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A B ST R A C T

O N  A D A P T IV E  C O D E D IV ISIO N  M U LTIPLE A C C E SS D E T E C T O R S

by
W enping Chen

Several variations of adaptive CDMA synchronous receiver schemes which 

can autom atically adjust to the system parameters, are studied in this disser

tation. Unlike their non-adaptive counterparts, these adaptive detectors require no 

knowledge of the received signals’ energies and have similar or better performance.

Minimum energy and decorrelating criterion are used to update the weights. 

Since weights are updated according to the changes of the detector’s outputs, hence 

rio training sequence is required. The convergences of some of the aforementioned 

adaptive detectors are also disscussed.

The detectors proposed in this dissertation are near-far resistant,thus rendering 

the high-precision power control unnecessary. Among them, the two-stage adaptive 

detector with a soft tentative decision is worth mentioning. It combines the 

advantages of two different two-stage detectors and approaches the performance 

of the optim um  detector, but with much less complexity.
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CH APTER 1

IN T R O D U C T IO N

Code Division M ultiple Access (CDMA) is a technique by which two or more infor

m ation source users share the same transmission medium and same frequency band, 

and yet the transmissions occur simultaneously. Based on the spread-spectrum  

technique for anti-jam  and m ultipath rejection applications, CDMA has been 

proposed to  support simultaneous digital communications among a large community 

of relatively uncoordinated users.

In CDMA, each user is assigned a different sequence called a  signature code. 

The signal to  be transm itted  is m odulated by this unique wide-band code sequence 

prior to transmission, spreading the spectrum  of the waveform. Several packets 

of information are transm itted simultaneously over a common channel using preas

signed signature code waveforms, which is unlike conventional narrow band cellular 

systems where signals from different users either transm it in different frequency 

bands (Frequency Division M ultiple Access, or FDMA) or different tim e units (Time 

Division M ultiple Access, or TDMA).

If one looks a t CDMA in either the  frequency or tim e dom ain, the CDMA 

signals appear to  be on top of each other. A particular user’s signal is “separated” in 

the receiver by correlating the received signal with the original signature code, which 

only emphasizes signal energy from the selected user. The response of the correlator 

to the signals from other users represents interference.

Since CDMA transm its signals in the same time and frequency band, its 

capacity is essentially lim ited by interference (unlike FDMA and TDM A, capacities 

of which are prim arily bandwidth limited). Any reduction in interference converts 

directly into an increase in its capacity. By utilizing the human voice activity and
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some other features, it has been claimed tha t the net improvement in capacity of 

CDMA over digital TDMA is on the order of 4 to 6 times [1, 2, 3], and over FDMA 

about 20 times [3].

The conventional m ethod to detect the CDMA signal is to treat the desired 

user as the only user presented and to treat the signal from the other users as noise. 

A conventional detector consists of a bank of matched filters, each one matched to 

the signature sequence of the particular user, thereby ignoring the multiple-access 

interference, or equivalently, ignoring the cross-correlations between the modulation 

sequences of diiferent users. The sampled output of each m atched filter contains the 

desired signal, the residual interference from all other users, and additive noise. This 

conventional detector is relatively simple to implement, but it is vulnerable to the 

near-far effect. That is, when strong interference is present, it is very difficult to 

dem odulate the weak signal. Stringent power control and/or low cross-correlation 

codes have been used to solve the problem. However, power control comes at the 

price of increased complexity of the system and low cross-correlation between a given 

num ber of signals can be achieved only at the expense of an increased bandwidth. It 

is not surprising tha t reliable performance from the conventional detector has been 

possible only for low bandwidth efficiencies [4].

Acknowledging the fact th a t multiuser interference can not be modeled as an 

additive white Gaussian process, in recent years, a lot of work has been done in 

defining a detector whose performance is superior to the performance of the conven

tional detector. In [5, 6, 7], an optim um  CDMA m ultiuser detector based on the 

Maximum-Likelihood (ML) sequence detector has been studied. The complexity 

of the ML detector grows exponentially with the number of users and thus it is 

im practical unless the number of the users is quite small. A class of sub-optimum 

detectors was studied in [8]-[14]. Among them  are detectors th a t use the decorrelating 

detector, which is based on the linear transformation of the sampled matched filters’
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outputs [10, 11]. The decorrelating decision-feedback detector presented in [12] 

utilizes the differences in received users’ energies, where the decisions of the stronger 

users are used to eliminate interference on weaker users. Another approach for sub

optim um  multiuser detectors with low complexity was proposed in [15,16], where in 

order to perform detection of the desired user, tentative decisions on information bits 

of all other users are made. The estim ate of the multiple access interference is then 

obtained and is subtracted from the desired signal. The performance of some of these 

sub-optim um  schemes is close to the performance of the optim um  detector. Partic

ularly when the energy of the interference increases, they become indistinguishable. 

However, prior estimation of the received signal energies is required for the detectors’ 

proper operation.

Some of the efforts to improve the performance of m ultiuser CDMA detectors 

were directed toward using conventional and novel adaptive algorithms for inter

ference cancellation and signal separation. For example, in [17] and [18], the one- 

stage m ultiuser CDMA detector was used in succession with linear transformation, 

decorrelation, tentative decision (hard limiter), followed by an adaptive interference 

canceler using the minimum energy criterion. Its error performance was studied 

and shown to be significantly be tter than the decorrelating detector. A convergence 

analysis of this adaptive detector can be found in [19]. Further improvement in 

performance, particularly a t a low interference-to-desired-signal ratio, was obtained 

when the tentative decision was obtained from a soft-limiter [20]. A synchronous 

CDMA m ultiuser detector using an algorithm called the “bootstrapped decorrelating 

algorithm ” was proposed in [21].

In this dissertation we propose several versions of synchronous adaptive sub

optim um  detector using two different adaptive algorithms. These adaptive detectors 

have potential of automatically adjusting to the time-varying channel and do not 

require the knowledge of the received signal energies and yet achieve similar or
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be tte r perform ance than  their non-adaptive counterparts w ith similar complexity. 

Their steady state  weights and error probabilities are evaluated. The convergence of 

the weight training is also studied. All the analytical results are confirmed by the 

simulations.

1.1 O u tlin e  o f th e  D isser ta tio n

The dissertation is organized as follows. Following this introduction, Chapter 2 will 

give a brief review of some of previous work. Among them  are the conventional 

detector, the optim um  detector, and the decorrelating detector. In Chapter 3, two 

adaptive algorithm s used in this dissertation, the minimum energy algorithm and the 

decorrelating algorithm  are studied. One-stage detectors with and w ithout tentative 

decision are introduced in Chapters 4 and 5. In Chapters 6 and 7, two-stage adaptive 

detectors are studied. In C hapter 8, a two-stage adaptive detector using the soft 

ten tative  decision is proposed. Finally, the conclusion is given in C hapter 9.



CH APTER 2

P R E V IO U S  W O R K

In this chapter, several types of synchronous CDMA detectors will be introduced 

and their error performance presented.

2.1 T h e  C o n v en tio n a l S ing le  U se r D e te c to r

The conventional single user approach to multiuser detection is to dem odulate each 

user’s signal as if it were the only one present. It consists of a bank of filters, each 

one m atched to the signature sequence of the particular user, as shown in Fig. 2.1.

r(t)

Matched
Filter

User K

Matched
Filter 

User 1

Matched
Filter

User 2

x /i)

t=T

X2(i)

t=T

x*(i)

t=T

_ r
bfi)

b l i )

F ig u re  2.1 Conventional Single User Detector

For the synchronous case, the received signal r(t) is expressed as:
Ii

r C0 =  ^ 2 ^ Z h ( i ) \ / a k S k(t -  iT)  +  n(t) ,  (2.1)
k=l  i

where bk(i) E {—1, +1} is the k -th  user’s da ta  b it in the i-tli tim e interval and n(t)  

is the additive, zero mean, white Gaussian noise with a two-sided energy spectral
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density of No/2.  The received energy of the &-th user signal, unknown to the receiver, 

is denoted as ak. The signature sequence sk(t), of the same duration T  as a data  bit, 

is known to  the receiver. The sampled outputs of the bank of m atched filters in the 

i-th  bit interval can be expressed as:

aj(i) =  7>Ab(i) +  n ( i ) (2.2)

For the sake of convenience the index * will be om itted elsewhere in the text if 

the synchronous case is discussed. Then Eq. (2.2) becomes:

x  — 'P A b  +  n

where:

X =  [XU X 2 , . . . ,X K}T

b =  [&i, b2, . . . ,  bn]

A  = d i a g [ y / a . . . ,  y/a^\ 

n  =  [n i , n2>. ■■,nK]r .

1 Pi2 ••• PlK
yy _  P21 1 • • • P2I<

. PK\ PK2 • • • 1 .

The ( k , j ) - th  element of the sym m etric cross-correlation m atrix  V  is defined

as:

f TPkj =  /  sk(t)sj(t)dt  k , j  e  ( 1 , 2 , . . . ,  K )  with pkk = 1.
Jo

The covariance m atrix of a zero mean Gaussian noise vector n  is:
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E { n n r } = — -T.

From expression (2.2), we can see th a t the output of each m atched filter 

contains not only the  desired signal, but also the interferences from the other users. 

Due to the  existence of interference, the error performance of the  conventional CDMA 

detector is determ ined by both the  signal-to-noise ratio (S N R k = akj N 0) and the 

am ount of interference. The expression of error probability of the conventional 

CDMA detector for the Ar-th user is given in Eq. (2.3):

(2-3>

where A k is a diagonal (K  — 1) x  (K  — 1) subm atrix of A  w ith its k-th  diagonal 

entry removed, p k is a  ( K  — 1) x 1 column vector obtained from 'P by deleting the 

element pkh, bk is a ( K  — 1) x 1 vector obtained from b by deleting the element bk.

