..., h where h is the
total number of operators. Select a period representing the number of
iterations, T, to update the operator production ratios.

2. Let k = 1, where k indexes the number of iterations for adapting the

operator rates. Let N;=0forj=1,2, ..., h.
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. Select parent links from the mating pool M = according to the selection

"j.]
probabilities of the links. Sequentially apply the operators to create
offspring links according to their production ratios. The mating pool is
sequentially enlarged to M, 's. The selection probabilities of the links are

updated as

n;-ra; +1 2(n/- —-ra; +1)
n,.(nj +1)

. After all the operators are applied, find f; for each link of M, i = n,+1,

ny’

ny+2, ..., n;,. Rerank M

ny*

. Define a new mating pool M, such that §;in }M’, is the same as §;1in J/,

np

for1=1,2, ..., n, Replace M, with M’ .

ng
. For every link in the new Mno, mcrement N, j=1,2, ..., h, by 1 if operator
Gj is involved in generating the link. Increment & by 1.
. Repeat steps 3 to 6 while k2 < 7.
. Compute the new operator production ratios g\, =12, .., h, using
equation (2.4),
I g’ < Lj, let q' = Lj forj=1, 2, ..., h. Then compute the new operator

production ratios again as q;" = k'q;’ where

h }‘;
[1g;
k' = ’:]
[Tay
j=1
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Repeat this step until the new operator rates satisfy the lower bound
requirement, i.e. ¢;"2 L;forj=1,2, ..., h.

10.If the number of iterations is more than 7', stop; else go to step 2.

2.3 Wilcoxon Signed Rank Test

The most straightforward way of showing whether a variation in a genetic
algorithm makes the algorithm better or not is using statistical analysis.
Golden and Stewart (1985) used a statistical analysis called Wilcoxon signed
rank test (Lawer, 1985; Mosteller, 1973) to compare different heuristics for
solving the traveling salesperson problem. The Wilcoxon signed rank test is
a non-parametric hypothesis test. It can be applied to all continuous
distributions, especially for those with symmetric densities, for testing the
null hypothesis H,:fi=[,, where [i, is the mean of the random variables
which is usually known, and [; is the mean of samples. Let H, denote the
alternative hypothesis to be tested. H, can be either H, :fi= i, or H, : 1> [i,
or H,:p<np,.

Suppose X, X,, ---, X, comprise a random sample corresponding to a
symmetric continuous population distribution with mean [i, where n is the
number of sampling. If X, = [i,, X is discarded and n is reduced by one. Let

K, be the rank of the values of |Xi—ﬁ0| in increasing oxrder, 1 =1, 2, ..., n. If m

samples are tied for the k-th rank, each of them is assigned a rank
R+(kR+1D+...+(k+m-1)

m

. Define the signed rank, R, as

R = !
-K, ifX,-{i, <0

1

{K. if X, -fi,>0
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wheret=1, 2, ..., n. Let ( denote the sum of the signed ranks, i.e. { =ZR,.
If the null hypothesis H, is true, one would expect a somewhat uniform

mixing of both positive and negative values of X ~[i, in the sampled data.

n(n +1)
2

Since the sum of the first n integers is , under the null hypothesis H,,

we would expect one half of the signed ranks be positive and the sum of these

n(n+1
( ) The other half of the signed ranks would

positive signed ranks be

n(n+1) S0

be expected to be negative and the sum of the signed ranks be -

the total sum is expected to be around 0.
For the upper one-tailed alternative, H, : i > [i,, the sum would likely
For the lower one-tailed alternatives, H, : i <i,, the sum

n(n+1)

. For the two-tailed alternative, H, : o # [i,, it

would likely be near -

1
would be expected that € would likely be near to — n(n2+ ) or n(nz+ 1) )

Because € is discrete, for a desired level of significance o, a critical
value of € that yields approximately the desired o level needs to be found.
For the upper one-tailed alternative, H, : 1 > [1,, at significance level o (and
for sample size n), the critical value ¢, , is defined by P(C 2 C, ,; H) =a. H;
is rejected if ¢ 2 C, . Owing to the symmetry of the ranking scheme, H,, is
rejected in favor of the lower one-tailed alternative H, :f<p, if (<C, . For
the two-tailed alternative H, : i # [i,, H, is rejected if ( 2C,, or { <—C,, .

For n 210, C, , can be approximated by

nn+1)(2n+1)
6

Can = Z(a)\/
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where Z(a) is the standard normal distribution such that o is the proportion

o of the area is to the left of Z(c); see Figure 2.2.

Normal Distribution

a
!

Z() Mo
Figure 2.2 Standard normal distribution

For our application of the Wilcoxon signed rank test to investigate
whether a variation added to the order-based genetic algorithm makes it
better or worse, we use the null hypothesis, H,:[i=p,, which has the
assumption that the two methods perform equally. The comparison is based
on the best (minimal) solutions searched from both methods for the same
number of iterations. Since the fixed method is the one to be challenged, the
random variable is defined as the difference between the normalized best
solution achieved by the adaptive method and that of the corresponding fixed
method. According to the null hypothesis H, : 1 = fi,, the mean, 1, is equal
to 0. The alternative hypothesis, H,: i <[i,, is that the adaptive method

outperforms the fixed method.

2.4 Experiments and Discussion

To show the comparison of the two methods, we use the classical traveling
salesperson problem. Figure 2.3 shows an example of the traveling
salesperson problem with only 6 nodes. The trajectory of the travel in Figure

2.2 is represented as 1-2-5-6-4-3. Twenty four tests are made for the
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comparison of the proposed fixed and adaptive methods. They are divided
into 8 groups according to the number of nodes. The numbers of nodes are 50,
60, 70, 80, 90, 100, 110 and 120 for the eight groups. The coordinates of the
nodes are randomly and uniformly generated in a square area. The link is
represented by a permutation of the nodes. The operator production ratios

are updated every twenty iterations for the adaptive method.

The initial population size n, is 40 for all the tests. Four operators are
used in sequence: order crossover operator (Olive, 1987), inversion operator,
rotation operator (Leu, Wong, and Ji, 1993), and mutation operator. The
total number of offspring generated in each iteration is 80. The links in the
initial population are all randomly generated. The initial operator
production ratios for each test are also randomly chosen in a reasonable
range. Both the fixed method and adaptive method are used to find the
optimal solutions. The initial operator production ratios of the adaptive

method are the same as the corresponding fixed method.

(0.0
Figure 2.3 An example of traveling salesperson problem

When applying the Wilcoxon signed rank test, the random variable

should be first identified. Let m;, denote the minimum travel distance
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achieved by the adaptive method for test ¢ after m iterations, : =1, 2, ..., 24.

Let v, denote the minimum travel distance achieved by the fixed method for

Lm
test i after m iterations, i = 1, 2, ..., 24. Let v, denote the travel distance of
the optimal solution of test i, 1 =1, 2, ..., 24. Let a, denote the normalized

i,m

and V;, a;,, = (M, — W\, i=1,2, ..., 24. Let b,

i,m

difference between n

Lm

denote the normalized difference between ¥, -y, 1 =1,

i,m

and Wi’ bi,m = (Y

Lm

2,...,24. The random variables are X. 1=1,2, ..., 24.

i,m

=, = b

The null hypothesis to challenge is that the optimal solution search
abilities for the two methods during the whole process are equally powerful,
which implies 1, = 0. The alternative hypothesis is that the adaptive
operator rate search method yields a better solution. Instead of the
traditional way of testing the rejection of the hypothesis with a pre-specified
level of significance, we find the largest level of significance to support the
hypothesis that the adaptive method is better. The level of significance can
be thought as the largest probability error to support the argument that the
adaptive method is better.

Since the global minimum for each of the tests is unknown, the best
solution found for each test from both methods is used as the global
minimum. The best solutions found from the genetic algorithms all converge
to very nice trajectories. Therefore, we assume that the differences between
the global optimal solutions and the best solutions from genetic algorithms
are reasonably small. This assumption is especially true when the focus is on
the early stages of convergence for the genetic algorithms.

Table 2.1 illustrates the random variables, X; ., from the tests. The
first column in Table 2.1 is the test number from 1 to 24. The bottom three
rows of Table 2.1 are different from the other rows which list the singed

ranks of the tested problems. The third row from the bottom contains the
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sum of signed rank, C, ,,, for various numbers of iterations. The second row
from the bottom contains the corresponding probability in normal
distribution, Z(o). Since the total number of problems is 24 for the Wilcoxon

signed rank test, the sum of the signed ranks can be approximated from

24(24+1)6(2'24+1) =70Z(a). The last

normal distribution as §, ., = Z(a)

row of Table 2.1 contains the largest level of significance, o, to reject the null
hypothesis for different number of iterations, m. The percentages represent
the largest probability errors for various stages of the evolutionary processes
to conclude that the adaptive method outperforms the fixed method. For any
level of significance less than 50%, the adaptive method statistically
performs better. For any level of significance around 50%, these two methods
are of about the same performance statistically. The level of significance

should be as small as possible to support the hypothesis.

