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ABSTRACT

A GENERAL METHOD FOR THE INVERSE KINEMATICS OF ROTATIONAL 
DISPLACEMENTS IN SPATIAL MECHANISMS

by
John D. Kliminski

An iterative technique was developed to solve the inverse kinematics problem for 

the joint rotations in both closed-loop and open-loop spatial mechanisms and robotic 

manipulators in any prescribed configuration. The method is based on fixing one link in 

space and maneuvering the other links to form a closed chain, following an approximation 

of the actual physical assembly of the mechanism. In order to apply the same principle to 

both types of mechanisms, an open-loop mechanism was modeled as a closed-loop 

mechanism by creating a fictitious fixed link in the free space between the base and the end 

of the chain of links. A computer program was written to test the validity of the 

algorithm. The results of several examples and comments on the success and limitations 

of the method are included. Possible applications and suggestions for future work are 

proposed.
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CHAPTER 1

INTRODUCTION

1.1 The MAIM Method 

This thesis introduces a novel iterative method for determining the rotational 

displacements in a spatial mechanism. This technique is called the Miss Angle Iteration 

Method, abbreviated MAIM, and has been developed as the first part o f a two-stage 

solution to the general spatial inverse kinematics problem. The MAIM method subdivides 

the general problem to remove the effects of the translational displacements from 

consideration, allowing the determination of the correct rotational joint displacements 

required to achieve closure of the kinematic chain. Given the desired orientation of one of 

the links, the method maneuvers the system of unconstrained links to connect to the 

specified link in an approach paralleling the actual physical assembly of the mechanism in 

such a configuration. The MAIM method provides the solutions for the rotations at the 

joints, to be used as knowns in a later routine to compute the translations.

1.2 A Brief Commentary on Kinematics

The science of kinematics comprises the study of mechanisms in all their complex and 

diverse forms. Even though considerable work has been accomplished, the matter of 

inverse kinematics, determining the joint displacements corresponding to a desired 

configuration, continues to confound engineers and resist all but the most complicated and 

limited solutions. An effective means to overcome the level o f difficulty commonly 

encountered is required.

1
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1.3 Definition of a Mechanism

The term ‘inechanism” refers to a mechanical device for the purpose of transferring 

motion or force from a source to an output (Sandor and Erdman, 1984). Mechanisms are 

comprised of links connected by joints. Presuming that the links are rigid, the 

displacements at the joints determine the configuration of the mechanism. These joints 

can take many forms: revolute, prismatic, cylindrical, spherical, and others, allowing 

motion in one, two, or three directions. In each case, this motion is some combination of 

rotation and translation. Each of these possible motions at a given joint is referred to as a 

degree of freedom (Sandor and Erdman, 1984).

Mechanisms are classified according to their construction. Closed-loop 

mechanisms are arranged such that their links connect to form a closed kinematic chain. 

Open-loop mechanisms, by comparison, do not form a closed chain, but rather feature a 

free end able to move to any position within the reach of the linkage. Each of these types 

can operate in two or three dimensional space (Nikravesh, 1988).

Planar mechanisms, as their name suggests, operate entirely in one plane or in 

parallel planes in the case of the necessity to overlap links. As such, they are somewhat 

limited and by those limitations considerably simpler to analyze. Constrained to move in 

only two dimensions, the mathematical analysis of their displacements can be tedious but is 

tenable. Most of this area has been worked to satisfaction at this time. A new level of 

complexity appears when adding the option to move in the third dimension.

Spatial mechanisms are useful for certain applications and are becoming more 

prominent. With the advent of such machines as robotic manipulators, these mechanisms 

have proven to be useful due to the freedom and versatility provided by their ability to 

move in space. The analysis of these three-dimensional linkages is considerably more 

complicated due to the larger number of independent variables involved - one for as many 

as six possible degrees of freedom for each joint in a mechanism with potentially unlimited 

numbers of joints.
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1.4 The Positioning Problem

When a mechanism possesses a large number of joints, it becomes more versatile but also 

more complex, having more degrees of freedom and therefore more variables to work 

with. Since each joint contributes one or more variables for consideration and the effect 

of the alteration of each of these elements on the overall position of the mechanism is 

contingent on the current configuration of the others, the task of setting the joint variables 

to achieve a desired final position requires the careful adjustment of many mutually 

influential factors. Thus, it is necessary to properly specify many parameters in order to 

put a mechanism in a certain position. The problem remains of how to determine the 

correct joint displacements for such a position.

In the past, the analysis of mechanisms was almost entirely dependent on graphical 

techniques but recent advances in digital computers have made analytical solutions more 

practical (Doughty, 1988). Iterative techniques based on matrix algebraic solutions are 

now commonly used (Fu, Gonzalez, and Lee, 1987). Unfortunately, due to the large 

number of variables involved, this approach often results in cumbersome equations which 

are fraught with hindering complications and ultimately possess multiple equally valid 

solutions to further confound the user (Sandor and Erdman, 1984). Even the most basic 

mechanisms possess equations which are highly non-linear and transcendental.

1.5 Options to Determine Position

A convention for notation introduced by Denavit and Hartenberg (1955) has become 

standard. The Denavit-Hartenberg notation uses variables to specify the geometries o f the 

links and the displacements at the joints. Local coordinate frames are established on the 

end of each link and the joint displacements are measured from their axes. 

Mathematically, coordinate transformation matrices made up from these parameters can be 

used to specify the relationship between the frames fixed on neighboring links. Successive
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multiplication of these matrices will provide a relationship for any or all of the kinematic 

chain (Fischer; 1993).

The general coordinate transformation matrix is expressed in terms of the Denavit- 

Hartenberg joint parameters as

i+; u =
cos©; -cosaj sin0j sincX; sin©;
sin©; cosoi; cos©; -sinot; cos©;

0 sina; cosa;

where angle cij represents the twist of link i and angle ©i represents the angular 

displacement at joint i. The overall configuration of a mechanism can be expressed 

mathematically in terms of its joint variables as a complete product of these transformation 

matrices.

The resulting equations can be solved in either direction: using known joint 

displacements to compute the current output position or, given the desired output 

position, determining the required joint variables. These processes are more commonly 

known as “forward kinematics” and “inverse kinematics” respectively.

Establishing the chain of transformation matrices and forward-substituting with the 

Denavit-Hartenberg parameters expediently leads to the forward kinematics solutions. 

The inverse kinematics solution, however, is considerably more complicated. Unlike 

forward kinematics, no standard method exists so far for solving the position equations in 

reverse. This paper endeavors to present a new approach to this problem which has 

certain advantages over existing techniques.

1.5.1 Forward Kinematics

The forward kinematics solution is relatively simple, although not particularly useful in 

most applications. Forward kinematics requires only knowing the current joint variables 

and from those and the chain of transformation matrices it is possible to work through the
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system of mathematical expressions to find the current final position of the mechanism. 

All equations lead directly to this solution and all of the necessary variables are provided 

to carry out the calculations. Even though the algebra may be lengthy, it is guaranteed 

that it can be performed. What makes forward kinematics so easily solvable is that many 

variables lead to one result.

1.5.2 Inverse Kinematics

In contrast, inverse kinematics is considerably difficult while the results are essential in 

many practical applications. The inverse kinematics problem forces a user to start with the 

final position and try to work back to solve for all of the joint variables. Consequently, 

little data must be used to solve for many unknowns. In addition to this problem, the 

equations themselves are extremely complicated, with even the most simple systems being 

highly non-linear and transcendental. Ultimately there is no guarantee that a solution even 

exists, if for example the specified position is unreachable in reality, or that it can be 

obtained using the chosen or any mathematical approach, due to a wide variety of 

computational problems. A solution generally does not exist in closed form, and the 

multiple solutions are indistinguishable from each other until the procedure is completed.

All presently proposed approaches to inverse kinematics are lengthy, complicated, 

and highly specific for each application. Even the solutions for planar mechanisms are 

tedious enough to be undesirable to work through and performing the inverse kinematics 

for a spatial mechanism tends to be a complicated affair. Obviously, even when performed 

by a computer, these calculations cannot be carried out in Teal time” as is necessary for 

many industrial applications. As such, the calculations to obtain highly desirable results 

are extremely undesirable if not outright impossible to perform.

The inverse kinematics problem has yet to be solved in a satisfactory way. Even 

the simplest mechanisms represent considerable challenges. Many techniques have been 

developed over the years for various cases.
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Tsai and Morgan (1985) were able to reduce the equations for a five or six degree 

of freedom mechanism to a simultaneous system of eight second-order polynomials. To 

solve these they applied a generic continuation computer algorithm.

Pennock and Yang (1985) set up a systematic approach using dual-numbers 

specifically for mechanisms with specially designed geometries. They proceeded to solve 

the matrix equation of the kinematic chain for each special case individually. While this 

method, like the others, is successful, it would seem to be too specific to be useful in 

general applications.

Lee, Woemle, and Hiller (1991) were able to solve the inverse kinematics problem 

analytically for the general 6R manipulator. Aside from the fact that their solution 

required a 16th-degree polynomial, even they admit that each mechanism must be solved 

uniquely and that their method cannot be applied to all mechanisms. They also refer to the 

fact that most commercially available robots are designed with special geometry to allow 

the inverse kinematics problem to be solvable by conventional methods. Aside from the 

geometry, redundancy is desirable in most designs as a factor of safety, but such additional 

links bring additional levels of complication to their analysis and so any elements in a 

mechanism which are not essential are discouraged. From this it seems obvious that the 

development of a method which is not limited to special cases for convenience would 

allow more diverse design of manipulators.

Crane, Carnahan, and Duffy (1991) developed an analytical inverse kinematic 

solution for a seven degree of freedom robotic arm proposed by NASA for use as a 

manipulator on a space station by specifying one of the joint variables as prescribed to 

reduce it to one of three sets of six degree of freedom chains, which could be solved by 

any of the diverse but difficult means available. However, this solution is no more than 

removing one of the variables by arbitrarily declaring it to be a constant and it is unlikely 

that such a convenience will be available in its eventual operation.
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Manseur and Doty (1992a) reduced the four degree of freedom problem to a 

system of four linear equations in the sine and cosine of two of the joint variables, thus 

leaving a fairly simple problem of four equations with four unknowns. As for more 

advanced and complex mechanisms, they presented an iterative technique for a five degree 

of freedom problem in a companion paper (1992b) and state that their approach to that for 

six degrees of freedom was still in development as of that writing.

Another approach is that recognized by Ridley (1994a) who promotes graphical 

solutions, citing that most conventional solutions shroud the physical simplicity o f the 

mechanism with abstract mathematics. He also criticized most methods for their tendency 

to limit themselves by using only arms with spherical wrists to simplify the mathematics. 

In the end, his graphical approach was able to determine all but one joint variable, which 

he admits would require an analytical solution or physical measurement. However, in a 

follow-up paper, Ridley (1994b) presents an analytical approach to find all the possible 

joint positions for a given end position based on his graphical technique. Ultimately, 

despite his enthusiasm, Ridley admits that actual graphical methods are mostly useful only 

for visualizing the problem and its manipulation and that analytical solutions are more 

accurate and hence more useful, if more complex and obscure.

The methods mentioned above and many more not cited here involve complicated 

mathematical systems of intricate equations which are highly non-linear and 

transcendental. In the course of solving some or all of these equations, conflicts may arise 

with singularities. Where the solutions do exist, they are often buried in complicated 

manipulations of the final individual matrix elements which are unique for each type of 

mechanism. Even with the considerable insight required to perform these non-obvious 

matrix element derivation techniques, analytical solutions still present problems. The 

solution to the inverse kinematics problem for a mechanism with even a modest number of 

degrees of freedom most likely does not exist in closed form and furthermore, as 

previously stated, any one of those multiple solutions may or may not exist.
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Aside from the mathematical complexities, there are other disadvantages to the

majority of current solution schemes. Graphical solutions require great effort and

precision and their results are not very accurate. Analytical techniques of any sort tend to

be very obscure and involved and suffer from the reality that the more complicated the

mathematics, the greater the chance for the introduction of computational errors and the

more processing time required to arrive at the solutions. As with any purely mathematical 
*

presentation, there is a relatively complete insulation of the actual physical meaning of the 

problem to the user. Due to the highly complicated nature of the problem, many of the 

solutions that have been developed are limited to only very specific types o f mechanisms.

Due to the deficiency of the current solution techniques in inverse kinematics, 

more primitive means are often employed in areas where the results cannot wait for a 

general system to determine them. In most conventional cases now, a robot can be 

‘taught” by manually putting the manipulator arm in the desired position and allowing the 

computer controller to memorize the required joint positions for each case. However this 

will not be possible in many of the desired future applications of robotics such as remote 

operations where the operator cannot physically be present, such as space work, or where 

conditions are too dangerous, such as working with hazardous materials or in otherwise 

hostile environments. These existing methods of specifying the joint displacements are 

clearly inadequate for these purposes. There is a need for a reliable method to determine 

the configuration of the joints knowing only the desired end position.

1.6 Motivation for this Approach

The trend in inverse kinematics seems to be toward highly mathematical approaches. 

However, as can be seen, both analytical and graphical approaches have their drawbacks. 

The method proposed in this paper seeks to combine the better aspects of the two.

This approach, called the ‘Miss Angle Iteration Method,” abbreviated MAIM, is 

motivated by a physical sense of the mechanism. From this basis, it applies a minimum of
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mathematics to the analytical problem and translates some of that mathematics into the 

corresponding physical reality instead of the reverse to work toward the solutions for the 

correct joint displacements for a given position.

This novel approach offers several advantages over methods which follow only 

one of the traditional routines. No derivatives are needed. No mathematics more 

complicated than matrix algebra is required. Comparatively few calculations are made at 

each iteration, thus reducing the risk of round-off errors and other computational 

problems. The use of a computer is essential since this method, like most inverse 

kinematics solutions, is iterative and hence the computations involved are repetitive. The 

user retains a physical sense of what the method is doing and how it proceeds to reach 

closure.

1.7 Summary of this Presentation

This paper proposes a relatively simple technique for solving the inverse kinematics 

problem of general spatial mechanisms, evaluating the joint rotations by a combination of 

the physical and mathematical approach. It will be shown that the general matrix 

displacement equation can be partitioned into two distinct problems to effectively remove 

the translational displacements from consideration. The remaining equation represents a 

corresponding spherical mechanism which can be analyzed separately.

In practical applications, the final position of one link in a mechanism is known. 

