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ABSTRACT 

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF TUNGSTEN AS AN 
ABSORBER FOR X-RAY MASKS 

by 
Hongyu Chen 

Tungsten film is one of promising materials for X-ray absorber in X-ray 

Lithography technology because of its high X-ray absorption and refractory properties. 

This study focus on CVD method to make tungsten film for X-ray absorber. 

In this work, a cold wall, single wafer, Spectrum 211 CVD reactor was used for 

the deposition of tungsten from H, and WF6. The growth kinetics were determined as a 

function of temperature, pressure and flow ratio. The deposition rate of as deposited 

tungsten films was found to follow an Arrehnius behavior in the range of 300-500°C with 

an activation energy of 55.7 kJ/mol. The growth rate was seen to increase linearly with 

total pressure and H, partial pressure. In the H2/WF6  ratio studies conducted at 500°C and 

500mTorr, growth rate increase with flow ratio when lower than 10 followed by 

saturation above this ratio. The stress of as deposited film strongly dependent on 

deposition temperature and has weak relationship with pressure and flow ratio. The 

`buried layer model' can explain the stress of as deposited film very well. The resistivity 

of the film is no relationship with pressure, flow ratio and dependent on temperature. The 

deposited films have preferred orientation of the (200) plane. 
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CHAPTER 1 

INTRODUCTION 

1.1 Tungsten-One of the Most Desirable X-ray Absorbers 

X-ray lithography is a promising technique for replicating sub-micron patterns of large 

area[1]. One of the key factors in X-ray lithography is the construction of the mask. This 

is because the resolution and accuracy of X-ray lithography is determined by the X-ray 

mask. The mask essentially consists of absorber patterns and a thin mask substrate. 

Among many absorbers, tungsten is the most promising material not only because of its 

high X-ray absorption, but also because of its low thermal expansion, high Young's 

modules and its refractory properties. However, it is difficult to control the stress in the 

tungsten film. This study focuses on chemical vapor deposition of low stress tungsten 

film. In this chapter, the importance of X-ray mask for X-ray lithography is presented. 

Then low stress in X-ray absorber is justified followed by a discussion of the general 

concepts of CVD (Chemical Vapor Deposition). Finally, a systematic review of the 

development of CVD tungsten is presented. 

1.1.1 The Promising Application of X-ray Lithography 

Lithography is one of the most important technologies in the mass production of 

microelectronic circuits[2]. More is spent for lithographic systems than for any other type 

of IC processing equipment in a production line. Lithography has allowed the 
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devices, which have been reshaping our world for 30 years. The trend towards smaller-

feature size devices will not stop until some fundamental limit is encountered in device 

operation, or fabrication costs increase radically with the reduction in feature size. Optical 

lithography has made great strides in providing smaller and smaller structures, but it 

presently appears that the practical resolution limit using near-U.V. coherent sources is 

larger than 0.3 gym. This limit is determined by diffraction effects and practical limits on 

lens systems. To permit the transition to smaller details some methods have been 

developed that use electrons or ions instead of light. The effective wavelength of these 

particles is much smaller than the dimensions of the details required, so that diffraction 

effects are no longer a problem. Another promising method for VLSI is X-ray 

lithography, in which X-rays are used to produce an image of the mask pattern on a slice 

coated with X-ray sensitive resist. The wavelength of the radiation varies from about 0.5 

to 3nm, so that no diffraction effects occur. As compared with the electron method, X-ray 

lithography at these wavelengths has the advantage that there is no proximity effect[3]. 

.1.1.2 X-ray Mask 

The major effort in X-ray lithography is focused on the development of an appropriate 

mask technology. Considering the progress in all other elements of X-ray lithography, the 

successful industrial application of this new technology will depend primarily on whether 

the remaining problems in mask technology can be solved. The X-ray mask consists of a 

thin membrane of low-Z material carrying a high-Z absorber pattern[4]. The requirements 
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for X-ray mask quality are rigid and cannot be compromised. For the membrane material, 

such requirements include[5]: 

• high X-ray transmission (>80% at 0.4-1.5nm) 

• adequate optical transmission (>60% at 633nm) 

• high modules of elasticity (>1011Pa)  

• low stress (<5x108  dynes cm-2) 

• low defect density (0.1cm-2) 

• long lifetime (>106  exposures at a flux of 100mw cm-2) 

• flatness (<0.3p.m) 

• radiation hardness (<10nm distortions at absorbed does >103  kJ cm-3) 

• low cost ($5,000) 

For the absorber, such requirements include: 

• high x-ray absorption (>99% at 0.4-1.5 nm) 

• low stress (<5x108  dynes cm-2) 

• low defect density (<0.1 cm-2) 

• minimal feature distortion (<50 nm) 

• ease of pattern 

Among the numerous X-ray mask membranes considered, four have emerged as 

most promising. These are silicon, silicon nitride, silicon carbide and boron nitride. 

Silicon, a more versatile material, has been used with both Au and W as the absorber 

material[6]. In this study W was deposited on the Si wafer which is a promising 

membrane material and is easily available. 
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In X-ray lithography, pattern features on the mask should not deviate from their 

assigned in-plane positions by more than a fraction of the minimum line width. In an X-

ray lithography mask, such distortion can arise if the absorber, which is in relief on the 

mask membrane, has non zero internal stress. Absorber stress exerts a torque on the 

membrane at the edges of features, and this leads to out-of-plane and in plane distortion. 

Therefore, to reduce distortion to acceptable levels one must achieve near-zero internal 

stress [7]. Since the X-ray lithography was first developed, Au(gold) has been used as an 

X-ray mask absorber. This is because that the Au has a high absorption coefficient, and 

the internal stress of Au film can be easily controlled by selecting the deposition 

condition. However, it is known that the stress in gold changes with time, even at room 

temperature[8]. Moreover, Au cannot be dry etched and its thermal expansion coefficient 

(14.2x10-6  KI ) is much larger than that of mask membranes such as Si (2.6x10-6  K-1) and 

SiC (3.8-4.2x10-6  K-1). Tungsten (W) is an attractive alternative to Au because it is 

refractory, can be dry etched in fluorine-containing gases and has a much lower thermal 

expansion coefficient (4.5 x 10-6  K-1) than gold[9]. Moreover, it absorbers more effectively 

than gold( and may further reduce the aspect ratio requirements). However, there are 

several problems associated with W: (1) its internal stress is a strong function of 

deposition parameters and hence achieving zero stress can be problematic [10]; (2) there is 

a metastable phase of W, [3-W, which can be incorporated in deposited films. The B-W 

can transform to the stable phase a-W and, in the process, change the net stress[l 1] , and 

(3) the high electron backtering from W may increase the difficulty of pattering. 
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1.1.3 The Development of Low Stress Tungsten Film 

1.1.3.1 Kinds of Stress in the Thin Film: The total stress in a film is the sum of: (a) the 

thermal 	stress, resulting from the difference in the coefficient of thermal expansion 

between the film and the substrate; (b) the intrinsic stress, which originates from the 

change in the film structure. 

The thermal stress caused by the difference in thermal expansion coefficients (a) 

between film and substrate. After cooling from deposition temperature (T) to room 

temperature (To), the biaxial Thermal stress( σth) in a film on a substrate is obtained from 

where Ef is young's modules and vf is the Poisson constant of the film. For the case of 

tungsten film, Ef =410 GPa and v1=0.28. Since the average linear thermal expansion 

coefficients between 20 and 500°C for W and SiC amount to 4.6 and 4.2x10-6  K-1  

respectively, the thermal stress due to cooling is only 0.23x∆T. The thermal stress is very 

small, the high residual stress values are ascribed to intrinsic stress. 

