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ABSTRACT

PERFORMANCE ANALYSIS FOR GENETIC ALGORITHMS 

by 
Hermean Wong

Genetic algorithms have been shown effective for solving complex 

optim ization problems such as job scheduling, m achine learning, p attern  

recognition, and assembly planning. Due to the random  process involved in 

genetic algorithm s, the analysis of performance characteristics of genetic 

algorithm s is a challenging research topic. Studied in  th is dissertation are 

m ethods to analyze convergence of genetic algorithm s and  to investigate 

w hether modifications made to genetic algorithms, such as varying the 

operator ra tes  during the iterative process, improve th e ir performance. Both 

sta tis tica l analysis, which is used for investigation of different modifications 

to the genetic algorithm, and probability analysis, which is used to derive the 

expectation of convergence, are used in  the study. The Wilcoxon signed rank  

te s t is used to examine the effects of changing param eters in  genetic 

algorithm s during the iterations. A M arkov chain is derived to show how the 

random  selection process affects the genetic evolution, including the  so called 

genetic drift and  preferential selection. A fink distance is introduced as a 

num erical index for the study of the convergence process of order-based 

genetic algorithm s. Also studied are the effects of random  selection, 

m utation  operator, and the combination of both to the expected average fink 

distance. The genetic drift is shown to enforce the convergence exponentially



w ith increase in  the num ber of iterations. The m utation operator, on the 

other hand, suppresses the convergence. The combined resu lts of these two 

param eters lead to a general form ula for the estim ation of the expected 

num ber of iterations needed to achieve convergence for the order-based 

genetic algorithm  with selection and m utation and  provide im portant 

insigh ts about how order-based genetic algorithms converge.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Genetic algorithm s have been shown effective for solving complex 

optim ization problems in job scheduling, m achine learning, p attern  

recognition, assembly planning, and others (Davis, 1985; Englander, 1985; 

Leu, Wong, and  Ji, 1992; Wong and Leu, 1993). The concept of the initial 

genetic algorithm  was based on the improvement of b it s tring  representations 

for real problems. An in itia l pool of solutions represented  by bit strings, 

called the mating pool, is created usually from a random  process. The 

solutions in  the pool are then  random ly selected to be applied with some 

operations for creating new solutions. The im provem ent of the solutions was 

m ade by the  creation of new bit strings with better schem ata th an  old ones. 

A fitness value for each bit s tring  representation is evaluated  according to 

the m ain concern in  a real problem and is used as the solution im provem ent 

criterion since it  represents goodness of strings.

Some researchers have expanded the b it s tring  representation 

technique to other representation schemes. Grefenstette, et al., (1985) used a 

node s tring  to solve the traveling salesperson problem. Koza (1990) used a 

LISP function and argum ent string  as a non-linear genetic algorithm  

problem solving technique. Shahookar, et al., (1990) used a character string  

for solving the standard  cell placem ent problem. Leu, et al., (1993) used 

in teger strings to solve the p lanning problem of p rin ted  circuit board 

assembly.

1
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The random  process involved in  genetic algorithm s m akes it  difficult to 

analyze their perform ance characteristics including the effects of some 

param eters  and their optim al values, the population size of the in itia l m ating 

pool, and  the  num ber of iterations needed to stop a genetic algorithm . 

Random  selection plays an im portant role in genetic algorithms. Due to the 

probabilistic na tu re  of random  selection, there is always the existence of 

selection drift or preferential selection accompanying a genetic algorithm . 

The genetic drift is the selection induced bias due to the fact th a t a sequence 

of selections with equal probabilities of different objects has a high 

probability of resulting in unequal num bers of different objects. Preferential 

selection is sim ilar to genetic drift except th a t the probabilities of choosing 

objects are different.

To analyze the perform ance of a genetic algorithm , it is essential to 

analyze the effect of random  selection. Goldberg and  Segrest (1987) used 

finite Markov chain (Kemeny and Snell, 1960) to analyze the genetic drift 

and  preferential selection for a simple genetic algorithm  w ith binary coding (0 

or 1). They showed th a t  M arkov chain analysis in  general is useful to 

understand ing  the perform ance of finite genetic algorithm s w ith b inary  

coding, sizing populations appropriately, and selecting proper operation rates. 

O ther researchers (Nix and Vose, 1992; Suzuki, 1993) extended the M arkov 

model for the integer representation. The effect of random  selection in  

general coding techniques, such as the perm utation coding, rem ains an open 

research  issue. The M arkov chain analysis is not ideal because the possible 

constructions of the m ating pool are trem endous and it is practically 

impossible to calculate the ir results considering the enormous com putations 

required.
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Some statistical analyses have been studied to find optimal 

param eters in  the  genetic search. Schaffer, et. al., (1989) used statistical 

resu lts  from a large num ber of experim ents to show the effects of param eters 

on the perform ance of some genetic algorithms. Instead  of finding optimal 

param eters globally, some researchers studied the adaptation of param eters 

during  the genetic evolution process. Focusing on operator rates, Davis (1989) 

adap ted  the probabilities of operators during the genetic search when 

m ultiple operators are used. In (Davis, 1989), only one operator was chosen 

among the genetic operators to create the offspring according to their 

associated probabilities. The sum of the probabilities of all operators is equal 

to 100%. The adapting method raises the probabilities of the operators th a t 

generate more of the offspring, compared with other operators, which are 

be tte r than  the curren t best solution during the genetic itera tion  process. 

Because of the flexibility of genetic algorithm s, i t  is often desirable to add 

more modifications to the algorithm to su it new applications. A general 

scheme for analyzing the performance of an  order-based genetic algorithm, 

however, is not available from the literature.

1.2 Research Objectives and Tasks

The objectives of th is dissertation are two-fold : (1) to investigate w hether 

modifications added to genetic algorithms improve their perform ance or not 

and  (2) to build a foundation for analyzing the convergence of order-based 

genetic algorithms.

Both statistical analysis and probability analysis are m ade in  this 

study. A Wilcoxon signed rank  test (Lawer, 1985; Mosteller, 1973) is used to 

compare an adaptive operator production ratio  method w ith the 

corresponding fixed operator production ratio  method. The genetic drift and
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preferential selection in genetic algorithms are analyzed w ithout regard to 

specific coding methods. Instead  of the use of genes which is coding method 

related, the selection of finks is considered in the developm ent of a new 

m ethod for the  convergence analysis. A fink distance is defined for order- 

based genetic algorithm s as the m easure of difference between two finks. 

The average fink distance of the m ating pool is then used as the reference of 

convergence in  the analysis of order-based genetic algorithm s. The changes 

of average fink distance due to the individual effects of random  selection and 

m utation operation are investigated. By combining the effects of both 

random  selection and m utation operation, the expected average fink distance 

is form ulated and  used to estim ate the expected num ber of itera tions needed 

for the convergence of a genetic algorithm.

1.3 Outlines of Dissertation

The rem aining of the  dissertation is organized as follows. C hapter 2 gives a 

description of the genetic algorithm and describes a sta tis tica l analysis for 

comparing variations in  an order-based genetic algorithm  w ith an increasing 

m ating pool. In  C hapter 3, the M arkov chain analysis based  on the states of 

the m ating pool is discussed. In  Chapter 4, an index called the fink distance 

is created for studying the convergence of the order-based genetic algorithm, 

and the expected average fink distance of the in itia l m ating  pool is discussed. 

Chapter 5 discusses the expected average fink distance change due to 

random  selection. Chapter 6 discusses the expected average fink distance 

change due to m utation operation. C hapter 7 combines the  effects of both 

random  selection and m utation operation and  form ulates an  equation for 

estim ation of the expected num ber of iterations needed for order-based 

genetic algorithm s. C hapter 8 concludes the study.



CHAPTER 2

STATISTICAL ANALYSIS

In  th is chapter, we will provide the description of a general genetic algorithm  

and  a methodology for statistically investigating the effect of adapting the 

production ratios of genetic algorithms to an increasing-m ating-pool order- 

based genetic algorithm  (Wong, 1991). For a rigorous discussion of the 

genetic algorithm we give the following definitions:

Definition 1: Let N be a set of I continuous positive integers s ta rtin g  from

1, i.e. N = {1, 2, /} and C be a set of I genes, i.e. C = {c,, c2, ..., c;},

where each elem ent c; is a gene. Cb = {c,, c2, ..., c,} is called binary 

coded if  ci e {0, 1} V i e N. C = {cv c2, ..., c,} is said to be perm utation 

coded if  ci e X and c; * c- if  i * j  V i e N.

Definition 2: A link  is defined as s = {sp s2, ..., s(}, where sk is the gene a t

the k-th position (called locus) of the link, and s is the m apping s : N ->■ 

C. I is called the  link length.

Definition 3: The set U is the collection of all possible finks, i.e. U ~ {s,, s 2,

..., s*}, where is the total num ber of all possible finks. <|> = 2l for

binary  coded genes and <t> = Z! for perm utation coded genes.

Definition 4: Let Un denote a subset of U containing n finks, i.e. Un = {s,,

s 2, s„}, where n is the num ber of finks in  Un.

Definition 5: The m ating  pool Mn is defined as M n = {(s,, co,), (s2, co2), ...,

(sn, co(()} where s i e Un and coi is the probability for s i being chosen in 

the genetic algorithm  optimization process. ]Tco,• = 1.

5
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Definition 6: The cost function is defined as f  : U  —» 9?, where 91 is the set

of real num bers. / ( s £) = ft is the cost of solution s £.

Definition 7: An operator is a mapping G : Um —> Un, where rn is the

num ber of paren ts and  n is the num ber of offspring generated by the

operator.

A trad itional genetic algorithm usually consists of the following steps:

1. Randomly generate a set of initial paren ts, Un, th a t forms a m ating  pool

M n. Select the operators used for the genetic algorithm . Set an operator 

ra te , r-, 0 < r- < 1, for each operator. F ind /• for each s £. Assign the 

selection probability, co;, for link s£ according to its  cost /•.

2. Select n links (with replacement) from th e  m ating pool M n according to 

the  selection probability of each link to form an in term ediate m ating  pool 

M'n.

3. For each operator, do step 3.1.

3. lF o r  each link  s /  in M'n, randomly draw a real num ber betw een 0 and 1. 

If  the draw n num ber is less than r., apply the operator to the fink to 

create a new fink and replace s /  w ith th is fink.

4. Replace M n w ith M'n.

5. Repeat steps 2, 3, and 4.

There are m any variations in practical applications of the genetic 

algorithm  in term s of constitution of genes, selection, replacem ent, and  the 

operators used. Selection of param eters such as population size and operator 

ra te  are also im portan t study issues. In  th is Chapter, we wifi use a 

s ta tistica l m ethod called Wilcoxon signed ran k  te st to compare different 

genetic algorithms.

Based on the experience in using the genetic algorithm  for p rin ted  

circuit board assembly planning (Leu, Wong, and Ji, 1993), we will compare



7

an adaptive operator production ratio method w ith a fixed operator 

production ratio  method for an order-based genetic algorithm  w ith an 

increasing m ating pool. The adaptive operator production ratio m ethod uses 

a set of adaptive operator production ratios instead  of using  fixed num bers of 

operator production ratios during the iterative process. The operator 

production ratios are adjusted according to the proportions of survived 

offspring generated by individual operators. Since the genetic algorithm  is a 

heuristic  search method, the resu lts of different tria ls  are usually  different, 

even using the same values of param eters. Instead of com paring the m eans 

of the best solutions, w hat should be compared are the differences between 

the best solutions obtained from different methods for a broad range of 

sim ilar problems. A Wilcoxon signed rank  test is applied for this comparison. 

We will show the obtained experim ental results from the  Wilcoxon signed 

ran k  te st after describing the fixed operator production ratio  m ethod and the 

adaptive operator production ratio  method in the following sections.

2.1 The Fixed Operator Production Ratio Method

Let n0 denote the num ber of in itia l paren t links, h denote the num ber of 

operators, n ■ denote the num ber of links in the m ating  pool M n . after 

applying operator G-, 1 < j  < h. Instead  of using the  operator ra te  in the 

trad itional genetic algorithm  ju s t described, we assign an operator 

production ratio  to each operator G- as qj = rij / Uj_v qj is used to control the 

num ber of offspring links created by each operator in  th e  iteration, q- m ust 

be greater th an  1 to guarantee the production of offspring links by operator
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For the two genetic algorithm s tested in th is chapter, we assign the 

selection probability of each link according to the ran k  of the link compared 

to the other links in the m ating pool. The rank ing  of the  m ating pool before 

the operations is defined as follows.

Definition 8: The ranking of the set Un is defined as R n -  {ra,, ra2, r a j

where ra£ is a positive integer between 1 and  n representing the ran k  

of s £ in  Un based on the cost of s £, i.e. fv Rn is a perm utation of integers 

from 1 to n such th a t ra ; = 1 if  fi is the m inim um  cost.

The rank ing  of the m ating pool after the genetic operations is defined 

as follows.

Definition 9: The rank ing  of the set Un+k = {s,, s 2, s n, s n+v s ;i+J  is

defined as Rn+h = { ra,, ra2, ..., ran, ra„+1, ra n+2, ra n+J ,  where k is the 

to tal num ber of new offspring links generated by the operators. For 

every s n+i, 1 < i < k ,  ran+i = n + i .

