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ABSTRACT

THE EFFECT OF SULFUR AND PHOSPHORUS COMPOUNDS ON 
SUPPORTED PLATINUM CATALYST ACTIVITY

by 
Yi Wang

The effect o f sulfur poisoning on the activity of catalysts containing 1.5% platinum 

supported on y-Al20 3, Ti02, Zr02, or Si02 was investigated in this study. These four 

catalysts were aged with 100 ppmv H2S in air at 400°C for 24 hours to determine the 

effect of sulfur poisoning under oxidizing conditions. In separate experiments, 1.5% Pt/y- 

A120 3 catalyst was aged in nitrogen containing 100 ppmv H2S to obtain a frame of 

reference for non-oxidizing conditions.

The oxidation of 1% CO, 1% methane, and 1% propane was used with both fresh 

and aged catalysts as diagnostic reactions to evaluate catalyst activity changes. Catalyst 

characteristics of both fresh and aged catalysts were determined to obtain possible 

deactivation pathways.

It was found that all aged catalysts were deactivated for both CO and methane 

oxidation, and promoted for propane oxidation except for 1.5% Pt/Si02 catalyst. Catalyst 

characterization studies suggest that the enhancement of activity for propane oxidation is 

due to the formation of sulfate on the y-Al20 3, Ti02, and Zr02 supports. The decrease in 

activity for CO oxidation is due to strong adsorption of sulfur compounds (SOx) on the Pt 

active sites which inhibited CO adsorption. Both sulfur effects, Le., sulfate formation and 

strong adsorption of sulfur compound on Pt active sites, deactivate catalyst for methane 

oxidation. The activity loss for CO oxidation was greater than that for methane oxidation.

It was found that 1.5% Pt/y-Al20 3 catalysts aged with H2S in air and nitrogen 

could be regenerated by hydrogen treatment at 350°C. After regeneration, CO and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



propane diagnostic oxidation tests showed that activity of catalyst aged in nitrogen for 

both CO and propane oxidation can partially recover fresh catalyst activity. However, 

catalyst aged in air can partially recover its activity only for CO oxidation. This suggests 

that catalyst once poisoned by sulfur to form sulfate on the support, will permanently 

maintain the enhanced activity for propane oxidation, even after sulfur has been partially 

removed. The effect of increased dose of sulfur on the enhancement of activity for 

propane oxidation was not investigated* nor were lifetime effects.

Phosphorus poisoning effects on supported platinum catalyst due to tributyl 

phosphate (TBP) was also studied. Catalyst containing 0.05 gram 1.5% Pt/Y-Al20 3 were 

poisoned by 1 cm3 TBP in air at both 400 and 550°C, respectively. Diagnostic oxidation 

of CO, methane, and propane with fresh and poisoned catalysts showed that catalyst 

poisoned at 400°C were slightly deactivated due to the formation of P20 5 which deposited 

on catalyst surface and blocked the pore entrance. Catalyst poisoned by TBP at 550°C 

were irreversibly deactivated. At the higher temperature, not only did the activity for 

methane oxidation decreased, but selectivity to C02 decreased producing predominately 

CO. It is believed that this effect is due to the modification of Pt sites with the phosphorus 

compounds and the formation of A1P04 on the catalyst surface.
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CHAPTER 1

INTRODUCTION

1.1 General Description

Improving the quality of our environment has become a growing concern in this country 

and around the world. Limiting the amount of pollution released into the atmosphere is an 

important part of that effort. Some of the most promising controls for air pollution involve 

the use of catalysts. Catalysts are used to control emissions from both mobile sources, 

such as automobiles, and stationary sources, such as industrial and power plants. In order 

to improve and expand the capabilities of these pollution controls, it is important to 

understand the catalytic chemistry of these systems.

Research efforts in this field have recently been accelerated by the passage of the 

1990 Clean Air Act. This legislation tightens the limits on currently controlled emissions 

and expands the list of regulated emissions. The new law also introduces the concept of 

alternative fuels for lower emissions from vehicles. It will also impose new standards and 

will require improved technologies to meet them. Among other things, these laws define 

limits for harmful emissions from industry, transportation, power generation, and other 

sources.

The new requirements, which become increasingly restrictive through the 1990s 

and beyond, are expected to prompt strong growth for environmental catalysts. Most of 

the growth will come from new or improved products that reduce such air pollutants as 

carbon monoxide, volatile organic compounds (VOCs), nitrogen oxides (which react 

photochemically with VOCs to form ground-level ozone and also contribute to acid rain), 

and particulates. In all, the 1990 amendments to the Clean Air Act set limits for 189 toxic 

air pollutants (Farrauto, et aL, 1992).

I
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Catalysts have been used in the U.S. to control automotive emissions since 1975 

and gaseous emissions from industrial facilities since 1940s. Now, the new regulations are 

pressing for wider applications and better catalytic performance. For example, the new 

rules require:

• Automobile catalytic converters to last 100,000 miles and to reduce pollutant 

emissions even further.

• Many diesel trucks and buses to be equipped with "aftertreatment" devices, such as 

flow-through catalysts and soot filters, to control particulate and nitrogen oxides.

• Catalytic oxidation of VOCs from industrial exhausts containing certain constituents 

such as halogen-containing compounds that need special treatment.

• Use of oxygenated and reformulated gasoline in heavily polluted urban areas, which 

will alter the refinery flow scheme, especially in catalytic units (Farrauto, et aL, 1992).

1.2 Importance of Catalyst Deactivation Study

It is well known that the catalytic activity of platinum and of most transition metals is 

drastically reduced when the reagents contain even trace quantities of poison compounds. 

This poisoning of the catalyst is an important industrial processes problem because it 

prevents the catalytic conversion of many feeds. On the other hand, the controlled partial 

poisoning of catalysts has been found useful in industrial processes and in scientific 

investigations to enhance selectivity for desired products. Thus, a knowledge of the 

diverse mechanisms by which poison compounds prevent or inhibit chemical reactions on a 

catalyst surface is desirable.

1.2.1 In Automotive Industry

Automotive exhaust emissions are controlled by catalytic converters located in the exhaust 

system so that all exhaust gases pass through them Converters using oxidation catalysts 

were introduced in 1975 in response to the original Clean Air Act of 1970. They convert
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carbon, monoxide and hydrocarbons produced by incomplete fuel combustion into carbon 

dioxide and water. Three-way automobile converters (TWC), adopted widely in 1981 to 

meet the federal 1.0 g/mile nitrogen oxides standard, catalyze these oxidation reactions 

and simultaneously reduce nitrogen oxides.

Catalyst longevity is a very important issue since converters are required to 

operate for 100,000 miles. The switch to unleaded gasoline in the U.S. has eliminated 

catalyst deactivation caused by lead. Other contaminants in fuel and engine oil still present 

problems however, especially phosphorus, zinc, and sulfur.

The relatively small amount of sulfur present in automotive fuel influences the 

functioning of automotive catalysts to a greater extent than may be anticipated. Unleaded 

gasoline used in vehicles equipped with catalytic converters contains residual amounts of 

organic sulfur of about 300 ppm on the average. During combustion, organosulfur 

compounds are converted to SO2 . Over automotive emission control catalysts, the SO2 

can be converted to other sulfur compounds such as H2S, COS, and H2SO4 . The 

chemistry of sulfur over catalysts is a function of temperature, redox potential of the 

exhaust, composition of the catalyst, and presence of the other impurities in the exhaust 

gas system The sulfur dioxide can undergo a complex variety of interactions. In turn, 

these interactions can, influence the catalyst activity in both undesirable and beneficial 

ways (Gandhi, et aL, 1991). A brief summary of previous research on the effect of sulfur 

on automotive catalysts will be given in the literature review section

Catalyst deactivation and reaction inhibition due to P and Zn are still the concern 

of modem TWC catalyst. Phosphorus and zinc compounds such as zinc dialkyldithio- 

phosphate (ZDP) in lubrication oil (a wear-retardant additive) reduce catalyst performance 

because they are deposited on the washcoat surface and form an amorphous glaze, which 

keeps exhaust molecules from reaching catalytic sites within the washcoat (Chen, et al., 

1992). One explanation as to why the phosphoms in engine oil poisons catalysts has been 

reported by Williamson et aL (Williamson, et aL, 1985), who described that glass-like zinc
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pyrophosphates were formed from noncombusted ZDP at temperature below 450°C. In 

contrast, Bell et aL (Bell, et aL, 1988) reported that the phosphorus in engine oil had no 

negative effect on the catalyst, and that there was no change in the catalyst's performance 

or life when the phosphorus content was between 0.05% and 0.13%. However, no clear 

conclusions have been reached about any detrimental effect of engine oil composition on 

catalyst life.

1.2.2 In Industrial Plants

The complete catalytic oxidation of various volatile organic compounds with air is finding 

wide application in air purification. Changes in activity and selectivity associated with 

deactivation of these catalysts have important consequence for the performance of 

commercial and developmental air pollution control system.

In the manufacture of many consumer products, at least one processing step 

involves the use of organic compounds. Subsequent processing results in removal of 

varying amounts of these compounds which subsequently end up in the plant emissions. 

These VOCs may be solvents, unreacted feedstocks, or decomposition products. Since the 

concentration of VOC in the air is usually low, thermal incineration is costly because 

substantial amount of fuel must be added. Similarly, recovery and recycling system are 

expensive because of the equipment needed to recover relatively small quantities of 

organic compounds. For these reasons, a catalytic system is often selected for pollution 

control One of the most widely used catalysts for control of many types of gaseous 

emissions is platinum supported on various oxides such as y-Al2 0 3 . Platinum is one 

component of automotive exhaust catalysts and is widely applied to gases containing 

hydrocarbon compounds. Because platinum, containing catalysts are poisoned by 

chlorinated hydrocarbons (Lindberg, et aL, 1977), understanding how to prevent 

deactivation of these catalysts, when used to oxidize chlorinated hydrocarbon in air is of 

particular interest.
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Based on the importance of this poisoning effect on catalyst deactivation 

mentioned above, three major poisons, Le., chlorine, sulfur, and phosphorus were chosen 

for detailed study in order to enhance our understanding of catalyst deactivation 

mechanisms

1.3 Objective

The objective of this research is to obtain fundamental understanding of the deactivation 

mechanism of platinum catalyst due to the effect of chlorine, sulfur and phosphorus 

compounds. This will allow us to modify catalyst formulations, redesign catalytic reactors, 

develop methods for regeneration and determine the optimum operating parameters for 

the catalyst being evaluated.

This study emphasized the effect of sulfur compounds on catalytic activity because 

of an interesting activity enhancement that promises to give insight on deactivation 

mechanism, the catalyst activity. A series of platinum catalysts supported on various metal 

oxides, i.e., y-Al2 0 3 , Si0 2 , TiC>2 and Z1O2 were studied. The catalysts were first 

poisoned by 100 ppm H2S in air at 400°C for 24 h, then a series of tests i.e. diagnostic 

oxidations of methane, propane and carbon monoxide and other catalyst characterization 

studies were conducted to evaluate catalyst deactivation pathway.

A study on the effect of chlorinated compounds on catalysts deactivation was 

conducted previously (Wang, 1991). The oxidation of two chlorinated hydrocarbon, 

dichloromethane (DCM) and trichloroethylene (TCE) was studied over 1.5% Pt/y- 

Al2O3/monolith/400cpsi at 30,000v/v/hr and 200 to 550°C. At an inlet concentration of 

50 ppm TCE , no substantial effect was observed over the test catalyst during a period of 

100 hours at 450°C which yielded about 80% conversion. This lack of deactivation, which 

would almost certainly be observed at much longer reaction times, may be due to the high 

platinum loading.
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Some initial work with phosphorus compound, Le., the effect of tributylphosphate 

(TBP) on catalyst activity was conducted during this research. The results will be 

described and analyzed in a later chapter. Detailed studies of the poisoning of Pt catalysts 

due to phosphorus compound need to be continued.
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CHAPTER 2

LITERATURE REVIEW

2.1 Basic Principles of Catalysis

2.1.1 Introduction

The use of catalysts to control rate and direction of a chemical reactions has captured the 

imagination of scientists and technologists since Berzelius in 1835. Ideas of what 

constitutes a catalyst and the mechanism of catalytic activity have undergone continuous 

refinement, spurred by the enormous industrial importance of catalysts as illustrated by the 

variety of catalytic processes characteristic of modem petroleum refineries and of the 

chemical process industries. Most of these processes involve heterogeneous catalysts, and 

an understanding of catalysis from both the theoretical and practical point of view is 

essential to chemists and chemical engineers (Bond, 1974).

In practice, catalysis is primarily a science that draws on many fields such as 

organic chemistry, surface chemistry, chemical kinetics, thermodynamics, ceramics, and 

solid-state physics. No unified theory of catalysis exist, and there are frequently several 

alternative, and not necessarily mutually exclusive, theoretical explanations for any given 

set of frets (RideaL, 1968). The commonly accepted basic concept is that a catalyzed 

reaction involves the transitory adsorption (almost always chemisorption) of one or more 

of the reactants onto the surface of the catalyst, rearrangement of the bonding, and 

desorption of the products.

Both physical and chemical viewpoints may provide insight. To be able to relate 

catalytic activity to certain specific properties of the catalyst surface is desirable (Bond, 

1974). Yet an understanding of the mechanism of action and a successful search for new 

and more effective catalysts may proceed predominantly through the chemical approach, 

which relates catalytic behavior to the vast body of knowledge concerning chemical

7
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reactions. The approaches are, of course, interrelated. The fundamental question, about 

which little is yet known, is how the surface structure of a solid catalyst causes the 

reactants to be adsorbed, the chemical bonds to be rearranged, and the products to be 

desorbed.

Technologists must understand the method of thinking and theoretical framework 

within which investigators view their fundamental studies, so as to be able to utilize 

theories and advances in fundamental understanding and yet not be sidetracked by trying 

to apply them under the wrong conditions (Satterfield, 1991). Practicing technologists are 

primarily concerned with the effect of the catalyst: how the rate and direction of the 

reaction are altered by changes in catalyst composition and by changes in feed 

composition, impurities, pressure, temperature, degree of recycle, and reaction time. They 

are concerned with the incorporation of the catalyst into a process, how poisons may 

inadvertently be introduced into the catalyst system by the other parts of a process, and 

how this can be mitigated. The catalysts are usually highly active and of complex 

composition, they must show good stability over long periods of time, and have the 

requisite activity and selectivity (Hegedus, 1987).

Scientific investigators, on the other hand, are concerned primarily with 

mechanism In trying to simplify their system for more fundamental interpretation, they 

frequently use catalysts of as simple a composition as possible, such as pure metal film or 

single pure metals or compounds, even if they are relatively inactive and would not be 

used in practice. The problem of mechanical strength and stability over long periods of 

time is of less importance. Many of the fundamental studies that are valuable in providing 

insight into the causes of catalyst behavior have not been made with reaction at all, but 

rather have been studied either of the structure of catalyst surface or of the nature and 

properties of adsorbed chemical intermediates.
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2.1.2 Definitions

2.1.2.1 Catalyst The definitions of catalysis and of what constitutes a catalyst have 

gradually evolved as understanding of the causes of catalytic phenomena has grown. Even 

today there is no universal agreement on definitions; the point of view varies somewhat 

depending on the investigators, for example, between the fundamental investigator and the 

practitioner, and among researchers concerned with heterogeneous catalysis, 

homogeneous catalysis, and enzymes. For present purposes, however, the definition 

should be: A catalyst is a substance that increases the rate o f  reaction toward equilibrium 

without being appreciably consumed in the process (Bond, 1974). The phenomenon 

occurring when a catalyst acts is termed catalysis. The fundamental concept, stemming 

from the chemical approach to catalysis, is that a reaction involves a cyclic process in 

which a site on a catalyst forms a complex with reactants, from which products are 

desorbed, thereby restoring the original site and continuing the cycle.

