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ABSTRACT

PARTICLE DEPOSITION ON SURFACE IN A DIVERGENT CHANNEL FLOW

by 
Ding Sun

Particle trajectory and deposition of two phase gas-solid flows in a convergent or 

divergent two-dimensional channel are investigated numerically in a wide range of 

parameters. For the fluid phase, a two dimensional, incompressible laminar fluid flow is 

considered in the analysis. The particle phase is a diluted suspension. The effects of inertia, 

gravity, viscous force and electrostatic image force are included in the computational 

model.

Both convergent and divergent channel flow are solved by the finite element 

method based on the software FIDAP. The flow separations will appear in a divergent 

channel and their separation positions are obtained in the computation. The governing 

equations of particle motion are built upon the Lagrangian trajectory method and are 

solved with the forth- order Runge-Kutta method. A computer simulation procedure is 

developed to find the trajectory of each particle entering a channel. Particle depositions 

are calculated based on the distance for a particle to reach the wall. Many computations 

for deposition are performed on combinations of different parameters, such as charge 

parameter Q, gravity parameter G, and inertia parameter S.

The ranges of parameters are 0=2.5° to 7.5°, S=0.01 to 100, G=0.01 to 100, 

Q=0.00001 to 10000, Re=100, and L/ho=40.

Results under the influence of inertia, viscous, gravity and image forces indicate 

that particle trajectory in a channel is dependent upon these combined effects. A closer 

initial particle position to the channel wall may not mean a faster moving to the wall.
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Either in a convergent channel or a divergent one, the maximum longest deposition 

distance keeps the range of Q/G=0.1 to 1, and their deposition distance curves are almost 

the same after Q/G<0.001. The influence due to varying image forces and gravity is 

important to the particle deposition fraction. Generally, Q/G is greater or equal to 10, the 

gravity effect to deposition can be neglected, while the charge effect to deposition fraction 

can also be neglected at Q/G<0.001. The deposition decreases with increasing S for all Q 

and G. The particle deposition fraction increases always with increasing X displacement 

and the channel angle effect to the deposition fraction is smaller as compared with other 

effects. As small divergent channel cases, the back flow effect can also be neglected in 

limited channel length ranges.
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CHAPTER 1

INTRODUCTION

1.1 Fundamental and Practical Application

The micron-size particle or aerosols suspension in a fluid flow plays an important role in a 

wide variety of industrial and natural situations. They may be found in atmospheric 

processes, manufacturing, air pollution control technology, and in many other areas. 

Aerosol technology for practical purposes covers a broader range of application. Some 

examples in industry are:

Dust collectors — The devices that have been manufactured for particulate control 

represent a wide variety of approaches. Mechanical devices for gravitational or inertial 

separation are mechanical collectors, including gravity or momentum settlers and cyclones; 

electrical forces for deposition are utilized by electrostatic precipitators; filtration of 

materials through fibrous mats or packed beds are utilized in filtration and wet scrubbers.

Fluidized beds — A fluidized bed is simply a volume of inert particles, e.g., fine 

coal, which are supported by a grate-like air distributor. When air is blown through the 

bed mass, the solid particles are lifted and suspended by the air. The particles can move 

freely, and the bed behaves like a fluid. Fluidized beds are frequently used in industry to 

promote heat transfer or chemical reactions.

Pneumatic conveyors — Bulk of solids can be transported by suspension in a gas 

or liquid. Long pipelines have been built for the transport of powdered coal, cement, and 

other suitable materials. When the velocity and turbulence level in a flow are high enough, 

they work against gravity to keep the particles suspended.

Clean room technology — Clean rooms are used in manufacturing industries such 

as semiconductor, printed circuit board, computer disk drive, aerospace, medical device 

and pharmaceutical industries to provide a low contaminant environment. Since the

1
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products are quite sensitive to sub micron particles, particulate contamination has a major 

impact on the production rate. The contaminant particle sources in a clean room need to 

be identified and properly controlled to improve the quality of the clean room.

Spray injection equipment — Combustion of powdered coal is a well-known 

technique in which the fine powder must be injected into a combustion chamber by means 

of a carrier gas. The use of devices to disperse quantities of pesticides for agricultural or 

public health applications almost always utilizes two phase flows in the form of sprays or 

suspended powders. Solid rocket propellants often contain fine metal powders to improve 

performance.

Therefore, knowledge of the behavior of particle suspensions is of considerable 

importance in technology, and investigation of particle suspensions has received much 

attention.

Motion of aerosols in an air stream occurs in most of the above applications. 

Transport of aerosol particles by flowing air is usually accompanied by the process of 

particle deposition upon surfaces bounding the flow stream. The cases where particle 

deposition plays an important role are encountered in air pollution problems, clean room 

technology as well as inhalation toxicology. The problem of removing aerosols from gas 

has become important because of stringent environmental regulations to reduce health 

hazards, limit nuisance dust, and recover valuable products, and in particular, the recent 

need of microelectronics and computer manufacturing industries to control micro­

contamination processes.

A wide variety of commercial equipment used for collecting aerosols relies on 

aerosols depositing on surfaces which are then cleaned or removed. Typical examples, as 

stated above, are fibrous filters and electrostatic precipitators which use plane or 

cylindrical surfaces to capture the aerosol particles. In each device, the deposition process 

always presents a model of the fluid flow field around the object or target.
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1.2 Basic Concepts of Particle Dynamics

Studies of particle dynamics in a fluid have followed two methods of approach:

1. Treating the dynamics of single particles and then trying to extend to a multiple 

particle system in an analogous manner as in kinetic theory. The general equation of 

motion is based on treatments of particle dynamics by Basset, Boussinesq, and Oseen[43] 

and is essentially an application of Newton's second law:

where p, t, and x represent the gas pressure, the time and position coordinates, 

respectively; t' is the integration variable and is the time of the start of the motion, D is the 

diameter of the particle and CD is the drag coefficient.

2. Considering the particulate phase as a continuum and applying integral balances 

in order to derive the field and constitutive equations leads to a continuum mechanics 

description of multiphase flow. For a simple case when a flow is an incompressible, two- 

dimensional and steady laminar flow upon introduction of particles to the fluid phase, the 

governing equations will be:

3m 3v

T x * T y = °

3  u 3 m 1 a  3 2m
M _  +  v — =  -  +  — —

dx ay  p  dx p  3 y

■dt' +extem alforce
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w h er e :

F =  F*[9(p/2a2)p/,][l+(p/2pp)]~I

r = ( c D/24)[2fl(p |v-vj,|)/ii]

Dp: particle diffusivity

a: radius of a particle

For the dynamics of single particles, the first formulation appears to have been 

derived in the 19th century. The continuum mechanics of multi-phase flow began by 1960. 

Now, both of the methods have been studied extensively. Gas-solid flows involve many 

different phenomena such as particle-fluid interaction, particle-particle interaction, 

particle-wall interaction and the effect of the existing force field. The importance of these 

effects vary in relation to each other. Hence, the two methods are restricted to specific 

application cases, respectively. The solution of motion of the single particle equations is 

not the way to determine the behavior of a cloud of particles. However, continuum 

mechanics is unfortunately restricted to cases where the continuum approximation are 

valid, i.e., for small size and low inertia particles, and where some external force fields 

can be ignored, e.g., electrostatic image force field. It is also limited to giving the general 

phase configuration solutions of multiphase flow, and is not able to trace the trajectories 

of single particles.
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1.3 Aerosol Particles

The particle size of interest for gas-solid flows ranges from a fraction of a micrometer to 

several millimeters. Several typical sizes are indicated below:

Table 1.1 Typical Particle Size 

Material Approx. size(pm)

Tobacco smoke 0 .01 -1

Oil smoke 0.03 -1

Coal dust 1 -100

Fly dust 1 - 200

Fog 2 - 80

The shapes of particulate matter are, in general, non-spherical. The spherical shape 

is a special case or an idealization of irregular shapes. Model particles are treated as 

smooth, inert, rigid spheres in near-thermodynamic equilibrium with their surrounding. 

The particle concentration is very much less than the gas molecule concentration. In such 

an idealized model, the typical ranges of the parameter for particles found in atmospheres 

are included in following table:

Table 1.2 Particle Parameter Ranges

Particles Gas Atmospheric Air

aerosols (sea level)

Number density(cm'3) nj "g 102-105 10'9

Mean temperature(°K) Ts Ts T = T‘ g *i 240-310

Mean velocity(cm/s) Vj vs 10‘M o 3 0-103

Mean free path(cm) A., > 102 6x10-6 (N2)
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Table 1.2(Continued) Particle Parameter Ranges

Particle radius(cm) ai flg 10-MO'3

Particle mass (g) 0 00 1 O

Particle charge(units ±q weakly

of elementary charge) ionized

Aerodynamic length Li Lg Lj~ flj

1.9x10-* (N2) 

4.6x 10-23(N2) 

weakly ionized 

single charge

Lg->°°

The subscript i refers to the ith class, and g refers to the gas. Generally, the 

idealization requires that the size(radius) ag/aj<l and mass ratio mg/m j« l .

Moreover, in the dynamics of two phase flow there are four dimensionless 

parameters to be used to describe particle behaviors. The four basic parameters for 

aerosols in the single-particle regime[38] are:

Knudsen number — Kn = Xg I at 

Mach number — Ma = |v(. -  v j  /  qg 

Schmidt number — Sc = a?ng'kg 

Brown number — Br = qj l qg

Here, qg and q. are the mean thermal speeds of gas and particle, respectively. 

There is a relationship between the Reynolds number (Re = v ,a , / v  ) and Ma, Kn. It is 

Re ~ A Ma / K n . The Knudsen number Kn specifies the extent to which the system departs 

from that given by continuum dynamics. The Schmidt and Brown numbers Sc and Br 

indicate the degree of importance of thermal agitation of the particles.

1.4 The Scope of this W ork

The objective of this study is to analyze the deposition rate of particles on the surface in a 

channel flow. Since the deposition is a complex phenomenon that involves a variety of
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factors, in order to predict the performance of deposition effectively, the complete flow 

mechanism of the particulate phase has to be examined, the significance of parameters 

involved has to be identified, and a mathematical model to simulate the flow and 

deposition process has to be developed.

Since micro-size particles (0.01 |im  ~ 100 |im) with a dilute suspension in a flow 

are the main concern of this work, their presence in the fluid is assumed to have no effect 

on the fluid phase. Incompressible, two-dimensional and laminar flow will be taken into 

consideration for the present investigation. Most of the previous works in this field 

concentrated only on fully developed flows in a parallel horizontal or parallel vertical 

channel. Therefore, this work will concentrate on an angled channel flow case, especially 

on the divergent one. The laminar fluid phase from developing to fully developed flow will 

be solved numerically by the finite element method, using sophisticated CFD software 

FIDAP on the sun work-station. In addition, the situation of the flow with separation in a 

divergent channel will be investigated, and the separation point will be determined.