F ig u re  2.1 The Process of Genetic Algorithm in  Each Iteration

We will assign the selection probability of link s i proportional to (n -  ra £ + 1). 

T ha t is, the selection probabilities are assigned such th a t  : (1) the lower the
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ran k  of a link, the higher the selection probability, and (2) the  selection 

probabilities of all links have the ratio  1 : 2 : 3  : : n. This is better than

assigning the selection probabilities of the links proportional to the fitness 

values of these links, because it avoids the possibility th a t  selection 

probabilities of some links may be unreasonably high. The fixed operator 

production ratio  m ethod is as follows:

1. Let the total num ber of iterations for the genetic algorithm  be T. 

Randomly generate a  set of in itia l parents, U , th a t forms the  m ating 

pool M n(j. F ind the cost /■, i = 1, 2, ..., n0. Find R  i.e. the ran k in g  of U .
o

The probability co£ is proportional to (n0 -  rai + 1). Since ^co,- = 1, we can
1=1

find th a t

_ n0 -  ra,- +1 _ 2{n0 -  rai + 1)

*=1

Select the production ratio q} of each operator Gj,j = 1, 2, ..., h, where h is 

the to tal num ber of operators.

2. Select paren t link(s) from the m ating pool M  ( according to the  selection 

probability of each link. Sequentially apply the operators to create 

offspring links for each operator Gj w ith production ratio q-, j  -  1, 2, ..., h. 

The m ating pool is sequentially enlarged to M nJs as shown in  Figure 2.1. 

The ranks of the newly created finks are assigned as described before. 

The selection probabilities of the finks are updated as

/I, -  ra.: +1 2(71, -  ra,- + 1)
03'■ = = ------1------TT"

S K - r a i + 1 )  A ;
*=1
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3. After all the operators are applied, find /. of M  , i = n,0+ l, n0+2, ..., nh. 

R erank M„,.nn
4. Define the  new m ating pool M ' n such th a t s- in M ' n is the sam e as s- in"0 ► • *0 i

M nh for i = 1, 2, . . 7i0. Replace Mng w ith M' .

5. If the num ber of iterations is equal to T, stop; else go to step 2.

We will call the fixed operator production ratio  m ethod as the fixed 

m ethod la te r  in  the text. I t should be noted th a t the population size of the 

m ating pool is increased after each operation. After all the operations are 

applied, we then  create a new m ating pool from the collection of the best 

solutions among the original m ating pool and the newly created offspring. 

The new m ating pool has the same size as the in itial m ating  pool. The newly 

created links are not evaluated un til all the operators have been applied.

The probability of having the combined effect of different operators is 

controlled by both the num ber of in itia l parents and  the  to tal num ber of 

offspring generated by the various operators in each iteration. The selection 

probability of the links for the la st operation is

nh_i -  ra,- +1 _ 2(nh_, -  ra,. + 1)

*=i

The probability of the hnks in  the in itia l m ating pool U being selected as 

parent(s) for the la s t operator Gh is

1=1 1 = 1
nh-t
Z K - 1  - r a ; + l)

i

(2 ^ -i ~ n0 + i)n0
 2

(n,,., + lK _ ,
(271,.., -  no + l> i0 

(%-i +1K - i
(2.1)
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Let nhA = kn0, k > 1, and  n0 »  1, (2.1) becomes

i=l «

Equation (2.2) represents the probability th a t the paren t link  of the 

offspring generated by the la st operator Gh is from U . If the num ber of 

offspring links generated in each iteration is the same as the num ber of links 

in  the in itia l m ating pool, k ~ 2. Then the probability for the links in 

being chosen as the p aren t links for the la s t operator is around 75%. The 

larger the num ber of offspring links is generated in  each generation, the 

more the em phasis is placed on the effect of combined operators. I t should be 

noted th a t the first operator uses only the m ating pool Mng, w ithout any 

unevaluated  parents.

2.2 The Adaptive Operator Production Ratio Method

In  th is section, we will describe a heuristic approach to adjust operator 

production ratios during the iterative process of the order-based genetic 

algorithm . The m ain idea of the adaptive operator production ratio  m ethod is 

th a t  during the itera tions we raise the production ratios of the operators th a t 

generate more survived offspring finks and reduce the production ratios of 

the operators th a t generate less survived offspring finks. The to tal num ber 

of p a ren t finks and the total num ber of offspring finks in  each generation are 

fixed; th a t is, n0 and  nh are fixed during the genetic evolution process. 

Although the larger nh in  each generation, the more im provement is expected, 

b u t the to tal com putation time is also increased. So, the efficiency of the
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genetic algorithm  is not necessarily improved by increasing nh. We will 

denote the  adaptive operator production ratio method as the adaptive method. 

To fix the population size in each iteration, w ith a given set of operator
h

production ratios {<?,, q2, ..., q,}, Y\^i  should be kept constant. If an
H

offspring link  is created by a sequential combination of several operators, 

credits are given to all operators involved in  generating th is  link

Let the production ratios of operators be updated after every t  

iterations. Also let Nj be the total num ber of offspring links created by 

operator Gj th a t are contained in  the m ating pool M n() in  the  next iteration, 

for each of these x iterations. To adjust the operator production ratios in the 

iterations, we let

Qj' = kqj

N;
n  t j r i j - n j . ,)

'  N i 
x ( n , - / i M)

(2.3)

where q'- is the operation production ratio of operator j  in the following 

iterations, j  = 1, 2, ..., h. The proportional factor k in (2.3) should be such 

th a t the num ber of offspring finks generated in each itera tion  rem ains 

unchanged. For th is condition to hold, it is required th a t

k =
hn

;=i

Nj

1 +
h (

z.
.•=1V

N,
x-(n,. - n M)

V i
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Therefore,

Q j '  =  Q j

N J

h (
i

N, n
M ± (  N,  •

(2.4)

A nother consideration in  the adaptive m ethod is th a t the productions 

of some of the operators may keep decreasing to the degree th a t these 

operators no longer affect the iterative process. An operator can not create 

offspring if  its production ratio  is equal to or less th an  1. So the production 

ra tio  of each operator should be given a lower bound which is larger th an  1,

i.e. Lj > 1, where Lj is the lower bound of the production ratio of operator Gy

The process of the adaptive method is thus as follows:

1. Let the total num ber of iterations for th e  genetic algorithm be T.

Randomly generate a set of in itial parents, U , th a t forms a m ating pool

M ng. F ind  /•, i = 1, 2, ..., n0. Find Rng. The probability co; is proportional
o

to (n0 -  ra £ + 1). Since ^co , = 1, we can find th a t
i=i

co,. = n0 -  ra; +1
• 'U
X (n 0 - m ; +l)
*=i

2{n0 -  ra,- + l) 
n0{n0 + 1)

Select the in itial operator production ratio q y j  = 1, 2, ..., h where h is the 

to tal num ber of operators. Select a period representing  the num ber of 

iterations, x, to update the operator production ratios.

2. Let k = 1, where k indexes the num ber of itera tions for adapting the 

operator rates. Let Nj = 0 fo r)  = 1, 2, ..., h.



3. Select p a ren t links from the m ating pool M n. 1 according to the  selection 

probabilities of the links. Sequentially apply the operators to create 

offspring links according to their production ratios. The m ating  pool is 

sequentially  enlarged to M  's. The selection probabilities of the  links are 

updated  as

rtj -  ra{ + 1 2(/l; “ ra ; + *)

i'i n i ( n , j + 1 )I K - r a i  + lJ ' '
k=1

4. After all the operators are applied, find f{ for each link  of M  , i = n0+ 1, 

n0+2, ..., nh. R e ran k M  .

5. Define a new m ating pool M'n(j such th a t in M'nf) is the  sam e as s £ in M  

for i = 1, 2, ..., n0. Replace M ng w ith M'nQ.

6. For every link in  the new M ng, increm ent AT, j  = 1, 2, . . h, by 1 if  operator 

Gj is involved in generating the link. Increm ent k by 1.

7. Repeat steps 3 to 6 while k  ̂ t.

8. Compute the new operator production ratios q̂ ', j  = 1, 2, h, using

equation (2.4),

9. If q-' < L-, le t q-' = L} for j  = 1, 2, ..., h. Then compute the  new operator

production ratios again as q-" = k'q- where
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Repeat this step un til the new operator rates satisfy the lower bound 

requirem ent, i.e. q ■" ^ L -fory = 1, 2, ..., h.

10. If  the num ber of iterations is more th an  T, stop; else go to step 2.

2.3 Wilcoxon Signed Rank Test

The m ost straightforw ard way of showing w hether a variation in  a genetic 

algorithm  m akes the algorithm  better or not is using sta tistical analysis. 

Golden and S tew art (1985) used a statistical analysis called Wilcoxon signed 

ra n k  test (Lawer, 1985; Mosteller, 1973) to compare different heuristics for 

solving the traveling salesperson problem. The Wilcoxon signed ran k  test is 

a non-param etric hypothesis test. I t can be applied to all continuous 

distributions, especially for those with symm etric densities, for testing  the 

nu ll hypothesis H 0 :\x = ii 0, where ji0 is the m ean of the random  variables 

which is usually known, and £ is the m ean of samples. Let H l denote the

alternative hypothesis to be tested. can be either H l : p * do or '• h > ho 

or H x : jl<  do-

Suppose X v X2, Xn comprise a random  sample corresponding to a 

sym m etric continuous population distribution with m ean p., w here n is the 

num ber of sampling. If Xt = p0, Xi is discarded and n is reduced by one. Let 

K t be the rank  of the  values of \X - p 0| in  increasing order, i = 1, 2, ..., n. If m

sam ples are tied for the k-th. rank, each of them  is assigned a rank  
fe + (fe + l)+...+(fe + m - l} Define the g ignedrankj as

rn

R  \ K i i f x . - i i o > 0  

' 1 - K t i f X , . - p o <0
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where i = 1, 2, n. Let C denote the sum of the signed ranks, i.e. C, = Si?..

If the null hypothesis H0 is true, one would expect a som ew hat uniform

mixing of both positive and  negative values of X - \x 0 in  the sam pled data.

Since the sum  of the first n integers is — ------ , under the null hypothesis H0
2

we would expect one h a lf  of the signed ranks be positive and the  sum of these
n(n + 1)

positive signed ranks be ----------  . The other h a lf  of the signed ranks would
4

be expected to be negative and the sum of the signed ranks be . So,
4

the  total sum  is expected to be around 0.

For the upper one-tailed alternative, H l : (I> |i0, the sum  would likely
n (/i + l )  _  . . - I , ,  t t  -  -  ,be near ---------- . For the lower one-tailed alternatives, t i x : p. < fi0, the sum

2
n{n + 1)

would hkely be n e a r   ---- . For the two-tailed alternative, if, : p. * p0, it
£4

would be expected th a t C, would hkely be near to —— or
2 2

Because C, is discrete, for a desired level of significance a , a critical 

value of C, th a t yields approximately the desired a  level needs to be found. 

For the upper one-tailed alternative, H , :ji>  ji0, a t significance level a  (and 

for sample size n), the critical value C,a n is defined by P(C ^ Cu „; H0) = a . H0 

is rejected if  C ^ C „ O w i n g  to the symmetry of the rank ing  scheme, H0 is 

rejected in  favor of the lower one-tailed alternative H x : p. < jl0 if  C, < C,a n. For 

the two-tailed alternative H } : jl ^ jl0, H0 is rejected if  C n  0 1  c  ^  -  W

For n ^ 10, C,a n can be approximated by
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w here Z{a) is the standard  norm al distribution such th a t  a  is the proportion 

a  of the  area  is to the left of Z(a); see Figure 2.2.

Normal D istribution

Z(a)

F ig u re  2.2 S tandard  normal distribution

For our application of the Wilcoxon signed ran k  test to investigate 

w hether a variation added to the order-based genetic algorithm  m akes it 

be tte r or worse, we use the null hypothesis, : ji = ji0, which has the 

assum ption th a t the two methods perform equally. The comparison is based 

on the  best (minimal) solutions searched from both methods for the same 

num ber of iterations. Since the fixed method is the one to be challenged, the 

random  variable is defined as the difference between the normalized best 

solution achieved by the adaptive m ethod and th a t of the  corresponding fixed 

method. According to the null hypothesis H0 : p. = ji0, the mean, p0, is equal 

to 0. The alternative hypothesis, : j l< p 0, is th a t the adaptive method 

outperform s the fixed method.

2.4 Experiments and Discussion

To show the comparison of the two methods, we use the classical traveling 

salesperson problem. Figure 2.3 shows an example of the traveling 

salesperson problem with only 6 nodes. The trajectory of the travel in Figure

2.2 is represented  as 1-2-5-6-4-3. Twenty four tests  are made for the
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comparison of the proposed fixed and adaptive methods. They are divided 

into 8 groups according to the num ber of nodes. The num bers of nodes are 50, 

60, 70, 80, 90, 100, 110 and 120 for the  eight groups. The coordinates of the 

nodes are random ly and uniformly generated in  a square area. The link is 

represented  by a perm utation of the nodes. The operator production ratios 

are updated  every tw enty iterations for the adaptive method.