The stress present in the absence of thermal effects are usually called intrinsic 

stresses or, more appropriately, growth stress. Such stresses are associated with the growth 

of a film on a substrate. 
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1.1.3.2 Low Stress Tungsten Film by PVD: In literature of tungsten film for X-ray 

absorber application deposition by PVD prevails. However,tungsten films deposited by 

PVD (i.e.,sputtering, evaporation) have large stress. To reduce the stress in the PVD 

tungsten film, some methods were suggested, which include: 

(1) Ion implantation 

Yao C, et al.[12] reduce the stress in tungsten film by using Si ion implantation to 

a projected range of 10nm in the W at does in the range of 10
15-10

16 
CM

-2
. Distortion 

correction takes place because the implantation produces compressive stress near the 

upper surface, resulting in a torque that balances a torque of opposite sign at the absorber-

membrane interface due to tensile stress in the tungsten. 

H. Luethje et al. [13] reported effective stress reduction (σ<107  N/m2) and 

excellent long term stability (∆σ<5x106 N/m2) are being obtained by sputtering the 0.8 

um thick tungsten layers in the presence of oxygen, and subsequently annealing them in 

an oxidizing atmosphere. 

(2)Tungsten alloy 

Yoshioka, et al. [14] investigated W-Ti alloy as x-ray mask absorber. The W-Ti 

film were deposited by sputtering the W-Ti (1 wt% Ti content) target using Ar+N2  gas 

with a DC magnetron sputtering system. They obtained the low stress tungsten film which 

is satisfactory for an X-ray mask absorber. 

1.1.3.3 Low Stress Tungsten Film by CVD: There are reports about low stress tungsten 

film by CVD for interconnect or plug application in VLSI technology. Up to now, no 
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report about W CVD film for X-ray absorber application was found. In a later review of 

CVD tungsten, we will discuss low stress W film by CVD. 

1.2 Chemical Vapor Deposition 

Chemical vapor deposition(CVD) is one of the most important methods of film formation 

used in the fabrication of very large scale integrated (VLSI) silicon circuits, as well as of 

microelectronic solid state devices in general. In this process, chemicals in the gas or 

vapor phase are reacted at the surface of a substrate where they form a solid product[15] 

1.2.1 Basic Steps of CVD 

A CVD process basically is a type of surface catalysis process since the deposition process 

is thermodynamically favorable and takes place on the substrate surface. Most of the time 

the surface serve as a catalyst for the reactions leading to amorphous deposition and 

crystal growth. The same sequence of events in a heterogeneous reaction can therefore be 

applied to crystal growth by CVD[16] . These events are: 

(a) a given composition (and flow rate) of reactant gases and diluent inert gases is 

introduced into a reaction chamber. 

(b) then gaseous species diffuse to the substrate. 

(c) the reactants are adsorbed on the substrate. 

(d) the adsorbed reactants undergo migration and film forming chemical 

reactions. 

(e) the gaseous by-products of the reaction are desorbed. 
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(f) gaseous transport of by-products. 

(g) bulk transport of by-products out of reaction chamber. 

1.2.2 Experimental Parameters in CVD 

Any one of the several steps taking place in a CVD process can be the rate-determining 

step. A number of experimental parameters play an important role in determining or 

altering the rate-determining step. The experimental parameters, which are discussed 

individually below are: deposition temperature, reactant partial pressure, gas flow rate. 

1.2.2.1 Deposition Temperature: The rate of product deposition is dependent primarily 

on temperature. The rate controlling step in the process such as surface reaction, and 

surface diffusion can be described by the Arrhenius equation. 

Activation energy signifies the presence of an energy barrier which must be 

overcome in order for the process to occur. Activation energies for most surface processes 

are usually greater than 10 kcal/mole and lie in the range of 25-100 kcal/mol[16]. 

Conversely, mass transport phenomena such as diffusion are almost insensitive to 

temperature. Therefore, when plotted as an Arrhenius expression (the deposition rate vs 

the reciprocal temperature) to find activation energies, a preliminary distinction between 
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the surface phenomena and the gas phase mass transport phenomena can be made by 

observing the temperature dependence of the process. 

A typical Arrhenius plot exhibits two regions as shown in figure 1.1. At lower 

temperature, there is always enough supply of reactants to the surface and this supply is 

faster than the consumption of the reactants during reaction. Then the overall rate is 

controlled by the surface kinetics. At higher temperature, the rate is limited by the rate of 

Figure 1.1 Temperature dependence of growth rate for CVD films 

insufficient reactants supply although the rate of surface reaction is higher. It is 

possible to switch from one rate limiting step to the other by changing the temperature as 

shown in figure 1.1 [17]. 

Thermodynamic aspects of the reaction system should also be considered when 

examining the effect of deposition temperature. Assuming the process is near equilibrium, 
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the temperature effect on deposition based on the thermodynamic considerations is 

presented in Table 1: 

Table 1. Temperature effect on reaction by thermodynamic consideration 

1.2.2.2 Gas Pressure: 	Surface reactions involving single adsorbed molecules are 

classified as unimolecular reaction[18].This can be treated by Langmuir adsorption 

isotherm. Let 8 be the fraction of surface that is covered and 1-8 the fraction that is bare. 

The rate of adsorption is then k1P(1-θ), where P is the gas pressure and k1  is 

proportionality constant. The rate of desorption is k-1θ. At equilibrium, the rates of 

adsorption and desorption are equal, so that 
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where K, equal; to k1  /k- i , is the adsorption equilibrium constant. The equation can be 

written as 

The rate of reaction is proportional to θ and may therefore be written as 

where ko  is the proportionality constant at certain temperature. This is the simplest 

treatment of surface reaction. 

1.2.2.3 Gas Flow Rate: When growth rate for a CVD process is plotted as a function of 

reactant gas flow rate, the generalized form of the relationship is shown in figure 1.2 [19]. 

At very small flow rate (region 1), the incoming gas stream has sufficient residence time 

to equilibrium with the substrate surface. Increasing the total flow rate increases the rate 

of reactant input, and thus more material per unit time equilibrates with the substrate 

surface. The rate increases linearly with total flow rate in this region[20]. 

When the flow rate is increased above a certain point, the entire gas stream no 

longer has sufficient residence time for complete equilibrium (region 2). At this point, a 

portion of the incoming reactants pass by unreacted. This gives higher bulk stream partial 
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pressures than the surface partial pressure. Then the rate-limiting process is diffusion from 

the main gas stream to the substrate surface. It is known that the boundary layer thickness, 

where the diffusion process takes place, is inversely proportional to the square root of the 

gas velocity[21]. Then, in this regime, the surface reaction shows a square root 

dependence on the gas flow rate. 

At high flow rate, the reaction rate reaches a plateau (region III) and becomes 

independent of flow rate[22]. Here the reaction rates are so slow relative to the gas flow 

and mass transfer rates that the partial pressure at the surface becomes essentially the input 

partial pressure. Then the process is said to be 'kinetically controlled'. The reactant flow 

rate for kinetics studies should be in this plateau regime so that the true temperature and 

partial pressure dependence of the reaction can be observed. 