A catalyst cannot change the ultimate equilibrium determined by thermodynamics; 

its role is restricted to accelerating the rate of approach to equilibrium. It must be 

emphasized that the lowering of the activation energy is a fundamental principle of 

catalysis, and applies to all forms of catalysis homogeneous, heterogeneous, and 

enzymatic.

2.1.2.2 Catalyst Activity and Selectivity The activity of a catalyst refers to the rate at 

which it causes the reaction to proceed to chemical equilibrium. The rate may be 

expressed in any of several ways. The rate of reaction depends on pressure, temperature, 

concentration of reactants and products, and other variables (Rideal, 1968). For 

comparison of the activity of different catalysts, any of several methods may be used. For 

example, catalyst activity may be expressed as the temperature required for a given 

conversion at a fixed feed composition and pressure.
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The selectivity of a catalyst is a measure of the extent to which the catalyst 

accelerates the reaction to form one or more of the desired products, which are usually 

intermediates, instead of those formed by reaction to the overall state of lowest free 

energy. The selectivity of a catalyst may be related to its ability to direct one reaction 

essentially to equilibrium while having little or no effect on alternate pathways, so that the 

most stable products are not necessarily formed. Selectivity effects are intimately related 

to the selective chemisorption characteristics of the catalyst.

2.1.2.3 Steps in Catalysis Because catalytic gas-solid reactions involve the flow of gases 

past the solid materials there is always the possibility of a mass transfer limitation between 

the gas and the solid. Usually, in commercial practice, flow rates are sufficiently high to 

minimize any mass transfer resistance from this source but the effect can be important in 

some instances such as when relatively low gas velocities are used with large catalyst 

pellets (Bond, 1974).

Both internal diffusion and external mass transfer may act singly or combined to 

reduce the magnitude of the intrinsic chemical rate on the catalyst surface. A diagram 

showing the presence of a gas film resistance that reduces the rate of reactant flow to the 

surface and the rate of product evolution from the surface is shown in Figure 2-1. If the 

catalyst is very active the reactant concentration may drop to zero at some point within the 

pellet (Satterfield, 1991). The overall reaction may be assumed to consist of a number of 

steps:

(1) Mass transfer of reactants from the bulk gas to the external surface of the catalyst 

pellet.

(2) Diffusion of reactants through the pores of the pellet.

(3) Adsorption of reactants onto the active sites of the catalyst.

(4) Surface reaction on the active sites.

(5) Desorption of the products from the active sites.
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(6) Diffusion of the products back through the pores to the outside surface of the pellet.

(7) Mass transfer of the products from the external surface of the catalyst pellet to the 

bulk gas phase.

Each of these steps •will proceed at a certain rate, and if a steady state is attained 

the slowest will be the rate-determining step. As show in Figure 2-2, at low temperatures, 

the chemical reaction rate steps are slow relative to diffusion. As the temperature is 

increased, those steps with higher activation energies and exponential dependence increase 

the fastest, and control of the overall rate will shift from chemical to pore diffusion. 

Finally, at higher temperatures, both the chemical and pore diffusion rates become 

sufficiently fast that bulk mass transfer, having a small relative temperature dependence, 

become rate limiting (Heck, 1995).

The slope of the conversion versus temperature curve can give a qualitative picture 

of the rate-controlling steps. The steeply rising lower part of the curve is indicative of 

chemical control The relative flat temperature-insensitive portion reflects bulk mass 

transfer control, while the intermediate portion is characteristic of pore diffusion control

Because chemical rates have a much larger temperature coefficient and higher 

activation energy than rates of mass or heat transfer, the overall rate of a process tends to 

be controlled by the physical steps at high temperatures. The processes of mass and heat 

transfer outside and within the catalyst pellets will be considered next since they constitute 

an important factor in a detailed study of catalyst deactivation.

2.1.3 Catalyst Characterization

The characterization of a heterogeneous catalyst is the quantitative measure of the 

physical and chemical properties assumed to be responsible for its performance in a given 

reaction. These measurements have value in the preparation and optimization of a catalyst 

and, even more importantly, in elucidating mechanisms of deactivation and subsequent 

catalyst design to minimize such deactivation.
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Figure 2-1 External and internal concentration gradients in a reacting catalyst pellet
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Figure 2-2 Relative changes in the conversion versus temperature profile 
for various deactivation mechanisms
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2.1.3.1 BET Surface Area The most common method of measuring surface area, and 

one used routinely in most catalyst studies, is that developed by Brunauer, Emmett, and 

Teller (1938). This standardized procedure for determining the internal surface area of a 

porous material with surface areas greater than 1 or 2 m2/g is based on the adsorption of 

nitrogen at liquid nitrogen temperature onto the internal surface of the carrier.

Each adsorbed nitrogen molecule occupies an area of the surface comparable to its 

cross sectional area 0.162 nm2. By measuring the number of N2 molecules adsorbed at 

monolayer coverage, one can calculate the internal surface area. The BET equation 

describes the relationship between volume adsorbed at a given partial pressure and the 

volume adsorbed at monolayer coverage:

P 1 (C - l)P
V (Po-P) VmC+ VmCPo

Where:

P = partial pressure of N

P0 = saturation pressure at the experimental temperature 

V = volume adsorbed at P 

vm = volume adsorbed at monolayer coverage 

C = constant

If above equation is obeyed, a graph of P/V(P0-P) should give a straight line, the 

slope and intercept of which can be used to evaluate Vm and C.

2.1.3.2 Metal Dispersion The extent of dispersion is defined as the ratio of the number 

of surface metal atoms in a catalyst to the total number present. A value of unity means 

that all metal atoms are exposed to reactants. The IUPAC recommendation is that the 

term percentage exposed be used instead of dispersion. Standardized techniques exist,
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however, for obtaining information regarding the distribution and number of catalytic 

components dispersed within or on the carrier.

n/ . Number of catalytic sites on the surface ,% Dispersion =----------------------------------  x 100%
Theoretical number of sites present

The average fraction exposed is measured most directly by determining the

selective chemisorption, the number of surface atoms present and combining that

information with a knowledge of the total amount of metal present (Satterfield, 1991).

Selective chemisorption can be used to measure the accessible catalytic components on the

surface by noting the amount of gas adsorbed per unit weight of catalyst. The

stoichiometry of the chemisorption process must be known to estimate the available

catalytic surface area. One assumes that the catalytic surface area is proportional to the

number of active sites. A gas that will selectively chemisorb only onto the metal and not

onto the support is used under predetermined conditions. Hydrogen and carbon monoxide

are most commonly used as selective adsorbates for many supported metals.

2.1.3.3 Thermal Gravimetric Analysis Thermal gravimetric analysis or TGA is a useful 

technique to measure microscopic weight changes. A few milligrams of catalyst are loaded 

into a sample pan suspended in the microbalance inside a quartz tube. A controlled gas 

flow and temperature ramp is initiated, and a profile of weight change versus temperature 

is recorded. The weight versus temperature profile is helpful in establishing procedures for 

regenerating the catalyst in a process reactor.

2.1.4 Catalyst Deactivation

2.1.4.1 Classification of Catalyst Deactivation Processes General reviews of catalyst 

deactivation have been given by Butt and Levenspiel and they have laid foundations of a
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better understanding of catalyst deactivation processes (Butt, 1988). A catalyst may lose 

its activity or its selectivity for a wide variety of reasons. The cause may be grouped 

loosely into:

(1) Poisoning

(2) Sintering

(3) Fouling

Poison was once the generic name applied to all forms of catalyst deactivation. In 

this study, we defined a catalyst poison as an impurity present in the feed stream that 

reduces catalyst activity. It adsorbs on active sites of the catalyst and, if not adsorbed too 

strongly, is gradually desorbed when the poison is eliminated from the feed stream. The 

phenomenon is then temporary or reversible. If adsorption is strong, the effect is 

permanent or irreversible.

Two general classes of poisoning: selective and nonselective can result in catalyst 

deactivation. Selective poisoning occurs when a feed compound specifically and 

discriminately interacts with a specific catalytic component resulting in a poisoning of the 

active sites. Nonselective poisoning can be caused by a number of reasons, all of which are 

nondiscriminating in that accumulations of foreign substances occur on both the carrier 

and active catalytic opponents(Hughes, 1984).

It should be emphasized that poisoning is not always undesirable; in some cases 

selective poisoning may be employed to enhance one reaction on a multifunctional catalyst 

while inhibiting a less desirable one.

Sintering is a physical process associated with loss of area of the catalyst which 

occurs when the catalyst is operated above its normal range of temperature. Two different 

kinds of sintering may be distinguished, depending on the type of catalyst employed. If the 

catalyst is a normal high-area support type material, operation at high temperatures will 

cause a loss of specific surface with associated changes in the pore structure, giving a 

corresponding loss in activity. The second type of catalyst deactivation occurs when the
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active ingredient, usually a metal, which is supported on a high-area oxide support 

becomes mobile at elevated temperature. Here, sintering can occur not only by reduction 

of the support area but by a "coalescence" or loss of dispersion of the metal crystallites 

(Peterson, 1987). This loss of area of the active constituent of the catalyst causes a sharp 

drop in activity.

Fouling is a process of catalyst deactivation that may be either physical or chemical 

in nature. In general, much larger amounts of material are responsible for deactivation in 

fouling processes than in poisoning. The most typical of fouling processes is that of the 

carbonaceous deposit or "coke". The major fouling material in the automotive exhaust 

which deactivate the catalyst comes from unbumed engine oil additive ZDP.

2.1.4.2 Poisoning of Catalysts Early work on the poisoning of metallic catalysts was 

assembled by Maxted (Maxted, 1951) in an excellent review. In this review, he proposed 

a theory of catalyst poisoning based on the electron structural properties of the poison in 

the gas phase and on the solid metal catalyst. The concept employed is that essentially the 

poison is adsorbed on the active metal sites to form a chemisorbed complex. Limitation to 

chemically bonded systems implies a specificity and also that a low concentration of 

poison may have a very marked deactivating effect.

Metallic catalysts susceptible to poisoning are confined mainly to metals of Group 

Vin of the periodic table and the closely related metals of Group IB (Cu, Ag, Au). These 

are listed in Table 1; most of them are employed for hydrogenation and reforming 

reactions, and much of the earlier work on poisoning was performed on this type of 

catalysts.
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Table 1 Catalytic metals most susceptible to poisoning

Fe Co Ni Cu

Ru Rh Pd Ag

Os Ir Pt Au

The principal poisons that are effective in deactivating these metal catalysts belong 

to the following groups:

• Molecules containing elements of the periodic table Group VB and VTB, Le. N, P, As, 

Sb, and O, S, Se, Te.

• Compounds of a large number of catalytically toxic metals.

• Molecules containing multiple bonds, such as CO, cyanogen compounds, and strongly 

adsorbed organic molecules.

The toxicity of the compounds of Group VB and VIB was attributed by Maxted to 

the presence of unshared electron pairs which facilitated the chemisorption process. 

Catalyst poisons containing toxic metals were extensively investigated. It was found that 

the toxicity of the heavy metals was associated with all 5d electron orbitals being occupied 

by electron pairs or containing at least one electron in the d orbitaL The most well known 

example of an unsaturated (multiple bonds) compound that causes poisoning is carbon 

monoxide. It should be emphasized that the toxicity of carbon monoxide is lost if the 

degree of unsaturation is reduced. Thus carbon monoxide when oxidized to carbon 

dioxide loses its poisoning effect.

An interesting aspect of Maxted's work that is often overlooked is his study of 

detoxification of catalysts. In Maxted's work this essentially consisted of washing the 

catalyst with a detoxifying agent. Although the use of liquid reagents would not be 

desirable in commercial practice, application of some of these treatments in the vapor 

phase might prove effective and would present an alternative to discarding the catalyst and 

reprocessing it to manufacture a new catalyst.
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2.2 Technical Paper

2.2.1 Effect of Sulfur on Noble Metal Automotive Catalysts

Noble metals have been used since 1975 in the automotive exhaust catalysts to control 

hydrocarbon and carbon monoxide emissions. Small amounts of SO2 (10 to 60 ppm) 

present in the exhaust gas are known to poison noble metal catalysts even though the 

poisoning is considerably less severe than base metal catalyst poisoning (Shelefj et aL, 

1978). Although the mechanism for the poisoning of noble metal catalysts is not clear 

(Summers, et al., 1979), it has been suggested that the severe poisoning of the base metal 

catalysts is due to the formation of surface sulfate on the base metal oxide, which 

decomposes in the temperature range of 500-700°C (Yao, et aL, 1975). This is one of the 

important reason why noble metals, notwithstanding their cost and scarcity, are the 

materials of choice for practical use.

The effect of gasoline sulfur level on emission performance is one variable under 

study in the Auto/Oil Air Improvement Research Program (AOAIRP, 1990). The 

maximum sulfur content in U.S. unleaded gasoline is limited to 1000 ppm by ASTM 

standards (SSAG, 1980). The Auto/Oil results examining the effect of fuel sulfur content 

show that lowering the fuel sulfur level from 466 ppm to 49 ppm results in an 

improvement of 16% HC, 13% CO, and 9% NOx emission (Benson, et aL, 1991).

The presence of organosulfur compounds in gasoline has led to numerous 

emission-related problems since automotive catalysts were first introduced in 1974. First, 

it was noted that cars equipped with catalytic converters exhibit increased emissions of 

"particulate" (Pierson, et. al., 1974). This was quickly traced to the presence of sulfuric 

acid mist in the exhaust of vehicle equipped with platinum-containing oxidation catalysts 

which operate with a large excess of air. In retrospect, this should hardly have been 

surprising since at temperature of 300 to 600°C, with a large excess of oxygen, platinum 

was known to be an active catalyst for the oxidation of SO2 to SO3 . In turn, the SO3 is 

hydrated by the abundant water vapor in the exhaust to sulfuric acid mist. Most sulfur
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emissions, whatever their origin, are gradually oxidized in the atmosphere, to the 

hexavalent state and contribute to what is known as "acid rain". The contribution of sulfur 

derived from automotive traffic is minor compared to that horn power-generating facilities 

(Pierson, et aL, 1974). Upon the introduction of catalyst-equipped vehicles, some cars 

exhibited emissions of offensive H2S (Barnes, et al., 1975). The problem of H2S 

formation that arose during the last half of the 1980s with the introduction of the first 

generation of high-tech three-way catalysts could not be solved so easily. This H2S 

emission problem was associated with the storage and release properties of sulfur by the 

high level of cerium oxide (Henk, et aL, 1987) that these catalysts contained. In the U.S., 

H2S scavengers (e.g., nickel oxide) were incorporated into catalyst formulations in an 

attempt to control H2S emissions during certain modes of vehicle operation (Rieck, et al., 

1989).

Sulfur poisoning of noble metal-containing three-way catalysts is primarily 

associated with the deactivation of Pt or Pd. Little effect has been found over Rh, 

especially for NO conversions (Summers, et al., 1979). Several studies have shown even 

then that SO2 is a temporary poison for Pt/Rh catalysts in automotive exhaust (Gandhi, et 

al., 1978). The introduction of SO2 into the exhaust instantaneously resulted in a 

reduction of emission performance, which is rapidly restored upon removal of SO2 from 

the exhaust feed stream (Wiliamson, et aL, 1979). While Pt and Rh appear to recover their 

activity rapidly upon the removal of SO2 from the exhaust, there is some concern that the 

activity of Pd-containing catalysts may not be fully recovered (Monroe, et al., 1991).