For the MAIM method, the corresponding positions of the other links can be assumed and 

the mechanism can be constructed with the links in these incorrect positions. Due to the 

inaccurate joint displacements, the first and last links will not close at the initial joint, but 

rather the distal end of the last link will reach a position which leaves some gap between it 

and the proximal end of the first link. Examining the relationship between the 

unconnected ends of these links leads to the determination of the angular magnitude of this 

gap and the evaluation of the axis of that angle. Altering the joint which provides the best
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approximation of that axis by a portion of that angle will reduce the gap. The mechanism 

can then be reconstructed with the links in their new positions and the magnitude of the 

gap checked again. This process is repeated until the gap has been sufficiently diminished.

The remainder of this paper presents these concepts in detail. Chapter 2 

demonstrates the validity of the partitioning of the general problem into two independent 

components to establish the justification for solving for the rotational displacements 

exclusively. Chapter 3 presents the MAIM theory and the iterative method applied to 

closed-loop mechanisms. Similarly, Chapter 4 presents the theory and the iterative 

method applied to open-loop mechanisms. Chapter 5 contains representative examples 

solved by the MAIM method using a test program to prove the validity of the technique. 

Finally, Chapter 6, the conclusion, discusses the MAIM method, its advantages and 

limitations, some future developmental work, and several possible applications.



CHAPTER 2

PARTITIONING OF THE GENERAL INVERSE KINEMATICS PROBLEM

2.1 Derivation

One of the most serious problems in the solution of inverse kinematics problems is that 

such a large number of variables exist. Each of the joint displacements forms one variable, 

and the more degrees of freedom which the mechanism possesses, the more variables it 

requires. It would be veiy convenient if there were some way to reduce the number of 

variables that must be solved for at one time.

By deriving a general expression for the configuration of a spatial mechanism, an 

interesting property about the resulting simultaneous equations can be observed. The 

general matrix equation containing both the rotational and translational joint displacements 

can be partitioned into two separate equations such that one of these equations contains 

only the rotational joint variables. Originally presented by Fischer (1988) as part of a 

paper on the application of Principle of Transference in spatial mechanisms, this theorem 

has been used as a basis for the development of this work. The relevant sections of the 

derivation of this principle will be repeated here due to its significance in the usefulness of 

the theory presented herein.

Fischer's paper presented an approach using dual numbers. A dual number, D, 

consists of a primary component, A, and a dual component, B, and is represented in the 

form

D = A+eB

where s  is an arbitrary number such that e *  0 but e = 0  (Yang and Freudenstein, 1964). 

As with complex numbers, vector coordinates, and similar orthogonal systems, the

11
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primary and dual components are independent. This notation is very convenient for many 

kinematic analysis operations.

The dual representation of a coordinate transformation matrix consists of the 

primary component U, which represents a matrix containing only rotational displacements, 

and the dual component V, which represents a matrix containing a combination of 

rotational and translational displacements. For a link of length dm and twist cu with 

displacements of angle 6m and distance with respect to the local joint axis, these 

components become

cos0m -cosa  sin0m sina sin0mm m m  m m
m™U= sin0m cosamcos0m -s in a mcos0m (2 .1)

0 sinasina m cosa m

-sm sin0m dm sin am sin0m d m cosam sin0m 
- s mcosamcos0m +smsinamcos0m

s_cos0m -dm sinamcos0m -dm cosamcos0mm m  m m m  m m m

—s cosam sin0m +sm sinam sin0„m m m  m m m (2 .2)

0 d m cosam

By modeling each link with the dual number coordinate transformation matrix

m+1
m (2.3)

the kinematic matrix chain for the entire mechanism becomes

1T=1T 2T* •nn 2 3 n (2.4)



13

which can be rewritten in a simplified form as

J,T = A + sB  (2.5)

The condition for loop closure is

A + eB  = I (2.6)

Since the primary and dual components are independent by definition, they can be equated 

separately. Thus,

A = 1 (2.7)

B = [0] (2.8)

where I is the 3x3 identity matrix and [0] is the 3x3 null matrix.

Substituting the actual elements into Equations 2.4 and 2.5 above, the primary component 

becomes

n-,;U = A (2.9)

and the dual component becomes

 n - ' T T _ L  1t t 2 \ /  n - 1 ^

(2 .10)
v̂23u--n-i;u+ ^inv-^u

+ + 2'U  • • • "'2U D'[,V = B

Then, substituting the primary expression into its closure value, Equation 2.7, yields

By inspection, it can be observed that this equation contains only variables representing 

the rotational displacements. Substituting the dual components into its closure
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relationship, Equation 2.8, provides an equation in both the rotational and translational 

variables.

Equation 2.11 is of interest as it allows part of the inverse kinematics problem to 

be simplified to dealing only with the joint rotations. Ultimately, solutions must be found 

for all of the joint variables, including both the rotational and translational displacements; 

but this derivation proves that the solution of the inverse kinematics problem can be taken 

in two parts: solving for the joint rotations independently, then, using those rotations, 

solving for the remaining translations.

In summary, by modeling a general spatial mechanism with dual numbers and 

performing the matrix mathematics required to indicate closure, the final matrix product of 

the kinematic chain is shown to have a primary component and a dual component. By 

working with symbolic algebra to display the actual terms of the matrices, it can be 

observed that the primary component involves only the joint rotations as variables. This 

independent expression contains far fewer variables than that for the entire mechanism. 

The dual component involves both rotational and translational displacements, but if the 

correct values for the rotations are known from any means, the dual equation becomes an 

expression in only the translational unknowns. This reduced equation again presents far 

fewer variables than that encountered when attempting to solve the entire inverse 

kinematics problem at once. Fischer presented a method to solve for the translations 

knowing the rotations. Other matrix algebraic solution routines would also be effective. 

Since all of the relevant angles in the mechanism are known, all of the trigonometric terms 

effectively become constants. The remainder of this paper will present a technique for 

determining the joint rotations of a spatial mechanism for a given desired configuration, 

thereby attempting to provide the results of the equation represented by the primary 

component.



CHAPTER 3

PRESENTATION OF THE CLOSED-LOOP MAIM THEORY

3.1 Analyzing the General Spherical Mechanism 

With the general inverse kinematics problem partitioned, the present study will deal with 

the solution of the spherical component of the spatial mechanism. All of the terms used 

herein refer to the partitioned mechanism described previously and deal exclusively with 

the rotational displacements of the joints. Spherical mechanisms possess several 

interesting properties which make their analysis somewhat simpler. Since all of the joint 

axes in such a mechanism intersect, the overall mechanism can be visualized as though the 

links were arcs floating on the surface of a sphere. It is possible to travel from any point 

on the surface of the sphere to any other point by transforming along the radial axis into 

the center, rotating the necessary amounts, then transforming back out by the original 

radial distance. Since this radial distance is arbitrary, the entire spherical mechanism can 

be regarded as collapsing down to a point such that only the rotational quantities matter.

Each link can be modeled using the standard Denavit-Hartenberg convention. A 

local coordinate frame is attached to the distal end of the previous link and the joint 

displacements are measured from this origin point. The geometry of a link is expressed as 

the fixed distances separating adjacent coordinate frames. The Denavit-Hartenberg 

parameters include the angular twist of the link, a , the rotation of the joint, 0, the linear 

length of the link, d, and the linear displacement of the joint, s. Due to the spherical 

nature of the problem being analyzed, only the angular quantities, the link twists and the 

joint rotations, need to be considered. The translational displacements have been 

eliminated from consideration and the lengths of the links vanish since the joint axes of 

each link intersect. Thus, a general link in a spherical mechanism becomes as shown in 

Figure 3.1.

15
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Figure 3.1 The angular Denavit-Hartenberg parameters for a spherical link.

Ideally, if all of the joint variables are set correctly, the chain of links comprising 

the mechanism closes, as shown in Figure 3.2.

Figure 3.2 Ideal mechanism configuration.

However, in most applications, only the rotation at one joint is initially known. 

The others must be determined. The MAIM method can be applied to solve this problem.
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As the function of the MAIM method is only to improve the accuracy of an existing 

configuration, some initial configuration must be assumed. Thus, before beginning the 

method, it is necessary to make initial guesses of the rotational displacements for the 

remaining joints. These guesses need not be precisely equal to or even relatively close to 

the correct solutions. The first step in implementing the MAIM method is to assemble the 

mechanism in the configuration given by the current joint parameters. Since the position 

o f one link must be specified in any practical mechanisms application, this link can be fixed 

in its known position and the remainder of the linkage assembled using this link as a 

starting point with the other links in their currently designated positions. Due to the 

probable errors in the joint variables, the mechanism chain will not close. This imperfect 

configuration is shown in Figure 3.3.

gap

Figure 3.3 Mechanism configuration with errors.

For a closed-loop mechanism, it is important to note that for this method the input 

crank is fixed and the frame link is allowed to float along with all of the others in order to 

maneuver toward closure.
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3.2 Iterative Procedure to Achieve Loop Closure

As has been stated, the general transformation matrix U relates the joint axes to each 

other.

i+l U =
cosGj -cosoij sinGi sino^ sinG; 
sinGj cosai cosGj -sina^cosG, 

0 sinot: cosa;
(3.1)

Since the axis of rotation of a joint is taken to be the k axis in the local coordinate frame 

with its origin at that joint, let V| denote a vector in this direction for joint i for simplicity. 

For convenience, the first joint axis is established as a unit vector in the k direction o f the 

proximal joint on the first link in the local coordinates of joint i.

V,
0
0 (3.2)

Vectors corresponding to the other joint axes can then be obtained by successive 

coordinate transformations of this first vector.

Va-Juv,

V a ^ U ’UV,

V .- J U ’U -  “-IUV, (3.3)

If the joint variables deviate from their exact positions required for closure, these 

computations will result in n+1 axes for a closed-loop mechanism with n joints. The extra 

axis is that associated with the free distal end of the last link which fails to meet the
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proximal end of the first link. These two ends should meet to form one joint but, due to 

the errors in the link orientations, they do not. This concept makes physical sense in terms 

of the imperfect result obtained by the assembly of the mechanism with its links in 

incorrect orientations.

The condition for loop closure for the ideal case where all of the joints are in their 

proper positions is

^U ?U ---^U  = I (3.4)

However, if any of the joints are improperly aligned, this expression will not be true. 

Thus,

'2V ] V -  n+"U * I (3.5)

Hence, due to the errors in the joint variables, the kinematic chain does not close. 

Physically, this means that instead of closing, the ends of two of the links are left free. 

Thus, the matrix product represents not a return to the initial coordinate frame but an 

arrival at some other a point in space.

3.2.1 The Miss Angle and Miss Axis

The joint axes corresponding to these unconnected link ends shall be called the ‘terminal 

vectors,” Vi„ and Vout, being V] and V„+i respectively. These vectors represent the 

current orientations of the two free ends of the linkage. The gap between the terminal

vectors represents the angular miss in the closure of the mechanism. The discrepancy

between V|„ and Vont can be seen in Figure 3.4.



Figure 3.4 The terminal vectors.

Note that, regardless of their orientation, the terminal vectors pass through a common 

point, the center of the sphere. Therefore, if Vi„ and Vout are in alignment, the mechanism 

is closed.

As has been shown, due to errors in the joint variables, the linkage chain does not 

close. The current configuration does leave the end of the chain at some other point. This 

position leaves a gap in space between the distal end of the final link and the proximal end 

of the initial link. The angular magnitude of that gap indicates the severity o f the error in 

closure. To determine the relationship between the current position of the mechanism and 

the ideal position associated with closure, the final terminal vector could be transformed 

back to the initial terminal vector in a manner similar to that of transforming between the 

intermediate joint axes. As each of the terminal vectors represents the k direction in their 

respective local coordinate frame, a general transformation matrix which is capable of 

rotating one frame into alignment with another is required.
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3.2.1.1 Rotation About a General Axis

A vector in one frame can be rotated to its corresponding position in another by a general 

rotational transformation which relates the two frames (Craig, 1986). Just as the Uj 

coordinate transformation matrix allows the transformation from one local joint frame to 

the next, a rotation matrix can be used to transform between two coincident local 

coordinate frames separated by a rotation of a general angle, 0, about a general axis, k. 

This effect is shown in Figure 3.5.

Figure 3.5 Rotation about a general axis. 

Mathematically, this is represented by

B = R (k,0) A (3.6)

where

r ( m ) =

k„k„vei0 +cos0 kxkyver0 -k ,s in 0 k„k,ver0 + kvsin0
k„kvver0 +k.sin0 kvk vver0 + cos0a y j j

L k xk zvei0 -  kysin0 k yk zvei0 + k xsin0
kyk zver0 - k xsin0 
k zk zver9 + cos0

(3.7)

in which the versine function is defined as

ver0 = 1 - cos0

and

k = i
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3.2.1.2 Computing the Miss Angle and Miss Axis

The mechanism would be closed if Vout were to be transformed from its current position 

to the position of Vta. To simulate this, an imaginary rotational transformation could be 

introduced to transform Vout to Vi„ and therefore produce closure. Analysis of this 

rotation will allow the determination of the angular magnitude of the present gap in the 

loop and the axis of the rotation ideally required to correct it.

Applying the concept of a general rotation about an axis, Vout can be rotated into 

alignment with V|„. In this case, both vector positions are known. The terminal vectors

represent the k directions of their respective local coordinate frames, hence both

coordinate frames are defined and instead, the axis of rotation and the required angle of 

rotation between them is to be determined.

From the terminal point of the kinematic chain in its current position, a theoretical 

rotation can be inserted such that the mechanism closes. This rotation can be symbolized 

by the matrix R, such that

] U 2U -  n+"UR = I (3.8)

For simplicity let

B = ’U 23U -.. n+"U (3.9)

Then

BR = I (3.10)

Hence,

R = Bt (3.11)
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For the vectors Vj„ and Vout, the required angle of rotation is the angular magnitude of the 

gap in the configuration of the mechanism, called the ‘hiiss angle,” denoted by o, and the 

required axis is the axis of rotation to turn V0„t to Vi„, called the ‘hiiss axis,” symbolized 

M. Thus, the rotation matrix R becomes

r ( m , a) =
mxmxvera+ cosa 

mxmy vera+ mzsina
mxmy v e ra - mzsina mxmzvera+ m ysma

mymyvera+cosa
mxm2vero- mysma mymzverCT+mxsincy

mymzv e ra -  mxsina 
mzmzvera+cosa

(3-12)

The corresponding axis and angle of rotation in terms of the mechanism can be seen in 

Figure 3.6.

Figure 3.6 The miss angle and miss axis.

The actual matrix R is known by computation from Equation 3.11. Denoting the 

elements of R by r ,̂ this matrix can be solved for the miss angle, a , and miss axis, M.
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The magnitude of the miss angle can be computed from the relationship

a  = cos-l I ri 1 + r22 + *33 ~ I (3.13)

From this calculation, the magnitude of a will be bounded between 0 and iz due to the 

principle values of cos'1. Thus, in terms of the rotation matrix R, let the miss angle ct be 

unconditionally defined as the smaller angle between the terminal vectors Vout and Vjn. 