1.2.3 Types of CVD Processes 

1.2.3.1 Classification of Process Types: CVD processes can be classified according to 

the type of energy supplied to initiate and sustain the reaction: (i) Thermally activated 

reactions at various pressure ranges, which comprise the vast majority of CVD processes; 

heat is applied by resistance heating, if induction heating, or infrared radiation heating 

techniques. (ii) Plasma promoted reactions, where an if (or dc)-induced glow discharge is 

the source for most of the energy that initiates and enhances the rate of reaction. (iii) 

Photon induced reactions, where a specific wavelength radiation triggers and sustains the 

reaction by direct photolysis or by an energy transfer agent, such as uv-activated mercury. 
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1.2.3.2 Thermally Activated Atmospheric Pressure Processes (APCVD): The simplest 

CVD process type is conventional atmospheric or no' 	'nal pressure CVD 

Figure 1.2 Idealized growth-rate versus fluid flow-rate plot 
showing the different growth regimes 

(APCVD or NPCVD)[23]. Reactant vapors or gases are introduced in the reactor at 

normal atmospheric pressure. The pressure in the reactor system is slightly above 

atmospheric due to the impedance of the gas flow at the exit part of the system. The 

temperature and reactant flow rate determine the rate of frlm deposition. Heat is supplied 

by resistance heating, by rf induction techniques, or by infrared radiation. The advantage 

of APCVD is its simplicity; no vacuum pumps are needed. The disadvantage is the 
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tendency for homogeneous gas phase nucleation that leads to particle contamination, 

unless special optimized gas injection techniques are used. 

1.2.3.3 Thermally Activated Low Pressure Processes (LPCVD): Low pressure CVD is 

widely used in the extremely cost competitive semiconductor industry for deposition films 

of insulators, amorphous and polycrystalline silicon, refractory metals, and silicides[24]. 

The gas pressure of —0.5 to 1 Torr employed in LPCVD reactors distinguishes it from 

conventional CVD systems operating at 760 Torr. Lowering the gas pressure enhances the 

mass transfer rate relative to the surface reaction rate. The mass transfer of gases involves 

their diffusion across a slowly moving boundary layer adjacent to the substrate surface. 

The thinner this boundary layer and the higher the gas diffusion rate, the greater the mass 

transport that results. Although the boundary layer for LPCVD is thicker than that of 

APCVD, the diffusivity (D) for LPCVD is much higher than APCVD, thus, low pressure 

deposition conditions enhance mass transfer greatly, providing high wafer capacity, better 

thickness uniformity and less gas phase reactions, which are especially important in VLSI 

processing where a very high device reliability and high product yield must be 

achieved[25]. The disadvantages are the relatively high operation temperature. 

1.2.3.4 Plasma- Enhanced Deposition Processes (PECVD): Plasma deposition[26] is a 

combination of a glow discharge process and low pressure chemical vapor deposition in 

which highly reactive chemical species are generated from gaseous reactants by a glow 

discharge and interact to form a thin solid film product on the substrate. Since plasma 
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causes the breakdown of the gas molecule into a variety of very reactive species, PECVD 

is carried out at substrate temperatures lower than those of APCVD and LPCVD 

process[27]. The radicals formed in the plasma discharge have high sticking coefficients 

and upon adsorption they can migrate easily on the surface to yield conformal structures. 

Film with low pinhole density and with good adhesion to the substrate can be deposited 

with this method. Concerning disadvantages of PECVD, the complexity of reactions make 

the synthesis of stoichiometric compositions difficult. A consequence of the low 

temperature of film formation, by-products are trapped in the films, which cause problems 

in later stages of manufacturing MOS circuits. 

1.2.3.5 Photo-Enhanced Chemical Vapor Deposition (PHCVD): This type of process 

is based on activation of the reactants in the gas or vapor phase by electromagnetic 

(usually short wave ultraviolet) radiation[28,29]. Selective absorption of photonic energy 

by the reactant molecules or atoms initiates the process by forming very reactive free 

radical species that interact to form a desired film product. The advantages of this 

promising CVD process is the low temperature needed to form films and the greatly 

reduced radiation damage (compared to PECVD) that results. The limitations is the need 

for photoactivation with mercury to achieve acceptable rates of film deposition. 

1.2.3.6 Laser-Enhanced Chemical Vapor Deposition (LCVD): Chemical vapor 

deposition involving the use of lasers can be categorized in two types of processes[30]: (1) 

pyrolysis (2) photolysis. In pyrolysis process the laser heats the substrate to decompose 
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gases above it and enhance rates of chemical reactions there. Photolysis, on the other 

hand, involve direct dissociation of molecules by energetic photons. Among several 

advantages of these techniques are spatial resolution that can be achieved and the ability to 

interface with laser annealing, diffusion, and localized heat treatments, but LCVD is still 

in its early development. 

1.3 Chemical Vapor Deposition of Tungsten 

1.3.1 Tungsten Film Application 

The semiconductor industry is experiencing rapid technological growth in the area of 

submicron IC device fabrication which has lead to continually shrinking device feature 

size. Performance and reliability concerns for these approaches have lead to consideration 

of low resistivity material, such as tungsten. In fact, tungsten applications at production 

level have already started. Tungsten provides low resistance (5.6µC2-cm of bulk 

resistivity), low stress (<5x109  dyne/cm2), excellent conformal step coverage and a 

thermal expansion coefficient which is close to that of silicon. Another important feature 

for tungsten is its high resistance to electromigration, while in the current technology 

aluminum severely suffers from it [31]. 

There are two aspects of tungsten CVD for integrated circuits that have taken on 

commercial importance. One is the blanket deposition or nonselective deposition, in 

which deposition proceeds uniformly over variety of surfaces. A primary application of 

blanket W CVD is for interconnects, which is shown schematically in figure 1.3. Another 

application for blanket W CVD is via hole filling to planarize each level for subsequent 
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processing. This is achieved by depositing a conformal film and etching back to the 

insulator surface (figure 1.3.). The second area of interest is the "selective" CVD of 

tungsten, where deposition occurs on silicon but not on silicon dioxide. Here one can 

selectively fill via holes to either provide a thin barrier metal or to deposit a thicker to 

help planarize the circuit. Both applications involve processing step, and are attractive for 

this reason [32]. 

Figure L3 Schematic for applications of blanket and selective metal CVD for 
microelectronics applications 

1.3.2 Reaction for CVD of Tungsten 

Tungsten can be chemically vapor deposited by reduction of WF6  or WCI6. The common 

reductant are silicon (Si), hydrogen(H2), silane (SiH4). Only a few studies were done on 
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WC16  as the source of tungsten. Because W films deposited from WF6  have an advantage 

over hose deposited from WCI6  in that lower contact resistance to Si may be achieved. 

Furthermore, WF6  is a liquid that boils at room temperature, whereas WC16  is a solid that 

melts at 275°C, making its use as a CVD source more difficult[33]. Tungsten also can be 

deposited by the pyrolysis of W(CO)6, the weaker W-CO bonds (CO is a neutral ligand) 

allow for unimolecular dissociation at low temperature, but the deposition of W from 

W(CO)6  does not exhibit selectivity [34]. 

The free energy change ∆G for WF6  reaction at 600 K are given in Table 2 [35]. 

Comparing these free energies, the free energy of Si reduction is more negative than that 

of H2 reduction. So when the H2  reduction reaction is carried out, it is the Si substrate that 

first react with WF6. The substrate consumption will result encroachment, tunneling, 

creep-up and loss of selectivity problems[31] After a certain W film thickness is reached 

this reaction will stop because the W film forms a diffusion barrier between the Si and 

WF6  and prevents further reaction. This phenomenon is called self-limiting[36]. The SiH4  

reduction reaction is more favorable than the Si and H2  reduction reactions. This reaction 

can suppress the Si reduction and Si consumption. Higher deposition rates at relatively 

lower temperatures and smoother resulting W/Si interfaces make this reaction very 

attractive. Recent developments of CVD tungsten have focused on this reaction. 

