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ABSTRACT 

A MODIFIED LRT-BASED SPREAD-SPECTRUM RECEIVER 
USING SPATIAL AND TEMPORAL PROCESSING 

by 
Jeffrey L. Cutcher 

The problem of demodulating a direct-sequence (DS) spread-spectrum signal in 

the presence of single-tone or narrow-band interference and multi-path is discussed. 

A likelihood-ratio test (LRT) receiver is presented which consists of a whitening filter 

and a RAKE correlator. 

A modified LRT receiver structure is then considered where the whitening 

filter is replaced by an antenna array with corresponding tap coefficients. The array 

spatially removes the interference by estimating it's angle-of-arrival. Using the array 

has an advantage over the original LRT receiver when a narrow-band interference is 

present. Both receivers are identical in performance under the single-tone interference 

model. 

A third receiver structure is considered in which two LRT receivers are placed in 

parallel and each receiver is assumed to receive the transmitted signal via independent 

paths. The correlator outputs are th.en summed and fed to a common slicer for 

decision making. The decisions, or estimated bits, are fed back to both receivers. 

The recursive least-squares (RLS) algorithm was used to simulate the receivers. 

Bit error rates (BER) were plotted under the single-tone and narrow-band inter-

ference models as well as other parameters. 



A MODIFIED LRT-BASED SPREAD-SPECTRUM RECEIVER 
USING SPATIAL AND TEMPORAL PROCESSING 

by 
Jeffrey L. Cutcher 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Electrical Engineering 

Department of Electrical and Computer Engineering 

May 1995 



APPROVAL PAGE 

A MODIFIED LRT-BASED SPREAD-SPECTRUM RECEIVER 
USING SPATIAL AND TEMPORAL PROCESSING 

Jeffrey L. Cutcher 

Alexander Haimovich, Thesis Advisor 	 Date 
Associate Professor, NJIT 

mar Ness, Committee Member 	 Date 
Distinguished Professor, NJIT 

Dr. 'Loran Siveski, Committee Member 	 Date 
Assistant Professor, NJIT 



BIOGRAPHICAL SKETCH 

Author: Jeffrey L. Cutcher 

Degree: Master of Science in Electrical Engineering 

Date: May 1995 

Undergraduate and Graduate Education: 

e Master of Science in Electrical Engineering,  
New Jersey Institute of Technology, Newark, NJ, 1995 

• Bachelor of Science in Electrical Engineering, 
New Jersey Institute of Technology, 1.994 

• Electronic Technician Diploma, 
DeVRY Technical Institute, Woodbridge, NJ, 1989 

Major: Electrical Engineering 

iv 



This work is dedicated to my parents Robert and Kathleen Cutcher. Without their 
support this would never have been posssible 



ACKNOWLEDGMENT 

I wish to thank the following people for their invaluable help: 

Jan Punt 

Murat Berin 

Mehmet Tazebay 

Amit Shah 

A.(Murali) Arulambalam 

Nico van Waes 

Chris Peckham 

Lisa Fitton 

and the many others in the lab. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

1 INTRODUCTION 	  1 

2 CHANNEL AND SIGNAL MODELS 	  3 

2.1 	Transmitted Signal  	3 

2.2 Channel Model  	4 

2.3 Channel Assumptions  	4 

2.4 Received Signal  	5 

2.5 Interference Model  	5 

2.6 Array Models  	5 

3 THE LRT RECEIVER 	  7 

3.1 	LRT Receiver Derivation  	7 

3.2 Adaptive Algorithm 	  11 

4 LRT WITH SPATIAL AND TEMPORAL PROCESSING 	  13 

4.1 LRT Derivation for the ARRAY Receiver 	  16 

4.2 Adaptive Algorithm 	  17 

5 NUMERICAL RESULTS 	  19 

5.1 Simulation Plots 	  22 

6 CONCLUSION 	  27 

APPENDIX A SNR CALCULATIONS 	  29 

APPENDIX B PROGRAM LISTINGS 	  36 

REFERENCES 	  50 

vii 



LIST OF TABLES 

Table 	 Page 

5.1 Simulation Notes 	  22 

viii 



LIST OF FIGURES 

Figure 	 Page 

1.1 	Overlay of a Narrow band Signal and a Spread Spectrum Signal  	2 

3.1 	LRT Receiver  	8 

3.2 Simulation. Block Diagram 	  11 

4.1 Modified LRT Receiver 	  15 

4.2 Linear Combination of Parallel Receivers 	  16 

5.1 Histogram of Channel Attenuation Distribution 	  20 

5.2 Narrow-band Interference Spectrum 	  21 

5.3 BER For LRT Receiver 	  23 

5.4 BER For ARRAY Receiver 	  24 

5.5 BER Comparison Between LRT and ARRAY 	  24 

5.6 ARRAY ST vs NB Interference 	  25 

5.7 	LRT/ARRAY ST Interference With Fixed Channel 	  25 

5.8 	LRT/ARRAY NB Interference With Fixed Channel 	  26 

ix 



CHAPTER 1 

INTRODUCTION 

Wireless communications gives one the advantage of communicating, whether it's 

voice or data, through an air or underwater channel [4], without the need for some 

physical connection to a particular network. In wireless communications we can have 

stationary users or mobile users. The term mobile is used to relate to the fact that 

communications is done between a base station and a moving vehicle or between two 

vehicles. 

Receiving a signal while mobile results in fading. This is due largely to multi-

path effects where the receiver sees a superposition of delayed versions of the trans-

mitted signal. In an analog system. the user actually hears the effects of multi-path 

when receiving a voice message. Sometimes the signal will momentarily enter a 

deep-fade and the user will not be able to comprehend that part of the message. 

Providing a digital service allows the use of adaptive filter techniques to combat 

multi-path fading. In a digital system the user would not hear the actual fading but 

will experience drop-outs in the event of very deep fades. 

The second problem to be discussed is the effects of intentional or unintentional 

interference. An intentional interference is some high-power narrow-band process 

generated by an enemy source. This is mostly seen in a military scenario. Un-

intentional interferences are the result of existing communication services. In the 

current literature the term overlay is used and can be seen in Figure (1.1). This 

means some users will be on the existing analog system while new users will be using 

the spread spectrum system. It's therefore beneficial to design a receiver for the 

spread spectrum system so that it can take into account these narrow-band signals. 

1 
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To the spread spectrum user these narrow-band signals are considered an interference. 

To the analog services the spread spectrum signal appears to be noise-like. 

