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ABSTRACT 

A COMPARISON BETWEEN REVEALED PREFERENCE (RP) 
AND STATED PREFERENCE (SP) BASED ON RESULTS OF SIMULATIONS 

by 
Qiuzi Chen 

This research quantifies the potential biases resulted from two different data generation 

methods used in transportation modeling: Revealed Preference (RP) and Stated Preference 

(SP) techniques. Revealed Preference technique is the conventional approach to generate 

data. It relies on observed or reported data of actual behavior. Stated preference technique 

is a new data generation method. It creates transportation scenarios using hypothetical 

data. Conventional studies favor the use of revealed reference. However, full description 

of advantages and weaknesses of using revealed preference technique is not available in 

literature, neither point-to-point comparison between stated preference and revealed 

preference techniques. This research contributes to the literature by demonstrating the 

relative magnitude of biases inherent to both approaches. 

The method to explore approach-specific to generate data is simulation. The 

simulation work concentrates on biases found in RP and SP in the statistical estimation 

component, although biases also exist in the forecasting component. Simulation in RP case 

focuses on errors-in-variables; while, simulation in SP case concentrates on the internal 

design of the data matrix. 

Based on the results from the simulations, the research points out the potential 

biases in two models used to forecast model shift behavior in New Jersey. The work 

concludes with a list of future research needs. 
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CHAPTER 1 

INTRODUCTION 

Data generation introduces ambiguity and error into research designs. Two data 

generation techniques common to consumer demand analysis are compared and examined 

for their unintended consequences toward model estimation. 

This research explores the potential biases in both the Revealed Preference (RP) 

and the Stated Preference (SP) technique based on results of simulation. In a RP study, 

respondents are asked to report what they did in the past such as yesterday or last week. 

They are also asked to report the values of the determinants of choice selected by the 

investigator. When a RP technique is applied in transportation, respondents are usually 

asked to report their daily travel time, travel cost or commuting modes, etc. On the other 

hand, in a SP study, respondents are presented a choice set consisting of hypothetical 

scenarios and asked to rank, rate, or make a choice. The respondents are told that only 

mode choices specified in the choice set are available to them. Problems arise when each 

of these generate different conclusions (Bates, 1988). This research demonstrates the 

problems in the data generation process in the context of new laws encouraging the use of 

high occupancy vehicles. 

1.1 General Background 

The federal Clean Air Act Amendments (CAAA 1990) section 108f requires that states 

with areas of severe non-attainment must show evidence in their state implementation 
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plans that their Average Vehicle Occupancy (AVO) will improve by 25 percent by 

November 15, 1996. Based on the federal Act, NJ's Employee Trip Reduction Program 

(ETRP) mandates that every employer with more than 100 employees submit a 

compliance plan in which specific Employee Commute Option (ECO) strategies are to be 

implemented at their sites by November 15, 1994. By that date, every affected employer 

must show that they have implemented the ECO strategies and met the target APO. Both 

the federal Clean Air Act and NJ ETRP suggest a series of trip reduction strategies: 

parking management, guaranteed ride home, High Occupancy Vehicle (HOV) subsidy and 

other soft strategies including shifting work hours and telecommunications. The situation 

facing employers is clear. Significant changes in work rules and commuting practices must 

occur. Employers need to know: What specific combinations will permit for a site to 

improve its APO? And what are the constraints employees have preventing them joining 

rideshare program or transit? A successful APO forecasting model attempts to answer 

these questions. 

1.2 Motivation 

NJ DOT has provided a model called "NJECO" to help employers forecast the effect of 

the ECO strategies on the site's APO(Comsis, 1994). The model was estimated by using 

the Revealed Preference (RP) techniques and was transferred from California. On the 

other hand, Beaton (1992) developed a forecasting model in New Jersey by using Stated 

Choice (SC) technique. The model was developed at a specific site in New Jersey: the 

Matsushita Electric Corporation of America (MECA). The purposes and the estimation 

process of the two models are the same. However, the estimated effects of trip reduction 
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strategies in improving the Average Passenger Occupancy (APO) deviate between these 

two models. The difference between these two models lies in data generation. RP 

approach relies on reported commuting choices and commuting habits combined with 

census data and data kept by the company. SC approach generates hypothetical data by 

presenting respondents hypothetical choice scenarios and asking them to make a choice. 

Do the underlying research design differences produce any difference in the estimated 

coefficients? If yes, how significant is the difference? My thesis explores these questions 

by using a simulation technique. 

1.3 Introduction to Stated Preference and Revealed Preference Techniques 

1.3.1 Stated Choice Technique in Transportation 

The stated choice approach to rational compensatory decision making analysis simplifies 

the choice making context, target, and time by making a verbal or pictorial description of a 

choice problem. Respondents are asked to examine the choice tasks presented to them and 

pick one alternative they prefer most in the choice set. This approach deals with 

hypothetical situations involving stated or intended behavior. Usually, each respondent is 

asked to examine 16 to 27 choice tasks depending on number of attributes and number of 

value levels for each design variable. Usually, a fractional factorial experimental design is 

used to produce a set of orthogonal design variables where each design variable is 

comprised of 2 or 3 value levels. 

The setup for an SP study includes the following steps: 

1. Focus group meeting, 
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2. Selection of the Sample, 

3. Selection of number of attributes and number of levels within an attribute, 

4. Selection of the measurement of choice, and 

5. Data analysis 

Focus group meetings are held in order to present the researchers with a better 

understanding of the target population. Therefore, researchers are able to set up 

appropriate design variables and assign reasonable values to the design variables. 

The major consideration in selecting a sample is the representiveness of the target 

population. The target population must consist of persons who are knowledgeable and 

capable of responding to the choices offered in an experiment. An SP study does not 

require that respondents are currently making trade-offs among the choices that are 

presented to them. However, the choices presented to them must be meaningful in terms 

of purpose, rationality and efficiency. 

The number of attributes and the number of levels of each attribute depends on 

researchers' interests. If more attributes and more levels of each attribute are included, 

more information will be obtained. However, the problem of respondent fatigue will occur 

as more attributes and levels of each attribute are included (Fowkes, 1988). 

Respondents can be asked to rank, rate or make a choice of the presented choice 

set. Stated Choice (SC) is considered as the closest one to the reality and thus is applied 

most often. 

Multinominal logit model is the most often one to be used in revealed preference 

disaggregate travel demand modeling and is also used in a SP or SC study. The theoretical 
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frame, model formulation and the statistical estimation procedure will be described in 

Chapter 2. 

1.3.2 Revealed Preference Technique in Transportation 

In a RP study, respondents are asked to report what they did in the past. In transportation, 

respondents are usually asked to report their daily travel time, travel cost, mode choice 

and number of transfers if bus or train is actually used. The RP technique requires the 

respondents in the sample to be making trade-offs among the choices researchers are 

interested in. This requirement increases the difficulty of identifying the sampling frame 

and increases the cost of the study. In addition, unlike in an SP study, where each 

respondent makes several choices, only one choice can be observed from every respondent 

in an RP study. 

Multinominal logit model is the most common one to be used for data analysis in 

an RP study. The maximum likelihood estimation procedure is employed to estimate the 

parameters in the choice model. 

1.4 Thesis Structure 

The thesis will be prepared in five chapters. Chapter one introduces the problem facing 

employers, researchers, and planners as well as the need to compare Revealed Preference 

(RP) and Stated Choice (SC) techniques by simulation. Chapter two discusses individuals' 

logit decision making process. Chapter three explores the consequences of problems 

associated with SP and RP by mathematical approach. Chapter four discusses the 

theoretical difference between Revealed Preference and Stated Choice techniques in terms 



of data generation and explores these differences by simulation. Chapter five applies the 

results of the simulation to the RP model and the SC model that have been estimated or 

used in New Jersey, presents conclusions from study, and suggests some directions for 

future research. 

6 



CHAPTER 2 

LOGIT DECISION MAKING PROCESS IN TRANSPORTATION 

2.1 Introduction 

Section 2.2 introduces the underlying theoretical model for the rational individual's 

decision making process. The theory of utility maximization combined with the concepts 

of derived demand and indirect utility functions allows researchers to specify the 

components of the utility function and explain why choice A rather than choice B is 

chosen. Section 2.3 introduces the set of assumptions on the distribution of the random 

utility term 	in in the indirect utility function. Section 2.4 introduces the procedure used in 

estimating the parameters in the utility function: Maximum Likelihood Estimation 

Procedure. 

2.2 Theory of Discrete Choice 

2.2.1 Indirect Utility 

Utility in the study of consumer behavior is interpreted as the "satisfaction" derived from 

the consumption of alternative consumption bundles (Phlips, 1974). The utility function 

for a consumer is expressed as: 

u= f 	 (2.2.1.1) 

7 
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Equation 2.2.1.1 is a direct utility function in that it takes commodities as 

arguments. Applying the direct utility function to the study of a commuter's mode choice 

behavior in transportation, equation 2.2.1.1 can be expressed as: 

In equation 2.2.1.2, xj is commuter transportation services such as SOV or HOV, 

etc. xH represents all the other goods and services in an individual's consumption, called 

Hicks goods (Ferguson, 1972). Symbol u is the satisfaction a commuter gets from 

consuming transportation service/ and Hicks goods. Transportation services satisfy the 

three properties essential for the identification of a commodity: nonnegativity, divisibility, 

and unbounded from above (Phlips, 1974). Individuals are assumed to maximize their 

utility subject to constraints in money and time budgets allocated to commuting. The 

optimal level of commuting transportation service (x: ) generates a demand function Φ 

having arguments such as travel cost, travel time, and income budget for commuting, etc. 

The expression for xi; is: 

Equation 2.2.1.3 states that the prices or costs for transportation, tastes, 

anticipations regarding the future α,α, α2... αn as well as the consumer's income budget i 

and time budget t determine the demand for transportation services. Equation 2.2.1.3 is an 
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individual's demand function for commuting, given income budget for commuting i, time 

budget allocated for commuting t, and various aspects of the mode. However, the demand 

for commuting is a derived demand. Individuals do not usually obtain utility directly from 

commuting but from work accomplishment and paycheck (Button, 1993). In order to 

accomplish work and receive paycheck, individuals must commute to work. The idea that 

demand for commuting is a derived demand implies that for most of the commuters, the 

utility of commuting is negative. Here commuters minimize the disutility of commuting at 

the optimal demand for transportation services. 

If we place equation 2.2.1.3 into equation 2.2.1.2, we obtain a function 

establishing a direct link between the utility derived from a commuter's consumption of 

transportation services and various price aspects of transportation services and the 

commuter's income budget, called indirect utility function, which can be written as: 

Where star * refers to the utility maximizing solution to the direct. 

Recognition of the commuter's utility function for consuming transportation 

services as an indirect utility function is of vital importance in studying the commuter's 

decision making process. The policy variates of interest are changes in price of the various 

aspects of a mode and changes in an individual's income. 

The relationship between the direct utility and indirect utility function is a duality 

relationship. For simplicity, I only consider commuting trips and all the other goods and 



10 

services (Hicks goods). In addition, I assume that travel cost and travel time are the only 

two inputs supplied by the commuter. The objective function in the primal shows 

theutility function for commodities such as transportation services and Hicks goods. 

Primal Problem 

Maximize: 

Subject to: 

In equations 2.2.1.5 and 2.2.1.6, U is the total utility an individual obtains from 

commuting transportation services and Hicks goods, 

xJ  refers to the number of commuting services consumed by the commuter, 

xH represents the number of Hicks goods consumed by the commuter, 

0 is the utility per unit of commuting service consumed by the commuter (given 

the derived nature of commuting services, this value will be negative), 
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CH is the utility per unit of Hicks goods consumed by the commuter, 

is the $ spent per commuting service, 

p21  is the minutes spent per commuting service, 

pH is the price of one unit of Hicks goods, 

p2H is minutes spent for one unit of Hicks goods, 

i f  is income budget for commuting services, 

t, is the time budget for commuting services, 

ill is the income budget for all the other Hicks goods, 

1H is the time budget for all the other Hicks goods, 

i is the total income budget, and 

t is the total time budget. 

Given time and income budgets and prices, the commuter must choose an optimal 

amount of consumption of transportation services in contrast to Hicks goods in order to 

maximize utility. 

Dual Problem: 

Minimize: 

Subject to: 
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In equations 2.2.1.7 and 2.2.1.8, y is the consumer's total utility of spending the 

available resources in commuting and Hicks goods, 

a, is the utility per dollar spent for commuting, 

a2 is the utility per minute spent for commuting, 

a2 is the utility per dollar spent for Hicks goods, and 

a is the utility per minute spent for Hicks goods. 

The objective of the dual problem can be interpreted as minimizing the utility of 

spending the available resources needed in the process of consuming commuting services 

and Hicks goods such that utility in the primal will be maximized. The constraint function 

in the dual problem states that the contribution to the utility of the dollars and time used 

for commuting and Hicks goods must be enough to produce the optimum amount of 

commuting services and Hicks goods respectively. 

The solution in the dual problem leads to the specification of the indirect utility 

function used in either the revealed or the stated preference approaches to discrete choice 

analysis. The constraint functions of the dual are the indirect utility functions for 

commuting services and Hicks goods. Travel cost: 	and travel time: p2, are the 

attributes for the utility function specifying commuting services; while,the price of Hicks 

goods: pill, and time spent for Hicks goods: p2H are the arguments of the indirect utility 
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function for Hicks goods. The typical problem facing revealed and stated preference 

studies is the estimation of the parameter estimates for ,α, 	a3, and a.. 

2.2.2 Utility Maximization and Discrete Choice Theory 

Utility Maximization is a fundamental condition in the discrete choice theory. It states that 

alternative i is prefered to alternative j if Ui > Uj, j # i . The utility is composed of two 

elements: systematic utility Vi and random utility term a , of which only the systematic 

utility can be observed. The random utility term reflects individual ideosyncracy (Hensher 

& Johnson, 1981). Essentially, a population of consumers is created in which the 

individuals within the population are represented by the values assumed by the random 

utility term. 

The random utility model for individual q is expressed as: 

If alternative i is prefered to alternative j, 

The elements of εjq  - εiq can not be directly measured. Random utility term is 

essentially a single aggregate residual term. Therefore, the relationship Viq  — Vjg  > 	- Elq 
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can not be determined from direct observation. However, given an assumed probability 

distribution for the residual term, a probability that εj g  - εiq is less than Viq  — VA  can be 

assigned. 

The above probability function means that the probability that alternative i is 

chosen is equal to the probability that the difference between 

εjq

, and 

ε

iq  is less than the 

difference between Viq  and VA. By simply rearranging the equation 2.2.2.3, equation 

2.2.2.3 can be expressed as: 

Since a, is random with an assigned distribution, we can define all the possible 

values of &q  as b1(1=1,2,3,....r). Therefore, equation 2.2.2.4 can be expressed as: 

Where r is equal to the number of all possible values of εiq 
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Alternatively, equation 2.2.2.5 can be expressed as: 

If we further assume a continuous distribution of IV's 	equation 2.2.2.6 

can be written as: 

Equation 2.2.2.7 is a general formulation of a choice model expressing the 

relationship between the probability of selecting an alternative and the attributes of the 

alternatives in the choice set, under the condition that the distribution of random utility 

term is defined by researchers. 

Conversion of equation 2.2.2.7 to an operation model is described in the following 

section. 
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2.3 Model Formulation 

A number of assumptions have to be introduced in order to convert model 2.2.2.7 

developed in the previous section to an operational model. The main assumption to 

develop a simple operational model is: Independence-from-Irrelevant Alternative (IIA). 

The IIA property states that the ratio of the probabilities of choosing one alternative over 

another (where both alternatives have a non-zero probability of choice) is unaffected by 

the presence or absence of any additional alternatives in the choice set (Hensher & 

Johnson, 1981). Another assumption added by McFadden (1975) is positivity. Given the 

transportation related attributes and socioeconomic characteristics, the probability of a 

specific alternative being chosen in a choice set must be greater than zero for all possible 

alternatives in the choice set. 

Suppose the utility model for an individual q is expressed as: 

Where j is any alternative in the choice set J and q is any individual in the sample 

Q. 

If we assume that the random utility term εj, is independently and identically 

distributed with weibull distribution, the definition of weibull distribution in terms of εj's 

is: 
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Where µq, is the shape parameter (variance of ) across individuals, αjq

 is the location parameter (mean value) of εjg across both individuals and 

alternatives, and, 

E can be taken as a random variable or any given value on the distribution (E is 

taken as any given value on the distribution in Johnson and Hensher's version to 

derive the logit model, which is also introduced here). 

Assuming the location parameter co, equal to l and the shape parameter µq equal 

to 0, which is applied in empirical studies most often, equation 2.3.2 can be simplified as: 

Ejq 

Assuming that each individual has an identical distribution of Ej  and dropping the 

subscribe q in equation 2.2.2.4 in the previous section, we get: 

Since, by assumption, each εj is independently distributed, for any given value of 

a, defined as b, the probality that 

simultaneously (jointly) can be written as: 
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in terms of εj. Similarly, the definition of cumulative weibull distribution in terms of S can 

be expressed as: 

However, we are interested in the probability that εi equals some given value: b. 

By definition, the derivative of a cumulative probability distribution (equation 2.3.6): the 

probability density function, gives the probability when εi  b. 

The probability density function when a  b can be expressed as: 

Equation 2.3.5 is a probability function for all a, 	 when a = b. Equation 

2.3.7 gives a probability when a = b. The joint marginal density function of εi can be 

obtained by multiplying equation 2.3.5 by equation 2.3.7: 
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Which can be simplied as: 

Similar to equation 2.2.2.7, the probability of choosing a particular alternaitve 

can be obtained by integrating the joint marginal density function of εj (2.3.9) over all 

possible values of 

Rearranging equation 2.3.10, we obtain: 

Let: z = exp(-b), and 
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b=-Inz 

In the equation 2.3.11, notice that: z =., when b = --., z = 0, when b 

Then, equation 2.3.11 can be written as: 

Eaquation 2.3.14 can be calculated: 
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j=1 

Furthermore, equation 2.3.15 can be expressed as: 

Rearranging equation 2.3.16, we obtain: 

Given all the assumptions above, equation 2.3.17 is the basic multinomial logic 

(MNL) model. Equation 2.3.17 expresses the relationship between selection probability 

and the attributes of the alternatives. 

2.4 Statistical Estimation Process 

Maximum Likelihood Estimation (MLE) is used to estimate parameters in the choice 

model. The basic idea of MILE is that the estimated Maximum Likelihood parameters can 
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(z),z2,...,z.) on a random variable Z from a population characterized by an unknown 

parameter 0. The joint probability density function of the sample is: 

A joint probability density function as equation 2.4.1 is usually interpreted 

considering Z as a variable and 0 as fixed. However, in the MLE procedure, Zs are 

considered as fixed and θ as a variable. Equation 2.4.1 is considered as a likelihood 

function. Maximization of equation 2.4.1 with respect to θ gives the optimal value of 

which is most likely to generate the sample we observed. Extension of one parameter@ to 

more than one parameters in a MLE estimation gives a likelihood function which is 

suitable to be used in estimating parameters in either an RP or SP model choice model. 

Recall equation 2.3.14 that the probability of an individual q's choosing alternative i is: 

of which the systematic utility Vjq is usually assumed to be a linear additive function. 

Assume 	is expressed as: 
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Where Vjq is individual's systematic utility for alternative j, 

xjkq is the kth attribute for individual q and alternative j, 

K is the total number of attirbutes, and 

α is the parameter for the kth attribute in the utility function for alternative/ 

In either an RP or an SP study, for every respondent in the sample, we observe 

choices made by the respondent as well as the values of 	for all alternatives. Assume 

that every respondent in the sample makes choices independently, the joint likelihood 

function of the sample can be expressed as the multiplication of the probability of each 

individual's choosing alternative/. This can be expressed as: 

The observations in the equation 2.4.4 are ordered so that the first n1 observations 

choose alternative 1, the next n2 observations choose alternative 2,....and the last iv 

observations choose alternative J. 

To mathematically work with equation 2.4.4, the logarithm of equation 2.4.4 (Li ) 

is as follows: 
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In equation 2.4.5, L*  can be maximized with respect to all the as in the systematic 

component of the utility. The resulting estimates of all as are the MILE estimates for the 

parameters in the utility function. 

The computer program used in simulation work: ALOGIT, uses an iterative 

procedure to estimate the parameters. The system assigns initial values of all a first. 

These values are used to calculate the value of 	which is then used to calculate 

After obtaining each respondent's Pjq, the system will use these values to calculate a 

starting value of A` in equation 2.4.5. Then in a Newton-Raphson method, the system will 

continuously search for better values of a until the increase in L*  does not exceed a 

preassigned value. The Newton-Raphson method calculates the slope and the curvature of 

the function as well as the value of A`. The slope of the function tells what direction the 

coefficients must be changed in order to improve the function. The curvature of the 

function tells how far the coefficients must be changed before A*  stops increasing 

(ALOGIT User's Guide, 1992). 



CHAPTER 3 

METHODOLOGICAL DIFFICULTIES: 
A REVIEW OF THE LITERATURE 

The literature review begins by examining the pros and cons of revealed preference and 

stated preference techniques. In section 3.2, problems in estimation process using both RP 

and SP data are discussed. 