The in itia l population size ng is 40 for all the tests. Four operators are 

used in sequence: order crossover operator (Olive, 1987), inversion operator, 

rotation operator (Leu, Wong, and Ji, 1993), and  m utation operator. The 

to tal num ber of offspring generated in each iteration is 80. The links in the 

in itia l population are all randomly generated. The in itia l operator 

production ratios for each test are also random ly chosen in a reasonable 

range. Both the fixed method and adaptive method are used to find the 

optim al solutions. The in itia l operator production ratios of the adaptive 

m ethod are the sam e as the corresponding fixed method.

(5,6)

F ig u re  2.3 An example of traveling salesperson problem

When applying the Wilcoxon signed rank  test, the random  variable 

should be first identified. Let r|im denote the m inim um  travel distance
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achieved by the adaptive method for test i after m iterations, i =  1, 2, 24.

Let yi m denote the m inim um  travel distance achieved by the fixed m ethod for 

test i after m iterations, i = 1, 2, ..., 24. Let v|/. denote the travel distance of 

the optim al solution of test i, i = 1, 2, ..., 24. Let aim denote the norm alized

difference between r|£m and v | aim = (r\im -  i = 1, 2 .......24. Let bim

denote the norm alized difference between yim and  vj/., bim = (yim -  \|/£)/\|/£, i = 1, 

2, ..., 24. The random  variables are Xim = ai m -  bim, i = 1, 2, ..., 24.

The null hypothesis to challenge is th a t  the optim al solution search 

abilities for the two m ethods during the whole process are equally powerful, 

which im phes (I0 = 0. The alternative hypothesis is th a t the adaptive

operator ra te  search method yields a better solution. Instead  of the 

trad itional way of testing  the rejection of the hypothesis with a pre-specified 

level of significance, we find the largest level of significance to support the 

hypothesis th a t the adaptive method is better. The level of significance can 

be thought as the largest probability error to support the argum ent th a t  the 

adaptive method is better.

Since the global m inim um  for each of the tests is unknown, the  best 

solution found for each test from both methods is used as the global 

m inim um . The best solutions found from the  genetic algorithm s all converge 

to very nice trajectories. Therefore, we assum e th a t the differences between 

the global optimal solutions and the best solutions from genetic algorithm s 

are reasonably small. This assum ption is especially tru e  when the focus is on 

the early stages of convergence for the genetic algorithm s.

Table 2.1 illu stra tes  the random  variables, Xim, from the tests. The 

firs t column in Table 2.1 is the test num ber from 1 to 24. The bottom three 

rows of Table 2.1 are different from the other rows which fist the singed 

ran k s of the tested problems. The th ird  row from the bottom contains the
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sum  of signed rank, Ca24» for various num bers of iterations. The second row 

from the  bottom contains the corresponding probability in  normal 

distribution, Z(a). Since the total num ber of problems is 24 for the Wilcoxon 

signed ran k  test, the sum of the signed ranks can be approxim ated from 

norm al distribution as C,a 24 = Z (a )y  4(24 + 1X2 24 + 1) _ jagt

row of Table 2.1 contains the largest level of significance, a , to reject the null 

hypothesis for different num ber of iterations, m. The percentages represent 

the largest probability errors for various stages of the evolutionary processes 

to conclude th a t the adaptive m ethod outperforms the fixed method. For any 

level of significance less th an  50%, the adaptive m ethod statistically 

performs better. For any level of significance around 50%, these two methods 

are of about the same performance statistically. The level of significance 

should be as sm all as possible to support the hypothesis.

Level of Significance;

50 -

40 -

30 -

20 -

10 -

600 800200 1000 1600 1800 20000 400 1200 1400

Num ber of Iterations

F ig u re  2.4 Level of significance versus num ber of itera tions
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T a b le  2.1 Random variables sam pled from the tests

Test -̂ 4,100 ■̂ i.200 y
£,300 -̂ i,400 -̂ £,500 -̂ 4,600 ^,800 -̂ 4,1000 "̂ 4,1500 Y£.2000

1 16 1 -3 1 5 24 14 24 -20 -3
2 -15 -13 -11 -8 -12 -3 -20 -5 -16 -20
3 -21 -14 -2 -2 -19 -23 -13 23 3 5
4 17 12 6 7 15 4 -18 -4 -23 -23
5 -8 -2 8 11 8 -5 -4 -12 -19 -7
6 -6 3 -1 6 4 7 6 3 13 4
7 -20 -11 -7 -5 -7 -6 -2 -13 -11 9
8 9 9 13 4 13 1 7 7 17 11
9 -23 -16 12 17 11 15 -15 -8 -22 -17
10 14 7 14 10 14 9 9 18 15 13
11 7 -5 10 -9 -6 -17 -11 -10 -10 -14
12 10 -15 -16 -13 23 11 16 19 5 8
13 -1 4 -5 -15 10 12 22 17 7 19
14 -22 -17 -18 -12 -22 -14 -24 -1 -18 -1
15 12 -8 -15 -16 -2 10 5 14 6 21
16 4 -10 -20 -3 -3 -21 -23 -6 2 18
17 -18 -23 -22 -14 -17 -22 -10 -11 -21 -10
18 -3 -20 -19 -18 -21 -19 -8 -20 -14 -6
19 24 -6 -4 -19 -9 8 17 2 8 15
20 -19 -19 -23 -20 -18 -2 -3 -9 -9 -12
21 13 -21 -9 -23 -20 18 19 -15 -12 -16
22 -2 -22 -17 -24 -24 -20 -21 -21 -24 -22
23 11 -18 -24 -21 -16 -16 -12 -16 -4 2
24 -5 -24 -21 -22 -1 -13 -1 -22 -1 -24
E -26 -228 -174 -188 -94 -62 -70 -46 -148 -50

Z(a) -0.37 -3.26 -2.49 -2.69 -1.34 -0.89 -1 -0.657 -2.114 -0.714
a 36% 0.06% 0.65% 0.36% 9% 18.8% 15.9% 25.5% 1.73% 23.7%

Figure 2.4 shows the level of significance, oc, versus the num ber of 

iterations. I t is clear th a t during the former iterations, the adaptive method
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converges much faster th an  the fixed operator ra te  method except a t the 

beginning of the  genetic search. This is because the operator rates of the two 

m ethods are still very sim ilar a t the beginning. Among all the problems for 

all stages, the adaptive m ethod statistically outperform s the fixed method. 

F igure 2.4 provides a num erical evidence th a t the adaptation added to the 

increasing-m ating-pool order-based genetic algorithm  actually improves the 

perform ance. Using the sam e method, we can test other variations such as 

d ifferent in itia l populations of the m ating pools, different operator rates, etc. 

We can also verify the speed of convergence during the evolution processes 

in stead  of iust looking a t the final solutions.

One th ing  we need to point out is th a t the adaptive method takes a 

little  b it longer computation tim e than  the fixed method. However, the extra 

com putation tim e added is very sm all («0 .1% ) com pared to the com putation 

tim e for the genetic evolution process. The com putation time needed to vary 

the operator production ratios is also sm all and it  is not calculated for every 

itera tion .



CHAPTER 3

PROBABILITY ANALYSIS

The statistical analysis of genetic algorithm  can only show the num erical 

resu lts  after a lot of trials. I t is desirable to establish a more analytical 

model for perform ance prediction before trying the genetic evolution process. 

Since the genetic algorithm involves a lot of random  processes, the 

establishm ent of a probability model to analyze the expected perform ance of 

a genetic algorithm  is a m ain focus of th is dissertation. Based on the  ideas in 

(Goldberg and Segrest, 1987), we use a simple genetic algorithm  having only 

selection to analyze genetic drift and preferential selection. The simple 

genetic algorithm  contains the following steps:

1. Randomly generate a set of in itia l parents, Un, th a t forms a m ating  pool 

Mh,  w here t represents the num ber of iterations and  t = 0 a t the 

beginning. Decide on the selection probability, co;, of each link  s ;.

2. Select n links (with replacement) according to the selection probabilities 

of the links in the m ating pool to form another m ating  pool

3. Let t = t + 1.

4. Repeat steps 2, 3 until the process has reached a pre-specified maximum 

num ber of iterations.

It is obvious th a t the process is likely to come to a situation  th a t all the

links in  the m ating pool are identical. This situation is defined as follows: 

Definition 11: Let Mfv be the in itia l m ating pool and M T\  be the m ating  pool

after i selections. If there exists a num ber t such th a t Mjt = M\\ for all

k > t, the m ating pool is said to have converged. For a converged

23
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m ating  pool if  all the selection probabilities are identical, i.e. coi = co, 1 

< i < n, the phenomenon of this convergence is called genetic drift. 

O therwise, it is called preferential selection.

According to Definition 11, if  any one of the finks in  the  m ating pool is 

different from the others, there is always a possibility th a t  th is fink will not 

be selected in  the  next iteration. Once it is not selected th e  m ating pool is 

changed, which conflicts w ith the definition th a t Mjt = Mj[ for all k > t. So, 

for a converged m ating pool M n, all finks are identical.

3.1 Markov Chain Analysis

We use the  finite M arkov chain method to analyze the convergence property 

of the genetic algorithm. Suppose we have a sequence of random  variables x0, 

x,, • • and  suppose the possible values of these random  variables are draw n 

from the  set K = {1, 2, ..., /}. Let the random  variable xt denote the sta te  

num ber a t tim e t. The system is in sta te  St a t tim e t if  xt = i. If  a t each tim e t 

there  is a fixed probability p £. th a t the system will be in  s ta te  S- a t tim e /+1 

when the  system  was in sta te  S ; a t time t, we say the sequence of random  

variables forms a Markov chain. The fixed quantities p.. are said to be
v

transition probabilit ies:

Pij = p {* t+i I x i =

We provide the following definitions to describe the s ta tes  in  the evolution 

process.

Definition 12: Define a sta te  S'£= (eH, elH, ..., en),  w here i is the sta te  num ber

sta rtin g  from 1 and ' ĵ eki= n ,  0 < eki < n. eki is the num ber of
k=i
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duplicates of link k in a m ating pool, which is an integer, and  n is the 

population size.

Definition 13: Define a probability vector p  = (pv p 2 p N) where p k is the

probability of stay ing  a t sta te  Sk and N  is the  num ber of all possible 

states.

For th e  genetic algorithm , the m ating pool can be in any of the s ta tes  defined 

by Definition 12. D uring the selection process, the m ating pool changes from 

one s ta te  to another state. The probability of staying in  any of the  sta tes is 

described by Definition 13. For our analysis, t represents the  num ber of 

itera tions and t = 0 stands for the in itia l sta te  (i.e. before any selection). We 

also assum e th a t the firs t state, S v is equal to (1, 1, •••, 1). According to 

Definition 12, the to tal num ber of states N  is

N  = C ( 2 n - l , n ) =  (3.1)

w here n\ is n factorial. Equation (3.1) can be derived from the combination of 

n - l  separators and n objects.

Some states are not reachable from other sta tes because during the 

selection process, it is possible th a t some of the links in the in itia l m ating 

pool will no longer be contained in  the la te r m ating pools (since they are not 

selected in  the selection process). They are impossible to be selected again 

since they are no longer in the m ating pool for the la te r selections. We will 

describe th is reachability problem as follows.

Definition 14: S tate Sj is said  to be la te r th an  sta te  S it denoted by —> Sj, if

for any eki = 0, k = 1, 2, ..., n, ek• is also zero.
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According- to Definition 14, if  sta te  j  is not la te r than  s ta te  i, there 

exists a t least one eld = 0 th a t ekj * 0. Since it  is impossible to select a link if 

the link  is not in  the  m ating pool, it is impossible th a t eu- > 0 w hen eld = 0. 

Thus sta te  j  is not reachable from state  i if  S. is not la te r than  St.

The transition  probability can be found as follows. Let P  be the 

transition  probability m atrix, P=[pi;], 0 < i, j  < N, where

Pi} = p(S i ,S j )=
n \  .. f  \  Vii 

*■*n
j <e 2j >• i=l V,

0

if Si -> Sj

elsewhere

(3.2)

and

n n!
exj\e2j \...enj

Assume th a t in itially  the links in the m ating pool are all different from 

each other. This is very possible when I is large. Thus S X() = (1, 1, •••, 1), i.e.

n. The probability vector of the in itia l state is p 0 = (1, 0, ..., 

0). The probability vector after m iterations is equal to p 0P"‘.

3.2 Probability of Reaching an Absorbing State

Among all the states, some states can not reach other states. They are called 

absorbing states defined as follows.

Definition 15: An absorbing state is a state, denoted by Slt, a t which the

m ating pool is converged. Let Sall denote the set of all absorbing states.



27

According- to Definition 15, for any Sa, there  is an e(po such th a t  e = n, 

eka = 0, for k * <p, 1< £ < n, (p = 1, 2, n. I t is obvious th a t the to tal num ber 

of absorbing sta tes is equal to n.

We are in terested  in the probability of converging into any of the 

absorbing states, in  other words, the probability of a m ating pool becoming 

converged. Since the  events of getting into any of the absorbing sta tes are 

m utually  exclusive, the probability of getting into any of the  absorbing states 

is equal to the sum  of the probabilities of getting into each of the  absorbing 

states. Namely,

P(x  e S J  = £ /> (*  = S J  = ± P ( x  = S J

w here S ak is an absorbing state. We can find P(x e Sall) after m iterations 

from Equation (3.2).