1

0.1

13 0.01 Ok

0.001 

0.0001
-10 -8 -6 -4 -2 0 2 4 6 8

SNR2-SNR1

F igu re 2 .2  Probability of Error for User 1 (K  = 2, S N R i  =  8 dB, pi2 = 0.7)

Conventional detector —
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Fig. 2.2 is a simple, two-user error performance example of the conventional 

detector. The cross-correlation coefficient is taken to be 0.7. The S N R  of user one is 

set to 8 dB, while the S N R  of user two, relative to user one, varies from -10 to 8 dB. 

From this figure we notice that the stronger the interferer (user two) is, the worse 

the  perform ance of the desired user (user one). This is referred to as the near-far 

problem.

2.2 T h e  O p tim u m  M u lt iu s e r  D e te c to r

Fig. 2.3 shows an optim um  detector, proposed in [5], for the m ultiuser interference 

environm ent and it is shown to elim inate the near-far problem and provide a much 

improved performance.

xft)

t=T

fc=T

Matched
Filter

User 1

Matched
Filter

User 2

Matched
Filter

User K

Decision

System

F ig u re  2 .3 O ptim um  M ultiuser Detector

The optim um  detector consists of a bank of matched filters followed by a 

decision system  employing the maximum likelihood algorithm. Denote the  optim um  

decision on b° as:

6° =  [(.;, 6 ; , . . . ,  ij]

which maximizes the log-likelihood function [27, 28]. That is, choose b° such tha t

{2{ A b ° f x  -  (A b ° )TV { A b °)} , (2.4)
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is maximized. The maximum of (2.4) can be achieved by substituting 2K possible 

values of b° into it and comparing their results. The computation complexity grows 

exponentially with the number of users.

2 .3  T he Su b-op tim um  M u ltiu ser  D etectors

Several sub-optimum detectors which have much less computational complexity and 

slightly worse performance than the optim um  detector, but better performance than 

the conventional detector, are introduced in [7, 8, 9, 10, 11, 12, 15, 16]. Among 

them  are the decorrelating detector and the two-stage fixed weights detector.

2.3 .1  T he Synchronous D ecorrelating  D etec to r

The decorrelating detector is first mentioned in [7]. It consists of a a bank of matched 

filters and a decorrelator, as shown in Fig. 2.4.

Matched
Filter

User 1

\ x/ ‘) Z /i)
1

b / 0

t=T

Matched
Filter

User 2

-1 2h(i)
1

b2d)

r(0 t=T P
•

Matched
Filter

User A'

\  xaW Zjdi) _ W

t=T
_J

F ig u re  2 .4 Synchronous Decorrelating Detector

The decorrelator is actually a linear transformation using the inverse of the 

code cross-correlation m atrix.

The ou tput vector of the decorrelator is given by:
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z  = V  1x  = A b  + 7y 1 n  =  A b  -|- T n  — A h  +  £, (2.5)

where T  is the inverse of P ,  and £ =  T n .

From Eq. (2.5) we can see tha t the signals at the output of the decorrelator 

are fully decorrelated and resulted in signal separation.

Hence, the error probability of the decorrelator is given by:

F ’ k  =  Q  (^7) ’

where a^k is the standard deviation of noise £*.

Fig. 2.5 shows the error performance of the two-user decorrelator for S N R i  — 

8d B  and p12 =  0.7. The error performance of the conventional and single-user 

detector are also included for comparison.

1

0.1

•3 0.01 cu

0.001

0.0001

decorrelating detector —  ;
single user-detectb'r 

Conventional detector

-10 - 6 - 4 - 2  0
SNR2-SNR1 [dB]

F ig u re  2 .5 Probability of Error for User 1 (K  =  2, S N R i  = 8 dB, /?12 =  0.7)

It is interesting to compare the performance of the decorrelating detector and 

the conventional detector. The former is generally better than the latter, but this is
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not necessarily true when the interference is weak. This leaves some space for the 

soft decision which we will discuss in later chapters.

2 .3 .2  T w o-stage F ixed  W eight D etec to r

Another approach for suboptim um  multiuser detectors with low complexity was 

proposed in [15]. It consists of a bank of matched filters followed by a decorrelator, 

tentative hard decision and a multiple-access interference (MAI) canceler. In order 

to perform detection of the desired user, tentative decisions on information bits of 

all other users are m ade based on the outputs of the decorrelator. The estim ate of 

the m ultiple access interference is then obtained and is subtracted from the desired 

signal.

The output of the  detector is given by:

where

y = x  -  W Tb ,

'  0 w 12 . . . W\I<

w  =
W 2l 0 . . . W 2K

. WK1 WK2  • •  • 0

(2 .6)

and wjk =  Pjky/aj, for each j ,  k, j  ^  k. The error probability of the k-th  user for a 

A-user case can be expressed as:

— 2k ~1 ^
bk,bk

(2.7)

Fig. 2.6 plots the  error performance of the detector for a two-user case p\2 = 0.7 

and S N R \  — 8 dB with S N R 2 changed from —10 to  8 dB. The error probability of 

the decorrelator is also plotted for comparison.
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Non-adaptive —  
decorrelator......

0.1

0.01

0.001

0.0001
-10

SNR2-SNR1

F ig u re  2 .6 Error Probability of User 1 for K  = 2, p =  0.7 and S N R i  = 8 dB

The perform ance of this sub-optimum scheme is close to the performance of the 

optim um  detector, particularly when the energy of the interference increases, they 

become indistinguishable.



CH APTER 3

A D A P T IV E  C A N C E L E R S

In CDMA, several users’ signals overlap both in tim e and in frequency. Unlike 

the conventional detector, where the desired signal is detected as if it is the only 

user present and signals from other users are treated as noise, in the sub-optim um  

detectors proposed in this dissertation, we introduce an adaptive cancellation scheme. 

The cancellation scheme uses the estim ations of the interferences and deducts them  

from the input. Fig. 3.1 is a model of the m ultiuser canceler for the A-th user,

WU

K — 1

F ig u re  3 .1 Model of M ultiuser Canceler

where in the figure, Xk and yk are the input and output of the canceler of the  A-th 

user, respectively. Xk is usually obtained from the output of the m atched filter of the 

A-th user. Wjtk, ( j  =  1 , . . . ,  K ,  j  ^  A) is the weight from the j - th  user to  the  fc-th user, 

for a adaptive scheme the weights have to be updated by the adaptive algorithm , and 

f j  is the estim ate of the j - th  interference. The estim ates of the interferences have to 

be generated by the detector, unlike cases where training sequences are available.

W ithout loss of generality, we can consider the detector’s output for user one, 

2/ i , which is given by:

2/i =  x \ - w j f 1

13
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=  y / Z f o  +  (p i2 \/® 2 ^ 2  — ^ 21 / 2 ) +  ( P l 3 \ f 0 3 b 3 — W3i f 3 )

+  ••• +  {p\K\/^Kh< — wjci f a )  + ni,  (3.1)

where

f l  =  [ /2 ,  / 3 ,  • - - , / i c ] ^

W i  =  [w 2i , w 31, . . . , w k i ]T -

Now the design of an adaptive detector becomes solving the following two 

problems:

1. Where and how to get the estimation of the interference signals?

2. Which performance index to use in finding the weight matrix?

We will discuss the first problem in later chapters.

The most commonly used method for adaptation of weights is the steepest 

descent algorithm. The updating rule is expressed as:

w k(i +  1) =  w k(i) -  i / i V t vkE { f ( w k)}, (3.2)

where w k is the weight vector for the &-th user, and / ( )  is a cost function which is 

a function of w k.

Thus the steady state  of the weight vector for user k can be computed from:

V w kE { f ( w k)} = 0.

The troublesome of the Eq. (3.2) is the expectation operator. Although in 

practice we can substitu te the expectation with the time average, it will need some 

memory and thus it will increase the complexity of the system. An alternative of this
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is the stochastic gradient (SG) algorithm. The principle behind the SG algorithm  is 

to  ignore the expectation. The quantity which is left, while random, has an expected 

value equal to the desired gradient. Thus, it is an unbiased estim ate of the gradient 

[22]. A disadvantage of the SG algorithm compared to the time average is tha t in 

order to reduce the variation of steady state, a  smaller step size have to be used and 

hence it slows down the speed of convergence. Various methods can be used to speed 

the convergence, such as the varied step size m ethod which uses the large step size in 

the beginning to expedite the speed and uses the small step size for the steady state 

to  minimize the variation. In all the simulation examples given in this dissertation, 

the SG algorithm is used.

In this dissertation several versions of adaptive detectors using one of the 

steepest descent algorithms (Minimum Energy) and decorrelating algorithm are 

proposed. The steady sta te  performance of these two adaptive algorithms is studied. 

Their weight convergence issues are also discussed.

3.1 M inim um  E nergy A lgorith m

Minimum Energy is a steepest descent-based algorithm. The cost function of the 

minimum energy algorithm  is the energy of the output signal of the canceler. So it 

minimizes the ou tput signal energy of the canceler.

Let V(?/i (n )) denote the value of the gradient vector of output energy of user 

one with respect to its weight vector u?i(n) at tim e n. According to the m ethod of 

steepest descent, the updated value of the weight vector at tim e n + 1 is computed 

by using the simple recursive relation:

w i ( n  +  1) =  TOi(r>) - (3.3)
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where /i is a positive real-valued constant referred to as step size. By definition and 

using Eq. (3.1):

V(2/i2(n)) =

r  9y?(n) "l
dw2X(n)
dy${n)

dw3x (n) =

9j/f(n)
L dwK1 (n) J

-2jfi/2(n) 
-2y i/3(n)

. -2yif i<(n)

(3.4)

By substituting Eq. (3.4) into (3.3), we get:

u>j(n +  1) =  ti>i(n) +  /iEJ{yi(7i)/1(n)}. (3.5)

The steady state  weight vector can also be analytically computed from a system 

of (K -l) equations:

E { v ( y 2i)} = - 2 E { y 1f 1} = 0. (3.6)

To find the optim um  weights (minimum energy) by the way of the steepest descent 

algorithm, we proceed as follows:

1. We begin with an initial value Mq(0) for the weight vector corresponding to 

user one, which is chosen arbitrarily. The value m^O) provides an initial guess 

as to where the solution point may be located in the  output energy surface. 