Level of Significance
50 4
40 1

30 +

if_\ /\/\/

0 200 40 600 800 1000 1200 1400 1600 1800 2()()()

Number of Iterations
Figure 2.4 Level of significance versus number of iterations
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Table 2.1 Random variables sampled from the tests

Test Xi.loo Xi,zoo Xi,300 ‘Xi.400 Xi,soo Xi,eoo Xi,soo Xi,looo Xi,lsoo X 9000

1 16 1 -3 1 5 24 14 24 -20 -3
2 -15 -13 -11 -8 -12 -3 -20 -5 -16 -20
3 -21 -14 -2 -2 -19 -23 -13 23 3 5
4 17 12 6 7 15 4 -18 -4 -23 -23
5 -8 -2 8 11 8 -5 -4 -12 -19 -7
6 -6 3 -1 6 4 7 6 3 13 4
7 -20 -11 -7 -5 -7 -6 -2 -13 -11 9
8 9 9 13 4 13 1 7 7 17 11
9 -23 -16 12 17 11 15 -15 -8 -22 -17
10 14 7 14 10 14 9 9 18 15 | 13
11 7 -5 10 -9 -6 -17 -11 -10 -10 -14
12 10 -15 -16 -13 23 11 16 19 5 8
13 -1 4 -5 -15 10 12 22 17 7 19
14 -22 -17 -18 -12 | -22 -14 -24 -1 -18 -1
15 12 -8 -15 -16 -2 10 5 14 6 21
16 4 -10 -20 -3 -3 -21 -23 -6 2 18

17 -18 -23 -22 -14 | <17 | -22 -10 -11 -21 -10

18 -3 -20 -19 -18 | -21 -19 -8 -20 -14 -6

19 24 -6 -4 -19 -9 8 17 2 8 15
20 -19 -19 -23 -20 | -18 -2 -3 -9 -9 -12
21 13 -21 -9 -23 | -20 18 19 -15 -12 -16
22 -2 -22 -17 -24 | -24 | -20 -21 -21 -24 -22
23 11 -18 -24 -21 -16 -16 -12 -16 -4 2

24 -5 -24 -21 -22 -1 -13 -1 -22 -1 -24

z -26 | -228 | -174 | -188 | -94 -62 -70 -46 -148 -50

Z{a) [-0.37] -3.26 | -2.49 | -2.69 |-1.34 | -0.89 -1 ]-0.6571-2.1141-0.714

o 36% | 0.06% | 0.65% | 0.36% | 9% | 18.8% [15.9% {25.5% | 1.73% | 23.7%

Figure 2.4 shows the level of significance, o, versus the number of

iterations. It is clear that during the former iterations, the adaptive method
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converges much faster than the fixed operator rate method except at the
beginning of the genetic search. This is because the operator rates of the two
methods are still very similar at the beginning. Among all the problems for
all stages, the adaptive method statistically outperforms the fixed method.
Figure 2.4 provides a numerical evidence that the adaptation added to the
increasing-mating-pool order-based genetic algorithm actually improves the
performance. Using the same method, we can test other variations such as
different initial populations of the mating pools, different operator rates, etc.
We can also verify the speed of convergence during the evolution processes
instead of just looking at the final solutions.

One thing we need to point out is that the adaptive method takes a
little b1t longer computation time than the fixed method. However, the extra
computation time added is very small (<<0.1%) compared to the computation
time for the genetic evolution process. The computation time needed to vary
the operator production ratios is also small and it is not calculated for every

iteration.



CHAPTER 3

PROBABILITY ANALYSIS

The statistical analysis of genetic algorithm can only show the numenrical
results after a lot of trials. It is desirable to establish a more analytical
model for performance prediction before trying the genetic evolution process.
Since the genetic algorithm involves a lot of random processes, the
establishment of a probability model to analyze the expected performance of
a genetic algorithm is a main focus of this dissertation. Based on the ideas in
(Goldberg and Segrest, 1987), we use a simple genetic algorithm having only
selection to analyze genetic drift and preferential selection. The simple

genetic algorithm contains the following steps:

1. Randomly generate a set of initial parents, U, that forms a mating pool
M}, where t represents the number of iterations and ¢ = 0 at the
beginning. Decide on the selection probability, ®;, of each link 3,.

2. Select n links (with replacement) according to the selection probabilities
of the links in the mating pool M}, to form another mating pool M7

3. Lett=t+1.

4. Repeat steps 2, 3 until the process has reached a pre-specified maximum

number of iterations.

It is obvious that the process is likely to come to a situation that all the

links in the mating pool are identical. This situation is defined as follows:

Definition 11: Let M}, be the initial mating pool and M}, be the mating pool
after i selections. If there exists a number ¢ such that M}, = M}, for all

k > t, the mating pool is said to have converged. For a converged

23
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mating pool if all the selection probabilities are identical, i.e. ®;, = ®, 1
< i £ n, the phenomenon of this convergence is called genetic drift.

Otherwise, it is called preferential selection.

According to Definition 11, if any one of the links in the mating pool is
different from the others, there is always a possibility that this link will not
be selected in the next iteration. Once it is not selected the mating pool is
changed, which conflicts with the definition that M}, = M} for all & > ¢. So,

for a converged mating pool M,;,, all links are identical.

3.1 Markov Chain Analysis

We use the finite Markov chain method to analyze the convergence property
of the genetic algorithm. Suppose we have a sequence of random variables x,,
x,, ---, and suppose the possible values of these random variables are drawn
from the set ¥ = {1, 2, ..., I}, Let the random variable x, denote the state
number at time ¢. The system is in state S, at time ¢ if x, =:. If at each time ¢
there is a fixed probability p;; that the system will be in state SJ at time {+1
when the system was in state S, at time ¢, we say the sequence of random
variables forms a Markov chain. The fixed quantities p; are said to be

transition probabilities:

pj; =ple,, =J | x, =i

We provide the following definitions to describe the states in the evolution

process.

Definition 12: Define a state S;=(e;, ey, ---, e,,), where i is the state number

starting from 1 and Y e, =n, 0 < ¢, < n. e, is the number of
k=1
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duplicates of link % in a mating pool, which is an integer, and n is the
population size.

Definition 13: Define a probability vector p = (®,;, Py ---» Dy) Where p, is the
probability of staying at state S, and N is the number of all possible

states.

For the genetic algorithm, the mating pool can be in any of the states defined
by Definition 12. During the selection process, the mating pool changes from
one state to another state. The probability of staying in any of the states is
described by Definition 13. For our analysis, ¢ represents the number of
iterations and ¢ = 0 stands for the initial state (i.e. before any selection). We
also assume that the first state, S|, is equal to (1, 1, ..., 1). According to

Definition 12, the total number of states N is

(2n-1!

N=C(2n-1n)=
(n-D'n!

3.1)

where n!is n factorial. Equation (3.1) can be derived from the combination of

n—1 separators and n objects.

Some states are not reachable from other states because during the
selection process, it is possible that some of the links in the initial mating
pool will no longer be contained in the later mating pools (since they are not
selected in the selection process). They are impcssible to be selected again
since they are no longer in the mating pool for the later selections. We will

describe this reachability problem as follows.
Definition 14: State S is said to be later than state S;, denoted by S, — S, if

foranye,=0,k=1,2,...,n,e,is also zero.
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According to Definition 14, if state j is not later than state i, there
exists at least one ¢, = 0 that ¢,; # 0. Since it is impossible to select a link if
the link is not in the mating pool, it is impossible that e,; > 0 when ¢,; = 0.
Thus state is not reachable from state i if S; is not later than S;.

The transition probability can be found as follows. Let P be the

transition probability matrix, P=[p,], 0 <1, j < N, where

ol 5
"_‘.i. 1 i.__) N
pij = p(Sx’Sj)z el/ ,egi,---,enj k=1 lZu“u), J (3.2)

=1
e 20

0 elsewhere

and

( n j n!
€1j:Cajr-nr8yi) € le, ;L e !

Assume that initially the links in the mating pool are all different from
each other. This is very possible when [ is large. Thus S_\.O =(,1, ..., 1,1ie.

€y = 1 0 k < n. The probability vector of the initial state is p, = (1, 0, ...,

m

0). The probability vector after m iterations is equal to p,P".

3.2 Probability of Reaching an Absorbing State

Among all the states, some states can not reach other states. They are called

absorbing states defined as follows.
Definition 15: An absorbing state is a state, denoted by S,, at which the

mating pool is converged. Let S, denote the set of all absorbing states.
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According to Definition 15, for any S, there is an e , such thate,, = n,

lpu

e,=0 fork=¢,1<k<n, ¢=1,2, ..., n. Itis obvious that the total number
of absorbing states is equal to n.

We are interested in the probability of converging into any of the
absorbing states, in other words, the probability of a mating pool becoming
converged. Since the events of getting into any of the absorbing states are
mutually exclusive, the probability of getting into any of the absorbing states
is equal to the sum of the probabilities of getting into each of the absorbing

states. Namely,

n

P(xeS,)= > P(x P(x=S,,)

S, Sy k=1

where S, is an absorbing state. We can find P(x € S,) after m iterations

from Equation (3.2).

3.3 A Simple Example

Let us look at a simple example. Suppose there are only two links in the
mating pool, i.e. n = 2. The number of possible statesis N =3. Let S, = (1, 1),
S, =1(2,0), S, =10, 2). Since the total number of states is only 3, we can not
assume that the initial state is in S,. The initial probability vector is p, =
(0.5, 0.25, 0.25) if the selection probabilities are equal for both links, 0, = o,

=0.5. From Equation (3.2) The transition probability matrix is equal to

0.5 0.25 0.25
P=|0 1 0
0 0 1
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The probability vector after m iterations is

B = 5P =[5 ()" 5= +()", 1-1-()").