3.3 A Simple Example

Let us look a t a sim ple example. Suppose there are only two finks in the 

m ating pool, i.e. n = 2. The num ber of possible sta tes  is IV = 3. Let S', = (1, 1), 

S2 = (2, 0), S3 = (0, 2). Since the total num ber of s ta tes is only 3, we can not 

assum e th a t the in itia l s ta te  is in S v The in itia l probability vector is p 0 = 

(0.5, 0.25, 0.25) if  the selection probabilities are equal for both finks, co( = co2 

= 0.5. From Equation (3.2) The transition probability m atrix  is equal to

P =
0.5 0.25 0.25
0 1 0
0 0 1
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The probability vector after m iterations is

p„. = p.p" (*)”, i - M i ) ”).

There are two absorbing states, S., and  Ss. The probability of getting 

into the absorbing states is p 2m + p 3m = 1 -  0.5m+1. From this form ula, we can 

find th a t only 6  iterations is needed to exceed 99% probability of getting into 

the  absorbing states. If the selection probabilities are different for the two 

links, p 0 = (2 coI(l-co1), co2, (1 -Oj)2). The probability of getting into the 

absorbing sta tes  is P(x e Sall) = 1 -  (2 co1(l-co1))m+I. For co, = 0 .6 , P(x e SnU) = 1 

-  0.48m+l. I t  is not difficult to prove th a t the probability of getting into the 

absorbing s ta te  in  preferential selection is always higher th an  the probability 

in  genetic drift. For a large cop the probability is very close to 1 even for a 

sm all m. This can explain the phenomenon th a t when the m ating  pool 

contains a fink with a high selection probability, there is a very good chance 

th a t the genetic algorithm  will have a pre-m ature convergence.

Shown above is a M arkov chain analysis for the genetic algorithm  with 

only selection. Although the genetic algorithm  w ith only selection actually is 

not a genetic algorithm  since it can not improve the solution, the study is 

very useful to providing a general idea about how the genetic drift and 

preferential selection affect the genetic algorithm. It also provides an 

evidence th a t the genetic drift is the lower bound for convergence of all kinds 

of preferential selections. In  the next chapter, we will define a better 

reference for studying the convergence of order-based genetic algorithm  and 

compare the results with those from the M arkov chain analysis for th e  above 

example.



CHAPTER 4

AVERAGE LINK DISTANCE

Due to the  random  process involved in  the genetic algorithm , analysis of the 

behavior of genetic algorithm  is very difficult. I t is desirable to establish a 

fundam ental m ethod for analyzing the convergence of the  itera tive process 

due to the random  selection involved in a genetic algorithm . Two general 

methods researchers have used for the formal analysis of genetic algorithm 

are the schem a theorem  (Holland, 1975) and  the M arkov chain  analysis 

(Goldberg and  Segrest, 1987; Nix and Vose, 1992). Schem ata represent 

subsets of binary strings which m ust have certain  b it values in some bit 

positions while the other bit positions can have bit values of e ither 0  or 1 . 

The schem a theorem  provides useful inform ation about the genetic search 

space in  term s of genes, bu t it can not show the s ta tus of convergence for the 

m ating pool.

The early M arkov chain analysis in (Goldberg and  Segrest, 1987) for 

genetic algorithm s is also based on genes. Some recent research works of the 

genetic algorithm  using M arkov chain, such as (Nix and  Vose, 1992; and 

Suzuki, 1993), are based on links. They showed th a t the relationship 

between links plays an im portant role when analyzing the actual converge 

behavior of the genetic algorithm. The M arkov chain analysis uses a 

transition  probability m atrix for analyzing the convergence of a genetic 

algorithm. Because of the trem endous m atrix size and the huge am ount of 

calculations required, it is com putationally prohibitive to use the M arkov

29



chain analysis for the estim ation of convergence in  applying genetic 

algorithm s to practically all real problems.

To analyze the convergence behavior of the genetic algorithm , we 

devise a num erical index, called average link distance, which describes the 

overall d issim ilarity  relationship among the links. In  th is chapter, we will 

define th is num erical index and use it  to analyze the convergence of order- 

based genetic algorithms. We will show how the expected average link 

distance can be obtained with the use of M arkov chains. In  the  next chapter 

we will develop a new and better way for obtaining the expected average link 

distance w ithout the use of Markov chains. The link distance is defined as 

follows:

Definition 16: Two links <j> = ( <) >, , <) >, , . (p = ((Pi,cp2 ,...,cp„) contain genes 

which are perm utations of integers, where <f>; e X and <p£ £ N , i =  1 , 2 , 

..., n, and  <j)£ * fy, cp£ * qv if  i * j . Let m denote the num ber of (<t>£, (p£) 

pairs  such th a t <|>£ * cp£, i = 1, 2, ..., n. I t is obvious th a t m e {0, 2 , 3, ..., 

n}. Define the link distance betw een the two links as:

The fink distance is useful as a reference to represen t how much the 

two finks u nder consideration in the m ating pool are different from each 

other. According to Definition 16, we can find the average fink distance for a 

m ating pool M n. Let d  denote the average of all fink distances,

if m > 1 

if m = 0
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For each s ta te  St, there is a corresponding average link  distance di. It 

is easy to show th a t if  is an absorbing state, d { = 0. We can th ink  of d  as

an indicator of convergence. The sm aller d  is, the closer the  m ating  pool is to

convergence. We can also find the expected average link distance after m 
iterations of a m ating pool. Let E(Dm) denote the expected average link

distance, w here Dm is the average link  distance of the m ating  pool after m 

iterations,

= (4-D*=i

where d t is the average link distance of sta te  i, p im is the corresponding 

probability of staying in state i after rn iterations, and N  is the to tal num ber 

of states. I t is easy to show th a t when a m ating pool has converged, D = 0. 

The average fink distance of a m ating pool provides a num erical value 

indicating w hether the finks in the pool are very different from each other.

4.1 Applying to the Two-Link Example

Let us look a t the example in  Section 3.3 again. Since there are only two 

finks in  the m ating pool, the num ber of possible sta tes is N  = 3. S ;=(l, 1), 

S2=(2, 0 ), S3=(0, 2 ). d.1 = d.i = 0 . L e td  = d,. From equation (4.1), the average 

fink distance is Dm = 0.5m+,d. If  the selection probabilities are different for 

the two finks, p 0 = (2 co t( l—co j), go2, (1 -co,)2). The probability of getting into the 

absorbing sta tes is P(x e StM) = 1 -  (2 co j(l—c o T h e  expected fink distance 

is E ( D J  = (2 oo,(1 -co,))m+/d. For a>, = 0 .6 , P(x e S J  = 1 -  0.48"1 and  Dm =

0.48,,,+/d.
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4.2 Average Link Distance of the Initial Mating Pool

Besides the percentage change of the average link distance described 

above, we need to know the initial average link  distance of a m ating  pool in 

order to find the average link distances during the iterations. We will s ta r t 

from the largest m ating pool (without duplication of links) which is the union 

of all links formed by all possible perm utations of genes. For any link  of 

length I, the  total num ber of gene perm utations is /!. The average fink 

distance is:

_ U d i s ^ S j )
D = -j=i.

Table 4.1 shows the average link  distances calculated for sm all I's. 

Since E quation (4.2) involves several factorials, it is technically impossible to 

calculate the average link distance for a large I. Fortunately, we can use 

random  sam pling to create m ating pools and find  the average fink distance 

from the m ating  pools to estim ate the average link distance of random ly 

created in itia l m ating pools. Instead  of try ing  to find the average fink 

distance from equation (4.2), we can use a large num ber of random  sam ples 

to create in itia l m ating pools with various link  lengths and population sizes.

T a b le  4.1 Average Link D istance from Equation (4.2)

Link Length (I) Average Link D istance
2 1 . 0 0

3 1.40
4 2 . 1 0

5 3.03
6 4.01
7 5.00
8 6 . 0 0

2)
(4.2)
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Figure 4.1 shows the comparisons of the link distance distributions for 

the calculated distribution from equation (4.2), denoted as Cal. in  F igure 4.1, 

and  five sam pled data  with population size ranging from 40 to 80 links. The 

link  lengths are 5 and  6  respectively for Figure 4.1a and Figure 4.1b. Table

4.2 and 4.3 show the  average fink distances for all the trials. The average 

link  distances from sam pled data  are all very close to 3.0 for th e  case of fink 

length equal to 5. The average fink distances from sam pled d a ta  for the  case 

of link length  equal to 6  are all very close to 4.0. The comparisons of sam pled 

data  and the  calculated data are lim ited because of the difficulty of finding 

equation (4.2) for large fink length. The average fink distance of the largest 

link length  we can find is 6.00 for link length equal to 8 . Among the random  

sam pling tests, the larger the link length is, the closer are the  average link 

distances of the sam pled data to the calculated results from equation (4.2). It 

is obvious th a t  the sam pled data can be used to estim ate the  average link 

distance of the in itia l m ating pools.

According to the tested results, the average link distance is 

independent of the population size. It is only related to the link  length. 

F igure 4.2 shows the expected average fink distances from random  sampling. 

The population sizes of all the sam pled m ating pools are 100 in  F igure 4.2. 

Table 4.4 shows the num erical values for Figure 4.2. I t  is in teresting  th a t 

the  expected average link  distance approximately approaches 1 - 2  for I 

larger th an  4 no m atter w hat the population size and the link  length  are.



T ab le  4.2 Average Link Distance for Figure 4.1a
Population Size (n) Average Link Distance

40 3.086
50 3.058
60 3.064
70 3.059
80 3.041

T ab le  4.3 Average Link Distance for Figure 4. lb
Population Size (n) Average Link Distance

40 3.990
50 4.055
60 4.038
70 4.047
80 4.024

'ir>

0 1 2 3 .|
L i n k  Dis t / incc!

F ig u re  4.1a Comparison of Distribution of Link Distances, Link Length
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T a b le  4.4 Average Link Distance For Figure 4.2
Link Length (I) Average Link Distance

5 3.021
6 4.000
7 5.019
8 6.027
9 7.006

1 0 8.024
15 13.005
2 0 18.007
25 23.001
30 27.970
35 32.995
40 38.004
45 43.015
50 47.975
60 58.000
70 67.998
80 77.996
90 87.972

1 0 0 98.007



CHAPTER 5

CHANGE OF AVERAGE LINK DISTANCE DUE TO SELECTION

considering- the coding method in  the previous chapter. We have also 

discussed the average link distance of a randomly generated m ating pool for 

order-based genetic algorithm in C hapter 4. Based on the resu lts of Chapter 

3 and C hapter 4, we should be able to calculate the expected average link 

distance due to selection if the M arkov chain can be found. In  th is chapter, 

we will focus on the effect of random selection to the average link  distance of 

the m ating pool. Instead  of going through a big M arkov probability matrix, 

which is com putationally expensive, a better way of obtaining average link 

distance is desired. We have made a fundam ental analysis leading to the 

estim ation of the average link distance w ithout the use of M arkov probability 

m atrix. This will be discussed below. We will use the  simple genetic 

algorithm  in  C hapter 3 as an example in  the discussion.

5.1 Selection Probability of Link Pairs with Link Distance Equal to Zero

Again, we assum e th a t the in itial m ating pool has no identical links. The 

in itial sta te  is thus S  = (1, 1, ..., 1). Let n denote the population size of the 

m ating pool. After the in-th selection, the probability of creating link  pairs 

with link  distance equal to zero is

We have discussed random selection for general genetic algorithm s without

n

(5.1)

37
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w here m denotes the num ber of iterations, and coim is the probability of link i 

being selected after m iterations (or selections). For the general case where 

the in itia l probabilities may be different for different links, we have

co.i,m n

/= !

Let p (d m+l = 0 ) denote the probability of creating link  pairs w ith link distance 

equal to zero after m selections. Assume th a t the selection probabilities are 

equal for all the links in  the in itial mating, th a t is, oo;o = 1 In for all i's. Based 

on (5.1), we have

= 0)=  I < ?  ,> •« I  —  I = A Z < -  (5-2)
i= l  1=1 \  n  J

The to tal num ber of h n k  pairs with link  distance equal to zero in the m ating 

pool after m selections, denoted by y m, is

_  V  ^ i ' , m ( e i,m ~  _  1  A  2 / c  o \

y m ~ A-i 2  — 2 — ~2 C -̂3)

We can combine equation (5.2) and (5.3) to obtain

p f c . , = 0 )  = - L i > ,>  = %  + -  (5.4)n "  n n

The expected value of y m, denoted by E(ym), is equal to p (d m = 0) m ultiplied 

by the  to tal num ber of h n k  pairs in the m ating pool, i.e.,



E ( y J  = p (d„ = 0 )-C (n,2 ) = p(d„  = 0 ) ^ - l >

39

(5.5)

The expected value ofy  can be also derived from equation (5.4) as

p (d „„  = 0) = ± ± e :, :  = ^ 4  (5.6)
n 7^  n n

Substitu te (5.5) to (5.6), we have

P(dm+l = 0) = + -  = —  p (d m = 0) + -  (5.7)
n, n n n

Equation (5.7) is a difference equation of p (d m = 0). By solving equation (5.7), 

we have

p(dm = 0 ) = 1 - 7 1 - 1

71
(5.8)

By substitu ting  (5.8) in  (5.5), the expected num ber of h n k  pairs  w ith zero 

h n k  distance is

E ( y m) =
n ( n - l ) m

1—
1 1

{ n ) (5.9)

Assume th a t the expected average h n k  distance of the h n k  pa irs  whose hnk  

distance is non-zero is equal to the average h n k  distance of the in itial 

population. This assum ption is reasonable because the average h n k  distance 

is independent of the population size of a random ly created m ating  pool, as
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shown previously in C hapter 4, and the selection process is random . The 

expected average h n k  distance is then:

  / 1 \ m s - \ m
E(Dm ) = p(dm=0)  0 + [ l - p ( d „ = 0 ) ] D =  —  D =  1 - i  D (5.10)

\  n J \  n )

w here D  denotes the in itial average h n k  distance of the  m ating  pool. Since 

the preferen tial selection has a h igher chance to converge faster th an  the 

genetic drift, as described in Chapter 3, equation (5.10) is a upper bound for 

ah  selection processes.