The angular magnitude of the miss angle will always be positive. The direction of the 

required angular correction to the mechanism will be determined later.

The vector coordinates representing the miss axis can be expressed as

M =
rn
m.
rn

1
2 sina

*32 r23
ri3 -  r3.

L r2l — r i2

(3.14)

Since the miss angle is defined as the smaller angle between the terminal vectors, let the 

miss axis be defined as the required axis for the rotation of the one terminal vector toward 

the other through that angle. Thus, the orientation of M will be normal to the plane of the 

terminal vectors and its direction will be determined by the relative positions of vectors 

Vou, and Vj„, with M being oriented in opposite directions for opposite positions of the 

terminal vectors.

The magnitude of the miss angle indicates the severity of the gap in the loop. The 

value of the miss angle a can be compared to the acceptable level of angular tolerance for 

the gap. If the miss angle is small enough to fall within a narrow tolerance, this indicates 

that vectors Vj and are very nearly in alignment and therefore the mechanism is at a 

very close approximation to closure. If the miss angle is not small enough, the joints in the 

mechanism require further adjustment to achieve tolerable closure.
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3.2.2 Approximating the Miss Axis

Obviously, the vector M is the ideal axis about which to rotate by the angle a  in order to 

close the mechanism. However, in reality, the only rotations possible are those about the 

joint axes. Therefore, to best approximate the ideal corrective action, the joint axis which

Let <}>; be the angle between joint axis i and the miss axis. Treating these axes as 

vectors in space, the common trigonometric relationship of the vector dot product will 

determine the magnitude of this angle for each pairing of axes. The axes and Vout 

should be neglected since these are not subject to corrective rotation: Vout does not really 

exist and Vi„ is fixed as an input variable. The most advantageous joint axis to select will 

be the axis which is closest to being collinear with the miss axis. As previously stated, the 

value of the angle <|) for each pair of axes can be obtained from the dot product 

relationship

is closest in alignment to the miss axis should be selected for a corrective rotation about 

that joint.

(3.15)

where, by definition,

Y •M = v ixmx + v iymy + v izm2

Solving for the angle <J> yields

r   __ \

(3.16)

The physical meaning of these measurements is shown in Figure 3.7.
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vi=vin

v 5 = v out

Figure 3.7 Relative alignment of the joint axes and the miss axis.

With the set of angles <J> thus obtained, it is then necessary to determine the joint 

axis which is closest to the miss axis. If two vectors are collinear, the angle between them 

is either 0° or 180°. Whether the relative angle between the miss axis and the joint axis 

approaches 0° or 180° does not matter at this stage since a positive rotation about an axis 

in one direction is equivalent to a negative rotation about one in the other. Likewise, the 

sign of each angle <|) is not relevant since only the magnitude of the relative orientation 

between the axes is required. Thus, the joint axis which comes closest to this alignment 

with the miss axis will be the one desired. Determining the joint axis which makes an 

angle closest to 0° or 180° to the miss axis is equivalent to finding the joint axis which 

exhibits the greatest difference between 90° and itself. Denoting the joint axis closest to 

alignment, in either sense, to the miss axis with the index s, the identity of this axis can be 

determined by

s = index of <j> of maximum of
/

-  d,
V 2  ^ J

i = 2,...,n (3.17)
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3.2.3 Setting the Correction Angle

Knowing the joint axis which can be corrected to provide the most improvement to the 

closure of the mechanism, it is now necessary to determine the appropriate amount by 

which to correct the joint displacement. As has been shown, rotating about the miss axis 

by the miss angle is the ideal way to close the gap. However, since the axis being used for 

the rotation is not precisely the one for which the miss angle applies, the angle to be used 

should not be precisely the miss angle. To account for this deviation directly, a 

relationship between the angles associated with those axes could be paralleled to the 

relationship between the axes themselves. The angle of correction about a particular joint 

axis can be taken as some percentage of the full miss angle, where this percentage 

corresponds to the ratio of the relative alignment between the joint axis and the miss axis. 

This percentage relationship is chosen to reflect a sense of how accurate the proposed 

correction would be to the ideal one and to use the same ratio to determine the amount by 

which to effectively correct the specific joint.

If the full angle of deviation from closure is denoted by a, let a c represent the 

actual angle of correction for this step. Thus,

/  \

I  2

This custom algorithm is a fairly simple method of weighting the data based on the 

percentage of the measured deviation of the joint axis from a vector normal to the miss 

axis. The greater the magnitude of the difference between a vector at n/2 and the joint 

axis, the closer the joint axis is to alignment with the miss axis, and hence the closer the 

correction angle will be to the miss angle.
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In addition, a safety factor can be applied to prevent accidental over-correction or 

other errors. This can be any arbitrarily selected fraction. A factor of 1/4 will be used 

here as this value has been found by experience to be efficient.

o . = 7 -  (319)

The direction of the correction angle can be determined by examining the joint axis 

to be corrected. The miss axis M has been constructed based on rotating the terminal 

vector Vout to the terminal vector V|„ assuming a positive sense of the miss angle a. 

Therefore, if the actual axis of rotation Vs approximates M, that axis should be corrected 

by +ac, and if the actual axis Vs approximates -M, it should be corrected by -ctc. The 

orientation of V, relative to M can be determined by whether the angle computed from 

their dot product, <|)s, is less than or greater than n/2, being close to M  or -M respectively.

3.2.4 Correcting the Mechanism and Re-iterating the Analysis

The joint axis and angle of rotation which will provide the most improvement for the miss 

in the configuration of the real, physical mechanism are now known. That joint angle must 

then be adjusted by that amount.

e , = e s + c c (3.20)

In terms of the real mechanism, the effect of this correction is shown in Figure 3.8.
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gap

Figure 3.8 The corrected joint angle and the corresponding new position of the
mechanism.

With the correction made, the joint axes must be re-evaluated with the new data 

and the new miss angle computed from these axes in order to determine how close the 

chain now is to closure. This process is repeated as many times as necessary to reduce the 

miss to within a tolerable limit and effectively close the mechanism.



CHAPTER 4

PRESENTATION OF THE OPEN-LOOP MAIM THEORY

4.1 Resolving the Open-Loop Mechanism Complications - 
The Concept of the Virtual Link

Several problems exist in the analysis of open-loop mechanisms which complicate their

inverse kinematics. Mathematically, by definition, the open-loop linkage does not close.

As a result of this, the kinematic chain forms a different and unique matrix for each

position. In addition, the orientation of the end effector, located at the end of the last link,

is prescribed but the required orientations of none of the links in the mechanism are

initially known and therefore none can be fixed. With closed-loop linkages, the input

crank can be considered a fixed link, since its position and orientation are known and

constant. This somewhat simplifies the analysis process by both removing one set of the

total variables and by providing some fixed point of stability from which to work. For an

open-loop mechanism, no real link has a prescribed orientation leaving all of the members

yet to be specified and their eventual configuration ambiguous. These complications have

made the analysis of open-loop mechanisms considerably more difficult than the closed-

loop variety.

The links of an open-loop mechanism are modeled exactly the same way as for a 

closed-loop mechanism (see Figure 3.1). When constructed, an open-loop linkage extends 

from its base to its end position in space. This end is usually comprised of an end effector 

for the purpose of object manipulation in the case of the most common modem form of 

open-loop mechanism, the robotic manipulator. For the purpose of this paper, this end 

effector will be referred to as the hand, although it could take any form. Thus, an open- 

loop mechanism in its desired configuration could be represented as shown in Figure 4.1.

30
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Figure 4.1 An open-loop mechanism.

The problems with the analysis of open-loop mechanisms arise from the fact that 

the linkage chain does not close. Also, normally no link in the configuration is fixed and 

thus all of the links are free to move to reach the desired hand position so there is no data 

initially specified about the orientations of any of the links. To solve these problems, a 

fixed link can be created as a part of the existing configuration and thereby provide closure 

for the chain.

To understand this approach, the basic concept of a link must be examined. A link 

in its simplest form can be considered to be a fixed relationship between one coordinate 

frame and another. This is obvious in the case of physical links. However, any two points 

in space separated by fixed dimensions also satisfies this requirement. In the case of the 

open-loop mechanism, this relationship obviously exists between the ends of each physical 

link. It must be noted that such a relationship also exists between the position of the base 

and the ideal position of the hand. By definition, the desired position of the hand is 

established in space and is fixed relative to the base frame, which is also fixed. This 

relationship can be seen in Figure 4.2.



Figure 4.2 Vector representing the position of the hand relative to the base.

The relationship of the hand and the base satisfies the fundamental criterion for a link and 

thus simulates such a link. Although this relationship fully qualifies as a link in definition, 

it has no physical form and thus shall be called a “virtual link.”

Using this known relationship, it is possible to create such a virtual link in the 

open-loop linkage which provides the qualities missing from the basic problem and 

effectively reduces the complicated open-loop model to a comparatively simpler closed- 

loop model. The problem is then to mathematically specify the relationship between the 

base and the hand positions.

One common approach to spatial relationships is to state relative coordinate 

orientations in terms of a set of Euler angles. Euler angles are the specific measurements 

in a predetermined series of rotations to relate one orientation in space to another, thereby 

completely specifying their relative position and orientation with only three variables. One 

such set in particular is the ZYX series of axes. In the case of an open-loop mechanism, 

the ZYX Euler angles can be used to specify the orientation of the hand frame relative to
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the base frame. This can be represented as a coordinate transformation using the Euler 

transformation matrix (Paul, 1981).

The Euler matrix E can be used to represent the hand in terms of the base frame. 

This relationship is given by

cosa cosP cosa sin p sin y cosa sin p cosy
-s in aco sy  + sina sin y

nE =
sinacosP sinasinPsiny sinasinPcosy 

+ cosacosy -c o sas in y

-sinp cos P sin y cos P cosy

(4.1)

where a , P, y are the ZYX Euler angles of the position in space. The ZYX Euler angles 

for the desired end effector orientation must be specified by the user. The transpose of the 

Euler matrix represents the inverse transform, giving the base in terms of the hand frame.

°F = 'F t  i c  oc

Mathematically, the Euler transformation matrix serves the same function as the 

general coordinate transformation matrix used for the real physical links. Thus, by means 

of the Euler angles and the Euler matrix, the known and fixed dimension of the space 

between the hand and the base becomes the virtual link.

Note that, in Figure 4.2, the virtual link has been drawn curved for easier 

visualization of the spherical model. Since it has no real physical form, it really can be 

considered to be any shape.

With the realization of the virtual link, the mathematical model for an open-loop 

mechanism becomes identical to that for a closed-loop mechanism. Thus, the MAIM
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method applied to an open-loop mechanism exactly parallels that for a closed-loop 

mechanism.

By including the virtual link in the configuration, it can be noted that when all of 

the joint angles are correctly assigned, the real links meet both ends of the virtual link and 

the mechanism technically closes. The physical appearance o f this concept is shown in 

Figure 4.3 for aid in visualization.

Figure 4.3 Ideal mechanism configuration.

However, the correct rotations of the joints required for the given position are usually not 

known. These many interdependent variables must be determined knowing only the 

desired position of the hand and the geometry of the links. The MAIM method can be 

applied to solve this problem and determine the correct joint rotations. If any of the joints 

are in incorrect positions, the end of the chain of real links does not meet the beginning of 

virtual link, leaving a gap, as shown in Figure 4.4.
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Figure 4.4 Mechanism configuration with errors.

The virtual link represents the ideal hand position relative to the base of the mechanism 

and is considered prescribed and fixed. The real links of the mechanism can now be 

adjusted to connect them with the virtual link in that position. The MAIM method can be 

applied to achieve this.

4.2 Iterative Procedure to Reach the Correct Hand Position

With the ideal hand position known, it is necessary to determine the relationship between 

the desired hand position and the actual one resulting from the current joint displacements. 

Since the goal of the linkage is to reach the specified hand position, the ideal hand frame 

can be used as a starting point. The virtual link can be constructed based on the fixed 

position of the base relative to the hand and the remainder of the links assembled in their 

current configuration from the base.

Let the subscript 0 denote the parameters associated with the hand. Let a unit 

vector be defined in the direction of the k axis of the hand frame.
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V„ = (4.2)

Vectors corresponding to the other joint axes can be developed from this starting point. 

The base axis can be expressed in terms of the hand frame as

V = 'e t VV] o1-” vo (4.3)

Thereafter, starting from the base, successive general coordinate transformations can be 

used to develop vectors aligned with the remaining joint axes. The general coordinate 

transformation matrix is

i+;u =
cos0j -cosotj sinB, sina( sinG;
sin0. cosa, cos0, - s in a ; cos0;

0 sina; cosa;
(4.4)

Therefore, the remaining vectors become

v  = ' e t  ' u v  2 0J-' 2 U V0

V = 'e t ' u 2u v3 0 ^  2 u  v 0

V0 = jE T*U’U -  - U V 0 (4.5)

If the joint variables are not in their correct positions to reach the desired hand position, 

these computations will result in n+2 vectors for an open-loop mechanism with n links. 

The vectors Vj through Vn are the axes of the physical joints in the mechanism. The 

vector V0 is the axis associated with the ideal hand position and the vector V„+i is the axis



37

of the current end position of the linkage. These two should coincide for the ideal closure 

of the mechanism with its desired position.

With the inclusion of the virtual link, the open-loop mechanism can be regarded as 

a closed-loop mechanism for purposes of the analysis of its closure. Thus, ideally, if all of 

the joints are in their correct positions to reach desired hand position, the kinematic 

equation chain becomes the identity matrix.

^Et ^ U 23U -  "0U = I (4.6)

However, if any of the joint displacements deviate from their correct values, the

mechanism will fail to reach the desired hand position and the kinematic chain will not

result in the identity matrix.

Je^u’u -  n;u*i (4.7)

In this case, the mechanism fails to reach its desired position, but instead arrives at 

some other position in space, as shown in Figure 4.4. The discrepancy between those 

positions is represented by the gap indicated in the figure.

4.2.1 The Miss Angle and Miss Axis

The relationship between the desired position and the current position can be seen by 

comparing the associated local coordinate frames of these positions. Let the vectors 

established in the direction of the joint axes of the first joint, denoted V0, and the last joint, 

denoted Vn+i, be called the terminal vectors Vi„ and Vout respectively. The terminal 

vectors are shown in Figure 4.5.
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Vout

Figure 4.5 The terminal vectors.