3.1 Pros and Cons of RP and SP Approaches 

Revealed preference is the conventional approach to estimating transportation choice 

models and forecasting travel behavior. However, use of the stated preference approach is 

increasing due to its efficiency in the use of data and reduced cost of conducting a study 

compared to revealed preference approach (Bradley & Kroes, 1992). The discussions on 

pros and cons of SP and RP are listed as follows (Jones, 1990): 

1. Model Specification: In an RP study, researchers either observe respondents' 

behaviors or ask respondents report their past behavior, and then model the relationship 

between the choice and the factors that researchers think affect the respondents' decision 

making process. Therefore, researchers will not be able to observe all the factors that 

affect in the respondent's decision making process. Consequently, they can omit some 

important variables or misspecify the form of the factors in the model. The consequences 

of omitting important variables or misspecifying some factors when modeling actual 

behavior produce biased estimates among the remaining variables and poor forecasts. 
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In an SP study, researchers define the attributes of the alternatives they are 

interested in and ask respondents make trade-offs among the attributes and choose the 

most desirable alternative. Therefore, the problems of omitting important variables or 

misspecifying some factors in the model in an RP study do not apply in the estimation 

component of the SP study. 

2. Statistical Estimation: RP approach is challenged in two dimensions of statistical 

estimation: correlation among explanatory variables and errors in variables. 

(1) Correlation among explanatory variables: In an RP study, researchers have 

little control over the explanatory variables. As a consequence, correlation among 

explanatory variables are often very strong. The correlation among explanatory variables 

prevents researchers from estimating the relative effect of each factor on respondents' 

decision making by increasing the standard errors (Fowkes & Wardman, 1994). In an SP 

study, the variables of interest are set up in an orthogonal data matrix. This arrangement 

essentially eliminates problems of multicolinearity. 

(2) Errors in variables: The strongest argument favoring RP over SP reflects the 

factual nature of choice. This argument is correct if it refers to the actual choice. The 

choice values in an RP study are of higher quality than the choice data in an SP study. In 

RP the choice actually occurred; the SP data is a response to a hypothetical situation. 

However, this argument is inaccurate when it refers to the identification of rejected 

alternatives as well as the attributes of the chosen as well as the rejected alternatives. The 

attributes in an RP study are assigned values by respondents to transportation services. It 

is common for respondents to have errors when reporting their values. The consequences 
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of errors in variables problems to the statistical estimation process is described and 

demonstrated in Chapter four . In a SP case, because the design variables are fixed, errors 

in variables is not an issue in statistical estimation process. 

3. Range of applicability: The RP approach can not be used in the situations where 

the choice alternatives of interest do not exist. However, in a SP study, respondents can be 

given a detailed description of an alternative condition even though it does not exist in the 

real world. 

4. Types of variables: Given the level of effort needed to construct and administer 

an RP study, the RP approach is used to estimate the relative effect of major 

transportation service variables such as travel time and travel cost but not those hard-to-

measure transportation variables such as comfort level and safety. 

5. Omitted alternatives in RP: One of the strict requirements to conduct an RP 

study is that every respondent in the sample must make trade-offs among the alternatives 

in the choice set during the time period of interest. The RP data usually contains 

information on the mode the respondent chose as well as the attribute values of the mode 

chosen. Revealed preference studies seldom have information on the rejected modes for 

that specific respondent. 

One solution that has been recommended for this problem is an increase in the size 

of the sample. Here the hope is to bring a more diverse range of respondents into the 

sample. However, this strategy does not resolve the fundamental problem. Measurement 

error still exists and non-compensatory tradeoffs are built into the RP model. 
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The linear additive utility function utilized in both RP and SP is a source of 

problem to both approaches. Consumers are assumed to weigh the attributes within and 

across their mode specific utility functions in the process of making a choice. In RP, the 

commuter is assumed to have considered the attributes included in the model and chosen 

the mode used. In an SP study, various choice scenarios are designed for respondents to 

make trade-offs. The information for an alternative is sufficient for researchers to estimate 

parameters in the choice model. If a respondent does not make any trade-offs through the 

whole set of choice scenarios, noncompensatory behavior will be assumed and the 

response will be taken out of the study. 

The arguments mentioned above discuss the strength and shortcomings of both RP 

and SP approaches. Errors in SP mostly belong to response bias, which leads to a 

deviation of the SP choice from the actual choice. Bates (1988) described this problems as 

a scaling factor in forecasting. Discussion of scaling factor is given in the section 3.3. 

3.2 Econometric Issues in Both RP and SP 

As data generation methods, both RP and SP are subject to certain errors that can not be 

avoided in the statistical estimation process. Errors associated with RP include: 

1. Errors-in-variables, 

2. Model specification, 

(1) Omitted variables, 

(2) Misspecify the functional form of the independent variable, 

(3) Interaction among independent variables, and 
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3. Measurement error in the dependent variable. 

The RP data are based on reported data in that respondents are asked to report 

their travel time, travel cost, or travel modes, etc. Errors in the independent variables are 

assumed to be random with a given distribution. The effect of errors in variables will force 

the estimates to attenuate toward zero, depending on the magnitude of the variance of the 

error term. 

The classical Ordinary Least Square (OLS) technique can be used to derive 

estimate of β which is comparable to the Maximum Likelihood Estimate (Fowkes, 

Wardman & Holden, 1994). The authors indicate that it makes no material difference 

whetherεi are assumed Weibull rather than Normal when it comes to examining the 

consequences of non-orthogonality on parameter estimates. I will use the same approach 

in examining the consequences of errors in variables on parameter estimates. 

Suppose the true regression model is: 

Where & is normally distributed with 0 mean value and variance  δ 2. 

While the actual regression model is: 

Where xi*= z+v,. 
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Assuming the error term: vi, in Xis normally distributed with 0 mean and has no 

serial correlation, and also is independent of the error: ε  , in the true equation. The 

covariance between xi* and ε * is: 

Then the ordinary least-square estimator β' : 

Since& and v, are all stochastic, the bias of f3' is difficult to estimate. However, the 

consistency of J3' can be evaluated by evaluating the expression of β'  in the limit as the 

sample size gets large. 
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This suggests that the presence of errors in variables in a two-variable regression 

model will lead to an underestimation of the true regression parameter. 

A comparable analysis of the consequences of errors in variables upon the 

multinomial logit model is not available in the literature. However, an analysis related to 

the multinomial probit is available (Yatchew & Griliches, 1985). Probit as well as logit are 

members of a general class of models identified as generalized extreme value (GEV) 

models. The members of GEV are used to examine multinomial choice problems. The 

findings in the case of probit analysis can indicate the consequences of errors in variables 

for logit. The following shows the consequences of errors in variables as found in the 

probit model. 

Suppose the basic probit model we are working with is expressed as: 
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Where y, is not observed, y,* is observed, and 

x, is normal with mean zero and variance 6 , 

i is normal with mean zero and variance 6 ‘2 . 

Suppose that xi is measured with error, and 

Where x,' is observed data of x, with error built in, and 

v, is normal with mean and variance 6 v2  and uncorrelated with e . 

Then, equation 3.6 can be written as: 

The resulting MILE estimator of )6 in equation 3.9 is: 

Comparing equation 3.10 with the OLS model, equation 3.5, probit estimates 

based upon errors in variables data show a compounded bias toward zero. 

Model specification errors include omitted variables, misinterpretation of the way 

the independent variable is entered and interaction factor. In an RP study, researchers can 
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Model specification errors include omitted variables, misinterpretation of the way 

the independent variable is entered and interaction factor. In an RP study, researchers can 

not always observe every factor in the respondents' decision making process. Therefore, 

important determinants of choice can be easily omitted in the RP studies. Yatchew and 

Griliches (1985) indicated there are various asymptotic biases in MLE estimates in a probit 

model if variables are omitted in the model. The type of bias depends on the assumption 

that the sample is drawn. If OLS techniques are used, the estimators will be biased and 

inconsistent (Pindyck & Rubinfeld, 1991). Form of the estimation equation is another 

source of error. The misspecification of a linear model when the true model is nonlinear 

can also lead to biased and inconsistent parameter estimators (Pindyck & Rubinfeld, 

1991). 

Interaction is another source of error that can influence the estimation process. 

Interaction can occur at both the level of association between fixed independent variables 

and at the causation within a structural model. Little has been done to explore the impact 

of interaction errors on the logit model. 

Measurement error focuses attention upon the elements of experimental design. In 

RP studies, efforts to reduce its impact on estimation have lead researchers to make 

assumptions about spatial aggregation in zoning systems, ticket type, fuel type, etc. 

(Bradley & Kroes, 1990). Measurement errors are likely to be random, with an effect 

similar to those of errors in variables discussed above. 

On the other hand, errors associated with SP include: 
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1. Response error: Response error includes respondent fatigue and respondent 

learning. 

(1) Respondent fatigue: Respondent fatigue is likely caused by complexity and 

longevity of the survey. Thus the dependent variable involves another type of error n, 

other than the regression error E. The variance of n, increases as a respondent goes 

through the survey. Discussion on how ni affects the forecasting component is described 

later in this chapter. 

(2) Respondent learning: Respondent learning refers to respondents learn as they 

go through the survey. Therefore, the variance of ni decreases as the respondents learn 

how to perform the task. 

Both respondent fatigue and learning represent another type of error n, in 

dependent variable, so there will be no problems in the estimating the parameters in the 

model. However, problems will appear in forecasting. 

2. Justification bias: Respondents may rationalize their actual behavior in a way 

they think they are supposed to in an experiment. For example, they may choose High 

Occupancy Vehicle (HOV) modes such as carpool and vanpool when they think they are 

expected to. The effect of the justification bias is a shift to the alternative-specific constant 

to favor those modes that are expected to be chosen. 

3. Policy response bias: Respondents may consciously bias their answers in the 

experiment hoping that their answers would affect the policy-making. The consequences 

of policy response bias are expected to have similar effects as that of justification bias. 
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4. Model specification errors: Model specification error describes the situation 

within SP where constraints beyond those specified in the design variables, such as 

weather, car availability, etc., affect choice decisions (Bradley & Kroes, 1990). The effect 

of this error is similar to that of omitted variables in the RP case. 

The potential biases resulted from the errors associated with RP and SP can be 

quantified by simulation. However, this research focuses on several potential error effects 

that are common to the estimation phase of RP and SP. In the RP case, simulation work 

focuses on errors-in-variables; while, in the SP case, simulation work focuses on varying 

the internal design of data matrix. 

3.3 A Note on the Forecasting Problem in SP 

Most of the biases linked to SP occur in the experimental design phase (Bonsai], 

1983). Response bias can be controlled during the survey design and administration 

process; however, problems remain in the forecasting phase. Bates (1988) discussed the 

effect of the response bias in estimation and forecasting components, which is described as 

follows. 

Suppose that the dependent variable involves a measurement error n i , the 

researchers observe a pseudo-utility U instead of the true utility U. The relationship 

between pseudo-utility and the true utility can be defined as: 
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Where n, is independently distributed with the same type of distribution as εi  with 

constant variance δ,'. By simply rearranging equation 3.11, the observed utility can 

expressed as: 

Where ε*  is the new error term combining both εi and 

From equation 3.12, the regression error term c is combined with n, . Problems 

occurred in the estimation can be controlled. However, problem comes into forecasting. 

In forecasting, utility is calculated based on the utility model and the available information 

on attributes. If the following is observed by researchers in the estimation process: 

Equation 3.13 does not necessarily imply that: U > 

In estimation, ε = εi — n , the new variance for E,. is ((2+S„2) , which is greater 

than that would use in forecasting, generally. In forecasting, the scale of the coefficients in 

V1 to the random term has changed compared to those in estimation component. Thus the 

estimated demand for a specific alternative are affected. Therefore, the error term used in 

estimation must be apportioned, theoretically. Or, alternatively, the scale of the 



coefficients in Vi to the random term must be corrected. Unfortunately, Bates (1988) 

indicated that knowledge on how to do this in practice is lacking. This problem with 

scaling factor can be demonstrated by simulation. However, this research only deals with 

problems in the estimation process. 

3.4 Conclusions 

Multinomial or discrete choice theory has advanced planners ability to model the demand 

for transportation infrastructure. The two primary approaches to operationalizing discrete 

choice theory are Revealed Preference and Stated Preference studies. Both approaches 

have their strengths and weaknesses. Neither approach can be used as a benchmark for 

truth. Rather, both approaches must be used, where possible, in a complementary fashion. 
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CHAPTER 4 

SIMULATION 

4.1 Introduction 

This chapter starts with the description of the simulator and the methodology used to 

design and construct control models and various test variations. A random number 

generator written in UNIX C is used to simulate the random utility term in the utility 

model. Concern that the results from the simulation might not be due to a change within 

the model but due to a poor random number generator motivated the use of statistical 

tests examining the quality of random number generator. The rest of the chapter describes 

the construction of the control models and various test variations. The test variations 

include: (1) Test of Varying Number of Value Levels for Design Variables, (2) Test of 

Varying Middle Placement within the Design Variable, and (3) Test of Errors in Variables. 

The chapter concludes with the comparisons between control model and various test 

variations. 

4.2 Simulator 

4.2.1 Components of Simulator 

This research uses the simulator originally developed by Tony Fowkes and Mark 

Wardman of Leeds University (1988). The simulator represents an individual decision 
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making process based on the principle of utility maximization (see chapter 2). The 

simulator can be imagined as a data matrix consisting of 

1. Logit structural model, 

2. Attributes for each mode or alternative represented in the model, 

3. Structural parameters for each alternative, 

4. The number of value levels given to the attributes, 

5. Values of the attributes, and 

6. A random utility generator. 

It is assumed that an individual's probability of choosing the mode i out of a choice 

set is governed by the decision making process implied by the logit model. The structural 

model is expressed as: 

In the simulator, each row represents an individual's decision. The first column 

consists of values representing the mode choices the simulated individual makes based on 

utility maximization. Equation 4.2.1.1 states that the probability of an individual's choosing 

an alternative i is the ratio of the exponential of the utility of choosing alternative i to the 

sum of the exponential of the utilities of choosing the other alternatives. The individual 

will choose the alternative with the largest utility. 
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The next several columns are headed by the attributes of the alternatives in the 

choice set. The subdata matrix under the headings of the attributes are designed to be 

orthogonal in relation to the other design variables in the choice set. The orthogonal 

design of the combinations of values of attributes are taken from GE Research and 

Development Center's Catalog (1964). In an actual SP experiment, these combinations 

are actually presented to the respondents and they are requested to make a choice out of 

the alternatives. The attributes of an alternative are the arguments or independent variables 

affecting the individual's decision making process; examples of the independent variables 

include travel time and travel cost, etc. The design variables are usually assigned 2 or 3 

values. Once the number of levels of the attributes is determined, the number of the choice 

scenarios that must be completed by each respondent can be found from the fractional 

factorial design plan. In addition, the orthogonal design for the values of the attributes by 

choice task is obtained in this catalog. Replacing the initial values of the attributes in the 

design plan with the values designed for the attributes of interest, a particular set of choice 

scenarios can be obtained. 

In chapter 2, I show that an individual's utility in choosing alternative i consists of 

systematic utility Vi and the random utility term 	The set of random utility terms: {a} 

represents individuals within the population and is assumed to have a weibull distribution. 

In the simulator, the columns following the last attribute are used to generate various 

uniformly distributed random numbers. A unique distribution is assigned to each 

alternative. Conversion of the uniform distribution into a weibull distribution is don by the 

following formula (Fowkes,1988): 
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Where In is the function of natural logarithm, 

e. is the random utility term with weibull distribution ranging from 0 to 1, 

ev is the uniformly distribution random number ranging from 0 to 1 generated by 

the random number generator, and 

stdev refers to the specified standard deviation of random utility tei 	in in the utility 

function. 

In the simulation, the parameters of the attributes are assigned by the researchers. 

Therefore, the simulator calculates the systematic utility for each alternative. Total utility 

is derived by adding a random utility e with weibull distribution to the systematic utility.  

Based on utility maximization, the simulator assigns a corresponding value to the choice 

variable in the first column. 

After the values of the choice variables have been assigned by the simulator, the 

columns consisting of the choice variable and the attributes of the alternatives in the 

choice set become the input to a computer program that estimates the coefficients of the 

attributes of each alternative in the choice set. 

4.2.2 Random Numbers Generator 

The random numbers generator in UNIX C is used in the simulation to generate the 

random numbers with uniform distribution. Then the uniform distribution is transformed to 
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weibull distribution. The random numbers generator must produce values that are 

identically and independently distributed with uniform distribution. Two tests are 

performed to assure the quality of the generator. 

The random numbers generator taken for this study uses a numeric algorithm. 

Once a seed value is given, a sequence of random numbers is determined in that each 

random number is determined by one or several algorithms sequentially. There are 

numerous discussions on the randomness of random numbers generated by a fixed 

mathematical formula. However, most agree that arithmetic generators, if designed 

carefully, can produce numbers that appear to be independent with uniform distribution 

and can pass a series of statistical tests (Law & Kelton, 1991). That is, acceptable 

random numbers must be independent and exhibit no correlation with each other. 

Assumptions of independence and correlation are examined by using two statistical tests. 

Chi-square test is used to test uniformity on random numbers. A Runs-up test is 

used to test independence of random numbers. Descriptions of two tests are as follows. 

Following the description is the an example in which 800 random numbers generated by 

the program are examined. 

1. Chi-square test: The test examines whether the generated random numbers 

distribute uniformly between 0 and 1. 

Suppose there are n random numbers to be tested. Divide n random numbers into k 

subintervals with equal length. As a general principle, k should at least be 100 and n/k 

should at least be 5. Let ff be the number of the random numbers in the jth subinterval. 

The Chi-square with k-I degree of freedom can be expressed as (Law & Kelton, 1991): 
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The null hypothesis is: The selected n random numbers are independently and 

identically distributed with uniform distribution ranging from 0 to . 

The alternative hypothesis: The selected 17 random numbers are not independently 

and identically distributed with uniform distribution on ranging from 0 to 1 at 95% 

confidence level. 

For large 11 and k, the estimated formula for the critical value of the chi-square 

distribution is expressed as: 

Where z}_. is the upper 1— a critical point of the normal distribution with mean 

of 0 and variance of 1, 

a is the probability of type I error, and 

k-1 is the degree of freedom. 

The null hypothesis will be rejected at level a when x 2  > 	, which means 

that the selected n random numbers are not independently and identically distributed with 

uniform distribution. 
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The simulation uses the utility "Random()" in UNIX C as its random number 

generator. Just for a simple example, number 3 was chosen as the seed value for 

Random() to generate 800 random numbers and divide those random numbers into 100 

subintervals, we get: 

The null hypothesis is not rejected at a = 0.05. Therefore, the selected 800 random 

numbers are independently and identically distributed. 

2. Runs-up test: This test tests the assumption of independence. The test examines 

the sequence for unbroken subsequences of maximal length within which the random 

numbers increase monotonically; such a sequence is called a run up (Law & Kelton, 

1991). The test formula is given as: 

Where r and ri are the number that the subsequence is equal to i or j, 

a is the (i,j)th element of the given matrix 
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The same set of 800 random numbers as in the chi-square test was used in the 

runs-up test. It is recommended (Law & Kelton, 1991) that for large 11 (n 4000), R will 

have an approximate chi-square distribution with 6df, under the null hypothesis that the n 

random numbers are independently and identically distributed. In our test, 800 

observations are far less than 4000. However, the calculation of critical value of R when n 

is less than 4000, was not mentioned by Law and Kelton. Therefore, the critical value of 

x6.0.902 is used in this test to examine the assumption of independence for the 800 random 

numbers. 

The calculation showed that for the selected 800 random numbers, 

Therefore, the null hypothesis of independence is not rejected at 

level a = 0.10 . 

4.2.3 Standard Deviation of the Random Utility Term 

The variance of the random utility term deter 	mines the scale of the parameter estimates to 

be recovered in the utility model. The variance also determines the ability to solve the 
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maximum likelihood equation. Too little variance results in no convergence within the 

maximum likelihood equation and therefore no recoverable estimators. Where the 

variance is too large, then the deterministic utility is minimal with respect to the random 

utility and statistically significant estimators are not recoverable. Balance between these 

two extremes must be achieved. 

Selection of an appropriate standard deviation leads to good estimates of the 

parameters in the choice model. If the standard deviation is specified too large, the 

estimated model will contain too much error and have low t-ratios; if the standard 

deviation is specified too small, the model will fail to converge (Fowkes, 1988). The 

method used to determine an appropriate standard deviation of the random utility term is 

error and trial method. The criteria used to select a proper standard deviation include: 

1. Minimizing the average difference of the estimated coefficients from true 

parameters, 

2. Maximizing the standard error of the estimated coefficients, 

3. Maximizing the "t" ratios for the estimated coefficients, and 

4. Maximizing the Rho-squared with respect to constant. 

The estimates in the control model are expected to recover the parameters best. 

Therefore, the average difference of the estimated coefficients from true parameters was 

the most important criteria. A set of values ranging from 0.07 to 7.0 for standard deviation 

is tested. A standard deviation of 0.7 was determined to produce the best estimators. 
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4.3 Methodology 

A set of control models and test variations was prepared representing realistic commuting 

situations. There is a control model designed for each test design. The coefficients derived 

by Beaton (1992) in New Jersey are taken as the structured parameters of the logit model 

used throughout the simulation. The values assigned to the independent variables were 

derived from focus group meetings with employees of the employment sites where the 

original SP experiment was held. The control model is specified in a design matrix 

consisting of the attributes of the choice alternatives and their random utilities. The chosen 

alternative is determined by utility maximization. The test variations are prepared by 

changing one or more properties of the control model. 

In my simulation, the choice set faced by each simulated decision-maker consists of 

16 choice tasks in which seven orthogonal-design variables are involved. By repeating 

these 16 choice tasks 50 times, 800 observations are constructed in the EXCEL workbook 

and saved as a text file. The saved text file as an input file is read by a program written in 

C (for detail, see Appendix-A). After it reads the input file, the program returns a random 

number with uniform distribution ranging from 0 to 1 and then transforms the uniform 

distribution to weibull distribution for each of the 800 observations. The program 

combines a set of parameters, and the values of the attributes and computes a systematic 

utility value for each alternative for each individual. The overall utility of each alternative 

for each individual is derived from the sum of the systematic utility and the random utility 

term with weibull distribution. The program assigns the alternative with the largest total 

utility as the chosen alternative. The output from the program is now the input to a 
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computer program used to test the ability of the logit model to return estimates identical 

to their parameters. 