There are two absorbing states, S, and S,. The probability of getting
into the absorbing states is p,,, +p,,, =1 - 0.5"™"'. From this formula, we can
find that only 6 iterations is needed to exceed 99% probability of getting into
the absorbing states. If the selection probabilities are different for the two
links, p, = Qo ,(1-0)), ©%, (1-0,). The probability of getting into the
absorbing statesis P(x € S,)) =1 - 20 ,(1~0,))™!. Foro,=06,P(xe S )=1
- 0.48™*!. It is not difficult to prove that the probability of getting into the
absorbing state in preferential selection is always higher than the probability
in genetic drift. For a large o,, the probability is very close to 1 even for a
small m. This can explain the phenomenon that when the mating pool
. contains a link with a high selection probability, there is a very good chance
that the genetic algorithm will have a pre-mature convergence.

Shown above is a Markov chain analysis for the genetic algorithm with
only selection. Although the genetic algorithm with only selection actually is
not a genetic algorithm since it can not improve the solution, the study is
very useful to providing a general idea about how the genetic drift and
preferential selection affect the genetic algorithm. It also provides an
evidence that the genetic drift is the lower bound for convergence of all kinds
of preferential selections. In the next chapter, we will define a better
reference for studying the convergence of order-based genetic algorithm and
compare the results with those from the Markov chain analysis for the above

example.



CHAPTER 4

AVERAGE LINK DISTANCE

Due to the random process involved in the genetic algorithm, analysis of the
behavior of genetic algorithm is very difficult. It is desirable to establish a
fundamental method for analyzing the convergence of the iterative process
due to the random selection involved in a genetic algorithm. Two general
methods researchers have used for the formal analysis of genetic algorithm
are the schema theorem (Holland, 1975) and the Markov chain analysis
(Goldberg and Segrest, 1987; Nix and Vose, 1992). Schemata represent
subsets of binary strings which must have certain bit values in some bit
positions while the other bit positions can have bit values of either 0 or 1.
The schema theorem provides useful information about the genetic search
space in terms of genes, but it can not show the status of convergence for the
mating pool.

The early Markov chain analysis in (Goldberg and Segrest, 1987) for
genetic algorithms is also based on genes. Some recent research works of the
genetic algorithm using Markov chain, such as (Nix and Vose, 1992; and
Suzuki, 1993), are based on links. They showed that the relationship
between links plays an important role when analyzing the actual converge
behavior of the genetic algorithm. The Markov chain analysis uses a
transition probability matrix for analyzing the convergence of a genetic
algorithm. Because of the tremen.dous matrix size and the huge amount of

calculations required, it is computationally prohibitive to use the Markov
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chain analysis for the estimation of convergence in applying genetic
algorithms to practically all real problems.

To analyze the convergence behavior of the genetic algorithm, we
devise a numerical index, called average link distance, which describes the
overall dissimilarity relationship among the links. In this chapter, we will
define this numerical index and use it to analyze the convergence of order-
based genetic algorithms. We will show how the expected average link
distance can be obtained with the use of Markov chains. In the next chapter
we will develop a new and better way for obtaining the expected average link

distance without the use of Markov chains. The link distance is defined as

follows:
Definition 16: Two links J)z(¢),,¢2,...,¢"),(b=((p],(p2,...,<p”> contain genes

which are permutations of integers, where ¢, € X and ¢, € X, 1 =1, 2,
.., n, and ¢, # d)j, ¢, #¢;if 1 # j. Let m denote the number of (¢;, ¢,
pairs such that ¢, #¢,,i=1,2, ..., n. Itis obvious that m € {0, 2, 3, ...,

n}. Define the link distance between the two links as:

oy |m-1 ifm>1
(o, (p)—{ 0 ifm=0

The link distance is useful as a reference to represent how much the
two links under consideration in the mating pool are different from each
other. According to Definition 16, we can find the average link distance for a
mating pool M,,. Let d denote the average of all link distances,

Sds,5) 2 3dssE)

_ Osi<jsn Osi<j<n

- C(n,2)  nln-1)
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For each state S;, there is a corresponding average link distance (_i_, It

is easy to show that if S, is an absorbing state, cz = 0. We can think of d as

an indicator of convergence. The smaller d is, the closer the mating pool is to

convergence. We can also find the expected average link distance after m
iterations of a mating pool. Let E(Em) denote the expected average link

distance, where D,, is the average link distance of the mating pool after m

1terations,

4.1)

s
o]
i
I
o
S
3

3]
—

where d; is the average link distance of state i, P;n 1s the corresponding
probability of staying in state i after m iterations, and V is the total number
of states. It is easy to show that when a mating pool has converged, D = 0.
The average link distance of a mating pool provides a numerical value

indicating whether the links in the pool are very different from each other.

4.1 Applying to the Two-Link Example

Let us look at the example in Section 3.3 again. Since there are only two
links in the mating pool, the number of possible states is N = 3. S,=(1, 1),
S,~=2,0), S,=0, 2). d,=d,=0. Letd=d,. From equation (4.1), the average
link distance is D,, = 0.5™*!d. If the selection probabilities are different for
the two links, P, = (20,(1-0,), 0%, (1-0,)%). The probability of getting into the
absorbing states is P(x € S ;) = 1 - (20,(1-0))". The expected link distance
1s E(Bm) = (20,(1-0 1))’"‘"’al. For o, =06, Px € S;) =1 - 0.48" and 5,,, =
0.48™*!d.
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4.2 Average Link Distance of the Initial Mating Pool

Besides the percentage change of the average link distance described
above, we need to know the initial average link distance of a mating pool in
order to find the average link distances during the iterations. We will start
from the largest mating pool (without duplication of links) which is the union
of all links formed by all possible permutations of genes. For any link of
length [, the total number of gene permutations is [!. The average link

distance is:

o

D »LICES
D= :j(;(l_',Z)— “4.2)

Table 4.1 shows the average link distances calculated for small I's.
Since Equation (4.2) involves several factorials, it is technically impossible to
calculate the average link distance for a large /. Fortunately, we can use
random sampling to create mating pools and find the average link distance
from the mating pools to estimate the average link distance of randomly
created initial mating pools. Instead of trying to find the average link
distance from equation (4.2), we can use a large number of random samples

to create initial mating pools with various link lengths and population sizes.

Table 4.1 Average Link Distance from Equation (4.2)

Link Length () Average Link Distance
2 1.00

1.40

2.10

3.03

4.01

5.00

6.00

QSO R W
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Figure 4.1 shows the comparisons of the link distance distributions for
the calculated distribution from equation (4.2), denoted as Cal. in Figure 4.1,
and five sampled data with population size ranging from 40 to 80 links. The
link lengths are 5 and 6 respectively for Figure 4.1a and Figure 4.1b. Table
4.2 and 4.3 show the average link distances for all the trials. The average
link distances from sampled data are all very close to 3.0 for the case of link
length equal to 5. The average link distances from sampled data for the case
of link length equal to 6 are all very close to 4.0. The comparisons of sampled
data and the calculated data are limited because of the difficulty of finding
equation (4.2) for large link length. The average link distance of the largest
link length we can find is 6.00 for link length equal to 8. Among the random
sampling tests, the larger the link length is, the closer are the average link
distances of the sampled data to the calculated results from equation (4.2). It
is obvious that the sampled data can be used to estimate the average link
distance of the initial mating pools.

According to the tested results, the average link distance is
independent of the population size. It is only related to the link length.
Figure 4.2 shows the expected average link distances from random sampling.
The population sizes of all the sampled mating pools are 100 in Figure 4.2.
Table 4.4 shows the numerical values for Figure 4.2. It is interesting that
the expected average link distance approximately approaches [ — 2 for [

larger than 4 no matter what the population size and the link length are.



Table 4.2 Average Link Distance for Figure 4.1a

Population Size () Average Link Distance
40 3.086
50 3.058
60 3.064
70 3.059
80 3.041

Table 4.3 Average Link Distance for Figure 4.1b

Population Size (n) Average Link Distance
40 3.990
50 4.055
60 4.038
70 4.047
80 4.024

45

Percentage
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Figure 4.1a Comparison of Distribution of Link Distances, Link Length =5
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Figure 4.1b Comparison of Distribution of Link Distances, Link Length = 6
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Figure 4.2 Expected Average Link Distance for Random Sampling



Table 4.4 Average Link Distance For Figure 4.2

Link Length (J)

Average Link Distance

5 3.021
6 4.000
7 5.019
8 6.027
9 7.006
10 8.024
15 13.005
20 18.007
25 23.001
30 27.970
35 32.995
40 38.004
45 43.015
50 47.975
60 58.000
70 67.998
80 77.996
90 87.972
100 98.007
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CHAPTER 5

CHANGE OF AVERAGE LINK DISTANCE DUE TO SELECTION

We have discussed random selection for general genetic algorithms without
considering the coding method in the previous chapter. We have also
discussed the average link distance of a randomly generated mating pool for
order-based genetic algorithm in Chapter 4. Based on the results of Chapter
3 and Chapter 4, we should be able to calculate the expected average link
distance due to selection if the Markov chain can be found. In this chapter,
we will focus on the effect of random selection to the average link distance of
the mating pool. Instead of going through a big Markov probability matrix,
which is computationally expensive, a better way of obtaining average link
distance is desired. We have made a fundamental analysis leading to the
estimation of the average link distance without the use of Markov probability
matrix. This will be discussed below. We will use the simple genetic

algorithm in Chapter 3 as an example in the discussion.