Many practical problems involving suspension of particles are at relatively low 

particle number density. The particulate concentration in this work will be a dilute 

suspension phase in a range of 10‘5 per cubic centimeter. The forces that affect the motion 

of particles in the situation are inertia, gravity, viscous force and electrostatic force. In 

particular, the effect of the electrostatic force due to the charge borne by particles on the 

deposition efficiency has lately attracted much attention. This is due to the fact that 

aerosol deposition experiments often yield higher deposition than that based on calculation 

of gravitational setting. Practically all aerosols or particles, natural or artificial, are 

electrostaticly charged. The charged force may arise in two ways: (1) by the mutual 

electrostatic repulsion between particles, and (2) by the charge induced on the walls, 

which is called the image force. When the particle number density is sufficiently low, the 

predominant effect is due to the image force.
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This study stems from investigating the motion of particles on the principle of the 

Basset-Boussinesq-Oseen method under the coupled effects of above all forces. Then the 

resulting governing equations with association of boundary condition are solved 

numerically using the Runge-Kutta method of fourth order algorithm. The deposition rate 

can, therefore, be assessed on the solved trajectory of particles. These numerical works 

are carried out on an IBM486 by use of the advanced Quick-BASIC language. All results 

will be summed and also the characteristics of the rate of deposition curves for different 

flow parameters, together with the effect of channel angle, will be discussed in depth.
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CHAPTER 2

LITERATURE SURVEY ON THE DEPOSITION OF PARTICLES IN TWO
PHASE FLOW

A brief literature review in the chapter is made in order to have a better understanding of 

previous investigations. The difficulties of both analytical and experimental investigations 

have led to a large number of publications of many facets of gas-particle flow. For 

example, the books by Fuchs[33] and Soo[62] each list some 900 references. Clearly, it is 

not possible here to cover all aspects. This review is restricted to the studies on the 

internal flow of suspensions and deposition of suspended particles from laminar and 

turbulent flows.

In this field, the work of some early papers was reviewed in the book by 

Fuchs[33]. In 1957, Friedlander and Johnstone[32] conducted an experimental study of 

the rate of deposition of dust particles on the wall of a tube with an analysis of the 

mechanism of particles transport in a turbulent stream. They found that when a stream of 

gas carrying suspended particles flow in turbulent motion past a surface, the particles are 

deposited due to the radial fluctuating component of velocity. They also found that the net 

rate of deposition depends on both the rate of transport of the particles to the wall and the 

rate of re-entrainment; the second effect was reduced to a minimum by allowing only a 

single layer of particles to accumulate on the surface and by taking precautions to ensure 

adherence of all particles that struck the wall.

Stukel and Soo[67] experimentally investigated the hydrodynamics of a suspension 

with particles suspended in turbulent flow over the inlet of a channel formed by two 

parallel-plates made for various flow velocities, plate gap widths, and mass flow ratios of 

solids to air. Their study was undertaken to further the understanding of the aerodynamics 

of air pollution control equipment.

9
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Experiments were carried out in a 12 inch by 12 inch subsonic wind tunnel with 

maximum tunnel speed of up to 120 ft/sec., place gap widths of 1/4, 1 and 2 inch, and 

mass flow ratios of particles to air varied from 0.01 to 0.1 lb. particles/lb air. They 

determined the particle and air velocities, the particulate mass flow and density 

distributions, and the particle size distribution as affected by the flow response.

It was found that for the nature of the developing turbulent boundary layer of 

dilute suspensions, the density of particles is higher at the wall than at the core because of 

the presence of charge on the particles induced by surface contacts. Furthermore, as 

analogous to rarefied gas motions, a particle slip velocity brought about by the lack of 

particle to particle collisions in the suspension at the wall was also observed. They, thus, 

concluded that similarity laws for the scaling of equipment for air pollution control should 

include the momentum transfer parameter and the electroviscous parameter in addition to 

the Reynolds number. The electroviscous number is especially important where the 

particles possess large charge-to-mass ratios.

The occurrence of deposition due to field forces was studied by Soo and 

Rodgers[63]. They defined a sticking probability, a , which depends on material properties. 

This sticking probability is related to the force of adhesion of particles to a surface. It was 

found that o  =1 when all particles drifting to the wall stick to or settle at the wall; and c  

=0 for complete re-entrainment.

Corn[21] showed that the electrical forces include contact potential difference and 

dipole effect, space charge and electronic structure. He also found that the effect of 

gravity alone produces settling, but the fact that a particle may again become re-entrained 

gives a  <1. There is another sticking probability ctw which concerns adhesion of particles 

at the immediate vicinity of the wall. Opposite to settling is the lifting of a particle in the 

shear flow of a fluid. This leads to a re-distribution of density of particle clouds and 

erosion of a bed of deposited particles.
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The general case of a fully developed pipe flow of suspension in a turbulent fluid in 

gravitational and electric fields and a shear flow field was analyzed by Soo and 

Tung[64][65]. The influencing parameters that defined the state of motion include: pipe 

flow Reynolds number, Froude number, diffusion-response number, electro-diffusion 

number, momentum-transfer number and particle Knudson number. Additional 

considerations are diffusion and setting under field forces, the sticking probability of a 

particle at the wall and that to a bed of similar particles. Although they claimed that the 

method of solution could be extended to a laminar flow field, they did not carry out any 

study on laminar flow.

Hughmark [39] studied the deposition from a turbulent gas stream. He did an 

experiment to estimate the particle velocity as a function of the stopping distance, which is 

defined as the distance that a particle with a given initial velocity will move through a 

stagnant fluid. And, he claimed that data for 0.8|i particles in 0.54cm diameter pipe are not 

shown because these data are not in agreement with the other particle data. Also he added 

that the assumptions of equal particle and gas diffusion, stopping distance, and particle 

velocity equal to fluctuating velocity appear to be consistent with the experimental data.

Peddieson[48] discussed the theoretical prediction of the performance of dust 

collectors. A state of multi-phase flow exists in such devices. Furthermore, he[49] studied 

the motion of a dust carrier gas suspension in the vicinity of a sphere or a circular cylinder, 

which has been of interest for several engineering situations. Examples are the collection 

and sampling of dust for the purpose of monitoring and controlling air pollution. A 

knowledge of the rate of dust collection by a single isolated element can be used to 

estimate the rate of collection of the bed as a whole. Also, the heads of various sampling 

devices often take the form of spheres or cylinders.

The flow of a dust gas through an infinitely long pipe was studied by Crooke and 

Walsh[22]. A set of linear partial differential equations were derived to represent two 

dimensional flow, and solutions to these equations were obtained for rectangular and
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circular geometry. They examined both steady-state and transient cases. They developed a 

method for the construction of solutions for the flow of a viscous, incompressible gas 

with suspended dust particles when the flow domain possesses special geometry. They did 

not consider any change in the number density of the particles, i.e., the caase of no particle 

deposition

Deposition of aerosol particles in a long channel due to diffusive and electrostatic 

charge effects was investigated theoretically by Chen[l 1]. The diffusion equation and the 

Poisson equation for flow of aerosol particles with electrostatic charge force were solved 

with an integral method based on gas flow with a uniform or parabolic velocity profile. He 

found that the inverse of the centerline particle density increased linearly with the product 

of the electrostatic parameter and the axial distance for the flow near the channel inlet. 

The centerline particle density, the penetration and the electric field force decreased 

exponentially with the axial distance for flow far from the channel inlet.

From the concept of the particle trajectory function, Pich[50] derived an equi- 

penetration curve of particles at the inlet plane. The particles below the equi-penetration 

curve are considered deposited on the wall surface. The deposition efficiency is found by 

integrating the product of particle velocity and the area between the equi-penetration 

curve and the boundary of the channel wall.

Wang[71] further developed the concept of particle trajectory in an inclined 

channel in a laminar flow. Analytical solutions for gravitational deposition of particles 

were derived for the uphill and downhill flows. At zero inclination, i.e., in a horizontal 

tube, Wang obtained the same solution as that derived by Pich[50]. In an uphill flow with 

parabolic velocity profile, the axial component of particle velocity at the entrance region is 

negative; hence, these particles are not able to enter the tube. In the calculation of particle 

deposition, those particles are not included while in a downhill flow, this situation does not 

happen since the axial components of particle velocity in the entrance region are all 

positive. It was found that the deposition is dependent upon the sedimentation parameter,
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which is the product of the particle terminal velocity, the diameter of tube, and the angle 

of inclination.

According to Wang's study, the use of the trajectory function provides a simple 

way for calculating the flow rate of particles through any area. This is particularly useful in 

the analysis of the deposition in the inclined channels of which the inlet and outlet cross- 

sections are not vertical.

Taulbee and Yu[69] investigated theoretically the simultaneous diffusion and 

sedimentation of aerosol particles in two dimensional channels for both uniform and fully 

developed flow. They found that the fractional penetration depends on a parameter q" = 

H*Vg/D where h is the channel half height, Vg is the setting velocity of a particle and D is 

the Brounian diffusion coefficient. The results showed that for q" < 0 .1 , the particle loss 

was practically due to diffusion alone, while for q" > 200, the deposition is mainly due to 

setting. The deposition due to the combined mechanism in the range 0.1 < q" < 200 is 

significantly smaller than the algebraic sum of deposition due to two independent 

mechanisms.

Some theoretical analysis and investigations on deposition in the entrance of a 

channel and in a diffuser were conducted by Eldighidy, Chen, and Conparin[26]. Under 

the effects of diffusion, electrostatic repulsive force and adhesive force, the results showed 

that the electrostatic charge inference plays an important role in the deposition of particles. 

They also found that the surface adhesion has a smaller effect on the rate of deposition 

than the electric charge. Moreover, it was found that the rate of deposition is greatly 

affected by the divergence angle of the diffusers. The rate of deposition increases as the 

diffuser angle increases; particularly, the rate of deposition increased rapidly in the 

presence of electric charge. However, the effect of electrostatic image force was not 

investigated in these analyses.

Yu and Chandra[74] analyzed charge repulsive force and image force in 

consideration of electrostatically charged particles suspended in a fluid. They showed that,
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at 1.0E05 particles per cubic centimeter, the space charge force can only lead to a small 

effect on the deposition and the predominant effect is due to image forces exerted on the 

particles. In the image model, the interactive forces between particles is neglected and the 

deposition is independent of the particle density. They investigated theoretically the 

deposition of charged particles by their image forces from laminar flows in rectangular and 

cylindrical channels. It was found that the image force contributes approximately the same 

amount of deposition as the gravitational force does, when particles of 1 pm diameter and 

lOOel./particle were breathed into human lung with lOOOcc tidal volume and 12 respiration 

per minute. Their numerical calculations were based on the analysis of limiting trajectories 

of particles.

Ingham[40] consider the deposition of a steady flow of suspensions due to 

electrostatic charge field force near the entrance of a cylindrical tube. Neglecting the axial 

diffusions in the steady state transport equation and Poisson's equation for electrostatic 

field, he solved these equations analytically.

Considering diffusion, electrostatic charge field force, and gravitational force, 

Chen and Gelber[13] studied the particle deposition in a parallel plate with laminar flow. 

Variations in deposition were determined by using a dimensionless parameter (charge- 

diffusion parameter) which is a ratio of the space electrostatic charge effect to the 

diffusion effect. They found that when this parameter was greater than 50, the diffusion 

effect may be neglected. When gravity acting in the direction of flow was considered, a 

velocity ratio (terminal velocity of the particle to the mean velocity of the fluid flow) was 

introduced. The space electrostatic charge field force effect and the gravity effect were 

considered in this case, and the velocity profile was either uniform or fully developed.

Chen et al[14] extended the study to include the effect of particle inertia on the 

deposition of aerosol in a parallel plate channel. Highly charged fine particles of sizes less 

than 20 micrometers had been analyzed numerically for both uniform and fully developed 

flows using a trajectory method. They considered the deposition to be primarily due to
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space charge alone and the image and gravity forces were not included in the analysis. 

They also defined a charge-inertia parameter n (ranging from 0 to 1) to characterize the 

flow deposition phenomena. They found that for n less than 0.1, the effect of inertia forces 

may be neglected and that the fraction of deposition near the entrance of the channel 

deviated substantially from the result that neglected the inertia effect.