1.3.2.1 Reduction WF6  with Si: The reduction of WF6  by solid silicon is of interest 

because of the potential of selective tungsten CVD for via hole filling for multilevel 

interconnect technology. This reaction is important because it is necessary to deposit some 
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tungsten before the normal reduction processes, i.e., WF6+H2  or SiH4., can proceed. 

However, excessive consumption of silicon and other detrimental effects such as 

"wormhole" formation have limited the utility of this reaction. 

Table 2 Free Energy Changes at 600 K 

Reactions 

∆G, kcal/mol 

(based on 1 mole WF6) 

(A)  WF6  + 1.5Si --> W + 1.5SiF4  -179.4 

(B)  WF6  + 3H2  —> W + 61-1F -27.9 

(C)  WF6  + 1.5 SiH4  --> W + 1.5SiF4 + 3H2 -208.7 

(D)  WF6  + 2.1SiH4  --> 0.2W5Si3  + 1.5SiF4  + 4.2H2  -227.6 

(E)  WF6  + 3.5SiH4  —> WSi2  + 1.5SiF4 + 7H2  -268.9 

Fortunately, from a processing point of view, the Si +WF6  reaction has often been 

found to be "self-limiting" and typically only 100 to 200A of tungsten is deposited. The 

reaction is also very fast and reaches the self-limited thickness in a few seconds at typical 

LPCVD conditions. For the results of Broadbent and coworkers [37]the self-limiting 

thickness is deposited in 6 s and no additional deposition occurs for the time up to 6000s. 

Despite a lot of effort, the mechanism leading to self-limiting deposition is still not 

completely understood. One theory is that once a continuous tungsten film is formed the 

reaction slows down dramatically or shuts off completely because it becomes limited by 
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transport of one of the reactants to the active interface. One difficulty with this idea is that 

some self-limiting films appear to be very porous, although others have near bulk tungsten 

densities. Another theory [38] is that a "blocking" agent, namely, WF4, builds up on the 

tungsten surface and inhibits deposition. 

Green, et al.[39] examined the morphology of Si-reduced W films deposited 

between 210 and 700°C. The grains were spongy in structure, and the space is occupied 

by trapped gases and pores. Therefore, the film density was far less than tungsten bulk 

density. 

Auger depth analysis showed that most of the oxygen in the W film is present at 

the Si/W interface[40]. Joshi,et al. [41] found 22-25% oxygen in the films deposited 

below 600°C, causing high film resistivities (130-140 µS2-cm). The oxygen level drops to 

12-14% at higher temperatures resulting in lower resistivities (60-70 1_1.Q-cm). A native 

oxide layer on the silicon surface was reported to be incorporated into the W films[42]. 

1.3.2.2 Reduction WF6  with 11 2: It was found that the H2+WF6  CVD process could be 

selective in that deposition occurred rapidly on many metals and semiconductors, but not 

on insulators such as Si02. Selectivity apparently occurs because deposition requires that 

the substrate be capable of either reducing WF6  to metallic W, or dissociatively 

chemisorbing H2 and WF6. Most oxides do not readily support either of these processes 

and therefore tungsten deposition does not readily occur. The selective nature of the 

deposition process created much interest in that it significantly reduced the number of 

steps in the metallization process. 
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There have been numerous experimental kinetic studies covering LPCVD and 

APCVD conditions over a wide temperature range. Creighton, et al. [32] categorized them 

into two regimes. The first reaction regime described as being dominated by homogeneous 

reactions obeyed the following pressure dependence 

	

Rate cc P(WF6)2•P(H2)2 	 (1.6) 

The conditions that lead to this kinetic regime generally have not been studied further. In 

another regime the reaction proceeded heterogeneously with the following pressure 

dependence 

	

Rate oc P(WF6)°*13(H2)112 	 (1.7) 

and an apparent activation energy of —66.24 kJ/mol. The form of the rate law above has 

been verified by numerous workers for LPCVD conditions[43,44]. The phenomenon that 

the deposition rate depends on the H2 flow rate, not on WF6  rate suggests that surface-

adsorbed H2 dissociation is the rate-controlled mechanism. 

Selective deposition of W on Si surfaces constitutes another area of concern in the 

H2-reduction reaction. Joshi, et al. [45] have found that the selectivity of tungsten 

produced by silicon reduction is almost 100% while that by H2  reduction depends on the 

prior condition of the Si wafer. McConica and Krishnamani [43] observed that the 

selectivity loss to silicon surfaces occurs at temperature higher than 300°C. The 
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temperature dependence suggested that the tungsten nucleation on the oxide is an 

activated process. In an ultra high vacuum (UHV) analysis chamber, Creighton[46] 

performed Auger electron spectroscopy and temperature programmed desorption studies 

on the selectivity loss. He suggested that a tungsten subfluoride desorption-

disproportionation mechanism is the origin of transport of tungsten from the tungsten 

surface to the silicon dioxide surface. Tungsten pentafluoride, WF5, was the best candidate 

to initiate the selectivity loss because of its volatility. 

Studies of the CVD tungsten film morphology and impurity content are essential 

for the film quality, and thereby the film resistivity. Shroff and Delval [47] have measured 

the fluorine content of W films with photon activation analysis. The deposition of low 

fluorine content films was possible at high temperature, high H2 /WF6  ratios and low 

pressures. Initial tungsten layers always started with a fine grain structure on the base 

metal substrates and continued to grow as elongated crystals. It was also reported that 

increasing H2/WF6  ratios and higher pressures resulted in less adherent and 

inhomogeneous coatings. This was exacerbated at high temperature due to nucleation in 

the vapor phase. 

R.A.Levy[48], et al. observed wormhole formation in the Si substrate. They also 

reported that the wormhole is non-crystal resulting from both Si anh H2  reduction of WF6. 

McLaury[49], et al. have found that flourine was a major contaminant in the films. 

Transmission electron microscopy studies revealed damage at the (100) Si/Si02  interface 

in the form of worm tracks. Stacy[50], et al. performed TEM analyses on the W films and 

confirmed tungsten deposition filaments (also called wormholes or tunnels) in the silicon 
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substrate. Joshi[45], et al stated that H2  reduction produces purer films than Si reduction 

by getting oxygen in the reaction chamber. Thus, the resistivities for H2 reduced films (

910µΩ -cm) are far less than those of Si reduced films (130-140 µΩ-cm). They also noted 

that hydrogen reduction produces very rough films compared to silicon reduction. 

The frequently observed preferential tungsten crystal orientation in the H2 

reduction reaction is W(100)[47]. High H2/WF6  ratios have been reported to give W(111) 

orientation[51]. In a more detailed structural study, Kamins[52], et al. examined 

orientation change with thickness for W films. They used a chromium nucleation layer to 

prevent the Si-WF6  reaction from influencing the W film structure. 

R.V.Joshi[53] found W film stress deposited from H2 reduction is a strong 

function of temperature and a weak function of H2/WF6  ratio and pressure. High 

temperature, pressure, and H2/WF6  favor lower W film stress. The higher temperature, the 

lower stress. Other researchers[54] reported similar trend of stress dependency on 

temperature and H2/WF6  ratio and found the tensile to compressive stress conversion at 

chuck temperature of 500-700°C for a pressure of 1.5 Torr. 