Sulfur has been found stored on noble metals as elemental sulfur and on the AI2O3 

washcoat as sulfates and sulfites. After lean operation, sulfur is removed from the surface 

of the noble metaL After rich operation, the sulfur can be removed from the AI2O3 

support (Beck, et aL, 1991). Three-way catalyst washcoats containing significant 

quantities of CeC>2 increase the sulfur storage capacity markedly during vehicle operation 

due to the larger uptake on CeC>2 as compared to AI2O3 (Diwell, et aL, 1987)
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The results obtained from a flow reactor indicated that SO2 in the feed gas 

enhances propane oxidation but suppresses both propylene and carbon monoxide 

oxidation over a 'Pi/y-A^O^ catalyst. These results are interpreted on the basis of the 

infrared data, which showed the formation of the surface sulfates on Y-AI2O3 after the 

SO2 adsorption and oxidation, and the effects of the surface sulfates on the chemisorption 

properties of a Pt/y-Al2 0 3  catalyst. It is suggested that the surface sulfates on y-Al203  

enhance C3H8 oxidation by increasing the dissociative C3H8 adsorption on Pt and 

suppress both CO and C3H5 adsorption on Pt (Gandhi, et al., 1991).

The support effect on the low temperature-catalytic combustion of propane over 

Pt catalyst was examined by using a series of support materials. It was revealed that the 

activity of Pt catalyst strongly depends on the acid-base property of the support: the 

activity is higher on the support having stronger acid, especially, on solid superacids. Basic 

supports facilitate the oxidation of Pt, resulting in lower catalytic activity. On the other 

hand, strongly acidic supports seem to prevent the oxidation of Pt and to enhance 

intrinsically the activity of Pt catalyst (Toshihiro, et al., 1991).

A study by Ansell's (Ansell, et. al 1991) indicated that during fuel-lean engine 

cycles, the conversion of alkanes occurs by direct oxidation on the metal sites of a three- 

way catalyst. The presence of SO2 in the exhaust-gas induces the following related 

changes:

• The formation of sulfate species on the catalyst support;

• Enhanced conversion of higher alkanes. They interpret the response in oxidation 

activity as showing that the electronic properties of the precious metal are modified by 

the species adsorbed on the support.

There are two major theories regarding mechanism of sulfur poisoning noble 

metal supported catalyst: Gandhi's aluminum sulfation theory, and Somojai's sulfur 

induced structure-sensitive theory.
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2.2.1.1 Aluminum Sulfate Formation Hypothesis The effect of sulfur dioxide on the 

oxidation of reactive hydrocarbons, such as alkanes has been studied by Gandhi et al 

(Gandhi, et aL, 1991). A completely different and unexpected beneficial effect of sulfur 

dioxide is noted in the oxidation of a saturated hydrocarbon propane. The addition of 20 

ppm SO2 to a stream of reacting gas under overall oxidizing conditions raises the 

temperature of 50% conversion of carbon monoxide and propane by 40°C and 45°C, 

respectively, and lowers that of propane by 260°C.

According to Gandhi's study, the surface of sulfated y-Al2 0 3  was examined by IR 

spectroscopy. While non-sulfated y-Al2<I>3 does not chemisorb CO or C3H8, sulfated y- 

AI2O3 strongly chemisorbs C3H8 . Non-sulfated chemisorb CO only. Sulfated

Pt/y-Al2 0 3  chemisorb both CO and C3H8 .

A plausible explanation of the sharp enhanced activity for propane oxidation lies in 

the formation of new reaction sites for propane which did not exist in the absence of sulfur 

dioxide. As noted before, when exposed to a reacting gas, under oxidizing  conditions, 

which contains 20 ppm SO2 , the alumina surface of a Pt/y-Al2 0 3  catalyst is sulfated. The 

infrared spectroscopy data suggest the formation of adsorption sites for propane oxidation 

associated with the sulfated alumina surface. It is plausible that the active sites for propane 

oxidation are located at the junction between platinum particles and the sulfated alumina. 

The sulfation of the support surface creates new catalytic sites responsible for this 

enhancement. The interaction of sulfur species with the support is in turn dependent on the 

composition of the noble metal catalyst. A good activity for the oxidation of SO2 and SO3 

is a pre-requisite for the sulfation of the support.

2.2.1.2 Structure Sensitive Hypothesis According to Somorjai's theory (Somoijai, 

1972), if the adsorbed sulfur changes the surface free energy of the various platinum 

crystal planes, it can induce the rearrangement of the surface structure to form crystal 

planes that have lower surface free energy in the presence of the adsorbed sulfur than the
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crystal planes that bond the clean solid. If this model of suliiir poisoning of platinum 

surfaces is correct, it indicates that the chemical surface reactions that are inhibited (or 

enhanced) by sulfur are sensitive to changes of the surface structure of platinum, i.e., are 

structure-sensitive.

Schmidt (Schmidt, et aL, 1971) have reported that platinum wires used in the 

catalytic oxidation of ammonia have recrystallized in the presence of H2S gas in the feed. 

Electron microscopy studies have shown that the wire surface that was composed of 

predominantly (111) crystal planes has restructured in the presence of H2S to (100) 

crystal planes. It appears that adsorption of sulfur lowers the surface free energy of the 

( 100) crystal face of platinum more than that of the (111) face and the surface free energy 

difference provides the driving force for surface diffusion-controlled recrystallization.

It is proposed that the addition of other impurities that lower the surface free 

energy of the ( 111) planes of face-centered cubic solid more than that of the ( 100) planes 

and that have binding energies similar to that of sulfur, could either prevent or reverse 

recrystallization of the platinum surface. If sulfur acts as an electron acceptor at the 

platinum surface in a manner similar to oxygen, it is likely that electron donors are good 

candidates for stabilizing the (111) crystal faces of platinum. However, if sulfiir is an 

electron donor, electron acceptors may be used to stabilize the platinum ( 111) crystal face.

2.2.2 Effect of Sulfur on Environmental Catalyst Utilized by Stationary Facilities 

The poisoning of metal catalysts by sulfur is an important industrial problem especially 

with the need to treat heavy feeds rich in sulfiir compound. Sulfur poisoning of platinum- 

group metals has been widely studied and ever since the work of Maxted (Maxted, 1951), 

it is usually attributed to the occurrence of either sulfide or sulfite species.

The presence of sulfur oxides has been a major concern in many flue-gas 

applications. Sulfur oxides are known to deactivate a number of SCR NOx catalysts 

(Wong, et. al 1986), particularly when AI2O3 is used as a carrier which will form alumina
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sulfates. In addition, conversion of SO2 to SO3 by the SCR catalyst can result in 

equipment corrosion problem, both from the SO3 acid gas and from the formation of 

ammonia sulfates.

The durability of catalyst in the presence of SO2 is of great significance in gas 

turbines using fuel oils containing sulfur (Summers, 1979). The sulfur compounds in the 

fuel oil are converted to SO2 at level of 40 to 150 ppm in the exhaust. The SO2 inhibition 

effect on CO oxidation activity is due to strong adsorption of sulfur compounds on the Pt 

sites, blocking the adsorption of CO. The adsorbed sulfur compounds are removed by 

prolonged exposure at elevated temperatures without SO2 present in the exhaust. That 

means the SO2 inhibition effect is a reversible process. In addition to the short-term 

inhibition effect on CO removal activity, SO2 may be catalytically converted to SO3 and 

reacted with the carrier to form a sulfate ion. The activity loss caused by this sulfation 

reaction is not reversible. Catalysts are formulated to minimize SO3 production by adding 

a species to suppress the activity of the metal toward this reaction without dramatically 

decreasing activity toward CO and HC. New washcoats have been developed that 

adequately disperse the active catalytic metal but are unreactive toward SO3 such as Si0 2  

and TK>2 .
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CHAPTER 3

EXPERIMENTAL DESCRIPTION

3.1 Materials

3.1.1 Catalysts

The original catalyst used to evaluate the sulfur effect was 1.5% Pt/y-Al2 0 3  powder. The 

reason why this catalyst was chosen is because platinum supported on y-Al2 0 3  catalyst is 

most widely used in control of automotive exhaust and other industrial flue gases.

Based on the evaluation of sulfur effect on 1.5% Pt/y-Al2 0 3  which suggested that 

the catalyst was deactivated due to the formation of aluminum sulfate, three other 

catalysts, i.e., platinum supported on Si0 2 , Ti0 2 , and Zr0 2  were tested to determine the 

effect of different supports on catalyst activity after sulfur poisoning.

The four catalysts mentioned above were supplied by Engelhard Corporation. 

Some of their physical and chemical properties are listed in Table 2.

Table 2 Physical and chemical properties of four catalysts
Catalyst Metal Content % BET Area m^/g Bulk Density 

g/cm3
Metal Dispersion %

Pt/y-AljCh 1.5 48 3.7 13
Pt/SiO? 1.5 304 2.2 1
Pt/TiO? 1.5 38 4.2 166.4
Pt/ZrCb 1.5 93 5.6 40

The platinum metal loading of the catalysts was fixed at 1.5%, to provide a similar 

number of metal atoms in all cases. BET and metal dispersion data were obtained in this 

laboratory.

24
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3.1.2 Experimental Accessories

The manufacturers of experimental accessories used in this study are listed as follow:

• Three heating zone ATS series 3210 furnace and 3-zone controller were purchased 

from Applied Test Systems Inc. 0-999°C ± 10°C, 30 AMP, 115 Volts, 60 Hz

• 1 inch I.D. quartz tubular reactor was also purchased from Kontes Glass. Refer to 

reactor design diagram.

• K-type thermocouples were purchased from OMEGA Engineering Inc.

• All rotameters were purchased from Cole Parmer Instrument Co. Calibrated with soap 

bubble meter.

3.1.3 Analytical Gases

All the analytical gases were purchased from Matheson Gas Products.

3.2 Description of Laboratory System

3.2.1 Aging System

Figure 3-1 shows the catalyst aging unit used in this study. Fresh catalyst powders were 

loaded into a 1 inch I.D. quartz tubular reactor in which a quartz disk was fixed with 

wrapped glass wool, and a cordierite monolith located upstream of the catalyst bed served 

as an inert heat transfer medium. The quartz tubular reactor was placed in a controlled 

three zone furnace. Three K-type thermocouples were used to monitor the temperature at 

different positions. One of them was inserted into the furnace to control the heating unit, 

the other two thermocouples, located about 0.5 inch away from the upstream and end of 

the catalyst bed respectively, were used to measure inlet and outlet catalyst temperatures. 

The treatment gases were 500 ppm H2S in nitrogen and dry air. Flow of these two 

streams were regulated by two rotameters. Final concentration of 100 ppm of H2S was 

achieved by mixing these two streams at certain ratio. Gas samples before and after the 

catalyst bed were delivered through sample lines to onstream GC-FPD.
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3.2.2 Oxidation Reaction Diagnostic Test System

The oxidation reaction diagnostic test system was established to evaluate catalyst activity. 

As shown in Figure 3-1, small amount of test catalyst sample was diluted with y-Al2 0 3 , 

and loaded into a 1 inch ID quartz tubular reactor. Quartz wool was inserted into both 

side tubes to avoid catalyst loss. The tube was placed in a controlled furnace. Three K- 

type thermocouples were used. One of them was inserted into the furnace to control the 

heating unit, the other two thermocouples, located about 0.5 inch away from the upstream 

and end of the catalyst bed respectively, were used to measure inlet and outlet catalyst 

temperatures. The 1% diagnostic chemical in air as test gas was introduced into the 

reactor tube. The flow rate was varied to obtain different space velocity. Gas sample after 

the catalyst bed was delivered through sample line and analyzed by an online GC-FID with 

installed Ni-catalyst to covert CO and CO2 into methane.

3.3 Analytical Techniques

3.3.1 Gas Chromatograph

3.3.1.1 GC-FID GC-FID with installed Ni-catalyst system was used to analyze CO, CO2, 

CH4, and C3Hg in this study. The function of nickel catalyst system was to hydrogenate 

CO and CO2 into methane with supplied hydrogen sources.

GC type: HP 5890A Gas Chromatograph 

Column: 8ft x 1/8" SS 

Packing: Porapak Q, 80/100 Alltech 

Detector: Flame Ionization Detector HP 

Ni-catalyst system: HP Application Note 228-92 

Operation Conditions:

Carrier gas: 30 ml/min Helium 

Air flow rate: 400 ml/min 

Hydrogen flow rate : 30 ml/min
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Oven temperature:

a. 40°C for CO and CH4  oxidation reaction analysis

b. 100°C for C3Hg oxidation reaction analysis 

Detector temperature: 200°C

3.3.1.2 GC-FPD GC-FPD was used in this study to determine gas phase sulfur 

compounds. The FPD uses the principle that sulfur or phosphorus compounds produce 

chemiluminescent species when burned in an FID-type flame. The sensitivity of FPD for 

sulfur compounds can reach 20 picogram.

GC type: HP 5890A Gas Chromatograph

Column: 8ft x 1/8" SS

Packing: Porapak Q, 80/100 Alltech

Detector: Flame Photometric Detector

Operation Conditions

Carrier gas: 30 ml/min Helium

Air flow rate: 400 ml/min

Hydrogen flow rate: 30 ml/min

Oven temperature: 40°C

Detector temperature: 220°C

3.3.2 Altamira Instrument

Altamira instrument is a specially designed analytical device which can be used to study 

catalyst characteristics such as chemisorption, BET surface area, TPR, TPO, TPD, and 

isothermal reactions. The instrument is composed of an U type quartz tubular reactor, an 

electrical furnace, and a thermal conductivity detector, connected by a series of internal 

tubes, valves, and ports, and controlled by a computer system. The manufacturer of this 

instrument is Altamira Instruments, Inc. The principles of chemisorption and BET surface
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area study have been given in the literature review section. A series of flow diagrams 

which can be used to describe each function of this instrument were shown in Figure 3-2, 

3-3, 3-4, 3-5, and 3-6.

3.3.3 Thermal Gravimetric Analysis

The PERKIN ELMER TGA 7 Thermogravimetric Analyzer is a computer controlled 

laboratory instrument. With the DEC station Personal Workstation, the modular TGA 7 

permits the measurement of weight changes in a sample material as a function of 

temperature or time. Under computer control, the TGA 7 is programmed from an initial to 

a final temperature and measures weight changes resulting from chemical reaction, 

adsorption, decomposition, solvent and water evolution, and oxidation in sample 

materials. Usually, the TGA 7 is programmed to scan a temperature range by changing at 

a linear rate over one to seven temperature ramps for the study of these transitions.

The TGA 7 is made up of two major components: a sensitive ultra-microbalance 

and a furnace element.

3.3.4 Infrared Spectroscopy

The PERKIN ELMER Infrared Spectrophotometer model 1310 was used to identify 

sulfation of metal oxide support materials. 1310 IR spectrophotometer is automatic- 

recording, double-beam, optical null instruments which features microprocessor-controlled 

abscissa functions.

The monochromator/photometer and electronics compartment houses the grating 

monochromator, the detector, and the associated electronics. The source compartment 

contains the source, the power supply and the fuses. Infrared energy, from a source 

selected for its emission characteristics in the infrared frequency region, is split into two 

beams, a sample beam and a reference beam. Both pass through the sample area. The 

intensities of the two beams at any frequency are compared by the Photometric system
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When the intensity of the sample beam changes, an electrical signal is generated which is 

proportional to the difference in optical energy between the sample and reference beams. 

The abscissa range of this IR instrument is 4000-600 cm'l.