Typically, «>i(0) is set to equal to the null vector.

2. Using this initial or present guess, we compute the gradient vector, which is 

defined as the  derivative of the output energy of user one with respect to its 

weight vector Wi(ra) a t tim e n (i.e., the n th  iteration). The gradient vector can 

be computed using 3.6 in the implementation.
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3. We com pute the next guess at the weight vector by making a  change in the 

initial or present guess in the direction opposite to that of the gradient vector.

4. Repeat the process from step 2.

3.1 .1  C on vergen ce Issue

In [19] the weight convergence of one steepest descent-type canceler has been studied. 

In this section, the  results of [19] are extended to other minimum energy schemes 

considered in this dissertation. The adaptive rule for the weights is given by:

« * ( i + i )  =

=  w k(i) +  / iE { x kf k} -  E { f kf l } w k 

= ( I -  » E { f kf Tk } ) w k(i) +  f iE { x kf k}. (3.7)

Since E { x kf l } =  E { f kf l } ) w ° k, where w% is the optim um  weight, Eq. (3.7) 

can be w ritten as:

w k(i +  1) =  (J -  n E { f kf l } ) w k(i) +  n E { f kf Tk } w 0k.

Define

c k(i) = w°k - w k(i). (3.8)

and we have:

c*(i +  l)  =  (I -  » E { f kf t })ck(i)

=  ( i - ^ { / 4/ n ) i+,c*(o)

=  ( I - » R t y + ' c k ( 0)

=  i l i + ,c ( (0), (3.9)
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where both  R k = E { f kf { }  and H k — I  — fiRk  are (K  — 1) x (K  — 1) symmetric 

m atrices. Define:

dmax — maxj{ejj} 

dmin — rnin,{e,-,}

and

^itkix — max i,j j c j j |.

where etJ- is the  (i, j ) - th  element of R k. Diagonal elements of H k range from (1 — 

Hdmax) to (1 -  fidmin), and off-diagonal elements range between {—fJ,omax, fJ-omax).

By using similar derivations as [19], it is easy to get th a t the the  necessary and 

sufficient conditions for the weights to achieve convergence and stability  are:

1. (1 fJ-dmin ) +  nomax(I< — 2) <  1, which leads to

[K  2)omax < dm{n.

This balances three elements of the system: the number of users th a t can 

access the system simultaneously, the S N R s , and the cross-correlation of their 

signature sequences.

2. (1 — fJ.dmax) — y.(K — 2)omax > —1, which leads to

2
(i <

dmax + ( K  — 2)Omax

This is the condition on learning ra te  fi for the system to achieve convergence 

and stability. W hen condition 1 is satisfied, it implies th a t fi can be any value 

between (0, — ).' dmax'rdmin

These two conditions are sufficient for the &-th signal to converge, i.e., the weights 

will converge to the same steady sta te  no m atter what their initial values are.
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3.2 D ecorrelatin g  A lgorithm

The decorrelating algorithm is also referred to as the bootstrap algorithm. The decor- 

relating algorithm  is capable of separating mixed signal sources [23]. The received 

signal of a CDMA receiver is a m ixture of the desired user and interferences. Since the 

signals from the desired user and from the interferences are statistically independent, 

we expect to blindly separate them  using the decorrelating algorithm.

Assume f ( x )  and g(x)  are two odd functions of x,  and f ( x ) ^  g{x). Then 

the procedure to find the weight m atrix  by the decorrelating algorithm is as follows 

[23, 29]:

1. Set initial weights, the step is similar to  step 1 of the minimum energy 

algorithm.

2. Com pute the correlations between /(y ,)  and for * =  1 ,2 , . . . ,  K .

3. Com pute the next guess a t the weight vector w ,• by making a change in the 

initial or present guess in a direction of the vector E { f ( y i ) g ( y i)}.

4. Repeat the procedure from step 2.

f ( x )  and g(x)  can be any odd functions. In this dissertation, we chose f ( x )  = x , 

and g(x) = sgn(x)  for the implementation reason since every digital detector has to 

perform sgn(-) to make the final decision.

The steady state weight m atrix  w  can be, in principle, obtained by analytically 

solving a system of K ( K  — 1) non-linear equations:

E{Vi*gn{Vi)} =  0, * =  1 , 2 , . . . , i f .  (3.10)

From the definition of yj, it is easy to see tha t tjj is a function of Wj. To find 

the solution of Eq. (3.10), numerical methods have to be used.
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For a reliable communication link, the error probability of the resulting output 

has to be very low. When the main contribution to the error is caused by the 

m ultiuser interference, we can make the following approximation1:

E{y>sgn(yj)} «  E{yibj}(l  -  2Pr{bj in error))

=  £{2JiM (l ~ 2 P e j )

or

E{yi*gn(yi)}  «  E{y ib i} ( I  -  2 P e,). (3.11)

where iPe,- is a (K  — 1){K — 1) diagonal m atrix with its (i,«‘)-th element is the error

probability of the z-th user, Pe*. So, in,- can be computed from:

E{Vi39n(Vi)} »  E{yib i} (I  - 2 P e i )

= E{(x i  -  f j w i ) b {( l  -  2P a ) }  =  0

E{xibi}  -  E { b i f  ] }wi. (3.12)

This approximation is equivalent to using training sequence, i.e., sgn (y {) =  6,.

3 .3  C o n v erg en ce  Issue

The adaptive rule for the weights is given by:

wjb(i +  l)  =  w k(i) + g E { y k(i)sgn{yk(i))}

= w k(i) +  f iE { x k(i )sgn(yk{i))} -  E { sg n {yk( i ) ) f l ( i ) } w k(i)

= ( I -  g E { s g n ( y k( i ) ) f k {i)})wk{i) +  f iE {x k{i)sgn{yk{i))}.(3.13)

1This approximation is due to Y. Bar-Ness
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By substitu ting (3.8) and (3.12) into the above equation, we have:

c k(i +  1) =  ( I  -  f iE{bk( i ) (I  -  2 P e i ) f 1 ( i ) } ) c k(i)

= ( I -  f iE{bk( i ) (I  -  2 P e i) f k (i )})i+' c k(0)

= ( I  — f i R k)i+1 ck(0)

= H i +1c k(0), (3.14)

where R k = E { b k{I  — 2P e , ) /*  (i)} and H k = I  — f i R k. The ( i , j ) th  element of R k 

is equal to E{bi(  1 — 2Pe,•)/_,-}.

Using the same technique as we used for the analysis of the  weight convergence 

of the m inim um  energy scheme, we get the necessary and sufficient condition of 

convergence:

( K  2)omo:r dmim

and
 2________
dmax +  ( K  -  2) Omax

Note th a t this is only true when the approximation we made is sufficiently 

accurate. In cases where the  approximation is not good, the analysis of the 

convergence could be very complicated.



CHAPTER 4

O N E -ST A G E  A D A P T IV E  D E T E C T O R S

In previous chapter, we raised the question of where and how to get the estimations 

of the interference.

The output of the m atched filter has been used by the conventional detector to 

detect its information, since it contains the information of the user. For the one-stage 

detector discussed in this chapter, we take the estim ation signals from the output 

of the m atched filters. To detect the A;-th user, the estim ation signals for the other 

users are weighted and deducted from the  output of the matched filter of the fc-th 

user. A detector consisting of a  bank of matched filters and an adaptive canceler is 

given in Fig. 4.1.

t=T Adaptive canceller

W  X

l=T

controller 1

F ig u re  4.1 One-stage Adaptive Detector

The canceler’s vector output is given by:

y  = { I -  W r )x  =  V V A b  +  V n ,  (4.1)

22



where TV is the weight m atrix  defined in previous chapter, except th a t 

adaptively updated.

V  — [I — W T] =

' 1 
- W \ 2

- W 2l  . 

1
. ~ W K1  '
• - W K 2

—

1 
----

*

. - W i K ~ W 2 K  • 1 .  .

where is a row vector. Thus:

Ijt1) V^i&i

V =
V(2)

[p ^ p ^  • • • p ^ ] \/®2̂ 2

.  v iK ) . .  y/aK^K .

where p ^  is the i-th  column of P ,  and

« = [{i,&,•••,M T = Vn,

with

£ (& ) =  o 

= *1

=  E { v (k)n n T( v (k))T }

The output for the fc-th user is expressed as:
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where w k is the A-th column vector of W  with the element wkk deleted, and 

Xk is the vector obtained from x  by deleting the element x k- 

ijk can also be expressed as:

y* =  i>w £ p (V ^ . + a .  (4.7)
1 = 1

The error probability for the Ar-th user is evaluated as follows:

=  E bk,bkP r {bk in error|6fc,6 fc}

= bk

K
Pr{£k > v {k)p {k)y/ajb -  v {k) p^s /a ib i}

P r { b k}

i=1

K
+  P r { 6  <  - v ^ p ^ ^ T k -  v W  Y ,

1 =  1
•Vfe

= > «WpWV51f— (fc)E p Ŵ }

' v ^ p ^ y / a T k - v ^ T J L  pMy/aibi}

6,. V

4.1 U sin g  M inim um  E n ergy  A lgorithm

From Eq. (4.6), the output for the A-th user can be expressed as:

yk = x k -  w kTx k.

Using the m inim um  energy criterion, the steady state  values of the weights

d
dw kaffecting the A-th ou tpu t are found from g ^ j -E { y l }  =  0 and are evaluated as:

^ - E { y l )  =  0 =  J L - E { { x k -  w l x k){xk -  w l x k)T}
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=  ■^—E { x l - 2 x kx l w k - \ -w lxkx l w k} 
d w k

=  - 2 E { x kx k} +  2 E { x kx k } w k, (4.8)

tlie steady state  values of the weights affecting the &-th output as:

w k =  [E {x kx l } ^  1 E { x kx k}, (4.9)

where the dia.gonal and off-diagonal elements of E { x kx%} are found as:

E { x 2}  =  cii +  p% aj  -|- a 2 (4.10)
3 =  1

a n d

E  {x{Xj} — Pijifii 4" @,j 4" O’ ) 4" Pim Pjn \ J \/On (4-fl)
m ,n

respectively.