ALOGIT program is chosen as a specific computer program used in my simulation 

to estimate the parameters of the attributes. Chapter 2 has discussed the detailed 

information about the estimation process in ALOGIT. 

In order to test the ability of the logit program to recover the parameters of the 

attributes, the control model in each test design is estimated 50 or 100 times by varying 

random utility term each time. The resulted estimates for each parameter in the control 

model are plotted as a frequency distribution. An asymptotic 2-tailed t-test is then used to 

compare the estimates in the control model with the parameters. 

Each test variation is simulated 50 or 100 times in the same way as the control 

model in order to obtain the central tendency and variability of the estimates of parameters 

in the test condition. A set of asymptotic 2-tailed t-tests concerning the means is 

performed. The tests are used to determine whether the mean value of the distribution of 

sample means for each design variable in the test model is significantly different from the 

corresponding parameter. 

The estimates of parameters by ALOGIT program are the scaled values. The real 

estimates of parameters are obtained from the equation (Ben-Akiva, 1989): 

Real estimate = [ 

After the estimates are released from the scaling factor, a set of statistical tests is 

performed to compare the difference between the control models and the test variations. 
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Tests of significant difference between the mean value of the distribution of sample 

means for each attribute use an asymptotic two-tailed t-test at 95% confidence level. 

Suppose that the null hypothesis is: 

the alternative hypothesis is: 

The test formula is expressed as: 

where s is the standard deviation of the sampling distribution, 

xi is the mean of the sample distribution for design variable i , 

u is the true parameter in the model, and 

n

 is the degree of freedom. 

At 95% confidence level, the critical value of t is 1.96. If the t-ratio is either 

greater than 1.96 or less than -1.96, the null hypothesis is rejected. 

4.4 Test of Varying Number of Value Levels for Design Variables 

4.4.1 Control Model Design 

Varying the number of value levels tests the ability of the logit program to recover the 

parameters of the design variables while the number of value levels of the design variables 

is varied. The control model used in this test contains 6 design variables and one 

alternative-specific constant for vanpool. Of the six design variables, three are 2-level and 

the other three are 3-level variables. 

The parameterized systematic utility models for the three alternatives are specified 

as: 
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Where PK$$ is the parking charge, 

PKspace is the availability of parking space, 

CPWT is the extra time over SOV when carpool is used, 

GRHcp is the availability of Guaranteed Ride Home which requires 25 minutes 

waiting time for carpoolers, 

VPWT is the extra time over SOV when vanpool is used, and 

GRHvp is the availability of Guaranteed Ride Home which requires 25 minutes 

waiting time for vanpoolers. 

The values and the levels of the design variables are shown in the following table: 

Table 1: Value Levels of the Design Variables for the Control Model in the Test of 
Varying the Number of Value Levels within the Design Variables  

Variables 	Level one 	Level two 	Level three 

PK$$ 
PKspace 
CPWT 
GRHcp 
VPWT GRHvp 

$0 
0 

0min. 
0 

5min. 
0 

$3 
1 

10min. 
1 

25min. 

$7 

20min. 

35min. 
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4.4.2 Findings: The Control Model 

One hundred simulations were performed to obtain a central tendency and a variability of a 

distribution of sample means for each estimator in the control model. 

Table 2: Descriptive Statistics for the Distribution of Sample Means of the Estimators in 
the Control Model in the Test of Varying the Number of Value Levels of the Design 
Variables 

Variables Parking 
charge 

Parking 	Carpool GRH for Vanpool GRH for Const.for 
space 	wait-time 	carpool 	wait-time vanpool 	vanpool 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
Medians 	-0.16 0.55 -0.037 1.11 -0.049 1.16 0.32 
Std.Error 0.002 0.009 0.003 0.01 0.001 0.01 0.01 

Ave. % chg.*0.01% 0.25% 8.6% 0.34% 0.8% 1.1% 5.6% 

* Ave. % chg. is calculated from: ((Mean Value- Parameter) / Parameteti 

Table 2 above shows that: 

1. For the control model, there is no significant difference between the mean values 

of the distributions of sample means for all estimators and the parameters. 

2. The median values are found within two standard errors of the parameters. 

Therefore, the central tendency of the distribution of the sample mean for every estimator 

is not affected by outliers. 

3. The skewness values (see Table B-1 in Appendix-B) show that the distribution 

of sample means for GRHcp has a slight positive skewness. The distributions for PK$$, 

PKspace, GRHvp, and the constant for vanpool have slight negative skewnesses. The 

distribution of VPWT is more skewed to the right than other variables. The distribution of 

CPWT is more skewed to the left than other variables. 
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4. The kurtosis values (see Table B-1 in Appendix-B) indicate that the distributions 

of sample means for VPWT and CPWT are peaked while the distributions of the others 

are relatively normal  

4.4.3 Statistical Test: The Control Model 

The following table compares the mean value of the distribution of the sample mean for 

each estimator in the control model to the respective parameters. 

Table 3: Comparison of the Distribution of Sample Means for Estimators in the Control 
Model to the Parameters in the Test of Varying the Number of Value Levels within the 
Design Variable 

Variables 	Parking 
charge 

Parking 	Carpool GRH for Vanpool GRH for Const.for 
space 	wait-time 	carpool 	wait-time vanpool 	vanpool 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
t-ratios 	0.01 0.15 0.917 0.38 0.340 1.03 1.58 

None of the t-ratios is either greater than 1.96 or less than -1.96, the null 

hypothesis is not rejected. Therefore, the mean value of the distributions of the sample 

means for each design variable in the control model is not significantly different from the 

true parameter at 95% confidence level. 
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4.4.4 Test Model Design: Varying the Number of Value Levels for Design Variables 

This test examines the effect on the estimated coefficients of the design variables due to 

various combinations of value levels among the six design variables in the test variations. 

The combinations are shown in the following table. 

Table 4: Combinations of Value Levels for the Design Variables by Test Variations in the 
Test of Varying Number of Value Levels for Design Variables  

Test Variations # 
Number of 

2-Level Variables 
Number of 

3-Level Variables 
Number of 

4-Level Variables 

Test Variations 
1 3 2 1 
2 3 1 2 
3 3 0 3 

Control Model 3 3 

4.4.5 Test Variation 1 

4.4.5.1 Test Design 

The first test variation design includes two 3-level variables, three 2-level variables and 

one 4-level variable. The values for each level of the six design variables are shown in the 

following table. 

Table 5: Value Levels of the Design Variables for the Test Variation 1 in the Test of 
Varying the Number of Value Levels within the Design Variables 

Variables Level one Level two Level three Level four 

PK$$ $0 $3.00 $7.00 $12.00 
PKspace 0 1 
CPWT 0min. 10min. 20min. 
GRHcp 0 1 
VPWT 5min. 25min. 35min. 
GRHvp 0 
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4.4.5.2 Findings: Test Variation 1 

Fifty runs were performed to obtain a central tendency and a variability of the distribution 

of the sample means for each design variable. 

Table 6: Descriptive Statistics of the Distribution of Sample Means for the Estimators in 
Test Variation 1 in the Test of Varying the Number of Value Levels of the Design 
Variables Compared to the Control Model and Parameters 

Variables Parking 
charge 

Parameters 	-0.16 

Parking 
space 

0.54 

Carpool 
wait-time 

-0.037 

GRH for 
carpool 

1.13 

Vanpool 
wait-time 

-0.048 

GRH for 
vanpool 

1.13 

Const.for 
vanpool 

0.29 
Control 

Means 	-0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
Ave. % chg.*0.01% 0.25% 8.6% 0.34% 0.8% 1.1% 5.6% 

Test #1 
Means 	-0.16 0.34 -0.037 1.14 -0.065 1.14 0.28 
Medians 	-0.15 0.53 -0.036 1.15 -0.049 1.16 0.27 
Std.Error 0.003 0.01 0.0008 0.01 0.012 0.02 0.02 

Ave. % chg.*2.03% 0.6% 0.73% 1.2% 35.5% 1.2% 2.1% 

* Ave. % chg. is calculated from: (Mean Value-Parameter) /Parameter| . 

Table 6 above shows that: 

1. The difference between the mean value of the distribution of the sample means 

for VPWT changes from 0.8% under the control condition to 35.4% under the condition 

of test variation 1. 

2. The mean values of the distributions of the sample means for all estimators are 

within two standard error around the parameters. 

3. The median values of the distributions of sample means for all estimators are 

found within two standard errors of the parameters. Therefore, the central tendencies of 

the distributions of the sample means for all estimators are not affected by outliers; 
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However, the sample mean of VPWT is approaching the critical value while the median is 

essentially the same as the parameters. 

4. Skewness values (see Table B-2 in Appendix-B) show that the distributions of 

sample means for PKspace, GRHcp, GRHvp and the constant in the utility model of 

vanpool have slight positive skewnesses. The distributions for PK$$ and CPWT have 

slight negative skewnesses. The distribution of the sample means for VPWT is more 

skewed to the left than other variables. This is also reflected by the average absolute 

change of 35.4% of the mean value from the true parameter. The median value also takes 

the position to the left of the parameter. 

5. The kurtosis values (see Table B-2 in Appendix-B) indicate that the distribution 

of VPWT is peaked while the distributions of the others are relatively normal. 

4.4.5.3 Statistical Test: Test Variation 1 

Table 7 compares the mean values of the distributions of sample means for the estimators 

in the test variation 1 to the control model as well as parameters. 

Table 7: Comparison of the Mean Values of the Distributions of Sample Means for all 
Estimators between Test Variation 1 and the Control Model as well as the Parameters in 
the Test of Varying the Number of Value Levels of the Design Variables  

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Const. for 
vanpool 

Parameters -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means -0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
t-ratios 0.01 0.15 0.917 0.38 0.340 1.03 1.58 

Test #1 
Means -0.16 0.54 -0.037 1.14 -0.065 1.14 0.28 
t-ratios 1.25 0.21 0.329 0.99 1.44 0.82 0.39 
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None of the t-ratios is either greater than 1.96 or less than -1.96. The null 

hypothesis is not rejected. Therefore, the mean value of the sample distribution for each 

design variable inthe control model is not significantly different from the true parameter at 

95% confidence level. 

4.4.6 Test Variation 2 

4.4.6.1 Test Design: Test Variation 2 

Test variation 2 tests how well the parameters are recovered when two 4-level design 

variables are involved in the model. The value levels of the six design variables are shown 

in the following table. 

Table 8: Value Levels of the Design Variables in the Test Variation 2 in the Test of 
Varying the Number of Value Levels within the Design Variables 

Variables Level one Level two Level three Level four 

PK$$ $0 $3.00 $7.00 $12.00 

PKspace 0 1 
CPWT 0min. 10min. 20min. 30min. 
GRHcp 0 1 
VPWT 5min. 25min. 35min. 
GRHvp 0 1 

4.4.6.2 Findings: Test Variation 2 

Fifty runs were performed to obtain the central tendency of the distribution of sample 

means for each estimator. 
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Table 9: Descriptive Statistics of the Distribution of Sample Means for the Estimators in 
Test Variation 2 as well as the Control Model and Parameters in the Test of Varying the 
Number of Value Levels of the Design Variables  

Variables Parking 
charge 

Parking 
space 

Carpool 	GRH for Vanpool GRH for Const.for 
wait-time 	carpool 	wait-time vanpool 	vanpool 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means 	-0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
Ave. % chg.* 0.01% 0.25% 8.6% 0.34% 0.8% 1.1% 5.6% 
Test #2 

Means 	-0.16 0.53 -0.037 1.14 -0.057 1.14 0.29 
Medians 	-0.16 0.53 -0.038 1.14 -0.048 1.13 0.26 
Std.Error 0.002 0.02 0.0006 0.02 0.008 0.02 0.02 

Ave. % chg.*  1.3% 1.4% 1.2% 1.0% 17.9% 1.1% 1.6% 
* Ave. % chg. is calculated from: l(Mean Value-Parameter) /Parameter 

Table 9 shows that: 

1. When the number of value levels of CPWT is increased to 4, the difference 

between the mean value of the distribution of sample means for VPWT and the parameter 

increases to 17.9% compared to the control model. However, compared to the control 

model, the differences between the mean value of the distributions of sample means for 

both CPWT and the constant in vanpool model decrease under the test variation 2. 

2. The mean values of the distributions of sample means distributions for all 

estimators are within two standard error around true parameters. 

3. The median values of the distributions of sample means for all estimators are 

found within two standard errors of the parameters. Therefore, the central tendency of the 

distribution of the sample means for each estimator is not affected by outliers. 

4. Skewness values (see Table B-3 in Appendix-B) show that the distributions of 

sample means for PK$$ and GRHvp have slight positive skewnesses. The distributions for 
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PKspace, CPWT, GRHcp and the constant for vanpool have slight negative skewnesses. 

The distribution of VPWT is more skewed to the left than other variables. This is can be 

explained by the average percent change of 17.9% between the mean value of the 

distribution of sample means and the parameter. 

5. Kurtosis values (see Table B-3 in Appendix-B) indicate that the distribution of 

sample means for VPWT is peaked while the distributions of the others are relatively 

normal. 

4.4.6.3 Statistical Test: Test Variation 2 

The following table compares the mean values of distributions of sample means for 

estimators in the test to the control model as well as the parameters. 

Table 10: Comparison of the Mean Values of the Distributions of Sample Means for all 
Estimators between Test Variation 2 and the Control Model as well as the Parameters in 
the Test of Varying the Number of Value Levels of the Design Variables 

Variables 	Parking 
charge 

Parking 	Carpool GRH for Vanpool GRH for Const. for 
space 	wait-time 	carpool 	wait-time vanpool 	vanpool 

Parameters -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means -0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
t-ratios 0.01 0.15 0.917 0.38 0.340 1.03 1.58 

Test #2 
Means -0.16 0.53 -0.037 1.14 -0.057 1.14 0.29 
t-ratios 0.86 0.50 0.700 0.76 1.003 0.80 0.28 

None of the t-ratios is greater than 1.96 or less than -1.96, the null hypothesis is 

not rejected. Therefore, the mean values of distributions of the sample means for all 



estimators in the test variation 2 is not significantly different from the true parameter at 

95% confidence level. 

4.4.7 Test Variation 3 

4.4.7.1 Test Design 

Test variation 3 contains three 2-level design variables, three 4-level variables and one 

alternative-specific constant for vanpool. The value levels of the six design variables are 

shown in the following table. 

Table 11: Value Levels of the Design Variables for the Test Variation 3 in the Test of 
Varying the Number of Value Levels within the Design Variables  

Variables 
	

Level one 	Level two 
	

Level three 	Level four 

PK$$ 	 $0 	 $3.00 	 $7.00 	$12.00 
PKspace 	0 	 1 
CPWT 	 0min. 	10min. 	20min. 	30min. 
GRHcp 	 0 	 1 
VPWT 	 5min. 	25min. 	35min. 	45min. 
GRHvp 	 0 	 1 

4.4.7.2 Findings: Test Variation 3 

Fifty runs were performed to obtain a central tendency and the variability of the 

distribution of sample means for each estimator. 

Table 12 below shows that: 

1. When three variables of PK$$, CPWT, and VPWT are designed to have 4 

levels, the difference between the mean value of the distribution of sample means for 

VPWT increases from 0.8% to 18.9% compared to the control model. 

59 
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2. The mean values of distributions of sample means for all estimators except 

PK$$ in the model are within two standard errors around the parameters. The mean value 

of distribution of sample means for PK$$ in the model is within three standard errors of 

the parameters. 

3. The median of the distributions of sample means for all estimators are found 

within two standard errors of the parameters. Therefore, the central tendency of the 

distribution of sample means for each estimator is not affected by outliers. 

Table 12 also shows that: 

Table 12: Descriptive Statistics of the Distribution of Sample Means for the Estimators in 
Test Variation 3 as well as the Control Model and Parameters in the Test of Varying the 
Number of Value Levels of the Design Variables 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Const.for 
vanpool 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means 	-0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
Ave. % chg.* 0.01% 0.25% 8.6% 0.34% 0.8% 1.1% 5.6% 
Test #3 

Means 	-0.17 0.54 -0.037 1.11 -0.057 1.11 0.31 
Medians 	-0.17 0.55 -0.037 1.12 -0.049 1.13 0.29 
Std.Error 0.003 0.02 0.0007 0.012 0.008 0.02 0.02 

Ave. % chg.* 4.3% 0.5% 0.3% 2.1% 18.9% 1.7% 6.2% 
* Ave. % chg. is calculated from: (Mean Value-Parameter) /Parameter!. 

4. Skewness values (see Table B-4 in Appendix-B) show that the distribution of 

sample means for the constant in vanpool model has slight positive skewness. The 

distributions for PKspace, PK$$, CPWT, GRHcp and the constant for vanpool have slight 

negative skewnesses. The distribution of VPWT is heavily skewed to the left. This can be 
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explained by the average percent change of 18.9% between the mean value of the 

distribution of sample means and the parameter for VPWT. 

5. Kurtosis values (see Table B-4 in Appendix-B) indicate that the distribution of 

VPWT is peaked while the distributions of the others are relatively normal. 

4.4.7.3 Statistical Test: Test Variation 3 

The following table compares the mean values of the distributions of sample means for 

estimators in the test to the control model as well as the parameters. 

Table 13: Comparison of the Mean Values of the Distributions of Sample Means for all 
Estimators between in the Test Variation 3 and the Control Model as well as the 
Parameters in the Test of Varying the Number of Value Levels of the Design Variables 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Const. for 
vanpool 

Parameters -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means -0.16 0.54 -0.040 1.13 -0.048 1.14 0.31 
t-ratios 0.01 0.15 0.917 0.38 0.340 1.03 1.58 

Test #3 
Means -0.17 0.54 -0.037 1.11 -0.057 1.11 0.31 
t-ratios 2.42 0.17 0.144 2.03 1.07 0.97 1.14 

Table 13 shows that the mean values of the distributions of sample means for 

PKspace, CPWT, VPWT, GRHvp, and the constant for vanpool are not significantly 

different from the parameters at 95% confidence level. However, for PK$$ and GRHcp, 

the null hypothesis is rejected. The mean values of the distributions of sample means for 
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PK$$ and GRHcp are significantly different from the parameters at 95% confidence level. 

However, the bias in both cases is under 5% as is shown in table 12. 

4.4.8 Conclusions 

When varying the number of the value levels built with SP experiments, the simulation 

exercise shows: 

1. In two test variations where there is no significant difference between the mean 

value of the distribution of the sample means for estimators and their parameters. In all 

three test variations, the mean values for VPWT deviate from its parameter at 35.3%, 

17.9%, and 18.9% respectively. However, no significant differences were found between 

them and the parameter. 

2. When three design variables are assigned four value levels, the estimated 

coefficients of the estimators are slightly biased. 

3. The bias that was recovered in the model was less than 5 percent of the 

parameter. 

4.5 Test of Varying the Middle Placement within Design Variable 

4.5.1 Control Model Design 

The test designs to examine how well the parameters of the design variables can be 

recovered when the middle value of a design variable: PK$$, is varied. Preliminary tests 

showed that varying the middle value of a variable entered in a utility model in a linear 

form does not affect the recoverability of the parameter. The more useful test for 
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placement of the middle value accrues where a curvilinear relationship is hypothesized. 

Therefore, PK$$ is entered in the utility function as a quadratic term instead of a linear 

term. In order to increase the slope of the curve, the parameter of the parking charge was 

changed from -0.16 to -0.21. 

The parameterized model in the test of varying the middle placement within the 

design variable is constructed as: 

In equation 4.5.1.1, PK$$ is the parking charge, 

PKspace is the availability of parking space, 

CPWT is the extra time over SOV when carpool is used, 

GRHcp is the availability of Guaranteed Ride Home which requires 25 minutes 

waiting time for carpoolers, 

VP WT is the extra time over SOV when vanpool is used, 

GRHvp is the availability of Guaranteed Ride Home which requires 25 minutes 

waiting time for vanpoolers, and 

VPsub is the subsidies for vanpoolers. 

The values and the levels of the design variables are shown in the following table: 



64 

Table 14: Value Levels of the Design Variables for the Control Model in the Test of 
Varying the Middle Placement within the Design Variables 

Variables Level one Level two Level three 

PK$$ $0 $3 $7 
PKspace 0 1 
CPWT 0min. 10min. 20min. 
GRHcp 0 1 
VPWT 5min. 25min. 35min. 
GRHvp 0 1 
VPsub 0 $1 $3 

4.5.2 Findings: the Control Model 

Fifty runs were performed to obtain a central tendency and a variability of the distribution 

of the sample means for each design variable. 

Table 15: Descriptive Statistics of the Distribution of Sample Means for the Design 
Variables in the Control Model in the Test of Varying the Middle Placement of the Design 
Variables 

Variables Parking 
charge 

(squared) 

Parking 	Carpool 	GRH for Vanpool GRH for Const.for 
space 	wait-time 	carpool 	wait-time vanpool 	vanpool 

Parameters 	-0.21 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.21 0.56 -0.037 1.14 -0.048 1.13 0.29 
Medians -0.22 0.56 -0.037 1.13 -0.048 1.11 0.29 
Std.Error 0.003 0.02 0.0008 0.02 0.0007 0.01 0.008 

Ave. % chg.*2.2% 3.2% 1.1% 0.9% 0.7% 1.8E-05 0.5% 

Ave. % chg. is calculated from: (Mean Value-Parameter) / Parameter| 

Table 15 above shows that: 

1. The differences between the mean values of the distributions of the sample 

means for all seven design variables range from lowest 1.8E-05 for VPWT to highest 

3.2% for PKspace. 
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2. The mean values of the distributions of sample means for all seven design 

variables are within two standard errors around true parameters. The control model is 

unbiased. 