Replacing an analog communication system with a digital system gives the 

designers a new set of tools. An important tool is digital signal processing, which 

leads to adaptive filter theory. Much has been said about interference rejection and 

digital whitening techniques [8, 9, 7, 5, 10, 14]. The study of multi-path fading 

has also been abundant [12]. The use of RAKE receivers, adaptive equalizers, and 

diversity techniques [11, 16, 12, 13] has been widely studied for combating multi-path. 

Ronald A. Iltis [6] has proposed a receiver that does both interference rejection and 

multi-path channel estimation and is the basis for this thesis. 

We propose to modify Iltis' receiver by replacing the whitening filter with an 

antenna array. We refer to LRT to mean the original receiver design with a whitening 

filter and ARRAY to be our modified receiver design. Using multiple antennae can 

give us interference rejection by estimating the angle-of-arrival of the interfering 

signal. Because the interfering signal is considered to be narrow-band, estimation in 

space or time is possible. 

Figure 1.1 Overlay of a Narrow band Signal and a Spread Spectrum Signal 



CHAPTER 2 

CHANNEL AND SIGNAL MODELS 

Below are the mathematical definitions to be used and are represented in the time 

domain. When necessary, a given signal will be represented in discrete time by letting 

t = nTs. 

2.1 Transmitted Signal 

The transmitted signal is modeled as a Direct-Sequence Spread Spectrum (DSSS) 

signal and is represented in it's baseband form as 

where N6  is the total number of transmitted bits {di}, Tb  is the bit duration, and A 

is the amplitude. The chip waveform is 

where Lc  is the total number of chips, {ct} is the spreading sequence, and p(t) is the 

transmitted pulse. Also, Equation (2.2) is defined such that 

The bandwidth W of s(t) is approximated as * and the sampling interval is 2w 

Thus Ts  is equal to TC/2. 

3 
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2.2 Channel Model 

The channel is modeled as a frequency-selective slowly-fading channel [12] with 

impulse response 

where Nc, is the number of multi-path components and Ts is the sampling interval. 

The channel is assumed to be wide-sense stationary (WSS) with uncorrelated 

scattering and can be represented by a tapped-delay line whose coefficients {b,} are 

Rayleigh distributed, zero-mean and unit variance. The tap spacing is Ts, which 

equals Tc/2 as previously noted. 

The Rayleigh distribution [3] is given as 

for r > 0 and 0 elsewhere. We chose σ2 = 0.2 which shifts the distribution to the left 

of unity. This implies that at any given instance the attenuation of a particular path 

is less than unity. Using a 2  = 1 would also suffice but it's mean is roughly unity 

and thus at a given instance the channel attenuation could be greater than or less 

than unity. We chose not to allow the channel attenuation to be greater than unity 

on average. A histogram of the distribution for an ensemble of 1000 coefficients is 

provided in Figure (5.1) of Chapter 5. 

2.3 Channel Assumptions 

The reader is urged to refer to [6] and [13] for more information on the slowly fading 

assumption of the channel. The relevant information will be repeated here. 

Given that the Doppler spread Id  is small compared to the information 

bandwidth 1 and that the multi-path spread T,, is less than Tb and much greater 

than the chip duration Tc, then the channel coefficients are assumed to be constant 
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over several bit durations. This leads to an adaptive approach to the problem of 

receiving a DSSS signal effected by multi-path. If these conditions are not met then 

the receiver could not properly estimate the channel and performance would he at a 

minimum. 

2.4 Received Signal 

The received signal is Equation (2.1) convolved with Equation (2.4) plus Additive 

White Gaussian Noise (AWGN) and interference and is given by 

where the sum j(t)+n(t) is assumed to be exactly modeled as an Nth order circular 

Gaussian autoregressive (AR) process [6]. 

2.5 Interference Model 

The narrow-band interference is modeled as the superposition of complex sinusoids 

and is given as 

where Nj is the total number of sinusoids, Ak, wk, and ψk are the kth amplitude, 

frequency, and phase respectively. 

2.6 Array Models 

The transmitted signal is modeled exactly the same as Equation (2.1). The channel 

model is also the same except that each antenna gets its own set of channel coefficients 

which are denoted by {km} for the l th antenna and the m th channel path. 
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For the antenna array (Figure (4.1)), the first antenna is numbered zero. This 

serves as a reference to the other array elements. The received signal is modeled as 

in which U denotes the phase associated with θj, the angle of arrival of the inter-

ference, d, the array element spacing in meters and A, the wavelength of the received 

interference in meters. 



and 

CHAPTER 3 

THE LRT RECEIVER 

A single-antenna LRT receiver structure can be seen in Figure (3.1). The reader may 

refer to [15] for more information on the LRT and the GLRT (Generalized). Iltis [6] 

has designed a GLRT receiver based on Differential Phase Shift Keying (DPSK) and 

as presented here binary signalling such as Binary Phase Shift Keying (BPSK) is 

assumed for simplicity. Iltis went to great lengths to derive the GLRT receiver and 

therefore would be inappropriate to duplicate here. We also do not consider the 

phase and so we dropped the 'G' in GLRT. Thus, the essentials of the LRT using 

BPSK will be presented. The adaptive array modification will then follow. 

3.1 LRT Receiver Derivation 

The sampled versions of Equations (2.1) and (2.6) are 

where T. = LcTc  and Ts  = TC/2. The cost function for our adaptive filter is 

where Ns is the total number of samples, Nα  is the size of the whitening filter with 

Maximum Likelihood (ML) estimates {an}, Nᵦ  is the size of the RAKE-combiner 

7 
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A 

Figure 3.1 LRT Receiver 

with ML estimates {β n}, and ŝ(k) is Equation (3.1) with {di} replaced with the 

estimated bits {di} at the output of the slicer. 

From the minimization of Equation (3.3) we get 

for l = 0,1,2, • • • ,Nᵦ  - 1. Note that in Equation (3.4) l starts at 1 because α0 = 1. 

With {di} E {-1, 1}, the hypotheses are 
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Iltis [6] shows that the sample correlation functions can be replaced by 

statistical correlation functions given that Nb » 1. The above hypotheses yield 

the same results as Iltis' hypotheses for DPSK, thus our likelihood ratio becomes 

where the summations are over the samples of the last bit and σe, is the variance of 

e(t), the whitened interference plus noise given as 

and the vectors αT, 13T  r k  and s1,0k  are defined as 

where the subscript 1,0 of the vector s denotes hypotheses 1 and 0 respectively. From 

Equation (3.6) we notice that 
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The threshold for A is 1 and after combining terms and taking the natural logarithm 

of both sides we get at bit i 

If U1  > 0 we choose di  +1 and if U1  < 0 we choose = —1. 
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3.2 Adaptive Algorithm 

In order to simulate the LRT receiver we need to use some kind of algorithm 

to calculate the {a} and {β } coefficients. The Recursive Least Squares (RLS) 

algorithm [1, 2] is easy to implement using vector and matrix notation and therefore 

allows the receiver to be simulated using MATLAB©. Figure (3.2) shows a block 

diagram of the simulation. 