For the two-user case, the weights of user one and user two can be computed as:

W21 =

WU  =

P n ( a i  +  q 2 +  o'2) 

«2  +  p \ 2o \  +  cr2

Puj^ i  +  «2 4- o'2) 
4  Pl202 4- o-2

(4.12)

(4.13)

4.1 .1  N u m erica l E xam ples

Two numerical examples are given in Figs. 4.2 and 4.3. These two figures show the 

error probabilities for a two-user system with the signal-to-noise ratio of user one 

equal to 8 dB, and the signal-to-noise ratio of user two changing from -2 to 16 dB.
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1
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0.01

0.001

0.0001
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SNR2-SNR1

F ig u re  4.2 Error Probability of User 1, for K  = 2, p =  0.7, S N R i  =  8 dB

1
Pel —  
P e 2 ......

0.1

0.01

0.001

0.0001
-10 8 6 4 -2 0 

SNR2-SNR1
2 4 6 8

F ig u re  4 .3  Error Probability of User 1, for K  = 2, p = 1/7, 5 7 V =  8 dB
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In Fig. 4.2, the correlation between two users1 signature codes is equal to 0.7. 

In Fig. 4.3, the correlation is equal to 1/7. The results can be explained by the 

behavior of the weights. From Eqs. (4.12) and (4.13), if p \ 2  is large, when a\ > >  a2, 

W12 ~  Pi 2 and w 2\ 1/ p  12* W hen 0 ,2 > >  oi, W\ 2  w I /P 12 and io2i ^  Pvi- Because

of the  result of the weights, the performance of the user with large input S N R  is 

worse than  the one with smaller one. If pi 2 is small, W12 & Pi2(l +  «2/®i) and 

u’21 ~  ^12(1 +  01/ 02)'

4.2 U sing D ecorrelatin g  A lgorithm

Using the decorrelating criterion,

E{yksgn(yp)} = 0

we get:

k , p = l , 2 , . . . , K , k ^ p

sgn(yp)

(4.14)

The first term  of the above equation yields:

£  j sgn(yp) j
=  v W ^ p M y / a i b i  sgn ^ (p) ^  J
=  Efj y/albi P r i .£p > - u (p) p (l)v/o76,|6

I 1=1 I ;=i

-  P r { { p < - v W j 2 p W ^ T ibi\b
>=1

and the second term  is,
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E{£ksgn(yp)} = E  j& s ^ n  ^ (p)S  P (,)\/a7k  +  f P

/  roo r co 

b \J -ooJ^o

-  f f P6=/̂p(6>£p)d£fcd£p),J —oo J —oo /

where /&.£p(6t> £P) denotes the Gaussian density function, and p^y/oifa.

Therefore in order to get Wkp { k , p =  1 ,2 , . . . ,  K, k ^  p), a system of K ( I {  — 1) 

non-linear equations is to be solved.

A two-user example is given in Appendix A.

An easier way to solve the K ( K  — 1) non-linear equations is to use the approx

im ation in Eq. (3.11) to linearize them:

E{yisgn(yj)}  fa E { y ibj )

~  (P'j ^ ji)  ~  d

So, finally we will get:

wji = Pij ^  every i, j ,  i ^  j

4 .2 .1  N u m erica l E xam ple

Two examples are shown in Figs. 4.4 and 4.5. Fig. 4.4 is a two-user example. The 

correlation of the two users’ signature code is equal to 0.7, and the energy of user 

one is set to  8 dB. Fig. 4.5 is a three-user example. A Gold code of length 7 is 

used in this example. Again user one’s energy is 8 dB. The error performance of its 

non-adaptive counterpart — decorrelator is also plotted for comparison. One can 

see th a t when the interference-to-signal ratio is small, the proposed scheme works
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better than the decorrelator. W hen the interference to signal ratio is large, the two 

schemes have the same performance.

1
adaptive detector —  

decoirelator......

0.1

0.01

0.001

0.0001
-10 8 -6 •4 ■2 0 2 4 6 8

SNR2-SNR1 [dB]

F ig u re  4 .4  Error Probability of User 1, for K  =  2, p =  0.7, S N R \  — 8 dB

1
adaptive —  

decoirelator......

0.1

0.01

0.001

0.0001
-10 ■8 6 -4 -2 0 

SNRi-SNRl [dB] i= 2 ,3
2 4 6 8

F ig u re  4.5 Error Probability of User 1, for K  =  3, S N R x  =  8 dB



CH APTER 5

O N E -S T A G E  A D A P T IV E  D E T E C T O R  W IT H  H A R D  D E C IS IO N

The outputs of the  m atched filter have been used as the estim ation signals of the 

interferences in previous chapter. For the one-stage detector discussed in this chapter, 

we will still take the  estim ation of the interference signals from the output of the 

matched filters. B ut tentative decisions are m ade to these signals prior to sending 

to  the canceler. To detect the A:-th user, the estimations of the interference are 

weighted and deducted from the output of the m atched filter of the  ft-th user. A 

detector consisting of a bank of m atched filters, a hard-lim iter, and an adaptive 

canceler is given in Fig. 5.1.

t=T
s/T-t)

Adaptive canceller

r(t)
)  wsgn(z)

l=T

Weight L 
controller •

F ig u re  5.1 One-stage D etector with Hard Decision 

The canceler’s vector output is given by:

y  -  x  -  W Tb , (5.1)

30
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where b is a column vector whose i-th element is the decision output of the i-th 

m atched filter. The output for the &-th user can be expressed as:

K
Vk =  Xk ~  w kTbk = y/a^bk + bi ~  wikbi) +  n k. (5.2)

t=lijk

The error probability for the &-th user is evaluated as follows:

1 K
P e k =  i: {Pr{nk >  \ / a k - Y i P i k V ^ i ^  ~  wikk)\bk =  -1 }

^  i=li* k
K

+  P r { n k < -y/ctk -  ~  wikbi)\bk =  1}).
t=si
i*k

Since bk is a function of Gaussian noise vector n k and E{riin3} =  pij. The P e k 

can be computed by the n-dimensional Gaussian integrations. A two-user example 

is given in Appendix B.

5.1 U sin g  M inim um  E nergy A lgorith m

Using the minimum energy criterion, the steady state  values of the weights affecting 

the k-th  output are found from g^ j -E {yk) =  0, and are evaluated as:

9 -E {v l}  =  Q = J - — E {{x k - w ' l b k){xk - w l b k)'r }d w k ' d w k
0  * T  * *T

=  Q^-k p {x l - ^ x kbk w k + w l b kbkw k}

= - 2 E { x kbk) +  2E{bkbTk } w k, (5.3)
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the steady s ta te  values of the weights affecting the Ar-th output as:

J5{6fc6^}j E { x kbk},w k (5 .4 )

where E{bkbk } and E{xkbk]  are com puted in Appendix B, Eqs. (B.3), (B.4), and 

(B.S).

For the two-user case, the weights of the user one and two are given by:

w 2l  —  y f f t \ E  { } +  />12\/oi '̂{^2^2} + ^{^ 1 2̂ }

W \ 2  ~  +  P \ 2 \ / & 2 E  \ b \ b \  } +  E { n 2 b \ } .

(5.5)

(5.6)

5.1 .1  N u m erica l E xam p les

<u
Ph

1
P el —  

 Pe2

0.1

0.01

0.001

0.0001
-10 ■8 6 -4 0-2

SNR2-SNR1 [dB]
2 4 6 8

F ig u re  5 .2  Error Probability of User 1, S N R X =  8 dB, p =  0.7, I< = 2

A simulation exam ple of the detector is given in Fig. 5.2. The correlation of the 

two users’ signature code is equal to 0.7, and the SNB.  of user one is set to 8 dB.
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The S N R ?  changes from -2 to 16 dB. As S N R 2 increases, the estim ation of user 

two becomes more accurate and the weight u>2i becomes close to p (Eq. 5.5). The 

performance of user one reaches the single user bound. The performance of user 

two becomes worse as its energy increases, since the estim ation of user one becomes 

worse, and the weight W12 approaches y/a? (Eq. (5.6)).

5.2 U sin g  D ecorrelating  A lgorith m

Using the decorrelating criterion,

E { V k s g n { y k) }  =  0, (5.7)

where each element of E{ y ksgn ( yk)}, E{ijksgn(yj)},  for j  = 1 , 2 /  k, can 

be com puted from:

i<
E{yksgn(yj)}  -  E{(y/ai;bk +  ^ (p iks /a lb i  -  wikbi) +  n k)sgn(yj)}

; = ii*k
K

=  E{y/a^bksgn{yj)} +  E{sgn{yj)  J ]  piky/aik}
i=1 ilk

K
-  E { s g n ( y j ) J 2 wikb] +  E { n ksgn(yj)}.  (5.8)

isli?k

Now calculating the weight m atrix becomes solving Eq. (5.8). Note th a t yj 

is a function of bj, bj bj, and nj.  Since bj is also a function of rij, yj is actually 

a function of n  and 6. Eq. (5.8) can only be solved using a numerical m ethod. A 

two-user system example is given in Appendix B.



5.2 .1  S im u la tio n  E x a m p le

A simulation example of K  =  2, SNR.\  =  8 dB and p = 0.7 is given in Fig. 5.3. 

the interference energy increases, both users’ error probabilities approach 0.5.

1
Pel —

0.1

0.01

0.001

0.0001
-10 8 6 •4 ■2 0 2 4 6 8

SNR2-SNR1 [dB]

F ig u re  5 .3  Error Probability of User 1 for K  =  2, S N R i  =  8 dB and /?i2 =  0.