3. The median values of the distributions of sample means for estimators except 

PK$$ are found within two standard errors of respective parameters. The median value for 

PK$$ (squared) is found within 3 standard errors of its parameter. 

4. Skewness values (see Table B-5 in Appendix-B) show that the distributions of 

sample means of PKspace, GRHcp, GRHvp, and VPsub have slight positive skewnesses. 

The distributions for PK$$, CPWT, and VPWT have slight negative skewnesses. 

4. Kurtosis values (see Table B-5 in Appendix-B) indicate that the distributions of 

the sample means for all seven design variables are normal. 

4.5.3 Statistical Test: Control Model 

The following table compares the mean values of the distributions of sample means for all 

seven design variables in the control model to the respective parameters. 

Table 16: Comparison of the Mean Values of the Distributions of Sample Means for all 
Design Variables between the Control Model and the Parameters in the Test of Varying 
the Middle Placement of the Design Variables  

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters -0.21 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control 

Means -0.21 0.56 -0.037 1.14 -0.048 1.13 0.29 
t-ratios 1.62 1.03 0.482 0.63 0.505 0.001 0.17 
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The null hypothesis is not rejected. The mean values of the distributions of sample 

means for all seven design variables are not significantly different from the parameters at 

95% confidence level. 

4.5.4 Test Model Design 

The test examines how well the parameters of the seven design variables are recovered 

when the middle value of the quadratic term: PK$$, is changed from $3.00 to $1.00. 

4.5.5 Findings: Test Model 

Fifty runs were performed to obtain a central tendency and a variability of the distribution 

of sample means for each design variables. 

Table 17: Descriptive Statistics of the Distributions of Sample Means for the Design 
Variables in the Test Model in the Test of Varying the Middle Placement of the Design 
Variables 

Variables Parking 
charge 

(squared) 

Parking 
space 

Carpool 
wait-time 

GRE for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.21 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.21 0.56 -0.037 1.14 -0.048 1.13 0.29 
Medians -0.22 0.56 -0.037 1.13 -0.048 1.11 0.29 
Std.Error 0.003 0.02 0.0008 0.02 0.0007 0.01 0.008 

Ave. % chg.*2.2% 3.2% 1.1% 0.9% 0.7% 1.8E-05 0.5% 
Test Model 

Means 	-0.21 0.55 -0.037 1.14 -0.048 1.12 0.30 

Medians 	-0.21 0.54 -0.037 1.15 -0.048 1.12 0.29 

Std.Error 0.01 0.01 0.0007 0.01 0.0006 0.02 0.008 
Ave. % chg.*2.1% 1.1% 0.24% 1.2% 0.67% 0.8% 2.4% 

Ave. % chg. is calculated from: |(Mean Value-Parameter) / Parameter|. 
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Table 17 above shows that: 

1. The differences between the mean values of the distributions of sample means 

for all seven design variables and the parameters under the test condition do not vary 

significantly compared to the control model. 

2. The mean values of the distributions of sample means for all seven design 

variables are within two standard errors around the parameters. 

3. The median values of the distributions of sample means for all seven design 

variables are found within two standard error of the parameters. Therefore, the central 

tendency of the distribution of sample means for each design variable is not affected by 

outliers. 

4. Skewness values (see Table B-6 in Appendix B-6) show that the distributions of 

sample means for PKspace, GRHcp, and VPsub have slight positive skewnesses. The 

distributions for PK$$, CPWT, GRHvp and VPWT have slight negative skewnesses. 

4. Kurtosis values (see Table B-6 in Appendix B-6) indicate that the distributions 

of the sample means for all seven design variables are normal. 

4.5.6 Statistical Test: Test Model 

The following table compares the mean value of the distribution of 'sample means for each 

design variable in the test model to the control model as well as the parameters. 

Table 18 below shows that the null hypothesis is not rejected. The mean values of 

the distributions of sample means for all seven design variables are not significantly 

different from the true parameters at 95% confidence level. 
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The null hypothesis is not rejected. The mean values of the distributions of sample 

means for all seven design variables are not significantly different from the parameters at 

95% confidence level. 

4.5.4 Test Model Design 

The test examines how well the parameters of the seven design variables are recovered 

when the middle value of the quadratic term: PK$$, is changed from $3.00 to $1.00. 

4.5.5 Findings: Test Model 

Fifty runs were performed to obtain a central tendency and a variability of the distribution 

of sample means for each design variables. 

Table 17: Descriptive Statistics of the Distributions of Sample Means for the Design 
Variables in the Test Model in the Test of Varying the Middle Placement of the Design 
Variables 

Variables Parking 
charge 

(squared) 

Parking 
space 

Carpool 
wait-time 

GRE for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.21 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.21 0.56 -0.037 1.14 -0.048 1.13 0.29 
Medians -0.22 0.56 -0.037 1.13 -0.048 1.11 0.29 
Std.Error 0.003 0.02 0.0008 0.02 0.0007 0.01 0.008 

Ave. % chg.*2.2% 3.2% 1.1% 0.9% 0.7% 1.8E-05 0.5% 
Test Model 

Means 	-0.21 0.55 -0.037 1.14 -0.048 1.12 0.30 

Medians 	-0.21 0.54 -0.037 1.15 -0.048 1.12 0.29 

Std.Error 0.01 0.01 0.0007 0.01 0.0006 0.02 0.008 
Ave. % chg.*2.1% 1.1% 0.24% 1.2% 0.67% 0.8% 2.4% 

Ave. % chg. is calculated from: |(Mean Value-Parameter) / Parameter|. 
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due to different perception and recording abilities among individuals. However, the mode 

choices respondents choose to use are based on the actual data instead of reported data. 

Therefore, the choice values found in an RP study are true values while the values for the 

independent variables are confounded with error. Do errors in the independent variables 

bias the estimates of the parameters for the design variables? In theory, errors in 

independent variables will bias the estimates of the variables downwards (see Chapter 3). 

Simulations in errors in variables seeks to demonstrate and quantify this hypothesis. 

A model consisting of seven design variables with no errors is used as the control 

model for the test. In the test variations, one or two independent variables are measured 

with error in and these error-involved values will be entered into the ALOGIT program 

where all the other factors are the same as in the control model. The errors in the 

independent variables are assumed to have a normal distribution. Fifty runs are performed 

for each test variation in order to obtain a central tendency of the distribution of the 

sample means for each design variable. Sensitivity analysis is performed to examine the 

magnitude of deviation of the mean values of the distributions of the sample means for the 

design variables from their respective parameters when the percentage error in a design 

variable is increased. 

4.6.2 Algorithm Used to Transfer the Error Term with Uniform Distribution to 
Weibull Distribution 

Errors constructed into the variable VPWT are assumed to have a normal distribution with 

mean value being zero. The errors are constructed as follows: 
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In equation 4.6.2.1, x, are uniformly distributed random numbers ranging from 0 

to 1 and stdev is the standard deviation set equal to one. 

4.6.3 Control Model 

4.6.3.1 Control Model Design 

The control model in this test is a 3 alternative logit model. It was chosen due to its 

similarity with stated choice and revealed preference studies currently used to forecast the 

effect of transportation demand management policies on APO at an employment site in 

New Jersey. The parameterized deterministic utility function for each alternative is the 

following: 

In equation 4.6.3.1.1, PK$$ is parking charge in dollars, 

PKspace is availability of parking space, 

CPWT is the extra time of using carpool over SOV, 

GRHcp is availability of GRH which requires 25 minutes waiting time, 
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VPWT is extra time of using vanpool over SOV, 

GRHvp is availability of GRH which requires 25 minutes waiting time, and 

VPsub is vanpool subsidy. 

Variables PK$$, CPWT, VPWT, and VPsub are assigned three levels, while 

PKspace, GREcp and GRHvp are dummy variables taking on two levels. The values 

assigned to each level of the design variables are listed as follows: 

Table 19: Levels and Values of the Design Variables in the Control Model in the Test of 
Errors in Variables 

Variables Level one Level two Level three 

PK$$ $0 $3 $7 
PKspace 0 1 
CPWT 0min. 10min. 20min. 
GRHcp 0 1 
VPWT 5min. 25min. 35min. 
GRHvp 0 1 
VPsub $0 $1 $3 

4.6.3.2 Findings: The Control Model 

One hundred runs were performed to obtain a central tendency of the distribution of the 

sample means for each design variable. 

Table 20 below shows that: 

1. In the control model, the mean values of the distributions of sample means for 

CPWT and VPWT increase about 20% compared to their parameters. 

2. The mean values of the distributions of the sample means for all design variables 

are found within two standard errors of the parameters. 
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3. The median values of the distributions of the sample means are found within two 

standard errors of the parameters. Therefore, the central tendency of the distribution of the 

sample means for every estimator is not affected by outliers. However, in both variables of 

CPWT and VPWT where 20% deviations occur from their parameters, outliers seem as 

the cause. 

In addition, table 20 also shows that: 

Table 20: Descriptive Statistics of the Distributions of Sample Means for the Design 
Variables in the Control Model in the Test of Errors in Variables as well as Parameters 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.* 0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 

* Ave. % chg. is calculated from: |(Mean Value- Parameter) / Parameter|. 

4. The skewness values (see Table B-7 in Appendix-b) show that the distributions 

of sample means for PKspace, GREcp, and GRHvp have slightly positive skewnesses. The 

distribution PK$$ has a slight negative skewness. The distributions of CPWT and VPWT 

are skewed to the left, which can be seen from their mean values of the distributions of 

sample means. The distribution of VPsub is skewed to the right, which can partly be 

explained from its mean value. 

5. The kurtosis values (see Table B-7 in Appendix-B) indicate that the distributions 

of CPWT, VPWT and VPsub are peaked while the distributions of the others are normal. 
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4.6.3.3 Statistical Test: The Control Model 

The following table compares the mean values of the distributions of the sample means 

for all design variable in the control model to their parameters. 

Table 21: Comparison of the Mean Values of the Distributions of Sample Means for 
all Design Variables in the Control Model and the Parameters in the Test of Errors in 
Variables 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means -0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 0.58 1.55 1.52 1.12 1.44 1.27 0.65 

None of the t-ratios is either greater than 1.96 or less than -1.96, the null 

hypothesis is not rejected. The mean value of the distribution of the sample means for each 

design variable in the control model is not significantly different from the parameter. 

4.6.4 Test Variations Design 

The combination of instrument design flaws and human perceptual characteristics lead to 

three broad categories of error among independent variables. Where uncertainty of an 

answer exists and pernicious behavior is not expected, reported values are distributed on 

either side of the true value. Where the human perceptual apparatus consistently 

overestimates or underestimates phenomenon then errors can be bunched on one side or 

the other of the true value but probably not on both sides. When applied to transport 

problems, Bruzelius (1979) comments: "..it is widely believed that the motorist 

underestimates his true costs for a journey. This may be regarded as an instance of 
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perceptual error since the underestimation my be due to the fact the driver perceives his 

costs, which are actually non-fixed, as fixed when deciding on a journey." Menon (1993) 

in a frequency behavior study found that respondents had a tendency to overreport the 

frequency of occurrence for irregular behavior. In the field of transportation, respondents 

are often asked " How many times have you been delayed to work on time during last 

week?". Occurrence of being delayed is an irregular behavior. Therefore, it is likely for 

respondents to overestimate the occurrence of being delayed. 

The issues explores within errors in variables are limited to the three generalized 

classes of errors: errors randomly distributed around a true value, errors distributed on the 

positive side of a true value and errors distributed solely on the negative side of a true 

value. 

In order to extend the errors in variables study to the broad issues surrounding 

logit models, three variations are explored. Initially, one design variable is used to explore 

the consequences of errors in variables across the three generalized classes of error. Next, 

two design variables in the same mode specific utility equation are injected with random 

error; finally, two design variables in two separate utility equations are injected with 

random error and the consequences for the parameter estimation process is examined. 

The designed test variations in the test of errors in variables include: 

1. Normally distributed errors in the variable of VPWT, 

2. Errors which are skewed to the right of the true values of VPWT, 

3. Errors which are skewed to the left of the true values of VPWT, 

4. Normally distributed errors in both variables of VPWT and VPsub, and 
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5. Normally distributed errors in both variables of VPWT and CPWT. 

The first test variation simulates a population where the model is given data on one 

variable, VPWT, that is measured with positive and negative random error. The second 

and the third variation simulate respondents in the sample who either over or under 

estimate the value of VPWT. The fourth test variation simulates error in two variables in a 

single equation; the respondents both over and under estimate the values of VPWT and 

VPsub. The last test variation examines the impact of reporting error in two variables 

placed in two separate equations; the test simulates respondents who over and under 

estimate the values of both VPWT and CPWT. 

4.6.5 Hypotheses 

Five tests are developed to examine the various aspects of error in variables of the logit 

model. The comparison is conducted among test variations 1, 2 and 3. In addition, the 

comparison among test variations 1, 4, and 5 is also performed. The results of the 

comparisons are hypothesized as follows: 

1. The presence of errors in variables will bias and attenuate the estimated 

coefficients of the design variables in the overall model toward zero especially the 

estimates of design variables measured with error. 

2. Based on the studies of Rosner et.al  (1990) , the standard errors of the 

distributions of sample means for the variables measured with error are expected to 

attenuate toward zero. 
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3. The overall average percentage deviation of the mean values of the distributions 

of the sample means from the parameters over all seven design variables will increase as 

the average percentage error in the design variables increase. 

4. Since the average percentage errors in the design variables among test variations 

1, 2, and 3 are similar with each other, the effect of errors in variables under test 

conditions 1, 2, and 3 on the estimated coefficients of design variables will be similar. 

5. Given that one design variable is constructed to be measured with errors, 

addition of one more independent variable measured with error in a same equation will 

aggravate the average percentage change of mean values from the true parameters for all 

design variables in the overall model. 

6. Given one design variable measured with error, the addition of one more 

independent variable measured with error in a different equation will aggravate the 

average percentage change of mean values of the distributions of the sample means from 

the parameters for all design variables in the overall model. 

4.6.6 Test Variation 1 

4.6.6.1 Test Design 

Test variation 1 tests the effect on the estimated coefficients of the design variables if 

respondents in the sample randomly over and underestimate the value of VPWT. The term 

VPWT has 3 given values in the fractional factorial design to compute the utility of using 

vanpool. In the test, two error levels of VPWT are designed as follows: 
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In equation 4.6.6.1.1, VPWTnew represents the variable of VPWT whose values are 

measured with error, 

VPWTold represents the variable of VPWT whose values are fixed, and 

X is the uniform random variate between 0 and 1. 

Comparison between true values and error-involved values of VPWT as well as 

the statistical descriptive report for error-involved values of VPWT are described in Table 

C-1 in Appendix-C. 

4.6.6.2 Findings: Test Variation 1 

Fifty runs were performed to obtain a central tendency and variability of the distribution of 

sample means for each design variable. 

Table 22 below shows that: 

1. At error level one, the mean values of the distributions of sample means for all 

design variables except PKspace and CPWT attenuate toward zero. At error level two, the 

mean values of the distributions of sample means for all design variables except PKspace 

attenuate toward zero. 
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Table 22: Descriptive Statistics of the distributions of sample means for the Design 
Variables and in Test Variation 1 compared to the Control Model as well as the 
Parameters in the Test of Errors in Variables+ 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.*0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 
Test Variation 1 

Error Level I 
Means 	-0.15 0.54 -0.040 1.12 -0.044 1.09 0.27 
Medians -0.15 0.53 -0.035 1.12 -0.044 1.08 0.27 
Std.Error 0.003 0.02 0.005 0.01 0.0005 0.02 0.006 

Ave. % chg.*4.7% 0.5% 6.9% 0.9% 8.4% 3.8% 7.1% 
Error Level 2 

Means 	-0.12 0.55 -0.026 1.11 -0.027 0.89 0.17 
Medians -0.12 0.53 -0.028 1.11 -0.028 0.88 0.18 
Std.Error 0.002 0.01 0.0007 0.01 0.0004 0.01 0.006 

Ave. % chg.*24.7% 2.4% 27.8% 1.7% 42.8% 21.5% 40.3% 

* Ave. % chg. is calculated from: |(Mean Value-Parameter) / Parameter|. 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

Table 22 above also shows that: 

2. The deviation of the mean values of the distribution of the sample means for 

VPWT from its parameter increases when the percentage error in VPWT increases. 

3. For both levels of VPWT, the median values of the distributions of sample 

means for all design variables are found within two standard errors of parameters. 

Therefore, the central tendency of the distribution of sample means for every estimator is 

not affected by outliers. 



79 

4. At error level 1 (see Table B-8-1 in Appendix-B), the distributions of PK$S, 

PKspace, and GRHvp have slight positive skewnesses; The distributions of CPWT, 

GRHcp, VPWT, and VPsub have slight negative skewnesses. At error level 2 (see Table 

B-8-2 in Appendix-B), the distributions of PKspace, CPWT, and VPWT have slight 

positive skewnesses; the distributions for PK$$, GRHcp, GRHvp, and VPsub have slight 

negative skewnesses. 

5. At error level I (see Table B-8-1 in Appendix-B), the distribution of CPWT is 

peaked. At level 2 (see Table B-8-2 in Appendix-B), the distributions of all seven design 

variables are normal. 

4.6.6.3 Statistical Test: Test Variation 1 

The following table compares the mean values of the distributions of sample means for 

design variables in test variation 1 and the control model as well as the parameters. 

Table 23 shows that at error level 1, the mean values of the distributions of sample 

means for PKspace, CPWT, and GRHcp are not significantly different from the 

parameters at 95% confidence level. At error level 2, only the mean values of the 

distributions of sample means for PKspace and GRHcp are not significantly different from 

the parameters at 95% confidence level. This suggests that with error built in VPWT, the 

mean values of the distributions of sample means for 4 more variables are biased compared 

to the control model. No variable in the control model is biased. 
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Table 23: Comparisons between the Mean Values of the Distributions of Sample Means 
for the Design Variables in Test Variation 1 and the Control Model as well as the 
Parameters+  

VariablesParking 

	charge 
Parking 

space 
Carpool 

wait-time 
GRH for 

carpool 
Vanpool GRH 

wait-time 
for 

vanpool 
Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 	0.58 1.55 1.52 1.12 1.44 1.27 0.65 

Test Variation 1 
Error Level 1 

Means 	-0.15 0.54 -0.040 1.12 -0.044 1.09 0.27 
t-ratios 	2.83 0.16 0.468 0.70 8.426 2.63 3.71 

Error Level 2 
Means 	-0.12 0.55 -0.027 1.11 -0.027 0.89 0.17 
t-ratios 	17.00 0.87 14.939 1.56 52.651 17.25 19.32 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

4.6.7 Test Variation 2 

4.6.7.1 Test Design 

Test variation 2 tests the effect on estimated coefficients of the design variables when all 

respondents overestimate the value of VPWT. Two error levels of VPWT are designed as 

follows: 
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Comparison between true values and error-involved values of VPWT as well as 

the statistical descriptive report of error-involved values of VPWT are described in Table 

C-2 in Appendix-C. 

4.6.7.2 Findings: Test Variation 2 

Fifty runs were performed to obtain a central tendency and variability of the distribution of 

sample means for each design variable. 

Table 24: Descriptive Statistics of the distributions of sample means for the Design 
Variables for under Control Model and Test Variation 2 as well as the Control Model and 
the Parameters in the Test of Errors in Variables+  

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 .0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.*0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 
Test Variation 2 

Error Level 1 
Means 	-0.16 0.52 -0.037 1.09 -0.043 1.12 0.29 
Medians -0.16 0.51 -0.036 1.09 -0.043 1.11 0.29 
Std.Error 0.003 0.01 0.0007 0.01 0.0005 0.02 0.006 

Ave. % chg.*3.0% 3.3% 0.9% 3.9% 10.44% 0.9% 1.5% 
Error Level 2 

Means 	-0.15 0.47 -0.035 1.04 -0.033 1.08 0.28 
Medians -0.15 0.47 -0.036 1.04 -0.034 1.05 0.28 
Std.Error 0.003 0.02 0.0008 0.01 0.0004 0.02 0.007 

Ave. % chg.*5.1% 12.3% 4.20% 7.8% 30.60% 4.4% 2.3% 

* Ave. % chg. is calculated from: |(Mean Value-Parameter) / Parameter' . 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 
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Table 24 shows that: 

1. At error level 1, the mean value of the distribution of sample means for VPsub 

increases by 1.5%; The mean values of the other six design variables attenuate toward 

zero. At error level 2, the mean values of the distributions of sample means for seven 

design variables attenuate toward zero. 

2. Similar to the finding in test variation 1, the standard error of the distribution of 

sample means for VPWT attenuate toward zero as the percentage error in VPWT 

increases. 

3. For both error levels of VPWT, the median values are found within two 

standard errors of the parameters for all design variables. Therefore, the central tendency 

of the distribution of sample means for every estimator is not affected by outliers. 

4. At error level 1 (see Table B-9-1 in Appendix-B), the distributions of sample 

means for PK$S, PKspace, GRHcp, GRHvp, and VPsub have slight positive skewnesses; 

the distributions of CPWT and VPWT have slight negative skewnesses. At error level 2 

(see Table B-9-2 in Appendix-B), the distributions of PK$S, GRHcp, VPWT, GRHvp, 

and VPsub have slight positive skewnesses; the distributions for PKspace and CPWT 

have slight negative skewnesses. 