Clearly, the mechanism would be in its desired position if the terminal vectors were 

in alignment. The discrepancy between the vectors is due to the effects of the errors in the 

joint rotations. To transform from the current mechanism position to the desired one, it 

would be necessary to rotate Vout from its current position into alignment with Vto. In 

other words, an operation must be performed such that the kinematic chain which includes 

the virtual link be closed.

4.2.1.1 Rotation About a General Axis

As previously stated in Section 3.2.1.1, a vector in one frame can be rotated to its 

corresponding position in another by a general rotational transformation matrix (see 

Figure 3.5). The transformation matrix required to perform the rotation by a general 

angle, 0, about a general axis, k, is

r ( m ) =

kxkxver0 + cos0 
k xkyvei0 + k zsin0 kykyver0 +cos0 

L kxk zver0 - k ysin0 kyk zvei0 + kxsin0

kxkyver0 - k zsin0 k xk zver0 + kysin0 
kyk zveifr- kxsin0 
k,k,ver0 + cos0

(4.8)
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in which the versine function is defined as

verQ = 1 - cosG

and

k = 1

4.2.1.2 Computing the Miss Angle and Miss Axis

Since the vectors V|„ and Vout represent the k directions of their respective local 

coordinate frames, the mechanism would be in its desired position if Vj„ and Vout were in 

alignment. Using the concept of a general rotation about an axis, it is possible to create an 

imaginary rotation to align Vout with Vin and thereby close the linkage with its desired 

position. A corresponding rotational transformation matrix can be inserted into the 

kinematic chain to compensate for the deviation from closure. The closure expression 

then becomes

oET3U 3U • • • nt?UR = I (4.9)

For simplicity, let

B « jE T] U 23U -  n+"U (4.10)

Then

BR = I (4.11)

Hence,

R = Bt (4.12)



40

Analysis of this simulated rotation to align Vout with Vj„ from their current positions will 

indicate the angle and axis of rotation ideally required to correct for the errors in the 

joints. This angle is called the miss angle, ct, and the associated axis is called the miss axis, 

M. Thus, the rotation matrix R becomes

R (M ,o) =
m xm xv e ra +  cosct 

m xm y v e ra +  m 2sin a

mxmyv e ra -m 2sina mxm2vera+ m ysina
mymyvera+cosa

mxmzv e ra - mysina mym2vera+m xsina
mymzv e ra - mxsina 

mzm2vera+ cosct

(4.13)

The corresponding axis and angle of rotation in terms of the mechanism can be seen in 

Figure 4.6.

'ou t

Figure 4.6 The miss angle and miss axis.

The actual matrix R is known by computation from Equation 4.12. Denoting the 

elements of R by ry, this matrix can be solved for the miss angle, ct, and the miss axis, M.
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The magnitude of the miss angle can be computed from the relationship

cr = cos-i
/  i  j  _  i >

r i I r 22 33 "  1 (4.14)

From this calculation, the magnitude of a  will be bounded between 0 and K due to the 

principle values of cos'1. Thus, in terms of the rotation matrix R, let the miss angle a  be 

unconditionally defined as the smaller angle between the terminal vectors Vout and V|„. 

The angular magnitude of the miss angle will always be positive. The direction of the 

required angular correction to the mechanism will be determined later.

The miss axis can be expressed in vector coordinates as

M =
m*
my
m.

1
2 sina

r 32 f 23

ri3 -  r31 
l.r21 ~ ri2

(4.15)

Since the miss angle is defined as the smaller angle between the terminal vectors, let the 

miss axis be defined as the required axis for the rotation of the one terminal vector toward 

the other through that angle. Thus, the orientation of M will be normal to the plane of the 

terminal vectors and its direction will be determined by the relative positions of Vout and 

Vjn, with M  being oriented in opposite directions for opposite positions of the terminal 

vectors.

The magnitude of the miss angle represents the severity of the gap between the 

current and desired positions. The value of the miss angle a  can be compared to the 

acceptable level of angular tolerance for the deviation. If the miss angle is small enough to 

fall within a narrow tolerance, this indicates that vectors V0 and Vn+i are very nearly in 

alignment and therefore the mechanism is very nearly in its correct position. If the miss 

angle is not small enough, the joints in the mechanism require further adjustment to 

achieve a tolerable hand position.
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4.2.2 Approximating the Miss Axis

With the miss angle and miss axis determined, the ideal way to close the real mechanism is 

now known. Therefore, for the most effective correction to the position o f the

of the mechanism. Since the only rotations possible are those about the joint axes, the

corrective rotation performed about that axis.

Let <()i be the angle between joint axis i and the miss axis. Treating these axes as 

vectors in space, the trigonometric relationship of the vector dot product can be used to 

determine the magnitude of this angle for each pairing of axes. Only the vectors 

corresponding to joint axes which can actually be adjusted need to be considered, that is 

the vectors Vj through V„. The vectors corresponding to the axes of joints 0 and n+1 can 

be neglected. The axis denoted by V0 is the ideal hand axis, which is known and fixed, 

and that denoted by V„+i is the axis representing the current end position of the 

mechanism, which does not really exist and cannot be rotated about. The most 

advantageous joint axis in the mechanism to correct will be the axis which is closest to 

being collinear with the miss axis. The value of the angle $ for each relevant axis pair can 

be found from dot product relationship

mechanism, it is necessary to simulate this ideal action as closely as possible in the reality

joint axis which is closest to alignment with the miss axis should be selected and a

(4.16)

where, by definition,

Vj - M = v ixmx + v iymy + v jzmz

Solving for the angle <|) yields

/  _   \

(4.17)
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In physical terms, these measurements are shown in Figure 4.7.

V4 -  Vout

Figure 4.7 Relative alignment of the joint axes and the miss axis.

With the set of angles (J> thus evaluated, it is necessary to determine the joint axis 

which is closest in alignment to the miss axis. This relationship is represented by angle <j> 

which is closest to 0° or 180°. Whether the joint axis is close to 0° or 180° to the miss 

axis is not relevant at this point, since a positive rotation about one axis is equivalent to a 

negative rotation about its opposite. Likewise, the sign of each angle <|) is not relevant 

since only the magnitude of the relative orientation between the axes is required. 

Denoting the joint axis which is closest to alignment, in either sense, to the miss axis with 

the index s, the identity of this axis can be determined by

s = index of (J> of maximum of
/ \

—
V 2 ' /

(4.18)
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4.2.3 Setting the Correction Angle

With the best approximate for the miss axis selected, the angle by which to rotate that 

joint in order to correct the position of the mechanism must be determined. As has been 

shown, performing a rotation about the miss axis by an amount equal to the miss angle 

would ideally correct the mechanism to obtain closure with the desired hand position. 

Since the joint axis being corrected in the real mechanism is not precisely the one for 

which the miss angle applies, the most efficient angle of correction associated with that 

particular joint axis will not be precisely the miss angle. Hence, an appropriate value for 

the angle of correction must be selected. To account for the effect o f the deviation of the 

joint axis from the miss axis, a relationship can be developed for the angles of correction 

associated with those axes based on the relative alignment of the axes themselves. The 

percentage of alignment between the joint axis and the miss axis can be easily determined 

and the same percentage can be applied to relate the angle of correction to the full miss 

angle.

If the full angle of deviation is denoted by c, let oc represent the actual angle of 

correction for this iteration. Thus,

r \

I  2

This custom algorithm is a simple method of weighting the data based on the percentage 

of the deviation of the joint axis measured from a vector normal to the miss axis. Thus, 

the greater the magnitude of the angle between a vector at rc/2 to the miss axis and the 

joint axis, the closer the joint axis is to alignment with the miss axis, and hence the closer 

the correction angle will be to the miss angle.
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In addition, a safety factor can be applied to prevent accidental over-correction or 

other errors. This can be any arbitrarily selected fraction. A factor of 1/4 will be used 

here as this value has been found to be efficient.

The direction of the correction angle can be determined by examining the joint axis 

to be corrected. The miss axis M has been constructed based on rotating the terminal 

vector Vout to the terminal vector Vta assuming a positive sense of the miss angle a. 

Therefore, if the actual axis of rotation Vs approximates M, that axis should be corrected 

by +ac, and if the actual axis Vs approximates -M, it should be corrected by -cc. The 

orientation of Vs relative to M can be determined by whether the angle computed from 

their dot product, <|)s, is less than or greater than tc/2, indicating that the vector is close to 

M or -M respectively.

4.2.4 Correcting the Mechanism and Re-iterating the Analysis 

The joint axis and angle of rotation which will provide the most improvement in bringing 

the end of the mechanism toward its desired position are now known. That joint angle 

must then be adjusted by that amount.

e5= e , + a c (4.21)

In terms of the real mechanism, the overall effect of this correction is represented in Figure 

4.8.
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gap

Ml

Figure 4.8 The corrected joint angle and the corresponding new position of the
mechanism.

The mechanism should then be re-analyzed with the corrected joint angles to 

determine the resulting miss angle. This process is repeated as many times as necessary to 

reduce the miss to within a tolerable limit and effectively close the mechanism.



CHAPTER 5

RESULTS

5.1 Overview

This chapter presents the results of examples analyzed to establish the validity of the 

MAIM method. A computer implementation of this method was coded in the FORTRAN 

language to demonstrate the effectiveness and accuracy of this technique. Two examples 

were chosen as representative of the capabilities of the method in general. Sample closed- 

loop and open-loop mechanisms were selected, in order to show the applicability of the 

method to both types. The same basic code was adapted to each type of mechanism with 

only minor modifications. Flowcharts for the respective methods appear in Appendices A 

and D. A copy of the code for each type is included in Appendices B and E. For both 

types of examples, a simple forward kinematic computation using the computed joint 

angles in the matrices will show that these results are valid solutions to within the specified 

tolerance.

5.2 Closed-Loop Example

A universal joint was selected to demonstrate the MAIM method applied to a closed-loop 

mechanism. In particular, the Cardan-type universal joint has been used extensively in 

industry as a shaft coupling (Fischer, 1989). Thus, this represents a real and common 

spherical mechanism which would require analysis. Figure 5.1 shows a typical Cardan 

joint.

47
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Figure 5.1 The Cardan joint. 
Source: Fischer, 1989.

Coordinate systems are attached to the links according to the standard Denavit- 

Hartenberg convention. In terms of these coordinates, the Denavit-Hartenberg parameters 

for this four-link spherical mechanism are given in Table 5.1. Only the angular quantities 

are presented since the linear parameters are not necessary for the MAIM method.

Table 5.1 Angular Denavit-Hartenberg parameters for the Cardan joint.

i OCi

CD

1 90° 01
2 90° 02
3 90° 03
4 150° 04

Initial guesses for the joint displacements of 0i = 0°, 02 = 50°, 03 = 320°, 04 = 120° 

were chosen and a tolerance of 0.01° was specified for the miss angle. MAIM produced 

results of 0i = 0°, 02 = 89.996°, 03 = 300.005°, 04 = 90.004° in 75 iterations.

The exact solutions for closure for this mechanism are known, as they can be 

obtained from a conventional inverse kinematics solution process (Fischer, 1989). These 

exact solutions are 0i = 0°, 02 = 90°, 03 = 300°, 04 = 90°.

A forward kinematic computation using the MAIM results for the joint angles 

shows that the matrix chain given by Equation 3.4 forms the identity matrix, deviating at
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most by the allowed tolerance for the miss angle. The joint angles computed by the 

MAIM method cause this equation to be a valid expression, indicating that the mechanism 

is closed to within the prescribed tolerance when the joints displacements are set to those 

values.

The convergence of the miss angle is shown graphically in Figure 5.2. A complete 

tabulation o f the results at each iteration is presented in Appendix C.

Detail View of Higher Iterations
0.400

si 0.300O)
™ 0.200(AW
E 0.100

O)
0.000™ 45

number of iterations

number of iterations

Figure 5.2 Convergence of the miss angle for the Cardan joint.

5.3 Open-Loop Example

The open-loop mechanism chosen for use as an example comes from an actual NASA 

project, the Space Station Remote Manipulator System (SSRMS). This mechanism is a 

manipulator arm of the sort which would be used for performing a variety of tasks on a 

space station. This particular type of arm was previously analyzed by Crane, Carnahan, 

and Duffy (1991). An arm of this complexity typically represents a considerable challenge 

for an inverse kinematics solution.
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A drawing of the SSRMS is shown in Figure 5.3. Coordinate systems can be 

attached at the joints according to the standard Denavit-Hartenberg convention.

Figure 5.3 The SSRMS arm. 
Source: Crane, Carnahan, and Dufly, 1991.

In terms of the specified coordinate systems, the Denavit-Hartenberg parameters 

for this seven-link open-loop mechanism are listed in Table 5.2. Only the angular 

quantities are presented since the linear parameters are not required for the MAIM 

method.
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Table 5.2 Angular Denavit-Hartenberg parameters for the SSRMS arm.

i <Xi 0;
1

OOO
N 0i

2 270° 02
3 0° 03
4 0° 04
5 90° 05
6 90° 06
7 0° 07

For this example, Euler angles of a  = 80°, p = 30°, y = 50° were specified for the 

end effector orientation relative to the base. Initial guesses for the joint displacements of 

0i = 10°, 02 = 0°, 03 = 11°, 04 = 0°, 05 = 0°, 06 = 0°, 07 = 2° were selected and a tolerance 

of 0.01° was prescribed for the miss angle. For this configuration, the MAIM method 

yielded results of 0i = 354.979°, 02 = 125.000°, 03 = 359.947°, 04 = 0.000°, 05 = 89.565°, 

06 = 14.702°, 07 = 332.612° in 66 iterations.

The position resulting from these angles can be confirmed by one of two 

approaches. A forward kinematics computation using the computed joint displacements in 

the coordinate transformation matrices will construct the matrix for the base-frame to 

hand-frame transformation which can then be solved for the ZYX Euler angles. In this 

way, the joint displacements resulting from the MAIM solution were found to produce 

Euler angles of a  = 80.007°, p = 30.005°, y = 50.007°.

Alternately, the prescribed Euler angles and the MAIM results for the joint angles 

can be used in the elements of the kinematic chain in Equation 4.6. If the angles are valid 

solutions for closure, the product of these matrices should produce the identity matrix to 

within the tolerance specified for the miss angle.
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The convergence of the miss angle is shown graphically in Figure 5.4. A complete 

tabulation of the data is presented in Appendix F.

Detail View of Higher Iterations
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Figure 5.4 Convergence of the miss angle for the SSRMS arm.



CHAPTER 6

CONCLUSION

6.1 Conclusions

This thesis presents a new technique for solving the inverse kinematics problem of general 

spatial mechanisms and establishes its feasibility. The Miss Angle Iteration Method, 

abbreviated MAIM, incorporates a mixture of some of the successful elements from 

previous inverse kinematics solution approaches while avoiding many of the unfavorable 

ones. The MAIM method offers several advantages over others, including versatility in its 

application, a sense of physical understanding for the user, and relative mathematical 

simplicity.