CHAPTER 6

T W O -S T A G E  A D A P T IV E  D E T E C T O R S

In this chapter, a two-stage adaptive detector will be introduced. It consists of a  bank 

of matched filters, followed by a decorrelator and a  canceler. The estimations to the 

interference are obtained from the output of the decorrelator. The estim ation of the 

interferences are weighted and subtracted from the output of the matched filter of 

the desired user. The study of this scheme is im portant toward better understanding 

of the scheme which will be introduced in Chapter 8. The structure of this detector 

is shown in Fig. 6.1.

t=T

Adaptive cancellerDecoirelator

r(t)
-) W

t=T

Weight 
controller 1

F ig u re  6.1 Two-stage Adaptive Detector 

The output of the detector can be expressed as:

y  = X  -  W TZ.

35
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The ou tput for the &-th user can be expressed as:

K
Vk —  -Ek W/ e Z k  — y/dkbk ^  ,{Pik ^ j'A :) \/dib{ -f* T}ki (®‘-0

i=sli?h

where z k is the  vector obtained from z  by deleting the element zk, and rjk is the &-th 

user’s noise a t the ou tput of the detector:

K

t]k = n k ~ Y l  Wik£i-
i=li*k

The error probability of the fc-th user can be evaluated as follows:

P*k =  p bk,bkP r { y ^ n error|6fc,6fc}

=  | £  
2 bk

K
Pr{r)k > yfak -  Y^iPik ~  w ik)y/aibi}

*s=l

+  Pr{ijk < -y/aTk -  Y^(Pik ~  wik)y/albi}
1 =  1i*k

P r { b k}

2 Kz t Z Q
y / d ' k  5Z»=i (pifc k ) y / d l b i
 _______________

\ 'Vk

where <rnk is the  standard deviation of the Gaussian noise T)k\

<  = E { 4 }
K

i=ii*k
K I<

= ° 2 + Z  w l a l  -  Z  wikWjkE { ^ j } .
i-\i^k i,i= 1

«V>**
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£ =  r «  is defined in Eq. (2.5).

E { £ f }  = E { r n n Tr T} =  Ter2. (6.2)

So,

K  Ii

= ° 2 + Y ^  Wik~fiiV2 ~  WikWjk7ij<72
■'=1 i,j= 1i*k i ^ k

6.1 U sin g  M inim um  E nergy A lgorithm

Using the minimum energy criterion, the adaptive rule for the weights is given by:

w k ^ w k -  V - Q ^ E { y l } .

The steady state  values of the weights affecting the &-th output are found from 

g ^ E { y \ )  =  0, and are evaluated as:

- ^ - E { ijI } = 0 = E{ (xk - w Tk z k)(xk - w Tk z k)T}
Q

-E {x2k -  2 xkz kw k +  w l z kz l w k}
d w k

=  - 2 E { x kz k) + 2 E { z kz l } w k. (6.3)

It is easy to show that:

E { x kz k) =  E  { [y/okbk +  p i A kbk +  7 .̂] z k}



=  E { z k[ p l A kbk]T} +  E { n kz k} 

=  E { A kbkb l A l } p k + 0,

38

(6.4)

the steady state  values of the weights affecting the A;-th output as:

w k = [E {zkz 7k }] 1 A kA kp k, (6.5)

where the diagonal and off-diagonal elements of E { z kz k} are computed as:

E { z f }  =  E { ( y / a i b i  +  £ ; )2}  =  «t' +  o-|., (6 -6 )

and

E{ziZ j)  = E{(y/Eibi 4- Zi)E{(y/ajbj + &) = =  E { ^ j }  = 7y<r2, (6.7)

respectively.

6 .1 .1  N u m erica l E xam ples

A two-user example is given in Fig. 6.2. The cross-correlation coefficient is taken to 

be 0.7. The S N R  of user one is set to 8 dB, while the S N R  of user two, relative to 

user one, varies from -10 to  8 dB. For comparison, the performance of the  decorrelator 

is also included.

From this figure, one will notice th a t the error performance of this adaptive 

scheme is be tter than  the decorrelator when the interference is weaker. As the energy 

of interference increases, its performance approaches that of decorrelator.



39

0.1

0.01

Oh

0.001 -

0.0001

1 1 1 1 1 F 1 1 •

adaptive detector--o- ■

r

decorrelator..........

.......»----

c '

i i i i i _ j . i i
-10 -8 -6 - 4 - 2  0 2

SNR2-SNR1 [dB]
4  6 8

F ig u re  6 .2  Error Probability of User 1 for K  — 2, p — 0.7 and S N R \  =  8 dB

6.2  U sing  D e c o rre la tin g  A lg o rith m

From Eq. (6.1),

K
y k = x k -  w l z k = s fa kh  ~  X X Pi* ~  wik)Vaibi + Vk- (6.8)

i=liylk

Using the decorrelating criterion, we have:

E { y k sgn{yk)} =  0 k = l , 2 , . . . , K . (6.9)

In order to compute i d ’s , K ( K  — 1) nonlinear equations have to be solved. For 

the case of K  = 2, we have to solve the following two equations:

f £{»/i sgn{y2)} =  0 
1 E { y 2sgn(yl )} = 0
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These are two similar equations. We take the first one as an example.

E{Vi sgn(y2)} (6.10)

=  E{(y/a[bi  +  -  w2iz2 +  n 1)sgn(^/a^b2 + P n y /a ih  -  wl2zx +  n 2)}

=  E { { ^ / ^ b 1 + p 12^/<hb2)sgn(^/aib2 + pi2\faib1 - w l2zl +ri2)} (6.11)

-  E { w 2\Z2 s gn{y /a ib2 +  Pi 2 y/a[b1 -  w 12z  1 +  n2) ( 6 .1 2 )

+  E{nisgn(y/a^b2 +  p u y / a i h  -  w12zi +  n2)}, (6.13)

where:

(6.11) =  + Pi2 y/a^b2 )){Pr{y/a^b2 + p ^ y / a i h  -  w i2zi  +  n 2 >  0}

-  Pr{y/a^b2 +  p\2 \ /a ibx -  wn zi + n2 <  0}),

after averaging over bx and b2, finally we get:

(6.11) = p v l ^ 2  + (V5T -  P 1 2 s/ ^ ) Q  ( {p -  - W l 2 {  lM >^V ay/1 -  w\2p\2 + w\2 )
+  ( y s r -  f t w S M  ,V ay/l - W 2l2P212 + W12 /

and

(6.12) =  E { z 2sgn(y /a i  + puy/aibi  -  w 2z x +  «i)}

=  E{(  1 —  Pi2)'\/®2^2^5fw(-\/®2 +  P\1\fE\b\ — W 2Z\  +  ^ 1 ) }

+  E {(n2 - P i 2n i ) s g n (^ /a ^ + p V2y / ^ b i - w 2z1 + n i ) }  (6.14)
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(6.13) =  E{n\sgn{y /a i  +  P\2y/aiW — w2Zi +  nx)}. (6.15)

Eq. (6.14) and (6.15) involve numerical integration. For the num ber of users 

equal to K , we have to solve a family of K ( K  — 1) non-linear equations, which is 

very hard to do even with the aid of the computer. From the numerical examples 

shown in the next sub-section, we will find th a t the error probability of this scheme 

is relatively low with a reasonable value of SNR, so we can use the approximation 

derived in Eq. (3.11):

E { y kbk} w E { y kbk} ( I  - 2 P e k) (6.16)

Substituting (6.16) into (6.9) and (6.1), we get:

E { y kBgn(yfc)} ta E { ( x k -  w kTz k)bk}

= E { x kbk) +  E { w kTz kbk}

=  ~Pk +  w kT-

So finally, we get:

w kT = p k. (6.17)

A two-user exam ple is given in Fig. 6.3. Fi'om this figure, we can see th a t the 

performance of the detector is close to the performance of the decorrelator. This is 

because the decorrelating criterion is used to separate the uncorrelated signals. When 

the signals at the output of the decorrelator are separated already, the decorrelating



42

criterion does not help much since we can show that two stages of the decorrelator 

are equivalent to one stage of it:

z  =  p~xx  

y  =  x  — w z  H- n ,

where the diagonal elements of the w  are equal to zero and the ( i ,j ) - th  element is 

equal to />,j if the second stage is also a decorrelator (or the weights of the second 

stage converge to the weights of the decorrelator).

Then we have:

W  = V -  I ,

and

y  =  x  — W z  =  x  — ( V  — I ) V ~ lx  

-- x  — x  +  V ~ lx  

=  z .

6 .2 .1  N u m erica l E xam p les

A numerical example for the two-user system is shown in Fig. 6.3. The signal-to- 

noise ratio  of user one is equal to 8 dB, and user two is changing from -2 to 16 

dB. T he error probability of the decorrelator is also included. We can see th a t the 

performance of the proposed adaptive detector is very close to the performance of 

the decorrelator. This is explained in the last sub-section.
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CHAPTER 7

T W O -S T A G E  A D A P T IV E  D E T E C T O R  W IT H  T E N T A T IV E
D E C IS IO N

The synchronous CDMA receiver considered here consists of a conventional detector, 

a decorrelator, a hard lim iter and a canceler, as depicted in Fig. 7.1.

t=T

Dccorrclator

r(t)

t=T

Weight *■ 
controller l

sgn(z)

F ig u re  7.1 Two-stage Adaptive Detector with Tentative Decision 

In this section, an adaptive sub-optimum detector is proposed and analyzed.
A r A A A 1 T

Let b = |6i, &2, . . . ,  6/cl be the decision output of the decorrelator defined as:

A
b =  sgn(z).

Then the canceler’s output is given by:

y  = x  — W Tb. (7.1)

The output for the Ar-th user can be expressed as:

44



45

Vk — x k — WkTb k.

The output error probability for the A:-th user is evaluated as follows.

Pek =  E b ^  ^ Pr{bk in e rro r|ifc, bk, bk}
1 r

=  2 5 3  [P r {n k > y/aic ~  bk A kp k +  w j bk] 
bk,bk

+  P r { n k < - y / c ^ k - b Tk A kp k + w l b k} Y  

P r { b k\bk} P r { b k}.