5. At error level I (see Table B-9-1 in Appendix-B), the distribution of sample 

means for PK$S is peaked. At level 2 (see Table B-9-2 in Appendix-B), the distributions 

of sample means for all design variables except the variable of PKspace are normal. 
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4.6.7.3 Statistical Test: Test Variation 2 

The following table compares the mean values of the distributions of sample means for all 

design variables in test variation 2 to the control model as well as the parameters. 

Table 25: Comparisons between the Mean Values of the Distributions of Sample Means 
for the Design Variables in Test Variation 2 and the Control Model as well as the Parameters+ 

VariablesParking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 	0.58 1.55 1.52 1.12 1.44 1.27 0.65 

Test Variation 2 
Error Level 1 

Means 	-0.16 0.52 -0.037 1.09 -0.043 1.12 0.29 
t-ratios 	1.35 1.32 0.514 3.60 9.118 0.57 0.71 

Error Level 2 
Means 	-0.15 0.47 -0.035 1.04 -0.033 1.08 0.28 
t-ratios 	2.88 3.03 1.873 6.73 29.45 2.65 0.98 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

The above table shows that at error level 1, the mean values of the distributions of 

sample means for GRHcp and VPWT are significantly different from the parameters at 

95% confidence level; at error level 2, only the mean values of the distributions of sample 

means for CPWT and VPsub are not significantly different from the parameters at 95% 

confidence level. 
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4.6.8 Test Variation 3 

4.6.8.1 Test Design 

Test variation 3 tests the effect on estimated coefficients of the design variables when all 

respondents underestimate the value of VPWT. Two levels of VPWT are designed as 

follows: 

Comparison between the true values and error-involved values of VPWT as well 

as the statistical descriptive report for error-involved values of VPWT are described in 

Table C-3 in Appendix-C. 

4.6.8.2 Findings: Test Variation 3 

Fifty runs were performed in order to obtain a central tendency and variability of the 

distributions of sample means for the design variables. 

Table 26 below shows that: 

1. The test variation 3 is a unique case in terms that the average percentage 

deviations of the mean values of distribution of sample means for VPWT at both error 

levels are not the most severely affected by the errors in VPWT. The standard errors and 
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medians of the distributions of sample means in test variation 3 show that the mean values 

are not affected by the outliers. This suggests that the uniqueness of test variation was not 

due to some outliers in the distribution. 

Table 26: Descriptive Statistics of the distributions of sample means for the Design 
Variables in the Test Variation 3 as well as Control Model and the Parameters in the Test 
of Errors in Variables+  

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.*0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 
Test Variation 3 

Error Level 1 
Means 	-0.12 0.68 -0.018 0.97 -0.043 1.12 0.29 
Medians -0.12 0.68 -0.014 0.97 -0.044 1.12 0.29 
Std.Error 0.003 0.01 0.002 0.01 0.0006 0.01 0.006 

Ave. % chg.*27.0% 26.4% 52.0% 13.8% 9.9% 0.5% 1.4% 
Error Level 2 

Means 	-0.12 0.60 -0.024 1.15 -0.037 0.85 0.16 
Medians -0.11 0.61 -0.024 1.13 -0.037 0.85 0.16 
Std.Error 0.002 0.02 0.0007 0.01 0.0004 0.02 0.009 

Ave. % chg.*27.8% 10.5% 34.2% 1.9% 22.7% 25.2% 45.7% 

* Ave. % chg. is calculated from: |(Mean Value-Parameter) /Parameter|. 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

In addition, table 26 above shows that: 

2. At error level I, the mean values of the distributions of sample means for PK$$, 

CPWT, GRHcp, VPWT, and GRHvp attenuate toward zero while the mean values of 

PKspace and VPsub increase about 26.4% and 1.4% respectively compared to the 
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parameter. At error level 2, the mean values of the distributions of sample means for all 

the design variables except PKspace and GRHcp attenuate toward zero. The mean values 

of the distributions of sample means for PKspace and GRHcp increase about 10.5% and 

1.9% respectively compared to their parameters. 

3. The standard error of the distribution of sample means for VPWT attenuate 

toward zero as the percentage error in VPWT increase. 

4. For both error levels of VPWT, the median values are found within two 

standard errors of the parameters for all design variables. Therefore, the central tendency 

of the distribution of sample means for every estimator is not affected by outliers. 

5. At error level I (see Table B-10-1 in Appendix-B), the distributions of sample 

means for PKspace, VPWT, GRHvp, and VPsub have slight positive skewnesses; the 

distributions of PK$$, CPWT and GRHcp have slight negative skewnesses. At error level 

2 (see Table B-10-2 in Appendix-B), the distributions of PKspace, GRHcp, GRHvp, and 

VPsub have slight positive skewnesses; the distributions for PK$$, CPWT, and VPWT 

have slight negative skewnesses. 

6. At error level 1 (see Table B-10-1 in Appendix-B), the distribution of sample 

means for CPWT is peaked. At error level 2 (see Table B-10-2 in Appendix-B), the 

distributions of sample means for all design variables except the variable of VPsub are 

normal. 
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4.6.8.3 Statistical Test: Test Variation 3 

The following table compares the mean values of the distributions of the sample means for 

the design variables in test variation 3 to the control model as well as the parameters. 

Table 27: Comparisons between the Mean Values of the Distributions of Sample Means 
for the Design Variables in Test Variation 3 and the Control Model as well as the 
Parameters+  

VariablesParking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 	0.58 1.55 1.52 1.12 1.44 1.27 0.65 

Test Variation 3 
Error Level 1 

Means 	-0.12 0.68 -0.018 0.97 -0.043 1.12 0.29 
t-ratios 	16.85 9.82 8.082 11.48 7.286 0.37 0.63 

Error Level 2 
Means 	-0.12 0.60 -0.024 1.15 -0.037 0.85 0.16 
t-ratios 	21.05 3.27 18.183 1.64 24.342 18.76 15.05 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

Table 27 shows that at error level 1, the mean values of the distributions of sample 

means for PK$$, PKspace, CPWT, GRHcp, VPWT are significantly different from the 

parameters at 95% confidence level. At error level 2, the mean values of the distributions 

of sample means for all design variables except GRHcp are significantly different from the 

parameter at 95% confidence level. 
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4.6.9 Test Variation 4 

4.6.9.1 Test Design 

The test tests the effect on estimated coefficients of design variables when the respondents 

both over and under estimate the values of VPWT and VPsub. Two error levels of VPWT 

and VPsub are designed as follows: 

In equations 4.6.9.1.1 and 4.6.9.1.2, VPsub— represents the variable of VPsub 

whose value is measured with error, and 

VPsuboid represents the variables of VPsub whose value is measured with error. 

Comparison between the true values and error-involved values of VPsub as well as 

the statistical descriptive report for error-involved values of VPsub are described in Table 

C-4 in Appendix-C. 
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4.6.9.2 Findings: Test Variation 4 

Fifty runs were performed to obtain a central tendency and variability of the distributions 

of sample means for design variables. 

Table 28: Descriptive Statistics of the distributions of sample means for the Design 
Variables in the Test Variation 4 as well as the Control Model the Parameters in the Test 
of Errors in Variables+ 

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.* 0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 
Test Variation 4 

Error Level 1 
Means 	-0.16 0.58 -0.035 1.13 -0.043 1.09 0.23 

Medians -0.16 0.56 -0.035 1.12 -0.043 1.09 0.23 

Std.Error 0.002 0.02 0.0007 0.01 0.0004 0.01 0.006 

Ave. % chg.*0.7% 6.5% 4.5% 0.03% 9.9% 3.5% 2.2% 

Error Level 2 
Means 	-0.13 0.54 -0.030 1.08 -0.024 0.96 0.02 

Medians -0.13 0.55 -0.030 1.07 -0.024 0.95 0.01 

Std.Error 0.002 0.01 0.0008 0.01 0.0004 0.01 0.003 

Ave. % chg.*20.8% 0.7% 18.1% 4.2% 49.3% 14.9% 93.6% 

* Ave. % chg. is calculated from: |(Mean Value-Parameter) / Parameter|. 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

Table 28 shows that: 

1. At error level 1, the mean values of the distributions of sample means for all 

variables except PKspace attenuate toward zero; The mean values of PKspace increases 

6.5% compared to the parameter. At error level 2, all the mean values of sample means 
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for all design variables except PKspace attenuate toward zero; The mean value of 

PKspace increases by 0.7% compared to the parameter. 

2. The standard errors of the distributions of sample means for VPWT and VPsub 

attenuate toward zero as the percentage error in these two design variables increase. 

3. For both error levels of VPWT and VPsub, the median values are found within 

two standard errors of the parameters for all design variables. Therefore, the central 

tendency of the distribution of sample means for each design variable is not affected by 

outliers. 

4. At error level I (see Table B-I 1-I in Appendix-B), the distributions of the 

sample means for PK$$, PKspace, GRHcp, VPWT, and GRHvp have slight positive 

skewnesses; the distributions of CPWT and VPsub have slight negative skewnesses. At 

error level 2 (see Table B-11-2 in Appendix-B), the distributions of PK$S, GRHcp, 

GRHvp, and VPsub have slight positive skewnesses; the distributions for PKspace, 

CPWT and VPWT have slight negative skewnesses. 

5. At error level I (see Table B-11-1 in Appendix-B), the distribution of sample 

means for PKspace is peaked. At error level 2 (see Table B-I 1-2 in Appendix-B), the 

distributions of sample means for all design variables except CPWT are normal. 

4.6.9.3 Statistical Test: Test Variation 4 

The following table compares the mean values of the distributions of sample means for all 

design variables in test variation 4 to the control model as well as the parameters. 
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Table 29: Comparisons between the Mean Values of the Distributions of Sample Means 
for the Design Variables in Test Variation 4 and the Control Model as well as the 
Parameters+  

VariablesParking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 	0.58 1.55 1.52 1.12 1.44 1.27 0.65 

Test Variation 4 
Error Level 1 

Means 	-0.16 0.58 -0.035 1.13 -0.043 1.09 0.23 
t-ratios 	0.54 1.98 2.263 0.03 12.323 2.73 10.88 

Error Level 2 
Means 	-0.13 0.54 -0.030 1.08 -0.024 0.96 0.02 
t-ratios 	13.78 0.29 8.796 3.53 56.79 12.30 85.27 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

The above table shows that when at error level 1, only the mean values of the 

distributions of sample means for PK$$ and GRHcp are not significantly different from the 

parameters at 95% confidence level; while at error level 2, only the mean value of the 

distribution of sample means for PKspace is not significantly different from the parameters 

at 95% confidence level. 

4.6A0 Test Variation 5 

4.6.10.1 Test Design 

The test tests the effect on estimated coefficients of design variables when the respondents 

both over and under estimate the values of VPWT and CPWT. Two error levels of VPWT 

and CPWT are designed as follows: 
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In equations 4.6.10.1 and 4.6.10.2, CPWTnew represents the variable of CPWT 

whose value is measured with error, and 

CPWTold represents the variable of CPWT whose value is measured with error. 

Comparison between the true values and the error-involved values of CPWT as 

well as the statistical descriptive report of error-involved values of CPWT described in 

Table C-5 in Appendix-C. 

4.6.10.2 Findings: Test Variation 5 

Fifty runs were performed to obtain a central tendency and variability of the distribution of 

sample means for the design variables. 

Table 30 below shows that: 

1. For both error levels of CPWT and VPWT, the mean values of the distributions 

of sample means for all design variables except PKspace attenuate toward zero. Compared 

to the parameter, the mean value of the distribution of sample means for PKspace 
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increases by 1.3% at error level 1 and 4.3% at error level 2. The increases in PKspace at 

both error levels I and 2 are not significant. 

Table 30: Comparison between the distributions of sample means for the Design 
Variables for under Control Model and Test Variation 5 as well as the Parameters in the 
Test of Errors in Variables+  

Variables Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Medians -0.16 0.52 -0.038 1.15 -0.048 1.13 0.29 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 

Ave. % chg.*0.8% 2.8% 20.0% 1.2% 20.00% 1.2% 2.3% 
Test Variation 5 

Error Level 1 
Means 	-0.15 0.55 -0.033 1.10 -0.044 1.09 0.27 
Medians -0.15 0.54 -0.032 1.09 -0.043 1.08 0.27 
Std.Error 0.003 0.01 0.0007 0.01 0.0005 0.01 0.006 

Ave. % chg. * 4.5% 1.3% 11.7% 2.7% 9.0% 3.3% 7.0% 
Error Level 2 

Means 	-0.12 0.56 -0.02 1.05 -0.026 0.90 0.17 
Medians -0.11 0.56 -0.020 1.05 -0.026 0.90 0.17 
Std.Error 0.003 0.01 0.0007 0.01 0.0004 0.01 0.005 

Ave. % chg.*27.2% 4.3% 46.2% 7.4% 45.6% 20.7% 41.0% 

* Ave. % chg. is calculated from: (Mean Value-Parameter)/ Parameter|. 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

Table 30 also shows that: 

2. The standard errors of the distributions of sample means for CPWT and VPWT 

attenuate toward zero as the percentage error in VPWT and CPWT increases. 

3. For both error levels of VPWT and CPWT, the median values of the 

distributions of sample means for all design variables are found within two standard errors 
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of the parameters. Therefore, the central tendency of the distribution of sample means for 

each design variable is not affected by outliers. 

4. At error level 1 (see Table B-I 2-1 in Appendix-B), the distributions of sample 

means for PKspace, GRHcp, VPWT, GRHvp, and VPsub have slight positive skewnesses; 

the distributions of PK$$ and CPWT have slight negative skewnesses. At error level 2 

(see Table B-12-2 in Appendix-B), the distributions of PKspace, CPWT, GRHvp, and 

VPsub have slight positive skewnesses; the distributions for PK$$, GRHcp, and VPWT 

have slight negative skewnesses. 

5. For two error levels of VPWT and CPWT (see Tables B-12-1 and B-12-2 in 

Appendix-B), the distributions of sample means for all design variables are normal. 

4.6.10.3 Statistical Test: Test Variation 5 

The following table compares the mean values of the distributions of sample means for all 

design variables in test variation 4 to the control model as well as the parameters. 

The table below shows that at both error level 1 and 2, only the mean values of 

the distributions of sample means for PKspace are not significantly different from the true 

parameters at 95% confidence level. It appears that the problem of errors in variables has 

a big impact on the mean values of distributions of sample means for most variables. 

The following section performs a sensitivity analysis in order to examine the 

percentage change of the mean values of the variables due to one percent change of error 

in variable. 
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Table 31: Comparisons between the Mean Values of the Distributions of Sample Means 
for the Design Variables in Test Variation 5 and the Control Model as well as the 
Parameters+  

VariablesParking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for vanpool Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
t-ratios 	0.58 1.55 1.52 1.12 1.44 1.27 0.65 

Test Variation 5 
Error Level 1 

Means 	-0.15 0.55 -0.033 1.10 -0.044 1.09 0.27 
t-ratios 	2.84 0.46 6.579 2.60 7.922 2.54 3.15 

Error Level 2 
Means 	-0.12 0.56 -0.020 1.05 -0.026 0.90 0.17 
t-ratios 	15.60 1.65 23.63 6.97 53.55 15.86 21.69 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

4.6.11 Sensitivity Analysis 

Sensitivity analysis quantify the impact of the errors in variables have on the mean values 

of the distributions of sample means for design variables when the percentage error in 

design variables is increased. 

The following three tables present the average percentage change of errors in 

design variables, the resulting deviation of the mean values of the distributions of the 

sample means for design variables, and lastly the elasticity of the estimated coefficients of 

the design variables with respect to one percent change of error in the design variables. 

From Table 32 below, the average percentage errors in VPWT increase from 

29.0% at error level 1 to 88.0% at error level 2. The average percentage error in VPsub 

increase from 32.0% at error level 1 to 108.0% at error level 2. The average percentage 

error in CPWT increase from 16.0% at error level I to 40.0% at error level 2. Table 33 
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shows that as the average percentage errors in the design variables increase, the deviation 

of the mean values of the distributions of sample means for design variables measured with 

error from the parameters increase. 

Table 32: Average Percentage Change of Errors in Design Variables at Error Level 1 and 

2 for all Five Test VariationsA 

Variables with Error Average Absolute Changes  Average % Change 

Error Level 1 
Test Variation 1 

VPWT 3.32min. 29.0% 
Test Variation 2 

VPWT 3.32min. 29.0% 
Test Variation 3 

VPWT 3.32min. 29.0% 
Test Variation 4 

VPWT 3.32min. 29.0% 
VPsub $0.39 32.0% 

Test Variation 5 
VPWT 3.32min. 29.0% 
CPWT 1.60min. 16.0% 

Error Level 2 
Test Variation 1 

VP WT 9.97min. 88.0% 
Test Variation 2 

VPWT 9.97min. 88.0% 
Test Variation 3 

VPWT 9.97min. 88.0% 
Test Variation 4 

VPWT 9.97min. 88.0% 
VPsub $1.35 108.0% 

Test Variation 5 
VPWT 9.97min. 88.0% 
CPWT 4.00min. 40.0% 

*Average absolute change is calculated from: l(error- involved values-true value). 

+Average % change is calculated from:|(error - involved value-true value) / true value'. For the average % 

change for VPsub and CPWT, the denominators are the average values of initial values of three levels for 
the design variable. 
°The error-involved values of the design variable were taken from the output of the C program in which 
the seed values for uniformly distributed and normally distributed random numbers are 4 and 3 
respectively (For detail, see Appendix-A). 



Table 33: Comparison between the Mean Values of the Distributions of the Sample 
Means for all Design Variables in the Five Test Variations as well as the Control Model 
the Parameters+  

Variables 	Parking 
charge  

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

VPWT 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Parameters 	-0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Control Model 

Means 	-0.16 0.52 -0.044 1.14 -0.057 1.14 0.30 
Std.Error 0.002 0.01 0.005 0.01 0.007 0.01 0.01 
Ave.%chg.*0.8% 2.8% 20.0% 1.2% 20.0% 1.2% 2.3% 

Test Model (Error Level 1) 
Test Variation 1 

Means 	-0.15 0.54 -0.040 1.12 -0.044 1.09 0.27 
Std.Error 	0.003 0.02 0.005 0.01 0.0005 0.02 0.006 
Ave.%chg.*4.7% 0.5% 6.9% 0.9% 8.4% 3.8% 7.1% 

Test Variation 2 
Means 	-0.16 0.52 -0.037 1.09 -0.043 1.12 0.29 
Std.Error 	0.003 0.01 0.0007 0.01 0.0005 0.02 0.006 
Ave.%chg. 3.0% 3.3% 0.9% 3.9% 10.44% 0.9% 1.5% 

Test Variation 3 
Means 	-0.12 0.68 -0.018 0.97 -0.043 1.12 0.29 
Std.Error 	0.003 0.01 0.002 0.01 0.0006 0.01 0.006 
Ave.%chg.27.0% 26.4% 52.0% 13.8% 9.9% 0.5% 1.4% 

Test Variation 4 
Means 	-0.16 0.58 -0.035 1.13 -0.043 1.09 0.23 
Std.Error 	0.002 0.02 0.0007 0.01 0.0004 0.01 0.006 
Ave.%chg. 0.7% 6.5% 4.5% 0.03% 9.9% 3.5% 2.2% 

Test Variation 5 
Means 	-0.15 0.55 -0.033 1.10 -0.044 1.09 0.27 
Std.Error 	0.003 0.01 0.0007 0,01 0.0005 0.01 0.006 
Ave.%chg. 4.5% 1.3% 11.7% 2.7% 9.0% 3.3% 7.0% 

Test Model (Error Level 2) 
Test Variation 1 

Means 	-0.12 0.55 -0.026 1.11 -0.027 0.89 0.17 
Std.Error 	0.002 0.01 0.0007 0.01 0.0004 0.01 0.006 
Ave.%chg.24.7% 2.4% 27.8% 1.7% 42.8% 21.5% 40.3% 

Test Variation 2 
Means 	-0.15 0.47 -0.035 1.04 -0.033 1.08 0.28 
Std.Error 	0.003 0.02 0.0008 0.01 0.0004 0.02 0.007 
Ave.%chg. 5.1% 12.3% 4.2% 7.8% 30.60% 4.4% 2.3% 

Test Variation 3 
Means 	-0.12 0.60 -0.024 1.15 -0.037 0.85 0.16 
Std.Error 	0.002 0.02 0.0007 0.01 0.0004 0.02 0.009 

Ave.%chg.27.8% 10.5% 34.2% 1.9% 22.7% 25.2% 45.7% 
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Table 33: Comparison between the Mean Values of the Distributions of the Sample 
Means for all Design Variables in the Five Test Variations as well as the Control Model 
the Parameters+  (Continued) 

Test Variation 4 
Means 	-0.13 0.54 -0.030 1.08 -0.024 0.96 0.02 
Std.Error 	0.002 0.01 0.0008 0.01 0.0004 0.01 0.003 
Ave.%chg.20.8% 0.7% 18.1% 4.2% 49.3% 14.9% 93.6% 

Test Variation 5 
Means 	-0.12 0.56 -0.020 1.02 -0.026 0.90 0.17 
Std.Error 	0.003 0.01 0.0007 0.01 0.0004 0.01 0.005 
Ave.%chg.27.2% 4.3% 46.2% 7.4% 45.6% 20.7% 41.0% 

-",66141¢rv, 

Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 
* Ave. % chg. throughout the table is calculated from: l(Mean Value-Parameter) / Parameter' . 

From table 33, we observe that: 

1. The deviations of the mean values of the distributions of sample means from the 

respective parameters for all the design variables in test variations 1, 2, and 5 increase as 

the percentage error in design variables increase from error level 1 to error level 2. 