From  (5.10) the expected reduction of average h n k  distance for each 

itera tion  is 1 In. Equation (5.10) apphes to the resu lts  in  Section 4.1 which 

were obtained from the same example as th a t in  C hapter 3.3. Since n = 2  in 

th is example, the ra te  of deduction of the average h n k  distance, 1 -  1 In, is 

equal to 0.5. In itially  the h n k  distance is either 0 or d . From equation (5.10), 

the expected average h n k  distance after m itera tions is E ( d ) = 0.5m+Id ,  

which is the sam e as the expected average h n k  distance w ith the exact 

solution from C hapter 4.

5.2 Comparison of Predicted Percentage Deduction of Expected Average 
Link Distances with Experimental Results

To verify equation (5.10), we designed some num erical experim ents with

random  sam phng and random  selection. We tested  various simple order-

based genetic algorithm s for different h n k  lengths and  population sizes.

Figure 5.1 shows the average reduction ratio  of the average h n k  distance per

itera tion  for the first ten iterations of some of the tests w ith the same

population size, which is 20, b u t w ith the hnk  length varied  from 10, 20, 30,
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40, 50, 60, 70, 80, 90, to 1 0 0 . Since the expected average link  distance 

change per iteration  is 1 In = 0.05, the ratio in Figure 5.1 is expected to be 5%. 

F igure 5.2 shows th e  average of the deduction ratios of the  average link 

distances from the firs t ten  iterations of the tests w ith the sam e link  length, 

which is 10, bu t w ith the  population size varied from 10, 20, 30, 40, 50, 60, 70, 

80, 90 to 100. The dotted fine in Figure 5.2 shows the expected ratio  from 

equation (5.10). All th e  test results are very close to the expected average 

link  distances calculated from equation (5.10). F igure 5.3 shows how the 

average link distance changes during the itera tions from one of the  above 

tests  w here the link  length  is 10 and the population size is 100. The dotted 

line in  Figure 5.3 is the  expected average h n k  distance change from equation 

(5.10). Again there is a very good agreement.

Percentage Reduction
10.0 T

9.0 -

7.0

6.0  -

0.0
30 9020 40 50 70 80 1006010

Link Length

F ig u re  5.1 Percentage Deduction For Various Link Length, 
Population Size = 20
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Percentage Reduction
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F ig u re  5.2 Percentage Deduction for Various Population Size,
Link Length = 10

Average Link Distance
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F ig u re  5.3 Average Link Distance During the  Iterations, 
Population Size = 100, Link Length = 10



CHAPTER 6

EFFECT OF MUTATION OPERATOR

We did not include any operator in the discussion of the simple genetic 

algorithm  in  C hapter 5. In th is chapter, we will introduce the mutation 

operator and  study its effect on the expected average link  distance for the 

order-based genetic algorithm. The combined effect of the  selection and the 

m utation  operator will be discussed in chapter 7. We first provide the 

definition for the m utation operator.

Definition 17: A m utation operator is a mapping from a parent  hnk  to an

offspring hnk  as fohows: Let Om denote the m utation  operator, Om(s)

= s', where s = {sp s2 sfl}, s ' = {s',, s'2, ..., s',(}. There exist i and j, i *

j, 1 < i , j < n ,  such th a t sk = s'k, 1 ^ k < n, k * i, j, and  s; = s Sj = s

W ith the m utation operator, the genetic algorithm  becomes:

1 . Randomly generate a set of in itia l parents, Un, th a t forms a m ating pool

M j t, where t represents th e  num ber of iterations and  t = 0  a t the 

beginning. Decide on the selection probability, co., of the hnks. Select a 

num ber between 0  and 1 for the mutation operator rate, denoted as r.

2. Select n hnks (with replacem ent) according to the selection probabilities 

of the hnks from the m ating pool to form another m ating pool M '^1. 

Let th e  selection probability co1. of hn k  i in the m ating  pool be equal 

to

ffl =t ,m
e ,co • ̂it i

;=i
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3. For each h n k  in  M 1̂ ,  attach a random  draw ing from a num ber between 0 

and  1 . If  the drawing is less than  r, apply the m utation operator to the 

h n k  to create a new hnk  and replace the original h n k  in  the m ating  pool 

M 1̂  w ith  it.

4. Let t = t + 1.

5. R epeat steps 2, 3, and 4 until the process has reached a pre-specified 

num ber of iterations.

For each h n k  distance, there are two hnks associated with it. After the 

m utation  operator is apphed to the m ating pool, there  are th ree  possible 

cases: ( 1) none of the hnks has been changed, (2 ) one of the hnks has been 

changed, and  (3) both of the hnks have been changed. The effect of m utation 

operator to the hnk  pairs with zero hnk  distance is different from th a t to the 

other h n k  pairs. We will discuss the effects of the m utation operator to the 

h n k  pairs w ith non-zero h n k  distances in Section 6 . 1  and  the h n k  pairs with 

zero h n k  distances in Section 6.2.

6.1 Link Pairs with Non-Zero Link Distance

Let the h n k  distance d  ̂ = d ( s it sp, where s ;, s- are two different hnks 

arb itra rily  selected from a m ating pool. Let d\j denote the h n k  distance after 

th e  operator is apphed. For those hnk  pairs w ith h n k  distance greater than  

zero b u t sm aller than  4, the sub-cases (to be discussed below) th a t involve the 

reduction of hnk  distance greater than  the h n k  distance itself are simply 

impossible and therefore the probability is 0  for them.

The effect of any operator on the h n k  distance di; can be sum m arized 

in  the  following:

Case 1 : None of the hnks is affected by the operator,
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Case 2: Only one of the  hnks is affected by the operator,

Case 3: Both of the Hnks are affected by the operator.

Let r denote the operator rate. The individual probabilities for the  three 

cases are:

Case 1 : p x = (1 - r ) 2 

Case 2 : p 2 = 2 r ( l- r )

Case 3: p :i = j2

The effect of m utation on the Hnk distance for each case is given as foHows: 

Case 1 : no effect. d';i = gL.y y

Case 2:

Let the genes of the loci selected for exchange be C and D for the changed 

Hnk and they correspond to A and B for the unchanged Hnk. I t is obvious 

th a t  A * B and C * D since they are perm utation Hnks. Figure 6 . 1  shows 

the relationship betw een the Hnks.

A B

C D

A B

D C

F ig u re  6.1 Relationship between the  Hnks of a Hnk pa ir

The possible outcomes for Case 2  are:

Sub-case 1 : A = C and B = D. d'u = d u + 2.y y

Sub-case 2 : (A = C and B * D) or (A * C and  B = D). d\j = d + 1 .

Sub-case 3: (A * C and B * D) and (A = D or B = C but not both), d = 

d i} -  1 .

Sub-case 4: A = D and B = C. d\: = d u -  2.y y
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Sub-case 5: A * C * B * D . d 'y  = dy .

For sub-case 1 above, the probability of the sub-case being true  is 

equal to the probability of selecting two objects from I objects such th a t  these 

two selected objects are from the group of identical gene pairs. Since the link 

distance before the operation is dy ,  there are d y  + 1  different gene pairs  and  l -  

d y - 1 identical gene pairs. So, the probability is C(d£-+1 , 0 ) • C ( l - d y - 1 , 2 ) / C(Z, 

2). For all the  other sub-cases, we will not describe the derivation b u t only 

show the results.

The individual probabilities for the sub-cases of Case 2 are:

Sub-case 1 : C ( d y + 1 ,  0)*C(Z-cZy-l, 2 ) / C(Z, 2 )

Sub-case 2 : C(d^+1 , l ) mC ( l - d y - l ,  1) / C ( l ,  2 )

Sub-case 3: [C(d. + 1 , 2)*C(Z-dy- l ,  0 ) / C(Z, 2 )] • 2 (l/(Z-2 ))[l-(l/(Z -2 ))] 

Sub-case 4: [C(d. + 1 , 2)-C(Z-cZi/- l ,  0 ) / C(Z, 2 )] • (l/(Z-2))(l/(Z-2))

Sub-case 5: [C (d.+ 1 , 2 ) • C(Z-d. - l ,  0 ) / C(Z, 2 )] • [l-(l/(Z-2))][l-(l/(Z-2))] 

Case 3:

Let the genes of the loci selected for exchange be A and B for the  firs t link 

and  C and D for the second link. The loci selected for link one and  the loci 

selected for link  two have three possible relations:

Sub-case 1 : Both of the loci are a t the  sam e place (Figure 6.2). The 

probability is 1 /C(Z, 2 ).

Sub-case 2: Only one of the loci is a t the  same place (Figure 6.3). The 

probability is 2 ZC(/-1 , 2)/[C(/, 2 ) ' C ( l ,  2 )]

Sub-case 3: Both of the loci are a t different places (Figure 6.4). The 

probability is C(/-2, 2)/C(I, 2)
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A . . . B . . .

C D

. . . B . . . A

D C

F ig u re  6.2 Relationship of the links of a hnk  pair before and  after
the m utation operation.

. . . A B . . . F

C . . . E D

B . . . A F . . .

. . . D E C

F ig u re  6.3 Relationship of the hnks of a hnk  pair before and  after
the m utation operation.

A F B H . . . B F A H
— >

E C G D . . . E D G C

F ig u re  6.4 Relationship of the hnks of a hnk  p a ir before and after
the m utation operation.

The possible outcomes for the three sub-cases of Case 3 are:

Sub-case 1: There is no change for the hnk  distance. d\j = d 

Sub-case 2 :

Let E denote the  gene a t the corresponding locus of B in  the second 

h n k  and  F denote the gene a t the corresponding locus of D in  the first 

hnk . The relationships of the two hnks before and after the m utation 

operations are illustra ted  in Figure 6.3.

The possible situations and outcomes on the h n k  distance are:

Sub-case 2.1: A = C, B = E, D = F, B * D, A * E, and  C * F. d\- = dt-+3.

Sub-case 2 .2 : A = C, B = E, D * F, B * D, A * E, and  C *= F. d'- = d-+2 .

Sub-case 2.3: A = C, B * E, D = F, B * D, A * E, and  C * F. d';j = d^+2.
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Sub-case 2.4: A = C, B * E, D * F, B = D, A * E, and C * F. d ' y  = d y .

Sub-case 2.5: A = C, B * E, D * F, B * D, A * E, and C * F. d ' y  = dy- l .

Sub-case 2.6: A * C, B = E, D = F, B * D, A * E, and C * F. d'^ = d ;̂ +2.

Sub-case 2.7: A * C, B = E, D * F, B * D, A * E, and C = F. d';; = d lf.i j  i j

Sub-case 2.8: A * C, B = E, D ^ F, B * D, A *= E, and  C ^ F. d'-; = d,-,+l.
v  v

Sub-case 2.9: A * C, B * E, D = F, B * D, A = E, and C * F. d',; = d - .
v  v

Sub-case 2.10: A * C, B ^ E, D = F, B * D, A * E, and C *■ F. d ' n = d,;+l.
i j  IJ

Sub-case 2 .1 1 : A *■ C, B * E, D *■ F, B = D, A = E, and C = F. d 'y  = 

d i f  3.

Sub-case 2.12: A * C, B * E, D * F, B = D, A = E, and C F. d 'y  = 

d - - 2 .y
Sub-case 2.13: A * C, B * E, D * F, B = D, A *■ E, and C = F. d'„ =

v

d- -  2 .y

Sub-case 2.14: A * C, B * E, D * F, B = D, A * E, and C * F. d'^ = 

d - 1 .y

Sub-case 2.15: A * C, B * E, D * F, B * D, A = E, and C = F. d 'y  -  

d i f  2 .

Sub-case 2.16: A * C, B * E, D * F, B * D, A = E, and C *■ F. d 'y  = 

d i f l -

Sub-case 2.17: A * C, B * E, D * F, B ^ D, A * E, and C = F. d ' y  =

d y - 1 .

Sub-case 2.18: A * C, B * E, D * F, B * D, A * E, and C * F. d'^ = d̂ -. 