The number of studies on the motion of aerosol particles and their deposition on 

surfaces has largely increased from mid of 1980s due to their numerous industrial 

applications. One recent example is the analysis of particle deposition rate on wafers for 

controlling the micro contamination in micro-electronics industry. Cooper[19] summarized 

the state of understanding of the micro-contamination control in the semiconductor 

industry, and provided a review of the needed micro-contamination control research for 

microelectronics industries. The research is needed in: source determination, transport 

modeling, aerosol characterization, deposition mechanisms, surface particle 

characterization and some more. Then, Cooper et al[20] reported the progress in 

analyzing particle deposition rates on wafers.

Douglas and Ilias[24] investigated the deposition of aerosol particles on cylinders 

in turbulent crossflow. Their work was based on the concept of eddy diffusivity and tested 

by comparing theoretical results with experimental data of Douglas in 1980. The 

numerical solution of the model equations requires the assumption of an eddy diffusivity 

profile within the boundary layer and a velocity profile at the outer edge of the boundary 

layer. In this work, the normalized eddy diffusivity profile near the cylinder surface was 

assumed to have the same shape as the eddy diffusivity profile near a flat plate. The 

velocity components were obtained from the solution of the boundary layer equation for 

two velocity specifications at the outer edge of the boundary layer, but their turbulent 

diffusion model tends to overestimate the measured collection efficiencies.

Fichman et al.[29] proposed a model of particle deposition in turbulent flow to a 

smooth surface based on the calculation of particle trajectories only. The model was based
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on the calculation of particle trajectories in the wall region, using a detailed description of 

the flow in this region. The deposited particles were assumed to come from the space 

between two eddies. To calculate deposition, the limiting particle trajectory in the 

developed flow field must be calculated. This was done by solving the Lagrangean 

equations of particle motion, which include the lift force perpendicular to the flow 

direction, resulting from the shear flow in the streamline direction. It was shown that the 

lift force is important in the deposition process.

Aerosol particle deposition in numerically simulated channel flow was carried out 

by McLaughlin[46]. He used a pseudospectral computer program to simulate the three- 

dimensional, time-dependent flow field, then to compute the trajectories of rigid spherical 

particles in a turbulent channel flow. He assumed that the channel is vertical so that gravity 

cannot directly cause the deposition of particles on the walls. The particles are assumed to 

be sufficiently small, and widely separated so that their influence on the fluid velocity field 

can be ignored. He found that when the particles are assigned random initial locations with 

initial velocities that are equal to the local fluid velocity, the particles tend to accumulate 

in the viscous sublayer. At the edge of the viscous sublayer, the particles that deposit on 

the wall typically possess normal components of velocity that are comparable in magnitude 

to the intensity of the normal component of the velocity in the core of the channel, i.e., of 

the order of magnitude of the friction velocity. A shear-induced lift force having the form 

derived by Saffman for laminar flow is found to have virtually no effect on particle 

trajectories, except within the viscous sublayer where it plays a significant role both in the 

inertia] deposition of particles and in the accumulation of trapped particles.

The problem of aerosol deposition in two-dimensional laminar stagnation flow 

under the combined effect of inertial impaction, interception and gravity is investigated by 

Ramarao and Tien[55]. Analytically expressions for particle trajectories were obtained by 

ignoring the boundary layer effect near the deposition plane. With the inclusion of the 

boundary layer effect, particle trajectory can only be determined numerically. Their main
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findings are that aerosol flux is uniform along the deposition plane which is true regardless 

of whether the boundary layer effect is included or not, the inclusion of the boundary layer 

in determining deposition tends to increase the deposition flux and this effect decreases 

with the increase of particle size but increases with the increase of a . a  is a constant and is 

characteristic of the flow field. They also showed that under certain limiting conditions the 

analysis yields results identical to those of previous investigations.

Chen et al[15] derived the image force equation for the two-dimensional 

convergent channels by using the concept of image circle. The deposition analysis due to 

the image force alone for the 15°, 10°, and 5° of convergent channel was studied for the 

uniform flow. They concluded that in comparison with the parallel-plate channel, the 

depositions were found to be smaller near the entrance in the convergent channels, but 

they increase as the axial distance is increased.

A two-dimensional steady state two-phase hydrodynamic model was developed by 

Arastoopour et al[2] based on multiphase flow equations of continuum mechanics, to 

describe dilute gas-solids flow behavior in a vertical pipe. Their model considered the 

particles to be the same size and their boundary layers as a separate continuum phase. 

Furthermore, viscous dissipation forces and phase interaction forces are incorporated. 

They found that a gas-solids drag force plays an important role in describing two-phase 

flow behavior. They pointed out that more fundamental research is needed to obtain a 

suitable expression capable of describing the interactive forces between gas and particulate 

phase at different regimes. Soo[61] in the Canadian Chemical Engineering Conference 

presented a detailed review on the theoretical studies of multiphase flow by continuum 

mechanics.

Motion of small suspended particles in a turbulent channel flow was studied by 

Abuzeid, Busuaina and Ahmadi[l], using Lagrangian simulation technique. The effect of 

Reynolds number, turbulence intensity and particle diameter was investigated. Their 

results showed that turbulence fluctuations and Brownian motion have significant effects
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on the particle deposition process. The results also showed that turbulence fluctuations 

remain significant regardless of particle diameter, while Brownian effects become 

negligible as the particle diameter becomes greater than 1 |im. The turbulence intensity is 

shown to be directly proportional to the deposition rate. The results also showed that as 

the Reynolds number increases, the deposition rate increases as well.

Li and Ahmadi[44] further extend their studies. Effects of Brownian diffusion, 

Saffman lift force, gravity and particle-surface interactions were included in their 

computational model. Several simulations for deposition of particles of various sizes were 

performed and the corresponding deposition velocities are evaluated. The effect of particle 

rebound from surface on particle deposition rate is also studied. They showed that 

gravitational effect significantly increases the deposition velocity for particles larger than 2 

pm, in the vertical channel, the minimum deposition rate occurs for particle diameters in 

the range of 1,0-5.0 pm, for the horizontal channel. The gravitational effect shifts the 

position of minimum to the 0.1-0.5 pm size range. Rebound effects become noticeable for 

particles larger than 10 pm.

Chen, Chiou and Sun[12] investigated the deposition of particles in a convergent 

channel numerically in a wide range of parameters. A laminar fluid flow of uniform and 

developing velocity profile is used in the analysis, and the effects of inertia, gravity, 

viscous force and image force are included in the computational model. The governing 

equations were built upon a trajectory method to find the trajectory of each particle 

entering the channel. The deposition was based on the distance for a particle to reach the 

wall. Many computations for deposition were performed with combinations of different 

parameters.

Further investigation in our work would be to study theoretically the deposition of 

particles from a laminar flow in a divergent channel due to inertia, gravity, viscous and 

image forces.
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CHAPTER 3

ANALYSIS OF LAMINAR SUSPENSION FLOW IN AN ANGLED CHANNEL

The deposition of gas-particles or droplets from a suspension flow to channel walls has 

been the central subject of a number of theoretical treatments. The present work will focus 

on the analysis of the deposition of aerosol particles on the internal walls of a laminar, 

angled channel flow. In this chapter, the work will aim at a comprehensive study of all the 

physical effects occurring during the process of particle deposition, understanding of the 

dilute gas-particle flow patterns, and further development of formulation to predict such 

particle behavior on the proposed model. Although many of the practical two phase 

systems are turbulent, depositions in low Reynolds number flow are the subject of 

considerable literature as seen on the chapter 2. A laminar flow will be dealt with in the 

research. This is because it will lead to a relatively rigorous mathematical solution and a 

feasible method that can be extended to a corresponding turbulent flow system with 

minimal modification. With a dilute suspension, the interactions between particles are 

ignored in the gas particle system.

3.1 Dynamics of Single Particles

3.1.1 Motion Equations

Finding the path of the aerosol particle lends much information to the flow behavior of 

gas-particle systems. Few measurement techniques can deal with the individual particle 

trajectory and its velocity. Numerical simulation offers another path for such analysis. 

Compared with experimental approach, the different aspect about finding the trajectory of 

the particle is that the basic equation defining such behavior is nonlinear, requiring a 

numerical solution.

19
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An analysis of particle deposition to surfaces in a laminar flow is made based upon 

the calculation of particle trajectories. The particle trajectory is computed using the 

Lagrangian solution of the particle equations of motion in the laminar flow field.

On the consideration of variety of factors, the Lagrangian equations of particle 

motion for a small rigid particle in a non-uniform channel flow can be expressed as 

follows. This equation stemmed from Basset-Boussinesq-Oseen equation, now including 

the Saffman lift force, Brownian force, and gravity force.

IIG.I1

/  \  ( 3CDp ]

I 6 1 dt I 6 JV r P /
u - u p \(u- u„)

( n D ^ d p  \ ( n D ^  d ,  \

r 3D2
2

+6.46|la

, --------- , ,  ( d u / d t ' ) - ( d u  /dt ' )
I’M . -----------

dut
dy

+ ^ - ( p - pp f e

+",(0
JtD3p„

+ externalforce

(3.1.1)

The basic physical meaning of each term from the left of equation (3.1.1) is:

term 1 = inertia force

term 2 = drag force

term 3 = pressure gradient force
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term 4 = apparent mass force

term 5 = Basset force

term 6 = Saffman lift force

term 7 = Buoyancy and gravity force

term 8 = Brownian force

External forces in the equation, generally, should include electrostatic forces; 

electromagnetic radiation (photophoretic) forces, and thermal gradient (thermophoretic) 

forces.

In the equation, the x-axis is along the centerline of the channel, y is perpendicular 

to the centerline and opposite to gravity. up is the velocity of the particle, u is the velocity 

of the undisturbed fluid evaluated at the center of the particle, t is the time, D is the 

diameter of the particle, p and pp are the density of the particle and the density of the fluid, 

d/dt denotes a time derivative following the particle, and v is the kinematic viscosity of the 

fluid. The dynamic viscosity is denoted by |i. The equation of motion is, practically, based 

on two Reynolds numbers. One is related to a particle and the other to the flow field of a 

channel. In terms of dimensional parameters, the two Reynolds numbers are:

Rep = w „a/v and Rc = u0h l v  (3.1.2)

where a is the radius of the particle, h is the half channel width at the entrance, w0 is a 

velocity that is characteristic of the relative motion between the particle and the 

undisturbed fluid; u0 is velocity of the flow. The channel flow is two-dimensional, 

therefore, the equation (3.1.2) should be written both for x and y directions. The Reynolds 

number Rep is based on the magnitude of the relative velocity, o r :
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Rep = (pD/^)[w0/  + w0/ ] ,/2 (3.1.3)

All terms in the equation are derived on the assumption that the particle is a small 

rigid sphere. If a non spherical or irregularly shaped solid particle is applied, the uniform 

motion and consistent orientation of such a particle can not be assured. It is almost 

impossible for a theoretical analysis.

The equation (3.1.1) is so complex for a solution that a couple of assumptions will 

be taken into account. For typical conditions of gas-particle flow, the density ratio p/pp is 

of the order of 10'3. It means that the density of a particle is sufficiently great compared to 

the gas that virtual mass effects are unimportant. This assumption will be used to apply 

order of magnitude examination of some terms in our analysis.

3.1.2 Force Analysis

On the left hand side of the equation (3.1.1), term 1 is equal to the product of mass and 

acceleration of the particle. It represents the force necessary to accelerate the particle, i.e., 

inertia force, which is present in the unsteady flow situation.

