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ABSTRACT 

The classical two dimensional theory of stability of 

parallel flow is extended to viscoelastic fluids. How the 

elasticity of the fluid affects the point of stability and 

determines the point of transition to turbulence is 

analyzed. In addition the magnification of disturbances is 

elucidated. This study is based on a viscoelastic 

constitutive equation which has been successful in 

predicting the experimental trends of various unsteady high 

shear rate laminar flows. A viscoelastic stability equation 

which is an extension to the Orr-Sommerfeld equation for a 

Newtonian fluid is derived and solved for a flow between 

parallel plates superimposed by a two-dimensional 

disturbance. A solution indicates that fluid elasticity 

minimally shifts the 

Reynolds' number but 

second-order/Maxwell 

result shows reduced  

point of instability to lower 

to a greater degree than does 

stability equation. However, 

disturbance magnification for  

values of 

the 

another 

turbulent 

flow at low wavenumber. The range of values of the 

disturbance wavenumber for which disturbances grow is 

diminished at these high Reynolds' numbers and low 

wavenumber. This may be a trend which offers an explanation 

to turbulent drag reduction by polymer additives based on 

viscoelastic properties. It is possible that the reduction 

in disturbance magnification reduces the turbulence level 

resulting in a reduction of Reynolds' stresses at the wall. 
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CHAPTER 1 

INTRODUCTION 

1.1 Goals of the Investigation 

This study analyzes the role of the elasticity of the fluid in the stability of parallel flow, as 

well as on the magnification of disturbances. The classical linear theory of stability of 

parallel flow has been shown to be successful in explaining and predicting the transition to 

turbulent flow [1]. The theoretical investigations are based on the assumption that laminar 

flow is affected by certain small disturbances. The theory analyzes the behavior of such 

disturbances versus time when they are superimposed on the main flow. One of the main 

goals is to find the value of the critical Reynolds' number from stable flow where 

disturbances are magnified. Another important aspect to the role of viscoelasticity lies in 

comparing the magnification of disturbances for unsteady viscoelastic and non-viscoelastic 

flow at high Reynolds' numbers and at certain wavenumbers. The concern here is the range 

of values of the disturbance wavelength (at various Reynolds' numbers) for which the 

disturbance will grow. These goals require a solution to the well known Orr-Sommerfeld 

equation extended for viscoelastic fluids. Also called the stability differential equation which 

is derived from the Navier-Stokes equations for viscous fluid, the Orr-Sommerfeld equation 

has been extended to describe the role of viscoelasticity of a fluid at high shear rate, laminar 

flow, subjected to fluctuations. This was achieved by using a relatively new rheological 

constitutive equation [2]. 

The purpose is to elucidate the viscoelastic processes which affect the behavior of 

small disturbances and hence the stability at high shear rate, laminar flow. Also important 
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to the investigation is the point of whether or not these disturbances are amplified or 

damped. The rheological constitutive equation can describe correctly the role of 

viscoelasticity of a fluid at high shear rate, laminar flow, subjected to fluctuations. Wherever 

shear rates are subjected to changes (fluctuations with time or along the flow lines), the 

relaxation time of the fluid must change the stress distribution which results in changes in 

the flow patterns (in comparison to the viscous flow). This can be demonstrated by 

experiments of oscillating, laminar shear flow between two parallel disks, where a phase lag 

is observed in shearing stress behind shear rate. One can visualize the fluid as a Maxwell 

model of a spring and a dashpot in series. Here the stress is not only a function of the 

instantaneous deformation rate but also of previous stresses. This phenomena is better 

known as the memory effect and is well demonstrated during the relaxation time, when 

stresses exist without any deformation rate. If the viscoelasticity changes the point of 

stability, it can result in a different point of transition from laminar to turbulent flow, 

resulting in a different shear at the wall and drag. Moreover, a change in the magnitude of 

amplitude of disturbances would affect the generation of turbulence in a fully developed 

turbulent flow resulting in a change in the Reynolds' stresses and friction between the fluid 

and a wall and drag between fluid and submerged bodies. 

1.2 Importance of Drag Reducing Agents 

Drag reduction techniques have important engineering applications which can contribute to 

considerable energy conservation and better equipment utilization. Understanding the drag 

reduction mechanism can provide the knowledge to develop better methods and viscoelastic 
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agents to reduce drag. Thin viscoelastic liquid layers with enhanced rheological properties 

can serve as drag reducing agents near the surface of submerged bodies. 

The effect of turbulent drag reduction by long-chain flexible polymer additives to 

viscous liquids was discovered by Toms (1946). He found that the pressure loss in a pipe can 

be reduced in half by a small polymer concentration of (10-100)x10-6g/cm3. Motivated by 

the potential for greater energy savings, a vast amount of research has been conducted in 

turbulent drag reduction. Although much empirical data has been gathered, in light of the 

complexity of turbulent flow, only tentative explanations have been suggested. 

Most of the theories dealing with drag reduction mechanisms by polymers in 

turbulent boundary layers, rely on changes of the viscosity, owing to the elongation of the 

macromolecules [2]. These theories are successful in predicting drag reduction in a turbulent 

boundary layer, providing that there are sizable changes of viscosity (of a few orders 

magnitude) between the viscous sublayer and the turbulent layer from the wall. One must 

agree that in turbulent boundary layers, dominated by fluctuations of different frequencies, 

viscoelastic (memory) effects must play a role as well. Our purpose is to open a new avenue 

for investigating the role of the elasticity of the fluid in the drag reduction mechanism, 

which may play a significant role together with other effects, such as the elongational 

viscosity. 

1.3 Rheological Constitutive Equation 

This study is based on a relatively new viscoelastic rheological equation by Harnoy [3] that, 

on the one hand, is based on continuum mechanics principles and on the other hand, predicts 
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correctly the trend of the experiments in unsteady, high shear rate laminar flow, while the 

previous conventional equations contradicted the experiments. Previous publications by 

different authors discussed the complete disagreement between analysis based on 

conventional viscoelastic equations and experimentation. The following three cases were 

studied in debth because of their importance in engineering: (a). Laminar boundary layer 

past submerged bodies [4]; (b). Squeeze film at constant approach velocity and (c). Squeeze 

film at constant force, where the resulting velocity is measured [5,6]. It has been shown that 

our relatively new equation predicts, for the first time, the trends of these three experiments. 

The fluid equation in the present analysis represents the Maxwell model which is a 

spring and a dashpot in series at low Deborah number, De = A/At, where A is the relaxation 

time of the fluid and At is the characteristic time of flow. In order to decouple the relaxation 

effect from the normal stresses, our constitutive equation is described in a unique coordinate 

system which coincides with the principal axes of the strain-rate tensor. 

The following equation is a first order approximation at low Deborah numbers 

where the equation reduces to the form 

where τ'ij is the deviatoric stress tensor, eij  the strain rate tensor,µ is the viscosity, and A is 

the relaxation time. Our time derivative D/Dt is defined in a rigid rectangular coordinate 

system (1,2,3) having its origin fixed at a fluid particle, moving with it, and having its 

directions coinciding with the three principal axes of the strain rate tensor. 

The following equation describes the rate of change of the strain rate tensor, as 

seen by an observer positioned on the principal axes of the same tensor, 
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The vector Q u  is the angular velocity of the rigid coordinate system (1,2,3) attached to the 

principal axes and vi  are the velocity components of its origin. The difference between this 

and the well known time derivative of Jaumann is that in the latter, the angular velocity is 

of the fluid particle. The equation is further discussed and compared to the second-order and 

Maxwell model in chapter 4. 

1.4 Overview of the Orr-Sommerfeld Equation 

1.4.1 Principles of the Theory of Stability of Laminar Flow 

The theoretical investigations of the process of transition are based on the assumption that 

laminar flows are affected by certain small disturbances. Whatever the origin of these 

disturbances (i.e. at pipe inlet, or due to wall roughness) the theory seeks to explain their 

behavior when they are superimposed on the main flow. 

"The decisive question to answer in this connexion is whether 
the disturbances increase or die out with time. If the 
disturbances decay with time, the main flow is considered 
stable; on the other hand, if the disturbances increase with time 
the flow is considered unstable, and there exists the possibility 
of transition to a turbulent pattern. In this way a theory of 
stability is created, and its object is to predict the value of the 
critical Reynolds' number for a prescribed main flow. The basis 
of the theory of stability can be traced to 0. Reynolds who 
supposed that the laminar pattern, being a solution of the 
differential equations of fluid dynamics, always represents a 
possible type of flow, but becomes unstable above a definite 
limit (precisely above the critical Reynolds' number) and 
changes into the turbulent pattern. "[I] 

The theoretical investigation regarding the process of transition to turbulence for a 
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Newtonian fluid in parallel flow has been successful via the Orr-Sommerfeld equation. 

Before deriving the viscoelastic stability equation in Ch.2 the theory behind the development 

of Orr-Sommerfeld equation is explained. 

1.4.2 Foundation of the Method of Small Disturbances 

The theory of stability of laminar flows decomposes the motion into a mean flow (whose 

stability constitutes the subject of the investigation) and into a disturbance superimposed on 

it. We consider a steady mean flow described by its Cartesian velocity components U, V, 

and W, representing the velocity components in the x, y, and z directions respectively, and 

its pressure P. Adding the corresponding quantities for the non-steady disturbance u', v', w', 

and p', respectively gives the resultant motion velocity components 

and the pressure as: 

It is assumed in most cases that the disturbance quantities are small as compared to the 

corresponding quantities of the main flow. 

The method of small disturbances accepts only flows which are consistent with the 

equations of motion and analyzes the manner in which they develop in the flow as described 

by the appropriate differential equations. 

Motion and Continuity Equations 

In considering a two-dimensional incompressible mean flow and an equally two-dimensional 

disturbance, the resulting motion is described by the two-dimensional form 	of the Navier- 
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Stokes equations given by the motion equations 

and the continuity equation, 

Here u represents the material viscosity. The problem is simplified by stipulating that the 

mean velocity U depends only on y, i.e., U = U(y), and the components V and W are 

supposed to be zero everywhere, or V ≡ W ≡ 0. Gravitational effects in the X and Y 

directions are considered equal to zero also. Such a situation is commonly referred to as a 

parallel flow problem. The flow in the boundary layer is also regarded as a good 

approximation to parallel flow because the dependence of the velocity U in the main flow 

on the x-coordinate is very much smaller than that on y. The pressure is assumed to be a 

function of x and y, or, P(x,y), because the pressure gradient 5P/5x maintains the flow. 