For sub-case 2.1 above, the probability of the sub-case being true  is 

equal to the probability of having three identical gene pairs {A, C}, {B, E}, 

and  {D, F}. The condition of the sub-case is th a t  {A, C} pair is from the  same 

loci. The probability of the sub-case is equal to the probability of selecting 

one gene pair from the identical gene pairs, and  then  selecting two other
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gene pairs  also from the identical gene pairs. The probability of selecting a 

gene, A, among I genes such th a t the gene pair {A, C} is identical is CQ-d^-1,

1 ) / C(I, 1 ). The probability of selecting the other two genes, B and  D, among I 

-  1 genes such th a t the gene pairs {B, E} and {D, F} are identical is CQ-d^-2,

2 ) / C(Z-1 , 2). According to the rule of conditional probability, Prob{A = C and 

B = E and  D = F} = Prob{A = C} • Prob{ B = E and  D = F  | A = C}. The 

probability of sub-case 2 . 1  is CQ-d^-l,  l)*C(Z-cZi;- 2 , 2 ) / [C(Z, 1)* G(Z—1 , 2 )]. 

For all the other sub-cases, again we will not describe the derivation bu t only 

show the  results.

The probabilities of the situations of sub-case 2  are:

Sub-case 2 . 1 : C(Z-dy- l ,  l)-C(Z-cZtf-2 , 2 ) / [C(Z, 1) • C(Z-1 , 2 )]

Sub-case 2 .2 : C(Z-dy- l ,  1) - [C(Z-cZ^-2 , l)-C(cZ..+ l, l)/2 ] / [C(Z, 1) - C(Z-1 , 

2)]

Sub-case 2.3: C(Z-dy- l ,  1)• [C(l~di f 2, 1 )- C(dy+1, l)/2] / [C(Z, 1 ) -C(Z-1 , 

2)]

Sub-case 2.4: [C(Z-dy- l ,  l)*C (dy+ l, 2 ) / [C(Z, 1)*C(Z-1 , 2)]]*(l/(Z-2)) 

Sub-case 2.5: [C(Z-cZy- l ,  1)-C(cZ;j+ 1 , 2 ) / [C(Z, 1)*C(Z-1 , 2 )]] - [1 -  

(1 /(Z—2))]

Sub-case 2 .6 : C(Z-dy- l ,  2)-C(cZij+ l, 1) / [C(Z, 1) * C(Z-1 , 2 )]

Sub-case 2.7: [C(c^+1 , 1) • [C(Z-cZ^-l, 1 )*C (dijt l)/2 ] / [C(Z, 1)*

C(Z—1, 2 )]] • (1 /(Z—2 ))

Sub-case 2 .8 : [C(dtf+ 1 , l)*[C(Z-d..-l, 1)-C (d y, l)/2 ] / [C(Z, 1)*

C(Z—1 , 2)]] • [1—(1 /(Z—2 ))]

Sub-case 2.9: [C(d.+ 1 , 1) • [C(Z-cZ.-l, 1)-C(dy, l)/2] / [C(Z, 1 )-

C(Z—1, 2)]] * (1 /(Z—2 ))

Sub-case 2 .1 0 : [C(cZy+ l, 1) - [C(Z-d0--l, l)*C(dy, l)/2] / [C(Z, 1)-C(Z-1, 

2)]]*[l-(l/(Z-2))]
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Sub-case 2 .1 1 : [C(d£;+ 1 , 1)*C (diJt 

(l / ( l -l ))  • ( l /( /- 2 )) • ( l/( /- 2 ))

Sub-case 2.12: [0 (^+ 1 , 1 )*C(g^,

(1/(Z-1)) - (l/(Z-2 )) * [l-(l/(Z-2 ))]

Sub-case 2.13: [C(cZy+l, l J 'C ^ - ,

( l/( /- l) )  • [l-(l/(Z -2 ))] • [(l/(Z-2))]

Sub-case 2.14: [C(cL+l, 1)*C(gL,
v  v

(1 /(Z-1)) • [1 —(1 /(Z—2 ))] • [1 —( 1 /(Z—2 ))]

Sub-case 2.15: [CCd^+l, l)*C(c^,

[1 - ( 1 /(Z-1))] * (l/(Z-2 )) • (l/(Z-2 ))

Sub-case 2.16: [C(d^+1 , 1 ) 'C (d ij,

[1-(1/(Z-1))] • ( 1 /(Z—2 )) • [1 —( 1 /(Z—2 ))]

Sub-case 2.17: [C(d^+1 , l ) , C(dij,

[1-(1/(Z-1))] • [1 —( 1 /(Z—2 ))] • (11(1-2))

Sub-case 2.18: [C(c^+1 , 1 ) 'C (d ij,

[1—(1/(Z—1))] ‘ [l-(l/(Z-2»] • [1 —( 1 /(Z—2 )

Sub-case 3:

Let E and  G denote the genes in the second link which are a t the 

corresponding loci of A and B, F and  H denote the genes in  the  first 

h n k  which are at the corresponding loci of C and D in  the second hnk. 

The relationships for the two hnks before and after the m utation 

operations are illustrated in F igure 6.4.

The effect of the m utation operator on link distance can be studied 

according to the relationships between the  four gene pairs  before the 

operation, i.e. (A, E), (B, G), (C, F), and  (D, H), and the four gene pairs 

after the operation, i.e. (A, G), (B, E), (C, H), and (D, F). The possible 

situations are:

2 ) / [C(Z, 1) * C(Z—1 , 2)]]-

2 ) / [C(Z, 1 ) * C(Z—1 , 2)]]-

2 ) / [C(Z, 1) • C(Z—1 , 2)]]-

2 ) / [C(Z, 1)-C(Z-1 , 2)]]-

2 ) / [C(Z, 1) * C(Z—1 , 2)]]-

2 ) / [C(Z, 1)-C(Z-1 , 2 )]]-

2 ) / [C(Z, 1) * C(Z—1 , 2 )]]*

2) / [C(Z, 1 ) * C(Z—1 , 2 )]]*
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Sub-case 3.1: All the four original gene pairs are the same. In  this 

case all the  four modified gene pairs after the operation are 

different. d \ -  = c^+4.

Sub-case 3.2: Three of the four original gene pairs are the sam e and 

the other one is different. This different pair can be one of {(A, E), 

(B, G)} p a ir or one of {(C, F), (D, H)}. All the four modified gene 

pairs are different. d\j = d {+  3.

Sub-case 3.3: (A = E and B = G) and (C * F and D * H) and (C = H and

D = F). d ' y  = dy .

Sub-case 3.4: (A = E and B = G) and (C * F and D * H) and (either (C = 

H, D * F) or (C * H, D = F)). d'.. = d. + l.y y
Sub-case 3.5: (A = E and B = G) and (C * F and D * H) and (C * H and 

D * F ) . d ' y - d y + 2 .

Sub-case 3.6: (C = F and D = H) and (A * E and  B * G) and (A = G and

B = E). d 'y  = dy .

Sub-case 3.7: (C = F and D = H) and (A *■ E and B * G) and (either (A = 

G, B * E) or (A * G, B = E)). d \ -  = d £;+l.y y

Sub-case 3.8: (C = F and D = H) and (A * E and  B ^ G) and (A * G and 

B *E ). d 'ii = di:+2.y y

Sub-case 3.9: (either (A = E, B ^ G) or (A * E, B = G)) and (either (C = 

F, D ^ H) or (C * F, D = H)). d'£, = d ;;+2.y y

Sub-case 3.10: Only one of the four original gene pairs is the same, 

and  all the others are different. This same pair can be one of {(A, 

E), (B, G)} pa ir or one of {(C, F), (D, H)}. In  the modified gene pairs, 

the two gene pairs which do not contain either of the two genes 

from the sam e gene pair before the modification are the same. For
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example, A * E, B * G, C * F, D = H, A = G, B = E, C * H, D * F. d 'y  

= d - ~  1 .y
Sub-case 3.11: Only one of the four original gene pairs is the same, 

and  all the  others are different. This sam e pair can be one of {(A, 

E), (B, G)} p a ir or one of {(C, F), (D, H)}. In  the modified gene pairs, 

one of the two gene pairs which do not contain either of the two 

genes from the same gene pair before the modification is the same 

and the other is different. For example, A * E, B * G, C ^ F, D = H, 

A = G , B * E ,  C * H , D * F .  d ,ij = d ij .

Sub-case 3.12: Only one of the four original gene pairs is the same, all 

the others are different. This same pair can be one of either {(A, E), 

(B, G)} p a ir or one of {(C, F), (D, H)}. In  the modified gene pairs, 

both of the two gene pairs which do not contain e ither of the two 

genes from the sam e gene pair before the modification are different. 

For example, A * E, B * G, C * F, D = H, A * G, B * E, C * H, D * F. 

d '^ d q + 1 .

Sub-case 3.13: A * E, B * G, C * F, D * H, A = G, B = E, C = H, D = F.

d 'y  = d y - 4 .

Sub-case 3.14: A * E, B * G, C * F, D * H, A = G, B = E, C = H, D * F.

d 'y  =  d y - 3.

Sub-case 3.15: A * E, B * G, C * F, D * H, A = G, B = E, C * H, D = F.

d 'y  = d y ~  3.

Sub-case 3.16: A * E, B * G, C * F, D * H, A = G, B = E, C * H, D * F.

d : y  =  d i F  2 .

Sub-case 3.17: A * E, B * G, C * F, D * H, A = G, B * E, C = H, D = F.

d'ij  =  d y ~ \ .
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Sub-case 3.18: A * E, B * G, C * F, D * H, A = G, B * E, C = H, D * F.

d '  - — d - 2 .y y

Sub-case 3.19: A * E, B * G, C * F, D * H, A = G, B * E, C * H, D = F.

d =  d - ~  2 .  y y

Sub-case 3.20: A * E, B * G, C * F, D * H, A = G, B * E, C * H, D * F.

d '  ■■ — d - — 1 .y y

Sub-case 3.21: A * E, B * G, C * F, D * H, A * G, B = E, C = H, D = F.

d ' -  =  d - - 3 .y y

Sub-case 3.22: A * E, B * G, C * F, D * H, A * G, B = E, C = H, D * F.

d'ij  = d i f 2.

Sub-case 3.23: A * E, B * G, C * F, D * H, A * G, B = E, C * H, D = F. 

d '  - = d - ~  2.y y

Sub-case 3.24: A * E, B * G, C * F, D * H, A * G, B = E, C * H, D * F.

d 'ij =  d ij~l -

Sub-case 3.25: A * E, B * G, C * F, D * H, A * G, B * E, C = H, D = F.

d 'ij = d ij~2 -

Sub-case 3.26: A * E, B * G, C * F, D * H, A * G, B * E, C = H, D * F.

d'ij = d i f  1.

Sub-case 3.27: A * E, B * G, C * F, D * H, A * G, B * E, C * H, D = F. 

d 'u  = d i f  1.

Sub-case 3.28: A * E, B * G, C * F, D * H, A * G, B * E, C * H, D * F. 

d'-  =  d - .I J  IJ

We will show the derivation the sub-case 3.10 in  Appendix B since the 

other sub-cases are either easier to be obtained or easy to follow after sub

case 3.10.

The probabilities of the above situations are:
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Sub-case 3.1: CCc^+l, 0 )*C(Z-cZ0.- l , 2)-C(g^+1, 0)*C (/-d£j-3 , 2 ) / 

[C(Z, 2 ) • C(l~2, 2 )].

Sub-case 3.2: 2*C(eZy+l, 0)*C(Z-dy- l ,  2 )-C (dy+l, l)-C(Z-cZy-3, 1) / 

[C(Z, 2 ) * C(Z—2 , 2 )].

Sub-case 3.3: [C(dy+ 1 , 0 )-C(Z-rf0- - l f 2)-C(cZ..+l, 2 ) • C(Z-d.-3, 0 ) /

[C(Z, 2 ) • C(Z—2 , 2 )]] • (1 /(Z—3)) • (1 /(Z—3)).

Sub-case 3.4: [C(dy+ 1 , 0)*C(/-cZi;- l ,  2)*C(cZy+l, 2 )*C(Z-cZ^-3, 0 ) /

[C(Z, 2 ) • C(Z-2 , 2 )]] • 2  • (1 /(Z—3)) • [l-(l/(Z-3))].

Sub-case 3.5: [C(cZi;+ l, 0) • C(Z—cẐ—1 , 2) •C(g^+1 , 2 ) 'C (l-d ij-3, 0) /

[C(Z, 2) • C(Z-2 , 2)]] • [1—(1/(Z—3))] • [1 —(1 /(Z—3))].

Sub-case 3.6: [C(cZ.+l, 2)*C(Z-tZy- l ,  0 )-C(cZ.-l, 0)-C(Z-cZy- l ,  2 ) /

[C(Z, 2 ) • C(Z—2 , 2 )]] • (1 /(Z—3)) • (1 /(Z—3)).

Sub-case 3.7: [C(dy+ 1 , 2 )-C(Z-d»-l, 0 ) * 0 (^ -1 , 0)*C(Z-cZy- l ,  2 ) /

[C(Z, 2 ) • C(Z—2 , 2 )]] • 2  • (1 /(Z—3)) ■ [l-(l/(Z-3))].

Sub-case 3.8: [C(cZ.+l, 2 )-C(Z-dy- l ,  0 )*C (d .-l, 0)*C(Z-cZy- l ,  2 ) /

[C(Z, 2 ) • C(Z—2, 2 )]] • [1 —(1 /(Z—3))] • [1 —(1 /(Z—3))].

Sub-case 3.9: C(g^.+ 1 , l)*C(Z-cZ^-l, 1)*C (d-, 1) • C(Z-d^-2 , 1) / 

[C(Z, 2 ) • C(Z—2, 2)].