The MAIM approach utilizes a mathematical simulation of the physical problem of 

correctly positioning the joints in a spatial mechanism for closure. It has been shown that 

the general problem can be partitioned to remove the translational displacements from 

consideration. The MAIM method deals solely with the solution for the rotational 

displacements of the joints. The method serves to improve the existing configuration of a 

mechanism toward closure. The approach is based on a theory that parallels the actual 

physical assembly of the links. The orientation of one link in the mechanism is normally 

specified and as such is established as fixed in the method. Initially, guesses must be made 

for the orientations of the other links. These links are then assembled in those positions by 

attaching them in succession onto the known link. A mathematical model to simulate this 

process is developed by establishing a fixed axis in the position of the one specified joint in 

the mechanism and using coordinate transformation matrices to develop the subsequent 

joint axes based on the current positions of the joint angles. Because the joint angles are 

incorrect, the linkage chain will not close and a gap will exist between the proximal end of 

the first link and the distal end of the last link. Through analysis, the angular magnitude of



54

this miss in closure and its associated axis of rotation can be determined. A real joint axis 

is then chosen which best approximates this ideal axis and that joint angle is corrected by a 

portion of the full miss angle. This adjustment should have the effect of reducing the gap. 

The links are then re-assembled with the joints in their new positions and the miss in 

closure re-evaluated. This procedure is repeated until the miss is within tolerable limits, at 

which point the gap between the initial and final links is considered negligible and the 

mechanism is effectively closed.

The MAIM method is an inverse kinematics solution technique applicable to both 

open-loop and closed-loop spatial mechanisms with any number of links. The theory has 

been proven to be valid. The approach to the problem is sound and the solutions it can 

obtain are numerically correct. A computer code has been written which has proven the 

validity of the MAIM method. The code presented herein was intended solely to 

demonstrate the feasibility of the theory. This code may be used as a framework for 

developing a program suitable for practical applications.

6.2 Discussion of Results

The MAIM theory was tested by using a variety of numerical examples to verify its 

feasibility and accuracy. The method was implemented with a computer program designed 

to demonstrate the basic operation of the technique. Of the numerous examples and cases 

tested, two were presented in Chapter 5 to be representative of the capabilities of the 

method in general. A closed-loop and an open-loop mechanism were chosen to show the 

applicability of the method to both types of linkages.

The Cardan joint was selected as a common four-link closed-loop spherical 

mechanism for which accurate inverse kinematics results are available for comparison. 

The MAIM method satisfactorily paralleled these established results.

The analysis of a seven-link open-loop mechanism such as the SSRMS represents 

an extremely difficult challenge in inverse kinematics, one which is nearly impossible to
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solve with standard techniques. The SSRMS arm was previously analyzed by Crane, 

Carnahan, and Dufly (1991) who dealt with the seven degree-of-freedom system as three 

six degree-of-freedom subchains. These sub-chains were formed by declaring one of the 

seven joints to be known and therefore fixed, thereby removing it from the computations. 

In comparison, the MAIM method was able to deal with the mechanism as a whole, in its 

complete form. No special reductions or restrictions were necessary to solve for the joint 

angles. With the MAIM method, for any mechanism, closure can be obtained from 

knowing only the geometry of the links and the desired final point of the configuration.

While the inverse kinematics solution of a four-link mechanism is merely tedious, 

linkages with five, six, or more members are considerably more difficult to solve by 

standard methods, if not beyond their capabilities altogether. Hence, a complete analysis 

o f the seven-link mechanism presented in Section 5.3 would be an extremely complicated 

procedure using most conventional techniques. The MAIM method was able to produce 

the correct joint displacements in under 100 iterations. The number of iterations required 

to produce closure in the various tests varied depending on the quality of the initial joint 

displacement guesses among other factors. In many cases, for both types of mechanisms, 

more or fewer iterations were achieved than are presented in these samples. The lengthier 

situations were deliberately chosen for inclusion as examples to demonstrate that the 

MAIM method can solve any case, regardless of the accuracy of the initial guesses, and to 

prove that the miss angle will eventually converge by this technique. Due to the simplicity 

of the computations involved, the actual processing time to perform the method and arrive 

at these solutions was minimal, even for the cases requiring an extremely high number of 

iterations.

The basic code for the MAIM method was easily adapted to accommodate closed- 

loop and open-loop mechanisms. This similar structure is deliberate in order to take 

optimal advantage of the generality of the method. The method itself is fundamentally the 

same for each type of mechanism, only the specific identities of the individual joints differ.
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The accuracy of the solutions for these or any examples can be confirmed by 

performing forward kinematics with the results of the method as inputs and comparing the 

resulting matrix to the identity matrix. For a closed-loop mechanism, inserting the joint 

angles into Equation 3.4 should produce the identity matrix. Similarly, for an open-loop 

mechanism, inserting the prescribed Euler angles and the joint angle results into Equation 

4.6 should also yield the identity matrix. Alternately, a standard forward kinematics 

computation can be performed with the results of the method inserted as the joint 

displacements to arrive at the transformation matrix for the base-frame to the hand-frame, 

the ZYX Euler matrix. This matrix can then be solved for Euler angles a , P, y. The 

resulting Euler angles should be equal to the specified hand position for an open-loop 

mechanism or precisely 0°, 0°, 0° for a closed-loop mechanism, indicating closure of the 

linkage chain. By any approach, the results of a closure analysis, either the elements of the 

identity matrix or the Euler angles, should be approximately equal to the ideal values 

within the specified tolerance for the miss angle. This computation can be used to confirm 

the validity of the MAIM method.

Many tests were run with various mechanisms in a variety of configurations. 

Closed-loop and open-loop mechanisms with a wide range o f links were used for trial 

solutions. The vast majority of these tests were successful. A few problems were 

encountered, though these were mostly due to the simplicity of the code, not any 

deficiency in the method.

The sample computer implementation developed here has demonstrated that the 

MAIM method works successfully. The program was able to solve an adequate variety of 

test problems to sufficiently prove the feasibility of the theory. In most cases, this 

program achieved remarkable precision in a comparatively small number of iterations, 

commonly being able to produce accurate closure to within 0.01° within 100 iterations. 

This computer version of the MAIM technique was capable of closing the mechanism 

regardless of the values of the initial guesses of the joint displacements, although the
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particular set of the multiple solutions thus obtained did vary from case to case. Even 

under the worst conditions, closure was finally achieved after several hundred iterations.

The code has proven itself to be an effective simulation of the MAIM method. 

The variety of tests performed with it have been successful enough to confirm that the 

MAIM theory is sound and the method reliable. Several noteworthy comments regarding 

the theory and its implementation as well as the difficulties encountered with the sample 

code will be discussed in the following section.

6.3 Commentary

The MAIM method is a novel approach to solving the inverse kinematics problem of a 

general spatial mechanism. This new method offers some interesting advantages over 

previous procedures. As such, several comments regarding the foundation and operation 

of this alternative approach are worthy of mentioning in closing.

One of the significant innovations presented here is the concept that an open-loop 

mechanism can be modeled as a closed-loop mechanism by the inclusion of a ‘Virtual link” 

in its configuration. The recognition that the relationship between the hand and base 

positions forms a fixed link can be exploited to mathematically close the mechanism model 

and thereby simplify the analysis of the linkage. This simplification allows an open-loop 

mechanism to be analyzed with the MAIM method or any other closed-loop kinematics 

theory. This presentation uses ZYX Euler angles and the Euler transformation matrix to 

specify the base frame in terms of the hand frame, although any means to relate the two 

coordinate frames in matrix form could be used.

The MAIM method is a technique for improving the guesses o f the rotational joint 

displacements in an existing mechanism configuration to obtain loop closure. As such, 

some initially guessed values are needed for the joint angles before beginning the method. 

While the specific values chosen may have some effect on which one of a set of multiple 

possible solutions is found or on how rapidly the method converges to that solution, they
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are otherwise arbitrary. These guesses are merely starting points for the procedure to 

adjust, thus the ultimately reaching a solution regardless of how inaccurate or extreme the 

initial guesses may be.

It is important to note that the joint angles computed by the MAIM method are 

definitely a solution. However, in cases where multiple solutions exist, there is no way to 

control which of these will be reached. Hence, the solution obtained may not be the one 

expected or desired. As with any iterative technique, intuition and experience may be used 

to choose the initial guesses to attempt to influence the method toward a specific solution.

The MAIM method is based on the discrepancy in closure in a mechanism with 

improperly oriented joints. The miss angle, a, and the miss axis, M, are the ideal means 

by which to correct the mechanism configuration to produce closure. To simulate the 

ideal solution with the reality of the mechanism, the joint axis closest to alignment with the 

miss axis should be adjusted. Whether the joint axis approaches the miss axis closest to 0 

or k radians is irrelevant, since a positive rotation about one axis in space is equivalent to 

a negative rotation about an axis oriented in the opposite direction. Since the miss axis 

has been assumed based on a positive sense of the miss angle from Vout to Vi„, if the joint 

axis approximates the miss axis directly, the joint can be corrected by a positive angle, and 

if the joint axis approximates the negative of the miss axis, the joint can be corrected by a 

negative angle.

The joint axis which best approximates the miss axis will be chosen for correction 

in this manner. However, since the axis being used for the correction is not precisely the 

one for which the miss angle applies, the angle of correction should not be precisely the 

miss angle. To account for the deviation in the axes, the relationship between the 

correction angle and the miss angle can be paralleled to the relationship between the joint 

axis and the miss axis. The optimal angle by which to correct a specific joint can be taken 

as a percentage of the full miss angle based on how close of an approximation that joint 

axis is to the miss axis. A simple way to quantify that relationship is to measure the angle
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the joint axis makes to a line normal to the miss axis. Forming a ratio of that magnitude to 

7t/2 will yield the percentage alignment of the joint axis to the miss axis. That percentage 

can then be applied to the value of the miss angle to produce an appropriate correction 

angle. Thus, the better the approximation to the miss axis, the larger the correction to the 

joint angle and the more the improvement of the closure of the mechanism.

The application of a factor of safety is a common practice in engineering. The 

safety factor of 1/4 was assigned to reduce the size of the correction angle into smaller 

steps to prevent any potential numerical problems such as over-correction. This value was 

chosen conservatively since an algorithm which produces slower convergence is preferable 

to one with larger steps which may generate errors. Experimentation has indicated that 

this factor seems to be satisfactory.

The MAIM method is based on the concept of the gap in an improperly aligned 

mechanism represented by the miss angle. Ultimately, the iterative process will reduce the 

miss angle to a tolerable amount. Usually 0.001° or 0.0001° is well within the operating 

limits of most conventional mechanisms, so joint configurations which result in a miss 

angle of that order of magnitude or less will possess a negligible gap in their closure. The 

MAIM method cannot be in error if it indicates that the gap has effectively been closed 

since the miss angle at each stage is computed from the results of a normal forward 

kinematics analysis of the mechanism with its joints in their current positions, a process 

which is known to be an accurate representation of the overall configuration of a 

mechanism.

The test program developed represents the MAIM method well enough to 

demonstrate its validity. While the general results of the sample computer 

implementations have been successful, some matters remain to be resolved in order to 

create a universally applicable code. A brief summary of them is presented here to aid 

future development.
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The program has been found to be fairly sensitive to the selection of the initial 

guesses. For some examples, any values chosen will lead to successful solutions. For 

others, some guesses will be effective and some will lead to a non-convergence. It is 

impossible for the process to diverge, since by definition all of the joint variables and the 

miss angle itself are bounded between 0 and 2n radians. However, in some cases the 

computational process failed to converge to a solution. This condition would seem to 

indicate that passing through some mechanism configurations may cause this program to 

drift toward unrecoverable positions. At this point there is no way to speculate on any 

formal relationship regarding the effects of the initial guesses on the solution process. 

These types o f sensitivities are typical of those encountered in any iterative scheme and 

cannot be avoided.

Due to the simplicity of the MAIM method, the only problem that can possibly be 

encountered with the method itself is a failure to converge to a solution. Assuming an 

adequate number of iterations is allowed, the only cause for the method to fail to converge 

is if toggling occurs. A common problem in iterative schemes, toggling can have causes 

which are very difficult to isolate and can delay or prevent convergence to a solution. In 

this program, several different instances of toggling have been observed, particularly of the 

miss angle or of one particular joint angle around a value or pair of values. One case 

involved the correction angle being successively evaluated as an angle with the same 

magnitude but an alternating sign, with the joint angle thereby reciprocating about the 

same joint axis indefinitely while the corresponding miss angle toggled between two 

values. At some points, the magnitude of the miss angle would toggle between 

complements o f 180°, correcting itself back and forth to either side of a semi-circle. In 

other instances, the miss axis itself would alternately flip between the positive and negative 

directions, as measured relative to the fixed hand axis. Some of the toggling cases that 

have been observed seem to suggest evidence of patterns, although the meaning of these 

has yet to be fully interpreted. Likewise, the cause of these toggling problems is as yet
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undetermined. In general, until such time as this complication can be resolved, attempts to 

retry the method with different initial guesses may be found to be more successful.

Some problems with the program may be due to the fact that certain basic 

concepts cannot be accurately simulated due to the limitations of the computer processor. 

The miss angle is unconditionally defined as the smaller angle between the terminal 

vectors. Thus, it is essential to unconditionally guarantee that the miss axis will be 

constructed using the smaller angle between the terminal vectors. If the computer solution 

for the vector M should be the axis associated with the larger angle of rotation to align the 

terminal vectors, then the correction will be in the opposite direction and will likely result 

in an unstable if not detrimental corrective action. Problems such as these which have 

been encountered in this specific code remain to be resolved by experienced programmers 

in order develop a program to effectively implement the method.

The computer code written for this demonstration was intended only to prove the 

feasibility of the method, not to provide universal solutions. As such, some deficiencies 

exist in the program as it is presented here. Suggestions for possible ways to correct some 

of the problems encountered with this particular program are included in the following 

section.

6.4 Future W ork and Applications

The MAIM method has been proven to be able to successfully solve for the joint rotations 

in a spatial mechanism. As has been shown in Chapter 2, the solution for the translational 

displacements can be obtained after the values for the rotational displacements are 

ascertained. The results for the rotational displacements provided by the MAIM method 

can be used as constants in the later computations for the translational displacements of 

the joints. Since all of the joint rotations in the mechanism are then known, all of the 

trigonometric terms in the dual component of the kinematic chain equation effectively 

become constants. Once the problem is thus reduced, the remaining matrix can be solved
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for the translational displacements by any applicable means. A method for the 

computation of the translational displacements could be appended to the MAIM code for 

use after the rotational displacements are determined or applied separately using the 

results of the MAIM method as input data.