Thus we assume a mean flow with 

Parabolic Velocity Profile Assumption 

Because this study considers the particular case of steady mean flow between parallel plates, 

it must also be assumed that the mean flow velocity profile is parabolic. This is shown by 

writing the Navier-Stokes equations for the mean flow 

Because of the steady flow assumption we have 
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If the mean flow velocity profile is written as 

then d2U/dy2  is a constant and the boundary conditions, 

are satisfied. This main flow is shown in fig.1. 

Two-dimensional Disturbance Superimposed 

Upon the mean flow we assume superimposed a two-dimensional disturbance which is a 

function of time and space. Its velocity components and pressure are, respectively, 

So the resultant motion is described by 

The main flow is assumed a solution of the Navier-Stokes equations, and it is 

required that the resultant motion must also satisfy the Navier-Stokes equations. The task 

of the stability theory consists in determining whether the disturbance is amplified or 

whether it decays for a given mean motion. The flow, therefore, isconsidered unstable or 

stable depending on whether the former or the latter is the case. 

We may now substitute equations 1.15 into the Navier-Stokes equations for a two-

dimensional, incompressible, non-steady flow, (equations 1.5, 1.6, 1.7). Quadratic terms in 

the disturbance velocities may be neglected (as the fluctuating velocities are considered 

small). Also, if it is considered that the mean flow itself satisfies the Navier-Stokes 

equations, three equations for u', v', and p' are obtained 
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Letting the small letters denote disturbance quantities, the primes differentiation with respect 

to y, and the subscripts differentiation with respect the parameter indicated, we may write 

Introduction of Stream Function 

A stream function has been established to model the disturbance quantities; and of much 

importance it is to serve the purpose of allowing for the determination of whether the 

disturbance becomes amplified or damped. The stream function must also satisfy continuity 

conditions (equation 1.21). If we write 

then 

and thus continuity is satisfied. 

A stream function written as 

with and ᵦ  being complex conjugates of ϕ and ᵦ  and where 
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is shown to be an anzot and serves the purpose of determining whether the disturbance 

decays or becomes unstable. Here ϕ(y) represents the disturbance amplitude and is a 

complex eigenfunction of y, the a quantity is the wavenumber and is real (1 is the 

wavelength), t is the time at which the disturbance begins, and ᵦ  is the frequency of the 

disturbance and is also complex. It is advantageous and permissible (Proof - App. p.67)  

that we may work with only 4(y) ei(ax-β t)  and not its complex conjugate ϕ(y) ei(ax-β t). The 

disturbance velocities are then found to be, (with ϕ(y) now written as ϕ) 

Representing the stream function in different forms shows more clearly the critical 

point of the disturbance becoming amplified or damped. Rewriting 

it is clearly seen that the sign of 3 determines whether the stream function and thus the 

disturbance becomes amplified or damped. The purterbation velocities (real) are then found 
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to be, 

The equations for the velocities u and v, 

may be substituted into equations 1.19 and 1.20 giving 

Differentiating these equations with respect to y and x respectively and subtracting equations 

in order to eliminate pressure gives 

Equation 1.39 may be further simplified to yield the Orr-Sommerfeld equation. 

The Orr-Sommerfeld Equation 

Using the necessary derivatives of W = ϕ(y) ei(ax-Bt). 
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and the relations 

where c is the wave velocity of propagation and is complex, 

R denotes the Reynolds' number, is a characteristic of the mean flow, and eliminating ei( ax-Bt) 

gives the following ordinary, fourth-order, differential equation for the disturbance 

amplitude ϕ(y): 

This is the fundamental differential equation for the disturbance (stability equation) which 

forms the point of departure for the stability theory of laminar flows. It is commonly 

referred to as the Orr-Sommerfeld equation. Equation 1.52 has been cast in dimensionless 

fowl in that all lengths have been divided by half the channel length b and velocities have 

been divided by the maximum velocity Um  of the main flow. The primes denote 

differentiation with respect to the dimensionless coordinates y/b, and R as previously shown 

denotes the Reynolds' number which is a characteristic of the mean flow. For a boundary-

layer flow in the case of flow between parallel plates, boundary conditions demand via the 

no slip condition that the components of the perturbation velocity must vanish at theiwalls 

(y = ±1). 

Thus: 
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The stream function is 1/2 the sum of ϕ(y) ei(ax-Bt) and its complex conjugate (y) e-i(ax-Bt), 

The stream function holds for all x and t so: 

Writing these boundary conditions again 

it is seen that some value for the disturbance amplitude, ϕ, at y = 0 must be chosen. 

At y= 0 two cases are considered (with A being a real number); 

Case 1: flow is antisymmetric; odd derivatives y(0) = 0; 	 (1.59) 

Case 2: flow is symmetric; even derivatives y(0) = 0; 	 (1.60) 
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1.4.3 The Eigenvalue Problem 

The stability problem is now reduced to an eigenvalue problem (equation 1.52) with the 

boundary conditions (equation 1.58) and one of the two cases considered (equations 1.59-

60). When the mean flow U(y) is specified, equation 1.52 contains four parameters. They 

are a, R, cr, ci. Of these the Reynolds' number is specified as is the wavelength (1 = 2 IT/a), 

or wavenumber ( a= 2 π/1), of the disturbance. So the Orr-Sommerfeld equation, together 

with the boundary conditions gives one eigenfunction ϕ(y) and one complex eigenconstant, 

c = cr 	ici, for each pair of values a, R. Here cr  represents the phase velocity of the 

prescribed disturbance whereas the sign of ci  determines whether the wave is amplified 

(when ci  > 0) or damped (when ci  < 0). For ci< 0 the corresponding flow (U,R) is stable for 

the given value of a, whereas ci  > 0 denotes instability. The limiting case, ci = 0, corresponds 

to neutral (indifferent) disturbances. The result of such an analysis for any prescribed 

laminar flow U(y) can be represented graphically in an a, R diagram because every point 

of this plane corresponds to a pair of values of c,. and ci. In particular, the locus ci  = 0 

separates the region of stable from that of unstable disturbances. This locus is called the 

curve of neutral stability. The point on this curve at which the Reynolds' number has its 

smallest value (tangent parallel to the a-axis) is of great interest since it indicates that value 

of the Reynolds' number below which all individual oscillations decay, whereas above that 

value at least some are amplified. This smallest Reynolds' number is called the critical 

Reynolds' number or limit of stability with respect to the type of laminar flow under 

consideration. With respect to flow between parallel plates, the curve of neutral stability for 

the Orr-Sommerfeld equation (antisymmetric case) is shown in fig.2. It is seen that the 
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critical Reynolds' number was a calculated 5652.3. There is close agreement between this 

value and those found in fig.3 [10]. Numerical methods as discussed in the appendix have 

been used in this investigation for the solution of the Orr-Sommerfeld and viscoelastic 

stability equations. 



CHAPTER 2 

DERIVATION OF THE NEW VISCOELASTIC STABILITY 
EQUATION FOR PARALLEL FLOW 

2.1 Utility of the Rhealogical Constitutive Equation 

2.1.1 Development of the Equation 

This study is based on a relatively new viscoelastic rheological equation by Harnoy [3] that, 

on the one hand, is based on continuum mechanics principles and on the other hand, predicts 

correctly the trend of the experiments in unsteady, high shear rate laminar flow, while the 

previous conventional equations contradicted the experiments. Previous publications by 

different authors discussed the complete disagreement between analysis based on 

conventional viscoelastic equations and experimentation. The following three cases were 

studied in debth because of their importance in engineering: (a). Laminar boundary layer 

past submerged bodies [4]; (b). Squeeze film at constant approach velocity and (c). Squeeze 

film at constant force, where the resulting velocity is measured [5,6]. It has been shown that 

the relatively new equation predicts, for the first time, the trends of these three experiments. 

The fluid equation in the present analysis represents the Maxwell model which is a 

spring and a dashpot in series at low Deborah number, De = A/At, where A is the relaxation 

time of the fluid and At is the characteristic time of flow. In order to decouple the relaxation 

effect from the normal stresses, the constitutive equation is described in a unique coordinate 

system which coincides with the principal axes of the strain-rate tensor. 

The following equation is a first order approximation at low Deborah numbers where 

the equation reduces to the form 

16 
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where τ'ij  is the deviatoric stress tensor, 	the strain rate tensor, µ  is the viscosity, and A 

is the relaxation time. So we may write 

The time derivative D/Dt is defined in a rigid rectangular coordinate system (1,2,3) having 

its origin fixed at a fluid particle, moving with it, and having its directions coinciding with 

the three principal axes of the strain rate tensor. 

The following equation describes the rate of change of the strain rate tensor, as seen 

by an observer positioned on the principal axes of the same tensor, 

The vector Ωij  is the angular velocity of the rigid coordinate system (1,2,3) attached to the 

principal axes and vi  are the velocity components of its origin. The difference between this 

and the well known time derivative of Jaumann is that in the latter, the angular velocity is 

of the fluid particle. 

Equations 2.1 and 2.6 show instability under a sudden elimination of stresses. This 

problem was resolved lately [8] by showing that the flow is unstable only at high values of 

De because equation 2.1 is a truncated infinite series of increasing powers of De and valid 

only at De << 1. 
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2.1.2 Demonstration of the Equation 

The utility of our equation is demonstrated best in squeeze film flow. Tichy and Modest [5] 

present a squeeze film analysis, based on our constitutive equation. The results are in 

agreement with the trends of the two squeeze film experiments at steady velocity and under 

constant load. These results are encouraging as all previous theories, based on the second-

order fluid equation, or other conventional equations, resulted in a direct contradiction to the 

experiments of Leider and Bird [8,9]. 

A squeeze film damper problem with a viscoelastic fluid has been solved. 

Experiments have shown that viscoelastic effects decrease load capacity (decrease 

lubrication effectiveness) but increase descent time (increase lubrication effectiveness). The 

Harnoy constitutive equation, for the first time predicted the correct experimental trends. 

Another engineering application in which the constitutive equation predicts 

experiment correctly is that of relaxation effects in viscoelastic boundary layer flow. The 

equation shows what has been known from experiments, that drag reduction and delayed 

fluid separation results from viscoelastic flow past submerged bodies. In the calculation, the 

second-order equation has incorrectly predicted results from experimentation. 

2.2 Derivation 

2.2.1 Method of Small Disturbances 

Mean Flow Considered 

The following analysis is a derivation of the viscoelastic stability equation which is an 
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extension of the Orr-Sommerfeld equation of stability for Newtonian fluid. Consider a two 

dimensional, incompressible, steady, parallel flow.The flow is defined by its Cartesian 

velocity coordinates U, V, in the x and y directions respectively and its pressure P = P(x,y). 