5.1 Selection Probability of Link Pairs with Link Distance Equal to Zero

Again, we assume that the initial mating pool has no identical links. The
initial state is thus Sxo =(1, 1, ..., 1). Let n denote the population size of the
mating pool. After the m-th selection, the probability of creating link pairs

with hink distance equal to zero is

n

(mi,m 'mi,m) (51)

i=1
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where m denotes the number of iterations, and @, is the probability of link i
being selected after m iterations (or selections). For the general case where

the initial probabilities may be different for different links, we have

e, o;

im i

= n
Z € m@,
=1

w

im

Let p(d_,, = 0) denote the probability of creating link pairs with link distance

m+1
equal to zero after m selections. Assume that the selection probabilities are

equal for all the links in the initial mating, that is, ©,, = 1/n for all i's. Based

on (5.1), we have

p(dm+] =O):Z((Di,m'0)i,m):i[&in—} :—l—zieﬁm (52)

i=1 i=

The total number of link pairs with link distance equal to zero in the mating

pool after m selections, denoted by y,, is

- elm(elm—l) ]- = 2 n
= ==>e.." 5.3
ym ; 2 2 ; im 9 ( )
We can combine equation (5.2) and (5.3) to obtain
1& 2 2y, 1
p(dmﬂ = 0) = '_'I-Zei,m = _y"___ +— (54)

n- n

The expected value of y,,, denoted by E(y,), is equal to p(d,, = 0) multiplied

nt

by the total number of link pairs in the mating pool, i.e.,
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E(y,) = pd, =0)-Cn,2) = p(d,, =)D ®.5)
The expected value of y,, can be also derived from equation (5.4) as
p(d :0)_iie Q:ZE(yrrx)+l (56)
il n e n’ n '
Substitute (5.5) to (5.6), we have
2E 1 -1
r@,., =0)= —(—.jVL)+— =2 p(d, =0)+ 1 (5.7
n n n n

Equation (5.7) is a difference equation of p(d,, = 0). By solving equation (5.7),

we have

p(d, =0)=1—(n"1)’ (5.8)
n

By substituting (5.8) in (5.5), the expected number of link pairs with zero

link distance is

E(y,)= n(n2— 1) [1_(11;1) ] 5.9

Assume that the expected average link distance of the link pairs whose link
distance is non-zero is equal to the average link distance of the initial
population. This assumption is reasonable because the average link distance

is independent of the population size of a randomly created mating pool, as
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shown previously in Chapter 4, and the selection process is random. The

expected average link distance is then:

E(Em)=p<dm=0>-0+[1—p<dm=o>]5=("“1) 5:(1_%) D (.10

n

where D denotes the initial average link distance of the mating pool. Since
the preferential selection has a higher chance to converge faster than the
genetic drift, as described in Chapter 3, equation (5.10) is a upper bound for
all selection processes.

From (5.10) the expected reduction of average link distance for each
iteration is 1/n. Equation (5.10) applies to the results in Section 4.1 which
were obtained from the same example as that in Chapter 3.3. Since n =2 in
this example, the rate of deduction of the average link distance, 1 - 1/n, is
equal to 0.5. Initially the link distance is either 0 or d. From equation (5.10),
the expected average link distance after m iterations is E(d) = 0.5™'d,
which is the same as the expected average link distance with the exact

solution from Chapter 4.

5.2 Comparison of Predicted Percentage Deduction of Expected Average
Link Distances with Experimental Results

To verify equation (5.10), we designed some numerical experiments with
random sampling and random selection. We tested various simple order-
based genetic algorithms for different link lengths and population sizes.
Figure 5.1 shows the average reduction ratio of the average link distance per
iteration for the first ten iterations of some of the tests with the same

population size, which is 20, but with the link length varied from 10, 20, 30,
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40, 50, 60, 70, 80, 90, to 100. Since the expected average link distance
change per iteration is 1/n = 0.05, the ratio in Figure 5.1 is expected to be 5%.
Figure 5.2 shows the average of the deduction ratios of the average link
distances from the first ten iterations of the tests with the same link length,
which is 10, but with the population size varied from 10, 20, 30, 40, 50, 60, 70,
80, 90 to 100. The dotted line in Figure 5.2 shows the expected ratio from
equation (5.10). All the test results are very close to the expected average
link distances calculated from equation (5.10). Figure 5.3 shows how the
average link distance changes during the iterations from one of the above
tests where the link length is 10 and the population size is 100. The dotted
line in Figure 5.3 is the expected average link distance change from equation

(5.10). Again there is a very good agreement.

Percentage Reduction
10.0 === === == m oo

9.0 - mmm e
8.0 ( ————————————————————————————————————————————————————————————
TU0 mmm o mm e e
B.0 dmmm oo
5.0 )

4.0 A
3.0 1

2.0 ~

1.0 -

0.0 t } } + } t t } {
10 20 30 40 50 60 70 80 90 100
Link Length

Figure 5.1 Percentage Deduction For Various Link Length,
Population Size = 20
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Porcentage Reduction
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Population Size

Figure 5.2 Percentage Deduction for Various Population Size,
Link Length = 10
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Figure 5.3 Average Link Distance During the Iterations,
Population Size = 100, Link Length = 10



CHAPTER 6

EFFECT OF MUTATION OPERATOR

We did not include any operator in the discussion of the simple genetic
algorithm in Chapter 5. In this chapter, we will introduce the mutation
operator and study its effect on the expected average link distance for the
order-based genetic algorithm. The combined effect of the selection and the
mutation operator will be discussed in chapter 7. We first provide the

definition for the mutation operator.

Definition 17: A mutation operator is a mapping from a parent link to an
offspring link as follows: Let O, denote the mutation operator, O, (5)

=7, where s ={s, s,, ---, 5,}, s'={s', s, ..., 8" ). Thereexistiandj, i#

J,1<i,j<n,suchthats,=s',1<k<n k=1, andsi=s;, §;=s"

With the mutation operator, the genetic algorithm becomes:

1. Randomly generate a set of initial parents, U,,, that forms a mating pool
M}, where t represents the number of iterations and ¢ = 0 at the
beginning. Decide on the selection probability, ©,, of the links. Select a
numbey between 0 and 1 for the mutation operator rate, denoted as r.

2. Select n links (with replacement) according to the selection probabilities
of the links from the mating pool M}, to form another mating pool MY

Let the selection probability o', of link i in the mating pool M"};} be equal

to

€0,
O iwm ~ n
2.€,0,

43
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3. For each link in M%)}, attach a random drawing from a number between 0
and 1. If the drawing is less than r, apply the mutation operator to the
link to create a new link and replace the original link in the mating pool
M%) with it.

4, Lett=1t+1.

5. Repeat steps 2, 3, and 4 until the process has reached a pre-specified

number of iterations.

For each link distance, there are two links associated with it. After the
mutation operator is applied to the mating pool, there are three possible
cases: (1) none of the links has been changed, (2) one of the links has been
changed, and (3) both of the links have been changed. The effect of mutation
operator to the link pairs with zero link distance is different from that to the
other link pairs. We will discuss the effects of the mutation operator to the
link pairs with non-zero link distances in Section 6.1 and the link pairs with

zero link distances in Section 6.2.

6.1 Link Pairs with Non-Zero Link Distance

Let the link distance d; = d(5,, 5)), where 5, 5; are two different links
arbitrarily selected from a mating pool. Let d'; denote the link distance after
the operator is applied. For those link pairs with link distance greater than
zero but smaller than 4, the sub-cases (to be discussed below) that involve the
reduction of link distance greater than the link distance itself are simply
impossible and therefore the probability is 0 for them.

The effect of any operator on the link distance d;; can be summarized
in the following:

Case 1: None of the links is affected by the operator,



Case 2: Only one of the links is affected by the operator,

Case 3: Both of the links are affected by the operator.

Let r denote the operator rate. The individual probabilities for the three

cases are:

Case 1: p, = (1-r)?

Case 2: p, = 2r(1-1)

Case 3: p, = r*

The effect of mutation on the link distance for each case is given as follows:

Case 1: no effect. d';=d;.

Case 2:
Let the genes of the loci selected for exchange be C and D for the changed
link and they correspond to A and B for the unchanged link. It is obvious
that A # B and C # D since they are permutation links. Figure 6.1 shows

the relationship between the links.

JA LB ..|A|..|B

Ci..|DJ.. ..|D ... |C

Figure 6.1 Relationship between the links of a link pair

The possible outcomes for Case 2 are:

Sub—case 1: A=CandB=D. d',=d; +2.

Sub-case 2: (A=C and B#D) or (A #C and B =D). dy=d;+ 1

Sub-case 3: (A # C and B # D) and (A = D or B = C but not both), dy; =
d;- 1

Sub—case4: A=DandB=C. d';=d;-2.
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Sub-case 5: A#C#B#D.d';=d,;

For sub-case 1 above, the probability of the sub-case being true is
equal to the probability of selecting two objects from [ objects such that these
two selected objects are from the group of identical gene pairs. Since the link
distance beforz the operation is d;;, there are d; +1 different gene pairs and /-
d;-1 identical gene pairs. So, the probability is C@@;+1, 0)- Cl~d;-1, 2) 1 C(,
2). For all the other sub-cases, we will not describe the derivation but only
show the results.

The individual probabilities for the sub-cases of Case 2 are:

Sub-case 1: C(dij+1, 0)- C(l—dij—l, 2) 1 C({, 2)

Sub-case 2: C(dij+1, 1)‘C(l—dij—1, 1) /C(, 2)

Sub-case 3: [C(dij+l, 2)- C(l—dij—l, 0)/C(, 2)] - 21/(-2)[1-(1/(I-2))]

Sub-case 4: [C(d;;+1, 2)- C(-d;~1, 0)/ C(l, 2)] * (1/(1-2))(1/(I-2))

Sub-case 5: [C(d;+1, 2)- C(i~d;-1, 0) / C((, 2)] - [1-(1/(I-2)])[1-(1/(I-2))]
Case 3:

Let the genes of the loci selected for exchange be A and B for the first link

and C and D for the second link. The loci selected for link one and the loci

selected for link two have three possible relations:

Sub-case 1. Both of the loci are at the same place (Figure 6.2). The

probability is 1/C(l, 2).