Since P r { b k} =  and n k is a zero mean Gaussian random variable, we

can write:

Pek = 2_a XJ [Pr{nk > y/aZ -  b l A kp k +  w l b k) 
bk,bk

+  P r { n k > y ja i  +  b%Akp k -  w l b k}] P r { b k \bk}. (7.2)

Also

P r { b k \bk} = P r{ sg n (x/a761 + 6  sgnCVafclitifc-i

sgn(y/ak+ibk+i +  ^fc+i),. . . ,  sgn{y/a^bK +  £/r)}

=  P r { 6 ^ i  >  —v 'a i M i ,  • • •, h - i t k - i  >

— yjak- \b k- ib k- i ,  bk+i£k+i >  —y/ak+ibk+ibk+1,

• • • , h<0< > yfttKbj{bi<}



46

=  Pr{bi£i  <  V ST W i,. • • i h - i £ k - i  < y / a k - i h - i h - i ,
A A -A A

fyt+iffc+i <  v/a fc+i^fc+i^*+ii • • • ■> 1>k £k  < y/aKbtcbx}

= P r { - b k\ - b k}. (7.3)

Applying the result of (7.3) to the second term  in (7.2) enables splitting the 

la tte r into two equal term s. Therefore,

Pe* = §77^7 53  [P r {nk > ~  bTk A kPk +  w l b k}] P r { b k \bk}. (7.4)
bk,bk

Substituting (7.1) into (7.4), we finally obtain:

P r m  (7.5)
bk,bk v y/N ° / 2 /

where Pr{6fc|f>^.} is the integral of the  ( K  — 1) variate Gaussian density function.

7 .1  U sin g  M in im um  E nergy A lgorithm

Using the m inim um  energy criterion, - g ^ E { y k} — 0, the steady sta te  values of the 

weights affecting the  fc-th output are:

w k - E{bkbk } A kE { b kbk } p k, (7.6)

» ~ T «T
where the com putation of E { b kbk } and E { b kbk } can be found in Appendix C.

7 .1 .1  N u m erica l E xam p les

Two sets of num erical examples are given in the following figures. For comparison 

purposes, the error performance of the corresponding fixed-weights detector in [15]
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(in which the weights are set, based on the knowledge of the received signals’ energies, 

to  wji = pijy/aj),  and those of the  decorrelating detector, are included.

The first example depicted in Fig. 7.2 is a two-user case. The cross-correlation 

coefficient is taken to be 0.7. The S N R  of user one is set to  8 dB, while the S N R  

of user two, relative to user one, varies from -10 to 8 dB.

adaptive detector  :
non-adaptive detector .......
decorrelating detector

0.1

0.01

0.001

0.0001
-10 8 6 -4 -2 0 2 4 6 8

SNR2-SNR1

F ig u re  7 .2 Error Probability of User 1 for K  =  2, p = 0.7 and S N R \  — 8 dB
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F ig u re  7 .3 Gold Sequences of Length 7
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In the second set of examples, Gold sequences (Fig. 7.3) of length seven are 

chosen for signature waveforms. The cross-correlation m atrix "P of the given Gold 

sequences is:

7 - 1 3 3 3
- 1 7 - 1 3 - 1

3 - 1 7 - 1 - 1

CO 3 - 1 7 - 1

3 - 1 - 1 - 1 7

The two-user case with Gold sequences is shown in Fig. 7.4. As expected in this 

low bandwidth efficiency scenario (pi2 = —1/7), the decorrelating detector performs 

as well as the other two schemes. By adding an additional user, as shown in Fig. 

7.5, the decorrelating detector begins to exhibit its inadequacy. The adaptive and 

fixed-weights schemes show virtually identical performance, with the former being 

only slightly better for weak interferers.

0.01 

P e l

0.001

0.0001
-10  -8 -6 4  -2 0  2 4  6 8

SNR2-SNR1 [dB]

F ig u re  7 .4  Error Probability of User 1 for K  =  2 and S N R i  =  8 dB

i i 1 1 1 T 1 1............

adaptive detector ■
non-adaptive detector •
decorrelating detector

r -

t i i i i i i i
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W illi the number of simultaneous users increasing further to K  =  4 and K  — 

5, as in Figs. 7.6 and 7.7 (note the change of the vertical axis scaling), certain 

trends become more obvious. Due to its unacceptable high probability of error, the 

decorrelating detector clearly does not represent an appropriate choice. W hen the 

interferers are strong, both the adaptive and the fixed-weights schemes achieve the 

performance of the single user. The former provides better error performance with 

weak interferers. Fig. 7.8 shows the error probability of user one for K  = 2 to  5 

when all the users have same S N R .

7.2 U sin g  D ecorrelating  A lgorithm

The canceler’s output is given by:

y  = x -  W Tb. (7.7)

The output for the k-tli user can be expressed as:

Vk =  x k ~  Wkr i>k. (7.8)

The steady state  would be reached if

E { y ksgn(yk)} =  0, for k =  1 , 2 , . . . ,  I<.

This means th a t K ( K  — 1) nonlinear equations have to be evaluated.

Using the approximation derived in Eq. (3.11), we get:

A

E{ykbk) «  E  {(y/a^bk +  p l A kbk +  n k -  w^bk)  6fc} •,

and the algorithm will result in having:

^/a^E{bkbk} + E ^ p J . A k b k j  6*} -|- E  { n ^ .}  -  E  6fc|  =  0.
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It is easy to show th a t E { b kbk} = 0, E  { (p jA * 6 fc) bk] =  £ { n fc6fc} =  0,

and E  { (w k bk) &t} =  B kw k, where B k =  diag [E {6y6y j-], j  =  1 , 2 , . . . ,  I< j  #  k. 

Therefore,

w k =  B Z xA kp k, (7.9)

where we used the fact th a t A k is diagonal.

7 .2 .1  C om p u ta tion a l and S im ulation  R esu lts

Two sets of examples are used to examine the performance of the proposed canceler. 

In the first set, we consider the two-user case with cross-correlation coefficient 

P12 =  0.7. It can certainly represent a high bandwidth-efficiency case. Here we find 

by com putation the error probability as a function of the SNR’s difference of the 

two users while the SNR of user one is kept constant at 8 dB and 12 dB. This is 

shown in Figs. 7.9 and 7.10, respectively.

0.1
computation —  

simulation o 
approximation —  

decorrelating detector —

0.01

0.001

0.0001
-10 6•8 -4 -2
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0 2 4 6 8

F ig u re  7 .9 Probability of User 1 (K =2, S N R i  — 8 dB, /?12 =  0.7)
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F ig u re  7 .10  Error Probability of User 1 (K =2, S N R i  = 12 dB, pi2 — 0.7)

In the figures, we added the results of simulation, those obtained by using the 

approxim ation of Eq. (3.11), and those resulting from the decorrelating detector of 

[11].

In the second set of examples, Gold sequences of length 7 are again chosen 

for signature waveforms. The rationale for such a choice is th a t Gold sequences are 

regularly used in an asynchronous CDMA environment, and the study of its proposed 

synchronous counterpart may provide a useful indication of the performance of the 

former.

In Fig. 7.11, we depict the result of error probability of user one having 

SNR=8dB as a function of the SNR of the other four users (taken to be the same). 

These results are obtained by simulations and com putation with the approximation. 

For comparison, the results of the decorrelating detector are also included. Fig. 7.12 

is the same except for user one, where SNR=12 dB. Finally, Fig. 7.13 depicts the error 

probabilities of user one, whose interferences are determined by the first column of 

V  and having the same energy as interfering users. For comparison purposes we also
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show the results obtained by using the minimum energy criterion and, as reference, 

those obtained when using the decorrelating detector.

1
simulation —

ipproximation .....
laung detector —

0.1

0.01

0.001
6 -5 -4 -3

SNRi-SNRl [dB], i= 2 ,3 .4 .5
8 ■7 •2 1 0

F ig u re  7.11 Error Probability of User 1 (K=5, S N R i  = 8 dB, Gold codes)
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F ig u re  7.12 Error Probability of User 1 (K=5, S N R i  =  12 dB, Gold codes)
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F ig u re  7 .13 Error Probability of User 1 (K =5, Gold codes)

It was established th a t the case of equal-user energy represents approxim ately 

the worst case scenario for user one. Also notice from P  th a t other users suffer lower 

levels of interference by remaining users.

From these figures, we notice th a t the error performance of the approxim ation 

curve is worse than the sim ulation curve, especially in the region where the  in ter

ference is weak. The approxim ation is actually equivalent to using the training 

sequence, since we m ade the  assum ption that sgn{yi) ph W hy is the perform ance 

of the  scheme with a train ing sequence worse than the blind one w ithout a  training 

sequence? There are two reasons for this:

1. The weights of the simulation are smaller than  those of the approxim ation

(E{l>isgn(yi)} <  -C{6,61} =  1 ).

2. When the interference is small, the estim ation of the interference is bad.

W hen the estim ations of the interference are not good, using them  to  cancel 

the  interferences makes it worse. This is also the reason why the adaptive scheme 

introduced in previous section is be tte r than its non-adaptive counterpart.



CHAPTER 8

T W O -ST A G E  A D A P T IV E  D E T E C T O R  W IT H  SO FT  T E N T A T IV E
D E C ISIO N

We can plot, the error performance of the detector introduced in sections 6.1 and 7.1 

on top of each other, as shown in Fig. 8.1.

0.1

2-stage w/hardlimiter —  
2-stage wo/ hardlimiter

0.01

0.001

0.0001
-10 6•8 •2-4 0 42 6 8

SNR2-SNR1 [dB]

F ig u re  8.1 Error Probability of User 1 for K  =  2, p =  0.7 and S N R i  =  8 dB

If one compares the two curves, he or she will find tha t when the energy of 

the interference signal is weaker than the desired signal energy, the performance of 

the two-stage adaptive detector introduced in Chapter 6 (decorrelator +  canceler) is 

b e tter than  the  two-stage adaptive detector with tentative decision (decorrelator +  

decision +  canceler), and in the  other region, the la tte r is better. In this chapter, a 

combination of the two schemes proposed in previous two chapters will be introduced, 

and the steady state  error performance of the detector will be evaluated. In the 

combined scheme, soft tentative decisions are used.
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8.1 M odel and A nalysis

The detector considered here is shown in Fig. 8.2. It consists of three parts: a bank 

of m atched filters, a decorrelator with soft tentative decision, and the MAI canceler. 