On the right hand side of the equation (3.1.1), term 2 is the drag force. It contains 

the drag coefficient CD that is a function of the Reynolds number of a particle. When Rep is 

less than about one, the drag is obtained analytically by Stokes laws:

Stokes drag: FD = 37tD|i(u-up) 

Drag coefficient: CD = 24/Rep

(3.1.4)

(3.1.5)

where, the definition of the drag coefficient is:

(3.1.6)
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For example, choosing: a = 1 pm = lxlO '6 m, w0 = 0.1uo 

Re=100, u0 = 2.896 m/s 

Then: Rep=0.02

Here, w0 = (10% ~ 15%)u0is based on experiments of Zhu and Soo[75].

For higher Reynolds number Rep, Some more investigations of CD based on 

experiments have been done by Kemp[42], Rutnam[52], and Puri[53].

In our cases of laminar channel flows, the drag coefficients will definitely be less 

than 100, hence CD is given by:

c o = j r  forRep < l

24 f  3 Y/2 (3' L7)
Q=ir l1+̂ RêJ for 1 * Re^ 100

For atmospheric air, the molecular mean free path X is of the order of 0.1pm. The 

assumption of continuum flow thus becomes invalid for extremely small particles or for 

low gas density, then the drag force on the particle must be corrected for slippage of gas 

at the particle surface. Cunningham slip correction Gc is applied to the drag coefficient, 

which depends on the Knudsen number Kn=X/D.

Gc = 1 +1.257 Kn + 0.400tfn exp(-l. 10/sOT') (3.1.8)

To correct the drag coefficient, the CD is divided by the term Gc.

The force acting on the particle on term 3 is led to by the pressure gradient in the 

fluid. For a gas flow, the pressure gradient is given by:
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When a particle is accelerated relative to a surrounding fluid, it sets up a two 

dimensional flow around it which possesses kinetic energy. Therefore, work must be 

supplied to move the particle in addition to that which is required to accelerate it alone. 

This extra energy requirement shows up as an additional force on the particle which is 

term 4. For a sphere, it behaves as if it possessed an additional "apparent mass" equal to 

one half of the fluid which it displaces. It acts to reduce the velocity lag.

For particles suspended in gases, the density ratio of 103 usually makes the effect 

of term 3 and term 4 negligible.

Since viscous effects, such as boundary layer growth, are governed by diffusion 

equations, the instantaneous flow field is a function of the entire previous histoiy of the 

particle motion. For laminar flow, Basset obtained the result in term 5. The Basset force is 

rather awkward to calculate and its significance is not readily ascertained. Klinzing[43] 

gives three examples to indicate its magnitude. For typical density ratio of 10'3 the Basset 

force becomes smaller than 10% of Stokes drag. We will neglect its effect, too.

Saffman lift force is induced by velocity gradient in shear flow. It is term 6. The 

magnitude of lift force FL to drag force FD is given by

Hence for small particles, the lift force due to its passage through a shear layer can 

be neglected when a2(du/dy)/v is small. McLaughlin[46] points out that even within the

(3.1.10)
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viscous sublayer the Saffman lift term is still quite small compared to the normal 

component of the Stokes drag force.

In term 7, g is the acceleration of gravity and equal to -9.807 m/s2. The buoyancy 

term should be small compared to the Stokes drag term for a sufficiently small particle.

Brownian diffusion force plays an important role in the concentration distribution 

of a cloud of particles. But when the two-phase flow is dilute, its effect will be of little 

importance.

In the term of external forces, electrostatic force often is a significant factor. 

Practically, all aerosols or particles, natural or artificial, are electrostatically charged. 

When particles capture free ions from the air, they become charge carriers. Particles may 

also acquire charge when they impact each other and the wall. The electrification of 

particles can be great in gas-solid systems. The large charges on small particles are related 

to the large surface/volume ratio that is present for these fine materials. The electrostatic 

force has the same magnitude as gravity in many cases[10]. It will be an important factor 

in this research. The photophoretic force or thermophoretic force will not be included in 

the work. Shchukin[60], Tumer[69] and Ye[72] have done work on them.

3.1.3 Governing Equations

Based on above force analysis, practically, the efficiency of deposition of particles in a 

divergent channel flow with a dilute suspension will be mainly due to inertia, viscous, 

gravity and charge forces. To get the basic governing equations, the assumptions are 

summed up as following:

(1) Incompressible, steady flow

(2) Two-dimensional, laminar flow
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(3) Dilute suspension

(4) Interaction between particles is negligible

(5) Density ratio p/pp is of the order of 10'3

(6) Particles behave like a sphere of radius "a"

(7) Thickness of the deposition layer is much smaller than the channel width

(8) Negligible temperature effects

Assuming the flow incompressible is a good approximation for compressible fluids 

at very low Mach numbers.

A rectangular Cartesian coordinate system is employed as shown below, in which 

the x-axis is along the center-line of the channel and the y-axis is opposite to the direction 

of gravity.

Figure 3.1.1 Coordinate System for a Divergent Channel

Referring to the figure 3.1.1, the width of the divergent channel at entrance(x=0) is 

2h0. Further downstream(x>0), the divergent channel half width h is larger than h0 and is a

Y
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function of x. On the above consideration, the governing equations for a particle in a 

divergent channel flow are as follows:

du
m - j f  = k ( u - u p) + f x (3.1.11)

m ^ -  = k ( v - v p) - m g + f y (3.1.12)

Where m is the mass of the particle, the subscript p denotes a particle, and u and v 

are velocities of the fluid in the x and y directions. The fx and fy denote the electrostatic 

force components in the x and y directions, respectively. The equations include the effects 

of inertia, viscous, gravity and charge forces.

The second order differential equations can be rewritten in the form of two 

equivalent first order differential equations when we let:

dx dv
“’ = 7 , v> = 7  (3' U 3 >

In this work, this divergent channel walls are considered to be conducting and to 

be properly grounded. For a dilute suspension of particle number densities less than 10s 

particle per cm3, the dominant effect of the electrostatic force on deposition is due to the 

image force.

A particle with charge q in a conducting channel will induce a certain amount of 

opposite charge on the nearby surface of the conducting plates. The total electric potential 

is partly due to q directly and partly to this induced charge. The basic equations to depict 

the electric field are:
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F = qE (3.1.14)

£  = -V V (3.1.15)

(3.1.16)

where F  is electric force, E  is electric field strength and V is electric potential. 

W  = - q / e 0 is known as Poisson's equation. e0 denotes the permittivity of space in the

electrostatic theory.

From the mathematical point of view, our problem is to solve Poisson's equation 

with a single point charge q located at (x, y) subject to boundary conditions. But our 

problem can be classed as a problem that can be solved by method of images. The 

uniqueness theorem plays a crucial role. It guarantees that there is only one function which 

is our solution. In the method of images a single point charge near a grounded conducting 

plane can be treated by construction of its mirror image charges. This will guarantee that 

the plane will be at potential zero and be precisely the conditions of our original problem. 

For this configuration, its potential can be easily written down, and is exactly the same as 

our problem.

Based on the principle, for a channel which is made of two parallel plates placed 

2h0 apart with walls that are conducting and grounded, the image forces on a charged 

particle can be expressed as:
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The same approach is applied for an angled channel while the image circle concept 

is introduced. When two conducting planes intersect at an angle 20, the image of a point 

charge particle is finite and confined on a circle, which is the image circle. This image 

circle is defined by having its center at the extended intersecting point of the two 

conducting planes, and the distance from this intersecting point to the point charge particle 

is the radius. The total number of pairs of images(N) is equal to tc/(20). Hence, the 

formulas of image forces of an angled channel are derived as:

0 : the half convergent channel angle 

q: the charge per particle 

Eg', the permitivity of space

Pn: angle between the y-axis and the chord connecting the charge to image n'

Pn': angle between the y-axis and the chord connecting the charge to the secondary 

image n'

qn: distance between the point charge to the primary image n 

qn>: distance between the point charge to the secondary image n'

(3.1.18)

(3.1.19)

where:
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A detailed meaning and proof of the above formulas appear in [15].

In this work, electrostatic charge is assumed uniformly distributed on the surface 

of a particle so that it works like a point charge. The above equations work on convergent 

channel cases and need to change the sign of fx in the divergent channel case. A 

modification formula is applied to the equations to have them applicable for our practical 

divergent channel.

3.2.1 Fluid Dynamics Equations

The basic principles of fluid dynamics are the well known conservation of mass and 

conservation of momentum. The first one leads to the continuity equation, and the second 

one to the momentum equations or Navier Stokes equations. When we consider that the 

fluid is Newtonian, the flow is homogeneous, isotropic, incompressible, and limit to the 

case of a 2-dimensional and steady channel flow, the equation of continuity can be written 

as:

and the momentum equations take the form:

3.2 Steady Flow Through an Angled Channel

(3.2.2)

(3.2.3)
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Terms on the left hand side are the convection terms. The pressure gradient is the 

first term on the right hand side, the second term is known as the diffusion term and g is 

the gravity term.

These equations, though simplified, are still a formidable system of nonlinear 

partial differential equations. No general analytical method yet exists. In particular, 

analytical difficulties arise if the angled channel is a divergent one. A divergent channel 

flow does not become fully developed, separation, back flow, and unsteadiness complicate 

the flow pattern.

In recent years, major advances in computer technology and computational 

mechanics have made it possible to construct numerical models of fluid dynamics. Some 

solution methods are based on the finite element method(FEM), which has a relatively 

short history in computational fluid mechanics and is becoming a powerful tool. The great 

advantage of FEM over other methods is its inherent flexibility in treating arbitrarily 

complex flow domains and boundary conditions.

3.2.2 Finite Element Analysis

The finite element method is a numerical method for solving a system of governing 

equations over the domain of a continuous physical system. Elements subdivide the 

domain, and these elements assemble through interconnection at a finite number of points 

on each element. Then this assembly provides a model of the continuum region of interest.

(1) Formulation

Since the Eulerian description of fluid motion is used in the field equations, the 

elements are assumed to be fixed in space. Within each element, the dependent variables Uj 

and p are interpolated by functions of compatible order, in terms of values to be 

determined at a set of nodal points. The velocity, pressure and temperature fields within 

each element are approximated by,
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u,(x,  t) = y TU,(t)  

p (x ,  t) = xyTP(t )
(3.2.4)

where U; and P are column vectors of element nodal point unknowns and 9  and 9  are 

column vectors of the interpolation functions.

Substituting these interpolation functions into the field equations as well as 

boundary condition yields a set of equations of the form:

Momentum: / 1(cp,v|/,t/i ,P )  =  f?I 

Continuity: f 2 = (tp,!/,) = R2

where Rj is the residual resulting from the use of those approximation equations. The 

Galerkin method of weighted residuals seeks to reduce the error(residual) Rj to zero. This 

is achieved by making:

where, QE is the element domain.

The application of the Galerkin procedure to the field equations results in a system 

of algebraic equations of the form:

(3.2.5)

(3.2.6)

[ K ] m  = [F] (3.2.7)
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where, [K] is the stiffness matrix, [<J>] is the column vector of unknowns and [F] is the 

source term which includes the effects of body forces and boundary conditions.