Sub-case 2: Only one of the loci is at the same place (Figure 6.3). The

probability is 2IC(I-1, 2)/[C(, 2)+ C(, 2)]

Sub-case 3: Both of the loci are at different places (Figure 6.4). The

probability is C(-2, 2)/C(l, 2)



47

JJA B .. .. {B|..]A

Ci.|D}.. ..|D]..|C

Figure 6.2 Relationship of the links of a link pair before and after
the mutation operation.

AL B F L | Bl |A|..|F

Cl..|E|..|{D|.. D |E .. {C

Figure 6.3 Relationship of the links of a link pair before and after
the mutation operation.

AE 1. |C | |G|...|D|.. ~|Ej.|D|[..]G]..|C

Figure 6.4 Relationship of the links of a link pair before and after
the mutation operation.

The possible outcomes for the three sub—cases of Case 3 are:

Sub-case 1: There is no change for the link distance. d'; =d,;.

Sub-case 2:
Let E denote the gene at the corresponding locus of B in the second
link and F denote the gene at the corresponding locus of D in the first
link. The relationships of the two links before and after the mutation
operations are illustrated in Figure 6.3.
The possible situations and outcomes on the link distance are:
Sub-case 2.1: A=C,B=E,D=F,B=D,A#E, and C=F. d',-j = d,.j+3.
Sub-case 2.2: A=C,B=E,D#F,B#D,A=E,and C#F. d';,=d+2.
Sub-case 2.3: A=C,B=2zE,D=F,B=2D,A=#E,and C=F. d',-j = d‘.j+2.
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Sub-case 2.4:A=C,B#E,D#F,B=D,A#E,and C=F. d';=d,;
Sub-case 2.5: A=C,B#E,D#F,B#D,A=E,andC#F. d';=d;-1.
Sub—case 2.6: A=C,B=E,D=F,B#D,A#E andC#F. d;= dij+2.
Sub-case 2.7: A#C,B=E, D=F, B#D, A=E,andC=F. d'ij = dij.
Sub-case 2.8:A=C,B=E,D2F, B#D,A=E,andC=F. d',.j = dij+1.
Sub—case 2.9:A=2zC,B2E,D=F,B=D, A=E,and C=F. d'ij = dij.
Sub-case 2.10: A#C,B#E,D=F,B#D,A#E,and C#F. d';= d;+1.
Sub-case 2.11: A#C,B#E, D#F, B=D,A=E,and C=F. d; =

d;-3.

Sub-case 2.12: A#C,B#2E, D#F,B=D,A=E,and C#F. d; =
d;-2.

Sub-case 2.13: A#C,B#E, D#F,B=D,A#E, and C=F. d\; =
dij—zn

Sub—case 2.14: A#C,B#E, D#F,B=D,A#E,andC#F. d'; =
d;~1.

Sub—case 2.15: A#C,B#=E, D#F B=D, A=E, and C =F. d'ij =
d;-2.

Sub-case 2.16: A#C, B#2E, D#F,B#D, A=E, and C#F. d; =
dij—lc

Sub-case 2.17: A#(C,B#E, D#F, B#D,A#E, and C=F. d\; =
d;~1.

Sub-case 2.18: A#=C,B#E,D#F,B#D,A#E,and C#F. d';=d,

For sub-case 2.1 above, the probability of the sub-case being true is
equal to the probability of having three identical gene pairs {A, C}, {B, E},
and {D, F}. The condition of the sub-case is that {A, C} pair is from the same
loci. The probability of the sub-case is equal to the probability of selecting

one gene pair from the identical gene pairs, and then selecting two other
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gene pairs also from the identical gene pairs. The probability of selecting a
gene, A, among [ genes such that the gene pair {A, C} is identical is C(-d;-1,
1) / C(, 1). The probability of selecting the other two genes, B and D, among !
— 1 genes such that the gene pairs {B, E} and {D, F} are identical is C(l—dij—2,
2) / C(l-1, 2). According to the rule of conditional probability, Prob{A = C and
B=E and D=F} =Prob{A=C} - Prob{ B=E and D =F |A = C}. The
probability of sub-case 2.1 is C-d;-1, 1)'C(l—dij—2, 2) / [C{, 1)-C(-1, 2)].
For all the other sub-cases, again we will not describe the derivation but only
show the results.
The probabilities of the situations of sub-case 2 are:
Sub-case 2.1: C(i-d;~1, 1): C(-d;;-2, 2) / [C(l, 1)- C(-1, 2)]
Sub-case 2.2: C(l—dij—l, 1)°[C(l—dij-—2, 1)°C(dij+1, 172}/ [C({, 1)-C(-1,
2)]
Sub-case 2.3: C(I-d;~1, 1)-[C(-d;-2, 1) C(d;+1, 1)/2] / [C(, 1)-C(-1,
2)]
Sub-case 2.4: [C(I~d;~1, 1) C(d;+1, 2) / [C(, 1)- C(-1, 2)]]- (1/(I-2))
Sub-case 2.5: [C(-d;-1, 1)-C(d;+1, 2) / [C( 1)-Cd-1, 2)]]-[1-
(1/(1-2))]
Sub-case 2.6: C(I-d;~1, 2)-C(d;+1, 1) / [C(, 1)+ C(I-1, 2)]
Sub—case 2.7: [C(dij+1, 1)°[C(l—dij—1, D-Cd,; 2] / [CL 1D-
C(-1, 2)]]* (1/(-2))
Sub-case 2.8: [C(d;*1, 1)°[C(l-dij—1, 1):-Cd
C(l-1, 2)]] - [1-(1/(I-2))]
Sub-case 2.9: [C(dij+1, 1) [C(l—dij—l, 1)-C
C(-1, 2)]]- (1/(-2))
Sub-case 2.10: [C(d;+1, 1)[C(-d;-1, 1) C(dy 1)/2] / [C(, D)-C(-1,
D1*[1-(1/(1-2))]

/2] 1 [Cd, 1)-

i

/2] 1 [Cd, -

i
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Sub-case 2.11: [C(dij+1, 1)-Cd
(1/(-1)) - (1/(1-2)) - (1/(1-2))
Sub—case 2.12: [C(dij+1, 1)-C(d
(1/(=1)) - (1/(1=2)) - [1-(1/(=2))]
Sub-case 2.13: [Cd;+1, 1)-C(d
(1/¢-1)) - [1-(1/(-2)] - [(1/(-2))]
Sub-case 2.14: [C(d;+1, 1)-C(d,
(1/(I=1)) = [1-(1/(I=2))] * [1-(1/(1-2))]
Sub-case 2.15: [C(dij+1, 1):-Cd
[1-(/(=1)] - (1/(1-2)) - (1/(1-2))
Sub-case 2.16: [C(dij+1, 1)-C(dij,
[1-(1/(-1)]1 - (1V/(-2)) - [1-(1/(-2))]
Sub-case 2.17: [C(d;+1, 1)-C(d,;
[1-(1/(=1)] - [1-(U/(-2)] - (1/(1-2))
Sub-case 2.18: [C(dij+1, 1)'C(d,.j,
[1-(L/(-1)] - [1-Q2/(-2)] - [1-(1/(-2))]

Sub-case 3:

2 / [C¢ D-CE-1, 21

i1

2) / [CU D-CU1, 2]

ij)

2) / [Cd D-CU1, 2]

2) |/ [C{, D-CU-1, 2)]]°

2 [ [C{, 1)-CU-1, 2)]]°

i

2) | [C{, 1-CU-1, 2)]]°

2) [ [C{, 1)-CU-1, 2]

2) |/ [C{, 1)-Cd-1, 2)]]°

Let E and G denote the genes in the second link which are at the
corresponding loci of A and B, F and H denote the genes in the first
link which are at the corresponding loci of C and D in the second link.
The relationships for the two links before and after the mutation
operations are illustrated in Figure 6.4.

The effect of the mutation operator on link distance can be studied
according to the relationships between the four gene pairs before the
operation, i.e. (4, E), (B, G), (C, F), and (D, H), and the four gene pairs
after the operation, i.e. (A, G), (B, E), (C, H), and (D, F). The possible

situations are:
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Sub—case 3.1: All the four original gene pairs are the same. In this
case all the four modified gene pairs after the operation are
different. d';=d,+4.

Sub-case 3.2: Three of the four original gene pairs are the same and
the other one is different. This different pair can be one of {(A, E),
(B, G)} pair or one of {(C, F), (D, H)}. All the four. modified gene
pairs are different. d'; = d+3.

Sub—case 3.3: (A=E and B =G) and (C #F and D # H) and (C = H and
D=F). d';=d;

Sub—case 3.4: (A=E and B = G) and (C # F and D = H) and (either (C =
H,D=F)or (C#H,D =F)). d\;=d;+1.

Sub-case 3.5: A=Eand B=G) and (C#F and D # H) and (C # H and
D=#F). d';=d;+2.

Sub-case 3.6: (C=FandD=H)and (A#E and B= G) and (A =G and
B=E). d;=d,

Sub-case 3.7: (C=F and D = H) and (A # E and B # G) and (either (A =
G,BzE)or (A#G,B=E)). d,=d;+1.