3.4 Experimental Procedures

3.4.1 Aging Experiments

3.4.1.1 Platinum Supported on y-Al2 0 3  Catalyst

I. Aged in Dry Air

As described previously, 2 grams fresh Pt/y-A^Oj powder catalyst was loaded into a 

quartz tubular reactor. The reactor was then placed in a three heating zone furnace. Two 

gas streams, 500 ppm H2 S in nitrogen and dry air, controlled by two separate flowmeters, 

were then introduced into the reactor, and the concentration of H2S was controlled within 

100±5 ppm range. The total flow rate was controlled at 300 ml/min. The concentration of 

H2S was calculated as follow:

60 ml/min (500 ppm H2S in nitrogen) + 240 ml/min (dry air) = 300 ml/min (100 ppm 

H2S)

The treatment temperature was set at 400°C. The effluent gas after the catalyst 

bed was analyzed by an online GC-FPD.

II. Aged in Nitrogen

The aging procedures of YltJy-A^qQl nitrogen are the same as above. The only 

difference is that the aging atmosphere is nitrogen instead of dry air.

3.4.1.2 Platinum Supported on T i0 2, Z r0 2, and S i02 Catalysts All of these three 

catalysts were aged in air with 100 ppm H2S. The aging procedures are the same as the 

Pt/y-Al2 0 3  aged in dry air.
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3.4.2 Diagnostic Tests Procedures

Three diagnostic chemicals, methane, propane, and carbon monoxide, were used to 

conduct catalytic oxidation reaction in order to evaluate catalyst activity after being 

poisoned by sulfur compound. There are two reasons why the above three chemicals are 

chosen as model system representative. First of all, both methane and propane are 

hydrocarbons which can be used to represent automotive exhaust. Based on the same 

reason, we also chose carbon monoxide. Secondly, methane compared to other alkanes is 

the most refractory molecule, i.e., it is the most difficult molecule to combust, and 

propane and carbon monoxide are relatively easy to oxidize catalytically. By comparison, 

the catalyst activity can be evaluated more precisely. The concentrations of these three 

diagnostic chemicals are all 1% balanced in dry air.

As shown in Figure 3-1, certain quantities of catalysts and y-Al2 0 3  which was 

used as a dilute were loaded into a tubular quartz reactor. The tube was placed in a 

temperature controlled furnace. The diagnostic gas was then introduced into the reactor at 

certain flow rate. The gas stream leaving the reactor was first analyzed at room 

temperature by GC-FID. As temperature increased, the effluent gases were analyzed at 

different temperature set points to get conversion versus temperature curves. Each 

diagnostic gas was tested separately.

All the experiments reported here were done using 0.05 gram catalyst plus 0.25 

gram Y-AI2O3 and a total feedstream flow rate of 50 ml/min, for each test, yielding a 

space velocity of 30,000v/v/hr.

3.4.3 Catalyst Characteristics Test

Fresh and aged catalyst samples after diagnostic oxidation tests were tested for catalyst 

characteristics in order to understand the deactivation mechanism.
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3.4.3.1 Catalyst Characterization Tests Conducted Using the Altamira Instrument

I. Chemisorption Tests

The catalyst to be tested was weighed and loaded into a quartz U-tube. The catalyst was 

first treated with hydrogen at 200°C to reduce catalyst into its metal state. Then pure 

nitrogen gas was introduced into the system to remove remaining hydrogen. The 

chemisorption test was conducted at room temperature through pulse injection of 

adsorbate gas. Hydrogen (99.8% purity) was used as adsorbate gas. The data was 

collected and stored on the computer used to operate the Altamira Instrument.

II. BET Surface Area Tests

BET surface area tests were conducted to evaluate catalyst support before and after aging. 

The catalyst was first weighed then loaded into a quartz U-tube. The operational 

procedures are refereed to Altamira instrument manual.

III. TPR and Ammonia Titration

TPR and ammonia titration were conducted to evaluate changes in support acid strength, 

oxygen content and feasibility of sulfur removal. The operational procedures are refereed 

to Altamira instrument manual

3.4.3.2 Thermal Gravimetric Analysis The TGA tests were conducted to study the 

catalyst weight change with changing temperature. As shown in Figure 3-7, empty sample 

pan was first weighed to get zero point reading, then 6-10 mg of catalyst was loaded into 

the sample pan, and after the reading become stable, the initial weight was recorded. The 

next step was to set the desirable temperature program, and then start the experiment. 

During the experiment, flow of adsorbate or reactant gas was added at required 

temperature in order to study the adsorption effect with changing temperature. The 

procedure developed for conducting these tests was to heat the catalyst sample to a 

desirable temperature, wait until percentage weight reading stabilized, then introduce 

desired adsorbate on reactant gas into the furnace at the required temperature. Finally, a
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weight percentage versus temperature curve was obtained. The whole system was 

controlled by a computer with installed UNIX operational system. The description of how 

to operate the computer system is refereed to 7 Series/UNIX TGA 7 users manual (PE 

TGA).

3.4.3.3 Infrared Spectroscopy The IR technique was used to identify the formation of 

sulfate which was formed during the reaction between sulfur compound (H2S) and 

platinum supported on various metal oxide catalysts. The fresh catalyst or aged catalyst 

was weighed and mixed with a weighed amount of KBr. The well mixed sample was put 

into a pellet press and pressed using Carver Laboratory press at 8 metric ton into a very 

thin and firm round shape pellet. Both fresh and aged catalyst pellets were fixed on the 

sample holders. The sample holder with fresh catalyst pellet on it was put in front of 

reference light beams. The aged catalyst one was put in front of sample light beams. The 

scan range is 4000-600 cm"l. All the tests reported here were done using 5 mg of catalyst 

and 95 mg of pure KBr.

3.4.4 Catalyst Regeneration

3.4.4.1 Regeneration of 1.5% Pt/y-Al2C>3 Catalyst Aged by H2S in Air at 400°C As 

shown in Figure 3-1, 0.05 gram of aged catalyst was mixed with 0.25 gram y-Al2 03  and 

loaded into a tubular quartz reactor. Glass wool was inserted into both sides of tubes. The 

reactor tube was placed in an electrical furnace. The steps of catalyst regeneration are as 

follows:

• Raise furnace temperature to 300°C

• Introduce pure hydrogen at 300°C for 2 hours

• Cool furnace down to room temperature with hydrogen flow
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3.4.4.2 Regeneration of 1.5% Pt/y-Al203  Aged by H2S in Nitrogen at 400°C

The initial steps are the same as described above. The steps of catalyst regeneration are as

follows:

• Raise furnace temperature to 300°C

• Introduce pure hydrogen at 300°C for 2 hours

• Cool furnace down to room temperature with hydrogen flow

3.5 Experimental Procedures: Phosphorus Effect

3.5.1 Materials

Only platinum supported on y-Al2 0 3  catalyst was used to evaluate phosphorus effect on 

the catalyst. Tributyl phosphate was used as the poisoning reagent as representative of 

phosphorus compounds. Catalyst activity before and after poisoning were evaluated using 

diagnostic oxidation of methane, carbon monoxide, and propane.

Altamira instrument and GC-FID were used in this part of study. The description 

of these devices has been given previously.

3.5.2 Aging Procedures

The aging system is shown in Figure 3-8. 0.05 gram 1.5% Pt/y-Al2C>3 catalyst was mixed 

with 0.25 gram y-Al2<I>3 and loaded into a tubular quartz reactor. The reactor was placed 

in an electrical furnace. The aging steps are listed as follow:

• Introduce dry air into reactor

• Raise furnace temperature to 400°C

• Inject liquid tributyl phosphate into reactor with air at 400°C

• Total volume of TPB injected was 1 ml, this was accomplished in 20 injections of 50 

pi each..

Similar aging experiment was conducted at 550°C.
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3.5.3 Diagnostic Oxidation Test Procedures

The diagnostic oxidation test system is shown in Figure 3-1. Three diagnostic gases 

methane, propane, and carbon monoxide were used to evaluate activity. The steps of 

conducting these tests are described in section 3.4.2. Fresh catalysts as well as aged at 400 

°C and 550°C were tested.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Background Tests

4.1.1 Activity Tests of Fresh Catalysts

Activity tests were conducted to monitor catalysts activity changes. Four fresh catalysts, 

consisting of 1.5% platinum supported on y-Al2 0 3 , SiC>2 , Ti0 2 , and ZrC>2 catalysts, were 

tested to determine the oxidation activity with the following these diagnostic gases, 1% 

methane, propane, and carbon monoxide in dry air. The tests results were used for 

comparison of activity before and after sulfur poisoning. The reasons why these four 

catalysts were selected, and methane, propane, and carbon monoxide were chosen as 

diagnostic chemicals to conduct oxidation test have been given in Chapter 3.

4.1.1.1 Methane Oxidation Percentage conversion as a function of temperature for 

methane oxidation over four 1.5% platinum catalysts supported on different substrate 

oxides is shown in Figure 4-1 (Append. B). The results indicate that catalyst activities vary 

sharply among the four catalysts. Platinum supported on Ti0 2  catalyst is far more active 

than platinum supported on Si02 catalysts. The activities of four catalysts for methane 

oxidation follow the trend:

Pt/Ti0 2 > Pt/y-Al2 0 3 > Pt/Zr0 2 > Pt/SiC>2 

Table 4-1 summarized the trend for conversion of methane due to oxidation.

Table 4-1 1% methane oxidation over four catalysts at 400°C
Catalyst Pt/Ti02 Pt/y-AbCh Pt/Zr02 Pt/Si02

Conversion
% 92.5 78 . 24.5 12

Note: Conversion (%) of CH4 to CO2 and H2O at 400°C over four catalysts
0.05g catalyst was used, flow rate = 50 ml/min, SV = 30,000v/v/h

37
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The reasons that the same platinum loading on different supports show different 

activities can be explained as, ( 1) platinum dispersion on those supports are different, (2) 

support may effect the adsorption of methane on the catalyst, and (3) catalyst preparation 

effect.

4.1.1.2 Propane Oxidation In separate experiments, 1% propane was oxidized in dry air 

using the four different catalysts. Similarly, percentage conversion as a function of 

temperature for propane oxidation over four catalysts is plotted in Figure 4-2 (Append. 

B). In this case, the oxidation activity of four catalysts follow order:

Pt/Zr0 2 >Pt/Si0 2>Pt/Ti0 2 >Pt/y-Al20 3  

The differences in activity between them are not as much as in methane oxidation. The 

quantitative results are presented in Table 4-2.

Table 4-2 1% propane oxidation over four catalysts at 250°C
Catalyst Pt/ZrO? Pt/Si02 Pt/Ti02 Pt/y-Al20 3

Conversion
% 58.4 51.9 25.6 14.1

Note: Conversion (%) of C3 H8  to C 0 2  and H20  at 250°C over four catalysts
0.05g catalyst, flow rate = 50 ml/min, SV =  30,000v/v/h

The results indicate that all four catalysts have a higher activity for propane 

oxidation than for methane. These results are not surprising since methane is known to be 

the most difficult hydrocarbon to oxidize. The differences in propane oxidation activity 

among the four catalysts can also be explained by the same reasons as these used for 

methane oxidation.

4.1.1.3 Carbon Monoxide Oxidation Carbon monoxide conversion for the four 

catalysts can reach 100% at a temperature as low as 190°C and at 30,000 v/v/hr space
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velocity. The conversion curves are shown in Figure 4-3 (Append. B). It can be seen that 

platinum, supported on TiC>2 catalyst, is the most active of the four tested. It can 

completely convert carbon monoxide into carbon dioxide at only 120°C. The order of 

oxidation activity among the four catalysts in this case is follows the following order:

Pt/Ti02>Pt/y-Al203>Pt/Si02>Pt/Zr02  

Table 4-3 shows carbon monoxide conversion for the four catalysts at 120°C.

Table 4-3 1% carbon monoxide oxidation over four catalyst at 1213°C
Catalyst Pt/Ti02 Pt/y-Al?Ch Pt/Si02 Pt/ZrO?

Conversion
% 100 14.1 4.9 2.7

Note: Conversion (%) of CO to CO2  at 120°C over four catalysts
0.05g catalyst, flow rate = 50 ml/min, SV = 30,000v/v/hr

4.1.1.4 Summary The results shown above indicate that the temperature required for 

four catalysts to completely oxidize three selected diagnostic gases i.e., methane, propane, 

and carbon monoxide are in the order: methane>propane>carbon monoxide. Another 

finding from the results is that the order of activity for the four catalysts are totally 

different for methane, propane, and carbon monoxide oxidation. There are three possible 

reasons for these, ( 1) catalyst preparation effects, (2) support material effects, both effects 

may change the adsorption efficiency of the diagnostic gases on the catalyst, and (3) 

platinum dispersion on these supports are different. Since one of our purposes is to study 

the sulfur effect on different supported catalysts, we are interested in activity changes 

before and after sulfur poisoning. The difference in activity between four catalysts is not 

the subject of this study.
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4.1.2 Catalyst Characteristic Studies

4.1.2.1 BET Surface Area O.OSg of each catalysts were used to conduct BET surface 

area measurement. The procedures have been described in chapter 3. The experimental 

results are calculated using the computer integrated system of the Altamira are given in 

Table 4-4.

Table 4-4 BET surface area of four catalysts
Catalyst Pt/y-AhjOq Pt/Ti02 Pt/ZrO? Pt/Si02

BET Surface Area 
m2/g 48 38 93 304

Note: 0.05 gram catalyst was used to conduct each test

4.1.2.2 Chemisorption Studies Pulse chemisorption was used to measure catalyst metal 

dispersion. The procedures have been given in Chapter 3. The tests results are shown in 

Table 4-5.

Table 4-5 Metal ( ispersion of four catalysts
Catalyst Pt/y-Al?Ch Pt/Ti02 Pt/ZrO? Pt/Si02

Metal Dispersion 
% 13 166.4 40 1

According to the definition, metal dispersion or "percentage exposure" should be 

equal to the ratio of the number of surface metal atoms in a catalyst to the total number 

present. However, the chemisorption test results show that the metal dispersion of 

Pt/TiC>2 catalyst is higher than 100%. Does that mean anything? To answer this, one more 

test was conducted using pure Ti0 2  to measure the hydrogen uptake. By subtracting 

Pt/TiC>2 catalyst hydrogen uptake during pulse chemisorption with hydrogen uptake by 

pure TiC>2 , Pt/TiC>2 catalyst metal dispersion was recalculated. The real dispersion should 

be 56.4. Chemisorption of other three supports have not been tested.
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4.1.2.3 Ammonia Titration Ammonia titration tests were conducted to determine 

catalyst acidity. Platinum supported on y-Al2 0 3 , Ti0 2 , Zr0 2 , and Si02 catalysts were 

titrated. The results are shown in Figure 4-4, 4-5, 4-6, and 4-7 (Append. B). It was found 

that acid strength of platinum supported on different substrates catalysts is in the order:

P t/Z r0 2 > P t/y -A l2 0 3 > P t/S i0 2 > P t/T i0 2  

According to Toshihiro's work (Toshihiro, 1994), support effect on the low 

temperature-catalytic combustion of propane over Pt catalyst was examined using a series 

of support materials. It was found that the activity of the Pt catalyst strongly depends on 

the acid-base property of the support. The activity is highest for the support having 

highest acidity. In contrast, the results of our study shown that catalyst activity for 

propane oxidation is not proportional to its acidity.

4.2 Aging Experiments

4.2.1 H2S Tests

Two series of H2S tests were conducted, one in the air, another in nitrogen, in order to 

determine what sulfur compounds are formed at different oxidizing conditions. The results 

are used to determine aging temperature.