Figure 3.2 Simulation Block Diagram 

Two operations are fulfilled in a given simulation and are performed in parallel. 

The first operation is the actual reception and detection of the transmitted signal. 

The second operation is the adaptive updating of the {a} and {β } coefficients. This 

algorithm is now defined. 

First we'll define the coefficient and data vectors as 
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The cost function [2, 1] 

is minimized by using the following equations [2]: 

In most adaptive receivers a training sequence is required in order for the 

receiver to start off in the right direction of the estimation process. Therefore the 

LRT receiver is fed this known data sequence to calculate the estimated transmitted 

signal ŝ(n). After training the algorithm relies on the previous estimated data bits 

and the previous received signal r(n-2Lc). Thus Equation (3.11) and (3.13) become: 

where = 2Lc, which is the number of samples in one bit period. 



CHAPTER 4 

LRT WITH SPATIAL AND TEMPORAL PROCESSING 

Different forms of diversity techniques exist which include frequency, time and 

space [12] diversity. These techniques use the fact that if we can receive a signal 

from several different paths of a channel then the probability that all of these signals 

will be affected in the same manner is unlikely. The LRT receiver in Figure (3.1) 

has a RAKE correlator as it's second filter. This RAKE correlator [12, 13] exhibits 

frequency diversity by the fact that we are receiving a wide-band signal. 

The optimal conditions for the LRT receiver is when the size of the RAKE 

(number of taps) is Nᵦ  = Nα  + 	— 1. This is due to the fact that the RAKE 

coefficients {β}  are equal to the convolution of the channel with the whitening filter. 

Iltis [6] has shown that any other combination of Nᵦ  and Nα  yields poorer results. 

Ideally the RAKE tap size is equal to the tap size of the channel model (Nᵦ  = Nc) 

but because of the whitening filter we do not have this. By replacing this whitening 

filter with an antenna array we effectively remove this convolution and the RAKE 

tap size becomes exactly equal to the channel tap size. 

The use of this array now gives us spatial processing versus the temporal 

processing of the whitening filter. One major advantage to the use of this array 

is that it will reduce the interference by estimating it's angle of arrival and thus 

subtract the interference from the reference signal at antenna zero. The simulations 

show that for a narrow-band signal (not single-tone) the array with only two antennae 

outperforms the original temporal design. With a single-tone interference the array 

receiver shows roughly 2dB better performance over the LRT receiver. This however 

us due to the fact that we chose a single frequency for the interference and we did not 

13 
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average over all possible frequencies (wj E {O, 27r}). Thus, averaging over all possible 

frequencies yields identical performance between the LRT and the ARRAY. 

Suppose we had an interference that consisted of Al sinusoids. The LRT with 

the whitening filter, since it is a prediction error filter, will need to have at least 

M + 1 taps if we want to null out each frequency. Clearly if those frequencies are 

close enough, they can be attenuated by one null and thus we may use less than 

M + 1 taps. The array, however, will only need it's two antennae and subsequently 

the two taps. If however we imposed upon the receivers more than one source of 

interference then clearly the array would have to be expanded in the same manner as 

the whitening filter. However, the performance between the two receivers suppressing 

a single narrow-band interferer is being considered. 

The signal-to-noise ratio (SNR) at the output of the receivers in Figures (3.1) 

and (4.1) have an identical form equal to 

where o is the variance of the error portion of the output of the whitening filter 

or antenna array, 	is a vector containing the RAKE coefficients, and R is the 

correlation matrix of c(t). The derivation of Equation (4.1) for both receivers can be 

found in Appendix (A). 

Another way of utilizing diversity is depicted in Figure (4.2). The outputs of 

the independent receivers are combined and used to estimate the transmitted data. 

The estimated bits {d1 } are fed back to each receiver's adaptive algorithm. For the 

case of two receivers we get 
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Figure 4.1 Modified LRT Receiver 

where ζI = ᵦH1 R1 β1  , ζ2 = ᵦH2 R2 ᵦ2, and ale  and σ22e are defined the same as σ2e  . For 

this derivation the reader may consult Appendix (A). If we assume an ideal case 

where both receivers have on average identical coefficients then we can calculate an 

upper bound on the SNR as 

which gives us a 3dB performance gain compared to Equation (4.1). This form of 

reception, however, isn't practical since in this case we need two separate receivers 

which doubles the cost and complexity. 
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Figure 4.2 Linear Combination of Parallel Receivers 

4.1 LRT Derivation for the ARRAY Receiver 

Because of the fact that the array is equivalent to the whitening filter, the LRT 

derivation is similar to that shown in Section 3.1. Equation (3.6) remains as 

where the vectors are now defined as 
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s0k 	= [s0 (k), s0 (k — 1),• • • , s0 (k — Nᵦ  +1]T. 

The differences between the above vectors and those defined in Section 3.1 are that 

the {α}'s are replaced with the array parameters {w} and the time series of the 

received signal become a spatial series. 

Finally, the decision variable for the array receiver is 

4.2 Adaptive Algorithm 

The RLS algorithm operates in the same fashion as stated in the previous chapter 

but with some minor changes. Therefore the modified algorithm is as follows: 

where Na  is the number of antennae. 



Training applies to this receiver as well and so after training we have 

where r = 2Lc which is the number of samples in one bit period. 
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CHAPTER 5 

NUMERICAL RESULTS 

Three receiver configurations were simulated, the original LRT receiver, the modified 

LRT receiver (ARRAY), and the combination of two LRT receivers. Attention was 

put mostly on the LRT and ARRAY receivers for comparison. Unless specified, all 

simulations calculated the average probability of error with each experiment choosing 

a new set data bits, channel coefficients, interference phase and noise. To insure the 

best possible results for the simulations each experiment set the random generator 

seed to a scaled value of the real-time clock. 

The channel was modeled as Rayleigh Fading (see Figure (5.1)) with four (Nc = 

4) independent paths. In the case of the array receiver, each antenna had it's own set 

of channel coefficients and the antenna spacing was set to 10λ. However, because the 

receiver does not achieve additional diversity the antenna spacing does not have to be 

constrained to 10. If we choose 	for example, the independent path assumption 

does not hold. This does not cause poorer performance and was verified under 

separate simulations. 