13.2.3 Reduction WF6  with Sat: In addition to H2  the reduction of WF6  may be 

accomplished by a number of reducing gases and the most important alternative to H2 is 

silane (SiH4). SiH4  is known to readily dissociatively chemisorb on clean tungsten 

surfaces. This tungsten CVD process via silane reduction is similar to the tungsten silicide 

CVD process that uses higher SiH4/WF6  pressure ratios and usually deposits in a 

nonselectively fashion[55]. For low SiH4/WF6  ratios (typically less than 1:1) the process 
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leads to a-W deposition, often with a high degree of selectivity. At somewhat higher 

SiH4/WF6  ratios (typically I to 3) the process leads to higher resistivity deposits of ci—w or 

tungsten silicides, usually in a nonselective fashion. Some of the original work using 

silane as a reductant was actually aimed at preventing excess silicon substrate 

consumption or other detrimental interactions of WF6  (+H2) with the substrate such as 

encroachment or "wormhole" formation. In addition to the demonstrated selectivity and 

minimized silicon substrate damage, the process also generated interest because of the 

extremely high growth rates that could be achieved at relatively low temperature (up to 

—I µm/min at 300°C). Some of the original enthusiasm has dampened as many workers 

found selectively difficult to maintain on a reliable basis, as was the case with the 

hydrogen reduction process. 

Most of the kinetic studies [56]of the silane reduction process have been 

performed in LPCVD reactors. A weaker temperature dependence and the pressure 

dependence are generally observed: 

The higher deposition rates and weak temperature dependence led a number of workers to 

suspect that the deposition process was mass transport limited. 

Kobayashi[57], et al. used in situ infrared spectroscopy to sample the gas phase 

above a wafer in an LPCVD reactor during deposition. They found no evidence for HT 

production at typical CVD temperatures (250 to 350°C) but found that SiHF3  rather than 
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SiF4  was the main silicon fluoride produced, so they proposed the possible reaction 

pathway as follows: 

The resistivity of tungsten deposited from silane reduction is related to the 

impurity content. Juugd[58], at al. employed AES and electron probe micro analysis to 

elucidate resistivity dependence on the incorporated silicon. On the contrary, Suzuki[59], 

et al. stated that resistivity depends mostly on fluorine content, as determined by SIMS 

analysis, rather than silicon and oxygen content. The film from SiH4  reduction has higher 

resistivity value than that from H2. S.Sivaram[60], et al. found not only the impurity 

content but also the microstructure account for this difference. 

Orientation of deposited films is another factor to be considered for kinetic 

evaluations. X-ray diffraction patterns in some research papers showed a (110) preferred 

orientation of tungsten crystals when a-W was the dominant phase[35,55,59]. In 

contradiction to these, Schmitz[61],et al. reported a dominant (100) orientation for both 

H2-WF6  and SiH4-WF6  systems. These distinction may be a result of different deposition 

kinetics and/or be the different substrates. 

The film deposited from silane reduction has higher stress than that from H2 

reduction[62]. Takayuki[63], et al. found different types of heating lead to different stress 

in the W film deposited from SiH4  reduction. In ER-heating from the wafer back and in 

resistance heating, stress is tensile stress at low deposition temperature. The tensile stress 
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decreases as deposition temperature increases. In 1R-heating from the wafer front, stress is 

compressive at all deposition temperature. Takashi[64], et al. use ECR plasma CVD 

system to deposit W film which has a low compressive stress due to ion bombardment. 

1.3.2.4 Dissociation of W(CO)6: Tungsten hexacarbonyl, W(CO)6, is a stable solid with a 

relatively low vapor pressure (350 mTorr at 500 °C). Because the W-CO bond energy is 

relatively weak (-43 kcal/mol) compared with the W-F bond energy (-121 kcal/mol). 

This allows for tungsten deposition at relatively low temperatures without the aid of a 

reducing agent. Factors that have limited the utility of W(CO)6  are the inconvenience of 

using a solid source, its low vapor pressure, and the incorporation of carbon and oxygen 

into the deposits. 

Relatively clean α-W can be deposited bove 450°C at a rate of —100A/min and 

with resistivities 3 to 6 times the bulk value. Films deposited below 450°C are normally 

heavily contaminated with carbon, resulting in resistivities 20-300 times the bulk value, 

and exhibit an fcc crystal structure.The deposition rate exhibited an apparent activation 

energy of 18 kcal/mol[32]. 

Tungsten deposition via W(CO)6  decomposition is nonselective toward Si and 

Si02. Films deposited on silicon oxides are generally adherent, in contrast to the hydrogen 

reduced WF6  films. The hexacarbonal process does not produce the deleterious effects at 

the silicon interface that are sometimes seen with the hexafluoride processes. This is not 

surprising because CO interactions with silicon are rather weak and do not lead to gas-

phase products. 



CHAPTER 2 

THE DEPOSITION PROCESS OF TUNGSTEN FILM 

2.1 Reaction System 

2.1.1 Equipment Set up 

The deposition reaction was carried out in a SPECTRUM model 211, cold wall, single 

wafer CVD tungsten reactor system fully automated computer control as shown in figure 

2.1. In this system 10 cm diameter silicon wafers are loaded through a load-lock by a 

casette-to-casette transport facility. The wafer is positioned against the quartz window in 

an inverted position and held in place by a lift pins, which leaves the front side exposed 

to the reactant gases. The wafers are heated on the backside by means of radiant energy 

through the quartz window, which was generated from a quartz lamb. 

The gases used 	for the experiments are semiconductor-grade tungsten 

hexafluoride (WF6) and semiconductor-purity hydrogen (H2). The WF6  was provided in 

an stainless steel container, which was attached to the reactor through a adjust valve. The 

hydrogen was directly connected with the chamber. The gas flow rate was controlled by 

the Gas Controller Module in the Spectrum 211. The controllable operation range for 

mass flow controller are 0-10 sccm (standard cubic centimeters per minute) for tungsten 

hexafluoride and 0-1000sccm for hydrogen. 

Two vacuum pump packages are used in this system. The pump package is a 

pump system which combined one booster and one rotary vane pump. One pump 
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pressure at the set point. The second pump package was used to transport the wafer to the 

chamber. Additional rotary vane pump is used to pump the WF6  to the air during the 

ramp and temperature stabilize steps. At these two steps, WF6  valve is opened to keep the 

WF6  flow rate stable. 

Figure 2.1 Schematic diagram of the chamber 

2.1.2 Pre-deposition Preparation 

2.1.2.1 Leak Cheek: A leak check was conducted before beginning of any experimental 

run to avoid oxygen and ensure formation of films with desirable and reproducible 

quality. For the SPECTRUM CVD 211, all experimental conditions can be directly read 

from the monitor; therefore, during this leak check procedure, the champer was 
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connected to a vacuum system, the pressure decreased to near zero. This process takes 

several seconds. 

2.2 Experimental Procedure 

2.2.1 Wafer Preparation and Transport 

All wafers were marked first, and weighed accurately to 0.1 mg before and after 

deposition. In this system 10 cm diameter single crystal, <100> silicon wafers are loaded 

through a load-lock by a casette-to-cassette transport facility. The whole wafer transport 

was carried out by automatically control of the machine, and the whole operation process 

also can be controlled from the monitor. 