4.2.1.1 H2S Oxidation over 1.5% Pt/y-AI20 3  Catalyst H2S oxidation was conducted 

to determine aging temperature. A mixture of 100 ppm H2S in air was oxidized over 1.5% 

Pt/y-Al2 0 3  catalyst at 14,000 v/v/hr space velocity. Both Table 4-6 and Figure 4-8 shows 

oxidation reaction product distribution. It is found that H2S was first converted to S02 at 

temperature between 25 - 220°C, then S02 was further oxidized to SO3 at temperature 

between 220 - 340°C, and finally converted to A12(S04)3  at 420°C.
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Table 4-6 Products distribution of H?S oxidation over 1.5% Pt/y-Al?Ch
Temperature h 2s S02 S03 A12(S04)3

°C % % % %
25 100 0 ' 0 0
100 84 16 0 0
150 63 37 0 0
220 0 92 8 0
280 0 61 39 0
340 0 0 100 0
380 0 0 44 56
420 0 0 0 100

Notes: 100 ppm H2 S oxidation over 1.5% Pt/y-Al203 catalyst 
Space velocity = 14,000v/v/hr 
H2 S, SO2  and SO3  were analyzed by GC-FPD 
Al2 (SC>4 ) 3  was not detected.

H2S oxidation reaction steps over platinum catalyst can be interpreted as following:

Catalyst
H2S + 3/202 =5= ^  SO2 +H2O

Catalyst
SO2 + 1/202 ^ SO3

Catalyst
3SO3 + AI2O3 =5= = ^  Al2(S0 4 )

4.2.1.2 H2S Test in Nitrogen Same experiment was conducted with a mixture of H2S in 

nitrogen instead of dry air. Table 4-7 shows the remaining H2S at different temperature. It 

is assumed that H2 S has been converted to platinum sulfide. Only color change has been 

observed. No further test has been done to confirm this.

Table 4-7 H?S remained at different temperature
h 2s

Remained % 92.3 77.4 70 58.4 33.2
Temperature

°C 100 200 250 300 400
Notes: 100 ppm H2 S in nitrogen

Space velocity = 14,000v/v/hr 
H2S was detected by GC-FPD
H2S is the only gas phase sulfur compound being detected.
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4.2.2 Aging Experiments

Catalysts were aged with H2S at different temperatures and in different atmospheres. The 

purposes of doing this is to study temperature and atmosphere effect on catalyst 

deactivation due to the present of sulfur compounds.

4.2.2.1 Platinum Supported on Y-AI2O3 Catalyst Aging experiments were conducted 

under two different atmospheres, Ie., dry air and nitrogen, in order to simulate oxidizing 

and inert conditions. All the treatments were conducted at a space velocity of 

14,000/v/v/hr.

I. Catalysts Aged in Dry Air with 100ppm H2 S at 200 and 400 °C

Two Pt/y-Al2 0 3  catalyst samples were aged with H2S in dry air for 24 hours at different 

temperatures. The purpose was to study the catalyst deactivation mechanism due to the 

effect of the different sulfur compounds which are produced at different temperatures. 

Each sample contained 2 gram fresh Pt/y-Al2 0 3  catalyst. Aging temperature were 200 

and 400°C, which were determined based on previous H2S oxidation test results. The 

morphology of aged catalysts were the same as fresh catalysts. Aged catalysts were 

collected and used for diagnostic oxidation tests and catalyst characteristics studies.

II. Catalyst Aged in Nitrogen with 100 ppm H2 S

Pt/y-Al2C>3 catalysts were also aged by H2S in nitrogen atmosphere at 200°C and 400°C, 

and 14,000v/v/hr space velocity for 24 hours. The aged catalysts show a darker color than 

fresh catalyst, probably due to the formation of platinum sulfide.

4.2.2.2 Pt/Ti0 2 , Pt/ZrC>2 , and Pt/Si(>2 Catalysts Based on the results of H2S 

oxidation over Pt/y-Al2 0 3 , all three catalysts were aged with H2S in dry air at 400°C and 

14,000/v/v/hr space velocity. The morphology of aged catalysts were not changed.
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4.2.3 Tributyl Phosphate Aged Pt/y-Al203  Catalysts

TBP aging tests were conducted at 400 and 550°C over 0.05 gram Pt/y-Al2 0 3  catalysts 

to study phosphorus effects on platinum catalyst. The aging experiment procedures have 

been described in section 3.5.2. Total amount of 1 ml of TBP were injected. After aging, 

diagnostic oxidation of methane, propane, and carbon monoxide were conducted to 

evaluate catalyst activity changes.

4.3 H2S Aged 1.5% Pt/y-A^Oj Catalysts

4.3.1 Diagnostic Oxidation Tests

4.3.1.1 Catalysts Aged in Dry Air

I. 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 200X1

According to the results of H2S oxidation, at this temperature, nearly 100% of H2S has 

been converted to SO2 (92%) and SO3 (8%), although no Al2(S0 4 )3  has been formed. 

Two diagnostic oxidation tests have been conducted.

(1) Carbon Monoxide Oxidation

As showed in Figure 4-9 (Append. B), the catalyst was severely deactivated for carbon 

monoxide oxidation. Temperature required to reach 50% conversion of CO are 150°C for 

fresh catalyst, and 175°C for aged catalyst. The results also indicate that conversion versus 

temperature curve shifted to a higher temperature with almost the same slope. This 

suggested that deactivation mechanism is due to the loss of active sites for CO oxidation 

caused by strong adsorption of sulfur compounds (SO*) on the Pt sites, decreasing the 

adsorption of CO.

(2) Propane Oxidation

Percentage conversion as a function of temperature for propane oxidation over fresh and 

aged catalysts is shown in Figure 4-10 (Append. B). It can be seen that activity of aged 

catalyst for propane oxidation is strongly promoted. Temperature at 50% conversion T50 

decreased from 280°C to 235°C after aging. The conversion curves shifted to lower
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temperature with the same slope (same activation energy) which suggested that new active 

sites are formed for propane oxidation due to the introduction of sulfur. It is believed that 

SO2 are catalytically oxidized during propane oxidation to SO3 and reacted with the 

carrier to form a sulfate species which somehow provided new active sites for propane 

oxidation. We will discuss this later.

II. 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 400 °C

According to the results of H2S oxidation over 1.5% Pt/y-Al2 0 3 , most of the H2S was 

converted to Al2(SC>4)3 at 400°C. Three diagnostic oxidation tests have been conducted 

to monitor catalyst activity changes.

(1) Methane Oxidation

Both fresh and aged catalysts were used to conduct methane oxidation. The conversion 

curves are plotted in Figure 4-11 (Append. B). The results indicate that the catalyst 

activity is moderately inhibited. The conversion versus temperature curve shifted to higher 

temperature with a lower slope which suggest that pores are partially blocked due to the 

formation of Al2(S0 4 )3, resulting in increased diffusion resistance.

(2) Carbon Monoxide Oxidation

The comparison of activity for carbon monoxide oxidation before and after sulfur 

treatment is shown in Figure 4-12 (Append. B). The catalyst aged at 400°C shows the 

same extent of deactivation for CO oxidation as catalyst aged at 200°C, with different 

deactivation mechanism. It is believed that deactivation mechanism in this case is the 

formation of aluminum sulfate. Figure 4-13 (Append. B) shows the activity difference 

between fresh catalyst, catalyst aged at 400°C, and catalyst aged at 200°C.

(3) Propane Oxidation

Percentage conversion as a function of temperature for propane oxidation over fresh and 

aged catalyst is shown in Figure 4-14 (Append. B). Again, propane oxidation is strongly 

promoted over catalyst aged at 400°C but not as much as catalyst aged at 200°C. It is 

believed that enhancement of activity of catalyst aged at 400°C for propane oxidation is
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also due to the formation of ̂ 2(8 0 4 )3. The reason why catalyst aged at 200°C is more 

active than catalyst aged at 400°C is not clear. The activity for propane oxidation between 

fresh catalyst, catalyst aged at 400°C, and catalyst aged at 200°C is compared in Figure 4- 

15 (Append. B).

4.3.1.2 Catalysts Aged in Nitrogen

I. 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 200°C

As shown in Table 4-7, at 200°C in nitrogen, 77.4% H2S still remained. Two diagnostic 

oxidation tests were conducted to evaluate catalyst activities before and after aging.

(1) Carbon Monoxide Oxidation

As show in Figure 4-16 (Append. B), CO oxidation activity of aged catalyst decreased 

severely compared to fresh catalyst. T50 that is temperature required to obtain 50% 

conversion, is 150°C for fresh catalyst, and 178°C for aged catalyst. The results also show 

that conversion versus temperature curve shift to higher temperature with similar slope 

which suggest that deactivation mechanism is due to the loss of active sites responsible for 

CO oxidation. It is believed that during CO oxidation, sulfur compound interacted with 

catalyst was catalytically oxidized to SO2 which strongly adsorbed on Pt sites and 

inhibited CO oxidation.

(2) Propane Oxidation

Percentage conversion as a function of temperature curves for propane oxidation over 

fresh and aged catalysts is shown in Figure 4-17 (Append. B). Catalyst activity has been 

enhanced after aging. According to the comparison of activity in Figure 4-17, the activity 

of aged catalyst for propane oxidation was strongly promoted before light-off T30 then 

slightly enhanced with increasing temperature, which suggest that new active sites for 

propane oxidation are formed due to the sulfur effect, in the way, sulfur compound 

interacted with catalyst was first catalytically oxidized to SO2 then further oxidized to
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SO3 and finally reacted with support material to form aluminum sulfate which provide 

new active sites for propane oxidation.

II. 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 400 °C

According to the results of H2S treatment in nitrogen at different temperatures which are 

shown in Table 4-7, more than 65% H2S disappeared. Based on the color changes of 

catalyst aged by H2S in nitrogen at 400°C for 24 hours, it is suspect that H2S was 

converted to sulfide.

(1) Carbon Monoxide Oxidation

Both fresh and aged catalysts were used to conduct carbon monoxide oxidation, the 

comparison of activity is shown in Figure 4-18 (Append. B). The results indicate that 

activity of aged catalyst decreased severely. The conversion versus temperature curve of 

aged catalyst shift to higher temperature compare to fresh catalyst, with same slope. It is 

believed that deactivation mechanism in this case is the same as catalyst aged in nitrogen at 

200°C.

(2) Propane Oxidation

The conversion versus temperature curves of both fresh and aged catalysts are compared 

in Figure 4-19 (Append. B). According to the results, activity of aged catalyst for propane 

oxidation were enhanced slightly before light-off then strongly enhanced with increasing 

temperature. It is believed that sulfur compound interacted with catalyst was first oxidized 

to SO2  then further oxidized to SO3  and finally reacted with alumina to form aluminum 

sulfate which provide new active sites for propane oxidation..

4.3.2 Catalyst Characteristic Tests

4.3.2.1 BET Surface Area Measurements The BET surface area of fresh catalyst and 

catalysts aged under different conditions were measured. The test results are listed in 

Table 4-8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Table 4-8 BET surface area of fresh and aged catalysts
Catalyst Fresh Aged in Air at 400°C Aged in Nitrogen at 400°C

BET Surface Area 
m-Vg 48 40 42

The results indicate that surface area of catalyst aged by H2S in both air and 

nitrogen decreased slightly compare to fresh catalyst. That means the support material, Le. 

Y-AI2O3, which provides a large surface area, was slightly affected by sulfur compounds. 

This is because the amount of sulfur compound which was introduced during aging 

process, as calculated below, is relatively small compare to 2 gram catalyst used.

[100 ppm H2S * 10*6] * 300 ml/min * 60 min/hour * 24 hour = 4.32 ml H2S

4.3.2.2 Pulse Chemisorption Tests Pulse chemisorption testes were conducted to study 

catalyst dispersion. Both fresh catalyst and catalysts aged under different aging conditions 

were tested. The results are listed in Table 4-9.

Table 4-9 Metal dispersion of fresh and aged catalysts
Catalyst Fresh Aged in Air at 400°C Aged in Nitrogen at 400°C

Percentage Dispersion 
% 13 11 10

It can be seen that only small decrease in catalyst dispersion has been caused due 

to the sulfur compound effect. In other words, the capability of hydrogen chemisorption of 

platinum catalyst has only slightly been affected by sulfur compound.

4.3.2.3 IR Tests The IR tests were conducted by comparing the spectra of fresh and aged 

catalysts, by putting fresh catalyst sample pellet in front of reference light beam and aged 

catalyst sample pellet in front sample light beam (see chapter 3). The results are shown in 

Figure 4-20 and 4-21 (Append. B). It can be noticed that the spectra of catalyst aged by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

H2S in air at 400°C shows a broad adsorption band at 1100 cm'l. According to "Infrared 

Spectra o f Inorganic Compounds"(Nyqwst, 1971), aluminum sulfate also give a broad 

adsorption band at 1100 cm-*, as shown in Figure 4-22 (Append. B). On the other hand, 

spectra of catalyst aged in nitrogen at 400°C shows no adsorption band at alL According 

to the same reference, sulfide group should give an adsorption band at below 400 cm‘ l, 

since the abscissa range of this IR instrument is 4000-600 cm*l, the formation of sulfide 

could not be detected.

4.3.2.4 TGA Tests TGA tests were conducted to study the interaction between HjS and 

catalyst at different temperatures, and also in different atmospheres. The procedures have 

been described previously in Chapter 3. Tests were conducted at three temperatures, 100, 

200, and 400°C, and in both air and nitrogen atmospheres. The results are shown in Figure 

4-23, 4-24, 4-25, 4-26 and 4-27 (Append. B). It was found that (1) the weight gain due to 

the introduction of H2S indicate sulfur compound indeed interact with catalysts in all 

cases, (2) the amount of weight gain caused by sulfur compound increased with increasing 

temperature in both air and nitrogen atmosphere, (3) According to Figure 4-25 and 4-26, 

amount of weight gain caused by sulfur compound in both air and nitrogen are almost the 

same at same temperature, and (4) According to Figure 4-25 and 4-27, the percentage 

weight gain of fresh catalyst caused by sulfur compound in air at 400°C is 3.031 wt%. 

Under the same conditions, weight gain of pure y-Al2C>3 is only 0.993 wt%.

Sulfur compound effects on catalyst at same temperature in both air and nitrogen 

were compared in Figure 4-28, 4-29 and 4-30 (Append. B). It can be seen that catalyst 

tested in nitrogen lost more weight than catalyst tested in air during heating step, but the 

weight gain caused by sulfur compound are almost the same.

Another two experiments were conducted to determine the possibility of removing 

sulfur compound interacted with catalyst through increasing temperature. As shown in
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Figure 4-31 (Append. B), the first type experiment was conducted according to the 

following steps:

• Load 9.021 mg of fresh 1.5% Vt/y-MqO^ catalyst in sample pan

• Heat sample from room temperature to 400°C

• wait until percentage weight reading stable

• Introduce H2S in air into system for 30 minutes

• Stop H2 S input and wait for 15 minutes

• Heat sample from 400°C to 500°C.

The second type experiment was conducted according to the following steps:

• Load 8.427 mg of fresh 1.5% Pt/y-Al2C>3 catalyst in sample pan

• Heat sample from room temperature to 400°C

• Wait until percentage weight reading stabilized

• Increase temperature from 400°C to 500°C.

The results in Figure 4-32 and 4-33 (Append. B) indicate that the weight loss (Ay) 

of catalyst tested with H2S due to temperature increase from 400 to 500°C is little 

compare to catalyst tested without H2S, which means that sulfur compound interacted 

with catalyst can not be removed by increasing temperature. In other words, the results 

suggested that the interaction between sulfur compound and catalyst is very strong.

4.3.2.5 Ammonia Titration Ammonia titration is a very popular technique used to 

evaluate catalyst acidity. As shown in Figure 4-34 (Append. B), two important messages 

were obtained using this method:

• Acid strength correspond to the temperature at which maximum ammonia desorption

• Number of acidic sites correspond to the amount of ammonia desorbed

According to catalysis chemistry, alumina formed at temperatures of about 300°C 

or more are not hydrated but contain small amounts of water of occlusion, which is
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gradually evolved on heating to higher temperatures. The conversion of OH groups to 

water on heating leaves behind a structure with exposed aluminum atoms that behaves like 

a Lewis acid. In addition, a Bronsted-type acidity exists, stemming from the OH groups.