The value of Nc was chosen based on assuming a signal bandwidth of 1.25MHz. 

With another assumption that the coherence bandwidth of the channel is roughly 

300kHz we get 

The interference was modeled as a single-tone sinusoid for one set of simulations 

and a multi-tone signal for the other. This multi-tone signal comprised of the sum 

of five sinusoids close together in frequency so as to represent a narrow-band signal. 

19 
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Figure 5.1 Histogram of Channel Attenuation Distribution 

Both interferences had random phase and a power level of 20dB above the signal 

power. For the array receiver the interference had a random angle-of-arrival. The 

normalized frequency for the single-tone sinusoid was set to 1 rads/sec where 27r 

rads/sec is our transmitted signal bandwidth. In the case of the narrow-band inter-

ference the five frequencies were chosen to achieve 20 percent of the spread spectrum 

signal bandwidth, hence 1.25 rads/sec. This narrow-band signal can be seen in 

Figure (5.2). 

The noise was modeled as a complex random variable with a normal distri-

bution. The variance of the noise was set to unity and the transmitted signal power 

was varied. 

Mention must be made in reference to how the actual filtering took place. 

That is, how was the output of the receivers defined? Equation (3.9) is an 

expression showing the output of the LRT receiver at the ith bit. To simplify 

this in the simulations we correlate the output of the RAKE with a delayed version 

of Equation (2.2) instead of correlating each tap individually. Letting the output of 
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Figure 5.2 Narrow-band Interference Spectrum 

the RAKE equal y(t) we have 

This also holds for the ARRAY simulation. 

The simulations measured the average SNR at the input of the slicer. The BER 

was calculated using those average SNR measurements with the error function. This 

was done under the assumptions that the output of the whitening filter is white with 

a Gaussian distribution. We may define the output SNR, to be 

To easily calculate this we passed three sets of data through the receiver. The first set 

was our original received signal which is defined as Equation (2.6) for the LRT and 

Equation (2.8) for the ARRAY. The next set was the signal portion of the received 

signal only, and the final set was the interference plus noise only. From Appendix A 

we see that the numerator is the signal portion and the denominator is noise portion 

thus allowing us to easily calculate the SNR at the output of the RAKE correlator 



22 

given the two sets of data. Thus the SNR per bit is 

These values are then averaged over all of the transmitted bits which gives us 

The average probability of error (BER) becomes 

These calculations are done for different transmitted SNR.s. This whole process is 

then repeated several times with each experiment having a new set of transmitted 

bits, noise, phases, etc. 

5.1 Simulation Plots 

Table (5.1) provides some notes to the simulations that were carried out. 

Table 5.1 Simulation Notes 

FIG. RECEIVER NOTES 
5.3 LRT Nα  = 3, Nᵦ  = 6, Nc = 4, J/S = 20dB, w = 1 rads/ sec 
5.4 ARRAY Nᵦ  = 4, Nc = 4, J/S = 20dB, w = 1 rads I sec 
5.5 LRT/ARRAY Comparison of above results 
5.6 ARRAY Single-Tone vs. NB (Nα  = 2) 
5.7 LRT/ARRAY Single-Tone, Fixed Channel, Average over all frequencies 
5.8 LRT/ARRAY NB Int., LRT - Nα  = 6,11, Nᵦ  = 9,14 

NB Int., ARRAY - Nα  = 2,Nᵦ  = 4 

In Figure (5.3) simulations of the LRT-based receiver for the single case and 

dual case are shown. We see that when a single-tone interference is present and the 

LRT receiver is reduced to a RAKE correlator (no whitening filter), the receiver is 
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rendered useless with a BER of around 0.5. Under the conditions shown in Table (5.1) 

for the LRT we see fairly good performance. Using the combination of two receivers 

improves the performance by about 2-3dB. 

For the ARRAY receiver we see from Figure (5.4) that with one antenna the 

receiver is not useable. Expanding the array to two antennae gives us very good 

performance. Figure (5.5) shows the LRT performance versus the ARRAY. For 

the case of a narrow-band interference the ARRAY performance roughly remains 

unchanged. This can be seen Figure (5.6). 

In comparing the performance of the LRT with the ARRAY for the narrow-

band interference we fix the channel and average over the interference phase and 

angle. The ARRAY has two antennae so we also chose another fixed channel for 

the second antenna. The results for single-tone and narrow-band interference can 

be seen in Figures (5.7) and (5.8). Notice that, the LRT's whitening filter had to 

be expanded to 11 taps to combat the narrow-band interference, yet the ARRAY 

receiver was unchanged and performs better than the LRT. 

Figure 5.3 BER For LRT Receiver 
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Figure 5.4 BER For ARRAY Receiver 

Figure 5.5 BER Comparison Between LRT and ARRAY 
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Figure 5.6 ARRAY ST vs NB Interference 

Figure 5.7 LRT/ARRAY ST Interference With Fixed Channel 



Figure 5.8 LRT/ARRAY NB Interference With Fixed Channel 
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CHAPTER 6 

CONCLUSION 

It has been shown [6] that the LRT receiver is a suboptimal solution, however, 

assuming proper estimates we should achieve the results shown. The ARRAY receiver 

and LRT receiver are basically equivalent for a single-tone interference averaged 

over all possible frequencies. The first two plots show the ARRAY achieving better 

performance only because we fixed the single-tone frequency to 1 rads I sec. From the 

simulations we see that for the narrow-band case, the array receiver's performance 

remained unchanged. The LRT, on the other hand, did not perform as well as it did 

for the single-tone case. Even with the whitening filter expanded to 11 taps the LRT 

did not perform as well as the ARRAY. This is due to basically two effects. One, 

the whitening filter cannot totally null out the narrow-band interference because of 

the use of a finite number of taps, and two, as the RAKE portion of the receiver 

expands we begin introducing more cross-correlations which result in performance 

degradation. 

We believe that our modified LRT receiver using two antennae shows acceptable 

performance and could be utilized in current or future wireless spread spectrum 

systems. Increasing the array to more than two antennae doesn't gain much in 

performance. However, for multiple interferences (ie: at different locations) we'll 

need to expand to array appropriately. Increasing the whitening filter taps of the 

original LRT receiver improves it's performance for the narrow-band case but we 

also gain complexity which is undesirable. Even for the single-tone case the ARRAY 

receiver is less complex, that is, in the RLS algorithm the correlation matrix is 5x5. 

For the narrow-band case this is also true but for the LRT the correlation matrix 

27 
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becomes 14x14. Clearly the algorithm for that case will take much longer to execute 

then the 5x5 case thus giving the ARRAY receiver another advantage. 