It is assumed that the mean flow, U = U(y) is in the direction of x and varying only as a 

function of y so that it is considered that V = W = 0. This situation is commonly referred to 

as a parallel flow problem. The flow in the boundary layer is also regarded as a good 

approximation to parallel flow because the dependence of the velocity U in the main flow 

on the x coordinate is very much smaller than that on y. The pressure is assumed to be a 

function of x and y, P(x,y), because the pressure gradient δ P/δ x maintains the flow. Thus 

we assume a mean flow with 

Parabolic Velocity Profile Assumption 

Because this study considers the particular case ofsteady mean flow between parallel plates, 

it must also beassumed that the mean flow velocity profile is parabolic. This is shown by 

writing the Navier Stokes equations for the mean flow. 

Because of the steady mean flow assumption we have 

If the mean flow velocity profile is written as: 

then d2U/dy2  is a constant and the boundary conditions 
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are satisfied. This mean flow is shown in fig.1. 

The assumption of a two dimensional flow is made to simplify the calculations. Also 

of importance is that the authenticity of the results lie in the fact that it has been shown that 

three dimensional flow is more stable than two dimensional flow for Newtonian fluids [10]. 

Also the results reflect the disturbance only at the beginning of the transition to turbulence 

from laminar. 

Motion and Continuity Equations 

The starting point of the mathematical analysis begins with the equations for a two-

dimensional incompressible mean flow given by the equations of motion. 

and the continuity equation 

Viscoelastic Extension to the Navier-Stokes Equations 

Noting that the equations for the strain rate tensors are equivalent to 

and the equation for the time derivative is given by 
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we may now substitute equation 2.1 into equations 2.13 and 2.14 which yields after 

neglecting gravitational effects, 

Equations 2.21 and 2.22 are an extension of the well known Navier-Stokes equation 

for a two-dimensional flow. For A = 0 the equations are reduced to the Navier-Stokes 

equations for Newtonian flow. 

Two-Dimensional Disturbance Superimposed 

Now we may consider the mean flow (whose stability constitutes the subject of the 

investigation) being superimposed by an unsteady, two-dimensional disturbance which is 

very small in magnitude. Being a function of time and space, its velocity components and 

pressure are given as: 

Adding the mean flow and disturbance quantities gives the resultant motion velocity and 

pressure components, 

The assumption that the magnitude of the disturbance is very small as made above 

becomes very important, as it enables linearization of the equation, disregarding orders of 

u'2  and u'v'. Linearization is justified since the study involves a short phase of time where 

the flow is in transition to turbulence from laminar. 

The mean flow is assumed a solution of the Navier-Stokes equations, and it is 



required that the resultant motion must also satisfy the Navier-Stokes equations. The task 

of the stability theory consists in determining whether the disturbance is amplified or 

whether it decays for a given mean motion. The flow, therefore, is considered unstable or 

stable depending on whether the former or the latter is the case. 

We may now substitute equations 2.25 into the Navier-Stokes equations for a two-

dimensional, incompressible, non-steady flow extended to incorporate viscoelastic properties 

(equations 2.21, 2.22, and 2.23). Letting the small letters denote disturbance quantities, the 

primes differentiation with respect to y, and the subscripts differentiation with respect to the 

parameter indicated we may write, 

Introduction of Stream Function 

A stream function has been established to model the disturbance quantities; and of much 

importance it is to serve the purpose of allowing for the determination of whether the 

disturbance becomes amplified or damped. The stream function must also satisfy continuity 

conditions (equation 2.23). If we write 

and thus continuity is satisfied. 

A stream function written as: 
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with and being complex conjugates of ϕ and ᵦ  where 

is shown to be an anzot and serves the purpose of determining whether the disturbance 

decays or becomes unstable. Here ϕ(y) represents the disturbance amplitude and is a 

complex eigenfunction of y, the a quantity is the wavenumber and is real (1 is the 

wavelength), t is the time at which the disturbance begins, and ᵦ  is the frequency of the 

disturbance and is also complex. It is advantageous and permissible (proof - App. p.67) 

that we may work with only ϕ(y) ei(ax-Bt)  and not its complex conjugate 15(y) ei(ax-Bt).The 

disturbance velocities are then found to be, (with ϕ(y) now written as ϕ), 

Representing the stream function in different forms shows more clearly the critical 

point of how this stream function serves the purpose of determining whether the disturbance 

becomes amplified or damped. Rewriting 
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If we consider only the real part of , 

it is clearly seen that the sign of 13 determines whether the stream function and thus the 

disturbance becomes amplified or damped. The purterbation velocities (real) are thenfound 

to be 

The equations for the velocities u and v 

may be substituted into equations 2.26 and 2.27 giving 

Differentiating these equations with respect to y and x respectively and subtracting equations 

in order to eliminate pressure gives 

Equation 2.46 may be further simplified to yield the viscoelastic stability equation. 

The New Viscoelastic Stability Equation 



25 

where c is the wave velocity of propagation and is complex, 

R denotes the Reynolds' number, is a characteristic of the mean flow, r represents the 

elasticity number, and eliminating ei(ax-Bt)  gives the following ordinary, fourth-order, 

differential equation for the amplitude ϕ(y): 
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This is the fundamental differential equation for the disturbance (viscoelastic stability 

equation) which forms the point of departure for the stability theory of laminar flows. It is 

the extension to the Orr-Sommerfeld equation for viscoelastic fluids. Equation 2.63 has been 

cast in dimensionless form 	in that all lengths have been divided by half the channel length 

b and velocities have been divided by the maximum velocity Um  of the mean flow. The 

primes denote differentiation with respect to the dimensionless coordinates y/b, R as 

previously shown denotes the Reynolds' number which is a characteristic of the mean flow, 

and F denotes the elasticity number which is a measure of fluid viscoelasticity. For a 

boundary-layer flow in the case of flow between parallel plates, boundary conditions 

demand via the no slip condition that the components of the perturbation velocity must 

vanish at the walls (y = +1). 

Thus: 

The stream function is 1/2 the sum of ϕ(y) ei(ax-Bt)  and its complex conjugate ,(y) ei(ax-Bt),  

The stream function holds for all x and t so: 

Writing these boundary conditions again 
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it is seen that some value for the stream function at y = 0 must be chosen. At y = 0 two 

cases are considered (with A being a real number); 

Case 1: flow is antisymmetric; 	 (2.70) 

odd derivatives y(0) = 0; 

Case 2: flow is symmetric; 	 (2.71) 

even derivatives y(0) = 0; 

2.2.2 The Eigenvalue Problem 

The stability problem is now reduced to an eigenvalue problem (equation 2.63) with the 

boundary conditions (equation 2.69) and one of the two cases considered (equations 2.70-

71). When the mean flow U(y) is specified, equation 2.63 contains four parameters. They 

are a, R, cr, Of these the Reynolds' number is specified as is the wavelength (I = 2 π/a), 

or wavenumber (a = 2 π/1), of the disturbance. So the viscoelastic stability equation, 

together with the boundary conditions gives one eigenfunction ϕ(y) and one complex 
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eigenconstant, c = cr  ici, for each pair of values a, R. Here cr  represents the phase velocity 

of the prescribed disturbance whereas the sign of ci  determines whether the wave is 

amplified (when ci  > 0) or damped (when ci  < 0). For ci  < 0 the corresponding flow (U,R) 

is stable for the given value of a, whereas ci  > 0 denotes instability. The limiting case ci  --

0 corresponds to neutral (indifferent) disturbances. 

The result of such an analysis for any prescribed laminar flow U(y) can be 

represented graphically in an a, R diagram because every point of this plane corresponds to 

a pair of values of cr  and ci. In particular, the locus ci  = 0 separates the region of stable from 

that of unstable disturbances. This locus is called the curve of neutral stability. The point 

on this curve at which the Reynolds' number has its smallest value (tangent parallel to the 

a-axis) is of great interest since it indicates that value of the Reynolds' number below which 

all individual oscillations decay, whereas above that value at least some are amplified. This 

smallest Reynolds' number is called the critical Reynolds' number or limit of stability with 

respect to the type of laminar flow under consideration (flow between parallel plates 

considered here).The curves of neutral stability in figures 4-7 (antisymmetric case) are for 

fluids with various values of r shown vs the curve for the Orr-Sommerfeld equation which 

considers a Newtonian fluid only, r = 0. It is seen that the critical Reynolds' number 

decreases vs increasing values of r. Numerical methods as discussed in the appendix have 

been used in this investigation for the solution of the Orr-Sommerfeld and viscoelastic 

stability equations. There is close agreement between the work in this investigation (fig.2, 

critical Reynolds' number of 5652.3) and in previous work concerning the neutral stability 

curve for the Orr-Sommerfeld equation's antisymmetric (fig. 3). Comparison between the 
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Newtonian and Non-Newtonian curves of neutral stability is then valid because of the 

similar methods used for their solution. 



CHAPTER 3 

COMMENTS ON VISCOELASTIC STABILITY AND 
TRANSITION TO TURBULENCE 

Important aspects to the curves of neutral stability for viscoelastic fluids calculated in this 

investigation can be explained by comparing those curves vs the neutralstability curve for 

a Newtonian fluid. Analysis of the antisymmetric, or odd case, shows that this type of 

prescribed disturbance induces the most dangerous of flows(or is most likely to progress the 

mean flow to a turbulent state). Results indicate that a Newtonian fluid undergoes transition 

to turbulence at a calculated Reynolds' number of 5652.3 when the antisymmetric case is 

considered (fig.2).When the symmetric, or even case is considered, transition to a turbulent 

state occurs at a calculated Reynolds' number of 7665 (fig.10). The aim is to find the critical 

Reynolds' number or limit of stability, so the case which produces the lowest critical 

Reynolds' number is the more important case and is therefore considered in depth. Another 

seemingly important difference between the curves of neutral stability for the odd and even 

cases is the value of the wavenumber at which disturbances begin to grow (or the value of 

the wavenumber at the critical Reynolds' number now denoted as the critical wavenumber). 

For the antisymmetric, or odd case, the critical wavenumber was calculated to be 1.0250 

(fig.2) while for the symmetric, or even case, the critical wavenumber was found to be 

significantly higher (fig.10). This may give valuable insight into the curves of neutral 

stability for viscoelastic fluids. 