(2) Element

A nine node quadrilateral element has been used for the computations. In terms of 

normalized or natural coordinates of the element, i.e., r and s, the velocitys are 

approximated using biquadratic inteipolation functions, given by:

<p =

Y Ar s ( \ - r ) ( \ - s )

- y 4 rs(l +  r ) ( l - s )

j/4 rs(l + r)(l + s)

- y 4 r s ( l - r ) ( l  +  s) 

- y 2 s ( \ - s ) ( l - r 2) 

y 2 r ( l + r ) ( l - s 2) 

y 2 s ( l  +  s ) ( l - r 2) 

- y 2 r ( l - r ) ( l - s 2) 

( l - r 2) ( \ - s 2)

(3.2.8)

The pressure approximations used with the element are bilinear. The pressure 

values for the bilinear approximation are located at the four points o f 2x2 Gaussian 

integration. Its interpolation functions are given by,
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Y ^ g - r ) { g - s ) l  g2 

y ( g  + r ) ( g - s ) / g 2
\|/ =

y$(.g + r)(g + s ) l  g2 

X ( g - r ) ( g  + s ) / g 2

(3.2.9)

g = 2 ^ / 3 (3.2.10)

(3) Boundary Conditions

It is required to provide appropriate boundary conditions u, v on the boundary of 

the computational domain, as shown on the following figure.

Figure 3.2.2 Boundary Conditions for FEA Computational Domain

The inlet plane is positioned upstream of the regions of interest in area where the 

flow field is unperturbed from any nearby obstacles. The velocity distribution is prescribed 

uniform at the inlet.

On the solid wall, rigid, no-slip boundary conditions are applied, hence velocities 

are prescribed zero.

At the symmetry plane, the gradient of u is set to zero in the y direction and v is set 

to zero, too.

Y WAll (U=V=0)

d U / d x  = 0

a v / a ^ = o

d u / d y  = 0 V = 0
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For the outlet profile boundary, the fully-developed parabolic velocity profile is 

applied in the axial direction.

(4) Algorithm and convergence criteria

A segregated implicit algorithm is employed for the numerical solution of the set of 

discretized equations resulting from the application of the Galerkin finite element method 

to the field equations. The discretized implicit equations associated with each primary flow 

variable are assembled in smaller sub-matrices. Mixed velocity-pressure formulation is 

used. At the beginning, an approximation of the pressure is obtained from the solution of 

the Poisson type pressure matrix using the latest available value of the field variables. The 

criteria are applied to terminate the iteration in solving the equations. According to the 

relative error of the solution vector u, at iteration i, a convergence criterion is:

where e„ denotes a given tolerance. || || means an appropriate norm.

The second convergence criterion is based on the residual vector to check the 

tendency of errors as u, tends to u. It is

where R0 is a reference vector, usually R(h„). These two criteria provide an effective 

overall convergence criterion for solutions.

(3.2.11)
u,

(3.2.12)
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Based on the equations, boundary conditions and the principles for solution, flow 

computation programs have been built upon the FIDAP package, as shown in Appendix. 

The dimensionless length of a channel is X=40. In the X direction, they are divided into 51 

segments and 21 segments in Y direction. The quadrilateral, 9-node elements of the total 

number of 1071 are used in the computation.
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CHAPTER 4

COMPUTATION OF DEPOSITION FRACTION IN A CHANNEL FLOW

In this chapter, a numerical scheme is presented to study the suspensions o f laminar flow 

in a two dimensional divergent channel, also including some cases in a convergent channel. 

First, the governing equations of particle motion are solved in dimensionless form to get 

the particle trajectories. Then, the fraction of deposition of aerosol particles on the channel 

wall is calculated upon these trajectories. Deposition is due to the effects of the inertia 

force of the particle, gravity force, electrostatic charge image force on the particle, and 

viscous force of the fluid.

4.1 Dimensionless Equations

The trajectory of a particle moving in a gas can be estimated by integrating the governing 

equations of motion for the particle over a time period. The basic definition relates the 

particle position to its velocity and time as:

In order to simplify the governing equations and make parameter studies, the 

number of variables involved are reduced. The following dimensionless terms are 

introduced in the analysis:

(4.1.1)

(4.1.2)
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T =
tUn

fto y o

U V
U = — ; V =  —

Mo Vo

(4.1.3)

(4.1.4)

(4.1.5)

Using the Lagragian approach, a particle at time t is located at (x, y, z). The 

velocity components are:

dx dy
(4.1.6)

Substituting all of these into equations (3.1.11) and (3.1.12) yields:

m
h dT2

J v /  n « s in p n Af-1

. «trj 4ikJ £ (  s qn-

and

m-« 2 d 2Y '

(4.1.7)

K dT 2 =  * « 0
dY

(4.1.8)

Dividing the whole equations by ku0 leads to:

mun d 2X  _ T1 dX - q 2 \ N
■ = u ~ — +

h k  dT2 dT
£ (-!)■

0 ™ o  t " = >  Q n  n = l  Q n'

(4.1.9)

and
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^T3F=v- f - f l+r :V  <4U0)h k  dT  dT h k  a. a.

Further, using parameters S, G, and Q, the governing equations of particle motion 

become:

„ d 2X  „  dX  _
S — -  = U  +QFr

dT1 dT  1
(4.1.11)

s 7 F  = v ~ ^ F ~ g + Q F ' (4-L12)d p  dT

where, the physical meaning of S, G and Q are:

„ inertia force mu.
S = -    = — (4. 1. 13)

viscous force h0k

_  gravity force mg
G = 4 ------= — ■ (4.1.14)

viscous force ku0

_ charge force q 2
Q = -— ~  ------=  (4.1.15)

viscous force 4nz0h0 ku0

and Fx and Fy are:

p.=-vjiH >"^+X (-i)"^
U = 1  <ln n = 1

(4.1.16)

F, = ~ h ' [n=l qn n=l Qri
(4.1.17)
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The equation (4.1.11) and (4.1.12) are our final governing equations in the 

dimensionless form. Notice that from these equations, the solution depends on the inertia 

parameter S, charge parameter Q, gravity parameter G, and initial and boundary 

conditions as well.

The initial conditions are as follows:

at t=0

x=0 and y=y0; fo r -h 0<y0<h0 (4.1.18)

Vp=~dt= ° '  f o r ‘h° <y°<h° (4.1.19)

uP = Y t =u°' for ' ho<yo<h° (4.1.20)

h = h (4.1.21)

In a similar way, the dimensionless forms of these conditions are:

At T=0

X =0 and Y =Y0; for -1 < Y0 <1 (4.1.22)

V = —  = 0; for-1 < Y0 <1 
p dT

(4.1.23)
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U p ~~dT = ^' f°T - 1 < Y ° <l
(4.1.24)

H  = \ (4.1.25)

The boundary conditions of particle motion are:

(1) When a particle reaches the channel wall or Y =1.0 or Y =-1.0, it is considered 

to be deposited on the wall.

(2)The initial positions of particle are located at the inlet plane, ranging from Y0 

=0.998 to Y0 =-0.998 with a set of 115 points.

In a divergent channel, the axial image force at the inlet plane is zero and then 

gradually reach to its theoretical value. Hence, a correction Km is applied to the axial 

theoretical formula of the image force.

where x0 is the axial inlet plane position and x  is the axial position of a particle in a 

channel.

The ranges of parameters that we used to solve these equations in studying the 

trajectory of the particle suspension are:

(4.1.26)
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0=7.5°, 5.0°, 2.5°

S=100,10, 1,0.1,0.01 

G=100, 10, 1,0.1,0.01

Q= 10000,1000,100,10,1,0.01, 0.001, 0.0001, 0.00001

4.2 Numerical Treatments

Since it is an initial value problem the particle trajectories are obtained by integrating the 

governing equations, using the forth order Runge-Kutta Method.

4.2.1 Differentiation and Integration

First, for our simultaneous governing equations:

We set x' = A, y' = B and then obtain the following system of simultaneous first- 

order equations:

x '~  A{x,t)  

A'= f  (A,x , t )  

y '=B(x , t )

B  = g(B ,x , t )

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

where x and y are function of t. Then to integrate them we compute the increments in x 

and y for the first interval by the forth order Runge-Kutta formulas. The increments for the 

succeeding intervals are computed in exactly the same way except that x0, y0, A0, B0, and t0
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are replaced by x,, y,, A,, B,, and t, as the computation proceed, until xn, yn, An, Bn, and tn are 

obtained.

The governing equation (4.1.11) and (4.1.12) are second order differential 

equations, and can be rewritten as follows.

Let: A = — ; B = —  (4.2.6)
dT dT

where A and B are the particle velocities in the x-direction and y-direction. Therefore,

d A = d_ 
dt ~ dT

d X \  d 2X
dT d r

dB _ d  ( d Y \ d 2Y 
dt ~ d T { d T )  dT2

By substituting these into equation(4.2.7) (4.2.8), we have: 

dA U -  A + QF

(4.2.7)

(4.2.8)

dT

and

(4.2.9)

dB _ V  — B — G + QFy 

d T ~  S
(4.2.10)

Hence, the second-order differential equations are transferred to the first-order 

differential equations. The four modified equations together with the initial condition are 

solved by the forth order Runge-Kutta method.
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4.2.2 Interpolation of Fluid Flow Velocity

The data of fluid flow in a convergent or divergent channel are obtained at the nodes of a 

finite element mesh model, therefore, it is necessary to determine the values of flow 

velocity at a given point among the set of solved data. It is referred to as an interpolation 

problem. The two dimensional interpolation is required in the numerical integration of 

solving the governing equations.

The simplest linear polynomial interpolation produces a polygonal path that 

consists of line segments that pass through the points, while polynomial interpolation for a 

set of N +l points is often rather unsatisfactory which graph will wiggle in order to pass 

through the points. For a low interpolation error, the piecewise cubic splines are 

employed. It is a kind of piece-together of cubic polynomials with continuity of the first 

and second derivatives on a larger interval. The form of cubic spline function Sk(x) is as 

follows:

S k ( x )  =  T T  ( f t + i  ~  x ?  +  T W *  "  * * )
3 m.

+

6h,

(  L ^ft mA
yhk 6

6 hk

/,ft±L_ .2!*±A N
y h k 6

(4.2.11)

(* -* * )

Sk (x) = S" {xk) X~— ^ 1 ■+S (xk+,)
x - x t

xk ~ xM
(4.2.12)

™k = S‘k(xk) (4.2.13)

h = xM ~ x k (4.2.14)

for xk < x <  xk . and k=0,l,2,...,N-l.
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The cubic spline Sk(x) has the properties :

(1) Sk(xk) = yt . The spline passes through each data point.

(2) St (*i+l) = SM (xM ).  The spline forms a continuous function.

(3) Sk (xk+l) = SM {xk+i). The spline forms a smooth function.

(4) Sk (xi+1) = SM {xk+]). The second derivative is continuous.

The mk is the only unknown coefficient in the spline function. Based on these cubic 

spline properties, an important relation involving m^,, rr^, and mk+1 is used to find the 

solution. It is,

K-\mk-x + 2( V ,  + K  K  + =tk (4.2.15)

where tk =6{dk - d k_]), dk =  -  fo rk  = 1 , 2  N -l, and = 0, = 0 for a
h

natural cubic spline.

Using the formula of above cubic spline, the velocity interpolation is made at two 

times, first in x-direction then in y-direction. The xk and x represents the position 

coordinates, and yk and Sk(x) indicates the velocity components at the known data points 

and particle point, respectively.