Future work would include the use of mixed temporal and spatial processing 

on each antenna element. This would possibly combat multiple interferers in both 

frequency and space. Another issue is that the RAKE coefficients are not optimal 

in the sense that they do not consider the cross-correlations. So, another algorithm 

could be designed such that these coefficients do take care of the cross-correlations 

thus providing an increase in performance. 



APPENDIX A 

SNR CALCULATIONS 

The signal-to-noise ratio (SNR) calculations for the LRT and ARRAY receivers will 

be shown to be 

and for the case of the combination of two LRT receivers the SNR will be shown to 

double. 

A.1 SNR Calculation for the LRT Receiver 

We'll begin by defining the output of the whitening filter as 

where r(t) is defined in Equation(2.6). This can be divided into two parts, the signal 

part v(t) and the interference part e(t). Thus, 

Equation (A.4) can be written that way because of the fact that the {ᵦ} coefficients 

are equal to the convolution of the channel with the whitening filter [6]. The output 
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of the RAKE becomes 

The next step is to calculate the decision variable which is Equation (5.2) and is 

shown here again 

Now let Ui = Uv Ue  where 

To simplify these expressions we'll define the correlation function of c(t) as 

Thus, Equation (A.8) becomes 

We may now define the signal-to-noise ratio as 



31 

where 

The above is based on the assumptions that the received signal is independent of the 

noise and the white process e(t) is assumed to be zero-mean Gaussian noise. Now 

we define the variance to be 

where all that is needed is E [U2e]. Therefore 

After carrying out the integration we get 
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Since the correlation function rc(k) is real, rc(-k) = rc(k), we can re-arrange the 

index on the {β } coefficients. Thus we have 

Similarly we can re-arrange Uv, so that 

And so the SNR becomes 

A.2 SNR Calculation for the ARRAY Receiver 

Lets begin by calculating the output of the array as 

where rl(t)  is defined in Equation (2.8). We can break this up into two parts as 

where 
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and 

The output of the RAKE becomes 

In the LRT derivation we used the fact that the {fl) coefficients were the convolution 

of the whitening filter and the RAKE. For the array we do not have convolution but 

we have 

Using this fact we may express y(t) as 

We can see that Equation (A.28) is identical to Equation (A.6) and therefore the 

rest of this derivation is identical to Equations (A.7 - A.20). 



34 

A.3 Combination of Two LRT Receivers 

From Figure (4.2) we see that the decision variable U will be the sum of each decision 

variable. For two receivers we have U = U1  + U2  so let 

and 

Taking the expected value of U we get 

Using Equation (A.13) we get 

Thus 

We now calculate the variance of U as 

Based on the assumption that the noise components are zero-mean and statis-

tically independent and that the noise components are independent of the signal 
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components, the variance becomes 

The signal-to-noise ratio (SNR) can be expressed as 

To calculate an upper bound on the SNR we can assume that the noise statistics are 

identical and that the receiver coefficients are identical. Thus letting U1s = U23 —4 Us 

and ale  = 0 2e 	σ2e and using Equations (A.18 - A.19) we can express this (SNR) as 



APPENDIX B 

PROGRAM LISTINGS 

The following files were run using MATLAB ©version 4.2. 

B.1 GLRT 

% FILE 	: glrtx.m 
% AUTHOR 	: Jeffrey L. Cutcher 
% VERSION 	: 2.1 
% DATE 	: 12APR95 
% GLRT Receiver with parallel option 

clear; 
NPaths = 4; 
NAlpha = 3; 
NBeta = NPaths+NAlpha-1; 
Nant = 1; 
DataSize = 101; 
TrainSize = 5; 
w = 0.95; 
AV = 1000;  

% Channel Paths (Includes direct path) 
% Size of Alpha Filter (Taps) 
% Size of Beta Filter (Taps) 
% Number of Receivers 
% Number of Data bits 
% Number of Training Bits 
% RLS weighting factor 
% Number of Averaging Iterations 

load code 	 % Load in PN_ 
EPN = 2*PN_*PN_'; 	 % Energy of code x 2 

A = [0.1270, 0.2013, 0.3190, 0.5056]; 
GAIN=sqrt(EPN)*A; 
IGAIN = 10*GAIN; 
TrainSeq = ones(1,TrainSize); 
GAMMA1 = []; 
GAMMA2 = []; 
SNR1 =[]; 
SNR2 = []; 
PN = []; 
RD = []; 
PNLength = length(PN_); 
Td = 1/2; 
T = PNLength / Td; 
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PNSize = T; 
Tx_Seq_Len = DataSize * PNSize; 
Rx_Seq_Len = Tx_Seq_Len NPaths - 1; % Because of convolution 
Train_Len = TrainSize * PNSize; 

% Construct double samples of the PN sequence 
PN = signat(PN_,PNSize,PNSize) / sqrt(EPN); 

for NUM=1:AV 	% LOOP For Averaging 
GAMMA1 = []; 
SNR1 = []; 

% Pick a new seed 

rand('seed',100*sum(clock)); 
randn('seed',100*sum(clock)); 

for G=1:length(GAIN) 
[NUM G] 

% Inital conditions and definitions 
TxData = zeros(1, Tx_Seq_Len); 
RxData =zeros(Nant, Rx_Seq_Len); 

ChData = zeros(Nant, Rx_Seq_Len); 
IData = zeros(Nant, Rx_Seq_Len); 
NIData = zeros(Nant, Rx_Seq_Len); 
OutPutData = zeros(1,DataSize); 

% Randomly construct a data set 
DATA = [TrainSeq, sign(randn(1,DataSize - TrainSize))]; 

% Create transmitted data (Two samples per chip) 
for k=1:DataSize 

indx = (k-1)*PNSize+1:k*PNSize; 
TxData(:,indx) = GAIN(G)*diag(DATA(:,k))*PN; 

end 

% Pass data through channel (Rayleigh channel) 
C = channel(Nant, NPaths); 

for k=1:Nant 
ChData(k,:) = conv(C(k,:),TxData); 

end 
VarC = diag(cov(ChData.')); 

% Generate White Gaussian noise 
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NAmp = 1.0 / sqrt(2); 

Noise = NAmp*(randn(Nant,Rx_Seq_Len)+i*randn(Nant,Rx_Seq_Len)); 

VarN = cov(Noise(1,:)); % Use Antenna #0 

% Generate Sine Wave interfernce; 

for k=1:Nant 

theta = 2*pi*rand(1,5); 

% Single-Tone Model 

IData(k,:) = IGAIN(G)*exp(i*(1.0*(1:Rx_Seq_Len) + theta(1))); 