As already stated, the antisymmetric case produces the most dangerous of flows and 

its results are seen in figures 4-7. Each figure shows two neutral stability curves. One for 

30 



31 

the Newtonian case vs a curve for a given value of elasticity number. It is seen that the 

critical Reynolds' number decreases with increasing values of r, or, elasticity number. An 

elasticity number of 10-5 is seen in figure 4 to produce a critical Reynolds' number of 5652.2, 

only slightly below 5652.3 (the critical Reynolds' number for Newtonian flow). Critical 

Reynolds' numbers of 5651.9, 5648.1, and 5610.9 correspond to elasticity numbers of 10-4, 

10-3, and 10-2  respectively (figs. 4-7). This indicates that viscoelasticity plays a role which 

diminishes the value of the Reynolds' number at which tranition to turbulence occurs. 

However, for values of elasticity number up to 5 x 10-4, a range including usual applications 

of drag reducing fluids, the critical Reynolds' number for the viscoelastic stability equation 

is 5650.1, only slightly below that for Newtonian fluids. This relationship between 

viscoelasticity and the critical Reynolds' number is seen more clearly in the semilog plot of 

figure 8. Viscoelasticity also diminishes the value of the critical Reynolds' number for the 

symmetric case (fig.11). 

It is seen that the value of the critical wavenumber increases with increasing values of 

elasticity number. Elasticity numbers of 10-5  and 10-4 produce critical wavenumbers only 

slightly above 1.0250 (the critical wavenumber for Newtonian flow). Critical wavenumbers 

of 1.0258, and 1.0270 correspond to elasticity numbers of 10-3, and 10-2  respectively 

showing that viscoelasticity plays a role which increases the value of the critical wavenumber. 

This relationship is seen more clearly in the semilog plot of figure 9. Although this 

relationship does not directly influence the transition to turbulence it may signify a more 

stable situation for turbulent flow as indicated by the high critical wavenumbers in the 

symmetric case for Newtonian and non-Newtonian fluids. Also, it was found that at high 
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Reynolds' number and low wavenumber, the value of disturbance growth rate (c imaginary) 

for the Newtonian fluid and fora fluid with an elasticity number of 10-3  (figure 21) become 

equalor intersect. It therefore is assumed that the neutral stability curves intersect. 

Plots of the disturbance amplitude, or eigenfunction ϕ, are shown in figures 12 and 

13. Both plots of the eigenfunction are at a Reynolds' number of 7000 and wavenumber of 

1; the plot of figure 12 is for a Newtonian fluid and that of figure 13 is for a fluid with 

elasticity number of 10'. It can be seen from the plot of figure 14 that the values of the 

eigenfunction for the viscoelastic fluid (F = 10") is greater than that of the Newtonian fluid 

(r = 0) at every point along the channel width. This shows that the disturbance for the 

viscoelastic fluid is more pronounced than in Newtonian fluid at this point in a, R space. 



CHAPTER 4 

THE VISCOELASTIC STABILITY EQUATION COMPARED 
TO THE SECOND-ORDER/MAXWELL MODEL STABILITY 

EQUATION 

The second-order fluid of is described by the differential type of equation, 

where 'r is the stress tensor and a ;  are fluid coefficients. A(1)  and A(2)  are rate of strain 

tensors, 

vi  is the velocity vector. The coefficient a, is identical to the viscosity of the fluid µ. The 

convective time derivative is defined as 

This is the conventional Jaumann' s time rate which is shown by Harnoy {4] to be 

valid only for low shear rates, A d(eij)/dt. Expanding equation 1.1 to an infinite series of 

increasing orders of time derivatives of eij yields, 

It then follows from the expansion that A d(eij)/dt<< 1, or De << 1. So if d/dt is the 

conventional Jaumann' s time rate, for a simple shear flow, the second-order equation is 

valid only for low shear rates (as is the new rheological equation). The the constant shear 

viscosity and normal stresses (corresponding to fluid parameters a and a 2) are the only 

effects which enter into the second-order stability equation.The Maxwell fluid is described 

by the differential type of equation, 
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effects which enter into the second-order stability equation.The Maxwell fluid is described 

by the differential type of equation, 

where T is the stress tensor and αi are fluid coefficients. The model has a zero secondary 

normal stress difference, but the secondary normal stress difference does not enter into the 

stability equation, so the second-order and Maxwell models yield the same stability equation. 

The primary function of the new fluid equation is to separate the normal stress and 

relaxation effects; the second-order and Maxwell rheological models do not separate these 

parameters. This was made possible by the introduction of a unique time derivative. Our 

time derivative D/Dt is defined in a rigid rectangular coordinate system (1,2,3) having its 

origin fixed at a fluid particle, moving with it, and having its directions coinciding with the 

three principal axes of the strain rate tensor. The following equation describes the rate of 

change of the strain rate tensor, as seen by an observer positioned on the principal axes of 

the same tensor. 

The vector Ωij is the angular velocity of the rigid, rectangular, coordinate system (1,2,3) 

attached to the principal axes and vi are the velocity components of its origin. The difference 

between this and the well known time derivative of Jaumann is that in the latter, the angular 

velocity is of the fluid particle. The angular velocity of a fluid particle is given as: 
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where w1  is the angular velocity of a fluid particle relative to the coordinate system (1,2,3). 

An extension of the second-order equation which includes an additional fluid parameter 

yields the new rheological equation 

where a,, a,, a 3, and a, are fluid parameters which are functions of the strain-rate tensor 

invariants. It has been shown that at slow flow (as eij  approaches 0), a, and a 3  coincide and 

so equation 4.7 converges to the second-order equation. The significance of the equations 

in the new rheological model(equations 4.5 - 4.7)are for high shear -rate flows subjected to 

slow changes. All angularvelocities are equal to zero for plane parallel flow. 

Restating the solutions of the parallel flow problem for both the new rheological fluid 

equation and second-order/Maxwell models: 

The viscoelastic stability equation, 

and the second-order/Maxwell model stability equation 

In the second-order/Maxwell model stability equation the ϕ' and ϕ''' terms do not 

enter into the equation as in the viscoelastic stability equation. 

The viscoelastic stability equation and the second-order/Maxwell model stability 

equation show similar relationships with respect to transition to turbulence. The decrease in 

critical Reynolds' number with increasing elasticity number is slightly greater for the 
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viscoelastic stability equation than for the second-order/Maxwell model viscoelastic stability 

equation. In neutral stability curves for the antisymmetric case it is seen that the critical 

Reynolds' number decreases with increasing values of elasticity number (the values were 

calculated using E, or, r/R. for the second-order/Maxwell model). An elasticity number of 

10-7  is seen in figure 15 to produce a critical Reynolds' number of 5650.8, only slightly 

below 5652.3 (the critical Reynolds' number for Newtonian flow). Critical Reynolds' 

numbers of 5638.9, and 5522.6 correspond to elasticity numbers of 10-6, and 10-5  

respectively (figs. 16-17). 

So viscoelasticity, in the second-order/Maxwell model stability equation, as in the 

viscoelastic stability equation, diminishes the value of the Reynolds' number at which 

transition to turbulence occurs. Figure 18 shows the comparison between the two models 

(both plotted vs F). Figure 19 shows the relationship between ci  and both models at low 

values of F (at R = 5652, a = 1.025). It shows that at all values of r the viscoelastic stability 

equation is less stable than the second-order/Maxwell model stability equation. 

There is similarity between the second-order/Maxwell model stability equation and 

the viscoelastic stability equation with respect to the value of the critical wavenumber 

varying with elasticity number. Critical wavenumbers of 1.0250, 1.0247, 1.0252, and 1.0310 

correspond to elasticity numbers of 10-8, 10-7  ,10-6, and 10-5  respectively. This shows that 

viscoelasticity, in the second-order/Maxwell model stability equation, increases the value 

of the critical wavenumber but not until higher values of elasticity number and until the 

critical Reynolds' number is diminished more when compared to the viscoelastic stability 

equation. This relationship is seen more clearly in the semilog plot of figure 20. 



CHAPTER 5 

SUMMARY AND CONCLUSIONS/COMMENTS 
ON TURBULENT FLOW 

The decrease in critical Reynolds' number with elasticity number is slightly greater for the 

viscoelastic stability equation than the decrease for the second-order/Maxwell model 

stability equation. For values of elasticity number up to 5 x 10', a range including usual 

applications of drag reducing fluids, the critical Reynolds' number for the viscoelastic 

stability equation and that for the second-order/Maxwell model stability equation are 5650.1 

and 5651.0 respectively. 

The increase in critical wavenumber with elasticity number was minimally greater 

for the viscoelastic stability equation. This increase, for either of the two stability equations, 

may give insight into why viscoelastic fluids do show delayed transition to turbulence vs 

Newtonian fluids and/or why turbulent flow pressure drop is lessened for viscoelastic fluids. 

This explanation may be likened to the phenomena of the symmetric case where the critical 

Reynolds' number is significantly higher as is the wavenumber; the symmetric case as 

already stated is the more stable of the flows. 

Another important aspect to the curves of neutral stability (which may be a direct 

result of the wavenumber vs elasticity number increase) occurs for the viscoelastic stability 

equation occurs at high Reynolds' number and low wavenumber. For high shear rate flows 

(Reynolds' numbers greater than 8900), and low wavenumber (wavenumber = 0.8) it is seen 

that value of disturbance growth rate (c imaginary) for the Newtonian fluid and for a fluid 

with an elasticity number of 10-3  (figure 21) was equal. So it is assumed that the neutral 
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stability curves at low wavenumber (high wavenumber would be an important investigation) 

for Newtonian fluids and for those with various measures of elasticity, or elasticity number, 

intersect. In this high range of Reynolds' numbers it is seen that faster damping of the 

disturbance occurs for the viscoelastic fluids than for Newtonian fluids. This does not mean 

that the flow remains laminar at such high Reynolds' numbers (as disturbances at various 

wavenumbers exist with some corresponding to positive growth rates which will increase 

the disturbance). But at some values of wavenumber the disturbance would decay for 

viscoelastic fluids but increase for the Newtonian. Again, Dr. Harnoy writes 

"Moreover, a change in the magnitude of amplitude ,of 
disturbances would affect the generation of turbulence in a 
fully developed turbulent flow resulting in a change in the 
Reynolds' stresses and friction between the fluid and a wall 
and drag between fluid and submerged bodies. "[3] 
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APPENDIX A 

FIGURES 

Velocity Distribution, U(y) 

Fig.1 Mean Flow Velocity Profile in Channel 
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Reynolds' Number, R 

Fig.2 Neutral Stability Curve for a 
Newtonian Fluid, F = 0 

(Viscoelastic Stability Equation) 
(Antisyrnmetric Case) 
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Reynolds' Number, R 

Fig.3 Neutral Stability Curve for a 
Newtonian Fluid, r = 0 

(Viscoelastic Stability Equation) 
(Antisymmetric Case) 	[10] 
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Reynolds' Number, R 