There are many potential practical uses for the MAIM method. For a closed-loop 

mechanism, if the orientation of the input crank is specified, the MAIM method can be 

used to return the orientations of the rest of the links. These results can be useful for 

determination of the position of the output or intermediate links for a given position of the 

input crank or to construct the positions of all the links for a full revolution of the input 

crank. The latter case, however, would require some careful work to generate a smooth, 

continuous display, avoiding any discontinuous jumps between possible alternate multiple 

solutions for consecutive positions.

For open-loop mechanisms such as any number of a variety of robotic arms, the 

MAIM method can be used to determine the required joint angles for a desired orientation 

of the end effector. The method requires knowing only the geometry of the links and the 

Euler angles specifying the end effector orientation to determine the necessary rotational 

joint displacements. The user can specify the end effector orientation and use arbitrary or 

educated guesses of the joint values and the MAIM method will then compute the 

required joint variables. A potentially practical variation on this theme is that if the arm is 

presently in one orientation and is desired to be in a different orientation, it is possible to 

specify the Euler angles of the new orientation and use the joint values o f the present 

configuration as the initial guesses in the calculations. The MAIM method will then return 

the new angles required for the new orientation. Given the two desired consecutive 

orientations, another program could be developed which could direct each of the joints to 

move from its initial orientation to its final orientation, possibly even optimizing the path 

to move along the most efficient or least interfering route. It would be prudent, however,



63

to allow the opportunity to manually confirm the new joint displacements before their use, 

in case the results are somehow not acceptable.

The MAIM method as it is represented in the code presented here does not take 

into account the existence of the possibility of restricted motion of a joint, that is if a joint 

is constrained to rotate only over a limited angular range. Similarly, the code does not 

have any contingency for prismatic joints, which are constrained not to rotate at all. The 

current code has a provision only to select the joint axis closest to the miss axis for 

adjustment. When performing the MAIM method manually, it will be obvious when such 

a case causes a problem and the user can correct for it by choosing a different joint to 

adjust. The computer code could likewise be modified to determine when it is appropriate 

to reject the closest axis in favor of the second closest, or the third, and so on. Without 

these measures, the method works fully for mechanisms which have joints possessing a full 

range of motion while the results must be manually checked for discrepancies for those 

with joints having limited ranges. Future improvements of the computer implementation 

of the MAIM method could contain options to declare certain joints to be unable to rotate, 

eliminating them from consideration for correction by the program, or to take into account 

joints which are restricted to within a certain range, perhaps opting to correct a different 

joint entirely if the indicated correction to a joint would place it outside its allowed range.

One area which stands to benefit from a more detailed investigation is the matter 

of the step-size for adjusting the joint variables. Presently the method uses a step-size 

large enough to make a steady, controlled change in a joint variable but small enough to 

not overshoot or otherwise potentially interfere with the natural solution process. The 

magnitude of this increment could be optimized by whatever statistical method a 

mathematician or programmer judges to be satisfactory. With regard to the currently 

suggested step-size, the safety factor of one quarter was chosen almost arbitrarily and is 

very likely not the most efficient. However, the axis ratio factor was developed and seems
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effective and so should be used unless much work is put into proving why it is not 

adequate.

In addition to the safety factor, it may also desirable to improve the step-size 

algorithm in order to increase the rate of convergence for smaller miss angles. Presently, 

the program seems to converge almost exponentially slower in terms of the number of 

iterations performed as the miss angle diminishes. Perhaps this effect is simply due to the 

fact that the miss angle is very small already and then the joint angle is being corrected by 

a portion of a percentage fraction of that angle.

While considering small miss angles, it can be shown that the accuracy of the 

rotation axis determined by Equations 3.14 and 4.15 degrades when the angle of rotation 

is small. The effect of this on the solution process may deserve exploration due to the 

potential problems that can be caused by deviations in the miss axis.

The exact effects of the initial guesses on the final solution might be studied for 

possible patterns in order to develop a way to target a specific set of angles to aim 

towards for the solution and thereby develop a system to somehow control the multiple 

solutions problem.

Although two separate programs were created to demonstrate the MAIM method, 

one unified program could easily be developed to handle the application of the method to 

both closed-loop and open-loop mechanisms. Some of the routines common to both 

techniques could be recycled and most of the others could be easily adapted to be flexible 

enough to work for either type of mechanism. After allowing the user to choose the type 

o f mechanism being analyzed, the program could branch to the relevant sections for the 

type indicated. In particular, the proper kinematic chain would have to be specified for 

each option: beginning at the base and transforming to the end of the last link for a closed- 

loop mechanism and starting at the hand and transforming to the base and then through 

the links and back to the hand for an open-loop mechanism. Also, the first link in each of 

these transformations would have to specified as fixed in each case and left out of
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consideration from correction, but otherwise this merger of the methods seems fairly 

simple and completely viable.

The MAIM method could easily lend itself to being linked with a graphical 

simulation program to draw the current link positions, the joint axes, the miss axis, and 

other elements of interest at each iteration for convenient visualization of exactly how the 

method works and what the adjustment process looks like. To add this feature, either the 

code for the MAIM method could be expanded to include graphical capability for such a 

display process or the results from the program for the iterations of interest could be 

down-loaded to a computerized modeling system such as conventional CAD software and 

the coordinates processed into graphics there.

If the MAIM method is being used to control the movement of a robotic 

manipulator of any sort, a step could be added to the computer code to allow the user or 

another control program to check the newly-solved joint angles before moving the arm 

there to avoid possible problems. The new arm and joint positions could be checked 

mathematically by comparison to a range of known allowed positions. Alternately, by 

linking the MAIM method with a CAD program as previously discussed, the final 

configuration of the arm could also be checked in a model, either mathematically by a 

computer controller or visually by the user. The model could ultimately include the 

obstacles in the work space to confirm that no collisions or impossible or even 

inconvenient positions occur either in the final position or in the course of moving to it 

from the previous one.

Clearly, the MAIM method has many merits. This new method is very versatile 

and obviously has many potential applications. The theory has been presented in its 

entirety and a method has been developed to apply that theory to realistic examples. A 

sample program demonstrating the feasibility of the method has been developed, however 

effective implementation still needs considerable refining and fine-tuning. The overall
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concept of the MAIM method has been shown to have plenty of areas for further 

development and its uses have just begun to be tapped.
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APPENDIX B

CLOSED-LOOP METHOD PROGRAM CODE (FORTRAN)

* Miss Angle Iteration Method (MAIM)
* A  Spherical Mechanism Orientation Program
* Closed-loop version

* Method developed by John D. Kliminski,
* incorporating concepts proposed by Dr. Ian S. Fischer
* Program written by John D. Kliminski
* Via NJIT 1994 Updated: 10/19/94

* Variable List:
* n - number of links in the mechanism.
* th(n) - joint angles, theta.
* alph(n) - twist angles of the links, alpha.
* U(3,3) - transformation matrix for a given set of coordinate
* frames.
* V(i,k) - array of joint axes; the i index represents the x,y, z
* vector coordinates of the axis and k is the joint index.
* V is therefore a matrix of column vectors of dimension
* (3,n+l).
* M(3) - miss axis in x,y,z vector coordinates.
* sig - miss angle, sigma.
* stol - the acceptable tolerance of the magnitude of the miss
* angle.
* phi(n) - element phi(i) is the angle between joint axis i and the
* miss axis.
* s - index of the joint axis which is nearest to collinear with
* the miss axis.
* sigcor - the amount of correction to a joint angle on a given
* iteration.
* R(3,3) - general rotational transformation matrix.
* it - counter for the number of iterations performed.
* itmax - prescribed maximum number of iterations allowed.
* d2r,r2d - conversion factors for degrees to/from radians.
* Y(i),Z(i) - temporary storage arrays for vectors.
*  Main Program---
* Declare variables.

integer n, it, itmax, s
double precision alph(12), th(12), V(3,13),

& M(3), sig, stol, sigcor, phi(12), p, pi, d2r, r2d
* Declare fundamental trigonometric and mechanism data as common.

common /tm/ n, pi 
pi=4.d0*datan(l.dO) 
d2r=pi/180.dO 
r2d=180.dO/pi

write(6,*)
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write(6,*) ' Miss Angle Iteration Method (MAIM) '
& 'for Closed-Loop Mechanisms' 
write (6,*) 
write(6,*)
write(6,*) '(Enter angles on one line separated by commas 1 
& 'or on separate lines.)' 
write(6,*)

* Input the specific data for the mechanism and convert all angles
* from degrees to radians.

write(6,*) 'Enter the number of links in the mechanism: '
read(5,*) n
write(6,*) 'Enter the twist of each link (degrees): '
read(5,*) (alph(i), i=l,n) 
do 12 i=l,n 

12 alph(i)=alph(i)*d2r
write(6,*) 'Enter the initial guesses for the joint',
& ' angles (degrees): ' 
read(5,*) (th(i), i=l,n)
do 14 i=l,n 

14 th(i)=th(i)*d2r
write(6,*) 'Enter the tolerance for the miss angle (degrees):
read(5,*) stol
stol=stol*d2r
write(6,*) 'Enter the maximum number of iterations: '
read(5,*) itmax
write(6,*)
write(6,*) 'Ok.'
write(6,*)
write(6,*) 'Working...'

* Initialize iteration counter.
it=0

* Begin iterative procedure.
Ill continue

* Develop joint axes.
call axes (th, alph, V)

* Calculate the miss angle and the miss axis vector.
call mangle (th, alph, M, sig)

* If current miss angle is within tolerance, end program.
if (sig.le.stol) then 

goto 999 
endif

* If limit of iterations is exceeded, end program.
if (it.ge.itmax) then 

goto 999 
endif

* Determine which joint angle to adjust to improve the miss angle.
* Calculate the angle between each joint axis, V, and the miss axis,

do 4 i=2,n
call anglevec (M, V, i, p)

4 phi(i)=p
* Select the joint axis closest to the miss axis.

call angcomp (phi, s)
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* Determine the magnitude and direction of the correction angle.
call setcorr (phi, s, sig, sigcor)

* Adjust the appropriate joint angle by the correction angle.
th(s)=th(s)+sigcor

* Reset all joint variables to range from 0 to 2*pi.
call corrth (th)

*  Increment iteration counter.
it=it+l

* Repeat method for next iteration.
goto 111

999 continue
* Display final results.

write (6,*)
if (it.ge.itmax) then

write(6,*) ' *** Maximum iterations reached --- ',
& 'method aborted ***' 

write(6,*) 
endif 
write(6,*)
if (sig.le.stol) then

write(6,*) ' Method successfully completed.'
write(6,*) 

endif
write(6,*) 'The Miss Angle was reduced to ',sig*r2d,' (degrees)' 
write (6,*) 'after',it,' iterations.' 
if (sig.le.stol) then 

write(6,*)
write(6,*) 'This Miss Angle is within the specified',

& ' tolerance of ',stol*r2d,' (degrees).1 
endif 
write(6,*)
write(6,*) 'The final results (in degrees) are: '
do 91 i=l,n 

91 write(6,95) i,th(i)*r2d
95 format)' theta ',i2,' = ',fl0.6)

write (6,*)
end

*   Subroutines--

Subroutine axes (th, alph, V)
double precision th(n), alph(n), V(3,n+1), pi,
& U (3,3), Z(3), Y (3) 
common /tm/ n, pi

* Develop joint axes, VI through Vn+1.
* Define initial axis, V(i,l) (of unit length).

V (1,1)=0.dO 
V(2,1)=0.dO 
V(3,1)=1.dO

* Obtain other axes, V(i,2) through V(i,n+1), by successive
* post-multiplication of V(i,l) by the U transformation matrix.

do 2 j=l,n
* Initialize temporary storage array Z as V(i,l).

do 22 i=l,3
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22 Z (i)=V (i,1)
* Post-multiply by the appropriate transformation matrices.

do 24 i=j,l,-l
call makeU (th, i, alph, U) 
call mat31mult (U, Z, Y) 
do 23 ii=l,3

23 Z(ii)=Y(ii)
24 continue
* Return resulting matrix product Z to V(i,j+1), rounding off
* elements to eliminate multiplication precision errors.

do 21 i=l,3
Z(i)= (dint(Z(i)*l.dl2))/l.dl2 

21 V(i,j+1)=Z(i)
2 continue

return 
end
Subroutine makeU (th, i, alph, U)

* Creates appropriate U transformation matrices.
double precision th(n), alph(n), U(3,3), pi 
integer i 
common /tm/ n, pi 
U (1,1)=dcos(th (i ))
U(l,2)=-dcos(alph(i))*dsin(th(i))
U (1, 3)=dsin(alph(i))*dsin (th (i))
U (2,1)=dsin(th(i))
U (2,2)=dcos(alph(i))*dcos(th(i))
U (2,3)=-dsin(alph(i))*dcos(th(i))
U (3,1)=0.dO 
U (3,2)=dsin(alph(i ))
U (3,3)=dcos(alph(i))
return
end
Subroutine magnvec (G, mG)

* Returns the magnitude of a vector.
double precision G(3), mG 
mG=dsqrt(G(1)**2+G(2)**2+G(3) **2) 
return 
end
Subroutine anglevec (A, B, k, ang)

* Computes the angle between two vectors from the dot-product of
* the vectors.

double precision A(3), B(3,n+1), ang, D(3), mA, mD, dp,
& pi, rdp 
integer k 
common /tm/ n, pi
dp=A(1)*B(1,k)+A(2)*B(2,k)+A(3)*B(3,k) 
call magnvec (A, mA) 
do 41 j=l,3 

41 D (j )= B (j,k)
call magnvec (D, mD)
rdp=(dint(dp/(mA*mD)*1.dl2) ) /I.dl2
ang=dacos(rdp)
return
end
Subroutine mangle (th, alph, M, sig)

* Compute the miss angle and the miss axis based on the imaginary screw
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* motion of vector V(i,n+1) rotating to coincide with vector V(i,l).
double precision th(n), alph(n), M(3), sig, B(3,3), R(3,3),

& pi, U (3,3), sc 
common /tm/ n, pi

* Develop transformation matrix B.
* Initialize B as I .

do 30 i=l,3 
do 30 j=l,3

if (i.eq.j) then 
B(i,j)=l.d0 
else

B(i,j)=0.dO 
endif

30 continue
* Perform successive multiplications of U matrices to construct B.

do 31 i=l,n
call makeU (th, i, alph, U) 
call mult33mat (B, U, B)

31 continue
* Obtain R by transposing B.

call transp (B, R)
* Compute angle of rotation.