4.2.3 A Closed Form Solution with Q=0
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In this section, finally we consider a extreme case. When the channel is parallel one and 

the image force is negligible, a closed form solution is derived with a parabolic flow 

profile. It is as follows:

Initial conditions:

At T =0, Y =0, dY/dT =0, X =0 

and dX/dT =1.5(1-Y02)

At T> 0, U = 1.5 (1-Y2)

(4.2.15)

(4.2.16)

(4.2.17)

Solution:

Y(T)  = S - G + Y0 - G T - S - G E x p ( - T / S ) (4.2.18)

X( T")  = \.5G2S 2{4.5+6Y0K

+[K2( \ - Y 02) - 4 Y 0K - 5 \ - T "

+(2 + Y0K ) - T ' 2- l / 3 T "3

-2 (2  +  3 Y0K)  ■ Exp ( -7 "  ) - 2 Y 0K T ' E x p ( - T " )

+T"2 Exp{-T" )-0 .5Exp{-2T")}

where K =l/S /G , T"=T/S

Again, when the inertial effect is negligible, too, i.e. at S =0, the above solutions 

become:

(4.2.19)

Y(T) = Y0 - G T

X ( T )  = l 5 G T 2( l - G T / 3 )
(4.2.20)

Similar results can be seen in [16].
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4.3 Calculation of Fraction of Deposition

To determine the fraction of deposition of the particles on the divergent channel wall, the 

equation of conservation of mass of the particle phase can be written as:

Following the concept of limiting trajectories by Pich[50], y, and yu in the equation 

are two critical values of y at the channel entrance x =0, such that the particles entering 

the channel between y =-h0 and y, will deposit on the lower channel wall; those entering 

between y =yu and h0 will deposit on the upper channel wall; and those entering between y 

=y, and yu will penetrate the divergent channel. The distributions of particles will not be 

symmetric because of gravity effect on the particles.

The above equation can also be rewritten in dimensionless form as:

Fraction o f  deposition -
total number of particles deposited on the wall 
total number of particles entering the channel

(4.3.1)

Fraction o f  deposition = —

-]

(4.3.2)

where Y, = y , f  h0, Yu = yu lh0, and Up = 1 at X =0.
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CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the particle deposition on the walls both in a convergent and divergent 

channel due to the effects of inertia force, viscous force, gravity force and electrostatic 

image force will be discussed. The deposition process upon the combined effects has been 

solved numerically. In the discussion, the laminar velocity profile for the fluid phase in a 

convergent or divergent channel is examined briefly and then the particle trajectories for 

the particle phase are analyzed for understanding the kinetics of particle suspension. 

Finally, the particle deposition on channel surfaces are studied extensively, since the 

solution of the problem is a parametric type, and the interest is to find out which 

parameters affect considerably the rate of deposition of the particle.

As was mentioned in the previous chapters, the range of dimensionless parameters 

investigated in this analysis are 100,10, 1,0.1, and 0.01 for both S (inertia parameter) and 

G (gravity parameter). Q (image parameter) is ranged from 10000 to 0.00001. The half 

convergent channel angels investigated in this study are 7.5, 5 and 2.5 degrees.

5.1 Fluid Phase

(1) Convergent channel flow

The results of convergent channel flow are obtained by numerical solution of the Navier 

Stokes equations and the continuity equation for the symmetric laminar flows. Figure

5.1.1 and 5.1.2 are the displays of the velocity vectors and streamlines of the fluid phase, 

respectively.

Figure 5.1.3 through Figure 5.1.8 show the axial (U) and vertical (V) velocity 

distribution of the fluid phase at half convergent channel angles of 2.5, 5.0, 7.5 degrees. In

48
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the reported results, all velocities and distances are non-dimensionlized with respect to 

inlet average velocity (u0) and inlet half width (h0) of the channel.

With a flat inlet velocity profile a sharp gradient of velocity exist at those cross 

sections near the inlet, and the axial component of velocity fluctuates along various cross 

sections. As the axial length increases, the velocity profile in each case tends to become 

parabolic. As the convergent half angle of the channel is increased, the length required for 

the flow to become fully developed increases as shown on these figures.

For vertical velocity in convergent flow, the values of V are negative, which means 

that the direction of motion of the fluid elements in the vertical direction is away from the 

channel wall. And, there is a positive fluctuation of V component around the cross section 

X=10, which may present the velocity instability character near inlet segments when a flat 

inlet flow squeezes into the convergent channel.

(2) Divergent channel flow

In this section, results for divergent channel flow will be considered. A typical geometry 

for this study and boundary conditions has already been discussed in Chapter 4. The main 

parameters affecting the performance of the fluid phase of a divergent channel are the inlet 

Reynolds number and the angle of channel expansion. The velocity vectors and streamline 

at half divergent channel angle of 2.5, 5.0, 7.5 degree are depicted in Figure 5.1.9 through 

Figure 5.1.11. Figure 5.1.12 to Figure 5.1.17 show the axial and vertical component 

distributions of flow velocities. All these velocities and distances are non-dimensionlized 

with respect to inlet average velocity (u0) and inlet half width (h0) of the channel.

In a divergent channel, it is clear that the centerline velocity Uc decreases 

downstream, and the numerical value of the velocity gradient at the wall (dU / dY)  

decreases along the x-axis. The flow will separate and lead to a reverse flow in the 

downstream. Figure 5.1.18 shows the separation point locations of divergent channel flow 

at the half channel angles of 5.0, 7.5 degrees for various Reynolds numbers in the range of
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laminar flow. Moreover, there is no separation happening or taking place in the chosen 

channel length for a smaller half angle of 8=2.5°. The reason for this may be the fact that 

as the angle decreases below a certain limit at a fixed Reynolds number, the location of 

separation point will move downstream much faster than before.

Figure 5.1.18 indicates that with the increase in Reynolds number, the separation 

will occur early. For any fixed Reynolds number, the separation distance is found to be 

shorter for the geometry with a larger half angle of channel. For all of these cases when 

the flow separation takes place, there is a reverse back flow; however, the reverse flow 

velocity is much smaller as compared with main flow velocity in the given length of 

channels. When 0=7.5°, the ratio of the maximum reverse velocity with the corresponding 

largest velocity of main flow is about 0.7%, and the ratio of the maximum reverse flow 

thickness with the corresponding half channel width is 8%.

Figure 5.1.15, 5.1.16 and 5.1.17 also show the vertical velocity distribution. Here, 

the values of V are positive. This means that the direction of motion of the fluid elements 

in the normal direction is away from the centerline. It can be seen that the absolute values 

of V decrease when increasing along the x-axis.

5.2 Particle Phase

The objective of this section is to study the particle trajectory under the influences of 

inertia forces, viscous forces, gravity forces and electrostatic image forces. Several cases 

of particle flow in a convergent or divergent channel are discussed below as typical 

examples.

5.2.1 Particle Trajectory in Convergent Channel

Figure 5.2.1 to Figure 5.2.6 show the deposition distances of particles in convergent 

channels. In these figures, Y0 axis represents the initial position of a particle entering the
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channel. Deposition distance Xd is defined as the distance that a particle will have traveled 

before it deposits on the wall.

It is noted that the channel wall itself can be seen as a streamline. If there is no 

inertia, viscosity, gravity and electrostatic charge, the particle will simply move along with 

the fluid and exit the channel without hitting the channel wall. Practically, while particles 

near the channel wall, the vertical component of the fluid phase has a tendency to apply 

viscous forces on the particles and push them away from the wall, while at the same time 

induced image force on wall will also attract the particles to the wall. Besides, there are 

still gravity and inertia. That means that the results will be dependent upon the combined 

influence. It is not obvious for one to state that the closer the initial particle position is to 

the channel wall, the faster the particles move to the channel wall.

The case of S=100, G =l, 0=2.5° is shown in the figure 5.2.1. The longest 

deposition distance is observed as 1.53, 5.66, 17.23, 19.11, 16.43, 16.27 for Q=10000, 

100, 1, 0.1, 0.001 and 0.00001 respectively, while the initial position Yo, that a particle 

entering the channel will have the longest deposition distance, is observed as 0, 0.01,0.23, 

0.66, 0.86 and 0.9. The Yo initial positions are close to the center of the channel for large 

Q/G (Q/G >100), and shift to the upper channel wall with decreasing Q. For a large Q/G 

the gravity effect on the particle is much smaller in comparison with the image force. The 

particles entering the convergent channel at the position near the center of the channel will 

encounter the image force for both the upper and lower walls with almost the same 

magnitude. For this reason particles near the center travel far downstream before they 

deposit on the channel wall. Theoretically, the particle with Yo=0 will not deposit on the 

wall before exiting the channel for the case of G=0. The larger image force Q will lead to a 

shorter deposition distance, however, maximum distance occurs at the Q/G=0.1. This is 

due to the effects of force balance, especially between gravity and image forces. When the 

image force becomes very small, i.e., QcO.001, their deposition distance are almost the 

same.
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The case of S=100, G=100, 0=2.5° indicates the results of gravity effect increment. 

It is shown on the Figure 5.2.2. The largest deposition distance is 1.17, 3.08, 2.39, 1.97,

1.96, 1.95 for Q=10000, 100, 1, 0.1, 0.001, and 0.00001, where the Yo is located at 

0.005, 0.5, 0.94, 0.96, 0.995, 0.998. Compared with Figure 5.2.1, the deposition distance 

is decreased with increasing gravity for G=1 to 100. It is also observed from the figures, 

the initial Yo positions shifted closer to the upper wall because of the rise of gravity force. 

The maximum deposition distance occurs at the Q/G=l. Being similar with Figure 5.2.1 

when Q/G <0.001, the curves are nearly overlapping in most segments

Figure 5.2.3 to Figure 5.2.6 are cases of half convergent channel angles of 5° and 

1.5°. They have similar tendency of deposition distance in changing various Q/G. For the 

case of S=100, G =l, 0=5.0°in Figure 5.2.3, the longest deposition distance is observed as

1.96, 4.61, 10.12, 10.75, 11.21, 11.36 for Q=10000, 100, 1,0.1,0.001 and 0.00001. The 

Yo is located at 0, 0.005, 0.2, 0.42, 0.58, 0.62. For the case of S=100, G =l, 0=7.5°, the 

longest deposition distance is 2.22, 4.2, 7.04, 7.5, 7.7 at Q=10000, 100, 1, 0.1, 0.001 and 

0.00001. The Yo is 0, 0.005, 0.12, 0.2, 0.24, 0.24. It is clear that the deposition distance 

will increase as the convergent angle decreases. In Figure 5.2.5, the dashed lines represent 

the deposition distance results of uniform flow. In this case, the uniform flow is used 

instead of the real developing flow in a convergent channel for solving the governing 

equations of particle movements. It is found that particles tend to travel farther than those 

of uniform flow, and only those near the walls of the developing flow have a shorter travel 

distance, but the difference is small, especially for smaller Q and G.

5.2.2 Particle Trajectory in Divergent Channel

The particles traveling through a divergent channel will vary from the cases of a 

convergent channel. In a convergent channel, the axial component of the image force will 

tend to push particle downstream, while the same component in a divergent channel will 

pull these particles backward. The larger the divergent angle, the stronger the backward
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force. In addition, back flow will occur in a divergent flow. Figure 5.2.7 to Figure 5.2.25 

depict the deposition distance of particles in divergent channels. The Yo axis also 

represents the dimensionless initial position of a particle entering the channel.