% Narrowband Model 

%I1 = exp(i*(0.3750*(1:Rx_Seq_Len) + theta(1))); 

% 12 = exp(i*(0.6875*(1:Rx_Seq_Len) + theta(2))); 

% 13 = exp(i*(1.0000*(1:Rx_Seq_Len) + theta(3))); 

% 14 = exp(i*(1.3125*(1:Rx_Seq_Len) + theta(4))); 

% 15 = exp(i*(1.6250*(1:Rx_Seq_Len) + theta(5))); 

IData(k,:) = IGAIN(G)*(I1 + 12 + 13 + 14 + 15); 

% clear I1 12 13 14 15; 

end 

% Add Interferer and Noise 

RxData = ChData + IData + Noise; 

NIData = IData + Noise; 

% Start receiving 

% Define Data Vector for Alpha-Filter, 

% 	RXA = [r(k), r(k-1), 	r(k-NAlpha+1)] 

RXA = zeros(Nant, NAlpha); 

RXANI = zeros(Nant, NAlpha); 

RXAS = zeros(Nant, NAlpha); 

% Define Data Vector for Beta-Filter, 

% 	RXB = [r'(k), r'(k-1), 	, r'(k-NBeta+1)] 

RXB = zeros(Nant, NBeta); 

RXBNI = zeros(Nant, NBeta); 

RXBS = zeros(Nant, NBeta); 

% Define Vector for Alpha, 

% 	Alpha = [1, A(1), 	, A(k-NAlpha+1)] 

Alpha = [ones(Nant,l) zeros(Nant, NAlpha-1)]; 

% Define Vector for Beta, 

% 	Beta = [b0, b1, 	b(k-NBeta+1) 
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Beta = zeros(Nant, NBeta); 

% Define Vector for Estimated Signal 
EstData = zeros(Nant, NBeta); 

Initialize Algorithm 
PKInit = 0.0001 * cov(RxData(1,:).'); % Use Antenna #0 
Pk_1 = []; 
PO = NAlpha + NBeta - 1; 
for k=0:Nant-1 

ii = k*P0 + 1; 
i2 = P0*(k+1); 

Pk_1(:,i1:i2) = (1 / PKInit) * eye(NAlpha + NBeta - 1); 
end 
Whk_1 = zeros(Nant,(NAlpha+NBeta-1)); 
Sum = zeros(Nant,1); 
SumNI = zeros(Nant,1); 
SumS = zeros(Nant,1); 
error = zeros(Nant,1); 
Kalman = zeros(PO, Nant); 
E_PNCount = 1; 
R_PNCount = 1; 
EstBIT = 1; 
U = zeros(Nant,DataSize); 
Us = zeros(Nant,DataSize); 
Un = zeros(Nant,DataSize); 

for SampleCount=1:Rx_Seq_Len 
% Shift Data through Alpha Taps 
for k=1:Nant 

RXA(k,2:NAlpha) = RXA(k,1:NAlpha-1); 
RXA(k,l) = RxData(k,SampleCount); 

RXANI(k,2:NAlpha) = RXANI(k,1:NAlpha-1); 
RXANI(k,1) = NIData(k,SampleCount); 

RXAS(k,2:NAlpha) = RXAS(k,1:NAlpha-1); 
RXAS(k,1) = ChData(k,SampleCount); 

end 

% Calculate Estimated TxData 
EstData(:,2:NBeta) = EstData(:,1:NBeta-1); 

if (SampleCount < (Train_Len + NBeta)) 
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% Training 
EstData(:,1) = TxData(SampleCount) * ones(Nant,1); 
Xk = [RXA(:,2:NAlpha) EstData].'; 
for k=1:Nant 

error(k) = RXA(k,l) - Whk_1(k,:)*Xk(:,k); 
end 

else 
code = PN(E_PNCount); 
EstData(:,1) = EstBIT*GAIN(G)*code*ones(Nant,1); 
RD = []; 
for k=1:NAlpha-1 

RD = [RD, RxData(:,SampleCount-PNSize-k)]; 
end 

Xk = [RD, EstData].'; 
for k=1:Nant 

error(k) = RxData(k,SampleCount-PNSize) - 
Whk_1(k,:)*Xk(:,k); 

end 
end 

% Recursive Algorithm 
for k=0:Nant-1 

ii = k*P0 + 1; 
i2 = P0*(k+1); 
Kalman(:,k+1) = (Pk_1(:,i1:i2) * Xk(:,k+1)) / 

(w + Xk(:,k+1)'*Pk_1(:,i1:i2)*Xk(:,k+1)); 
end 

% Calculate new coefficients 
for k=0:Nant-1 

i1 = k*P0 + 1; 
i2 = P0*(k+1); 
Wk = Whk_1(k+1,:)' + (Kalman(:,k+1) * conj(error(k+1))); 
Whk_1(k+1,:) = Wk'; 
Pk = (Pk_1(:,i1:i2) - Kalman(:,k+1)*Xk(:,k+1)' 

*Pk_1(:,i1:i2)) / w; 
Pk_1(:,il:i2) = Pk; 

end 

% Update coefficients in filter 
Alpha(:,2:NAlpha) = -Whk_1(:,1:NAlpha-1); 
Beta = fliplr(Whk_1(:,NAlpha:NBeta+NAlpha-1)); 

% Calculate Output of Alpha Filter 
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AlphaOut = diag(RXA * Alpha.'); 
AlphaOutNI = diag(RXANI * Alpha.'); 
AlphaOutS = diag(RXAS * Alpha.'); 

% Shift Data through Beta Taps 
for k=1:Nant 

RXB(k,2:NBeta) = RXB(k,1:NBeta-1); 
RXB(k,1) = AlphaOut(k); 

RXBNI(k,2:NBeta) = RXBNI(k,1:NBeta-1); 
RXBNI(k,1) = AlphaOutNI(k); 

RXBS(k,2:NBeta) = RXBS(k,1:NBeta-1); 
RXBS(k,1) = AlphaOutS(k); 

end 

code = PN(R_PNCount); 

% Calculate Output of RAKE 
BetaOut = code*diag(RXB * Beta'); 
BetaOutNl = code*diag(RXBNI * Beta'); 
BetaOutS = code*diag(RXBS * Beta'); 

% Sufficient Statistic Summation 
if (SampleCount > (NBeta - 1)) 

Sum = Sum + BetaOut; 
SumNI = SumNI + BetaOutNI; 
SumS = SumS + BetaOutS; 

end 

E_PNCount = E_PNCount + 1; 
if (E_PNCount > PNSize) 