Sub-case 3.8: (C=Fand D=H) and (A#E and B# G) and (A # G and
B#E). d';=d;+2.

Sub-case 3.9: (either (A=E, B#G) or (A # E, B = G)) and (either (C =
F,D=H)or (C#F,D=H)). d\;=d+2.

Sub-case 3.10: Only one of the four original gene pairs is the same,
and all the others are different. This same pair can be one of {(A,
E), (B, G)} pair or one of {(C, F), (D, H)}. In the modified gene pairs,
the two gene pairs which do not contain either of the two genes

from the same gene pair before the modification are the same. For
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example, A#E,B=G,C#F,D=H,A=G,B=E,C#H,D#F. d
=d;~1.

Sub-case 3.11: Only one of the four original gene pairs is the same,
and all the others are different. This same pair can be one of {(A,
E), (B, G)} pair or one of {(C, F), (D, H)}. In the modified gene pairs,
one of the two gene pairs which do not contain either of the two
genes from the same gene pair before the modification is the same
and the other is different. For example, A#E, B=G,C=F, D=H,
A=GB=#E C#H,D=F. d';=d,

Sub-case 3.12: Only one of the four original gene pairs is the same, all
the others are different. This same pair can be one of either {(4A, E),
(B, G)} pair or one of {(C, F), (D, H)}. In the modified gene pairs,
both of the two gene pairs which do not contain either of the two

genes from the same gene pair before the modification are different.

For example, A#zE, B2G,C=2F,D=H,A=G,B#E, C#H, D=F.

Sub-case 3.13: A=E,B#G,C=F,D#H,A=G,B=E,C=H,D=F.

Sub-case 3.14: A#E,B=G,C#F,D+H,A=G,B=E,C=H,D=F.

Sub-case 3.15: A#E,B#G,C#F,DH,A=G,B=E,C2H,D=F.
d';=d;-3.

Sub-case 3.16: A#E,B#G,C#F,DH,A=G,B=E,C#H,D=F.
= d2.

Sub—case 3.17: AzE,B=G, C#F, D=H, A=G,B=E,C=H,D=F.
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Sub-case 3.18: A#E,B#G,C2F,D+H, A=G,B#E,C=H,D#F.
d;=d;2.
Sub—case 3.19: A#E,B=zG,C#F, D=H, A=G,B=#E, C#H,D =F.
d';=d;2.
Sub-case 3.20: AzE,B=G,C#F,DH A=G,B=E, C=H,D=F.
Sub-case 3.21: A#E,B=G,C=F,D+H A=G,B=E,C=H,D=" .
"= dy3.
Sub-case 3.22: A#E,B#G,C#F,D2H, A=G, B=E, C=H,D=#F.
d;=d;2.
Sub-case 3.23: A#E,B=G,C=2F,D=H, A=G,B=E,C=H,D=F.
= dy2.
Sub-case 3.24: A#E, B2zG,C»F,D=H, A=G,B=E,C#H,D=F.
Sub-case 3.25: A#E,B=G,C#F,DH, A#G,B=2E,C=H,D =F.
= 2.
Sub-case 3.26: A#E,B#G, C=2F, D#H, A=G,B#=E, C=H,D=#F.
= dimL
Sub-case 3.27:A#E,B=2G,C=2F,D=H, A=G,B#E,C=2H,D=F.
d'ij = du_l.
Sub-case 3.28: A#E, B=G, C=F,DH, A=G,B=E, C#H,D=F.
d';=d,;
We will show the derivation the sub-case 3.10 in Appendix B since the
other sub-cases are either easier to be obtained or easy to follow after sub-
case 3.10.

The probabilities of the above situations are:
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Sub—-case 3.1: C(dij+1, O)’C(l—d,-j—l, 2)-C(dU+1, O)'C(l—dij—3, 2) /
[C, 2)+ C(-2, 2)].

Sub-case 3.2: 2:C(d+1, 0):C(-d,-1, 2)-Cd,+1, 1)-C-d,3, 1) /
[C(, 2)+ C(-2, 2)].

Sub-case 3.3: [C(d+1, 0):C(-d,-1, 2)-C(dy+1, 2)-C(-d;3, 0) /
[C(, 2)+ C(-2, D11+ (1/(1-3)) + (1/(1-3)).

Sub-case 3.4: [C{dj+1, 0):C-d,-1, 2)-Cdy+1, 2)-C-d;3, 0) /
[C( 2)+ C-2, D11+ 2+ (L(-3)) * [1-(1/(-3)].

Sub-case 3.5: [C(dij-f-l, 0)'C(l—dij—1, 2)-C(d;+1, 2)'C(l—dij—3, 0) /
[C, 2)- C(-2, 2)]] - [1-(V/(I=3)] - [1-(1/(1-3))].

Sub-case 3.6: [C(dy+1, 2):C(-d,-1, 0)-C(d,1, 0)-Cll~dy-1, 2) /
[C(, 2)- C(-2, D)+ (1/1-3)) - (1/(1-3)).

Sub-case 3.7: [C(d;+1, 2):C(-dy-1, 0)-C(d;~1, 0)Cl-dy1, 2) /
[C(, 2)+ C(-2, D11+ 2+ (UA-3)) * [1-(1/(-3)].

Sub-case 3.8: [C(dy+1, 2):C-d-1, 0)-C(d1, 0)-Cl-dy1, 2) /
[C, 2)-C(=2, 2)]] - [1-(1/(=3))] - [1-(1/(@-3))].

Sub-case 3.9: C(@y+1, 1):CU-d;1, 1)-Cd, 1-Cl-dj2 1) /
[C(, 2)+ C(-2, 2)].

Sub-case 3.10: 2-[C(d;+1, 2)+C(-d;~1, 0)+C(dy~1, 1)-Cl~dy1, 1) /
[C(, 2)+ CU-2, D]+ (-4) 1 (-2)(-3)2.

Sub-case 3.11: 2+[C(d;+1, 2)*C(-d;~1, 0)-C(d,-1, 1)-CU~d,1, 1) /
[CU, 2)-C(-2, 2)]-[[1-1(-2)]- (-4)/(-3)2 + U(-2)+[1 ~ (~4)/(I-
341

Sub-case 3.12: 2+[C(d;+1, 2)*C(—d;-1, 0)-C(@d,-1, 1)-Cl~d,1, 1) /
[C(, 2)- C(-2, D]+ [1-1/(-2)] - [1-(-4)/(-3)2].

Sub-case 3.13: [C(d;+1, 2)C(i~d;-1, 0)+ C(d;~1, 2)+ Cl~d,~1, 0) / [C(,
2)+ C(i-2, 2)]+ [1/(-1)2] - [1/(-3)2.



Sub-case 3.14: [C(d,+1, 2)-C(-d,~1, 0)+ C(d,-1, 2)* C(-d;1,

2)-C(l-2, 2)]*[1/(-1)2] - [1/(I-3)] - [1-1/(I-3)].

Sub-case 3.15: [C(d;+1, 2)C(-d,~1, 0)+ C(d,-1, 2)* Ci-d,1,

2)-C(-2, 2)]* [1/(I-1)2] - [1-1/(I-3)] * [1/(I-3)]

Sub-case 3.16: [C(d;+1, 2)- C(-d;~1, 0)* C(d,~1, 2)* C-d,1,

2)-C(-2, 2)] - [1/(-1)2] - [1-1/(I-3)]2.

Sub-case 3.17: [C(d;;+1, 2)- C(-d;;~1, 0)- C(d;-1, 2)- C(l-d;-1,

2)-C(-2, 2)]- [1/(I-1)] - [1-1/(I- )] [1/(I-3)2].

Sub-case 3.18: [C(d;+1, 2) C(-d;~1, 0)* C(d,~1, 2)* Cl~d;1,

2)-C(-2, 2)] - [1/(I-D} - [1-1/(-D)] - [1/(-3)] - [1-1/(I-3)].

Sub-case 3.19: [C(d;+1, 2) C--d;~1, 0)* C(d,-1, 2)* Cl-d;1,

2)-C(-2, 2)]-[1/(-1)] * [1-1/(I-1)] - [1-1/(I-3)] * [1/({-3)].

Sub-case 3.20: [C(d;+1, 2)*C(-d;~1, 0)* C(d;-1, 2)* C~d;-1,

2)-C(-2, 2)] [1/(-D)] - [1-1/(-D)] - [1-1/(I-3)]2.

Sub-case 3.21: [C(d;+1, 2)- C(I-d;-1, 0)+C(d;~1, 2)- C(l-d;-1,

2)-C(l-2, 2)}+ [1-1/(I-1)] - [1/(I-1)} - [1/(1-3)2].

Sub-case 3.22: [C(d;+1, 2)-C(-d;-1, 0)-C(d;-1, 2)-C(-d;-1,

2)-C(l-2, 2)]- [1-1/(-1)] - [1/(-D1)] - [1/(1-3)] - [1-1/({-3)].

Sub-case 3.23: [C(d+1, 2) C(l-d;~1, 0)+ C(dy-1, 2) C(~d;1,

2)-C(-2, 2] [1-1/(-D)] - [1/(-D] - [1-1/(I-3)] - [1/({-3)].

Sub-case 3.24: [C(d;+1, 2)* C(-d;-1, 0)* C(d,-1, 2)* C(i~d;1,

2)-C(-2, 2)]- [1-1/(-D)] - [1/(I-D)] - [1-1/(I-3)]=.