Sub-case 3.10: 2*[C(dy+ l> 2)*C(Z-dy- l ,  0)*C(dy- l ,  1) ■ C(Z-rf»-l, 1 ) / 

[C(Z, 2 ) • C(Z-2, 2 )] • (Z—4) / (Z-2)(Z-3)2.

Sub-case 3.11: 2-[C (dy+ l f 2)-C(Z-cZy- l ,  0)*C(dy- l ,  l)*C (Z -d .-l, 1) / 

[C(Z, 2)*C(Z-2, 2 )] • [[1 —1/(Z—2 )] • (Z—4)/(Z—3)- + l/(Z -2)-[l -  (Z-4)/(Z- 

3)2]].

Sub-case 3.12: 2*[C(dy+ l, 2)*C(Z-dy- l ,  0)-C(cZy- l ,  l)-C (Z-dy- l ,  1 ) / 

[C(Z, 2 ) • C(Z-2 , 2 )] • [1 —1 /(Z—2 )] • [1 —(Z—4)/(Z—3)2].

Sub-case 3.13: [C(d. + 1 , 2)*C(Z-cZy- l ,  0 )-C(c% -l, 2)*C(Z-cZy- l ,  0 ) / [C(Z, 

2) - C(Z-2, 2)3 - [1/(Z-1)2] - [l/(Z-3)2].
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Sub-case 3.14: [C(dy+ 1 , 2 )-C (Z -d .-l, 0)-C (dy- l ,  2)*C(Z-cZy- l ,  0 ) / [C(Z, 

2 ) • C(Z-2, 2 )] • [1 /(Z-1)2] • [1 /(Z—3)] • [1—1 /(Z—3)].

Sub-case 3.15: [C(cZy+ l, 2 ) - C(Z-dy- l ,  0)*C(dy- l ,  2)*C(Z-d~-l, 0 ) / [C(Z, 

2 ) • C(Z-2 , 2 )] • [1/(Z-1)2] • [1—1 /(Z—3)] • [1 /(Z—3)]

Sub-case 3.16: [C(cZy+ l, 2)-C(Z-cZy- l ,  0 )-C (d ;.- l , 2)*C(Z-dy- l ,  0 ) / [C(Z, 

2 ) • C(Z-2, 2 )] • [1 /(Z-1)2] • [l-l/(Z-3)]2.

Sub-case 3.17: [C(oL+l, 2 ) • C(Z-d,r l, 0)*C(cZ.,-l, 2)-C(Z-cL-l, 0 ) / [C(Z,
V  V  V V

2) • C(Z—2, 2)] • [1/(Z—1)] • [1—1/(Z—I)] • [1 /(Z—3)2].

Sub-case 3.18: 2)- CCZ-rf^-l, 0 )* C (d .-l, 2 ) - C ( l - d ij- l ,  0 ) / [C(Z,

2 ) • C(Z-2 , 2 )] • [1 /(Z—1)] • [1 —1 /(Z—I)] • [1 /(Z—3)] • [1—1/(Z—3)3- 

Sub-case 3.19: [C(dy+ 1 , 2)- C(Z-dy- l ,  0 )* C (d .-l, 2)-C(Z-dy- l ,  0 ) / [C(Z, 

2 ) • C(Z-2, 2 )] • [1 /(Z—1)] • [1 —1 /(Z—1)] • [1 —1 /(Z—3)] • [1 /(Z—3)].

Sub-case 3.20: [C(dif+ 1 , 2)-C(Z-d,r l, 0)-C(d,r l, 2)*C(Z-cL-l, 0 ) / [C(Z,v v y  y

2 ) • C(Z-2, 2 )] • [1/(Z—1)3 * [1 —1 /(Z—1)] • [l-l/(Z-3)]2.

Sub-case 3.21: [C(eZy+ l, 2 ) -C(Z-dy- l ,  0)*C(cZy- l ,  2 ) - C ( l - d if- l ,  0 ) / [C(Z, 

2 ) • C(Z—2 , 2 )] • [1 —1/(Z—1)3 • [1/(Z—1)] • [1/(Z—3)~3- 

Sub-case 3.22: [C(<Zy+ l, 2)*C(Z-cZy-l, 0)*C (c^-l, 2)- C(Z-rfy- l ,  0 ) / [C(Z, 

2 ) • C(Z—2 , 2 )] • [1 —1/(Z—1 )] • [1 /(Z—1)] • [1 /(Z—3)] • [1 —1 /(Z—3)].

Sub-case 3.23: [C(d.,+1 , 2)*C(Z-cZI, - l ,  0)-C(rf£i- l ,  2)-C(Z-gL-1, 0 ) / [C(Z,v v  y y

2 ) • C(Z-2, 2 )] • [1 —1 /(Z—1 )] • [1 /(Z—1)] • [1 —1 /(Z—3)] • [1 /(Z—3)].

Sub-case 3.24: [C(dy+ 1 , 2 ) - C ( l - d i f l ,  0)-C(fZy- l ,  2)*C(Z-<Zy- l ,  0 ) / [C(Z, 

2 ) • C(Z—2 , 2 )] • [1 —1/(Z—l)] • [1/(Z—1)3 * [l-l/(Z-3)]2.

Sub-case 3.25: [C(dy+ 1 , 2 )*C(Z-dij- l ,  0 )- C ( d i f \ ,  2) - C(Z-rfy- l ,  0 ) / [C(Z, 

2 ) • C(Z-2, 2)] • [1 - 1 /(Z-1 )]2 • [l/(Z-3)2].

Sub-case 3.26: [C(dy+1, 2)-C(Z-dy- l ,  0) * 0 (^ -1 , 2 ) * C(Z-cZ£J- l ,  0 ) / [C(Z, 

2 ) • C(Z—2 , 2 )] • [ 1 -  1 /(Z-1 ) ] 2  - [ l/(Z-3>] • [1—1/(Z—3)].
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Sub-case 3.27: [C(dtf+ 1 , 2)*C(Z-dy- l ,  0)*C(dy- l ,  2)*C(Z-dy- l ,  0 ) / [C(Z, 

2 ) • C (/-2 , 2 )] • [1- 1 /(Z-1 ) ] 2  • [1 —1 /(Z—3)] • [1 /(Z—3)].

Sub-case 3.28: [C(dy+ 1 , 2 ) - C(Z-cZtf- l ,  0)*C(dy- l ,  2)*C(Z-dy- l ,  0 ) / [C(Z,

2) • C(l~2, 2)] • [1-1/(Z-1)]2 • [l-l/(Z-3)]2.

The link distance change is Arf̂ . = d\- -  d-. The expected change of 

average link distance, denoted as Emm,pro(Ad), is equal to the  sum  of the 

expected change of the link distance for each of the various cases m ultiplied 

by the corresponding probability for each case, i.e.,

E n<mzer„ (Ad) = 2  Pk #(AcLsn /,) (6.1)
u=\

where E (k d caso))  is the expected average link distance change for case k. E(A 

d cllSGl)  is equal to the summation of the link distance change of each sub-case 

tim es the expected value of the corresponding probability.

For any of the above combinations, the calculation of a probability 

involving C(a, b) is impossible if a < b. This may occur when d-  is either too 

large or too small. In such a case, the probability is simply 0. The largest b 

among all the combinations is 2 . Since C(a, 2 ) = a (a - l ) / 2  which has an order 

of 2 for a, Case 2 above has an order of 2 for d-. Similarly, Case 3 has an 

order of 4 for d-. Because the m utation operator rate is usually  very small, 

the  effect of m utation operator in Case 2 (whose probability is 2 r(l-r))  is an 

order of m agnitude more significant than  the effect of m utation operator in 

Case 3 (whose probability is r2). The overall calculation of the probabilities 

thus is a quadratic function of d;-. Since d~ varies for different link pairs, we 

can assume d t- = d  to approximate the probabilities involved in the 

calculation of E(&d i !(1S()The error of the approximated probabilities comes
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m ainly from substitu ting E{di}?) by d  “, which is propotional to the variance 

of the link distances.

6.2 Link Pairs with Zero Link Distance

For link pairs with zero link  distance, we again need to look a t the link  pairs 

of the two links. Here, d tj = d (s ;, sp = 0, which implies s, = Sj. Let d{- denote

the link distance after the operator is applied and  I denote the link  length.

The effect of any operator on the link distance can be sum m arized again in 

three cases:

Case 1: Non of the links is affected by the operator.

Case 2 : One of the links is affected by the operator.

Case 3: Both of the links are affected by the operator.

The probabilities of the three cases are:

Case 1 : ( 1 - r ) 2 

Case 2: 2 r ( l- r )

Case 3: r2

The effect of m utation operator on the link distance for each of the three 

cases is:

Case 1 : No effect. d t- = cL = 0.
I J  i j

Case 2 : d t- -  d - + 1  = 1 .

Case 3: There are three sub-cases.

Sub-case 1 : both of the loci are the same, d'- = d = 0 . The probability is 

1 /C(Z, 2 ).

Sub-case 2: only one of the loci is the same, d.'- = d~ + 2 = 2. The 

probability is 2ZC(Z-1, 2)/[C(Z, 2 ) - C(Z, 2 )]
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Sub-case 3: both of the loci are different. d'i} -  d tj + 3 = 3. The probability 

is C(Z-2, 2)/C(I, 2)

The expected change of average link distance for the link  pairs w ith 

zero link  distance can be found in  a way sim ilar to equation (6 . 1 ). Let Ezero{A 

d )  denote the expected average link distance change for zero link  pairs. 

Then

E z e r a i ^ d )  =  ( l - r 2) 0  + 2 r ( l - r ) l

+ r “[ 0  • 1 / C(l, 2 ) + 2  • 2  IC(1 - 1 ,2 ) / [C(/,2 )C(Z,2 )] + 3C(Z -  2 ,2 ) / C(l, 2)\

or

E „„(A d) = 2 r ( l - r )  + r s
(3/ -  1)(Z -  2) 

1(1 - 1)
(6 .2)

The percentage of the link  pairs w ith zero link  distance will be reduced 

since the  link  distance in  Case 2  and  in  Sub-cases 2 and  3 of Case 3 above is 

increased from zero to non-zero. The probability of the change, denoted as 

p(d'ij* 0 1 dij=0 ), is

p(d \j* 0 1 d,;pO) = 2 r ( l  -  r) + r2[2ZC(Z-l, 2)/[C(Z, 2 ) • C(/, 2 )] + C(Z-2, 2 )/C(Z, 2 )]

or

p(d'ij*0 I gZ;;=0) = 2r(l -  r) + r’Kl + 1)(Z -  2) / [Z(Z -  1 )]

The probability for link distance being zero, p (d m = 0), during the m -th 

itera tion  will be reduced by a factor of p(d'ij*Q I dij=0 ) after the  m utation 

operation. Let d5 denote the change of the probability, we have



0  = p (d m = 0 )[2 r(l -  r) + r 2 2)]
1(1 - 1) 1
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(6.3)

From the  sam e concept of equation (5.9), we can estim ate the total 

expected average link  distance change, EM(Adm), due to the m utation 

operator a t the  m -th iteration  as follows:

E M ( Ad m) = P ( d m = Q)Ea!n(Ad) + p ( d m * 0)Enimz„JA d)  (6.4)

w here Ezcrn(Ad) is the expected average link  distance change due to those 

link  pairs with zero link distance, and  the subscript M in  EAI(Ad m) denotes 

the effect of m utation.

6.3 The Mutation Operator Rate for Maximum Change of Link Distance

From equation (6.4), we are able to derive the highest m utation operator ra te  

for the largest expected link distance change during the iterations. Equation

(6.4) can be expanded as

E m (A d m) = p (d m = 0 )]T p kEzero (A d aase *) + [ ! -  p(dm = 0 ) ]£  PkE nonz„n (A d euse k) (6.5)
jt=i *=i

Reorganizing (6.5), we have

Em (A d J  = p (d m = 0)[(1 -  r ) 2 • 0 + 2r(l -  r)Ezcru{Adc:iia 2) + r E zero (AdCM0,)

+[l -  p (d m -  0)][(1 -  r ) 2 • 0  + 2r( 1 -  r)Enunzcm (Adc:iS0,,) + r E ,wnzem (AdCM8 a) (6 .6)
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so

Em (Adm) = 2r(l -  r)Ex + r2E2 (6.7)

where

# i = P(dm = 0)E:ero(Adcasa 2) + [l - p (d m = 0 ) ] E „ ( A d mse 2) (6 .8 )

E, = p (d m = 0)E:ero (Adcase 3) + [ 1 -  p (d m = 0)]SBU«.re(Adcaso,) (6.9)

To have the maximum expected link distance change, we need only to find 

the p a rtia l derivative of equation (6.7) with respected to r and set it to zero. 

Namely, we have

9E m ( & d j  = (2 _ + 2 r E n = 0 (6 .10)
d r

From equation (6.10), the m utation operator ra te  to achieve the maximum 

expected average fink distance change is

r = ———L—- (6 .1 1 )
2  El - E 2

The operator rate  is lim ited to the range (0, 1). Equation (6 .1 1 ) 

provides a  possible maximum r value w ithin the range. It needs to be 

pointed out th a t E x and Et from equation (6 .8 ) and (6.9) change their values 

w ith the num ber of iterations. This suggests th a t the maximum m utation
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operator ra te  varies during the iteration, instead  of having a fixed value for 

the  whole process. The above technique of analysis for the m utation  operator 

should be applicable to m any of other popular operators such as the  inversion 

operator used in  genetic algorithms.