The difference between this detector and the detector proposed in previous chapter 

is in the use of a  soft decision instead of a hard decision.

Where in the figure H  is a nonlinear transformation matrix, there are many 

selections for a  nonlinear transformation. Dead zone, multilevel quantization, and 

linear clipper are some of them . For reasons concerning performance and com puta

tional complexity, in this chapter only the linear clipper is studied.
t=T

s,(T-t)
Adaptive cancellerD eco lla to r Soft limiter

r(t)

F ig u re  8 .2  Two-stage Adaptive Detector with Soft Tentative Decision 

The output for the k-th  user can be expressed as:

K
Vk = X k -  w kTh k = x k -  J 2  Wihhik• (8.1)

/ = 1l*k

h k is the fc-th column vector of a K  x  K  m atrix H ,  with the element hkk deleted. 

The (/, &)-th element of the m atrix H  represents the k-th  output of the soft lim iter 

to the input z/, and, for /, A; =  1 , . . . ,  I{ I ^  k, is defined as:

= { i X )  •
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Comparing the  results of the previous two chapters, we can conclude th a t when 

the interference is stronger than  the desired signal, the hard decision is preferred. 

W hen the interference is weaker than the desired signal, the soft decision is preferred. 

The selection of the lim iter’s threshold Tik has to satisfy these constraints.

A few experim ents are done to find out the threshold. Fig. 8.3 to Fig. 8.5 are 

examples of the two-user case.

Considering the  above facts and according to the results of the experim ent, the 

threshold is given by:

T« =  £ { |z , |>  =  m R '

where

p  _  1^{I2*I}]2 . . . .

R  ~  “ E l W p  (8'2)

and

and cr|fe is the variance of £*..

Tik can be determ ined from the observed values of the decorrelator outputs.

Iu the figures, the error probability of user one for a  two-user system , versus 

the S N R  of user two, are given. The correlations between the two users’ signature 

codes are 0.3, 0.5, and 0.7, respectively. The lim iter’s threshold Tik is given as the 

dum m y variable, where R  is defined in Eq. (8.2). These figures justify the selection 

of the lim iter’s threshold T^.
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F ig u re  8 .6  Weight of User 1, S N R i  =  S N R 2 = 8 dB, with p =  0.1 to  0.8
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F ig u re  8 .7  Weight of User 1, S N R i  — 8, S N R 2 =  2 dB, w ith p = 0.1 to 0.8

Fig. 8.6 and Fig. 8.7 plot the weight changes versus the changes of the corre

lation coefficient. In Fig. 8.6, both S N R i  and S N R 2 are equal to 8 dB. It gives the 

weight of user one when the voltage of user two is greater than the threshold. In 

Fig. 8.7, S N R i  is equal to 8 dB, and S N R 2 is equal to 2 dB. I t gives the weight 

of user one when the voltage of user two is less than the threshold. In both cases, 

the weight is nearly a linear function of the correlation coefficient, which is what we 

need since only so can the soft effect be utilized.

For controlling the weights, the steepest descent algorithm, which simulta

neously minimizes the output signal energies E { y k}, is used. T hat is, for the fc-th 

output, the optim um  weights are obtained by the iterative search:

«,*(> + 1) =

= ( I -  p .E{hkh l } ) w k(i) +  p E { x kh k}.
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The steady state values can be evaluated from:

A

— E { y l )  =  0 =  - E { x kh k} +  E { h kh Tk } w k. (8.3)
d w k

It is easily shown that:

E { x t h i}  = E  { l y ^ i A  +  p J .A kb i; 4- hk)

where again A k is a diagonal (K  — 1) x (K  — 1) subm atrix of A  with its k-th diagonal 

entry removed, p k is a (K  — 1) x 1 k-th  column vector obtained from "P by deleting the 

element pkk, and bk is a (K  — 1) X 1 vector obtained from b by deleting the element 

bk. Clearly E { b kh J }  is diagonal; therefore, the system of K  — 1 linear equations 

(8.3) gives the steady state values of the weights affecting the fc-th output as:

w k = \E { h kh l ) \  1 A kE {b kh l } p k. (8.4)

Let f Zi be the density function of 2;, and f 2.Zj the joint density function of 2; and 

Zj. Then:

v2

BUM = \^[kkf-dZi- k ŝ \
E { h i t hjk)  =  i  £  ^ L - f ^ d v d z !  + J J Z ' j i - 3 g n { z j ) f ^ dZidZj

+  I k  ■~-s9 n (zi ) f ZiZ} dzidzj  +  I k  s g n ( z i ) s g n ( z j ) f x. Zj dz{dzj  

E{bih ik} =  \ ' I l [ J L i bi j r k i d z i + JL  bi sgn(z i )fZidzi ,

where Z,-, i = 1,2 correspond to the appropriate intervals of 2,-, and Z i ,  i — 1, . . .  ,4 

correspond to the appropriate rectangular regions in the (z{ ,Zj)  plane.
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Defining the fc-th user’s final decision output as bk — sgn(yk), its probability 

of error is evaluated as follows:

P’h =  E bk,bk,hkP r i bk ¥> h \bk ,bk, h k}

=  y h r  £  E h P r { - y / r k +  b Tk A k P k  — w k h k +  nk >  0|fefc}. 
bk

Introducing the transform ed Gaussian random variable

Wk = n k ~ 2 ^
i=i *ik i?k

where

otherw ^e i = 1 ’2........
C = (  1 ^1 y o oth

the error probability becomes:

p *k =  H  E h kP r i^k  >  V*k ~  b l A kp k +  w l g k\hk},  
bk

where

9k =  [9ik,92k, ■ • • ,gk-i,k,9k+i,k, ■ ■ ■,9k]T with

- 1' 2........

Defining the vector £,

C [£ l1 ^>2t • • • i C k —1 ) 0A:j £/:+l ? • • • i Oa'] )

the final expression for the error probability is obtained as:

2k ~x t
A ,  =  2- 'K- ‘> E E /  f ( <K, (8.5)

fc, “ >

where f  ̂  is a /G variate Gaussian density function, D n is a hyper cube defined by:

V “k ~  b l A kp k +  w l g k < Ob,

and for i =  1, 2, . . . , # , * ^  k,
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~Tik  -  y/a[bi <  Ci <  Tik -  yfaibi |« i| <  Tik 
(i > T i k  ~  y/aibi, Ci <  — T i k  ~  y/aibi otherwise.

The two-user examples are given in Appendix D.

8.1 .1  N um erical E xam ple and D iscussion

Two sets of numerical examples are given in the following figures. In Fig. 8.8, 

S N R i  is set to 8 dD , while S N R 2/ S N R \  varies from -10 to 8 dB. The value of the 

cross-correlation coefficient p\2 =  0.7 represents a high bandwidth-efficiency case. 

Compared with the error performance of the detector in [15], which utilizes hard 

decisions, and the performance of the decorrelator, a significant improvement has 

been obtained. In the next two examples, Gold codes of length 7 (e.g., [15] and 

[17]) were used for signature waveforms. For the two-user case, in a low bandwidth 

efficiency case with pi2 =  —1/7 (Fig. 8.9) as expected, performance of the decor

relator is very close to the single-user bound. Therefore, negligible improvement is 

obtained with either the hard or soft tentative decisions. The three-user case with 

P13 =  3/7 and p23 =  —1/7 is depicted in Fig. 8.10. Here, the one-stage detector 

with a soft lim iter clearly shows the best performance. For a  different set of cross

correlation coefficient values (pu  = 0.5, p13 =  0.5, and p23 =  0.2) in Fig. 8.11, the 

difference in the performance between the decorrelator and the one-stage detector is 

larger, with the soft lim iter again being a better one. Finally, Fig. 8.12 depicts the 

error probabilities in the case when all users m aintain the same S N R 's  and Gold 

codes are used.
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CHAPTER 9

C O N C L U SIO N

O lio and two-stage CDMA adaptive detectors using minimum energy and decor- 

relating adaptation algorithms are studied in this dissertation. These adaptive 

detectors do not require the knowledge of the received signals’ energies and get 

better than or similar performance to their non-adaptive counterparts.

Among the detectors using the minimum energy algorithm, the error performance 

of the user with lower input S N R  of a one-stage detector with a hard tentative 

decision approaches the single-user bound as the interferences’ energies increase. The 

two-stage detectors proposed were shown to provide significantly better performance 

than the decorrelator. It is especially true for the ones with a tentative decision 

and under the most critical conditions for the multiuser environment, such as near- 

far situations and high bandwidth-efficiency utilization. In the presence of strong 

interference those detectors achieve the performance of the single-user bound. The 

two-stage detector with a soft tentative decision approaches the  performance of the 

optim um  detector but with much less complexity.

Among the detectors using the decorrelating algorithm, the one- and two-stage 

detector has similar performance to the decorrelator. Two-stage detector with hard 

tentative decision achieves similar performance as the one using minimum energy 

algorithm.
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A P P E N D IX  A

TW O-USER EXAMPLE OF CHAPTER 4

The sampled outputs of the bank of matched filters in the z-th bit interval can be 

expressed as:

x i =  T  Py/u2^2 T  n \ ( A - l )

x 2 =  y/Zhh +  Py/aibi + n 2. (A .2)

The canceler’s output is given by:

2/i =  X\ -  w2i x 2

— (1  ~  W2l P ) y / E i h  +  ( p  — W 2 l ) y / a 2 b 2 +  n \  — Ul21^2

=  (1 — W2\ p ) \ f a \ b \  +  (/> — W 2 l ) y / a 2 b 2 +

2/2 =  X2 -  u>i2a:i

=  (1 -  Wi2p)s/a^b2 + ( p ~  w ^ y / a i h  + n 2 -  wi2n x

=  (1 — W i 2 p ) y / a 2 b 2 +  ( p  — W i 2 ) y / a \ b i  -f- £ 2i

where

6  =  n t -  W21 n 2

6  =  ri2 — Wi2nx.