2.2.2 Film Deposition 

The film deposition is achieved in five steps process: (1) pre-purge, (2) ramp up 

(increasing the reactor temperature rapidly from room temperature to set point), (3) 

temperature stabilize (time: 30 seconds), (4) tungsten deposition, (5) post purge. The 

purposes of pre-purge and post-purge are cleaning the chamber. They are divided into 

several substeps (Table 2). During the ramp and temperature stabilize steps, H, is 

introduced into the chamber and the WF6  is directly connected with a separate vacuum 

pump which pumps the WF6  to the air. In the deposition step, WF6  is switched to the 

chamber. The reactor wall were maintained at 30°C by using cooling water at that 

temperature. During deposition the flow rate, the temperature and the reactor pressure 

was kept in a small range around the set point. 
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Table 2 The detailed sub-step in the Pre-purge and Post-purge step 

Pre-purge post-purge 

sub-step condition sub-step condition 

1)Purge P>30mTorr (1) Pump own P<10mTorr 

2)Pump down P<10mTorr (2) Pump own T=30 second 

3)Pump down T=10 second (3) Purge P>30mTorr 

4) Purge P>30 mTorr (4) Pump down P<10mTorr 

5)Pump down P<10 mTorr (5) Pump down T=30 second 

6)Pump down T=10 second (6)Purge P>30 mTorr 

(7) Pump down P<10mTorr 

(8) Pump down T=30 second 

(9) Purge P>30mTorr 

(10)Pump down P<10mTorr 

(11)Pump down T=30 second 

(12)Purge P>30mTorr 

(13)Pump down P<10mTorr 

(14)Pump down P>30mTorr 

2.3 Tungsten Film Characterization Techniques 

2.3.1 Physical Property 

2.3.1.1 Film Thickness: The weight change of the wafer after the deposition was 

measured by electrobalance. Known the wafer area A (78.54 cm2), and the mass change 

after deposition, ∆m, tungsten film thickness, t, is found from the formula: 



A constant bulk density, pb, of 19.3 g/cm3  [65] is assumed throughout the calculations. 

2.3.2 Structure Property 

2.3.2.1 X-ray Diffraction Analysis: The crystallographic orientation of the CVD 

tungsten film was established by X-ray diffraction measurements using with a Cu target 

on a Rigaku DMAX II system operating at 30KV and 20mA. Scanning speed of the 

Goniometer is 2°2θ/min. Tungsten deposited Si wafers are scanned through a 28 range of 

20-90°. 

2.3.3 Electrical Property 

The sheet resistance values are directly measured by a home-built 4-point probe 

equipment. The probes are placed colinearly, as shown in figure 2.2 [66]. In this 

configuration, a constant current I is passed through two of the probes, and the voltage 

difference between the other two is read. Provided the conducting layer is thin, the sheet 

resistance can be calculated from the equation 



32 

In this experiment, sheet resistivity is measured at different locations on each 

wafer as shown in figure 2.3. The ranges of voltage and current used in measurements 

are MO mV and <100 mA, respectively. All the measurements are taken at room 

temperature. 

The film resistivity can be calculated using the resistance. Consider a rectangle of 

a layer of length 1, width b, and thickness t as shown in figure 2.2. The resistance 

measured in the direction parallel to the film is 

where, p is the resistivity of the film. If 1 equal to b, the equation shown as above 

becomes 

when the thickness and sheet resistance are measured, the film resistivity can be 

calculated by 
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Figure 2.2 Four-point probe system for sheet resistance 
measurement. 

Figure 2.3 The resistivity measurement position on the wafer 

2.3.4 Mechanical Property 

Film Stress was determined by measuring changes in the radius of curvature of a wafer 

resulting from deposition on a single side. The distance between two points generated by 

light from two fixed and paralled He-Ne lasers was determined by reflection from the 

surface of a wafer before and after deposition. An angled mirror was used to project the 
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reflection of the two points onto a wall where their separation could be accurately 

measures. The stress was calculated using Stoney's equation [67]: 

where E is Young's modulus for the substrate, v is Poisson's ratio, is  is the substrate 

thickness, t is the frlm thickness, and the net radius of curvature is 

where R1  and R2 are the radii of curvature of the wafer before and after deposition 

Figure 2.4 Optical system for stress measurement setup 

respectively. For Si <100> wafers, E=1.8x1011  Pa and ts=525 µm. Figure 2.4 shows an 

optical imaging system for set up. 



CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 The Effects of Deposition Variables on Film Deposition Rate 

3.1.1 Temperature Dependent Study 

The temperature dependent behavior of deposition rate is shown in Figure 3.1 for the 

conditions of a constant WF6  flow rate (5 sccm), H2 flow rate (100 sccm) and the total 

reactor pressure (500 mTorr). The figure shows a typical deposition rate vs. temperature 

dependency for this type of deposition reaction. Two different regimes can be seen which 

are defined by the rate limiting mechanism of the reaction: (1) The first regime is from 

300 °C to 600 °C, the growth rate of tungsten increase quickly with temperature. This 

regime is controlled by the surface reaction rate.(2) The second regime is above 600 °C. 

The growth rate of tungsten increase slightly with temperature. This regime is controlled 

by the rate at which reactant is supplied to the substrate. The reaction rate controlled 

regime seems to follow an Arrhenius type behavior. An activation energy of about 56 

kJ/mol was calculated from the slope in the region where Arrhenius behavior was 

observed (300-500 °C) by using a linear regression analysis to the following equation: 

This result is comparable to the value 69 Iditnol reported by Mcconica [43] 
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Figure 3.1 Variation of growth rate as a function of temperature at a constant total 
pressure, WF6  flow rate, and H2/WF6  ratio 

3.1.2 Pressure Dependent Study 

Under constant conditions of temperature (500 °C), WF6  flow rate (5 sccm), and H2/WF6  

ratio (20/1), the pressure dependent behavior of growth rate dependence on pressure was 

investigated over the range 100 to 1000 mTorr. The results, shown in Figure.3.2, indicate 

a linear dependence which is consistent with a Langmuir-Hinshelwood mechanism. The 

higher the pressure, the more gaseous absorbed reactants on the substrate surface, the 

faster the growth rate. The linear line does not have a zero-pressure intercept caused by 

the fast Si reduction of WF6. To obtain the relationship of H2  partial pressure with the 

growth rate, first we assume the equilibrium condition to calculate the H2 partial pressure 

in the chamber. The quantity of all the species in the chamber are defined as: 
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FH2  and FWF6  are the flow rate of H2  and WF6  respectively. X is the quantity of WF6  

which is converted to W. Because the reactor was cold wall type and the W selectively 

deposited on the Si wafer not on the quartz window, we assume all the W are deposited 

on the Si wafer. So we can use the W growth rate R(cm/sec) and the Si wafer area to 

calculate X (sccm): 

Swafer is the area of the wafer, which is 78.54 cm2. p is the tungsten density, which is 19.3 

g/cm3   M is the molar weight of tungsten, which is 183.85 g/mol. After calculating the X, 

the partial pressure of H2  can be easily calculated: 

The relationship of H2 partial pressure with growth rate is shown in figure 3.3. The 

diagram shows a linear dependence which is different from other reporter[43,44]. This 

may be due to the different reactor and different pressure range. Such linear dependence 

is consistent with a Langmuir-Hinshelwood reaction mechanism. Mcconiica, et al [43] 
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point out the adsorption of hydrogen is growth rate limited step,. So according to the 

Langnuir-Hinshelwood mechanism, the growth rate of tungsten for low pressure 

deposition is given as: 

Where k is the reaction rate constant and K is the adsorption equilibrium constant. For 

low pressure values, KPH2  is small compared to 1 thus yielding the observed linear 

dependence. 