Fig.4 Neutral Stability Curve for a 
Newtonian Fluid, F = 0, and a Fluid With 

an Elasticity Number, F = 10-5  
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.5 Neutral Stability Curve for a 
Newtonian Fluid, F = 0, and a Fluid With 

an Elasticity Number, F = 10-4  
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.6 Neutral Stability Curve for a 
Newtonian Fluid, r = 0, and a Fluid With 

an Elasticity Number, F = 10-3  
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.7 Neutral Stability Curve for a 
Newtonian Fluid, F = 0, and a Fluid With 

an Elasticity Number, F = 10' 
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Elasticity Number, F 

Fig.8 Plot of Critical Reynolds' Number, Rc vs 
Elasticity Number, F 

(Viscoelastic Stability Equation) 
(Antisymmetric Case) 
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Elasticity Number, F 

Fig.9 Plot of Critical Wavenumber, uc vs 
Elasticity Number, F 

(Viscoelastic Stability Equation) 
(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.10 Neutral Stability Curve for a 
Newtonian Fluid, F = 0 

(Viscoelastic Stability Equation) 
(Symmetric Case) 
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Reynolds' Number, R 

Fig.11 Neutral Stability Curve for a 
Newtonian Fluid, F = 0, and a Fluid With 

an Elasticity Number, F = 10-3 
(Viscoelastic Stability Equation) 

(Symmetric Case) 
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Channel Width, y 

Fig.12 Disturbance Amplitude (Real Part), Or 
vs Channel Width, y 

R = 7000, a = 1, r = 0 
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Channel Width, y 

Fig.13 Disturbance Amplitude (Real Part), Or 
vs Channel Width, y 

R = 7000, a = 1, r = 10-3  
(Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Channel Width, y 

Fig.14 Difference Between Disturbance Amplitudes, 
(Or  at r = 10-3) - r at r = 0) vs Channel Width, y 

R = 7000, α = 1, r = 10-3  
• (Viscoelastic Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.15 Neutral Stability Curve for a 
Newtonian Fluid, E = 0, and a Fluid With 

an Elasticity Number, E = 10-7  
(Second-Order/Maxwell Model Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.16 Neutral Stability Curve for a 
Newtonian Fluid, E = 0, and a Fluid With 

an Elasticity Number, E = 10-6  
(Second-Order/Maxwell Model Stability Equation) 

(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.17 Neutral Stability Curve for a 
Newtonian Fluid, E = 0, and a Fluid With 

an Elasticity Number, E = 10-5  
(Second-Order/Maxwell Model Stability Equation) 

(Antisymmetric Case) 
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Elasticity Number, F 

Fig.18 Comparison of Critical Reynolds' Number, Rc  
between the Viscoelastic and 

Second-Order/Maxwell Model Stability Equations 
(Antisymmetric Case) 
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Elasticity Number, F 

Fig.19 Comparison of Disturbance Growth Rate, ci  
between the Viscoelastic and 

Second-Order/Maxwell Model Stability Equations 
at R = 5650, a = 1.025 
(Antisymmetric Case) 
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Elasticity Number, E 

Fig.20 Plot of Critical Wavenumber, αc vs 
Elasticity Number, E 

(Second-Order/Maxwell Model Stability Equation) 
(Antisymmetric Case) 
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Reynolds' Number, R 

Fig.21 Disturbance Growth Rate, ci  vs 
Reynolds' Number, R for Fluids of 

F = 0 and F = 10-3 
at Wavenumber, 	= 0.8 

(Viscoelastic Stability Equation) 
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APPENDIX B 

NUMERICAL ANALYSIS AND 
OUTLINE OF PROGRAM USED TO 

EVALUATE THE VISCOELASTIC STABILITY EQUATION 

B.1 Numerical Analysis 

The numerical methods used in the solution to the 

viscoelastic stability equation and an outline of the program 

is discussed. 	Being a fourth-order initial-value problem, a 

numerical solution to the viscoelastic stability equation 

requires that it must be reduced to a first-order system. 

The classical procedure dictates that we first must 

convert a general mth-order differential equation of the form, 

with initial conditions, 

into a system of equations in the form, 
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or a ≤ t ≤ b, with the initial conditions, 

The object is to find m functions u1, u2 , 	that satisfy the 

system of differential equations as well as the initial 

conditions into a system of equations in the form B .3 and B.4, 

Using this notation, we obtain the first-order system, 



62 

with initial conditions, 

For the viscoelastic stability equation we have 

Here ϕj' is also a function of y (the channel width) and c 

(the velocity of the wave); with the initial conditions and 
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Here A and C are initial estimates and with, 

the differential equation is transformed into the system, 

Also note that 

The system may be solved as follows: 

Begin again with the initial conditions (case 1): 

These give initial values for ϕ and its derivatives and the 

eigenvalues are evaluated (0 s y s 1) using the Runge-Kutta 

fourth-order method [11]. The boundary conditions hold that 

the real and imaginary parts of ϕ  and 0' at the wall (y = 1) 
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must equal zero. Or we may write 

We may denote the calculated values of 	and ϕ' after 

integrating (using the initial values of the real numbers A and 

C) as, 

We may also find after varying these initial guesses by an 

amount of 	h and - h: 
(B.18) 

These may be calculated as 
(A.19) 

We may then implement the Newton-Raphson method written in 

matrix form which will yield the new approximations to A and 

C, denoted here as X1, and the values of all derivatives. We 

have, 
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The process may be repeated n times until the solution Xn 

converges to some tolerance of the values of the eigenfunctions 

at the boundary (y = 1); again stated (for case 1): 

B.2 Program Outline 

Output approximations Wj  to ϕj (y) at the (N + 1) number 

of y values. 

Step 1 	Set variables to implicit double precision. 

Dimension necessary vectors 

Input constants; R, Reynolds' number, R (real) 

F, wavenumber, o (real) 
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G, viscoelastic constant, F (real) 

N, 	step size, (real) 

H, Newton-Raphson variation, 

H 	10-3 -10-10  (imaginary). 

Calculate; Dy = (1-0)/N; 

Set y = 0; 

Step 2 	for j = 1,2,3,4 set initial values = 

case 1; 

add both + h, -h to 0" and c (or α3 and us) and solve 

using Step 3 for each of the five variations) 

case 2; 

add both h, -h to ϕ' "and c (or u4  and u) and solve 

using Step 3 for each of the five variations) 

Step 3 	for i = 0 to N 

Step 4 Runge-Kutta fourth-order method 

Step 5 output (Wj,i) 

Step 6 Newton-Raphson method 

If solution converges then stop 

output c, 

If solution does not converge, then repeat using the new 

approximations (Wj,i) for α3  and α5.  

** 	The program contains loops that allow for the variation 

of u and R while convergence continues 
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APPENDIX C 

STREAM FUNCTION COMPONENTS 

Since, 

and, 

we have, 

It is clearly seen from equation C.28 that the sign of iβ in 

each component points to stability conditions ; 	we have 

stability if ci  < 0, 	instability if ci  > 0, 	and neutral 

stability when ci  = 0. We therefore need to work with only 

one component in order to determine the sign of ci. For 

convenience ϕ(y) ei(ax-Bt)  is chosen and we need not be 

concerned with its conjugate ϕ(y) e-i(ax-Bt). 



APPENDIX D 

FORTRAN PROGRAM USED TO EVALUATE 
THE VISCOELASTIC STABILITY EQUATION 

6 8 



PROGRAM OV 
** SET VARIABLES TO DOUBLE PRECISION 

IMPLICIT DOUBLE PRECISION (D,F,G,R,U,Y) 
IMPLICIT DOUBLE COMPLEX (A-C,H,K,P,S,V-X,Z) 	 69 

** THIS FORTRAN PROGRAM USES THE RUNGE-KUTTA, NEWTON-RAPHSON 
** METHODS TO SOLVE THE ORR-SOMMERFELD EQUATION AND THE EXTENSION 
** TO VISCOELASTIC FLOW 
** 

** SET INITIAL VALUES AND CONSTANTS; NUMBER OF Y INTERVALS = N, 
** MAXIMUM NUMBER OF TIMES PROGRAM CALCULATES VALUES FOR PHI AND 
** ITS DERIVATIVES = LN WITH LL AS COUNTER (LL = 1, FIRST STEP IN 
** NEWTON-RAPHSON WITH NEW VALUES FOR PHI" AND C;LL = 2, SECOND STEP 
** IN N.R.WITH VALUES FOR PHI" + A SMALL CHANGE = H;LL = 3, THIRD 
** STEP IN N.R WITH VALUES FOR PHI" - H;LL = 4,FOURTH STEP WITH 
** VALUES FOR C + H;LL = 5, FIFTH STEP WITH VALUES FOR 

** C - H;LL = 6, FIRST STEP REPEATS WITH NEW VALUES FOR PHI" AND 
** C CALCULATED BY NEWTON-RAPHSON METHOD) 
• ** 
.** SET VARIOUS LOOP COUNTERS; M,MM,MH... 
• ** 
** SET REAL CONSTANTS;WAVE NUMBER = F, MAXIMUM VELOCITY = UM, 
** REYNOLDS NUMBER = R, DIMENSIONLESS VISCOELASTIC MEASURE = G, 
** INITIAL VALUE FOR Y, (Y = 0) 
• ** 
** SET COMPLEX VARIABLES AND CONSTANTS; INITIAL GUESS FOR 
** PHI" = A, INITIAL GUESS FOR C = C, COMPLEX NUMBER I = BB, 
** SMALL CHANGE IN VALUES FOR PHI" AND C = H 
• ** 
** INITIALIZE VALUES OF TERMS MULTIPLIED BY PHI AND ITS DERIVATIVES 
** WHERE 
** VALUE OF TERMS TIMES PHI 	AT Y = 	W1R1 
• ** 	" 	 	PHI' 	AT Y = 	W2R1 
• * * 	 PHI" 	AT Y = 	W3R1 
• ** 	 PHI'" AT Y = 	W4R1 ** 

** VALUE OF TERMS TIMES PHI AT Y + DY/2 = W1R2 
• ** 	 PHI' AT Y + DY/2 = W2R2 " 

• * * 	 " 	 PHI" AT Y + DY/2 = W3R2 
• ** 	 " 	PHI"'AT Y + DY/2 = W4R2 
• * * 

** VALUE OF TERMS TIMES PHI AT Y + DY/2 = W1R3 
• * * 	" 	 " 	 " 

• * * 	" 	 fl 	 "  