E_PNCount = 1; 
end 
if (SampleCount > (NBeta - 1)) 

R_PNCount = R_PNCount + 1; 
if (R_PNCount > PNSize) 

R_PNCount = 1; 
% Now we make decision 
if (real(sum(Sum)) > 0) 

EstBIT = 1; 
else 

EstBIT = -1; 
end 
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BitNum = (SampleCount NPaths + 1) 	PNSize; 

% Store Us and Un 
U(:,BitNum) = Sum; 
Us(:,BitNum) = SumS; 
Un(:,BitNum) = SumNI; 

Sum = zeros(Nant,1); 
SumNI = zeros(Nant,1); 
SumS = zeros(Nant,1); 

end 
end 

end % SampleCount Loop 

% Calculate GAMMA and SNR 
if (Nant > 1) 

SigmaS = cov(sum(real(Us(:,TrainSize:DataSize-1)))); 
SigmaN = cov(sum(Un(:,TrainSize:DataSize-1))); 

else 
SigmaS = cov(real(Us(TrainSize:DataSize-1))); 
SigmaN = cov(Un(TrainSize:DataSize-1)); 

end 
GAMMA1(G) = SigmaS / SigmaN; 
SNR1(G) = mean(VarC) / VarN; 

end % for GAIN 

GAMMA2(NUM,:) = GAMMA1; 
SNR2(NUM,:) = SNR1; 

end % for NUM 

% Calculate Average Pe and SNR 
AveGAMMA = mean(GAMMA2); 
AveSNR = mean(SNR2); 
APe = 0.5*erfc(sqrt(AveGAMMA)); 

% Plot Pe 
figure(1) 
semilogy(20*log10(GAIN), APe); 
title('Pe for GLRT'); 
xlabel('SNR [dB] '); 
ylabel('Pe'); 
grid on; 
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B.2 ARRAY 

% FILE 	: glrtx.m 
% AUTHOR 	: Jeffrey L. Cutcher 
% VERSION 	: 3.0 
% DATE 	: 12APR95 
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clear; 
NPaths = 4; 
NAlpha = Nant; 
NBeta = NPaths; 
Nant = 1; 
DataSize = 101; 
TrainSize = 5; 
w = 0.95; 
AV = 1000; 

load code 
EPN = 2*PN_*PN_';  

Channel Paths (Includes direct path) 
% Size of Alpha Filter (Taps) 
% Size of Beta Filter 
% Antenna Array Size 
% Number of Data bits 
% Number of Training Bits 
% RLS weighting factor 
% Number of Averaging Iterations 

% Load in PN_ 
% Energy of code x 2 

A = [0.1270, 0.2013, 0.3190, 0.5056]; 
GAIN=sqrt(EPN)*A; 
IGAIN = 10*GAIN; 
TrainSeq = ones(1,TrainSize); 
GAMMA1 = []; 
GAMMA2 = []; 
SNR1 =[]; 
SNR2 = []; 
PN = []; 
RD = Ei; 
PNLength = length(PN_); 
Td = 1/2; 
T = PNLength / Td; 
PNSize = T; 
Tx_Seq_Len = DataSize * PNSize; 
Rx_Seq_Len = Tx_Seq_Len + NPaths 	1; % Because of convolution 
Train_Len = TrainSize * PNSize; 

% Construct double samples of the PN sequence 
PN = signat(PN_,PNSize,PNSize) / sqrt(EPN); 

for NUM=1:AV 	% LOOP For Averaging 
GAMMA1 = []; 



SNR1 = []; 

Pick a new seed 
rand('seed',100*sum(clock)); 
randn('seed',100*sum(clock)); 

for G=1:length(GAIN) 
[NUM G] 
% Inital conditions and definitions 
TxData = zeros(1, Tx_Seq_Len); 
RxData =zeros(Nant, Rx_Seq_Len); 
ChData = zeros(Nant, Rx_Seq_Len); 
IData = zeros(Nant, Rx_Seq_Len); 
NIData = zeros(Nant, Rx_Seq_Len); 
OutPutData = zeros(1,DataSize); 

% Randomly construct a data set 
DATA = [TrainSeq, sign(randn(1,DataSize - TrainSize))]; 

Create transmitted data (Two samples per chip) 
for k=1:DataSize 

indx = (k-1)*PNSize+1:k*PNSize; 
TxData(:,indx) = GAIN(G)*diag(DATA(:,k))*PN; 

end 

% Pass data through channel (Rayleigh channel) 
C = channel(Nant, NPaths); 
for k=1:Nant 

ChData(k,:) = conv(C(k,:),TxData); 
end 
VarC = diag(cov(ChData.')); 

% Generate White Gaussian noise 
NAmp = 1.0 / sqrt(2); 
Noise = NAmp*(randn(Nant,Rx_Seq_Len)+i*randn(Nant,Rx_Seq_Len)); 
VarN = cov(Noise(1,:)); % Use Antenna #0 

% Generate Sine Wave interfernce; 
theta = 2*pi*rand(1,5); 	 % phase 
thetaJ = 2*pi*rand(1); 	 % Angle of Arrival of Jammer 
d = 10; 	 % distance between elements 
lambda = 1; 	 % normalized to one 
phiJ = 2*pi*(d/lambda)*sin(thetaJ); % electrical angle 
SJ = exp(i*(0:Nant-1)*phiJ); 
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for k=1:Nant 
% Single-Tone Model 
IData(k,:) = IGAIN(G)*exp(i*(0.3*(1:Rx_Seq_Len) + 

theta(1)))*SJ(k); 
% Narrowband Model 

% I1 = exp(i*(0.3750*(1:Rx_Seq_Len) + theta(1))); 
% 12 = exp(i*(0.6875*(1:Rx_Seq_Len) + theta(2))); 
% 13 = exp(i*(1.0000*(1:Rx_Seq_Len) + theta(3))); 
% 14 = exp(i*(1.3125*(1:Rx_Seq_Len) + theta(4))); 
% 15 = exp(i*(1.6250*(1:Rx_Seq_Len) + theta(5))); 
% IData(k,:) = IGAIN(G)*(I1 + 12 + 13 + 14 + I5)*SJ(k); 
% clear I1 12 13 14 15; 

end 

% Add Interferer and Noise 
RxData = ChData + IData + Noise; 
NIData = IData + Noise; 

% Start receiving 
% Define Data Vector for Alpha-Filter, 
% 	RXA = [r(k), r(k-1), 	r(k-NAlpha+1)] 
RXA = zeros(Nant,1); 
RXANI = zeros(Nant,1); 
RXAS = zeros(Nant,1); 