In this study, ammonia titration were conducted to evaluate catalyst acidity change 

before and after aging. The test results are shown in Figure 4-4, 4-35 and 4-36 (Append. 

B). The fresh catalyst titration results which is shown in Figure 4-4 indicate that both 

Lewis acid and Bronsted acid are existed. According to the results in Figure 4-35, catalyst 

aged by H2S in air at 400°C containing only Lewis acid due to the removal of water, and 

the number of acidic sites has increased, which means acidity of catalyst aged by H2S in 

air at 400°C has increased compare to fresh catalyst, probably due to the formation of 

surface sulfates on y-Al2<I>3. On the other hand, acidity of catalyst aged by H2S in 

nitrogen at 400°C shown in Figure 4-36 has decreased, only Lewis acid has been observed 

due to the removal of water during the aging process.

4.3.3 Catalyst Regeneration

4.3.3.1 TPR Tests of Aged Pt/y-Al2 0 3  Catalysts Temperature program reduction of 

1.5% Pt/y-Al2 0 3  catalysts aged by H2S at 400°C in both air and nitrogen were 

conducted, using 5% hydrogen in helium as reducing agent, to determine catalyst 

regeneration temperature. In order to obtain the contribution from the substrate and 

catalyst. TPR of fresh catalyst and pure y-Al2 03  were also conducted to serve as 

background data. The results are shown in Figure 4-37, 4-38, 4-39 and 4-40 (Append. B).

As show in Figure 4-37, pure y-Al2C>3 was not reduced until temperature reached 

400°C. In other words, no hydrogen uptake was observed. The TPR result of fresh 

catalyst in Figure 4-38 shows two hydrogen uptake peaks overlapped at 167°C and 250°C 

respectively which represent reduction of PtC>2 and PtO respectively.

Figure 4-39 shows the TPR of catalyst aged in air at 400°C. The results indicate 

that beside two hydrogen uptake peaks at 165°C and 234°C which also represent
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reduction of PtC>2 and PtO, there is anther hydrogen uptake peak at 342°C probably due 

to the removal of sulfur compound interacted with either support material or the catalyst 

itself

The TPR results of catalyst aged in nitrogen at 400°C are shown in Figure 4-40. It 

is found that two hydrogen uptake peaks at about 165° and 240°C which represent 

reduction of PtC>2 and PtO disappeared probably due to the decomposition of Pt0 2  and 

PtO during the aging process, but instead there are two new hydrogen uptake peaks which 

appeared at 131°C and 331°C. It is assumed that these two peaks are related to the 

removal of sulfur compounds interacted with the catalyst, possibly sulfide.

4.3.3.2 Diagnostic Oxidation Tests of Regenerated Catalysts According to TPR test 

results, 1.5% Pt/y-A^O^ catalyst aged by H2S at 400°C in both air and nitrogen were 

regenerated at 300°C with 100% hydrogen. The regeneration procedures have been 

described in Chapter 3. After the regeneration, two diagnostic oxidation, ie. carbon 

monoxide and propane oxidation tests were conducted.

I  Regenerated 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 400 °C in Dry Air

(1) Carbon Monoxide Oxidation

Percentage conversion as a function of temperature curves for CO oxidation over fresh, 

aged, and regenerated catalysts are shown in Figure 4-41 (Append. B). It is found that the 

regenerated catalyst partially recovered its activity. In other words, the curve of 

regenerated catalyst shifted back toward the curve of fresh catalyst, probably due to the 

removal of interacted sulfur compound.

(2) Propane Oxidation

The comparison of activity for propane oxidation over fresh, aged, and regenerated 

catalysts was plotted in Figure 4-42 (Append. B). The results show overlapped curves of 

conversion as a function of temperature of aged and regenerated catalysts. This is 

interpreted as the activity of aged catalyst did not change as a function of hydrogen
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treatment for propane oxidation. According to TPR results, a hydrogen uptake peak, 

related to sulfur removal, has been observed, and also as described above, activity of aged 

catalyst for CO oxidation has been partially recovered. All of these suggested that, 

although part of sulfur compound has been removed, this had no effect on the activity of 

regenerated catalyst for propane oxidation. It is appears that the crystal structure of 

platinum catalyst has been rearranged due to the introduction of sulfur, even though the 

sulfur compound has been removed. The platinum crystal structure remain in its 

rearranged form. This will be discussed later.

IIRegenerated 1.5% Pt/y-A^O^ Catalyst Aged by H2 S at 400°C in Nitrogen

(1) Carbon Monoxide Oxidation

The conversion versus temperature curves for CO oxidation over fresh, aged, and 

regenerated catalysts were plotted in Figure 4-43 (Append. B). The results indicate that 

the activity of the regenerated catalyst shifts back from aged catalyst to fresh catalyst, 

which means that catalyst was indeed regenerated by hydrogen , and this agrees with the 

results obtained from TPR tests.

(2) Propane Oxidation

Propane oxidation over fresh, aged and regenerated catalysts were conducted and plotted 

as conversion versus temperature curves in Figure 4-44 (Append. B). In this case, the 

activity of regenerated catalyst also shifts from aged catalyst back to fresh catalyst, which 

means 1.5% Pt/y-Al2 0 3  catalyst aged by H2S in nitrogen loses its promotion effect by 

hydrogen treatment. In other words, sulfur compound has been removed before it forms 

sulfate, which can induce the rearrangement of platinum crystal structure. It can also be 

explained as sulfur compound existing only as sulfate can induce the rearrangement of 

platinum crystal structure and enhance the activity for propane oxidation.
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4.3.5 Discussion

According to the activity test results described in sections 4.3.1 and 4.3.3.2, catalysts aged 

with H2S at 200°C in both air and nitrogen' atmospheres and catalyst aged with H2S at 

400°C in nitrogen were deactivated for CO oxidation, and promoted for propane 

oxidation, catalyst aged with H2 S at 400°C in air was slightly deactivated for methane 

oxidation, severely deactivated for CO oxidation, and enhanced for propane oxidation. All 

of these results suggest that catalytic activity for oxidation changed due to the 

pretreatment with H2S. The activity tests of regenerated catalysts show that catalyst aged 

with H2S in nitrogen at 400°C, after regeneration, recovered most of the activity for both 

CO oxidation and propane oxidation. The regenerated catalyst which was aged with H2S 

in air at 400°C only recovered its activity for CO oxidation, since methane oxidation 

activity was slightly impaired and propane oxidation activity was improved and did not 

recover back to the original activity.

To determine the reasons that cause these changes in activity, several catalyst 

characteristic were studied. First, TGA tests were conducted which indicate strong 

interaction between catalyst and sulfur compound in both air and nitrogen. The IR tests 

indicate that the interaction between the catalyst and sulfur compound in air is the 

formation of aluminum sulfate. However, the product of the interaction between catalyst 

and sulfur compound in nitrogen was not determined, this was a result of not being able to 

obtain the spectra of sulfide groups at below 400 cm*1 with our instrumentation. 

Furthermore, the test results of ammonia titration indicate strong increase in acidity of the 

catalyst aged in air, which is due to the formation of solid superacid SO4-2-AI2O3. These 

results indicate that sulfate formation is a necessary step to cause activity changes in 

catalyst aged in air. About catalyst aged in nitrogen, it is apparent that whatever the sulfur 

compound that was deposited would be oxidized during the diagnostic oxidation tests, 

thus forming aluminum sulfate. That is the reason why this catalyst also shows enhanced 

activity for propane oxidation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Another finding obtained from TPR tests and diagnostic oxidation over 

regenerated catalysts shows that although sulfur compounds deposited on both catalysts 

whether carried in air or nitrogen can be removed by hydrogen, only the activity of 

catalyst aged with H2S in nitrogen do not experience the propane promotional effect 

because the sulfur deposited is removed before it has a chance to be oxidized. On the 

other hand, the activity for propane oxidation of catalyst aged with H2S in air can not be 

recovered because sulfate had been formed. These results suggest that once the deposited 

sulfur compound reacts with alumina to form aluminum sulfate, it will permanently affect 

catalyst activity for propane oxidation, even afier the sulfur compound has been removed. 

The results also suggest that activity of catalyst aged with H2S for propane oxidation is 

enhanced only when aluminum sulfate is formed. These results are consistent with the 

observed phenomena.

The results obtained by Tai-Chiang Yu (Yu, 1995) show that Pd0 /y-Al2 03  

catalyst after being aged with H2S in air at 400°C was deactivated for propane oxidation. 

His IR test results also show the formation of aluminum sulfate and sulfite. Thus, the 

formation of sulfate does not enhance the activity of Pd0 /y-Al2 0 3  catalyst for propane 

oxidation.

Based on all the information described above, it is proposed that any deactivation 

mechanism of sulfur compounds on 1.5% Pt/y-Al2C>3 catalyst must include the formation 

of aluminum sulfate. Based on Samorjai’s theory (Samorjai, 1970), it appears that the 

activity of the aged catalyst for CO oxidation decreases, compared to fresh catalyst, due to 

the formation of aluminum sulfate which changes the platinum crystal structure, so that 

platinum crystal planes favoring CO oxidation decrease. In other words, CO oxidation 

over Pt/y-Al2 0 3  is a structure-sensitive reaction. The same crystal structure, on the other 

hand, enhances catalyst activity for propane oxidation over that for the fresh catalyst. 

Furthermore, according to Yu’s results, which show that although Pd0 /y-Al20 3  catalyst 

was modified by sulfur compound due to the formation of aluminum sulfate, the aged

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

catalyst had lower activity for propane oxidation than fresh catalyst. This shows that 

aluminum sulfate formation is not the only requirement for propane oxidation enhanced 

activity. The other requirement is the presence of platinum. Consequently, both platinum 

and aluminum sulfate formation are necessary for propane oxidation activity 

enhancement. One can therefore postulate that activity enhancement for propane oxidation 

is due to the formation of new active sites for propane oxidation which are formed 

through sulfur induced platinum crystal structure rearrangement and located at the 

junction between platinum particles and sulfated alumina, so that, the platinum crystal 

planes favored for propane oxidation are increased. A check for this hypothesis is 

provided in Figure 4-45 (Append. B). In this experiment, pure aluminum sulfate was used 

to replace pure as dilution material. Propane oxidation tests were conducted over

both fresh catalyst diluted with y-Al2C>3 and fresh catalyst diluted with aluminum sulfate. 

The results show that their activity for propane oxidation were the same. This means that 

aluminum sulfate without Pt metal dispersed on it, can not provide new active sites for 

propane oxidation, in other words, the formation of new active sites for propane oxidation 

must located at the junction between platinum particles and aluminum sulfate. The results 

also show that activity for methane oxidation of Vtly-A^O^ catalyst aged by H2 S in air at 

400°C is moderately inhibited. The conversion versus temperature curve shifted to higher 

temperature. It is believed that this effect is also due to the formation of sulfate.

The deactivation mechanism of Pt/y-Al2 0 3  catalyst aged in air at 200°C is 

different, than that are at 400°C discussed above. The products of H2S oxidation at 200°C 

are unreacted H2S and SO2 . It is proposed that catalyst deactivation due to the sulfur 

effect in this case is caused by strong adsorption of SO2 on Pt sites. The reason this aged 

catalyst was deactivated for CO oxidation is because SO2 adsorbed on Pt sites inhibit CO 

adsorption. The results also show that this aged catalyst has higher activity for propane 

oxidation than fresh catalyst. This is attributed to the higher temperature needed to oxidize 

propane which causes adsorbed SO2 to further oxidize to SO3 and then react with
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alumina to form aluminum sulfate. As discussed above, the formation of aluminum sulfate 

can induce platinum crystal structure change, and promote platinum crystal rearrangement 

favored for propane oxidation.

Both activity tests of Pt/y-Al2C>3 catalyst aged in nitrogen at 200 and 400°C show 

increased activity for propane oxidation and decreased activity for CO oxidation. It is 

apparent that in both cases, catalysts were deactivated due to the formation of sulfide 

either on Pt or on support material, according to the observed color changes of the 

catalyst. It is also suggested that the decreased activity of both aged catalysts for CO 

oxidation is due to strong adsorption of SO2 on Pt sites which was produced during the 

lower temperature needed for CO oxidation through sulfide oxidation. The enhanced 

activity of both aged catalysts for propane oxidation is due to the formation of aluminum 

sulfate which was formed through sulfide oxidation to SO2 and further oxidized to SO3, 

at the higher temperatures needed for propane oxidation and finally reacted with support 

to give the higher propane oxidation activity.

4.4 H2S Aged 1.5% Platinum Supported on Ti(>2, ZrC>2 and Si0 2

Based on tests results of H2S aged Pt/y-A^C^ catalyst, which suggested that aluminum 

sulfate formation is the main deactivation mechanism. Three other catalysts, viz., platinum 

supported on Si0 2 , TiC>2 , and Zr0 2  were used to conduct similar  tests. The purposes of 

conducting these experiments are ( 1) to determine if these three catalyst will also interact 

with sulfur to form sulfate when treated with H2S in air at 400°C, (2) to determine other 

possible deactivation mechanism due to sulfur effect, and (3) to study the effect of support 

acidity on catalyst activity.

4.4.1 Diagnostic Oxidation Tests

Diagnostic oxidation tests were conducted over aged catalysts. The test results were used 

to compare with activity of fresh catalyst.
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4.4.1.1 H2S Aged 1.5% Pt/Ti0 2  Catalyst As described previously, 1.5% Pt/Ti0 2  

catalyst was aged by H2S in air at 400°C. The same three diagnostic oxidation were 

conducted to evaluate catalyst activity changes before and after aging.

(1) Carbon Monoxide Oxidation

As shown in Figure 4-46 (Append. B), activity of aged Pt/Ti0 2  catalyst decreased sharply 

compare to fresh catalyst for CO oxidation. The temperatures required to oxidize 50% 

CO, T50 were 100°C and 185°C for fresh and aged catalyst, respectively. This suggest 

that most active sites of aged catalyst for CO oxidation are removed due to sulfur 

poisoning. The reason will be discussed later.

(2) Methane Oxidation

A comparison of fresh and aged Pt/Ti0 2  catalyst activity for methane oxidation is shown 

in Figure 4-47 (Append. B). It was found that the sulfur poisoned catalyst was deactivated 

for methane oxidation. The conversion versus temperature profiles for both catalysts 

suggest that deactivation pathway, in this case, is due to loss of active sites.

(3) Propane Oxidation

Percentage conversion as a function of temperature curves of fresh and aged catalysts are 

compared in Figure 4-48 (Append. B). It was found that catalyst activity for propane 

oxidation was dramatically enhanced after sulfur poisoning. T50 of both fresh and aged 

catalysts are 270°C and 208°C. The results also indicate that propane oxidation over aged 

catalyst increased rapidly from 25% conversion to about 90% over a temperature increase 

of only 25°C.

4.4.1.2 H2S Aged 1.5% Pt/Zr(>2 Catalyst 1.5% Pt/ZrC>2 catalyst was also poisoned by 

H2S in air at 400°C. Diagnostic oxidation of CO, methane, and propane were conducted 

over fresh and aged catalysts to evaluation catalyst activity changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

(1) Carbon Monoxide Oxidation

As show in Figure 4-49 (Append. B), catalyst activity for CO oxidation decreased after 

sulfur poisoning, but not as much as sulfur aged Pt/Ti0 2  catalyst. T50 are 180°C and 205° 

C for fresh and aged catalyst, respectively. The results suggest that the catalyst lost its 

active sites for CO oxidation due to introduction of sulfur compound.