•** VALUE OF TERMS TIMES PHI AT Y + DY = 	W1R4 
" 	 " 	 " ** 

** INITIALIZE VALUES FOR INVERSE OF F 	dPHI /dA,dPHI /dC 
• ** 	 dPHI'/dA,dPHI'/dC 
'** INITIALIZE VALUES FOR VISCOELASTIC CONSTANT TERMS V1-V4 
** WHICH DEPEND TIME Y ,Y + DY/2, OR Y + DY; AND Z TERMS 

PARAMETER (N = 1250) 
PARAMETER (LN = 11) 
PARAMETER (IMR = 1) 
PARAMETER (IMAC = 10) 
INTEGER M,MM,MR,JO,JL,JMR,JMAC,IO,MNR,MAC,I,J,JJ,LL,E1,E2,E3,E4 
DATA F,R,G,Y/1.025D0,.56510D4,1D-8,0D0/ 
DATA A,C,H,BB/(-1.672796D0,-.276727D-4),(.2656344D0,.3109655D-5),(6D-4,6 
DATA W1R1,W2R1,W3R1,W4R1,W1R2,W2R2,W3R2,W4R2/(0D0,0D0),(0D0,0D0),(0D0,0D 
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DATA W1R3,W2R3,W3R3,W4R3,W1R4,W2R4,W3R4,W4R4/(0D0,0D0),(0D0,0D0), (ODO,OD 
DATA PD0A,PD1A,PDOC,PD1C,PDB/(0D0,0D0),(0D0,0D0),(0D0,0D0),(0D0,0D0),(0D 
DATA V1,V2,V3,V4/(0D0,0D0),(0D0,0D0),(0D0,0D0),(0D0,0D0)/ 
DATA ZZ11,ZZ12,ZZ21,ZZ22,RWSMALL/(0D0,0D0),(0D0,0D0),(0D0,0D0),(0D0,0D0) 
DATA CONW3R1,CONW3R2,CONW3R3,CONW3R4,LL/(0D0,0D0),(0D0,0D0),(0D0,0D0),(0 

** DIMENSION NECESSARY VECTORS; W(PHI-PHI"",Y STEPS,N.R.STEPS) 
** 	 W(5 = C 	,Y STEPS,N.R.STEPS) 
** 	*W (5, DOES NOT CHANGE WITH Y) 
** 
** K1-K4, RUNGE-KUTTA VECTORS 

DIMENSION W(5,N+1,LN+1),WRM1(IMR,IMAC,LN),WRM3(IMR,IMAC,LN),WRC(IMR,IMAC 
DIMENSION K1(5,N+1,LN+1),K2(5,N+1,LN+1),K3(5,N+1,LN+1),K4(5,N+1,LN+1) 

** CALCULATE STEP SIZE = DY 

DY = 1DO/N 

** ENTER INITIAL VALUES FOR PHI" AND C 

** 	READ (5,*) A,C 

** 	READ(5,*) R 

** 	READ(5,*) HV 

** PRINT CONSTANTS 

** 	WRITE(6,*) ' VALUES OF CONSTANTS' 
** 	WRITE(6,*) ' F =', 	F,' 	 R =', R 
** 	WRITE(6,*) 	DY =', DY,' 	 UM =', UM 
** 	WRITE(6,*) ' 	H =', H 

** INITIALIZE ARRAYS TO ZERO, START NEWTON R. LOOP, AND INPUT INITIAL 
** CONDITIONS (AT Y = 0) W (1,1,1) = PHI (0) = 1 
** 	 W (2,1,1) = PHI' (0) = 0 
** 	 W (3,1,1) = PHI" (0) = A 
** 	 W (4,1,1) = PHI'" (0) = 0 
** 	 W (5,1,1) = 	C 	= C 
** 
** INITIALIZE ARRAYS TO ZERO 

DO 20,J0 = 1,5 
DO 30,10 = 1,N+1 
DO 40, MNR = 1,LN+1 

W(JO,IO,MNR) = (0D0,0D0) 
K1(JO,IO,MNR) = (ODO,ODO) 

K2(JO,IO,MNR) = (ODO,ODO) 
K3(JO,IO,MNR) = (ODO,ODO) 

K4(JO,IO,MNR) = (ODO,ODO) 
40 CONTINUE 
30 CONTINUE 
20 CONTINUE 
DO 50000 JMR = 1,IMR 
DO 50100 JMAC = 1,IMAC 
DO 50200 JL = 1,LN 
OWRMC (JMR,JMAC,JL) = 0 
WRM1 (JMR,JMAC,JL) 	(ODO,ODO) 
WRM3 (JMR,JMAC,JL) = (ODO,ODO) 



WRC (JMR,JMAC,JL) = (0D0,0D0) 
50300 
50200 
50100 
50000 

** 30000 LOOP ALLOWS FOR H TO CHANGE 
** 70 LOOP BEGINS NEWTON-RAPHSON METHOD G=-8 5652 

F = F-(1D-3) 
** 	5522.6 1.0308 1.0311 AC = 1.0310 
** 	5522.7 1.0298 1.0319 
** 	5522.8 1.0293 1.0322 
** 	5523 1.0288 1.0327 
** 	5524 1.0271 1.0345 
** 	5525 1.0259 1.0357 
** 	5526 
** 10-5 5527 	1.0240 1.0373 
** 	5528 1.0233 1.0380 
** 	5529 1.0226 1.0386 
** 	5530 1.0220 1.0391 -6 +5 
** 	5540 	1.0172 1.0435 -48 	+44 
** 	5580 1.0056 1.0531 -116 +96 
** 	5620 0.9975 1.0592 +81 +61 
** 	5670 0.9894 1.0650 -81 -58 
** 	 -278 +215 
** 4hr. - MG*IMR = 300 

DO 29300,MG = 15,15 

IF (MG.LT.1.1) THEN 
ELSE 

IF (MG.LT.2.1) THEN 
G = 1D-2 
A = (-1.628D0,-.276D-4) 
C = (.265D0,.311D-5) 
F = 1.025D0-(1D-3) 
R = .56290D4 
ELSE 

IF (MG.LT.3.1) THEN 
A = (-1.67274D0,-.40287D-4) 
C = (.265618D0,.65124D-5) 
F = 1.025D0-(1D-3) 
R = .56560D4 
ELSE 

IF (MG.LT.4.1) THEN 
A = (-1.67267D0,-.52889D-4) 
C = (.2656017D0,.991228D-5) 
F = 1.025D0-(1D-3) 
R = .56580D4 
ELSE 

IF (MG.LT.5.1) THEN 
A = (-1.672615D0,-.65479D-4) 
C = (.26558D0,.13309D-4) 
F = 1.025D0-(1D-3) 
R = .56600D4 
ELSE 
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ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 
ENDIF 

DO 29200,MF = 1,1 

F = F+(1D-3) 

DO 29100,MR = 1,IMR 

DO 29000,MAC = 1,IMAC 

IF (MAC.LT.1.1) THEN 
H = (6D-4,6D-4) 

** 	H = HV 
ELSE 

IF (MAC.LT.2.1) THEN 
H = (1D-7,1D-7) 

** 

	

	H = HV 
ELSE 

IF (MAC.LT.3.1) THEN 
** 

	

	H = HV 
H = (5D-9,5D-9) 
ELSE 

** 	H = HV 
H = (8D-10,8D-10) 
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ENDIF 
ENDIF 
ENDIF 

IF (MAC.GT.1.1) THEN 
A = W(3,1,LN) 
C = W(5,1,LN) 
ELSE 
ENDIF 

** 	IF (MF.GT.1.1.AND.MAC.LT.1.1) THEN 
** 	A = WRM3(JMR,JMAC,JL) 
** 	C = WRC(JMR,JMAC,JL) 
** 	ELSE 
** 	ENDIF 

DO 70,LL = 1,LN 

** RESET INITIAL CONDITIONS (AT Y = 0) 
** THE A AND C VALUES ARE TAKEN FOR THE FIRST FIVE LL 
** NEWTON-RAPHSON VALUES ARE TAKEN AFTER THE FIRST FIVE LL 

W(1,1,LL) = (1D0,0D0) 

W(2,1,LL) = (ODO,0D0) 

IF(LL.LT.6) THEN 
W(3,1,LL) = A 
ELSE 
ENDIF 

W(4,1,LL) = (ODO,ODO) 

IF(LL.LT.6) THEN 
DO 80, M = 1,N+1 
W(5,M,LL) = C 
80 CONTINUE 
ELSE 
DO 90, M = 1,N+1 
W(5,M,LL) = W(5,1,LL) 
90 CONTINUE 
ENDIF 

'** PRINT INITIAL CONDITIONS 

• ** 	WRITE (6,*) 'VALUES OF PHI AND ITS DERIVITIVES AT y = 0' 

	

** 	WRITE (6,*) ' 
• ** 	WRITE (6,*) 'PHI = 	',W(1,1,LL) 
• ** 	WRITE (6,*) 'PHID 	= ',W(2,1,LL) 
	** 	WRITE (6,*) 'PHIDD = ',W(3,1,LL) 
• ** 	WRITE (6,*) 'PHIDDD = ',W(4,1,LL) 
• * * 	WRITE (6,*) 'C 	= ',W(5,1,LL) 

NEWTON-RAPHSON METHOD 100-140 LOOPS, ADDS OR SUBTRACTS H 
** DURING PROPER LL 

DO 100, M = 1,LN,5 
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IF (LL.EQ.M) THEN 
ENDIF 
100 CONTINUE 

74 
DO 110, M = 2,LN,5 
IF (LL.EQ.M) 	THEN 
W (3,1,LL) = W (3,1,LL) + H 
ENDIF 
110 CONTINUE 

DO 120, M = 3,LN,5 
IF (LL.EQ.M) 	THEN 
W (3,1,LL) = W (3,1,LL) - H 
ENDIF 
120 CONTINUE 

DO' 130, M = 4,LN,5 
IF (LL.EQ.M) 	THEN 
W (5,1,LL) = W (5,1,LL) + H 

** 	DO 140, MM = 1,N+1 
** 	W (5,MM,LL) = W (5,MM,LL) + H 
** 	140 CONTINUE 

ENDIF 
130 CONTINUE 

DO 150, M = 5,LN,5 
IF (LL.EQ.M) THEN 
W (5,1,LL) = W (5,1,LL) - H 

** 	DO 160, MM = 1,N+1 
** 	W (5,MM,LL) = W (5,MM,LL) - H 
** 	160 CONTINUE 

ENDIF 
150 CONTINUE 

** THE RUNGE-KUTTA ROUTINE, RESET Y TO 0 
** 1000 LOOP, Y STEPS 

Y = 0D0 

DO 1000,1 = 1,N 
** 	WRITE (6,*) ' 	 y 	Y 

** VISCOELASTIC TERM, (1/(I/AL + G (U-C))), THEN MULTIPLIED BY 
** W1-W4 VALUES 

V1 = 1D0MBB/F)+(G*((1D0-(Y)**2)-W(5,1,LL)))) 