% Define Data Vector for Beta-Filter, 
% 	RXB = [r'(k), r'(k-1), 	r'(k-NBeta+1)] 
RXB = zeros(1, NBeta); 
RXBNI = zeros(1, NBeta); 
RXBS = zeros(1, NBeta); 

% Define Vector for ALpha, 
% 	Alpha = [1, omega(1), 	, omega(k-Nant+1)] 
Alpha = [1 zeros(1, Nant-1)]; 

% Define Vector for Beta, 
Beta = [1)0, bi, 	, b(k-NBeta+1) 

Beta = zeros(1, NBeta); 

% Define Vector for Estimated Signal 
EstData = zeros(1, NBeta); 

% Initialize Algorithm 
PKInit = 0.0001 * cov(RxData(1,:).'); % Use Antenna #1 
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PO = Nant + NBeta - 1; 
Pk_1 = (1 / PKInit) * eye(P0); 
Whk_1 = zeros(1,P0); 
Sum = 0; 
SumNI = 0; 
SumS = 0; 
error = 0; 
Kalman = zeros(P0,1); 
E_PNCount = 1; 
R_PNCount = 1; 
EstBIT = 1; 
U = zeros(1,DataSize); 
Us = zeros(1,DataSize); 
Un = zeros(1,DataSize); 

for SampleCount=1:Rx_Seq_Len 
% Bring in next SPACE sample 
RXA = RxData(:,SampleCount); 

RXANI = NIData(:,SampleCount); 

RXAS = ChData(:,SampleCount); 

% Calculate Estimated TxData 
EstData(2:NBeta) = EstData(1:NBeta-1); 

if (SampleCount < (Train_Len + NBeta)) 
% Training 
EstData(1) = TxData(SampleCount); 
Xk = [RXA(2:Nant).' EstData].'; 
error = RXA(1) - Whk_1*Xk; 

else 
code = PN(E_PNCount); 
EstData(1) = EstBIT*GAIN(G)*code; 
Xk = [RxData(2:Nant,SampleCount-PNSize).' EstData].'; 
error = RxData(1,SampleCount-PNSize) - Whk_1*Xk; 

end 

% Recursive Algorithm 
Kalman = (Pk_1 * Xk) / (w + Xk'*Pk_l*Xk); 

% Calculate new coefficients 
Wk = Whk_1' + (Kalman * conj(error)); 
Whk_1 = Wk'; 
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Pk = (Pk_1 - Kalman*Xk'*Pk_1) / w; 

Pk_1 = Pk; 

% Update coefficients in filter 

Alpha(2:Nant) = -Whk_1(1:Nant-1); 

Beta = fliplr(Whk_1(Nant:PO)); 

% Calculate Output of Array 

AlphaOut = Alpha * RXA; 

AlphaOutNI = Alpha * RXANI; 

AlphaOutS = Alpha * RXAS; 

% Shift Data through Beta Taps 

RXB(2:NBeta) = RXB(1:NBeta-1); 

RXB(1) = AlphaOut; 

RXBNI(2:NBeta) = RXBNI(1:NBeta-1) 

RXBNI(1) = AlphaOutNI; 

RXBS(2:NBeta) = RXBS(1:NBeta-1); 

RXBS(1) = AlphaOutS; 

code = PN(R_PNCount); 

% Calculate Output of RAKE 

BetaOut = code * RXB * Beta'; 

BetaOutNI = code * RXBNI * Beta'; 

BetaOutS = code * RXBS * Beta'; 

% Sufficient Statistic Summation 

if (SampleCount > (NBeta - 1)) 

Sum = Sum + BetaOut; 

SumNI = SumNI + BetaOutNI; 

SumS = SumS + BetaOutS; 

end 

E_PNCount = E_PNCount + 1; 

if (E_PNCount > PNSize) 

E_PNCount = 1; 

end 

if (SampleCount > (NBeta - 1)) 

R_PNCount = R_PNCount + 1; 

if (R_PNCount > PNSize) 

R_PNCount = 1; 
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% Now we make decision 
if (real(Sum) > 0) 

EstBIT = 1; 
else 

EstBIT = -1; 
end 
BitNum = (SampleCount - NPaths + 1) 	PNSize; 

% Store U, Us and Un 
U(BitNum) = Sum; 
Us(BitNum) = SumS; 
Un(BitNum) = SumNI; 

Sum = 0; 
SumNI = 0; 
SumS = 0; 

end 
end 

end % SampleCount Loop 

% Calculate GAMMA and SNR 
SigmaS = cov(real(Us(TrainSize:DataSize-1))); 
SigmaN = cov(Un(TrainSize:DataSize-1)); 

GAMMA1(G) = SigmaS / SigmaN; 
SNR1(G) = mean(VarC) / VarN; 

end % for GAIN 

GAMMA2(NUM,:) = GAMMA1; 
SNR2(NUM,:) = SNR1; 

end % for NUM 

% Calculate Average Pe and SNR 
AveGAMMA = mean(GAMMA2); 
AveSNR = mean(SNR2); 
APe = 0.5*erfc(sqrt(AveGAMMA)); 

% Plot Pe 
figure(1) 
semilogy(20*log10(GAIN), APe); 
title('Pe for GLRT'); 
xlabel('SNR [dB]'); 
ylabel('Pe'); 
grid on; 
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B.3 MISCELLANEOUS 

% channel : Jan 23, 1995 

% Modeling frequncy selective Fading Channel by tap delay line. 

% C Channel coeficients 

% N number of antenna 
% M number of resolvable multipath 

function C = channel(N, M ) 

C = (randn(N,M) + j * randn(N,M)) / 3; 

% end channel.m 

% signat: Jan 20, 1995 

% Calculate the signature waveform of every mobile 

% code spreading code 

% D 	spreading gain, also equal to code length 

num total number of mobiles = number of interferences + 1 

% 1 	at time 1 

% L 	length of sequence 

% u 	signature waveform 

function u = signat(code, L, T) 

[num, D]= size(code); 

Td=D/T; 

c = reshape(code.', 1, num*D); 

c1 = ones(1/Td, 1)*c; 

c2 = reshape(c1, 1, num*T); 
c3 = reshape(c2, T, num).'; 

for 1=1:ceil(L/T) 
u1(:,(1-1)*T+1: l*T) = c3; 

end 

u=u1(:,1:L); 

% end signat.m 

% Gold Code 
PN_ = [+1 +1 +1 -1 +1 -1 +1 +1 -1 -1 ... 

-1 +1 -1 +1 -1 -1 +1 +1 -1 -1 ... 

+1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1]; 
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