The cases of S=0.01, G=1 and S=0.01, G=100 at half divergent channel angle 5.0° 

are shown in Figure 5.2.7 and Figure 5.2.8. For Q=10000,100,1,0.1,0.001 and 0.00001, 

the longest deposition distances are 0.0095,0.12,1.76,3.91, 3.11, 3.1, and 0.0078,0.036, 

0.04, 0.031, 0.031, 0.03, respectively. Yo is located at 0, 0.01,0.52, 0.86, 0.95, 0.95 for 

G=l. Yo is 0.01, 0.5, 0.95, 0.985, 0.99, 0.99 for G=100. When Q decreases at a fixed S 

and G, the deposition distance increases until Q/G reaches to a value of Q/G=0.1 for both 

G=1 and G=100. The maximum longest deposition appears at Q/G=0.1. Considering the 

case of G=1 in Figure 5.2.8, the ratio of the longest deposition distances between 

Q=10000 and 100 is 12.6 and that of the ratio between Q=100 and Q=1 is 14.7. After 

Q/G is less than 0.1, the effect of image force is weakened, relatively. The ratio of longest 

deposition distance between Q=0.1 and 0.001 reduces to only 1.26, while the ratio 

between Q=0.001 and Q=0.00001 is almost unity in their deposition distance curves. For a 

much larger Q, i.g., Q=10000 or Q/G>=100, the image force have a dominant influence on 

the movement of particles, and the initial position Yo of the longest deposition distance is 

close to the center of the channel. As the Q/G decreases, the effects of gravity parameter 

will increase so that Yo will shift upward for a maximum deposition distance.

For the case of S=0.01, G=0.01 and 0=5.0°, the curves of deposition distance are 

truncated as shown in Figure 5.2.9. When both Q and G are small, the particles will travel 

farther downstream and exit the channel. But the tendency of curves will be similar with 

Figure 5.2.7 and Figure 5.2.8. Comparing Figures 5.2.7, 5.2.8, and 5.2.9 at Q =l, the ratio 

of the longest deposition distance is 9.43 between G=0.01 and 1, and is 44.0 between G=1 

and 100. In effect, the gravity force affects more than the image force in these cases and 

the deposition distance decreases drastically as the gravity parameter G is increased.
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Observing Figure 5.2.10 through Figure 5.2.15, they only have different inertia 

parameter S with the above group of Figures 5.2.7, 5.2.8 and 5.2.9. In the cases of S=l, 

G=1 of the Figure 5.2.11 and S=l, G=100 of the Figure 5.2.12, the longest deposition 

distances are 0.091, 0.91, 4.97, 9.91, 3.11, 3.09, and 0.076, 0.39, 0.26, 0.23, 0.205, 

0.205, respectively, at Q=10000, 100,1, 0.1, 0.001, 0.00001. The Yo appears at 0, 0.01, 

0.56, 0.86, 0.95, 0.95 for G =l, and is 0.01, 0.52,0.95, 0.985, 0.99, 0.99 for G=100. Both 

of the two cases have a maximum longest deposition distance at Q/G=l. The another 

group of figures with S=100 also indicates similar situations of the effects of gravity and 

image force to particles. Their maximum longest deposition distances occur at Q/G=l, 

too. Comparing the three group of figures with S=0.01, S= l, S=100 at 0=5.0°, it has been 

found that, the ratio of longest deposition distance in varying S at Q =l, G=1 is 7.5 

between S=0.01 and 1, and 12.4 between S=1 and 100, respectively. In effect, the inertia 

force affects less than the image force and gravity force. For all these cases, the maximum 

longest deposition distance keeps in the range of Q/G=0.1 to 1, and the deposition 

distance are nearly the same after Q/G<0.001.

From the figure group of Figures 5.2.19, 5.2.21, 5.2.22(0=2.5°), and Figures 

5.2.13, 5.2.15, 5.2.16(0=5.0°) to Figures 5.2.22, 5.2.23, 5.2.24(0=7.5°) at S=100, the 

influence of the divergent angle to the particle movements is compared. When the 

divergent angle of a channel increases, the particles will move farther downstream, but not 

a lot. Particularly, comparing Figures 5.2.7, 5.2.8, 5.2.9(0=5.O°) with Figures 5.2.16, 

5.2.17, 5.2.18(0=2.5°), at S=0.01, the increments due to the effect of increasing divergent 

angle are smaller than above S=100 cases. In general, the effect of increasing divergent 

angle to the particle movement is smaller in contrast with the convergent one[12]. The 

reversing axis component of the image force and velocity V may play important roles in 

compensating for the influence of divergent angle increments.

At 0=7.5°, the divergent channel flow has flow separation and a reverse flow layer 

appears after X=11.6 as shown on Figure 5.1.9 and Figure 5.1.11. Because the reverse
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flow layer is thin and the velocity is very small in comparison with main flow, its influence 

to deposition distance of particles is small. The situation is shown on Figure 5.2.25, in 

which the fluid flow starts a back flow after the dashed line. A slight reducing tendency of 

the deposition distance may be seen from these curves of the particle deposition distances 

in the figure.

5.3 Deposition Fractions of Particles

As described in Chapter 4, the main purpose of this investigation is to determine the 

deposition fractions of particles on the channel wall due to the viscous, inertia, gravity and 

electrostatic image forces at various channel angles. Results of this analysis on particle 

deposition are given in Figure 5.3.1 to Figure 5.3.75. For each of these figures, the 

deposition fraction of particles is shown at various axial displacement in a channel.

5.3.1 Deposition Due to the Combined Effects of Viscous Force, Inertia Force, 
Gravity Force and Image Force

Deposition of particles due to the combined effects of the viscous force, inertia force,

gravity force and image force is analyzed by varying inertia parameter S, gravity parameter

G and charge parameter Q in solving the governing equations of particle movements. The

viscous force is inversely proportional to the parameter S, G and Q. Therefore, the effect

from the viscosity of the fluid can also be determined.

Figure 5.3.1 to Figure 5.3.25 are results at constant half divergent channel angle of 

2.5°. The parameter S and G range from 0.01 to 100 for varying Q from 0.00001 to 

10000. It is obvious from these figures that the particle deposition increases with 

increasing image force Q at a fixed inertia parameter S and gravity parameter G. One 

example is shown on Figure 5.3.13 for 0=2.5°, S=1 and G=l. The various deposition 

fraction of particles at increasing Q is obtained for X displacement equaling to 0.5. It is 

100%, 98%, and 35% for Q=10000, 100, 1, and 17%, 5.9% and 4.8% for Q being 0.1,
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0.001, 0.00001. At X displacement equal to 1, the deposition for Q>100 reaches to 100% 

and 53%, 17%, 16% for Q=0.1, 0.001 and 0.00001. Comparing Figure 5.3.1 to Figure 

5.3.25, it is observed that when image forces acting on particles become quite large 

(Q>1000), the particles will deposit soon on the channel walls of the entrance region. 

When the image forces are less than Q=0.001, the influence of image forces is small and 

the difference between curve Q=0.0001 and curve Q=0.00001 tends to vary little. In these 

cases some particles will exit the channel. The influence due to varying image forces is 

important to the particle deposition fraction.

Figure 5.3.1 to Figure 5.3.5 is a group of curves with a range of G=0.01, 0.1, 1, 

10, 100 for a fixed value of S=0.01. At X=0.01 of the figures, the deposition fraction is 

92%, 92%, 92%, 92%, 93%, and 25%, 25%, 25%, 25%, 22%, and 1.5%, 1.55, 1.6%, 

2.6%, 56%, respectively, for Q=1000, 10, and 0.001. It is shown that the deposition will 

remain almost the same for any value of G(100 > G > 0.01) when Q is large, i.e., Q>1000. 

However, as Q becomes smaller, the deposition of particle will increase with increasing G. 

Another example is shown on Figure 5.3.11 to Figure 5.3.15. In Figure 5.3.11 (G=0.01), 

the deposition at X=0.1 is 93%, 27%, 1.1%, 0.12 for Q=1000, 10, 0.001 and 0.00001, 

respectively. As the gravity G increase to 1 as shown on Figure 5.3.13, the deposition 

becomes 93%, 27%, 1.12%, 0.25%, respectively. Then when G=100, the deposition is 

93%, 37% for Q=1000, 10, and 24%, 23% for Q=0.001, 0.00001. It is shown that the 

deposition remain the same for Q= 10000 and 1000, but deposition increases greatly for 

Q=0.00001 as G increases. These data reveals that when Q is large enough (Q>1000), the 

deposition will not be affected by the changing of gravity. In effect, when Q/G is greater 

or equal to 10, the gravity effect to deposition fraction can be neglected. On the other 

hand, the deposition increases with increasing gravity in a relatively small Q range(i.e. Q/G 

<10), while the charge effect to the deposition fraction can also be neglected when Q/G is 

less than 0.001. It can also be obtained from the other group of curves at a fixed S. For 

the case of small Q, the increment in gravity force will increase the deposition of the
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particles to the lower channel wall resulting in a higher deposition fraction. More particles 

will deposit on the lower channel wall even faster as the gravity effect becomes greater. 

Checking the group of curves in Figure 5.3.1 to 5.3.5 at a large X displacement X=1 

again, at Q=0.001 the deposition fraction is 7.8%, 9.9%, 51%, 100%, and 100% for 

G=0.01,0.1,1, 10, 100. The influence of the gravity force to deposition fraction gradually 

becomes stronger as the X displacement increases. When particles move into the entrance 

region of the channel, the image force from the upper channel wall will balance with the 

gravity effect due to a stronger image charge effect in a smaller channel width, especially 

for Q and G at the same order of magnitude. Therefore, the particles will not deposit on 

the wall until further downstream, where the image effect becomes weaker as the channel 

width increases.

Figure 5.3.1, 5.3.11 and 5.3.21 show the deposition fraction for inertia parameter 

S=0.01, 1 to 100 at G=0.01. The deposition at X equal to 0.1 for S=0.01 is 100%, 100%, 

38%, 0.76%, and 0.19%, for Q equal to 10000, 100, 1, 0.001 and 0.00001. The 

deposition is also found to be 100%, 56%, 12%, 0.14%, 0.12% for S=l, and 57%, 12%, 

2.5%, 0.11%, 0.01% for S=100. As X increases to 1, the depositions for the above Q 

parameter are found to be 100%, 100%, 79%, 0.4%, 0.22% for S=0.01, and 100%, 

100%, 53%, 0.4%, 0.14% for S=l, and 100%, 55%, 10%, 0.19%, 0.01% for S=100. It is 

revealed from these data that the deposition decreases with increasing S for all Q. When Q 

is greater than 0.001, the tendency is even obvious. The same phenomena are also 

observed for the cases of other G values. The deposition increases with decreasing inertia 

effect. Increments of inertia effect on the particles consequently increase the particle 

momentum in the axial direction. It actually helps the particles to prevent deposit on the 

channel wall at the entrance region and the particles will travel further downstream before 

they can be attracted to the channel wall by the image force. Therefore, it results in the 

decrease of particle deposition.
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5.3.2 Divergent Channel Angle Effects on the Particle Deposition Along the Axial 
Distance X

In all cases, the particle deposition fraction increases with increasing X, as shown in 

Figure 5.3.1 to Figure 5.3.75. From these figures it can be found that, when the gravity 

effect parameter G>10, almost all particles will deposit soon on the channel wall; while 

most of the particles will travel downstream and move out the channel exit at Q<1000 and 

G<0.01.

The channel angle effect to the deposition fraction is small in a divergent channel 

and has been discussed in section 5.3.2. When both Q and G are large, the deposition 

fraction is nearly the same for the half divergent channel angles of 2.5, 5.0,7.5 degree. But 

for very small Q and G, the clear deposition difference between various divergent channel 

angles is shown. Comparing Figure 5.3.1 (0=2.5°) with Figure 5.3.51 (0=7.5°), the 

deposition fraction at X=1 for Q=0.00001 and G=0.01 is 2.19% in Figure 5.3.1 and is 

1.52% in Figure 5.3.51. The effect of a larger divergent channel angle will decrease the 

deposition fraction of particles. This effect appears at those cases of a smaller G and Q. 