2. In test variation 4, the mean values of the distributions of sample means for all 

design variables except PKspace from their parameters increase as the percentage error in 

design variables increase from error level 1 to error level 2. The deviation of mean value 

of the distribution of sample means for PKspace from its parameter decreases by about 

5.8% as the percentage error in design variables increase from error level 1 to error level 

2 

3. In test variation 3, the deviations of the mean values of the distributions of 

sample means for PKspace, CPWT and GRHcp from their parameters decrease as the 

percentage error in design variables increase. The deviations of mean values of 
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distributions of sample means for PK$$, VPWT, GRHvp, and VPsub increase as the 

average percentage error in design variables increases from error level 1 to error level 2. 

4. For the design variables measured with error, the mean values of the 

distributions of sample means attenuate toward zero as the percentage error in design 

variables increase from error level 1 to error level 2. This supports hypothesis 1. 

5. The standard errors of the distributions of sample means for the design variables 

measured with error attenuate toward zero. As the percentage error in the design variables 

increases, the deviation increases. This finding supports hypothesis 2. 

The observations above confirm the hypothesis that the mean values of the 

distributions of sample means for most variables are affected when errors appear in the 

design variables. The following table examines the sensitivity of the mean values of the 

distribution of sample means for all design variables with respect to one percent change of 

the errors in the design variables. The table only deals with test variation 1, 2, and 3 in that 

each of which has only one design variable: VPWT, measured with errors. Both error 

levels are included. 

From table 34 below, we observe that: 

1. The elasticities of the mean values of the distributions of sample means for 

design variables are observed most stable in test variation 2 throughout the error levels 1 

and 2. This shows a potential linear relationship for the relationship between percentage 

deviation of the mean values of the distributions of sample means for a design variable 

from its parameter and the percentage error in VPWT. The elasticities of the mean values 
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of the distributions of sample means for design variables in test variation 3 are observed 

most unstable throughout the error levels 1 and 2. 

Table 34: Elasticity of the Mean Values of the Distributions of Sample Means for all 
Design Variables due to One Percent Change of Errors in VPWT at both Error Levels 

Variables 	Parking 
charge 

Parking 
space 

Carpool 
wait-time 

GRH for 
carpool 

Vanpool 
wait-time 

GRH for 
vanpool 

Vanpool 
subsidy 

Error Level 1 
Test Variation 1 

Elasticities 	0.16 0.02 0.24 0.03 0.29 0.13 0.25 
Test Variation 2 

Elasticities 	0.10 0.11 0.03 0.14 0.36 0.03 0.05 
Test Variation 3 

Elasticities 	0.93 0.91 1.79 0.47 0.34 0.02 0.05 
Error Level 2 

Test Variation I 
Elasticities 	0.28 0.03 0.32 0.02 0.49 0.24 0.46 

Test Variation 2 
Elasticities 	0.06 0.14 0.05 0.09 0.35 0.05 0.03 

Test Variation 3 
Elasticities 	0.32 0.12 0.39 0.02 0.26 0.29 0.52 

+ Italic values in the table represents that the corresponding design variable is constructed to be measured 
with error. 

In addition, table 34 above shows that: 

In test variation 2, for one unit change of errors in VPWT, the mean value of 

distribution of sample means change about 0.35 unit in a direction toward zero. However, 

the changes on mean values of distributions of sample means for other design variables 

due to one unit change of the errors in VPWT are rather minimal. 

2. The elasticities of mean values of distributions of sample means for design 

variables except GRHcp in test variation 1 increase as the percentage error in VPWT 

increase. This implies a curvilinear relationship between the percentage difference of the 



101 

mean values of the distributions of sample means for a design variable from its parameter 

and the percentage error in VPWT. 

In order to examine the impact on the estimation of the overall model due to one 

more design variable is measured with error, the average percentage difference of the 

mean values of the distributions of sample means over all seven design variables from their 

parameters is calculated, as shown in the following table. 

Table 35: Average Percentage Deviation of Mean Values of Distributions of Sample 
Means over all Seven Design Variables in five Test Variations at both Error Levels 

Error Levels Error Level 1 Error Level 2 

Overall Ave. 	Chg.  
Test Variation 1 0.05% 0.23% 
Test Variation 2 0.03 0.10 
Test Variation 3 0.19 0.24 
Test Variation 4 0.07 0.29 
Test Variation 5 0.06 0.27 

In the table 35 above, the overall Ave. % Chg. is calculated from: 

7 

7 
/1(i)J 	I uPil 
	

(4.6.11.1) 

In equation 4.6.11.1, j is the design variable in the overall model, 

jig., is the mean value of the distribution of sample means for jth design variable in 

the overall model, and 

is the parameter of the jth design variable in the overall model. 



102 

Table 35 shows: 

1. The overall average percentage deviation of the mean values of distributions of 

sample means over all seven design variables are not affected by adding one more design 

variable measured with error in the overall model. This finding does not support either 

hypothesis 5 or 6. 

2. It is observed that the overall average percentage deviation of the mean values 

of distributions of sample means over all seven design variables in test variation 2 is lower 

than those in other test variations especially at error level 2. This finding does not support 

hypothesis 4. 

3. The overall average percentage deviation of the mean values of distributions of 

sample means over all seven design variables increase as the percentage error in design 

variables increase from error level I to error level 2. This supports hypothesis 3. 

4.7 Conclusions 

Combining all the results from the comparison of the impact on the mean values of the 

distributions of sample means for design variables under control model and three test 

model designs as well as the parameters of the estimators in the simulation, it is concluded 

that under the condition of simulation: 

1. The mean values of the distributions of sample means for the design variables 

are affected as the number of value levels of the design variables increases. However, the 

impact is not severe. 
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2. The mean values of the distributions of sample means for the design variables 

are not affected as the middle placement of level values within one design variable is 

varied. 

3. Presence of errors in a single design variable affects most of the estimators 

significantly in the overall model. 

4. With the presence of errors in a design variable, the mean value and the standard 

error of the distribution of sample means for that variable measured with error attenuate 

toward zero. 



CHAP [ER 5 

APPLICATION 

5.1 Introduction 

This chapter applies the results of the simulations to an examination of two models. First, 

a model estimated using the RP approach is examined; this is followed with a discussion 

of a model using the SP approach. Section 5.2 describes the RP study known as the New 

Jersey Employee Commute Option (NJECO) program; emphasis is placed on the data 

generation process and the results of the parameter estimation process. Section 5.3 

introduces the SP study performed on the employees of the Matsushita Electric 

Corporation of America's corporate headquarters site in Secaucus New Jersey. Section 5.4 

briefs problems associated with NJECO and MECA. Section 5.5 concludes with a set of 

the consequences derived from the simulations in using SP and RP at a broader extent and 

suggestions for future research. 

5.2 NJECO Model 

5.2.1 General Background 

The New Jersey's Employee Trip Reduction Program (ETRP) mandates every employer 

with more than 100 employees improve their Average Passenger Occupancy (APO) to an 

assigned target APO by November, 15, 1996. Questions on how much effect a specific 

Transportation Demand Management (TDM) policy will have on improving APO for a 
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particular site are being asked by many affected employers. New Jersey DOT and 

COMSIS developed a model: NJECO, to help affected employers forecast the effect of a 

TDM strategy on improving the sites APO. 

NJECO was estimated on a data base consisting of 2,437 employees working for 

45 employers in southern California and the Sacramento metropolitan area (ETRP 

Calibration Report, 1994). Data generation for the RP study occurred through two 

surveys. The employer survey acquired information on the work location, and the type of 

TDM strategies that were offered at the site. The employee survey provided information 

on employee, his or her family, commuting trips, and the type of TDM offered to the 

employee. The two surveys were combined into a RP data base. 

1. Merge files: Using the employee as the unit of observation, data for employers 

and employees were merged. 

2. Traffic information among geographic zones: The employee's home and work 

locations were defined in terms of traffic analysis zones (TAZ). Information on employee's 

travel time and travel cost were obtained from several agencies in California. 

3. Data revisions: Revisions to data were made and new variables were created 

such as auto operating costs. Data such as income were recoded as a binary variable. Daily 

parking cost was computed from an employee or an employer's response. Cost for 

vanpool and carpool were adjusted for the number of occupants in the vehicle. 

4. Missing values: The whole record of an employee was dropped from the data 

base file when the missing value could not be replaced by the most frequently reported 

value or the variable's average value. 
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As a result of the preparation of data input into a database for mode choice model, 

96 records out of 2,437 records were dropped. 

Model estimation for the NJECO data uses the logit form of the disaggregate 

multinomial choice model: 

Equation 5.2.1.1. states the individual's probability of choosing alternative i is the 

ratio of exponential of the systematic utility of selecting alternative i to the sum of the 

exponential of the utilities of choosing all other alternatives than alternative i. The 

estimation of the model was conducted by using ALOGIT program. The ALOGIT 

program uses Maximum Likelihood Estimation (MLE) to estimate the parameters of the 

design variables in the model. The mathematical derivation of the model and the Maximum 

Likelihood estimation have been discussed in Chapter 2. 

The overall NJECO model includes independent variables in: 

1. Transportation system variables: travel time, travel cost, parking cost, 

2. Employee's socioeconomic variables: occupation, gender, age, household 

income, available vehicles, etc., 

3. Workplace variables: land use, parking spaces per employee, etc., and 

4. TDM strategies. 
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Table 36: Final 5-mode Choice Model*  
Variables 	 SOV Carpool Vanpool Transit 	Bike/Walk 
Mode-specific constants -1.517 -7.070 -3.048 	-2.135 
Transportation system variables 
In-vehicle time 	 -0.0399 -0.0399 -0.0399 -0.0110 
Out-of-vehicle time -0.0165a 
Operating cost, fare 	 -0.0034 -0.0034 -0.0034 -0.0061 
Parking cost 	 -0.0086 -0.0086 -0.0086 
Bike lanes 1.220 
Employee's socioeconomic variables 
Laborer? 0.3999 
Professional? -0.2666 0.9054 
Manager? -1.064 
Gender(1=male) 0.8727 
Elderly? 0.5262 0.4355b 0.9089 
Midday business travel? -0.7745 
Staggered work hours? 0.8148 
Part-time worker? 0.5377b 
1 worker/househole? -1.027 
Employee married? 0.9944 
Worksite variables 
Parking spaces/employee -0.4155b 
SAC/Campus/Inst. LU?d -0.8150 
No. of adjacent retail land uses 0.1069 0.1069 
TDM strategies 
Transportation coordinator and 

ridesharing matching program 0.0777c 0.0777c 
Preferential parking for ridesharers 0.1214b 0.1214b 
Transit info. center and bus pass sales 1.083 
Bike racks/showers/lockers 0.4056b 
Guaranteed ride home 0.4476 0.4476 0.4476 	0.4476 
Modal subsidy 0.0125 0.0125 
Prizes, free meals, certificatee 0.0826 0.0826 0.0826 
Use of company vehicles by poolers 0.7861 0.7861 
Company-provided vans 2.586 
* Unless noted, all the coefficients are statistically significant at 95% confidence level. 
? Variables shown with a question mark are binary variables, with value: 0=No, 1=Yes. 
All time variables are in minutes, all cost variables are in cents (1992 dollars). 
a Value constrained to equal 1.5 times the in-vehicle time coefficient. 
b Coefficient value statistically significant at the 80% confidence level. 
c Coefficient value not statistically significant at the 80% confidence level. 
d Is work site a Suburban Activity Center, Campus, or Institutional land use? 
e Coefficient value derived from other sources. 
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The final 5-mode model shown above was estimated with a p 2  of 0.183. The final 

mode choice model for 5 modes are listed in the following table. 

5.2.2 Problems Associated with Data Generation in Estimating NJECO 

As shown in chapter 2 and demonstrated in chapter 4, errors in variables lead to an 

attenuation towards zero for the parameter estimates of the independent variables. The 

data generation process incorporated in the NJECO model involves provides cases where 

errors in variables can exist. 

In the data generation component for NJECO model, respondents were asked to 

report their actual travel behavior and socioeconomic characteristics. Recognition that 

reported actual travel behavior was not the same as actual behavior is of vital importance. 

Reported data of actual behavior can involve a large proportion of errors; size of error in 

the data depends on the nature of behavior, the type of data, and the variation in ability of 

respondents to report behavior that happened in the past. Data such as parking cost could 

be easily over or under reported. 

Employee's travel cost was calculated by taking the distance and multiplying by 14 

cents per mile. The distance traveled is represented by the centers of two geographical 

zones. This data will rarely reflect the actual commuting distance for an employee. 

Sometimes it will be far from the truth. For example, if the employee lives close to the 

boundary A of a geographic zone and works in another geographic zone but still close to 

boundary A, then the real distance between his or her home and work location is far 

different from the distance between two centers of two geographic zones. There are 
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zones far off from the real distance. As a consequence, the distances for some employees 

between their home and work locations are overcounted while the distances for some 

employees are undercounted. 

The typical travel time between all pairs of geographical zones is applied to every 

employee who lives in a geographical zone and works in another geographical zone. It is 

highly likely that the typical travel time between two geographical zones used in estimating 

NJECO involves a significant proportion of error. 

From the results of the simulation in chapter 4, we know that the presence of one 

variable measured with error can disturb its parameter estimates as well as the estimates of 

other independent variables and attenuate their parameter estimate towards zero. This 

finding from the simulation suggests that most of the parameters in NJECO will be 

underestimated toward zero especially those variables measured with error. The degree of 

underestimation depends on the size of error. The simulation study suggests that the 

parameter estimates of travel time, travel cost, subsidy, parking cost, etc. are severely 

underestimated toward zero. 

5.3 MECA Model 

5.3.1 Introduction 

The MECA model was estimated by Beaton, et. al. (1992) for the corporate headquarters 

of the Matsushita Electric Corporation of America (MECA) in the Hackensack 

Meadowlands of northern New Jersey. The model was developed to help MECA develop 

appropriate TDM strategies at the test site in order to improve APO from the current 1.08 

to the target level of 1.73. 
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The design of the model on choice set, number of design variables, number of 

levels of the design variables, and values for each level of the design variables are 

determined after the discussion with focus groups. With little possibility to use public 

transportation and non-motorized modes to MECA, the stated choice model instrument 

was designed to support two mode choices: Single Occupancy Vehicle (SOV) and 

Ridesharers. 

Data generation was completed using two surveys: an employee transportation 

survey and a stated choice experiment. The first survey collects information on employees' 

socioeconomic characteristics. The second survey contains two versions of a stated choice 

instrument in which high-level design variables were split into two different 3-level design 

variables and were presented to two groups of respondents. After the surveys were 

returned, these two versions were merged together to recover the high-level design 

variables. 

In the structural model, 4 of 5 design variables are designed to have 5 levels and 

the other one is a binary variable. The following table displays the values and levels for 

each design variable. 

Table 37: Values and Levels of the Design Variables for MECA Model 

Variables 	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Starting time(SOV) 	8:00 8:30 9:00 10:00 
Parking charge 	$0.00 0.50 2.00 3.00 7.00 

(SOV) 
Extra time to 	0.00min. 

pick up rider (RS) 
5.00 10.00 15.00 25.00 45.00 

Guaranteed ride 	1 
home program 

0 

Rideshare coupon 	$0.00 0.25 0.50 1.00 1.25 3.50 

(RS) 
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The model's structure is multinomial logit. This is essentially the same as in the 

case of the NJECO model. In the estimation process, ALOGIT program was also used for 

parameter estimation. The final model with 2-modes was expressed as follows: 

Table 38: Final Model for MECA*  
Attributes soy Rideshare 
Employee age 0.022 

(3.17)**  
Unlikely to rideshare index 0.20 

(3.5) 
Ridesharing is pleasant index -0.14 

(2.9) 
Trip length (natural log) -0.35 

(3.6) 
Drivers licenses per car -0.50 
(clerical employee households) (6.3) 
Date experiment held (week in 1991) 0.064 

(4.9) 
Parking cost -1.065 

(9.4) 
Parking cost squared 0.074 

(4.9) 
Flextime (early arrival in hours 0.31 
before 9:00 a.m.) (1.4) 
Time lost ridesharing -0.033 

(5.8) 
Guaranteed Ride Home 1.33 

(9.0) 
Rideshare coupon 0.85 

(3.0) 
Rideshare coupon squared -0.15 

(2.1) 

Analysis is based on 1,200 observations. 
** "t" ratios displayed in parentheses. The flexible starting time estimators are not 
significant at the 0.05 level, however, they are reported to bring more information to bear 
on their use as TCM. 
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Attributes listed on the table below Parking cost are design variables. Information 

preceding Parking cost were collected via the first survey on employees' socioeconomic 

characteristics. 

5.3.2 Problems Associated with MECA Model in terms of Data Generation and 
Design of Stated Choice 

Evidence gained from the simulation studies showed that increasing the number of value 

levels can lead to biased estimates. Findings in the simulation on varying the number of 

value levels within the design variables suggests that the high-level design variables used in 

MECA to estimate the parameters could cause some estimates to be significantly different 

from their true parameters. 

In the simulation on varying the middle placement within the design variables, I 

find that varying the middle placement within the quadratic form: PK$$, does not affect 

the ability of the program to recover the parameters of the design variable. This suggests 

no problems with the quadratic terms in MECA model which could be addressed by the 

results of simulation. 

The values of the design variables are fixed, therefore, there is no errors in the 

design variables. However, problems with errors in variables still exist in MECA model. 

Data on employees' socioeconomic variables were reported by employees themselves. 

Thus, errors in these type of data are unavoidable. The results of the simulation on errors 

in variables in chapter 4 suggests that the presence of errors in one single variable could 

damage most of the estimates of the variables in the model; depending upon the level of 

error incorporated in the independent variable. Therefore, appearance of errors in the 
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socioeconomic data could damage the estimates of the variables in the model to some 

extents. 

Comparing the problems of errors in variables between MECA model and NJECO 

model, we expect that the consequences of errors in variables in NJECO are substantially 

more severe than those in MECA model. The reasons for the above statement are: 

1. Fewer variables are measured with error in MECA than in NJECO. In NJECO 

model, all the data were either reported by employees and employers or were taken from 

some agencies. The critical transportation system variables in MECA are not measured 

with error. Data on every variable in NJECO could involve various proportion of errors. 

Overall, the size of errors in the independent variables in MECA is expected to be less 

than that in NJECO. 

2. The variables measured with error in MECA are not design variables but 

socioeconomic variables. The design variables represent potential TDM policies to be 

implemented at the site in order to improve the Average Passenger Occupancy (APO) at 

the site. These design variables are being called upon to alter commuting behavior and are 

considered to have to a greater impact on improving APO than socioeconomic variables. 

This can be evidenced by comparing the coefficients of the design variables with the 

coefficients of the socioeconomic variables. The coefficients of the design variables are 

larger in absolute value than are the coefficients of the socioeconomic variables. 
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5.4 Application of findings to NJECO and MECA 

Based on the results of the simulation study, the impact of TDM policies estimated by 

using NJECO model are underestimated due to errors in variables; While the impact of 

TDM policies by using MECA are likely to be overestimated. The degree of predicted 

underestimation of NJECO and overestimation of MECA can be demonstrated by using 

these two models in forecasting the improvement of APO at two sites in New Jersey due 

to change in TDM policies. 

As partial confirmation of the coefficients of the parking charge design variable, 

comparison between two insurance companies in New Jersey suggests that a parking 

charge does help to improve the APO. Prudential and Mutual Benefit Life (MBL), have 

large office facilities in down town Newark New Jersey. Both facilities have good access 

to the city subway and comparable four block walk to the major transportation center in 

the city: Penn Station. Discussions with the Employee Transportation Coordinators at 

both sites suggests that the only difference in commuting conditions faced by employees is 

the cost of parking. Prudential Insurance provides all employees with fully subsidized 

parking; Mutual Benefit Life has for the past three years required a $2.00 per day parking 

charge for its on site parking. Alternative parking for MBL employees is available at a 

higher cost from nearby parking garages; no free parking exists that is within reasonable 

walking distance. The Compliance Plans show that Prudential Insurance has a current 

Average Passenger Occupancy level of 1.28; while, the MBL site's plan shows an APO of 

1.58. Absent an in-depth disaggregate study at both sites, the initial conclusion is that 

parking charges do change commuting behavior. The APO for two sites identically placed 
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and identically employed is over 20 percent higher where a $2.00 per day parking charge 

is enforced. 

Forecasting algorithms for both the NJECO and MECA models have been made 

available to the author. The impact of the implementation of a $2.00 per day parking 

charge on APO will be forecast in both models. The current APO of Prudential is 1.28; it 

neither charges for SOV parking nor offers subsidies for ridesharers. On the other hand, 

MBL, has for three years charged employees a $2.00 daily parking fee, their current APO 

is 1.58. Since the general background of Prudential and MBL are almost identical with 

each other, a $2.00 daily parking charge imposed by Prudential should increase their APO 

to 1.58. 

The NJECO model predicts an impact on APO derived from a $2.00 parking 

charge from 1.28 to 1.41, this is a 57 % underestimation; the MECA model indicates 

under comparable conditions that the APO will change from 1.28 to 1.65, about 23% 

more than what it should have increased. 

As we discussed in chapter 3, the scaling factor in the SP model comes into the 

forecasting component and will probably leads to an overestimation of parameters of the 

design variables. 