Figure 3.2 Variation of growth rate as a function of total pressure at a constant 
temperature,WF6  flow rate, and H2/WF6  ratio 
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Figure 3.3 Variation of growth rate as a function of H2 partial pressure at a constant 
temperature and WF6  flow rate, and H2/WF6  ratio 

3.1.3 Flow Ratio Dependent Study 

In Figure.3.4, the deposition rate is plotted as a function of H2/WF6  ratio for constant 

conditions of growth temperature (500°C), total pressure (500mTorr) and WF6  flow rate 

(5sccm). The deposition rate was found to increase in the low flow ratio regime (below 

10) followed by saturation above this flow ratio. The former H2  partial pressure effect on 

growth rate study show that the deposition rate increase with the partial pressure of H2 . 

Therefore, when the flow ratio (H2/WF6) increase, the partial pressure of H2 increase, the 

deposition rate increase. But after the flow ratio reach a certain value, the H2  in the 

chamber will saturate and not enough WF6  is present to meet the increasement of 

deposition rate. The deposition rate will no longer increase. 



Figure 3.4 Variation of growth rate as a function of flow ratio at a constant temperature, 
pressure and WF6  flow rate 

3.2 Tungsten Film Characteristics 

3.2.1 Stress 

The stress of the deposited film is a very important aspect of tungsten film for X-ray 

absorber application and as interconnect material. Stress in the absorber exerts a torque 

on the membrane at the edges of features, and this leads to out-of-plane and in plane 

distortion. In order to find the effect of deposition condition on film stress, three 

operation parameters are considered to be variables for the stress studies. The three 

studies are based on the standard reaction condition (growth temperature 500°C, total 

pressure 500 mTorr, the flow ratio of H2  to WF6 20). The ranges for these parameters 

were varied from 300-625°C for the temperature series, from 100 to 1000 mTorr for 
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pressure series and from 1 to 40 for flow ratio series. These results are shown in Figure 

3.5, 3.6 and 3.7 respectively. 

Figure 3.5 Variation of stress as a function of temperature at a constant pressure, WF6  

flow rate, and H2/WF6  ratio. 

3.2.1.1 Temperature effect: It is clear the stress in the tungsten film has a strong 

relationship with temperature. Between the 300 and 600°C, the stress decrease largely 

with temperature. According to the buried layer (BL) model for steady-state film growth 

proposed by Klokholm and Berry[68], it is suggested that tensile growth stresses are 

generated " by the annealing and constrained shrinkage of disordered material buried 

behind the advancing surface of the growing film." It is assumed that the amount of 

built-in disorder is proportional to the final stress in the film after complete relaxation. 

The model predicts that the tensile growth stress increases with increasing growth rates 

and/or decreasing deposition temperatures. 
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The measured tensile growth stress at approximately 7000A thickness can be 

analyzed using the concepts of Klokholm and Berry. An activated surface relaxation 

process is defined with atomic jump frequency v: 

with vo  a frequency factor, Es an activation energy, R the gas constant, and T the 

absolute substrate temperature. The number of jumps nj  a surface atom can make before 

it is buried behind the growing surface will then approximately be 

with r the growth rate in monolayers (ml) per second. If this number of jumps is low, 

lattice defects will be present in an as-deposited incremental layer of the film. These 

defects represent an excess volume AVm, which, due to relaxation, will be transformed 

to an elastic strain in the film. The excess volume is defined as the difference between 

the molar volume of the as deposited, unrelaxed film and the molar volume Vm of a 

relaxed constrained film. If we assume this excess volume to be proportional to nj-1, then 
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or 

where c is the biaxial strain, a is the biaxial stress, and k is a proportionality factor. 

Assuming the tungsten film's modulus (Ef= 410 GPa) is not dependent on the 

deposition temperature and is almost elastically isotropic (v0.28), so 1 GPa biaxial 

stress corresponds to 0.18% biaxial strain. According to Equation 9 the strain 

increases linearly with the growth rate, while it decreases exponentially with the 

deposition temperature. If the above mentioned model is valid, the logarithm of εr-1, 

as determined from the a values, versus the reciprocal absolute temperature should 

yield a straight line. Taking the thickness of a W monolayer, 2.74 A, a straight line is 

obtained, with a slope corresponding to 59 kJ/mol .This value is different from the 

value 143 kJ/mol reported by Leusink et al. [69]. 

After temperature is higher than 600°C, stress increase slightly. This may be due 

to the strong substrate encroachment. The higher the temperature, the more the silicon 

consumption problem. Kamins, et al.[70] concluded that a significant contribution to the 

stress can arise from the initial reaction between the WF6  and Si and little intrinsic stress 

is added during the hydrogen reduction reaction. The high substrate encroachment lead to 

the higher stress. Another Reason is that the reaction is in the mass-transport limited 

regime, the film always has sufficient time to complete relaxation before buried by the 

advancing surface of the growing film. So the stress no longer has relationship with the 
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temperature. This suggest Es in the buried layer model is only applicable in the reaction 

rate limited regime. 

Figure 3.6 Variation of εr-1  as a function of reciprocal temperature 

3.2.1.2 Pressure Effect: The pressure dependent behavior of stress is shown in figure 

3.7, with the condition of a constant temperature (500 °C) and flow ratio 20. The stress 

increase with the pressure. When the pressure increase, the deposition rate increase. From 

the buried layer (BL) model, We know the stress in the film is linearly with the 

deposition rate. So the pressure increase, the stress increase. But compared with the 

temperature effect, the pressure effect is not very strong. 
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Figure 3.7 Variation of stress as a function of pressure at a constant temperature, WF6 
flow rate, and H2/WF6  ratio 

3.2.1.3 Flow Ratio Effect: The flow ratio effect on the film stress was studied on the 

constant WF6  flow rate 5 sccm, temperature 500 °C, and pressure 500 mTorr. Before the 

ratio reach to 10, the stress increases quickly due to the deposition rate increase. After 

this ratio, the stress tend to keep as constant. From the kinetics study, we know the H2  in 

the reaction chamber saturate at the high flow ratio and the stress no longer increase 

because of the constant deposition rate. 

3.2.2 Resistivity 

Another important application of the tungsten film is for interconnect material. The 

primary requirements for the interconnect material are low resistivity. This low 

resistivity can allow higher current density to be imposed on tungsten wiring with a 



Figure 3,8 Variation of stress as a function of flow ratio at constant temperature, 
pressure and WF6  flow rate 

smaller line width, minimized interconnection or RC time delay of the device. Deposited 

tungsten film resistivites were calculated from sheet resistance values and film thickness. 

The film thickness values used were those calculated from the gravimetric, constant 

density analysis, for which a constant film density (19.3 g/cm3) was assumed. In fact, the 

density of deposited tungsten film maybe is different from the bulk density. An accurate 

film thickness shoud be measured from SEM, stylus profilometer, etc[71]. Reported 

values for resistivities correspond to the measurement values. The resistivities were 

found to be higher than tungsten bulk resistivity, 5.3 µΩ -cm at 20 °C [33]. 

In order to investigate the resistivity further, three operation parameters 

(temperature, pressure and flow ratio) are considered as variables for the resistivity 

46 



47 

studies. The three studies are based on the same condition as these parameters effect on 

stress study. These results are shown from figure 3.9 to figure 3.11 , and it is clear that 

the measured resistivity varies in a small range for both pressure and flow rate study 

series. The independent behaviors of pressure (100-1000 mTorr) series and flow rate (1 

to 40) series can be determined. However, in temperature study series, shown in figure 

3.9, the values of resistivity seems to increase at the lower deposition temperature from 

350 to 300°C and decrease at the higher temperature. When W deposited at the lower 

temperature, the poorly connected grains of structure, and the electron scattering effect 

caused by phonons, impurities, vacancies, dislocations, grain boundaries, precipitated 

second phase particles, and compound phase [72] may be used as an explanations for low 

resistivity at low temperature. when deposited at high temperature, the grain size is 

large[54], this will result in the resistivity decreasing. 