Moreover, the effect of the divergent channel angle will be enhanced as the inertia 

parameter increases as shown on Figure 5.3.21 and Figure 5.3.71 (S=100). Comparing the 

two figures, the difference of deposition fraction at Q=1 becomes clear. At X =l, G=0.01, 

Q=l, the deposition is 10.4% for 0=2.5° and is 7.1% for 0=7.5°. At a larger divergent 

channel angle and at larger inertia parameters, more particles with small Q and G will exit 

the channel.

5.3.3 Deposition Fraction at G=0

When the gravity force is perpendicular to the X-Y plane, it has no effect on the 

deposition of particle to the channel walls. This situation can be considered as G=0 in the 

analysis. Figure 5.3.76 to Figure 5.3.78 depict the deposition fraction of zero gravity 

effect at various Q and S. The deposition fractions at X=1 is 100%, 78%, 7% for Q=1000,
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1, 0.001 at S=0.01, and are 100%, 49%, 2.9% at S=1 and is 93%, 8.6%, 1.1% at S=100. 

The deposition fraction decreases much in comparison with those G* 0 cases. At G=0, the 

deposition o f particles will depend on Q and S, and at a smaller S and larger Q, a larger 

deposition fraction will be obtained.

5.4 Deposition Computation for Various Particle Size

In a practical situation, it is easy to compute the parameter S, G and Q from each particle 

size. Its deposition fraction can be found from the above mentioned deposition figures. A 

practical particle example is described below:

Consider a fluidic device which has an air fluid phase with the velocity of 30 cm/s, 

and the half width h0 equal to 0.1 cm. The particle specific gravity is assumed to be 1, and 

a charge electron density of 1 electron per 1.18 E -10 cm2, and p=1.8E-4 dyne sec/cm2, e0 

= 8.85434E-21 Coulomb2/dyne cm2. The particle size is 5 |im. Based on the formula in 

Chapter 4, we have:

q = 26629 electron 

m = 5.236xl0‘10 gram 

S = 0.093 

Q =  0.00032 

G = 0.01

In practice, the parameter S and G are proportional to a2, where a is the radius of a 

particle. The electrostatic charge on a particle may be considered as proportional to the 

surface area of the particle, so Q is proportional to a3. If a particle size is increased by a 

factor of 10, the S and G will be increased by a factor of 100; while Q will be the product 

by a factor of 1000. Considering the case of S=0.1, G=0.1, Q=0.001, 0=2.5° as shown in 

Figure 5.3.7, it is found that the deposition fraction for X=0.01, 0.1 and 1 is 0.58%, 2.8%,
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and 9.1%, respectively. When S=10, G=10 and Q=10 as shown in Figure 5.3.19, the 

deposition for X=0.01, 0.1 and 1 is 2.7%, 12%, and 58%, respectively.
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CHAPTER 6

CONCLUSIONS

The problems of aerosol particle deposition in a convergent or divergent channel flow 

have been investigated in the present study. An incompressible, two-dimensional gas-solid 

flow with a dilute suspension has been taken into consideration for the investigation.

A laminar fluid phase from developing to fully developed flow has been solved 

numerically for both convergent and divergent cases by the finite element method. A 

computational program has been developed by using FIDAP package to get a velocity 

profile of the fluid phase.

Much effort has been expended to identify the significance of various parameters in 

the complex phenomena of the gas-solid flow. Motion of small suspended particles in a 

channel flow under the combined effects of inertia, gravity, viscous force and electrostatic 

image force are studied using a Lagrangian simulation technique. A digital simulation 

procedure for studying deposition process of aerosol particle has been developed. 

Computations in varying the parameters have been made and based on the presented 

results, the following conclusion may be drawn:

The ranges of parameters are 0=2.5° to 7.5°, S=0.01 to 100, G=0.01 to 100, 

Q=0.00001 to 10000, Re=100, and L/ho=40.

(1) For either convergent or divergent channel flow with a flat inlet velocity 

profile a sharp gradient of velocity exists at those cross sections near channel inlet. As the 

axial length increases the velocity profile in each case tends to become parabolic. The 

larger the half angle of a channel, the longer is the length required for the flow to become 

fully developed.

(2) In a divergent channel, the numerical value of the velocity gradient at the wall 

decreases along the x-axis. The fluid flow will separate and lead to a reverse flow
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downstream. The separation will happen early when the Reynolds number of the fluid flow 

increases. For any fixed Reynolds number the separation distance is found to be shorter 

for the geometry with a larger half angle of channel. The speed of the reverse flow after 

the separation point is much smaller as compared with the main flow speed.

(3) Particle trajectory in a channel is dependent upon the combined influence such 

as gravity, image force and so on. The closer initial particle position to the channel wall 

may not mean faster moving to the channel wall. In convergent channel flow cases, the 

maximum distance occur at the Q/G=0.1 for a smaller G, and for a larger G the maximum 

distance occur at the Q/G=l. When the image force becomes very small, Q<0.001, those 

deposition distance curves are nearly overlapping in most segments. In particular, when 

the uniform flow is used instead of real laminar flow, the difference of deposition distance 

curves is small, especially for a smaller Q and G.

(4) Similar with convergent cases, the maximum largest deposition distance keeps 

in the range of Q/G=0.1 to 1 in divergent cases and their deposition distance are almost 

the same after Q/G<0.001. When the divergent angle of a channel increases, the particle 

suspension will move farther downstream but not a lot. The effect of increasing divergent 

angle to the particle movement is smaller in contrast with the convergent one. In 

divergent channels with small channel angles, though a reverse flow layer appears after the 

flow separation point, its influence to deposition distance of particles is small due to the

fact that the layer of separation is very small for the range of axial distance

studied(L/ho=30).

(5) The influence due to a varying image force is important to the particle

deposition fraction. When image forces acting on the particles become quite

large(Q>1000), the particles will deposit soon on the channel walls of the entrance region, 

and the deposition will remain almost the same for any value of G. When the image forces 

are less than Q=0.001, the influence of image forces is small. In effect, when Q/G is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



63

greater or equal to 10, the gravity effect to deposition can be neglected, while the charge 

effect to deposition fraction can also be neglected at Q/G<0.001.

(6) For the case of small Q, the increment in gravity force will increase the 

deposition of the particles to the lower channel wall. The more particles will deposit faster 

on the lower channel wall, as the gravity effect becomes greater. The influence of the 

gravity force to deposition fraction gradually becomes stronger as the X displacement 

increases. For Q and G at same order of magnitude, the particles will not deposit on the 

wall until it reaches further downstream where the image effect becomes weaker. At G=0, 

the deposition fraction decrease much in comparison with those G*0 cases.

(7) The deposition decreases with increasing S for all Q and G. When Q is greater 

than 0.001, the tendency is even more obvious.

(8) The particle deposition fraction increases with increasing X displacement. 

When the gravity effect parameter G>10, almost all particles will deposit soon on the 

channel wall, while most of particles will travel downstream and move out the channel exit 

at Q<1000 and G<0.01. The channel angle effect to the deposition fraction is small in a 

divergent channel. The effect of a larger divergent channel angle will decrease the 

deposition fractions at those cases with a smaller G and Q. Moreover, the effect of the 

divergent channel angle will be enhanced as the inertia parameter increases.

A detailed analysis on the deposition of gas-solid suspension in a convergent or 

divergent channel has been studied in this work. The following may be considered for a 

future investigation:

(1) Turbulent flow pattern should be investigated. Special attention should be paid 

to the impulse velocity components.

(2) Investigation may enlarge to a larger channel angle cases as well as an inclined 

channel.

(3) Some other effects such as lift force, boundary effect etc. may be included in a 

more detailed model.
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APPENDIX FIGURES IN CHAPTER 5
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Figure 5.1.1 Velocity Vector Plot of a Convergent Channel
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Figure 5.1.2 Streamline Contour Plot of a Convergent Channel
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Figure 5.1.3 Velocity Profile at X-direction in the Convergent Channel of 0 = 2.5°
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Figure 5.1.4 Velocity Profile at X-direction in the Convergent Channel of 0 = 5.0°
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Figure 5.1.5 Velocity Profile at X-direction in the Convergent Channel of 0 = 7.5°
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Figure 5.1.6 Velocity Profile at Y-direction in the Convergent Channel of 0 = 2.5°
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Figure 5.1.7 Velocity Profile at Y-direction in the Convergent Channel of 0 = 5.0°
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Figure 5.1.12 Velocity Profile at X-direction in the Divergent Channel of 0 = 2.5°
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Figure 5.1.13 Velocity Profile at X-direction in the Divergent Channel of 0 = 5.0°
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Figure 5.1.14 Velocity Profile at X-direction in the Divergent Channel of 0 = 7.5°
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Figure 5.1.15 Velocity Profile at Y-direction in the Divergent Channel of 0 = 2.5°
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Figure 5.1.16 Velocity Profile at Y-direction in the Divergent Channel of 0 = 5.0°

3.00 —i

2.00

V

1.00 —

0.00
0.0100.000 0.005 0.015 0.020 0.025

V
Figure 5.1.17 Velocity Profile at Y-direction in the Divergent Channel of 0 = 7.5°
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Figure 5.1.18 Flow Separation position in a Divergent Channel
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Figure 5.2.2 Particle Deposition Distance in a Convergent Channel at S=100, G=100 and
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Figure 5.2.3 Particle Deposition Distance in a Convergent Channel at S=100, G=1 and 
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Figure 5.2.4 Particle Deposition Distance in a Convergent Channel at S=100, G=100 and
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Figure 5.2.5 Particle Deposition Distance in a Convergent Channel at S=100, G=1 and 
0 =7.5°
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Figure 5.2.6 Particle Deposition Distance in a Convergent Channel at S=100, G=100 and 
0 =7.5°

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



79

1.00 ■0=0001

0.50 —

CM

°  0 00 -  0=100

•0.50 —

-1.00
10.00 25.000.00 5.00 15.00 20.00

Xd

Figure 5.2.7 Particle Deposition Distance in a Divergent Channel at S=0.01, G=0.01 and 
0 =5.0°

0.0.000011.00 —
0=0.1

0.50 —

£  0.00 -

-0.50 —

-1.00
2.500.00 0.50 1.00 1.50 2.00

Xd

Figure 5.2.8 Particle Deposition Distance in a Divergent Channel at S=0.01, G=1 and
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Figure 5.2.9 Particle Deposition Distance in a Divergent Channel at S=0.01, G= 100 and 
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Figure 5.2.10 Particle Deposition Distance in a Divergent Channel at S=l, G=0.01 and
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Figure 5.2.11 Particle Deposition Distance in a Divergent Channel at S=l, G=1 and 
0 =5.0°
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Figure 5.2.12 Particle Deposition Distance in a Divergent Channel at S= l, G=100and
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Figure 5.2.13 Particle Deposition Distance in a Divergent Channel at S=100, G=0.01 and 
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Figure 5.2.14 Particle Deposition Distance in a Divergent Channel at S=100, G=1 and 
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Figure 5.2.21 Particle Deposition Distance in a Divergent Channel at S=100, G=100 and 
0 =2.5°
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Figure 5.2.22 Particle Deposition Distance in a Divergent Channel at S=100, G=0.01 and 
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Figure 5.2.24 Particle Deposition Distance in a Divergent Channel at S=100, G=100 and 
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Figure 5.3.3 Deposition in a Divergent Channel for Various Q at S=0.01, G=1 and 
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Figure 5.3.39 Deposition in a Divergent Channel for Various Q at S=l, G=10 and
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Figure 5.3.67 Deposition in a Divergent Channel for Various Q at S=10, G=0.1 and 
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