V2 = 1D0MBB/F)+(G*((1D0-(Y+DY/2D0)**2)-W(5,1,LL)))) 

** 	V3 = -1D0/(BB/F)+(G*(UM*(1D0-(Y+DY/2D0)**2)-W(5,1,LL)))) 
** 	THIS IS THE SAME AS V2 SO WE MAY SET V3 = V2 

V3 = V2 

V4 = 1DO/((BB/F)+(G*((1D0-(Y+DY)**2)-W(5,1,LL)))) 

** W1-W4 TERMS 



**V.S. 	W4R1 = V1*(G*(2D0*(Y))) 
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W4R1 = 0D0 

CONW3R1= (2D0*G*F**2)*((1D0—(Y)**2)—W(5,1,LL)) 

W3R1 = V1*(—R*((1D0—(Y)**2)—W(5,1,LL))+2D0*131.3*F+CONW3R1) 

**v.s. 	W2R1 = V1*(G*(-2D0*(Y))*F**2) 

W2R1 = 0D0 

** 	 WRITE(6,*) ' W1R1 AND W3R1', W1R1,", W3R1 

W1R1 = V1*((R*F**2)*((iD0—(Y)**2)—W(5,1,LL))-2D0*R—BB*F**3—(G*(F**4))*(( 

•**V.S. 	W4R2 = V2*(G*(2D0*(Y+DY/2D0))) 

W4R2 = 0D0 

CONW3R2 = (2D0*G*F**2)*((1D0—(YtDY/2D0)**2)—W(5,1,LL)) 

W3R2 = V2*(—R*((1D0—(Y+DY/2D0)**2)—W(5,1,LL))+2D0*BB*F+CONW3R2) 

W2R2 = V2*(G*(-2D0*(Y+DY/2D0))*F**2) 

W2R2 = 0D0 

W1R2 = V2*((R*F**2)*((1D0—(Y+DY/2D0)**2)—W(5,1,LL))-2D0*R—BB*F**3—(G*(F* 

** 	 WRITE(6,*) ' W1R2 AND W3R2', W1R2,", W3R2 

**V.S. 	W4R3 = V3*(G*(2D0*(Y+DY/2D0))) 

W4R3 = 0D0 

CONW3R3 = (2D0*G*F**2)*((1D0—(Y+DY/2D0)**2)— W(5,1,LL)) 

W3R3 = V3*(—R*((1D0—(Y+DY/2D0)**2)—W(5,1,LL))+2D0*BB*F+CONW3R3) 

**V.S. 	W2R3 = V3*(G*(-2D0*(Y+DY/2D0))*F**2) 

W2R3 = 0D0 

W1R3 = V3*((R*F**2)*((1D0—(Y+DY/2D0)**2)—W(5,1,LL))-2D0*R—BB*F**3—(G*(F* 



**V.S. 	W4R4 = V4*(G*(2D0*(Y+DY))) 	 76 

W4R4 = 0D0 

CONW3R4 = (2D0*G*F**2)*((1D0-(Y+DY)**2)-W(5,1/ LL)) 

W3R4 = V4*(-R*((1D0-(Y+DY)**2)-W(5,1,LL))+2D0*BB*F+CONW3R4) 

**V.S. 	W2R4 = V4*(G*(-2D0*(Y+DY))*F**2) 

W2R4 = ODO 

W1R4 = V4*((R*F**2)*((1D0-(Y+DY)**2)-W(5,1,LL))-2DO*R-BB*F**3-(G*(F**4)) 

** RUNGE-KUTTA LOOPS FOR CALCULATING Kl (1-4)-K2 (1-4) 

DO 1500, El = 1,3 
Kl(El,I,LL) = DY*W(E1+1,I,LL) 

** 

	

	WRITE(6,*) ' Kl', El,' =', K1(El,I,LL) 
1500 CONTINUE 

K1(4,I,LL) = DY*(W3R1*W(3,I,LL)+W1R1*W(1,I,LL)+W2R1*W(2,I,LL)+W4R1*W(4,I 
** 	 WRITE(6,*) ' K1',4,' =', K1(4,I,LL) 

DO 2000, E2 = 1,3 
K2(E2,I,LL) = DY*(W(E2+1,I,LL)+0.5*K1(E2+1,I,LL)) 

** 

	

	 WRITE(6,*) ' K2', E2,' =', K2 (E2,I,LL) 
2000 CONTINUE 

K2(4,I,LL) = DY*(W3R2*(W(3,I,LL)+K1(3,I,LL))+W1R2*(W(1,I,LL)+K1(1,I,LL)) 
** 	 WRITE(6,*) 	K2',4,' =',K2 (4,I,LL) 

DO 2500, E3 = 1,3 
K3(E3,I,LL) = DY*(W(E3+1,I,LL)+0.5*K2(E3+1,I,LL)) 

** 

	

	 WRITE(6,*) ' K3', E3,' =', K3 (E3,I,LL) 
2500 CONTINUE 

K3(4,I,LL) = DY*(W3R3*(W(3,I,LL)+K2(3,I,LL))+W1R3*(W(1,I,LL)+K2(1,I,LL)) 
** 	 WRITE(6,*) 	K3',4,' =',K3 (4,I,LL) 

DO 3000, E4 = 1,3 
K4(E4,I,LL) = DY*(W(E4+1,I,LL)+0.5*K3(E4+1,I,LL)) 

** 

	

	 WRITE(6,*) ' K4', E4,' =', K4 (E4,I,LL) 
3000 CONTINUE 

K4(4,I,LL) = DY*(W3R4*(W(3,I,LL)+K3(3,I,LL))+W1R4*(W(1,I,LL)+K3(1,I,LL)) 
** 	 WRITE(6,*) ' K4',4,' =',K4 (4,I,LL) 

** RUNGE-KUTTA CALCULATION OF W (1-4) AND CALCULATE Y 

DO 3500, J = 1,4 
W (J, I+1, LL) = W (J, I, LL) + (K1 (J, I, LL) +2*K2 (J, I, LL) +2*K3 (J, I, LL) +K4 (J, I, L 
3500 CONTINUE 



Y=I*DY 
** 	DO 3310, MPG = 1,IMR,10 
** 	IF (MPG.EQ.MR) THEN 	 77 
** 	DO 3300, MPL = 1,LN,5 
** 	DO 3400, MPH = 1,N+1,10 
** 	IF (LL.EQ.MPL.AND.I.EQ.(MPH-1)) THEN 
** 	WRITE(6,*) ' Y 	 = ',Y,MAC,LL 
** 	WRITE(6,*) ' 
** 	DO 3600, J = 1,1 
** 	WRITE(6,*) ' PHI ',J-1,' = ',W (J,I+1,LL) 
** 	3600 
** 	ELSE 
** 	ENDIF 

r** 	 3400 
r** 	 3300 
** 	ELSE 
** 	ENDIF 
** 	3310 

*** 	 IF (I.EQ.N) THEN 
k** 	 WRITE(6,*) ' 	 Y = 	Y 
k** 	 ELSE 
k** 	 ENDIF 

1000 CONTINUE 

*** NEWTON-RAPHSON CONTINUED, FIRST PRINT W (Y = 0) AND W (Y = 1) 
*** FOR THE FIVE LL CASES 

DO 1100,M = 1,LN,5 
IF (LL.EQ.M) THEN 

*** 	WRITE(6,*) ' VALUES WITH NO ADDED H = ',H,' RUN ',LL/6+1 
DO 10000, J = 1,5 

*** 	WRITE(6,*) ' W', J,' 	 Y = 0',LL,'= ',W (J,1,LL) 

10000 CONTINUE 
DO 11000, JJ = 1,5 

*** 	WRITE(6,*) 	W', JJ,' 	Y = 1',LL,'= ',W(JJ,N + 1,LL) 

11000 CONTINUE 
ENDIF 
1100 CONTINUE 

DO 1110, M = 2,LN,5 
IF (LL .EQ. M) THEN 

*** 	WRITE(6,*) ' VALUES WITH W (3,1) OR PHIDD +',H,'RUN ',LL/6+1 
DO 12000, J = 1,5 

*** 	WRITE(6,*) ' W', J,' 	 Y = 0',LL,'= ',W (J,1,LL) 

12000 CONTINUE 
DO 13000,JJ = 1,5 

*** 	WRITE(6,*) 	W', JJ,' 	Y 	1',LL,' =', W (JJ,N + 1,LL) 

13000 CONTINUE 
ENDIF 
1110 CONTINUE 

DO 1120, M = 3,LN,5 
IF (LL .EQ. M) THEN 

*** 	WRITE(6,*) ' VALUES WITH W (3,1) OR PHIDD -',H,'RUN ',LL/6+1 
DO 14000, J = 1,5 

•*** 	WRITE(6,*) ' W', J,' 	 Y = 0',LL,'= ',W (J,1,LL) 

14000 CONTINUE 
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DO 15000,JJ = 1,5 
** 	WRITE(6,*) ' W', JJ,' 	Y = 1',LL,' =',W (JJ,N + 1,LL) 

15000 CONTINUE 
ENDIF 
1120 CONTINUE 

DO 1130,M = 4,LN,5 
IF (LL .EQ. M) THEN 

** 

	

	WRITE(6,*) ' VALUES WITH W (5,1) OR C +',H,'RUN 	LL/6+1 
DO 16000, J = 1,5 

** 	WRITE(6,*) ' W', J,' 	 Y = 0',LL,'= ',W (J,1,LL) 
16000 CONTINUE 
DO 17000,JJ = 1,5 

** 	WRITE(6,*) ' W', JJ,' 	Y = 1',LL,' =',W (JJ,N + 1,LL) 
17000 CONTINUE 
ENDIF 
1130 CONTINUE 

DO 1140,M = 5,LN,5 
IF (LL .EQ. M) THEN 

** 

	

	WRITE(6,*) ' VALUES WITH W (5,1) OR C -',H,'RUN 	LL/6+1 
DO 18000, J = 1,5 

** 	WRITE(6,*) ' W', J,' 	 Y = 	 ',W (J,1,LL) 
18000 CONTINUE 
DO 19000,JJ = 1,5 

** 	WRITE(6,*) ' W', JJ,' 	Y = 1',LL,' =',W (JJ,N + 1,LL) 
19000 CONTINUE 
ENDIF 
1140 CONTINUE 

** NEWTON-RAPHSON METHOD,CALCULATION OF NEW PHI" AND C 
** VALUES OR W (3,1,6 OR 11 OR 16...) AND W (5, 1,6 OR 11 OR 16...) 
** PDOA = CHANGE IN PHI WITH PHI" 
** PD1A = CHANGE IN PHI' WITH PHI" 
** PDOC = CHANGE IN PHI WITH C 
** PD1C = CHANGE IN PHI' WITH C 
** PDB,ZZ11,ZZ12,ZZ21,ZZ22, NEEDED TERMS 