(2) Methane Oxidation

Catalyst activity of fresh and aged catalyst were compared, for methane oxidation in 

Figure 4-50 (Append. B). It was found that catalyst activity decreased slightly after sulfur 

poisoning. The results also show that conversion curves shift to higher temperatures.

(3) Propane Oxidation

Propane oxidation over fresh and aged catalyst were conducted and compared in Figure 4- 

51 (Append. B). Catalyst activity for propane oxidation increased slightly after sulfur 

poisoning. The results suggest a small number of new active sites for propane oxidation 

were formed due to the sulfur effect.

4.4.1.3 H2S Aged 1.5% Pt/Si0 2  Catalyst As described in section 4.2.2.2, 1.5% Pt/Si0 2  

catalyst was poisoned by H2S in air at 400°C for 24 hours. Diagnostic oxidation of CO, 

methane, and propane were also conducted over this aged catalyst. The results were used 

to compare with fresh catalyst, so that sulfur effects on catalyst activity could be 

evaluated.

(1) Carbon Monoxide Oxidation

The results show in Figure 4-52 (Append. B) indicate that catalyst was severely 

deactivated for CO oxidation after sulfur poisoning. Conversion versus temperature curve 

shifted to higher temperature with almost the same slope, which suggested that 

deactivation mechanism is due to the loss of active sites for CO oxidation caused by 

strong adsorption of sulfur compounds on the Pt sites, preventing the adsorption of CO.
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(2) Methane Oxidation

Conversion as a function of temperature curves of both fresh and aged catalyst are plotted 

in Figure 4-53 (Append. B). It was found that both catalysts are not very active for 

methane oxidation. Catalyst activity slightly decreased after sulfur poisoning. Conversion 

versus temperature curve shifted to higher temperature with the same slope. This suggest 

that deactivation pathway is also due to loss of active sites for methane oxidation.

(3) Propane Oxidation

Interesting results were obtain when propane oxidation was conducted over sulfur 

poisoned Pt/Si0 2  catalyst. As show in Figure 4-54 (Append. B), it was found that catalyst 

activity for propane oxidation was not changed after sulfur poisoning.

4.4.1.4 Summary The results described in section 4.4.1 are summarized below. Activity 

changes of different catalysts due to sulfur effects are compared in Table 4-10. It can be 

seen that all catalysts were deactivated for CO and methane oxidation, and were promoted 

for propane oxidation except Pt/Si0 2 . The extent of catalyst deactivation for CO and 

methane oxidation follow the trend:

For CO oxidation: Pt/Ti0 2 >Pt/Si0 2 >Pt/y-Al2 0 3 =Pt/Zr0 2

For methane oxidation: Pt/Ti0 2 >Pt/Zr0 2 >Pt/y-Al2 0 3 >Pt/Si0 2

The extent of catalyst activity enhancement for propane oxidation is in the order as follow: 

Pt/T i02>Pt/y-A l203>Pt/Z r02>Pt/S i02
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Table 4-10 Comparison of activity changes due to sulfur effects
Catalyst COT50

°C
AT50

°C
CH4 T50

°C
a t 50

°C
c 3h 8
t 50
°C

a t 50
°C

Fresh Pt/yAl^O-? 150
-25

372
-10

284
36Aged Pt/yAl?Ch 175 382 248

Fresh Pt/TiO? 100
-85

335
-53

273
68Aged Pt/TiO? 185 388 205

Fresh Pt/ZrO? 180
-25

440
-28

243
15Aged Pt/ZrO? 205 468 228

Fresh Pt/SiC>2 164

-28

38% at 
500°C

N/A
248

1Aged Pt/SiC>2 192
32% at 
500°C 247

4.4.2 Catalyst Characteristic Studies

4.4.2.1 BET Surface Area Measurements BET surface area measurements were 

conducted over H2S aged platinum supported on Ti0 2 , ZrC>2, and SiC>2 catalysts. The 

results are compared with fresh catalysts and listed in Table 4-11.

Table 4-11 BET Surface area of fresh and aged cata ysts
BET m3/g Pt/y-Al^O'? Pt/Ti02 Pt/Zr0 2 Pt/Si02

Fresh 48 38 103 304
H9S Aged 42 36 52 302

Note: H2 S Aged means catalyst aged by H2 S in air at 400°C for 24 hours.

It was found that surface area of platinum supported on y-Al2C>3, TiC>2 , and SiC>2 

catalysts have been slightly decreased after sulfur poisoning. This is because amount of 

sulfur introduced ,during aging process, is relatively small compare to 2 grams of catalyst 

being treated. However the surface area of Pt/Zr0 2  catalyst has been decreased from 103 

m3/g to 52 m3/g after sulfur poisoning. The reason for this is not clear. It is believed that 

ZrC>2 substrate has been sintered, induced by sulfur compound formed, during H2S 

treatment at 400°C.
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4.4.2.2 Pulse Chemisorption Tests Pulse chemisorption tests were conducted to 

determine catalyst metal dispersion. The test results of both fresh and aged catalyst are 

listed in Table 4-12.

Table 4-12 Metal dispersion of fresh and aged catalysts
Dispersion (%) Pt/y-Al20 3 Pt/Ti02 Pt/Zr02 Pt/Si02

Fresh 13 166.4 40 1
H?S Aged 11 160.8 35.4 1

Note: H2 S Aged means catalyst aged by H2 S in air at 400°C for 24 hours.

It is found that metal dispersion of all four catalysts have only been slightly 

decreased after sulfur poisoning. This means that sulfur can only slightly affect amount of 

hydrogen adsorbed on these catalysts. According to BET surface area measurement 

results, surface area of Pt/ZrC>2 catalyst has been decreased to only half of its original 

surface area due to sulfur effects. That means some of pores in ZrC>2 structure must be 

closed due to sulfur induced sintering, since most of Pt sites are located inside those pores, 

if this had been the case, then metal dispersion should also drop significantly. It is not clear 

why the BET and dispersion results for Pt/ZrC>2 catalyst disagree.

4.4.2.3 TGA Tests TGA tests were conducted to study interaction between catalyst and 

sulfur compounds at 400°C in both helium and dry air. The test procedures have been 

described in Chapter 3. Test results are shown in Figure 4-55, 4-56, 4-57, 4-58, and 4-59 

(Append. B).

As shown in Figure 4-55 and 4-56, the interaction between sulfur compound and 

platinum supported on Ti0 2 , ZrC>2 , and SiC>2 catalyst, at 400°C are compared for air and 

helium carriers. It was found that the strength of interaction ( amount of weigh gain) 

between sulfur compound and catalyst is in the order:

Pt/Zr0 2>Pt/Ti0 2 >Pt/Si0 2
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the weight gain due to sulfur addition on the catalysts in air and helium are the same. This 

happened to all three catalysts tested.

The results shown in Figure 4-57, 4-58, and 4-59 indicate the percentage of weight 

gain due to sulfur, at 400°C in air, for Pt/Zr0 2 , TiC>2 , and Si0 2  catalysts, during same 

exposure of time, are 2.263%, 1.592%, and 0.618%.

4.4.2.4 ER Tests IR tests were conducted to detect both sulfite and sulfate formation. As 

described in Chapter 3, the tests were conducted through comparing the spectra of fresh 

and aged catalysts, by putting fresh catalyst sample pellet in front of reference light beam 

and aged catalyst sample pellet in front sample light beam. H2S aged Pt/TiC>2, Pt/ZrC>2, 

and Pt/Si0 2  catalysts were tested. The results are shown in Figures 4-60, 4-61, and 4-62 

(Append. B). It was found that spectra of H2S aged Pt/TiC>2 catalyst shows three 

adsorption bands at 1210, 1140, and 1040 cm'*. According to "Infrared Spectra o f 

Inorganic Compounds", as shown in Table 4-13, the characteristic adsorption of S O ^- 

group is located between 1040 - 1210 cm'*. It was also found that spectra of H2S aged 

Pt/Zr0 2  catalyst shows three adsorption bands at 1210, 1080, and 1000 cm’ l which also 

fall in the category of sulfate group shown in Table 4-13. Instead, the spectra of H2S aged 

Pt/Si0 2  catalyst shows no adsorption band at all, which means that no sulfate or at least 

very small amount of sulfate was formed. Also according the same reference, the 

characteristic adsorption of sulfite group is located mostly below 1000 cm‘ 1, which means 

none of H2S aged platinum catalyst forms sulfite.

4.4.2.5 Ammonia Titration Catalyst acidity change due to sulfur effects were evaluated 

through ammonia titration. Test results of fresh catalysts are given in section 4.1.2.3 and 

shown in Figure 4-5, 4-6, and 4-7. Test results of H2S aged catalysts are shown in Figure 

4-63, 4-64, and 4-65 (Append. B). It was found that acid strength of Pt/TiC>2 catalyst has
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been increased after sulftir poisoning, acid strength of Pt/Zr0 2  catalyst increased very 

slightly, and acid strength of Pt/Si0 2  catalyst was not affected by sulfur compounds.

4.4.2.6 TPR Tests TPR tests were conducted to determine the possibility of sulfur 

removal through hydrogen reduction. Test procedures are described in Chapter 3. Fresh 

catalysts, pure substrate oxides, and H2S aged catalysts were compared. The results are 

shown in Figures 4-66 to 4-74 (Append. B). It was found that TiC>2, ZrC>2 , and SiC>2 can 

not be reduced by hydrogen, in other words, no hydrogen consumption peak was 

observed. Comparison between fresh and H2S aged Pt/TiC>2 catalysts, as shown in 

Figures 4-69 and 4-70, indicate that a large hydrogen uptake peak appear at 331°C in 

aged catalyst and is absent in fresh catalyst. This suggest that some of sulfur compounds 

interacted with catalyst can be removed by hydrogen. Tests conducted over fresh and H2S 

aged Pt/ZrC>2 catalysts indicate that amount of hydrogen consumed in both cases are 

almost the same, which means hydrogen can not remove sulfur compounds interacted with 

this catalyst. TPR tests of fresh and H2S aged Pt/SiC>2 catalysts are shown in Figures 4-73 

and 4-74. It was found aged catalyst use more hydrogen than fresh catalyst. This suggest 

that hydrogen remove some of sulfur compounds present on the catalyst.

Catalyst regeneration studies for these three catalysts were not conducted.

4.4.3 Discussion

Platinum supported on TiC>2, Zr0 2 , and Si0 2  catalysts deactivation due to sulfur effects 

was studied through diagnostic oxidation and catalyst characterization tests. Based on 

activity changes due to the presence of sulfur,, all three catalysts were deactivated for CO 

and methane oxidation, and promoted for propane oxidation except Pt/Si0 2 .The extent of 

activity changes was different for all three catalysts.

To determine the reasons for these changes in activity, catalyst characterization 

studies were conducted.
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Several catalyst characterization studies were conducted with Pt/Si0 2  catalyst. 

First, pulse chemisorption and BET surface area tests indicate very small changes between 

fresh and H2S aged catalysts. In TGA test, it was found that the interaction between this 

catalyst and sulfur compounds is small compare to the other three catalysts. The 

percentage of weight gain due to the introduction of H2S at 400°C in air is only 0.618% 

which is much lower than that observed for Pt/y-Al2C>3, Pt/TiC>2, and Pt/ZrC>2 catalysts, 

but still indicate some interaction. IR test show no adsorption band at all within 800 - 

4000 cm'l range, which means little if any sulfate and sulfite were formed. Furthermore, 

the results of ammonia titration indicate that acidity of Pt/SiC>2 catalyst did not change 

after sulfur poisoning. All of these results suggest that deactivation mechanism of Pt/Si0 2  

catalyst due to sulfur effects is different from that of Pt/y-Al2 0 3  catalyst.

It is proposed that Pt/SiC>2 catalyst was deactivated by two mechanisms after 

sulfur poisoning. One of them is strong adsorption of sulfur compounds on Pt active sites. 

The other one is small amount of sulfate formation on the surface of the support. The 

reason Pt/Si0 2  catalyst activity for propane oxidation did not change after sulfur 

poisoning, is because sulfur compounds adsorbed on Pt sites inhibit propane adsorption. 

At the same time, small amount of sulfate formed on the surface provide new active sites 

for propane oxidation through sulfur induced platinum crystal changes as described before, 

so that, overall activity of Pt/SiC>2 catalyst for propane oxidation due to sulfur poisoning 

shows no change. Decreased activity of Pt/SiC>2 catalyst for CO and methane oxidation, 

after sulfur poisoning, is due to both deactivation mechanisms. In other words, strong 

adsorption of sulfur compounds on Pt sites inhibits both CO and methane adsorption. That 

is why conversion curves of H2S aged catalyst for both CO and methane oxidation shifted 

to higher temperature compare to fresh catalyst.

As described in section 4.4.2, characterization studies of Pt/Zr0 2  catalyst were 

also conducted. Pulse chemisorption test indicate decreased metal dispersion from 40 to 

35% due to sulfur effects. BET tests show a large decrease in surface area from 103 to 52
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m-Vg, which suggests that catalyst was sintered after H2S treatment. TGA test were 

conducted which indicate strong interaction between catalyst and sulfur compounds. As a 

matter of fact, percentage weight gain of Pt/Zr0 2  catalyst due to sulfur compounds is the 

highest among these three catalyst. IR test identified the interaction between catalyst and 

sulfur compounds is the formation of sulfate. Ammonia titration results show a slight 

increase of acidity of Pt/Zr0 2  catalyst due to sulfur effects.

Based on the results described above, it is proposed that Pt/ZrC>2 catalyst was 

deactivated, due to sulfur effects, by at least three possible catalyst deactivation 

mechanisms, which are ( 1) sintering, which means some of pores in ZrC>2 structure were 

closed. Since most of Pt sites are located inside those pores, this can dramatically reduce 

Pt active sites, (2) sulfate formation, which can induce Pt crystal change, and (3) strong 

adsorption of sulfur compounds on Pt sites, which can inhibit adsorption of desirable 

reactants. Both sintering and strong adsorption of sulfur compounds on Pt sites inhibit 

propane adsorption. That is why the enhancement of activity for propane oxidation over 

H2S aged Pt/ZrC>2 catalyst is rather small compare to aged Pt/y-Al2C>3 and Pt/TiC>2 

catalysts, although both TGA and IR tests show strong interaction between catalyst and 

sulfur compounds, i.e., the formation of sulfate on Pt/ZrC>2 surface. The results also show 

that Pt/ZrC>2 catalyst was deactivated for both CO and methane oxidation after sulfur 

poisoning. It is believed that all three deactivation mechanisms are responsible for its 

activity decrease. The reason that acidity of Pt/Zr0 2  catalyst only slightly increased after 

sulfur poisoning, although large amount of surface sulfate has been formed, is because 

some of zirconic sulfate formed is located inside the Zr0 2  structure due to sintering, yet, 

ammonia titration can only detect acid sites located on the surface. As described 

previously, surface area of Pt/ZrC>2 catalyst decreased to half of its original surface area 

due to sulfur effects. That means some of pores in ZrC>2 structure must be closed due to 

the sintering. Since most of Pt sites are located inside those pores, its metal dispersion 

should also drop dramatically. But the results show its dispersion only decreased from 40
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to 35%. It is not clear why the results of BET test and dispersion tests for Pt/ZrC>2 

catalyst disagree.

Catalyst characterization studies were conducted over Pt/Ti0 2  catalyst to explain 

the cause of deactivation. Pulse chemisorption and BET surface area tests were 

conducted, which indicate slight decrease in these properties due to sulfur effects. TGA 

test indicate strong interaction between this catalyst and sulfur compounds. Further, IR 

test shows that the interaction between them is the formation of sulfate. The results of 

ammonia titration indicate that acidity of Pt/Ti0 2  catalyst increased after sulfur poisoning. 