Sub-case 3.25: [C(d;+1, 2) C(l-d;-1, 0) C(d;~1, 2) C(-d;-1,

2)-C(l-2, 2)]- [1-1/(I-1)]2-[1/(I-3)2].

Sub-case 3.26: [C(d;+1, 2)-C(-d;-1, 0)-C(d-1, 2)-C(-d;-1,

2)-C(l-2, 2)]* [1-1/(I-1)]2-[1/(I-3)] - [1-1/(I-3)].
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Sub-case 3.27: [Cd;+1, 2)-C(l-d;~1, 0)'C(dij—1, 2)-C(-d;~1, 0) / [C(,
2)+-C(-2, 2)]*[1-1/(I-1)]J2+ [1-1/(I-3)] * [1/(I-3)].

Sub—case 3.28: [C(d;+1, 2)-C(l-d;~1, 0)- C(d;~1, 2)* C(I-d;~1, 0) / [C(,
2):C(-2, 2)]-[1-1/(-D]2- [1-1/(I-3)]2.

The link distance change is Ad;; = d'; - d;. The expected change of

average link distance, denoted as E (Ad), is equal to the sum of the

nonzero

expected change of the link distance for each of the various cases multiplied

by the corresponding probability for each case, i.e.,

Enunzeru (Ad ) = Z pl.-E(Adcnsn k ) (6 1)

k=1

where E(Ad __ ) is the expected average link distance change for case k. E(A

caso k
d ..., is equal to the summation of the link distance change of each sub-case
times the expected value of the corresponding probability.

For any of the above combinations, the calculation of a probability
involving C(a, b) is impossible if a <b. This may occur when d,; is either too
large or too small. In such a case, the probability is simply 0. The largest b
among all the combinations is 2. Since C(a, 2) = a(a—1)/2 which has an order
of 2 for a, Case 2 above has an order of 2 for dij. Similarly, Case 3 has an
order of 4 for d;. Because the mutation operator rate is usually very small,
the effect of mutation operator in Case 2 (whose probability is 2r(1-r)) is an
order of magnitude more significant than the effect of mutation operator in
Case 3 (whose probability is r2). The overall calculation of the probabilities
thus is a quadratic function of d;. Since d;; varies for different link pairs, we

can assume d; = d to approximate the probabilities involved in the

calculation of E(Ad ). The error of the approximated probabilities comes

cnse k
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mainly from substituting E(d,?) by d?, which is propotional to the variance

of the link distances.

6.2 Link Pairs with Zero Link Distance

For link pairs with zero link distance, we again need to look at the link pairs
of the two links. Here, d; = d(s;, 5) =0, which implies 5, ='s,. Let d;;' denote
the link distance after the operator is applied and / denote the link length.
The effect of any operator on the link distance can be summarized again in
three cases:
Case 1: Non of the links is affected by the operator.
Case 2: One of the links is affected by the operator.
Case 3: Both of the links are affected by the operator.
The probabilities of the three cases are:
Case 1: (1-1)?
Case 2: 2r(1-r)
Case 3: r*
The effect of mutation operator on the link distance for each of the three
cases is:
Case 1: No effect. d;'=d;=0.
Case2:d;/=d;+1=1.
Case 3: There are three sub-cases.
Sub-case 1: both of the loci are the same. d'; =d; = 0. The probability is
1/C(, 2).
Sub-case 2: only one of the loci is the same. d'; =d; + 2 = 2. The

probability is 2/C(I-1, 2)/[C(, 2)+C(, 2)]
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Sub-case 3: both of the loci are different. d';=d;+ 3 =3. The probability

is C(l-2, 2)/C(, 2)

The expected change of average link distance for the link pairs with
zero link distance can Be found in a way similar to equation (6.1). Let E.ero(A
d) denote the expected average link distance change for zero link pairs.
Then

E.. (Ad)=(1-r*)-0+2r(1-1)-1

201/ C(L2) +2-2IC0 - 1.2)/[CL2)CA2)] + 3C( - 2.2) | C(L.2)]

or

-y _ o| Bl-1)(I-2)
E_ (Ad)=2r(1-r)+r [———l(l D } (6.2)

The percentage of the link pairs with zero link distance will be reduced
since the link distance in Case 2 and in Sub-cases 2 and 3 of Case 3 above is
. increased from zero to non-zero. The probability of the change, denoted as

p(d'#0] d;=0), is

p(d'#01|dy=0) =2r(1 - r) + r2[2IC(I-1, 2)/[C(, 2)- C(, 2)] + C(-2, 2)/C(, 2)]

or
pd#01di=0) =2r(L - r) + r2(l + 1) - 2) / [I( - 1)]
The probability for link distance being zero, p(d» = 0), during the m-th

iteration will be reduced by a factor of p(d'#0| d;=0) after the mutation

operation. Let ® denote the change of the probability, we have
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o ((+1D(-2)

W-D ] (6.3)

®=pld, =0[2r(Q-r)+r

From the same concept of equation (5.9), we can estimate the total

expected average link distance change, EM(AJ ), due to the mutation

m

operator at the m-th iteration as follows:

E, (Ad,)=pd, =0)E_, (Ad)+p(d, =0)E, . (Ad) (6.4)

m m

where E_, (Ad) is the expected average link distance change due to those

link pairs with zero link distance, and the subscript M in E,(Ad ) denotes

the effect of mutation.

6.3 The Mutation Operator Rate for Maximum Change of Link Distance

From equation (6.4), we are able to derive the highest mutation operator rate
for the largest expected link distance change during the iterations. Equation

(6.4) can be expanded as

_ 3 _ 3 —
EM (Adm ) = p(dm = O)Z pkE:em (Adcase k ) + [1 - p(dm = O)]Z pkEuon:l.’m (Adcuse k ) (65)
k=1 k=1

Reorganizing (6.5), we have

Ey(8d,) = p(d, =0|(1-r)* 0+2r(1-1)E,, (Ad,,,,,) + I°E.,,(Ad,,,.)]

H1-p@, = O] (1-)" 042111 E e (A o) + 1By (8dns)]  6.6)

m
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S0
E,(Ad,)=2r(1-r)E, +r°E, 6.7)
where
E[ = p(dm = O)E:em (A(—i—cusn 2) + [1 - p(dm = 0)]Enonzero (Ad—cuse 2) (68)
E2 = p(dm = O)E:em (AC—Z—case 3) + [1 - p(dm = 0)]Enunzem (Acz:use 3) (69)

To have the maximum expected link distance change, we need only to find
the partial derivative of equation (6.7) with respected to r and set it to zero.

Namely, we have

aEMa(rAdM) =(2- 4r)El +2rE, =0 (6.10)

From equation (6.10), the mutation operator rate to achieve the maximum

expected average link distance change is

___E
r_2E,—E2 (6.11)

The operator rate is limited to the range (0, 1). Equation (6.11)
provides a possible maximum r value within the range. It needs to be
pointed out that E, and E, from equation (6.8) and (6.9) change their values

with the number of iterations. This suggests that the maximum mutation
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operator rate varies during the iteration, instead of having a fixed value for
the whole process. The above technique of analysis for the mutation operator
should be applicable to many of other popular operators such as the inversion

operator used in genetic algorithms.



CHAPTER 7

CHANGE OF EXPECTED AVERAGE LINK DISTANCE DUE TO
BOTH SELECTION AND MUTATION

In Chapter 5 and 6, the change of the average link distance due to selection
and mutation are discussed separately. In this chapter, we will combine
their effects on the average link distance to compute the expected change of

average link distance.

Equation (5.7) can be rewritten as

1- 5@,y =0 =2 p(d, =0 1)

n

Equation (7.1) indicates that the percentage of non-zero link pairs are
reduced by a factor of 1/n in each iteration due to random selection. Let p(dm

# () denote the probability of link distance greater than zero. Equation (7.1)

can be changed to

p(d,,., #0) = (’%ﬂp(dm +0) (1.2)

Since those link pairs with zero link distance do not contribute to the average
link distance, we can rewrite the relationship between the expected average

link distance before and after selection as:

Ey(D,.)= Pl =00+ pidy, 20) D= (22 pid, »0). D

62
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- (nT—l)ES(E,,,) (7.3)

where Ey(D,,) is the expected average link distance due to random
selection after m iterations and D is the average link distance of the initial

mating pool. Combining equations (6.2) and (7.3), we have

ED,.)= (n—,:—l) E,(D.)+E,(Ad,) (7.4)

where E(D,,,) is the expected average link distance of the mating pool after
m iterations and Ey(D ,) = D, the average link distance of the initial mating
pool. It should be noticed that the probability of the link distance being zero
can no longer be simply calculated by equation (5.8). Instead, it should be
adjusted as indicated by equation (6.3) in each iteration.

Equation (7.4) can be further rewritten as

E(D_,,,)=[(l—%)] D +i{[(1-%)] _ E,‘,(AE,)} (7.5)

From equation (5.9), D is a function of I. We again rewrite (7.5) as

E(D(l,m.n)) = [(1 J)Tﬁang{[@ _;];_)],,.-,«EM (ad j)} (7.6)

n

From equation (7.6) we can find not only how the mating pool
converges with respect to the number of iterations but also how many

iterations are needed to reach an expected convergence stage measured by



64

the average link distance. Based on equation (7.5) Figure 7.1 plots the
expected average link distance versus iteration number for several mutation
operator rates. The link length in Figure 7.1 is 20, the population size is 20,
and the mutation operator rates are 0, 0.01, 0.02, 0.03, 0.04 and 0.05. A
larger mutation operator rate bears a slower reduction in the expected
average link distance. The dashed line in Figure 7.1 is the case that the
mutation operator rate equals to zero, which is exactly the same as the
simple genetic algorithm with only selection discussed before. Figure 7.1
provides an evidence that the mutation operator increases the average link

distances during the iteration and thus slows down the converge process.