The demonstration of the above example confirms the predicted underestimation 

of parameters in NJECO and overestimation of parameters in MECA. Furthermore, the 

degree of underestimation of NJECO shown in the above model almost doubles the 

degree of overestimation of the MECA model. 
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5.5 Conclusions 

The purpose of my thesis is to examine sources of error within disaggregate discrete 

choice studies. Specifically, I have examined the variable design elements within the stated 

preference approach to discrete choice analysis and the errors in variables problem 

inherent to revealed preference studies. The conclusions relate solely to the estimation 

phase of a discrete choice analysis; forecasting issues, while briefly discussed, were not 

examined. 

On the positive side, the logit model demonstrates its ability to produce consistent 

unbiased estimators under many conditions. Little in the way of problems in estimation 

occur due to the construction of stated preference design variables. Similarly, quadratic 

forms can be efficiently recovered using stated preference designs. However, a serious 

problem for discrete choice models in general has been found. Errors in variables will have 

major consequences for the estimation phase of discrete choice studies be the model either 

SP or RP. Errors in variables introduced into simulated discrete choice models drive 

parameter estimates toward zero in most cases. In all cases, the coefficient of the errors in 

variable will attenuated toward zero. The magnitude of the attenuation was measured 

through elasticity. Chapter 4 shows that the error elasticity ranged from 0.3 for low levels 

of error to 0.5 for high levels of error. 

What are the consequences of these findings. First, the often stated assertion that 

Revealed Preference is the benchmark from which Stated Preference must be judged must 

be challenged. Neither approach is the absolute truth set from which the other can be 

measured. Second, in the estimation component, Stated Preference approach seems to 
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provide stronger estimates than Revealed preference if the study of using SP is 

appropriately designed. 

What is the next stage in this type of study? There are still many types of errors left 

unexamined which could occur in both RP and SP. The consequence of the different forms 

of specification error could be shown in future simulations. Bates (1988) stated that no 

problems in the estimation phase could be caused due to the response bias in SP study. A 

simulation of response bias can examine this statement. 

The shape of the distribution of sample means near the tails of the distribution 

determines the probability of type I and type II error. Further understanding of these 

problems will require the number of simulation runs to be substantially increased. 

Additional research in errors in variables is needed. The tendency for the standard errors 

to attenuate toward zero undermines the hypothesis testing process and should be 

examined. 

The issue of the scaling factor can also be brought to simulation. In Bates' view, it 

is pseudo-utility that is observed not true utility. The sum of the variances of the response 

bias and random utility is the variance used in estimation. While in forecasting, only the 

variance of the random utility term is used. The consequence of using different variances 

in estimation and forecasting is that the utility calculated in forecasting is biased. What is 

the magnitude of this bias? How to correct this bias? Knowledge of the answers to these 

two questions is lacking. A carefully-designed simulation can show the consequences of 

the scaling factor in the forecasting. 



APPENDIX A 

UNIX C PROGRAM FOR INPUT OF ALOGIT 

Program A-1: Unix C Program for Input of Alogit Used in the Control Model 

This program is written in Unix C and is used to generate inputs of the Alogit Program. 

The program performs the functions of generating random numbers with desired 

distribution, computing utilities for each alternative and assigning the mode choice with 

the highest utility to the choice variable. The output of the program is a data matrix 

containing 8 columns, of which one column is dependent variable and 7 columns are 

independent variables, and 800 observations. The program shown as follows is used in the 

control model. 

#include <stdio.h> 
#include <math.h> 

#define RAND MAX 2147483647 
int whichmax(float,float,float); 

main() 
{ 
char inputfile[30],outputfile[30]; 
char iline[130]; 
long seed ; 
int ii; 
float a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w; 
int na,nb,nc,nd,ne,nf,ng,nh; 
FILE *fpl, *fp2; 

printf("Please input the seed for random number generator (1-2147483647): "); 
scanf("%ld",&seed); 
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for (ii=0;ii<30;++ii) 
inputfile[ii] ='\0'; 
outputfile[iij ='\0'; 

} 
printf("Please input file name : "); 

scanf("%s",inputfile); 
printf("Please output file name "); 
scanf("%s",outputfile); 

if ((fpl = fopen(inputfile,"r")) == NULL) { 
printg"inputfile does not exist! \n"); 
return; 

}; 
fp2 = fopen(outputfile,"w"); 

for (ii=0;ii<130;++ii) iline[ii] 	'\0'; 
fgets(iline,80,fp1); 
for (ii=0;ii<130; 	ii) 	='\0'; 
srandom(seed); 
while(fgets(iline,80,fpl) != NULL) { 

sscanf(iline,"%f %f %f %f %f %f %f %fl,&a,&b,&c,&d,&e,&f,&g,&h); 

i = (-1.0) * 0.16 * b + 0.54 * c; 
r = ((float) random())/ ((float) RAND MAX); 
t = (-1.0) * log((-1 .0)*1og(r))/(1 .28/0.7); 

l=i+t; 

j = (-0.037) * d + 1.13 * e; 
q = ((float ) random())/((float) RAND_MAX); 
u = (-1) * log(-(log(q)))/ (1.28/0.7); 
m = j + u; 

k = (-0.048) * f + 1.13 * g + 0.29 * h; 
p = ((float ) random())/((float) RAND_MAX); 
v = (-(log(-(log(p))))) / (1.28/0.7); n=k+v; 

printf("r%fq%f,p%f',r,q,p); 

if ((na=whichmax(1,m,n)) == 0) { 
printf("error occurAn"); 
return; 

}; 
printf("1%f, m%f, n%f, na%d",1,m,n,na); 
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nc= (int) c; 
nd = (int) d; 
ne = (int) e; 
of = (int) f; 
ng = (int) g; 
nh = (int) h; 
fprintf(fp2,"%d %d %d %d %d %d %d %d\n", 

na,nb,nc,nd,ne,nf,ng,nh); 
for (ii=0;ii<130;++ii) iline[ii] ='\0'; 

} 
fclose(fp1), 
fclose(fp2); 

return; 
} 

int whichmax(float x, float y, float z) 
{ 
if ((x >= y) && ( x >= z)) return 1; 
if ((y >= x) && ( y >= z)) return 2; 
if ((z >= x) && ( z >= y)) return 3; 
return 0; 
} 

Program A-2: Unix C Program for Inputs of Alogit in the Test of Errors in Variables 

This program basically performs the same function as it does in the other simualations than 

in the test of errors in variables. Program A-1 displays a program used in the control 

model and other simulations than in the test of errors in variables with minor 

modifications. In the test of errors in variables, another error term with normal distribution 

is added to the independent variables in addition to the regression error term in the utility 

function. The original program was modified by adding lines to generate the errors with 

normal distribution at the end. The program shown as follows assumes the all the 



respondents in the sample over estimate extra time over single driving when vanpool is 

used. 

#include <stdio.h> 
#include <math.h> 

#define RAND MAX 2147483647 
int whichmax(float,float,float); 
float normal_rand(); 

main() 
{ 
char inputfile[30],outputfile[30], 
char iline[130]; 
long ranseed, seed ; 
int ii; 
float a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w, 
int na,nb,nc,ne,ng,nh,nd, 
FILE *fpl, *fp2, 

printf("Please input the seed for random number generator (1-2147483647): "); 
scanf("%ld",&seed); 
printf("Please input the ranseed for normal distribution (1-2147483647): "); 
scanf("%ld",&ranseed); 
for (ii=0;ii<30;++ii) { 

inputfile[ii] ='\0'; 
outputfile[ii] ='\0'; 

printf("Please input file name : 
scanf("%s",inputfile); 
printf("Please output file name 
scanf("%s",outputfile); 

if ((fpl = fopen(inputfile,"r"))== NULL) { 
printff"inputfile does not exist!\n"); 
return; 

}; 
fp2 = fopen(outputfile,"w"); 

for (ii=0;ii<130;++ii) iline[ii] ='\0'; 
fgets(iline,80,fp1); 
for (ii=0;ii<130;++ii) iline[ii] ='\0'; 
srandom(seed); 
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srand(ranseed); 
while(fgets(iline,80,fp1) !=NULL) { 

sscanf(iline,"%f %f %f %f %f %f %f %ff',&a,&b,& c,&d,& e,&f,&g,&h); 

= (-1.0) * 0.16 * b + 0.54 * c; 
r = ((float) random())/ ((float) RAND_MAX); 
t = (-1.0) * log((-1.0)*log(r))/(1.28/0.7); 
1=i+t; 

j = (-0.037) * d + 1.13 *e; 
q = ((float ) random())/((float) RAND_MAX); 
u = (-1) * log(-(log(q)))/ (1.28/0.7); 
m = j + u; 

k = (-0.048) * f + 1.13 * g + 0.29 * h; 
p = ((float) random())/((float) RAND_MAX); 
v = (-(log(-(log(p))))) / (1.28/0.7); 
n=k+v; 

if ((na=whichmax(l,m,n)) == 0) { 
printfrerror occur. \n"); 
return; 

}; 

of = f + 4 * fabs(normal_rand(1.0)); 
nb = (int) b; 
nd = (int) d; 
nc = (int) c; 
ne = (int) e; 
ng = (int) g; 
nh = (int) h; 
fprintf(fp2,"%d %d %d %d %d %f %d %d\n", 

na,nb,nc,nd,ne,nf,ng,nh); 
for (ii=0;ii<130;++ii) iline[ii] ='\0'; 

} 
fclose(fp1); 
fclose(fp2); 

return; 

int whichmax(float x, float y, float z) 
{ 
if ((x >= y) && ( x >= z)) return 1; 
if ((y >= x) && ( y >= z)) return 2; 
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if ((z >= x) && ( z >= y)) return 3; 
return 0; 
} 

/**********************************************************************/ 

float normal rand(ro) 
float ro; 

{int i, j; 
float x; 

x=0.0; 

for (i=1;i<=12; i++) 
x += rand()/2147483647.0; 
x = ro*(x-6.0); 
return (x); 

/**********************************************************************/ 



APPENDIX B 

PARAMETERS AND STATISTICAL SUMMARY REPORT 
DERIVED FROM SIMULATIONS 

Table B-1: Parameters and Descriptive Statistics obtained from 100 Simulations for 6 
Designed Variables and one Alternative-specific Constant in a 3 Alternative Mode Choice 
Study for the control model in the Test of Varying the Number of Levels within Design 
Variables 

Variables Pkspace Pk $$ CPWT GRHcp VPWT GRHvp Const.vp 
Parameter 0.54 -0.16 -0.037 1.13 -0.048 1.13 0.29 
Mode 0.6064 -0.1465 -0.0370 0.9557 #NIA 1.2630 0.3192 
Mean 0.5414 -0.1600 -0.0402 1.1261 -0.0476 1.1422 0.3062 
Median 0.5473 -0.1590 -0.0367 1.1137 -0.0490 1.1617 0.3154 
Std.Error 0.0093 0.0016 0.0035 0.0102 0.0011 0.0118 0.0102 
Std. Devi. 0.0932 0.0156 0.0347 0.1018 0.0112 0.1176 0.1023 
Variance 0.0087 0.0002 0.0012 0.0104 0.0001 0.0138 0.0105 
Skewness -0.3224 -0.3170 -9.703 0.54 7.8934 -0.4421 -0.3453 
Kurtosis 0.2644 -0.0143 95.9949 1.11 72.50 -0.4838 -0.1521 
Range 0.4784 0.0789 0.3540 0.6036 0.1127 0.4994 0.4870 
Minimum 0.2818 -0.202 -0.3799 0.9071 -0.0578 0.8705 0.0416 
Maximum 0.7603 -0.1231 -0.0260 1.5107 0.0549 1.3700 0.5285 
Count 100 100 100 100 100 100 100 
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Table B-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 6 
Designed Variables and one Alternative-specific Constant in a 3 Alternative Mode Choice 
Study for Test Variation 1* in the Test of Varying the Number of Levels within the 
Design Variables 

Variables Pk space Pk $$$ CPWT GRHcp VPWT GRHvp Const.vp 
Parameter 0.54 -0.16 -0.037 1.13 -0.048 1.13 0.29 
Mode #N/A #N/A #N/A #N/A #N/A 1.1533 #N/A 
Mean 0.5369 -0.1568 -0.0373 1.144 -0.065 1.1438 0.2840 
Median 0.5250 -0.1522 -0.0363 1.1475 -0.049 1.155 0.2653 
Std.Error 0.0147 0.0026 0.0008 0.0135 0.0117 0.0167 0.0155 
Std. Devi. 0.1036 0.0182 0.0057 0.0952 0.0827 0.1178 0.1099 
Variance 0.011 0.0003 3.3E-05 0.0091 0.0068 0.0139 0.0121 
Skewness 0.2362 -0.8413 -0.1828 0.0183 -4.871 0.2950 0.2124 
Kurtosis -0.8066 0.1633 -0.7606 -0.069 22.889 -0.1188 -0.514 
Range 0.4296 0.0768 0.0239 0.4432 0.4585 0.5289 0.4333 
Minimum 0.3432 -0.2037 -0.050 0.9382 -0.4974 0.9404 0.0729 
Maximum 0.7728 -0.1269 -0.02612 1.3814 -0.0389 1.4693 0.5062 
Count 50 50 50 50 50 50 50 

*The first test variation design includes two 3-level variables, three 2-level variables and one 4-level 
variable. PK$$ is the only 4-level design variable whose values at different levels are 0, 3, 7 and 12. Fifty 
runs have been applied to obtain the mean values of sampling distributions for design variables. 
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Table B-3: Parameters and Descriptive Statistics obtained from 50 Simulations for 6 
Designed Variables and one Alternative-specific Constant in a 3 Alternative Mode Choice 
Study for Test Variation 2* in the Test of Varying the Number of Levels within the 
Design Variables 
Variables Pk space Pk $$$ CPWT GRHcp VPWT GRHcp Const .vp 
Parameter 0.54 -0.16 -0.037 1.13 -0.048 1.13 0.29 
Mode 0.614 -0.1796 #N/A 1.2837 #N/A #N/A #N/A 
Mean 0.5323 -0.1621 -0.0374 1.1417 -0.0566 1.1428 0.2852 
Median 0.5279 -0.1633 -0.0377 1.1432 -0.0482 1.1317 0.2637 
Std.Error 0.0154 0.0025 0.00061 0.0153 0.0085 0.0158 0.0167 
Std. Devi. 0.1086 0.0174 0.0043 0.1078 0.0599 0.1119 0.1180 
Variance 0.0118 0.0003 1.85E-05 0.0116 0.0036 0.0125 0.0139 
Skewness -0.389 0.083 -0.1908 -0.0950 -6.999 0.0807 -0.1328 
Kurtosis 0.9353 -0.1753 0.03749 0.0358 49.3132 -0.0346 0.3577 
Range 0.5733 0.0843 0.020 0.5349 0.433 0.5403 0.5718 
Minimum 0.188 -0.2053 -0.0484 0.8476 -0.47 0.8814 -0.0465 
Maximum 0.7614 -0.1211 -0.0285 1.3825 -0.037 1.4218 0.5253 
Count 50 50 50 50 50 50 50 

*Test variation 2 tests how \veil the parameters are recovered when two 4-level design variables are 
involved in the model. PK$$ still keeps the 4-level values and CPWT is increased from 3-level to 4-level. 
The values for carpool wait-time are 0, 10, 20, 30. The values for PK$$ are 0, 3, 7, and 12. Fifty runs 
were performed to derive the mean values of the distributions of sample means for the design variables. 
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Table B-4: Parameters and Descriptive Statistics obtained from 50 Simulations for 6 
Designed Variables and one Alternative-specific Constant in a 3 Alternative Mode Choice 
Study for Test Variation 3* in the Test of Varying the Number of Levels within the 
Design Variables 
Variables Pk space Pk $$$ CPWT GRHcp VPWT GRHvp Const.vp 
Parameter 0.54 -0.16 -0.037 1.13 -0.048 1.13 0.29 
Mode 0.5463 #N/A -0.0375 1.1467 #N/A 1.1773 #N/A 
Mean 0.5428 -0.1668 -0.0369 1.106 -0.0570 1.111 0.308 
Median 0.5466 -0.1673 -0.0366 1.1191 -0.0492 1.127 0.2925 
Std.Error 0.01657 0.0028 0.0007 0.0117 0.0083 0.0198 0.0156 
Std. Devi. 0.1171 0.0197 0.0049 0.0829 0.0586 0.140 0.1103 
Variance 0.0137 0.0004 2.38E-05 0.0069 0.0034 0.0195 0.0121 
Skewness -0.1905 -1.058 -0.7519 -0.1421 -6.978 -0.388 0.7093 
Kurtosis 1.063 3.927 1.057 -0.2711 49.1041 -0.3298 1.077 
Range 0.6370 0.1152 0.0234 0.3728 0.4218 0.6026 0.5541 
Minimum 0.2368 -0.2449 -0.0519 0.9104 -0.4616 0.7707 0.0992 
Maximum 0.8738 -0.1297 -0.0285 1.2831 -0.0398 1.3732 0.6533 
Count 50 50 50 50 50 50 50 

*Test variation 3 contains three 2-level design variables, three 4-level variables and one alternative-
specific constant for vanpool. Parking charge, carpool wait-time and vanpool wait-time are three 4-level 
variables. The values for CPWT are 0, 10, 20, 30. The values for PK$$ are 0, 3, 7, and 12. The values for 
VPWT are 5, 25, 35, and 45. Fifty runs were performed to obtain the mean values of the distributions of 
sample means distributions of six design variables and one alternative-specific constant. 
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Table B-5: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for the Control Model in the 
Test of Varying the Middle Placement of Variable of Parking Charge 
Variables Pk space Pk $$$ 

(squared) 
CPWT GRHvp VPWT GRHvp VPsub 

Parameter 0.54 -0.21 -0.037 1.13 -0.048 1.13 0.29 
Mode 0.5944 -0.2474 #N/A #N/A -0.045 1.096 #N/A 
Mean 0.5572 -0.2145 -0.0374 1.140 -0.0483 1.13 0.289 
Median 0.5572 -0.2151 -0.0374 1.132 -0.0481 1.112 0.2859 
Std.Error 0.0165 0.0028 0.00084 0.01556 0.00068 0.0146 0.0079 
Std. Devi. 0.1166 0.0195 0.0060 0.11 0.0048 0.1031 0.0559 
Variance 0.0136 0.00038 3.55E-05 0.012 2.28E-05 0.011 0.0031 
Skewness 0.2772 -0.32 -0.1684 0.1056 -0.523 0.4882 0.0606 
Kurtosis -0.6113 -0.2742 -0.4049 1.5427 0.6978 0.9140 -0.0675 
Range 0.4492 0.0814 0.0265 0.6282 0.0251 0.5436 0.2576 
Minimum 0.3630 -0.2544 -0.052 0.8127 -0.0624 0.912 0.1494 
Maximum 0.8121 -0.1730 -0.025 1.44 -0.0373 1.456 0.407 
Count 50 50 50 50 50 50 50 

* PK$$ is entered in the utility function as a quadratic term instead of a linear term. The parameter of the 
PK$$ was changed from -0.16 to -0.21. The control model was designed to maintain all the current level 
values of all seven design variables constant. The test model was designed to change the middle value of 
PK$$ from $3.00 to $1.00. 
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Table B-6: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for the Test Model in the Test 
of Varying the Middle Placement of Variable of Parking Charge 
Variables Pk space Pk $$$ CPWT GRHcp VPWT GRHvp VPsub 
Parameter 0.54 -0.21 -0.037 1.13 -0.048 1.13 0.29 
Mode #N/A #N/A #N/A 1.0364 -0.0478 1.194 #N/A 
Mean 0.5461 -0.2056 -0.0369 1.1440 -0.0483 1.1211 0.297 
Median 0.5424 -0.2093 -0.0367 1.1527 -0.0483 1.1208 0.2926 
Std.Error 0.0115 0.0122 0.0007 0.0137 0.0006 0.0166 0.0083 
Std. Devi. 0.0815 0.0862 0.005 0.0968 0.0043 0.117 0.059 
Variance 0.0067 0.0074 2.5E-05 0.0094 1.85E-05 0.0137 0.0035 
Skewness 0.0874 -0.5982 -0.3065 0.1276 -0.5917 -0.179 0.5646 
Kurtosis -0.5602 0.2712 -0.039 -0.4502 0.6427 -0.3809 0.9128 
Range 0.3187 0.3817 0.0241 0.4153 0.020 0.5054 0.2842 
Minimum 0.4028 -0.4643 -0.050 0.9556 -0.0603 0.846 0.1816 
Maximum 0.7215 -0.0826 -0.026 1.371 -0.040 1.3514 0.4659 
Count 50 50 50 50 50 50 50 

*The test examines how well the parameters of the seven design variables are recovered when the middle 
value of the quadratic term: PK$$, is changed from $3.00 to $1.00. Fifty runs were performed to obtain 
the mean values of the distributions of sample means for seven design variables. 
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Table B-7: Parameters and Descriptive Statistics obtained from 100 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study in the Test of Errors in 
Variables 