CHAPTER 7

CHANGE O F  EX PECTED  AVERAGE LIN K  D ISTAN CE D U E TO 
BO TH  SELEC TIO N  AND M UTATION

In C hapter 5 and  6 , the change of the average link  distance due to selection 

and  m utation are discussed separately. In this chapter, we will combine 

th e ir effects on the average link distance to compute the expected change of 

average link  distance.

Equation (5.7) can be rew ritten as

Equation (7.1) indicates th a t the percentage of non-zero link  pairs are 

reduced by a factor of 1 In in each iteration due to random  selection. Let p(dm 

* 0) denote the probability of link distance greater th an  zero. E quation (7.1) 

can be changed to

Since those link  pairs with zero link distance do not contribute to the average 

link  distance, we can rew rite the relationship between the expected average 

link  distance before and  after selection as:

(7.1)

(7.2)

Es (A»+1) = p(d m = 0 ) • 0  + p(dm+l * 0 ) • D = p (d m * 0 ) • D

62
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f n - 1 ES( D J (7.3)
v  n

w here ES(D m+I) is the  expected average link  distance due to random  

selection after m iterations and  D is the average link  distance of the in itia l 

m ating  pool. Combining equations (6.2) and (7.3), we have

w here E(D  m+1) is the expected average link distance of the m ating pool after 

m itera tions and ES(D 0) = D  , the average link distance of the in itia l m ating 

pool. I t should be noticed th a t the probability of the link distance being zero 

can no longer be simply calculated by equation (5.8). Instead, it should be 

ad justed  as indicated by equation (6.3) in each iteration.

E quation (7.4) can be fu rther rew ritten as

m

j =i  L v
(7.5)

From equation (5.9), D is a function of I. We again rew rite (7.5) as

;=i Lv n y

From equation (7.6) we can find not only how the m ating pool 

converges w ith respect to the num ber of iterations b u t also how m any 

itera tions are needed to reach an expected convergence stage m easured by
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the  average link  distance. Based on equation (7.5) Figure 7.1 plots the 

expected average link  distance versus iteration num ber for several m utation 

operator rates. The link length in Figure 7.1 is 20, the population size is 20, 

and  the m utation operator rates are 0, 0.01, 0.02, 0.03, 0.04 and  0.05. A 

larger m utation operator rate bears a  slower reduction in  the expected 

average link  distance. The dashed line in Figure 7.1 is the case th a t the 

m utation operator ra te  equals to zero, which is exactly the  sam e as the 

simple genetic algorithm  with only selection discussed before. Figure 7.1 

provides an evidence th a t the m utation operator increases the  average link 

distances during the iteration and thus slows down the converge process.

Expected Average Link Distance

16 -

12  -

10  -

10 300 20

Mutation Operator Rate
— 0. 05 — 0.04 0.03 0.02 —<— 0 . 0 1 ------- 0

F ig u re  7.1 Expected Average Link D istance for Different M utation Operator 
Rates. Link Length = 20, Population Size = 20.

Equation (7.5) contains the jo int effects of selection and  m utation. 

Selection is expected to always drag the average link distance down by a 

ratio  of 1 In in  each iteration. So, the joint effects from both selection and
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m utation  after a  long run  will be th a t the selection is reducing the expected 

average link  distance while the m utation operator is increasing  it. If  we fix 

the m utation  operator ra te  during the iterations, once the  jo in t effect of 

selection and  m utation operator reaches a balance, the expected average link 

distance will converge to a positive num ber according to equation (7.6).

Let D c  denote the converged average link distance. We have D c  =  

E ( D  m +1)  =  E ( D  m). Thus D c  can be easily found to be

D c =nE M(Adm) = n [2 r( l-r )E x + r 2E.,] (7.7)

E quation (7.7) shows the relationship between D c and r. Since th e  m utation 

ra te  r is usually  very small (say, a few percent a t most), D c increases if  r is 

larger.

From  our analysis, i t  is expected th a t the average fink distance is 

continuously decreasing but will never reach zero. In  the previous M arkov 

chain analysis, we know th a t the least average link distance is zero in  an 

absorbing s ta te  where the m ating pool contains only identical finks. The 

second least average fink distance is 2 In which can be found from a sta te  

where one fink is different from all the others and the fink distance between 

th is fink and  any other fink is 1. There is no num ber betw een 0 and 2hi for 

the  average fink distance. If we select a m utation operator ra te  so sm all th a t 

D c  is sm aller than  2 In, the iteration  should stop when the  average fink 

distance has  reached 2In. We can therefore setup a  criterion to estim ate the 

num ber of iterations needed to reach an expected sta te  of convergence.

If the  m utation operator ra te  is selected such th a t
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n

the  sm allest num ber of iterations, m, such th a t

E(D(l,m,n )) = i - i
n. a w + £ ■

j=i
i - I

71 .

m - j

EM(Adj) = D„ (7.8)

will bring the m ating pool to a convergence. Otherwise, the sm allest num ber 

of iterations, m, such th a t

1 -
71

D(l) + Z
j =i

i - i
n

m - j

E m (Adj)
n

(7.9)

will bring the m ating pool to a convergence.

The sm aller num ber of m th a t satisfies equation (7.8) and  rn th a t 

satisfies equation (7.9) is the num ber of iterations needed for the expected 

convergence of the order-based genetic algorithm  with equal selection 

probabilities for different finks. Since the genetic drift suggests the  slowest 

convergence, the m obtained from equation (7.8) and  equation (7.9) is the 

upper bound for the num ber of iterations needed for the convergence of 

order-based genetic algorithm s w ith any selection probabilities.

Table 7.1 shows some of the results calculated from equation (7.6). 

The m eanings of the symbols are: I is the fink length, n is the population size, 

r is the m utation operator rate, D c  is the converged average fink distance, m 

is num ber of iterations needed for the average fink distance to achieve D c, 2 In 

is the other criteria to stop the iterative process, m* is the num ber of 

itera tions needed for the  average fink distance to arrive a t 2hi. From Table
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7.1, the expected average link  distance will reach 2In when the population 

size or the m utation operator ra te  is small. The largest num ber of iterations 

needed to achieve a convergence is less than  1700 for the cases shown. The 

larger the link  length  or the population size, the slower the convergence.

T a b le  7.1 Some Numerical Results from Equation (7.6)

I n r (%) D c m 2 In m*

1 0 1 0 1 0.20058 132 0 . 2 -

1 0 1 0 0 . 1 0 . 0 2 0 0 1 130 0 . 2 36
1 0 1 0 0 . 0 1 0 . 0 0 2 136 0 . 2 36
50 50 1 1.45632 783 0.04 -

50 50 0 . 1 0.10005 768 0.04 -

50 50 0 . 0 1 0 . 0 1 801 0.04 366
1 0 0 1 0 0 1 3.22346 1542 0 . 0 2 -

1 0 0 1 0 0 0 . 1 0 . 2 0 0 1 1619 0 . 0 2 -

1 0 0 1 0 0 0 . 0 1 0 . 0 2 1693 0 . 0 2 1693
1 0 1 0 0 0 . 1 0.20006 1388 0 . 0 2 -

1 0 0 1 0 0 . 1 0.10005 816 0 . 2 342
1 0 50 0 . 1 0.10003 698 0.04 -

50 1 0 0 . 1 0 . 0 2 0 0 1 152 0 . 2 54
50 1 0 0 0 . 1 0.20009 1660 0 . 0 2 -

1 0 0 50 So
 

11
—

1 0.10005 816 0.04 -

Discussed in  th is chapter is the convergence of the order-based genetic 

algorithm  w ith selection and m utation. In  each iteration of the  genetic 

algorithm , random  selection and m utation operation are sequentially  applied. 

For real genetic algorithm  applications more operators, especially the 

crossover operator, are usually included. The effects of these operators are



6 8

also sequential. Analysis of these applications can be done by adding the 

effect of each operator after equation (7.4) for the joint effect.



CHAPTER 8

CONCLUSIONS

Studied in  th is dissertation are methods and results of performance analysis 

for genetic algorithms. Both statistical analysis for comparing variations in 

genetic algorithm s and probability analysis to investigate the expected 

convergence behavior of a genetic algorithm are performed.

A Wilcoxon signed rank  test is used to study the effect of adapting the 

operator production ratios in the genetic algorithm. The adaptation of the 

operator production ratio during the iterative process is shown to be effective 

for achieving a faster convergence for the tested traveling salesperson 

problems. It provides a way of examining w hether the modification is good or 

not when in itiating  a new genetic algorithm.

We analyze the genetic drift and preferential selection of the genetic 

algorithm  using Markov chains. The probabilities of both phenom ena are 

derived. It is shown th a t the genetic drift has a slower convergence than  any 

preferential selections. The probability of pre-m ature convergence due to the 

use of high selection probabilities for dom inant links is shown to be high.

A new method of analysis is introduced which uses the  “link distance” 

as a reference for studying the convergence of order-based genetic algorithms. 

The average link distance of a randomly generated m ating pool is derived 

and shown to be a function of only link length. The value of this distance is 

shown based on num erical analysis to be the link length m inus 2 .

The expected average link distance changes for random  selection, 

m utation operator, and the combination of both are derived. A m utation

69
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operator ra te  for the maximum expected average link  distance change is also 

derived. The derived m athem atical model for the expected average link 

distance during the iterations shows th a t th is distance converges to a 

positive num ber which is a function of the population size and  m utation 

operator rate. The expected num ber of iterations needed to converge has 

been obtained for some typical values of link length, population size, and 

m utaiton operator rate. We plan to study the effects of other operators in  the 

future.



APPENDIX A

CONDITIONAL PROBABILITY OF AN OUTCOME FROM MUTATION
OPERATION

From the ru le  of conditional probability, we can find th a t 

Prob{B = E and A = GID = H, A * E, B * G, C * F} =

Prob{A = G IB = E, D = H, A * E, B * G, C * F} •

Prob{B = E | D = H, A * E, B * G, C * F}.

A F B H

E C G D

B F A H

E D G C

Figure A1 Relationship of the hnks of a link pair before and after
the m utation operation.

Prob{D = H, A * E, B * G, C * F} can be found from selecting two 

objects (A and B) such th a t both are from the group of different gene pairs 

and then selecting other two objects (C and D) such th a t one is from the 

group of different gene pairs and the other is from the group of identical gene 

pairs.

To find Prob{B = EID  = H, A * E, B * G, C * F} we need to find all 

possible outcomes. Since E can not be A, H can not be C, and  C can not be H 

or F, the possible outcomes are:

1. C = B : The probability of C = B is 1 /(Z—2). Since B = C, B can not be E. 

The probability in this case is 0 for B = E.

2 . C = A : The probability of C = A is 1 /(Z—2). The probability for B = E given 

C = A is 1 /(Z—3) since B can not be either C, D, or G.

71
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3. C equals to any others : Since C can not be any of A, B, F, or H, C m ust be 

equal to another gene, let's denote it as K. The probability is 1 -  2/(/-2) 

for C = K. The probability for B = E given C = K is l/(Z-3) since B can not 

be either C, D, or G.

So, Prob{B = E | D = H, A * E, B * G, C * F} = 0  • [l/(Z-2)] + [l/(Z-3)] • [l/(Z-2 )j + 

[(Z—4)/(Z—2)] • [1 /(Z—3)] = [1 /(Z—3)] • [l/(Z-2)+(Z-4)/(Z-2)]=l/(Z-2)

To find Prob{A = G IB = E, D = H, A * E, B * G, C * F} we also need to 

find all possible outcomes. Since A can not be E, D can not be C and C can 

not be B, F or H, the possible outcomes are:

1. C = A : The probability of this case is l/(/-3). The probability is 0 for A = 

G since A = C.

2 . C * A : The probability of this case is 1 -  1/(Z—3). The probability for 

A = G is 1/(Z—3) since A can not be either C, D, or E.

Prob{A = GIB = E, D = H, A * E, B * G, C * F} = { 0  • l/(Z-3) + [(Z-4)/(Z-3)] • 1/(Z-

3)}-{C(dy+l, 2)*C(Z-dy-l, 0 )* C (d - l ,  l ) , C(l~dij - l ,  1) / [C(Z, 2)-C(Z-2, 2 )]} = 

{C(dy+1, 2)*C(Z-cZy-l, 0 ) • C(djj-1, l ) 'C ( l-d ;j - l ,  1 ) / [C(Z, 2 ) ’ C(Z-2 , 2)]} - (Z-

4)/(Z-3)2.

So, Prob{B = E and A = G ID  = H, A * E, B * G, C * F} = {C(d,.+1 , 2 ) • C(Z-rfy- l ,  

0 )-C (d ..-l, l)-C(Z-£Zy- l ,  1 ) / [C(Z, 2 ) * C(Z—2 , 2)]}-{l/(Z-2)*(Z-4)/(Z-3)2} = 

{C(d.+i, 2)-C(Z-dy- l ,  0 )-C(d,r l, l)*C(Z-dr l, 1 ) / [C(Z, 2 )*C(Z—2 , 2)]}-(Z- 

4)/[(Z-2)(Z-3)2]
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