Expected Average Link Distance
18

16 1

0 10 20 30
. [terations
Mutation Operator Rate

—o— 0.06 —— 004 —— 003 —— 0.02 —— 001 ----0

Figure 7.1 Expected Average Link Distance for Different Mutation Operator
Rates. Link Length = 20, Population Size = 20.

Equation (7.5) contains the joint effects of selection and mutation.
Selection is expected to always drag the average link distance down by a

ratio of 1/n in each iteration. So, the joint effects from both selection and
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mutation after a long run will be that the selection is reducing the expected
average link distance while the mutation operator is increasing it. If we fix
the mutation operator rate during the iterations, once the joint effect of
selection and mutation operator reaches a balance, the expected average link
distance will converge to a positive number according to equation (7.6).

Let D. denote the converged average link distance. We have D. =
E(Emﬂ) = E(Em). Thus D. can be easily found to be

D, =nE,(Ad,)=n[2r(1-)E, +r*E,] (7.7)

Equation (7.7) shows the relationship between D. and r. Since the mutation
rate r is usually very small (say, a few percent at most), D. increases if r is
larger.

From our analysis, it is expected that the average link distance is
continuously decreasing but will never reach zero. In the previous Markov
chain analysis, we know that the least average link distance is zero in an
absorbing state where the mating pool contains only identical links. The
second least average link distance is 2/n which can be found from a state
where one link is different from all the others and the link distance between
this link and any other link is 1. There is no number between 0 and 2/n for
the average link distance. If we select a mutation operator rate so small that
D. is smaller than 2/n, the iteration should stop when the average link
distance has reached 2/n. We can therefore setup a criterion to estimate the
number of iterations needed to reach an expected state of convergence.

If the mutation operator rate is selected such that
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D, >~
n
the smallest number of iterations, m, such that

m m m-j _
E(D(,m,n)) = [(1 - %ﬂ Dy +Zﬂ(1 _lﬂ E, (Adj)} D (7.8)
j=1 n
will bring the mating pool to a convergence. Otherwise, the smallest number

of iterations, m, such that
N"=,, & ™ =] 2
E(D_(l,m,n))z [(1——’;)} D(l)+§{[(1—;)] E,, (Adj)} < ~ (7.9

will bring the mating pool to a convergence.

The smaller number of m that satisfies equation (7.8) and m that
satisfies equation (7.9) is the number of iterations needed for the expected
convergence of the order-based genetic algorithm with equal selection
probabilities for different links. Since the genetic drift suggests the slowest
convergence, the m obtained from e'quation (7.8) and equation (7.9) is the
upper bound for the number of iterations needed for the convergence of
order-based genetic algorithms with any selection probabilities.

Table 7.1 shows some of the results calculated from equation (7.6).
The meanings of the symbols are: [ is the link length, n is the population size,
r is the mutation operator rate, D. is the converged average link distance, m
is number of iterations needed for the average link distance to achieve D., 2/n
is the other criteria to stop the iterative process, m* is the number of

iterations needed for the average link distance to arrive at 2/n. From Table
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7.1, the expected average link distance will reach 2/n when the population
size or the mutation operator rate is small. The largest number of iterations
needed to achieve a convergence is less than 1700 for the cases shown. The

larger the link length or the population size, the slower the convergence.

Table 7.1 Some Numerical Results from Equation (7.6)

l n r (%) D. m 2/n m*
10 10 1 0.20058 132 0.2 -
10 10 0.1 0.02001 130 0.2 36
10 10 0.01 0.002 136 0.2 36
50 50 1 1.45632 783 0.04 -
50 50 0.1 0.10005 768 0.04 -
50 50 0.01 0.01 801 0.04 366
100 | 100 1 3.22346 1542 0.02 -
100 | 100 0.1 0.2001 1619 0.02 -
100 | 100 0.01 0.02 1693 0.02 1693
10 100 0.1 0.20006 1388 0.02 -
100 10 0.1 0.10005 816 0.2 342
10 50 0.1 0.10003 698 0.04 -
50 10 0.1 0.02001 152 0.2 54
50 | 100 0.1 0.20009 1660 0.02 -
100 | 50 0.1 0.10005 816 0.04 -

Discussed in this chapter is the convergence of the order-based genetic
algorithm with selection and mutation. In each iteration of the genetic
algorithm, random selection and mutation operation are sequentially applied.
For real genetic algorithm applications more operators, especially the

crossover operator, are usually included. The effects of these operators are
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also sequential. Analysis of these applications can be done by adding the

effect of each operator after equation (7.4) for the joint effect.



CHAPTER 8

CONCLUSIONS

Studied in this dissertation are methods and results of performance analysis
for genetic algorithms. Both statistical analysis for comparing variations in
genetic algorithms and probability analysis to investigate the expected
convergence behavior of a genetic algorithm are performed.

A Wilcoxon signed rank test is used to study the effect of adapting the
operator production ratios in the genetic algorithm. The adaptation of the
operator production ratio during the iterative process is shown to be effective
for achieving a faster convergence for the tested traveling salesperson
problems. It provides a way of examining whether the modification is good or
not when initiating a new genetic algorithm.

We analyze the genetic drift and preferential selection of the genetic
algorithm using Markov chains. The probabilities of both phenomena are
derived. Itis shown that the genetic drift has a slower convergence than any
preferential selections. The probability of pre-mature convergence due to the
use of high selection probabilities for dominant links is shown to be high.

A new method of analysis is introduced which uses the “link distance”
as a reference for studying the convergence of order-based genetic algorithms.
The average link distance of a randomly generated mating pool is derived
and shown to be a function of only link length. The value of this distance is
shown based on numerical analysis to be the link length minus 2.

The expected average link distance changes for random selection,

mutation operator, and the combination of both are derived. A mutation
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operator rate for the maximum expected average link distance change is also
derived. The derived mathematical model for the expected average link
distance during the iterations shows that this distance converges to a
positive number which is a function of the population size and mutation
operator rate. The expected number of iterations needed to converge has
been obtained for some typical values of link length, population size, and
mutaiton operator rate. We plan to study the effects of other operators in the

future.



APPENDIX A

CONDITIONAL PROBABILITY OF AN OUTCOME FROM MUTATION
OPERATION

From the rule of conditional probability, we can find that
Prob{B=Eand A=G|D=H,A#E,B#G,C#F} =
Prob{A=G|B=E,D=H,A=E,B=G,C=F}-
Prob{B=E|D=H, A#E,B=#G, C=F}.

AE . |C |G |D .. Bl D [G]...|C

Figure Al Relationship of the links of a link pair before and after
the mutation operation.

Prob{D = H, A # E, B # G, C # F} can be found from selecting two
objects (A and B) such that both are from the group of different gene pairs
and then selecting other two objects (C and D) such that one is from the
group of different gene pairs and the other is from the group of identical gene
pairs.

To find Prob{B =EI{D =H, A= E, B# G, C # F} we need to find all
possible outcomes. Since E can not be A, H can not be C, and C can not be H
or F, the possible outcomes are:

1. C =B : The probability of C = B is 1/(I-2). Since B = C, B can not be E.
The probability in this case is 0 for B = E.

2. C=A: The probability of C = A is 1/(-2). The probability for B = E given
C = Ais 1/(I-3) since B can not be either C, D, or G.

71
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3. C equals to any others : Since C can not be any of A, B, F, or H, C must be
equal to another gene, let's denote it as K. The probability is 1 — 2/(I-2)
for C = K. The probability for B = E given C = K is 1/(!-3) since B can not
be either C, D, or G.

So, Prob{B=E|D=H,A#E,B=G, C#F} =0-[1/(I-2)] + [1/(-3)] - [1/(I-2)] +

[(-4)/(1-2)] - [1/(I-3)] = [1/(I-3)] * [1/(I-2)+(I-4)/(I-2)]=1/(I-2)

To find Prob{A=G|B=E,D=H, A#E, B %G, C #F} we also need to
find all possible outcomes. Since A can not be E, D can not be C and C can
not be B, F or H, the possible outcomes are:

1. C = A : The probability of this case is 1/(I-3). The probability is 0 for A =
G since A =C.

2. C # A : The probability of this case is 1 — 1/(/-3). The probability for
A = G is 1/(I-3) since A can not be either C, D, or E.

Prob{A=G|B=E,D=H,A#E,B#G, C=F}={0-1/(I-3) + [(I-4)/(I-3)] - 1/(I-

3+ {C(d;+1, 2)-C(l-d;~1, 0):C(d;-1, 1)-C(~d;-1, 1) / [C(, 2)-C(-2, )]} =

{C@;+1, 2)-Cl-d;~1, 0)-C(d;-1, 1)-C(-d;-1, 1) / [C{, 2):C(-2, 2)]}-(-

4)/(1-3)z2.

So, Prob{B=Eand A=G|D=H,A#E,B=G, C#F} ={C(d;+1, 2):C(l-d -1,

0)-Cd;-1, 1)-CU-d;-1, 1) / [CU 2)-CU-2, 2)}-{1/(-2)-(-9/(-3)3 =

{Cd,+t. 2)-Cl-d;~1, 0):C(d;~1, 1)-C(-d;~1, 1) / [C{, 2):C(-2, 2)]}-(-

H/(1-2)(1-3)4]
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