Figure 3.9 The dependent behavior of resistivity of CVD W on temperature 



Figure 3.10 The independent behavior of resistivity of CVD Won total pressure 

Figure 3.11 The independent behavior of resistivity of CVD Won flow ratio 

4$ 
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3.2.3 Crystal Orientation 

The types of phase and orientation of tungsten crystals formed by the deposition reaction 

were examined by X-ray diffraction analysis. The range examined for 20 was between 

30°  and 80°, wide enough to identify a-W, β-W, and tungsten silicide phase. All the 

temperature series, pressure series and flow ratio series were measured by X-ray 

diffraction. No film was found to contain trace amount of β-w, whose characteristic 

peaks exist on 35.6, 40.04, 43.91, 64.17, 66.76, 70.17, 75.37 20°  [73]. Figure 3.12 shows 

the typical X-ray diffraction pattern of tungsten film. Three a-tungsten charateristical 

peaks (40.26, 58.27, and 73.19 20,°) corresponding to lattice spacing (2.238, 1.582, 

1.292 A) are apparent in all the diffraction pattern. 

The preferred orientation of the specific (hkl) plane can be evaluated by texture 

coefficient, TC (hkl) [74]: 

where Im, (hkl) is the measured X-ray relative intensity of the (hkl) plane, I, (hkl) is the 

relative intensity in the powder pattern, and n is the total number of reflection peaks. 

Table 4 give the X-ray relative intensity of tungsten random powder[73]. 

The larger TC values mean a more markable orientation. If TC (hkl) is less than 

1, the (hkl) plane has no preferred orientation. All the samples'TC (110) and TC (211) 

are less than 1 and TC (200) are larger than 1, so there is preferred orientation (200). 
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This is because the W (200) plane has same in-plane lattice geometry of square as the Si 

(100) plane, however, the W (110) has diamond in-plane lattice geometry[65]. The 

anothert reason is that the bcc tungsten is not closed packed and more open compared 

with (110) plane, the tungsten may be easy to adsorb on this open structure. 

Figure 3.13 depicts the effect of deposition temperature on preferred orientation 

of (200). Between 300 to 400 °C, the preferred orientation of (200) increase with the 

temperature, then decrease quickly up to 500°C, after this the preferred orientation 

increase again. The temperature change will affect the adsorbate surface diffusion on the 

(200) and (110) plane, will affect the reconstruction of (200) plane [75], and will change 

the interface of Si/W. These factors all will affect the orientation of the films. It is these 

factors' inter balance that lead to this unique trend. R. Blumenthal, et al.[54] observed 

another phenomenon, the amount of (200) orientation decreases from 400-450°C, peaks 

at 500°C, and disappears as the temperature increases up to 650°C. This different result 

may be due to the different substrate. They coated Si wafer with SiO2  and TiW layer. It 

is known the lattice match between the substrate and the growing film will determine the 

crystal orientation. 

The pressure effect on the texture coefficient of (200) plane is shown on Figure 

3.14. The preferred orientation of (200) plane increase with pressure followed by a 

constant trend. But this trend is not remarkable compared with that of the temperature 

dependency because the TC (200) kept in a small range between 1.4 to 1.6. 

The flow ratio has a strong relationship with TC (200) which is shown on Figure 

3.15. The preferred orientation of (200) plane decrease quickly with flow ratio than tend 
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to keep as constant at high flow ratio. This relationship is exactly opposite to the 

relationship between flow ratio and growth rate. We can not attribute the effect of flow 

ratio on TC (200) behavior to deposition rate because in the pressure series we find the 

opposite trend is formed. The reason which lead to this behavior is that more hydrogen 

which occupy the sites on the tungsten (200) plane will prevent the W adsorbing on this 

plane, then (200) plane orientation will decrease. 

Table 4. X-ray diffraction lines for a-W from random tungsten powder 

plane lattice spacing (A) relative intensity 
2θ 

110 2.238 100 40.26 

200 1.582 15 58.27 

211 1.292 23 73.19 

Figure 3.12 The typical X-ray diffraction of tungsten film 



Figure 3.13 Temperature effect on texture coefficient of (200) plane 

Figure 3.14 Pressure effect on texture coefficient of (200) plane 
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Figure 3.15 Flow ratio effect on texture coefficient of (200) plane 
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CHAPTER 4 

CONCLUSIONS AND SUGGESTIONS 

This research included the fabrication and characterization of CVD tungsten film from 

H2 and WF6  for X-ray absorber in X-ray lithography technology. 

Low stress films have successfully been synthesized on pure silicon wafers in a 

cold wall, single wafer reactor by low pressure chemical vapor deposition from H, and 

WF6  in the temperature range of 300-650 °C, pressure range of 100-1000 mTorr, flow 

ratio range of 1-40. The growth kinetics were determined as a function of temperature, 

pressure and flow ratio. The deposition rate as deposited films was found to follow an 

Arrehnius behavior in the range of 300-500°C with an activation energy of 55.7 kJ/mol. 

The growth rate was seen to increase linearly with total pressure and H2 partial pressure. 

In the H2/WF6  flow ratio studies conducted at 500°C and 500 mTorr, growth rate 

increase with flow ratio when flow ratio is lower than 10 followed by saturation above 

this ratio. The stress of deposited film strongly dependent on temperature and has weak 

relationship with pressure and flow ratio. These three parameters effect on stress can be 

explained by buried layer model which show the stress of as deposited film linearly 

dependent on growth rate factor and exponentially dependent on temperature factor. Low 

resistivity values (less than 10 µΩ • cm) were obtained for as-deposited condition. The 

pressure and flow ratio seem no effect on resistivity but resistivity is lower at high 

temperature and higher temperature. The X-ray diffraction patterns indicate the 
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<200> has preferred orientation in all as deposited films. The preferred orientation 

increase with temperature from 300 to 400 °C, then decrease up to 500°C, then increase 

again. The preferred orientation increase with pressure followed by constant at high 

pressure. But the preferred orientation decrease with flow ratio then tend to keep at 

constant at high flow ratio. 

However, this study still did not synthesize free stress film. Some improvement must be 

done which include: 

(1) Wafer treatment: 

Some researches show the major stress in the CVD tungsten film come from the 

reaction interface of W/Si, So preventing the reaction in the interface between Si and W 

can reduce the stress. This can be realized by first depositing TiN at the Si wafer. This 

TiN layer not only can reduce the stress but also can improve the W adhesion to the 

substrate. 

We deposit the W on the Si wafer, but Si is not a good material for X-ray mask 

membrane. We had better deposit W on the SiC or SiN substrate. Because the different 

substrate will lead to different nucleation it is expected to obtain the different optional \V 

deposition condition. 

(2) Plasma CVD process conditions: 

Plasma enhanced chemical vapor deposition of W can get the compressive stress but 

low pressure chemical vapor deposition of W can get the tensile stress. If we can 

combine these two processes, maybe we can get the free stress film. 

(3) Reduction agent development: 
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There are several chemicals which can be used to reduce WF6  precursor. Silane is one 

of the candidates in that it will suppress the reaction between W and Si. We should 

explore the stress if plasma-enhanced deposited from the silane using Spectrum 211. 

(4) Anneal as deposited film 

Annealing the as deposited film will decrease the stress in the film. We should try to 

use the method and find the mechanism of this method. 
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