DO 1150,M = 5,LN,5 
IF (LL.EQ.M) THEN 

PD0A=(W(1,N+1,LL-3)-W(1,N+1,LL-2))/(2*H) 
PD1A=(W(2,N+1,LL-3)-W(2,N+1,LL-2))/(2*H) 
PDOC=(W(1,N+1,LL-1)-W(1,N+1,LL ))/(2*H) 
PD1C=(W(2,N+1,LL-1)-W(2,N+1,LL ))/(2*H) 
PDB=(PD1C*PD0A-PDOC*PD1A)/PDOA 

ZZ11=W(1,N+1,LL-4)*(1/PD0A+(PDOC*PD1A)/(PDB*PDOA**2)) 
ZZ12=W(2,N+1,LL-4)*(-PDOC/(PDB*PD0A)) 
W(3,1,LL+1)=W(3,1,LL-4)-(ZZ11+ZZ12) 
DO 19100, MM = 2,5 
W(3,1,LL+MM) = W(3,1,LL+1) 
19100 CONTINUE 

ZZ21=W(1,N+1,LL-4)*(-PD1A/(PDB*PD0A)) 
ZZ22=W(2,N+1,LL-4)*(1/PDB) 
W(5,1,LL+1)=W(5,1,LL-4)-(ZZ21+ZZ22) 
DO 19200, MM = 2,5 
W(5,1,LL+MM) = W(5,1,LL+1) 
19200 CONTINUE 



79 

** 	WRITE(6,*) ' PHIDD (Y=0) FOR RUN', 	LL/5+1,' =',W (3,1,LL+1) 
** 	WRITE(6,*) ' 	C 	 FOR RUN', 	LL/5+1,' =',W (5,1,LL+1) 
** 	WRITE(6,*) 'PD0A 	=',PD0A 
** 	WRITE(6,*) 'PD1A 	=',PD1A 
** 	WRITE(6,*) PD0C,PD1C,PDB 
** 	WRITE(6,*) ZZ11,ZZ12,ZZ21,ZZ22 

ELSE 
ENDIF 
1150 CONTINUE 

** 	DO 19300,MOP = 1,LN,5 
** 	IF (LL.EQ.MOP) THEN 
** 	WRITE(6,*) 'F = ',F,' R = ',R,' H = ',H 
** 	WRITE(6,*) 	W 1 OR PHI AT Y=1 RUN',MOP/S+l,W(1,N+l,MOP) 
** 	WRITE(6,*) ' W 2 OR PHID AT Y=1 RUN',MOP/5+1,W(2,N+1,MOP) 
** 	WRITE(6,*) 'THEIR ABSOLUTE VALUES' 
** 	WRITE(6,*) 'W 1 ;',CDABS(W(1,N+1,LL)) 
** 	WRITE(6,*) 'W 2 ;',CDABS(W(2,N+1,LL)) 

** 	IF (CDABS(W(1,N+1,LL)).LT..01D0.AND.CDABS(W(2,N+1,LL)).LT..05D0) 
** 	WRITE(6,*) ' CONVERGENCE ;F = ',F,' R = ',R,' H = ',H 
** 	GOTO 44000 

** 	ELSE 
** 	ENDIF 
** 	ELSE 
** 	ENDIF 
** 	19300 CONTINUE 

70 CONTINUE 

DO 20000,M = 1,LN,5 
WRM1(MR,MAC,M)=W(1,N+1,M) 
WRM3(MR,MAC,M)=W(3,1,M) 
WRC (MR,MAC,M)=W(5,1,M) 

** 	WRITE(6,*) ' F = ',F,' R = ',R,'H = ',H 
** 	WRITE(6,*) 	 PHIDD AT Y=0 RUN',M/5+1,W(3,1,M) 
** 	WRITE(6,*) ' 	 C FOR 	RUN',M/5+1,W(5,1,M) 
** 	WRITE(6,*) 	W 1 OR PHI AT Y=1 RUN',M/5+1,W(1,N+1,M 
** 	WRITE(6,*) ' W 1 ABS VAL FOR 	RUN',M/5+1 	,CDABS(W(1,N+1, 
** 	WRITE(6,*) ' W 2 ABS VAL FOR 	RUN',M/5+1 	,CDABS(W(2,N+1, 

20000 CONTINUE 

29000 

29100 CONTINUE 

DO 34000 JMR = 1,IMR 
RWSMALL = CDABS(WRM1(JMR,1,1)) 
DO 34100 JMAC = 1,IMAC 
DO 34200 JL = 1,LN,5 
IF(CDABS(WRM1(JMR,JMAC,JL)).LT.RWSMALL) THEN 
RWSMALL = CDABS(WRM1(JMR,JMAC,JL)) 
OWRMC (JMR,JMAC,JL) = 1 
ENDIF 
34200 



34100 
34000 

DO 34600, JMR = 1,IMR,1 
DO 34700, JMAC = IMAC,1,-1 
DO 34800, JL = LN,1,-5 

IF (OWRMC (JMR,JMAC,JL).EQ.1) THEN 
WRITE (6,*) JMR,JMAC,JL 
WRITE (6,*) 'R=',R,'F=',F 
WRITE (6,*) 'G=',G 
WRITE (6,*) 'PHI ABS(Y=1)',CDABS(WRM1(JMR,JMAC,JL)) 
WRITE (6,*) 'PHI 	(Y=1)',WRM1(JMR,JMAC,JL) 
WRITE (6, *) 'PHIDD (Y=0)',WRM3(JMR,JMAC,JL) 
WRITE (6,*) 'C= 	 ',WRC(JMR,JMAC,JL) 

IF (JMR.GT.1.1) THEN 
*** 	IF (DIMAG(WRC(JMR,JMAC,JL))*DIMAG(WRCP).LT.ODO) THEN 
*** 
*** WRITE(6,*) JMR-1,JMAC,JL 
*** WRITE(6,*) 'F=',F 
*** WRITE(6,*) 'R critical =',RC+1DO,'G=',G 
*****RITE(6,*) 'PHI ABS(Y=1)',CDABS(WRM1(JMR-1,JMAC,JL)) 
*** WRITE(6,*) 'PHI 	(Y=1)',WRM1(JMR-1,JMAC,JL) 
*** WRITE(6,*) 'PHIDD (Y=0)',WRM3(JMR-1,JMAC,JL) 
*** WRITE(6,*) 'C= 	 ',WRC(JMR-1,JMAC,JL) 
*** 	A=WRM3(JMR-1,JMAC,JL) 
*** 	C=WRC(JMR-1,JMAC,JL) 
*** 	R=RC+2D0 
*** 	RC=RC+2D0 
*** 	GOTO 29300 
*** 	ELSE 
*** 	ENDIF 

ELSE 
ENDIF 

*** 	WRCP=WRC(JMR,JMAC,JL) 
GOTO 34600 
ENDIF 

34800 
34700 
34600 

29200 
29300 

*** 

	

	30000 
44000 STOP 
END 

80 
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72 = 1D0/(BB/F)+(G*((1D0-(Y+DY/2D0)**2)-W(5,1,LL)))) 

V3 = -1DO/((BB/F)+(G*(UM*(1D0-(Y+DY/2D0)**2)-W(5,1,LL)))) 
THIS IS THE SAME AS V2 SO WE MAY SET V3 = V2 

/3 = V2 

/4 = 1DO/((BB/F)+(G*((1D0-(Y+DY)**2)-W(5,1,LL)))) 

41-W4 TERMS 

44R1 = V1*(G*(2D0*(Y))) 
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43R1 = V1*(-R*((1D0-(Y)**2)-W(5,1,LL))+2D0*BB*F+CONW3R1) 
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WRITE(6,*) ' W1R1 AND W3R1', W1R1,", W3R1 
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W4R2 = V2*(G*(2D0*(Y+DY/2D0))) 

CONW3R2 = (2D0*G*F**2)*((1D0-(Y+DY/2D0)**2)-W(5,1,LL)) 

W3R2 = V2*(-R*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))+2D0*BB*F+CONW3R2) 

W2R2 = V2*(G*(-2D0*(Y+DY/2D0))*F**2) 

W1R2 = V2*((R*F**2)*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(F**4))*: 

0 

MS-DOS Editor <F1=Help> Press ALT to activate menus 	 0 	 N 00608:085 

File Edit Search Options 	 Help 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa NVFU0 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 
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5,1,LL))-2D0*R-BB*F**3-(G*(F**4))*((1D0-(Y)**2)-W(5,1,LL))) 

D0)**2)-W(5,1,LL)) 

(5,1,LL))+2D0*BB*F+CONW3R2) 

**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(F**4))*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))) 

0 
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W4R3 = V3*(G*(2D0*(Y+DY/2D0))) 

CONW3R3 = (2D0*G*F**2)*((1D0-(Y+DY/2D0)**2)-W(5,1,LL)) 

W3R3 = V3*(-R*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))+2D0*BB*F+CONW3R3) 

W2R3 = V3*(G*(-2D0*(Y+DY/2D0))*F**2) 

W1R3 = V3*((R*F**2)*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(F**4): 

W4R4 = V4*(G*(2D0*(Y+DY))) 

CONW3R4 = (2D0*G*F**2)*((1D0-(Y+DY)**2)-W(5,1,LL)) 

W3R4 = V4*(-R*((1D0-(Y+DY)**2)-W(5,1,LL))+2D0*BB*F+CONW3R4) 

0 
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W3R3 = V3*(-R*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))+2D0*BB*F+CONW3R3) 

W2R3 = V3*(G*(-2D0*(Y+DY/2D0))*F**2) 

W1R3 = V3*((R*F**2)*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(1 
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W3R4 = V4*(-R*((1D0-(Y+DY)**2)-W(5,1,LL))+2D0*BB*F+CONW3R4) 

W2R4 = V4*(G*(-2D0*(Y+DY))*F**2) 

W1R4 = V4*((R*F**2)*((1D0-(Y+DY)**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(F**4 

0 
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*2) 

D0)**2)-W(5,1,LL))-2D0*R-BB*F**3-(G*(F**4))*((1D0-(Y+DY/2D0)**2)-W(5,1,LL))) 

Y)**2)-W(5,1,LL)) 

5,1,LL))+2D0*BB*F+CONW3R4) 
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