sc=(R(1,1)+ R (2,2)+R(3,3)-1.dO)/2.dO
* Correct for possible propagation of errors.

if ((dabs(sc)).gt.ldO) then 
sc=dint(sc) 

endif
sig=dacos(sc)
if (sig.ne.0.dO) then

* Develop miss axis from rotation matrix and angle of rotation.
M(1) = (R(3,2)-R(2,3))/(2.d0*dsin(sig) )
M(2) = (R(1,3)-R(3,1))/(2.d0*dsin(sig) )
M(3)=(R(2,1)-R(1,2))/(2.d0*dsin(sig)) 

endif
return
end

Subroutine transp (B, R)
* Transposes a 3x3 matrix B to make R.

double precision B(3,3), R(3,3), pi 
common /tm/ n, pi 
do 38 i=l,3 
do 38 j=l,3 

38 R (i,j)= B (j,i )
return 
end
Subroutine mult33mat (A, B, C)

* Multiplies 3x3 matrices A  and B to produce C.
double precision A(3,3), B(3,3), C(3,3), pi 
common /tm/ n, pi 
do 35 ir=l,3 
do 35 ic=l,3 

C(ir,ic)=0.dO
35 C(ir,ic)=A(ir,l)*B(l,ic)+A(ir,2)*B(2,ic)+A(ir,3)*B(3,ic)
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return
end

Subroutine angcomp (phi, s)
* Determine the joint axis which is closest to being collinear with
* the miss axis (represented by the phi angle furthest from pi/2.)

double precision phi(n), phiO, phil, pi
integer s
common /tm/ n, pi
phi0=0.dO
s=0
do 5 i=2,n

phil=dabs((pi/2.dO)-phi(i)) 
if (phil.ge.phiO) then 

s=i
phi0=phil 

endif 
5 continue

return 
end
Subroutine setcorr (phi, s, sig, sigcor)

* Determine the desired magnitude and direction of the correction angle.
double precision phi(n), sig, sigcor, pi
integer s
common /tm/ n, pi

* Determine the magnitude based on a percentage of the miss angle.
if ((phi(s).gt.(0.9*pi/2.dO)).and.(phi(s).It.(1.l*pi/2.dO))) then

* Establish minimum correction angle (in case phi(i) is very close
* to pi/2).

sigcor=sig*0.1 
else

sigcor=(dabs(pi/2.dO-phi(s))/(pi/2.dO))*sig/4.dO
endif

* Accommodate step size for the case of a very small angle.
if (sig.It.1.d-2) then 

sigcor=sigcor*2.dO 
endif

* Determine the sign of the correction angle based on the relative
* orientation of the joint axis and the miss axis.

if (phi(s).gt.(pi/2.dO)) then 
sigcor=-sigcor 

endif 
return 
end
Subroutine mat31mult (A, B, C)

* Multiplies a 3x3 matrix A and a 3x1 matrix B to produce a 3x1
* matrix C.

double precision A(3,3), B(3), C(3), pi 
common /tm/ n, pi 
do 2 ir=l,3 

C(ir)=0.d0
C(ir)=A(ir,1)*B(1)+A(ir,2)*B(2)+A(ir,3)*B(3)

2 continue
return 
end

Subroutine corrth (th)
* Routine to correct all joint angles to be between 0 and 2*pi.



double precision th(n), pi 
common /tm/ n, pi 
do 7 i=2,n

if (th(i).It.0.dO) then 
th(i)=th(i)+2.dO*pi 

endif
if (th(i).gt.2.dO*pi) then 

t h (i )=th(i )-2.dO *pi 
endif 
continue 

return 
end



APPENDIX C

RESULTS FOR A CLOSED-LOOP EXAMPLE

The following is the complete list of intermediate data from the example of the MAIM 

method applied to a closed-loop mechanism presented in Section 5.2. This table contains, 

for each iteration, the iteration number, ‘it. the current joint angles at that iteration, 

0i, ...,0n, and the miss angle, a, for the mechanism in the configuration resulting from 

those joint angles. The joint angle shown in boldface indicates the joint axis which is 

closest to the miss axis in that configuration. This joint angle is the one to be adjusted. 

The adjustment step-size is not shown in the table but can easily be found by determining 

the difference between two successive values of an adjusted joint angle.

Table C .l Results for the MAIM method applied to the Cardan joint example.

it.# 01 02 03 04 CT
0 0.000 50.000 320.000 120.000 66.354
1 0.000 61.367 320.000 120.000 56.578
2 0.000 61.367 320.000 110.935 49.137
3 0.000 69.284 320.000 110.935 42.616
4 0.000 69.284 320.000 104.678 37.809
5 0.000 74.778 320.000 104.678 33.624
6 0.000 79.147 320.000 104.678 30.583
7 0.000 79.147 320.000 100.880 28.038
8 0.000 79.147 316.291 100.880 25.419
9 0.000 79.147 316.291 97.805 23.405

10 0.000 79.147 313.303 97.805 21.357
11 0.000 81.899 313.303 97.805 19.457
12 0.000 81.899 310.880 97.805 17.831
13 0.000 84.126 310.880 97.805 16.332
14 0.000 84.126 310.880 95.844 15.056
15 0.000 84.126 308.891 95.844 13.653
16 0.000 85.726 308.891 95.844 12.635
17 0.000 85.726 307.283 95.844 11.535
18 0.000 85.726 307.283 94.391 10.552
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T a b l e d  (continued)

i t .# 01 02 03 04 a
19 0.000 85.726 305.974 94.391 9.677
20 0.000 85.726 305.974 93.210 8.899
21 0.000 85.726 304.911 93.210 8.210
22 0.000 86.795 304.911 93.210 7.465
23 0.000 86.795 304.042 93.210 6.915
24 0.000 86.795 304.042 92.342 6.328
25 0.000 87.579 304.042 92.342 5.804
26 0.000 87.579 303.321 92.342 5.322
27 0.000 88.219 303.321 92.342 4.905
28 0.000 88.219 302.734 92.342 4.524
29 0.000 88.219 302.734 91.760 4.124
30 0.000 88.219 302.253 91.760 3.819
31 0.000 88.694 302.253 91.760 3.501
32 0.000 88.694 302.253 91.332 3.218
33 0.000 88.694 301.853 91.332 2.950
34 0.000 88.694 301.853 90.982 2.724
35 0.000 88.694 301.527 90.982 2.512
36 0.000 89.016 301.527 90.982 2.292
37 0.000 89.016 301.259 90.982 2.122
38 0.000 89.277 301.259 90.982 1.948
39 0.000 89.277 301.259 90.744 1.792
40 0.000 89.277 301.036 90.744 1.642
41 0.000 89.277 301.036 90.550 1.517
42 0.000 89.277 300.854 90.550 1.399
43 0.000 89.455 300.854 90.550 1.278
44 0.000 89.455 300.705 90.550 1.183
45 0.000 89.455 300.705 90.405 1.086
46 0.000 89.586 300.705 90.405 1.000
47 0.000 89.586 300.580 90.405 0.916
48 0.000 89.694 300.580 90.405 0.847
49 0.000 89.694 300.478 90.405 0.781
50 0.000 89.694 300.478 90.306 0.714
51 0.000 89.694 300.395 90.306 0.661
52 0.000 89.775 300.395 90.306 0.607
53 0.000 89.775 300.395 90.232 0.559
54 0.000 89.775 300.255 90.232 0.471
55 0.000 89.775 300.255 90.109 0.390
56 0.000 89.874 300.255 90.109 0.326
57 0.000 89.874 300.162 90.109 0.260
58 0.000 89.938 300.162 90.109 0.221
59 0.000 89.938 300.104 90.109 0.182
60 0.000 89.938 300.104 90.058 0.147
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Table C .l (continued)

it.# 01 02 03 04 CT
61 0.000 89.938 300.067 90.058 0.124
62 0.000 89.970 300.067 90.058 0.102
63 0.000 89.970 300.067 90.032 0.086
64 0.000 89.970 300.043 90.032 0.068
65 0.000 89.970 300.043 90.016 0.058
66 0.000 89.970 300.027 90.016 0.048
67 0.000 89.984 300.027 90.016 0.039
68 0.000 89.984 300.018 90.016 0.033
69 0.000 89.993 300.018 90.016 0.027
70 0.000 89.993 300.018 90.009 0.023
71 0.000 89.993 300.011 90.009 0.018
72 0.000 89.993 300.011 90.004 0.015
73 0.000 89.993 300.007 90.004 0.013
74 0.000 89.996 300.007 90.004 0.010
75 0.000 89.996 300.005 90.004 0.009
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OPEN-LOOP METHOD FLOWCHART 
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APPENDIX E

OPEN-LOOP METHOD PROGRAM CODE (FORTRAN)

* Miss Angle Iteration Method (MAIM)
* A  Spherical Mechanism Orientation Program
* Open-loop version

* Method developed by John D. Kliminski,
* incorporating concepts proposed by Dr. Ian S. Fischer
* Program written by John D. Kliminski
* Via NJIT 1994 Updated: 10/19/94

Variable List:
* n - number of links in the mechanism.
* th(n) - joint angles, theta.
* alph(n) - twist angles of the links, alpha.
* U(3,3) - transformation matrix for a given set of coordinate
* - frames.
* V(i,k) - array of joint axes; the i index represents the x,y,z
* vector coordinates of the axis and k is the joint index.
* V is therefore a matrix of column vectors of dimension
* (3,n+l).
* M(3) - miss axis in x,y,z vector coordinates.
* sig - miss angle, sigma.
* stol - the acceptable tolerance of the magnitude of the miss
* - angle.
* phi(n) - element phi(i) is the angle between joint axis i and the
* miss axis.
* s - index of the joint axis which is nearest to collinear with
* the miss axis.
* sigcor - the amount of correction to a joint angle on a given
* - iteration.
* it - counter for the number of iterations performed.
* itmax - prescribed maximum number of iterations allowed.
* R(3,3) - general rotational transformation matrix.
* E(3,3) - Euler rotation matrix expressing the hand frame in terms
* of the base frame.
* ET(3,3) - transpose of E (expressing the base frame in terms of the
* hand frame).
* ap,bt,gm - ZYX Euler angles (alpha, beta, gamma) expressing the
* orientation of the hand frame.
* d2r,r2d - conversion factors for degrees to/from radians.
* Y(i),Z(i) - temporary storage arrays for vectors.

*   Main Program ---
* Declare variables.

integer n, it, itmax, s
double precision alph(12), th(12), V(3,0:13),
& M(3), sig, stol, sigcor, phi(12), p, pi, d2r, r2d, 
& ap, bt, gm
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* Declare fundamental trigonometric and mechanism data as common.
common /tm/ n, pi 
pi=4.dO*datan(1.dO) 
d2r=pi/180.dO 
r2d=180.dO/pi
write(6,*)
write(6,*) ' Miss Angle Iteration Method (MAIM) ’
& 1 for Open-Loop Mechanisms' 
write(6,*) 
write(6,*)
write(6,*) '(Enter angles on one line separated by commas 1 
& 'or on separate lines.)' 
write(6,*)

* Input the specific data for the mechanism and convert all angles
* from degrees to radians.

write(6,*) 'Enter the number of links in the manipulator: '
read(5,*) n
write(6,*) 'Enter the twist of each link (degrees): '
read(5,*) (alph(i), i=l,n) 
do 12 i=l,n 

12 alph(i)=alph(i)*d2r
write(6,*) 'Enter the initial guesses for the joint',
& ' angles (degrees): '
read(5,*) (th(i), i=l,n)
do 14 i=l,n 

14 th(i)=th(i)*d2r
write(6,*) 'Enter the tolerance for the miss angle (degrees)
read(5,*) stol
stol=stol*d2r
write(6,*) 'Enter the maximum number of iterations: ' 
read(5,*) itmax
write(6,*) 'Enter the ZYX Euler angles for the hand frame ', 
& 'coordinates - alpha, beta, gamma (degrees): '
read(5,*) ap, bt, gm 
ap=ap*d2r 
bt=bt*d2r 
gm=gm*d2r 
write(6,*) 
write(6, *) 'Ok. ' 
write(6,*)
write(6,*) 'Working...1

* Initialize iteration counter.
it=0

* Begin iterative procedure.
Ill continue
* Develop joint axes.

call axes (th, alph, ap, bt, gm, V)
* Calculate the miss angle and the miss axis vector.

call mangle (th, alph, ap, bt, gm, M, sig,V)
* If current miss angle is within tolerance, end program.

if (sig.le.stol) then 
goto 999 

endif
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* If limit of iterations is exceeded, end program.
if (it.ge.itmax) then 

goto 999 
endif

* Determine which joint angle to adjust to improve the miss angle.
* Calculate the angle between each joint axis, V, and the miss axis, M.

do 4 i=l,n
call anglevec (M, V, i, p)

4 phi(i)=p
* Select the joint axis closest to the miss axis.

call angcomp (phi, s)
* Determine the magnitude and direction of the correction angle.

call setcorr (phi, s, sig, sigcor)
* Adjust the appropriate joint angle by the correction angle.

t h (s)=th(s)+sigcor
* Reset all joint variables to range from 0 to 2*pi.

call corrth (th)

* Increment iteration counter.
it=it+l

* Repeat method for next iteration.
goto 111

999 continue
* Display final results.

write(6,*)
if (it.ge.itmax) then

write(6,*) ' *** Maximum iterations reached ---
& 'method aborted ***' 

write(6,*) 
endif 
write(6,*)
if (sig.le.stol) then

write(6,*) ' Method successfully completed.'
write(6,*) 

endif
write(6,*) 'The Miss Angle was reduced to ',sig*r2d,' (degrees)' 
write(6,*) 'after',it,' iterations.' 
if (sig.le.stol) then 

write(6,*)
write(6,*) 'This Miss Angle is within the specified',

& ' tolerance of ',stol*r2d,' (degrees).'
write(6,*) 'For the end effector coordinates of ',

& ap*r2d,',’,bt*r2d,',',gm*r2d,' (degrees) in ZYX Euler angles.' 
endif 
write(6,*)
write(6,*) 'The final results (in degrees) are: '
do 91 i=l,n 

91 write(6,95) i,th(i)*r2d
95 format (' theta ',i2,' = ',fl0.6)

write(6,*)

end
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*   Subroutines--
Subroutine axes (th, alph, ap, bt, gm, V)
double precision th(n), alph(n), ap, bt, gm, V(3,0:n+1), pi,

& E (3,3), E T (3,3), U(3,3), Z (3), Y(3) 
common /tm/ n, pi

* Develop joint axes, VO through Vn+1, by matrix transformations.
* Define initial axis in hand frame, V(i,0) (of unit length).