This is due to the formation of a solid superacid SC>4“2-TiC>2 . All of these results suggest 

that sulfate formation is at least one of the mechanisms which cause the changes in catalyst 

activity after sulfur poisoning.

Based on all information obtained, it is proposed that deactivation pathway for 

Pt/TiC>2 catalyst due to sulfur effects is the formation of sulfate. Another possible 

deactivation mechanism is the strong adsorption of sulfur compounds on Pt sites, which 

was proposed in study of sulfur poisoned Pt/SiC>2 catalyst. Although, sulfur compounds 

adsorbed on Pt sites can inhibit propane adsorption, sulfate formation can provide new 

active sites for propane oxidation. These new sites are formed through sulfur induced 

platinum crystal structure rearrangement and are located at the junction between platinum 

and surface titanic sulfate, so that, platinum crystal structure that favor for propane 

oxidation is increased. In other words, both effects were competing, and sulfate formation 

predominates. Both sulfate formation effect and strong sulfiir compounds adsorption on Pt 

sites effect are responsible for Pt/Zr0 2  catalyst deactivation for CO and methane 

oxidation.
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4.S Tributyl Phosphate aged 1.5% Pt/y-Al2 0 3  Catalyst

4.5.1 Diagnostic Oxidation Tests

1.5% Pt/y-Al2 0 3  catalysts were poisoned by TBP at 400 and 550°C in air. Diagnostic 

oxidation tests were conducted over both fresh and aged catalysts to evaluate catalyst 

activity changes.

4.5.1.1 Catalyst Aged at 400°C (1) Carbon Monoxide Oxidation

As show in Figure 4-75 (Append. B), catalyst was slightly deactivated after phosphorus 

poisoning. The conversion curve shifted to higher temperature compare to ftesh catalyst,

which suggest loss of active sites for CO oxidation.

(2)Propane Oxidation

Comparison of activity before and after phosphorus poisoning are shown in Figure 4-76 

(Append. B). It was found that aged catalyst activity for propane oxidation was enhanced 

before light-off temperature (T50) then decreased with increasing temperature. In other 

words, the slope of aged catalyst conversion curve is lower than the one for fresh catalyst, 

which suggest that pore diftiision resistance has been increased probably due to oxidation 

of TBP to form P2O5 and deposit on the catalyst surface.

(3)Methane Oxidation

The results of diagnostic oxidation of methane, as show in Figure 4-77 (Append. B), 

indicates the same deactivation mechanism as was found in propane oxidation. Conversion 

curve of aged catalyst shifted to higher temperature with lower slope, also indicating an 

increase in pore diffusion resistance.

4.5.1.2 Catalyst Aged at 550°C (1) Carbon Monoxide Oxidation

Percentage conversion as a function of temperature curves of fresh and aged catalysts are 

shown in Figure 4-78 (Append. B). The results indicate that catalyst the was severely
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deactivated for CO oxidation after phosphorus poisoning. The temperature required to 

reach 50% conversion T50 are 137 and 218°C for fresh and aged catalysts, respectively.

(2) Propane Oxidation

The activity of fresh and aged catalysts for propane oxidation are compared in Figure 4-79 

(Append. B). It was found that aged catalyst conversion curve shifted to higher 

temperature, and maximum conversion can only reach 81.5%. This suggest that catalyst 

was not only deactivated by pore blocking, but also deactivated by masking. It appears 

that TBP is oxidized to P2O5 and covers the catalyst surface, so that both pore diffusion 

and mass transfer resistance increased.

(3) Methane Oxidation

The results of methane oxidation test show severe deactivation. As show in Figure 4-80 

(Append. B), conversion of methane over aged catalyst reaches a maximum of 45% at 500 

°C, then decreased with increasing temperature until 550°C, and then increase again with 

increasing temperature. At the same time, CO2 produced also reached maximum at 500°C 

then is converted to CO. That means that at temperature higher than 550°C, selectivity of 

methane oxidation changes from CO2 to CO.

4.5.2 Discussion

According to the diagnostic oxidation test results, Pt/y-Al2 0 3  catalyst was deactivated for 

all three oxidation reaction at both 400° and 550°C after phosphorus poisoning. It is 

proposed that the deactivation mechanism of catalyst poisoned by TBP at 400°C is the 

formation of P2O5 which blocks pore entrance and increases pore diffusion resistance. A 

proposed deactivation mechanism of catalyst poisoned by TBP at 550°C is that P2O5 

covers the catalyst surface and increases pore diffusion and mass transfer resistance, as is 

found in propane oxidation, and irreversible reaction between phosphorus compounds and
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either alumina or platinum, which is suggested by methane oxidation results. Further 

investigation is needed to clarify the effect of phosphorus on platinum catalysts.
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CONCLUSION

The effect of sulfur deposition on platinum supported on y-Al2 0 3 , Ti0 2 , ZrC>2, and Si0 2  

catalysts were investigated by measuring the resulting activity for CO, CH4 , and C3H8 

oxidation. Similarly, the effect of phosphorus compounds on Pt/y-Al2 0 3  catalyst were 

investigated with the same diagnostic reactions. In addition to diagnostic reactions, 

catalyst characterization tests were conducted to compare the effect of sulfixr and 

phosphorus compounds on treated catalyst activity with fresh catalysts. Based on the test 

results, the following conclusions have been reached:

• Platinum supported on y-Al2C>3, TiC>2 , ZrC>2, and SiC>2 catalysts after treatment with 

H2S in air at 400°C, were deactivated for carbon monoxide and methane oxidation, 

and experienced activity enhancement (promotion) for propane oxidation, except for 

Pt/SiC>2 catalyst. The extent of activity changes were not uniform for these catalysts.

• Pt/y-Al2<I>3 catalyst poisoned by H2S in nitrogen at 400°C (in order to understanding 

sulfur effects in a non-oxidizing atmosphere) was also deactivated for carbon 

monoxide oxidation, and was promoted for propane oxidation. The extent of activity 

changes between catalyst poisoned in air and in nitrogen are almost the same.

• The results of pulse chemisorption with hydrogen indicate a slight decrease in metal 

dispersion in all cases after sulfur poisoning.

• The results of BET surface area measurement indicate a slight decrease after sulfur 

poisoning, in all cases except for the Pt/ZrC>2 catalyst.

• BET surface area of Pt/ZrC>2 catalyst decreased from 103 to 52 m^/g after sulfur 

poisoning.
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• TGA test results indicate strong interaction between sulfur compounds and platinum 

supported on y-Al2C>3, TiC>2, and ZrC>2 catalysts in both air and nitrogen atmosphere. 

The interaction between sulfur compounds and Pt/SiC>2 catalyst was relatively weak.

• TGA test results indicate that Pt/y-Al2C>3 catalyst weigh gain, due to the introduction 

of H2S in both air and nitrogen, were the same.

• TGA test results also indicate that sulfur compounds interacted with 

catalyst can not be removed by increasing temperature.

• IR test results indicate sulfate formation on platinum supported on y-Al2 0 3 , TiC>2, 

and ZrC>2 catalysts poisoned by H2S in air at 400°C. Small amount of sulfate may also 

formed on H2S aged Pt/SiC>2 catalyst which were not detected by IK

• The results of ammonia titration indicate acidity of Pt/y-Al2C>3, Pt/Ti0 2 , and Pt/ZrC>2 

catalysts were increased to different degree due to sulfur poisoning. Acidity did not 

change for aged Pt/SiC>2 catalyst and Pt/y-Al2 0 3  catalyst aged in nitrogen by H2S.

• TPR tests show that sulfur compounds interacted with Pt/y-Al2C>3 (both poisoned in 

air and nitrogen), Pt/TiC>2, and Pt/SiC>2 catalysts can be partially removed by hydrogen 

treatment at 350°C, sulfur compounds deposited on Pt/ZrC>2 catalyst can not be 

removed.

• The mechanisms affecting Pt/y-Al2 0 3  and Pt/TiC>2catalysts aged by H2S in air 

involves sulfate formation and strong adsorption of sulfur compounds on Pt sites.

• The deactivation mechanism of 'Ptly-A^O^ catalyst aged by H2S in nitrogen is sulfide 

formation.

• The mechanisms for H2S aging of Pt/Zr0 2  catalyst involves sulfur induced sintering, 

sulfate formation and strong adsorption of sulfur compounds on Pt sites.

• The mechanisms H2S aging of Pt/Si0 2  catalyst involves sulfate formation and strong 

adsorption of sulfur compounds on Pt sites.

• Tributyl phosphate poisoned Pt/y-Al2C>3 catalysts at both 400 and 550°C were 

deactivated for carbon monoxide, methane, and propane oxidation.
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• The deactivation mechanism of TBP aged Pt/y-Al2 0 3  catalyst at 400°C is the 

formation of P2O5 which is deposited on the catalyst surface and blocks the pore 

entrance.

• The deactivation mechanisms of TBP aged Pt/y-Al2 0 3  catalyst at 550°C are formation 

of P2O5 and irreversible reaction between phosphorus compounds and catalyst.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

FIGURES IN CHAPTER 3

This appendix includes the figures showing the schematic of Altamira instrument, and 

Thermal Gravimetric Analyzer, as listed in list of figures, form Figure 3-2 to 3-7.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Hydrogen Argon
Altamira

Pulse Chemisorption 
lulling Loop

VENT I VENT 2

PULSE
LOOP

analytical

Figure 3-2 Schematic of pulse chemisorption: Filling loop



77

M  _  M a

rm i___

ui

•o

I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 3

-3 
Sc

he
m

ati
c 

of 
pu

lse
 

ch
em

iso
rp

tio
n:

 C
he

m
iso

rp
tio

n



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

5% Hydrogen in Argon
Altamira

Temperature Program 
Reduction

VENT 1 VENT 2

PULSE I

analytical

Figure 3-4 Schematic of temperature program reduction (TPR)
00



79

L JJ—I
d J

__ i

<41

VI•a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 3

-6 
Sc

he
m

ati
c 

of 
tem

pe
ra

tu
re

 
pro

gra
m 

de
so

rp
tio

n 
(T

PD
)



81

B alance Servo M otor 

B alance Arm

Platinum  B alance 
R ibbon

O u i r t i  Link 
N5190330

N ichrom e 
H angdow n W irt 
(N S 19028J)

P latinum  Stirrup 
0319 0265

P latinum  Sam ple 
P an  0119-0264

S tandard  Furnace 
NS19 0264

Furnace Tube 
NS19‘0?03

B alance
Cover

E xhaust Line 

C ooling  Fan

Tare W eight 
(N 5I9  0282)

Front 8 a la n c e  Cover 
Locking M echanism

5

5L

Sam ple Loading 
Platform

T herm ocouple  
0319 0253

Furnace C onnecto r Plug

Figure 3-7 Schematic of thermal gravimetric analysis (TGA)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

FIGURES IN CHAPTER 4

This appendix includes all the figures shown in chapter 4, from Figure 4-1 to 4-80, 

listed in list of figures.
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Figure 4-26 TGA test: H2S induced weigh gain: Pt/y-Al20 3 catalyst in nitrogen at 400°C
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Figure 4-28 TGA test: H2S adsorption: Comparison of different atmosphere at 100°C o
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Figure 4-41 Comparison of activity: 1% CO oxidation: Fresh, H2S aged in air, and regenerated catalysts
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Figure 4-42 Comparison of activity: 1%  propane oxidation: Fresh, H2S aged in air, and regenerated catalysts
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Figure 4*44 Comparison of activity: 1% propane oxidation: Fresh, H2S aged in nitrogen, and regenerated catalysts
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Figure 4-46 Comparison of activity: 1% CO oxidation: Fresh Pt/Ti02 vs Pt/Ti02 aged by H2S in air at 400°C
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Figure 4-47 Comparison of activity: 1% methane oxidation: Fresh Pt/Ti02 vs Pt/Ti02 aged by H2S in air at 400°C
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Figure 4-48 Comparison of activity: 1% propane oxidation: Fresh Pt/Ti02 vs Pt/Ti02 aged by H2S in air at 400°C
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Figure 4-49 Comparison of activity : 1% CO oxidation: Fresh Pt/Zr02 vs Pt/Zr02 aged by H2S in air at 400°C
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Figure 4-50 Comparison of activity: 1% methane oxidation: Fresh Pt/ZrOj vs Pt/Zr02 aged by H2S in air at 400°C
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Figure 4-51 Comparison of activity: 1% propane oxidation: Fresh Pt/Zr02 vs Pt/Zr02 aged by H2S in air at 400°C
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Figure 4-52 Comparison of activity: 1% CO oxidation: Fresh Pt/Si02 vs Pt/Si02 aged by H2S in air at 400°C
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Figure 4-53 Comparison of activity: 1% methane oxidation: Fresh Pt/SiOj vs Pt/Si02 aged by H2S in air at 400°C
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Figure 4-54 Comparison of activity: 1% propane oxidation: Fresh Pt/Si02 vs Pt/Si02 aged by H2S in air at 400°C
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Figure 4-58 TGA test: H2S induced weigh gain: Pt/Zr02 catalyst in air at 400°C
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Figure 4-59 TGA test: H2S induced weigh gain: Pt/Si02 catalyst in air at 400°C
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Figure 4-60 ER. spectra o f  P t/T i02 catalyst aged by H2S in air at 400°C
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Figure 4 -6 1 IR spectra o f  P t/Z r02 catalyst aged by H2S in air at 400°C
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Figure 4-63 Ammonia titration: Pt/Ti02 catalyst aged by H2S in air at 400°C
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Figure 4-64 Ammonia titration: Pt/Zr02 catalyst aged by H2S in air at 400°C
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Figure 4-67 5% hydrogen temperature program reduction: Fresh Pt/Ti02 catalyst
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Figure 4-68 5% hydrogen temperature program reduction: Pt/Ti02 catalyst aged by H2S in air at 400°C
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Figure 4-715% hydrogen temperature program reduction: Pt/Zr02 catalyst aged by H2S in air at 400°C
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Figure 4-72 5% hydrogen temperature program reduction: Pure Si02



153

cr*in

N

o

+*o

uo
CO
M*
CM

O

CO

<C
CD
CM

sco»—i
CO

ini

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission

TP R e d u c t io n /O x id a t io n

H2S AGiED P T /SI02 S* H2 TPR 
0 9 -0 9 -9 4

TCD SIGNAL: 289

38  C:\TAISVW15.DFN

131° Ci

SIGNAL

20e 24 2884 1612
TIME, MINUTES

Figure 4-74 5% hydrogen temperature program reduction: Pt/Si02 catalyst aged by H2S in air at 400°C



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission

Conversion. %
100

90 Fresh

TBP Aged a t 400 C8 0

7 0

4 0

3 0

20

180100 160140120
Tem perature, °C

0.05 gram  C atalyst
50 m l/m in  1% CO in  Air SV =30,000/hr 
1 m l TBP Aged in  Air a t 400°C 

Figure 4-75 Comparison of activity: 1% CO oxidation: Fresh Pt/y-AI20 3 vs Pt/y-Al20 3 aged by TBP in air at 400°C
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Figure 4-77 Comparison of activity: 1% methane oxidation: Fresh Pt/y-AI20 3 vs Pt/y-Al20 3 aged by TBP in air at 400°C
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Figure 4-78 Comparison of activity: 1% CO oxidation: Fresh Pt/y-AI20 3 vs Pt/y-AI20 3 aged by TBP in air at 550°C
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Figure 4-79 Comparison of activity: 1% propane oxidation: Fresh Pt/y-Al20 3 vs Pt/y-Al20 3 aged by TBP in air at 550°C
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