Variables Pk $$$ Pk space CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mode -0.1665 0.5774 -0.03756 1.1232 -0.0486 1.1396 0.2865 
Mean -0.1613 0.5246 -0.04427 1.1432 -0.0575 1.144 0.2966 
Median -0.1611 0.5241 -0.0375 1.150 -0.0481 1.1287 0.2918 
Std.Error 0.00216 0.00985 0.00475 0.01168 0.00658 0.01098 0.01012 
Std. Devi. 0.0216 0.09846 0.04753 0.1168 0.0658 0.1098 0.10123 
Variance 0.00047 0.09694 0.00226 0.0136 0.00433 0.01206 0.01025 
Skewness -0.2290 0.5927 -7.581 0.2633 -7.067 0.4954 6.700 
Kurtosis 1.8529 1.3428 60.3683 0.4572 49.8592 0.1578 58.673 
Range 0.1491 0.5846 0.4271 0.6375 0.5284 0.5185 1.0073 
Minimum -0.2421 0.3050 -0.4521 0.8820 -0.5665 0.9213 0.1704 
Maximum -0.093 0.8896 -0.025 1.52 -0.0381 1.44 1.178 
Count  100 100 100 100 100 100 100 
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Table B-8-1: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 1* in the 
Test of Errors in Variables 
Variables PK$S Pkspace CP wT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.152 0.54 -0.039 1.12 -0.044 1.086 0.27 
Mode -0.137 0.574 #N/A #N/A -0.0435 1.043 #N/A 
Median -0.15 0.53 -0.035 1.12 -0.044 1.073 0.27 
Std.Error 0.0026 0.015 0.0054 0.0145 0.00047 0.016 0.0055 
Std. Devi. 0.0185 0.109 0.038 0.103 0.0033 0.115 0.039 
Variance 0.0003 0.012 0.0014 0.010 1.11E-05 0.013 0.0015 
Skewness 0.0011 0.57 -6.86 -0.023 -0.15 0.36 -0.18 
Kurtosis -1.24 -0.12 47.98 0.06 1.37 0.097 0.413 
Range 0.062 0.45 0.27 0.48 0.018 0.54 0.18 
Minimum -0.184 0.37 -0.30 0.89 -0.05 0.87 0.17 
Maximum -0.122 0.82 -0.023 1.36 -0.035 1.42 0.35 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly over and under estimate the values of VPWT. The mean 
value and the variance of the error term attached to the variable of VPWT are zero and 16 respectively. 
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Table B-8-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 1* in the 
Test of Errors in Variables 
Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1205 0.5529 -0.0267 1.1106 -0.0275 0.8868 0.1732 
Mode -0.1464 #N/A #N/A 1.043 #N/A 0.8263 #N/A 
Median -0.1197 0.5274 -0.028 1.111 -0.0277 0.8806 0.1762 
Std.Error 0.0023 0.0146 0.0007 0.0123 0.00039 0.0140 0.0060 
Std. Devi. 0.0163 0.1033 0.0048 0.087 0.0027 0.0987 0.0423 
Variance 0.00027 0.0107 2.32E-05 0.0075 7.46E-06 0.0097 0.00179 
Skewness -0.1946 0.0016 0.4959 -0.1107 1.000 -0.0379 -0.0923 
Kurtosis -0.7546 0.0613 0.1581 -0.6705 2.0702 -0.1436 0.1126 
Range 0.0651 0.4972 0.0225 0.3553 0.0149 0.4344 0.1942 
Minimum -0.1552 0.2631 -0.0356 0.9087 -0.0326 0.6397 0.0783 
Maximum -0.0902 0.7603 -0.0132 1.264 -0.0178 1.074 0.2725 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly overestimate and underestimate the values of VPWT. The 
mean value of the error term attached to the variable of VPWT is zero while the variance of the error term 
changes to 144. 
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Table B-9-1: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 2* in the 
Test of Errors in Variables 

Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.155 0.522 -0.037 1.086 -0.043 1.12 0.29 
Mode -0.159 #N/A #N/A 1.07 #N/A 1.056 0.32 
Median -0.159 0.51 -0.036 1.086 -0.043 1.11 0.29 
Std.Error 0.0035 0.013 0.00067 0.012 0.0005 0.017 0.006 
Std. Devi. 0.025 0.094 0.005 0.086 0.004 0.122 0.043 
Variance 0.0006 0.0088 2.26E-05 0.0075 1.48E-05 0.015 0.0018 
Skewness 3.5 0.21 -0.50 0.11 -0.05 0.25 0.19 
Kurtosis 18.74 -0.56 -0.16 0.155 0.20 -0.89 -0.19 
Range 0.17 0.39 0.022 0.43 0.018 0.51 0.19 
Minimum -0.19 0.33 -0.05 0.87 -0.05 0.90 0.20 
Maximum -0.019 0.72 -0.028 1.30 -0.034 1.41 0.39 
Count 50 50 50 50 50 50 50 

*All the respondents are assumed to overestimate the extra time over single occupancy driving when 
vanpool is used. The mean value of the error term attached to the variable of VPWT is zero and the 
variance of the error term is 16. 
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Table B-9-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 2* in the 
Test of Errors in Variables 
Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1519 0.4735 -0.035 1.042 -0.033 1.08 0.283 
Mode -0.152 #N/A #N/A 1.02 #N/A 0.963 #N/A 
Median -0.152 0.4675 -0.0359 1.037 -0.034 1.049 0.28 
Std.Error 0.0028 0.022 0.0008 0.0129 0.0005 0.018 0.0067 
Std. Devi. 0.0198 0.154 0.0058 0.0913 0.0035 0.13 0.047 
Variance 0.0004 0.0236 3.38E-05 0.0083 1.22E-05 0.0169 0.0022 
Skewness 0.2005 -3.27 -0.0177 0.067 0.359 0.334 0.45 
Kurtosis -0.188 17.69 -0.63 -0.2002 -0.565 -0.162 -0.432 
Range 0.08 1.066 0.025 0.389 0.0147 0.604 0.176 
Minimum -0.189 -0.3649 -0.049 0.844 -0.04 0.816 0.205 
Maximum -0.109 0.7013 -0.024 1.233 -0.0258 1.42 0.38 
Count 50 50 50 50 50 50 50 

*A11 the respondents are assumed to overestimate the extra time over single occupancy driving when 
vanpool is used. The mean value of the error term attached to the variable of VPWT is zero and the 
variance of the error term is 144. 



135 

Table B-10-1: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 3* in the 
Test of Errors in Variables 
Variables PK$$ Pkspace CP WT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1168 0.682759 -0.01775 0.974395 -0.04327 1.124465 0.293971 
Mode -0.11423 0.636389 -0.01085 1.044638 -0.03994 1.182722 0.356181 
Median -0.11606 0.680052 -0.01422 0.9685 -0.04352 1.118319 0.285693 
Std.Error 0.002538 0.014394 0.002358 0.013419 0.000643 0.014687 0.006266 
Std. Devi. 0.017949 0.101781 0.016673 0.09489 0.004545 0.103853 0.044304 
Variance 0.000322 0.010359 0.000278 0.009004 2.07E-05 0.010786 0.001963 
Skewness -0.12359 0.043763 -2.38673 -0.40257 0.090383 0.094722 0.132461 
Kurtosis -0.14851 -0.68711 8.231057 0.461032 -0.76877 0.779748 -0.43132 
Range 0.08165 0.412343 0.09188 0.477564 0.017198 0.558887 0.194955 
Minimum -0.15997 0.486024 -0.09377 0.692059 -0.05153 0.849792 0.1943 
Maximum -0.07832 0.898367 -0.00189 1.169623 -0.03433 1.408678 0.389256 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to underestimate the extra time over single occupancy vehicle when 
vanpool is used and vanpool subsidy. The mean value and the variance of the error term attached to the 
variable of VPWT are zero and 16 respectively. 
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Table B-10-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 3* in the 
Test of Errors in Variables 

Variables PKS$ Pkspace CPWT GRHcp VPWT GRHvp 
 

VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1155 0.5965 -0.0244 1.1516 -0.037 0.8456 0.1574 
Mode -0.1027 0.668 #N/A 1.073 -0.0376 0.9289 #N/A 
Median -0.1129 0.6107 -0.0243 1.131 -0.0375 0.855 0.1577 
Std.Error 0.0021 0.0171 0.0007 0.013 0.0004 0.015 0.0087 
Std. Devi. 0.0148 0.121 0.0049 0.0924 0.0031 0.106 0.0617 
Variance 0.0002 0.0146 2.37E-05 0.0085 9.84E-06 0.011 0.0038 
Skewness -0.574 0.2524 -0.0319 0.7142 -0.18 0.2107 3.9  
Kurtosis 0.5915 -0.102 -0.2146 0.124 -0.5383 -0.3259 22.48 
Range 0.0732 0.577 0.0214 0.395 0.0125 0.453 0.438 
Minimum -0.1567 0.3617 -0.0355 1.0026 -0.043 0.6511 0.074 
Maximum -0.0835 0.9388 -0.014 1.39 -0.031 1.104 0.5125 
Count 50 50 50 50 50 50 50 

*All the respondents are assumed to underestimate the extra time over single occupancy driving when 
vanpool is used. The mean value of the error term attached to the variable of VPWT is zero and the 
variance of the error term is 144. 
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Table B-11-1: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 4* in the 
Test of Errors in Variables 
Variables PIM Pkspace CPWT GRHcp VPWT GRHcp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.158 0.57 -0.035 1.13 -0.043 1.09 0.23 
Mode -0,17 0.645 #N/A 1.033 #N/A 1.02 0.23 
Median -0.16 0.56 -0.035 1.124 -0.043 1.093 0.23 
Std.Error 0.0022 0.018 0.0007 0.013 0.00038 0.014 0.0057 
Std. Devi. 0.0159 0.125 0.005 0.095 0.0027 0.102 0.04 
Variance 0.00025 0.0156 2.67E-05 0.089 7.22E-06 0.010 0.0016 
Skewness 0.886 2.519 -0.73 0.144 0.27 0.388 -0.314 
Kurtosis 1.79 12.55 0.56 1.72 0.62 0.114 -0.338 
Range 0.085 0.84 0.025 0.58 0.013 0.47 0.168 
Minimum -0.195 0.36 -0.051 0.85 -0.0487 0.886 0.134 
Maximum -0.11 1.205 -0.026 1.43 -0.035 1.35 0.302 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly over and under estimate the extra time over single occupancy 
driving when vanpool is used and vanpool subsidy. The mean value and the variance of the error term 
attached to the variable of VPWT are zero and 16 respectively. The mean value and the variance of the 
variable of VPsub are zero and 0.25 respectively. 
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Table B-11-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 4* in the 
Test of Errors in Variables 

Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1267 0.544 -0.030 1.082 -0.024 0.9616 0.0185 
Mode #N/A 0.5938 -0.032 1.05 #N/A 0.994 #N/A 
Median -0.1285 0.5478 -0.03 1.073 -0.024 0.953 0.0137 
Std.Error 0.0024 0.0138 0.00075 0.0134 0.0004 0.0136 0.003 
Std. Devi. 0.0169 0.097 0.0053 0.095 0.0029 0.096 0.022 
Variance 0.00029 0.0095 2.83E-05 0.009 8.53E-06 0.0092 0.0005 
Skewness 0.3242 -0.65 -1.347 0.1785 -0.56 0.211 0.3239 
Kurtosis -0.6053 0.42 5.55 -0.5368 -0.192 -0.135 -0.738 
Range 0.0644 0.4313 0.033 0.4131 0.0112 0.434 0.092 
Minimum -0.1564 0.2815 -0.053 0.878 -0.031 0.7368 -0.021 
Maximum -0.092 0.713 -0.0195 1.29 -0.0196 1.17 0.07 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly over and under estimate the extra time over single occupancy 
vehicle when vanpool is used and vanpool subsidy. The mean value and the variance of the error term 
attached to the variable of VPWT are zero and 144 respectively. The mean value and the variance of the 
error term attached to the variable of VPsub are zero and 4 respectively. 
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Table B-12-1: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 5* in the 
Test of Errors in Variables 
Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1528 0.5468 -0.0327 1.099 -0.044 1.092 0.2698 
Mode -0.1373 #N/A #N/A 1.133 -0.039 1.08 0.2286 
Median -0.1525 0.5405 -0.032 1.088 -0.043 1.08 0.265 
Std.Error 0.0025 0.0145 0.00065 0.0117 0.0005 0.0147 0.0063 
Std. Devi. 0.0178 0.1023 0.0046 0.083 0.0038 0.104 0.045 
Variance 0.00032 0.0105 2.12E-05 0.00689 1.47E-05 0.0108 0.0020 
Skewness -0.051 0.16 -1.36 0.625 0.083 0.27 0.093 
Kurtosis 0.313 -0.395 2.878 0.086 0.022 -0.07 -0.337 
Range 0.077 0.436 0.023 0.357 0.018 0.475 0.21 
Minimum -0.199 0.328 -0.048 0.966 -0.05 0.85 0.166 
Maximum -0.12 0.76 -0.025 1.32 -0.033 1.32 0.38 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly over and under estimate the extra time over single occupancy 
driving when vanpool and carpool are used. The mean value and the variance of the error term attached to 
the variable of VPWT are zero and 16, respectively. The mean value and the variance of the error term 
attached to the variable of CPWT are zero and 4, respectively. 
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Table B-12-2: Parameters and Descriptive Statistics obtained from 50 Simulations for 7 
Designed Variables in a 3 Alternative Mode Choice Study for Test Variation 5* in the 
Test of Errors in Variables 
Variables PK$$ Pkspace CPWT GRHcp VPWT GRHvp VPsub 
Parameter -0.16 0.54 -0.037 1.13 -0.048 1.13 0.29 
Mean -0.1164 0.5634 -0.02 1.046 -0.026 0.896 0.171 
Mode -0.1319 0.585 #N/A #N/A #N/A 0.96 0.195 
Median -0.1134 0.5638 -0.02 1.05 -0.026 0.8986 0.169 
Std.Error 0.0028 0.014 0.0007 0.012 0.0004 0.0146 0.0054 
Std. Devi. 0.02 0.099 0.005 0.084 0.0029 0.103 0.038 
Variance 0.0004 0.0098 2.56E-05 0.007 8.18E-06 0.01 0.0015 
Skewness -0.21 0.159 0.097 -0.31 -0.34 0.0156 0.558 
Kurtosis -0.4345 1.929 -0.126 0.156 -0.504 -0.2672 1.0874 
Range 0.089 0.605 0.0243 0.39 0.0117 0.446 0.19 
Minimum -0.158 0.26 -0.032 0.825 -0.032 0.685 0.103 
Maximum -0.069 0.865 -0.0076 1.216 -0.02 1.13 0.294 
Count 50 50 50 50 50 50 50 

*The respondents are assumed to randomly over and estimate the extra time over single occupancy' 
driving when vanpool is used. In addition, the respondents randomly over and estimated the extra time 
over single occupancy driving when carpool is used. The mean value of the error term attached to the 
variable of VPWT are zero and 144 respectively. The mean value and variance of the error term attached 
to the variable of CPWT are zero and 25. 



APPENDIX C 

SUMMARY REPORTS FOR CHARACTERISTICS OF 
ERROR-INVOLVED VALUES OF DESIGN VARIABLES 

IN TEST OF ERRORS IN VARIABLES 

Table C-1: Summary Report for Error-Involved Values of VPWT when all Respondents 
in the Sample randomly under or overestimate the value of VPWT (Seed values of 4 and 3 
are used for Uniformly and Normally Distributed Random Numbers Respectively) 
Variance 16 16 16 144 144 144 
True Value 5 25 35 5 25 35 
Mean 5.16 24.75 35.11 22.28 22.69 22.09 
Std.Error 0.28 0.21 0.30 0.82 0.59 0.79 
Median 5.40 24.76 35.21 24.43 24.97 24.49 
Std.Devi. 3.95 4.13 4.18 11.66 11.76 11.24 
Variance 15.61 17.08 17.54 135.91 138.25 126.24 
Kurtosis -0.52 -0.29 -0.41 -0.73 -0.70 -0.74 
Skewness -0.14 -0.06 -0.102 -0.46 -0.49 -0.54 
Range 18.97 20.90 19.47 47.45 49.94 43.73 
Minimum -5.48 14.61 24.95 -3.20 -5.48 -1.84 
Maximum 13.50 35.51 44.46 44.25 44.46 41.90 
Sum 1031.4 9898.62 7021.97 4455.83 9078.00 4418.17 
Count 2200 400 200 200 400 200 
Ave.abs. Chg. 3.25 3.33 3.38 3.25 3.51 3.02 
Ave.% Chg. * 0.65 0.13 0.096 0.25 0.27 0.23 

* Average % change is calculated by (VPWTnew -VPWTold)/VPWTold  
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Table C-2: Summary Report for Error-Involved Values of VPWT when all Respondents 
in the Sample overestimate the value of VPWT (Seed values of 4 and 3 are used for 
Uniformly and Normally Distributed Random Numbers Respectively) 
Variance 16 16 16 144 144 144 
True Value 5 25 35 5 25 35 
Mean 8.25 28.33 38.38 14.76 35.01 45.14 
Std.Error 0.16 0.12 0.17 0.47 0.37 0.52 
Median 7.78 27.87 37.75 13.35 33.63 43.24 
Std.Devi. 2.24 2.44 2.46 6.71 7.33 7.39 
Variance 5.00 5.97 6.07 45.00 53.71 54.62 
Kurtosis -0.11 0.049 -0.35 -0.11 0.049 -0.35 
Skewness 0.65 0.80 0.70 0.65 0.80 0.70 
Range 10.44 10.50 10.00 31.32 31.51 30.01 
Minimum 5.04 25.00 35.00 5.11 25.01 35.03 
Maximum 15.48 35.51 45.01 36.43 56.53 65.04 
Sum 1650.7 11335.51 7676.08 2952.13 14006.53 9028.25 
Count 200 400 200 200 400 200 
Ave.abs. Chg. 3.25 3.33 3.38 9.76 10.01 10.14 
Ave.% Chg. * 0.65 0.13 0.096 1.95 0.40 0.29 

* Average % change is calculated by (VPWTnew -VPWTold) / VPWTold 
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Table C-3: Summary Report for Error-Involved Values of VPWT when all Respondents 
in the Sample underestimate the value of VPWT (Seed values of 4 and 3 are used for 

Uniformly and Normally Distributed Random Numbers Respectively) 

Variance 16 16 16 144 144 144 
True Value 5 25 35 5 25 35 
Mean 1.75 21.67 31.62 -4.76 14.98 24.86 
Std.Error 0.16 0.12 0.17 0.47 0.37 0.52 
Median 2.22 22.12 32.25 -3.35 16.37 26.76 
Std.Devi. 2.24 2.44 2.46 6.7 7.33 7.39 
Variance 5.00 5.97 6.07 45.00 53.70 54.62 
Kurtosis -0.11 0.049 -0.35 -0.11 0.048 -0.35 
Skewness -0.65 -0.80 -0.70 -0.65 -0.80 -0.70 
Range 10.44 10.50 10.00 31.32 31.51 30.01 
Minimum -5.48 14.49 24.98 -26.42 -6.53 4.96 
Maximum 4.96 25.00 35.00 4.89 24.98 34.97 
Sum 349.29 8664.49 6323.92 -952.13 5993.47 4971.76 
Count 200 400 200 200 400 200 
Ave.abs. Chg. 3.25 3.39 3.38 9.76 10.01 10.14 
Ave.% Chg. * 8.08 0.17 0.11 3.52 3.99 0.63 

* Average % change is calculated by (VPWTnew-VPWTold) / VPWTold. 
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Table C-4: Summary Report for Error-Involved Values of VPsub when all Respondents 
in the Sample underestimate the value of VPsub (Seed values of 4 and 3 are used for 
Uniformly and Normally Distributed Random Numbers Respectively) 
Variance 0.25 0.25 0.25 4 4 4 
True Value 0 1 3 0 1 3 
Mean 0.40 1.00 2.99 2.03 2.10 2.06 
Std.Error 0.02 0.024 0.035 0.12 0.075 0.11 
Median 0.33 1.00 2.97 1.69 1.87 1.78 
Std.Devi. 0.29 0.49 0.50 1.63 1.50 1.54 
Variance 0.08 0.24 0.25 2.67 2.27 2.37 
Kurtosis 0.09 -0.45 -0.23 1.77 0.17 -0.23 
Skewness 0.82 0.13 0.04 1.27 0.82 0.72 
Range 1.30 2.48 2.58 8.25 7.41 6.93 
Minimum 0.5E-05 0.0013 1.73 0.009 0.22E4)4 0.001 
Maximum 1.30 2.48 4.31 8.26 7.41 6.94 
Sum 79.69 400.29 597.03 405.86 838.50 412.30 
Count 200 400 200 200 400 200 
Ave.abs. Chg. 0.40 0.40 0.40 1.32 1.34 1.38 
Ave.% Chg.* 0.32 0.32 0.32 1.06 1.07 1.11 

* Average % change is calculated by (VPsubnew-VPsubold)/ 1.25 , where 1.25 is the average value of the 

original set of values for CPWT. 
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Table C-5: Summary Report for Error-Involved Values of CPWT when all Respondents 
in the Sample underestimate the value of CPWT (Seed values of 4 and 3 are used for 
Uniformly and Normally Distributed Random Numbers Respectively) 
Variance 4 4 4 25 25 25 
True Value 0 10 20 0 10 20 
Mean 10.02 10.03 9.83 -0.65 10.15 20.11 
Std.Error 0.54 0.37 0.52 0.35 0.25 0.36 
Median 10.02 10.40 9.67 -0.79 10.19 19.98 
Std.Devi. 7.60 7.44 7.39 4.91 5.04 5.10 
Variance 57.75 55.37 54.55 24.12 25.40 25.97 
Kurtosis -0.86 -0.90 -0.77 -0.13 -0.44 0.02 
Skewness 0.031 -0.11 0.08 0.037 -0.076 0.066 
Range 29.63 28.72 31.01 25.40 27.21 27.83 
Minimum -5.00 -4.6 -5.07 -12.68 -4.07 7.02 
Maximum 24.62 24.11 25.94 12.72 23.13 34.85 
Sum 2003.63 4010.78 1966.6 -129.36 4059.27 4022.62 
Count 200 400 200 200 400 200 
Ave.abs. Chg. 1.58 1.64 1.57 3.94 4.11 3.94 
Ave.% Chg.* 0.16 0.16 0.16 0.39 0.42 0.39 

* Average % change is calculated by (CP PVT. - CPWTold) / 10 , where 10 is the average value of the 

original set of values for CPWT. 
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