V(l, 0) =0.dO 
V  (2,0)=0.d0 
V (3,0)=1.dO

* Transform from hand axis, V(i,0), to first joint axis, V(i,l).
call makeE (ap, bt, gm, E)
call transp (E, ET)

* Set temporary storage array Z as V(i,0).
do 26 i=l,3

26 Z (i )= V (i, 0)
call mat31mult (ET, Z, Y) 
do 27 i=l,3

27 V(i,l)=Y(i)
* Obtain other axes, V(i,2) through V(i,n+1), by successive
* post-multiplication of V(i,l) by the U transformation matrix.

do 2 j=l,n
* Initialize temporary storage array Z as V(i,l).

do 22 i=l,3
22 Z(i)=V(i,l)
* Post-multiply by the appropriate transformation matrices.

do 24 i=j,l,-l
call makeU (th, i, alph, U) 
call mat31mult (U, Z, Y) 
do 23 ii=l,3

23 Z(ii)=Y(ii)
24 continue
* Return resulting matrix product Z to V(i,j+1), rounding off elements
* to eliminate multiplication precision errors.

do 21 i=l,3
Z(i)= (dint(Z(i)*1.dl2))/l.dl2 

21 V(i,j+l)=Z(i)
2 continue

return 
end
Subroutine makeE (ap, bt, gm, E)

* Create matrix to transform from base frame to hand frame using
* ZYX Euler angles.

double precision ap, bt, gm, E(3,3), pi 
common /tm/ n, pi 
E (1,1)=dcos(ap)*dcos(bt)
E (1,2)=dcos(ap)*dsin(bt)*dsin(gm)-dsin(ap)*dcos(gm)
E (1,3)=dcos(ap)*dsin(bt)*dcos(gm)+dsin(ap)*dsin(gm)
E (2,1)=dsin(ap)*dcos(bt)
E (2,2)=dsin(ap)*dsin(bt)*dsin(gm)+dcos(ap)*dcos(gm)
E (2,3)=dsin(ap)*dsin(bt)*dcos(gm)-dcos(ap)*dsin(gm)
E(3,l)=-dsin(bt)
E (3,2)=dcos(bt)*dsin(gm)
E (3,3)=dcos(bt)*dcos(gm)
return
end

Subroutine makeU (th, i, alph, U)
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* Creates appropriate U transformation matrices.
double precision th(n), alph(n), U(3,3), pi
integer i
common /tm/ n, pi
U(l,l)=dcos(th(i))
U (1,2)=-dcos(alph(i))*dsin(th(i) )
U (1,3)=dsin(alph(i))*dsin(th(i) )
U (2,1)=dsin(t h (i ))
U (2,2)=dcos(alph(i))*dcos(th(i))
U (2,3)=-dsin(alph(i))*dcos(th(i) )
U(3,l)=0.d0 
U (3,2)=dsin(alph(i))
U (3,3)=dcos(alph(i))
return
end
Subroutine magnvec (G, mG)

* Returns the magnitude of a vector.
double precision G(3), mG 
mG=dsqrt(G(1)**2+G(2)**2+G(3)**2) 
return 
end

Subroutine anglevec (A, B, k, ang)
* Computes the angle between two vectors from the dot-product of
* the vectors.

double precision A(3), B(3,0:n+1), ang, D(3), mA, mD, dp,
& pi, rdp 
integer k 
common /tm/ n, pi
dp=A( 1)*B(1,k)+A(2)*B(2,k)+A(3)*B(3, k) 
call magnvec (A, mA) 
do 41 j=l,3 

41 D (j)= B (j,k)
call magnvec (D, mD)
rdp=(dint(dp/(mA*mD)*l.dl2))/l.dl2
ang=dacos(rdp)
return
end
Subroutine mangle (th, alph, ap, bt, gm, M, sig,V)

* Compute the miss angle and the miss axis based on the imaginary screw
* motion of vector V(i,n+1) rotating to coincide with vector V(i,l).

double precision th(n), alph(n), M(3), sig, B(3,3), R(3,3),
& E (3,3), ET(3,3), ap, bt, gm, U(3,3), sc, pi,
& V(3,0:n+1) 
common /tm/ n, pi

* Develop transformation matrix B.
* Initialize B as I .

do 30 i=l,3 
do 30 j=l,3

if (i.eq.j) then 
B(i,j)=1.dO 
else

B(i,j)=0.dO 
endif 

30 continue
* Transform from hand to base.

call makeE (ap, bt, gm, E)
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call transp (E, ET) 
call mult33mat (B, ET, B)

* Perform successive multiplications of U matrices to construct B.
do 31 i=l,n

call makeU (th, i, alph, U) 
call mult33mat (B, U, B)

31 continue
* Obtain R by transposing B.

call transp (B, R)
* Compute angle of rotation.

sc=(R(1,1)+ R (2,2)+ R (3,3)-1.dO)/2.dO
* Correct for possible propagation of errors.

if ((dabs(sc)).gt.ldO) then 
sc=dint(sc) 

endif
sig=dacos(sc)
if (sig.ne.O.dO) then

* Develop miss axis from rotation matrix and angle of rotation.
M(1)=(R(3,2)-R(2,3))/(2.dO*dsin(sig))
M(2)=(R(1,3)-R(3,1))/(2.d0*dsin(sig))
M(3) = (R(2,1)- R (1,2))/(2.dO*dsin(sig)) 

endif

return
end
Subroutine transp (B, R)

* Transposes a 3x3 matrix B to make R.
double precision B (3,3), R(3,3), pi 
common /tm/ n, pi 
do 38 i=l,3 
do 38 j=l,3 

38 R(i,j)=B(j,i)
return 
end

Subroutine mult33mat (A, B, C)
* Multiplies 3x3 matrices A  and B to produce C.

double precision A(3,3), B(3,3), C(3,3), pi 
common /tm/ n, pi 
do 35 ir=l,3 
do 35 ic=l,3 

C(ir,ic)=0.dO
35 C(ir,ic)=A(ir,l)*B(l,ic)+A(ir,2)*B(2,ic)+A(ir,3)*B(3,ic)

return 
end
Subroutine angcomp (phi, s)

* Determine the joint axis which is closest to being collinear with
* the miss axis (represented by the phi angle furthest from pi/2.)

double precision phi(n), phiO, phil, pi
integer s
common /tm/ n, pi
phi0=0.d0
s=0
do 5 i=l,n

phil=dabs((pi/2.dO)-phi(i))
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if (phil.ge.phiO) then 
s=i
phiO=phil 

endif 
5 continue

return 
end

Subroutine setcorr (phi, s, sig, sigcor)
* Determine the desired magnitude and direction of the correction angle.

double precision phi(n), sig, sigcor, pi
integer s
common /tm/ n, pi

* Determine the magnitude based on a percentage of the miss angle.
if ((phi(s).gt.(0.95*pi/2.dO)).and.

& (phi(s).It.(1.05*pi/2.dO))) then
* Establish minimum correction angle (in case phi(i) is very close
* to pi/2) .

sigcor=sig*0.1 
else

sigcor=(dabs(pi/2.d0-phi(s))/(pi/2.d0))*sig/2.d0
endif

* Accommodate step size for the case of a very small angle.
if (sig.It.1.d-1) then 

sigcor=sigcor*2.dO 
endif

* Determine the sign of the correction angle based on the relative
* orientation of the joint axis and the miss axis.

if (phi(s).gt.(pi/2.dO)) then 
sigcor=-sigcor 

endif 
return 
end

Subroutine mat31mult (A, B, C)
* Multiplies a 3x3 matrix A and a 3x1 matrix B to produce a 3x1
* matrix C.

double precision A(3,3), B(3), C(3), pi 
common /tm/ n, pi 
do 2 ir=l,3 

C(ir)=0.dO
C(ir)=A(ir,l)*B(1)+A(ir,2)*B(2)+A(ir,3)*B(3)

2 continue
return 
end

Subroutine corrth (th)
* Routine to correct all joint angles to be between 0 and 2*pi.

double precision th(n), pi 
common /tm/ n, pi 
do 7 i=l,n

if (th(i).It.0.dO) then 
t h (i )=th(i)+2.d0*pi 

endif
if (t h (i ).gt.2.d0*pi) then 

th(i)=th(i)-2.d0*pi 
endif 

7 continue
return 
end



APPENDIX F

RESULTS FOR AN OPEN-LOOP EXAMPLE

The following is the complete list of intermediate data from the example of the MAIM 

method applied to an open-loop mechanism presented in Section 5.3. This table contains, 

for each iteration, the iteration number, ‘it. the current joint angles at that iteration, 

0i, and the miss angle, a, for the mechanism in the configuration resulting from

those joint angles. The joint angle shown in boldface indicates the joint axis which is 

closest to the miss axis in that configuration. This joint angle is the one to be adjusted. 

The adjustment step-size is not shown in the table but can easily be found by comparing 

two successive values of an adjusted joint angle.

Table F .l Results for the MAIM method applied to the SSRMS arm example.

it.# 01 02 03 04 05 06 07 CT
0 10.000 0.000 11.000 0.000 0.000 0.000 2.000 153.090
1 10.000 0.000 11.000 0.000 26.125 0.000 2.000 142.775
2 10.000 0.000 11.000 0.000 50.730 0.000 2.000 134.640
3 10.000 0.000 11.000 0.000 50.730 336.157 2.000 134.099
4 10.000 0.000 11.000 0.000 82.379 336.157 2.000 120.420
5 10.000 0.000 11.000 0.000 82.379 336.157 332.612 123.217
6 10.000 32.411 11.000 0.000 82.379 336.157 332.612 92.157
7 10.000 32.411 11.000 0.000 105.935 336.157 332.612 88.264
8 10.000 61.534 11.000 0.000 105.935 336.157 332.612 62.211
9 10.000 81.330 11.000 0.000 105.935 336.157 332.612 46.339

10 10.000 81.330 11.000 0.000 105.935 352.735 332.612 44.882
11 10.000 97.309 11.000 0.000 105.935 352.735 332.612 31.706
12 10.000 97.309 11.000 0.000 105.935 8.399 332.612 34.731
13 10.000 111.911 11.000 0.000 105.935 8.399 332.612 24.221
14 10.000 123.172 11.000 0.000 105.935 8.399 332.612 19.929
15 10.000 123.172 11.000 0.000 97.829 8.399 332.612 12.509
16 10.000 123.172 11.000 0.000 92.112 8.399 332.612 8.103
17 10.000 123.172 7.511 0.000 92.112 8.399 332.612 6.505
18 10.000 123.172 5.498 0.000 92.112 8.399 332.612 6.318
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Table F .l (continued)

it.# 9i 02 03 04 05 06 07 CT
19 8.015 123.172 5.498 0.000 92.112 8.399 332.612 4.788
20 8.015 123.172 2.916 0.000 92.112 8.399 332.612 5.095
21 4.153 123.172 2.916 0.000 92.112 8.399 332.612 2.080
22 4.153 123.172 2.916 0.000 92.112 9.608 332.612 3.015
23 4.153 123.172 1.587 0.000 92.112 9.608 332.612 3.172
24 2.198 123.172 1.587 0.000 92.112 9.608 332.612 1.914
25 2.198 123.172 1.587 0.000 92.112 10.880 332.612 2.769
26 1.024 123.172 1.587 0.000 92.112 10.880 332.612 2.243
27 1.024 123.172 1.587 0.000 92.112 12.315 332.612 3.262
28 1.024 123.172 359.947 0.000 92.112 12.315 332.612 3.291
29 359.070 123.172 359.947 0.000 92.112 12.315 332.612 2.079
30 359.070 123.172 359.947 0.000 92.112 13.669 332.612 2.991
31 357.832 123.172 359.947 0.000 92.112 13.669 332.612 2.448
32 357.832 124.713 359.947 0.000 92.112 13.669 332.612 1.626
33 357.832 124.713 359.947 0.000 90.786 13.669 332.612 1.405
34 356.758 124.713 359.947 0.000 90.786 13.669 332.612 0.560
35 356.758 124.713 359.947 0.000 90.463 13.669 332.612 0.535
36 356.449 124.713 359.947 0.000 90.463 13.669 332.612 0.349
37 356.449 124.713 359.947 0.000 90.463 13.891 332.612 0.501
38 356.449 124.713 359.947 0.000 90.249 13.891 332.612 0.522
39 356.142 124.713 359.947 0.000 90.249 13.891 332.612 0.332
40 356.142 124.713 359.947 0.000 90.249 14.108 332.612 0.470
41 355.945 124.713 359.947 0.000 90.249 14.108 332.612 0.383
42 355.945 124.713 359.947 0.000 90.249 14.347 332.612 0.548
43 355.945 124.713 359.947 0.000 89.969 14.347 332.612 0.552
44 355.613 124.713 359.947 0.000 89.969 14.347 332.612 0.344
45 355.613 124.713 359.947 0.000 89.969 14.566 332.612 0.490
46 355.412 124.713 359.947 0.000 89.969 14.566 332.612 0.403
47 355.412 124.962 359.947 0.000 89.969 14.566 332.612 0.277
48 355.412 124.962 359.947 0.000 89.742 14.566 332.612 0.239
49 355.229 124.962 359.947 0.000 89.742 14.566 332.612 0.093
50 355.229 124.962 359.947 0.000 89.686 14.566 332.612 0.089
51 355.175 124.962 359.947 0.000 89.686 14.566 332.612 0.055
52 355.175 124.962 359.947 0.000 89.686 14.600 332.612 0.079
53 355.175 124.962 359.947 0.000 89.651 14.600 332.612 0.082
54 355.126 124.962 359.947 0.000 89.651 14.600 332.612 0.051
55 355.126 124.962 359.947 0.000 89.651 14.633 332.612 0.072
56 355.096 124.962 359.947 0.000 89.651 14.633 332.612 0.059
57 355.096 124.962 359.947 0.000 89.651 14.669 332.612 0.084
58 355.096 124.962 359.947 0.000 89.608 14.669 332.612 0.084
59 355.045 124.962 359.947 0.000 89.608 14.669 332.612 0.052
60 355.045 124.962 359.947 0.000 89.608 14.702 332.612 0.074
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Table F .l (continued)

it.# 01 02 03 04 05 06 07 a
61 355.015 124.962 359.947 0.000 89.608 14.702 332.612 0.061
62 355.015 125.000 359.947 0.000 89.608 14.702 332.612 0.042
63 355.015 125.000 359.947 0.000 89.573 14.702 332.612 0.036
64 354.987 125.000 359.947 0.000 89.573 14.702 332.612 0.014
65 354.987 125.000 359.947 0.000 89.565 14.702 332.612 0.013
66 354.979 125.000 359.947 0.000 89.565 14.702 332.612 0.008
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