Using the decorrelating criterion,

69
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E { y ksgn{yj)} = 0 k , j  = 1,2, k ±  j (A.3)

E {y \sgn{y2)} = E { [ ( l - w 2ip)y/albi + (p-W2i)y/a^b2 + ^ } sg n (y 2)}

= E  {((1 ~  vo2ip)y/a[bi -f ( p -  w2l)yfa^b2) sgn(y2) +  •

E  {[(1 — w ^ ^ / a l h  +  { p -  w 21) ^ /a ^b 2\  sgn(y2)} 

=  E bltb.2 { ( ( 1  -  w 2x p ) y / a l b i  +  { p -  w 21) ^ b 2)  x

{Pr [ 6  >  - ( 1  -  w x 2p ) y j a l b 2 ~  ( p ~  w 12)y/a^bx]

-  Pr  [ 6  <  - ( 1  -  W l 2 P ) \ / o ^ b 2 ~ { p ~  W i 2) y / a ^ b i ] } }

=  E b u b2 { ( (1  -  w 2i p ) y / a i b i  +  ( p  -  W2l ) y j a ^ b 2)  X

=  (/> -  1 V 2 l ) V ^ +  [(1 -  W2l p ) y f c -  ( p  -  W2 l ) y f c \  Q {P-

-  [(l -  I W K / 5 7 +  (p -  w * ) V S d Q  ( (1 ~  t

E  { t\sg n (y2)}

=  E bub2 { 6  [PT [ 6  >  - ( 1  -  wV2p)s/a ib 2 -  ( p -  w 12)y/albx]

- P r  [ 6  <  - ( 1  -  Wx2p ) \ f a i b 2 -  ( p -  W i2 ) \ /a ib i ] ] }

=  JE61,62 U i [ ^ [ 6 > c ] - p r [6 < c ] ] } ,

The first and second terms of the above equation can be computed from:

- ( 1  - w12p)y/a^b2 -  (p -  w12)y/albi

and

where
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C — —(1 — wl2p)x/a^b2 -  (p -  w12)y/(hbi.

Denote

N 0 N,
-£’{ 6 6 }  =  (P +  pwn w2i -  VJ12 - w 2l) ~  -  R —

-£{£1} =  (1 - 2W21P + = h \ ^ Y

£ { £ 2} =  (! -2w i2P  + v>l2)? Y  =

where

i?  =  p  +  p w i 2w 2i  — W \ 2 — w 21

=  1 — 2u;2iP  +  ^ 2 1  

/jj  =  1 — 2 i u \ 2p  +  w \ 2.

The transform ation of (6 ?6 ) to (u ,v ) such tha t E {u v}  — (

by

6 = v
R  s jh \h \  -  R?

6  =  Mv + — hi— “ •

is accomplished

Then we have
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E  {^isgn(y2)}}

1 f oo yoo ( r  y j h \ h l - R 2 \
= 5 £  L - „  L c  {  a | ” + — *i— " j

=  5 e t  f * r  r  — k r  * *, , J u= — OO J V=C ll9 «/li= — oo tb*y jV—Cb ib 2 '/ u = ~~00 s v = u  f*2

=

1 ^  Rcrv — — > ----- -— e «.
2 6ji>2 fcSVSF

Averaging over and 62 one gets

£ { 6 s<iw(z/2)} =  ^
((1 —u ii2 /i)>/r7 + (p -< D i2  ) v ^ T ) ( ( 1 -« '1 2 p )- '/32’-K p —<"1 2 )x/ 5T) ‘2̂  _j_ g  5̂ 2

Note here cr2 =  cr2 =  /t^cr2 =  h \N 0l 2. Now we have two non-linear equations: 

V \ S ( j n ( y 2) =  F ( w i2,w 2i,a u a2,p, N 0) = 0

and

U2 sgn(yi) = G (w r2,w 2Ua1,a 2,p ,N 0) - 0 .

We can solve these two equations to get M12 and u>2i.



A P P E N D IX  B

COMPUTATIONS FOR CHAPTER 5

B . l  E r ro r  P r o b a b il i ty  o f U se r 1 for a  T w o -u se r C ase

The canceler’s vector output is given by:

A

yi =  x\  -  102162- 

The error probability for user one is evaluated as follows:

1  A A

P ci =  2 E b2tb2{P r { n i >  y/oi  ~  Pi2\fa2b2 +  w 2ib2\bi -  - 1, 62, 62}
A A

+  Pr{n,\ < - y / a l - pi2\fa^b2-\-W2ib2\bi =  1,62,62})

=  ^ E b/ P r { n x >  y / a i  “  P\2 y/aib2 +  w 2\ ,n2 > - y / a i b 2 +  Pi2y /a i }

+  Pr{ni  >  y / a i  -  p n y / a i b 2 -  w2i ,n2 <  - y / a i b 2 +  Pi2 y /a i }

+  P r { i i \  <  — y / a i  — p \2yfaib2 +  w2i, n2 >  — y/a ib2 — P\2 y / a / \

+  P r { n i  <  - y / a i  -  p u y / a i h  -  w 2U n2 <  - y / a i b 2 -  Pi2 y /a i } )

=  ^ { P r {n l >  \/®7 — P\2yfai +  ^ 21, n 2 > — y /^ i  T  P12\/q7}

-f Pr{ni  >  y/ai — p\2\Ja2 — w22, n2 < —y/ai  +  Pny/a/]

+  Pr{ri\ < —y/ai  — p\2yfai  +  w21,n2 > —y/ai — p\2y/ai}

+  P r{ n i < - y / a i  -  P\2 y fa i  ~  w 2U n2 <  - y / a 2 -  p u y / a i }

+  P r{ n i >  y / a i  +  Pi2y / a i  +  w 2i, n2 >  - / a 2 +  p i 2y /a i }

+  P r{ n i >  y / a i  +  p \2y / a i  — w 2i, n2 <  y / a i  + p i 2 y /a \ ]

+  Pr{ni  < —y/ai  +  p\2y/ai  +  w2i ,n2 > y/ai — p\2y/a\)

+  P r{ n i <  - y / a i +  p u y / a i  ~  w 21, n 2 <  y / a i  -  p u y / a i } )

(B .l)
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1
~  2 (P i ' { n i >  y / a i  — P\2 y fa i  +  ^ 2 1  > n 2 >  — y / a i  +  P u y / a i }

+  P r { n 1 > y / a i - p i 2 y / a i - w 2u n 2 < - y / a i  + pi2y/ai}

+  P r { n i  >  y / a i  +  p i2y /a i  T  w 2\, n2 >  y / a i  +  p i 2 y /a i }

+  P r { n i >  y / a i  +  p l2y / a i - w 21, n 2 <  y / a i  +  p i 2 y /a i } ) .  (B.2)
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B .2  C om pu tation s o f E xp ecta tion s

E{bik}  =  1 (B .3 )

K  K
E{b ib j }  =  E { s g n ( y / a ibi +  ^2piky/a ibk  +  ni)sgn(y/a]b j  +  '^2pjky/aiibk +  n j ) }

fc=l fc= 1
M * M i

2 at /c
=  ^  >  - y f a i b i  -  £  p i k y/a~k b k , n j  >  - y / a j b j  -  ^  P j f c V a f c M

^ f, fc=i fc=i
U k* i  M i

K  K
4- Pr{n,- <  —y/albi -  Y 1  Piky /akh , nj <  - y / a ] b j  -

*=i *=i
M * M 7
K  K

-  Pr { r i i  <  - y / a l b i  -  ^  Piky/akbk, i i j  >  - y / a j b j  -  ^  Pjky/akbk)
k= 1 fc=1
M * M i
7f K

P r{ n t- >  —y/albi -  ^  Piky/aibk, n j  <  - y / a j b j  -  ^  Pjfc\Afc^})
k=l fc=l
M> M i

j  AT AT

=  TTk - J  ^ Z ( P l ' { n i >  - y /a lb i  -  £  Piky/akbky nj  >  - y / a ] b j  -  J /  P jky /akh}
^ h *=1 kssl

I< K
;(P r { r i i  >  - y / a l b i  -  ’

6

P r { n , -  <  - y / a l b i  -  / T  P ik y /o k b k , n j  >  - y / a / b j  -  P j k y / a H h }  (B.4)

M< M i
7C A"

A=1 A= 1

Every term  of tlie above equation involves a two-dimensional Gaussian

integration.

K K
E{x ib j} =  E {{y/albi  4- Y1 Piky/aih  4- ni)sgn(y /a jb j  +  ^  Pjky/aHbk 4- rij)},  (B.5)

k=1 fc=ik&i k&j

where

K
E{bisgn(y/a]bj 4- ^  Pjky/akh  4- n j ) }

k=l
k

1 K 
2J((P r {nj y/Ejbj pijy/al ^  I Pjky/akbk) }

*=i
MM'
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and

I<
+  P r { n j  <  -y/cTjbj +  p i j y / a i -  53  P jky /okh ) }

fc=i

K
-  P r { n j  > - y / a j b j  +  Pi j  y / a i -  53  Pjky/ajbk)}

fc=i

I<
-  P r { n j  <  - y / a j b j  -  pi J y/ai  -  53  P jky /akh ) } )

fcss 1

'K n ,_s?rrh^\1 | \pPj^i Pijy/oi zL *=i Pjky/o/jb/)

-  Q
 ̂ d" Pijy/®i / j  *=l Pjk s/Pkbk) \

/

k&j?i

T

K
E{nisgn(y/ajbj  +  5 3  Pjky/akbk +  n,-)}

fc=i

re
=  ^ { ( v / 1 -  PHU +  Pijnj ) sg n ( y / a j b j  +  5 3  P i k \ f a ~ k bk  +  n , ) }

fc=lk#j
K

= E{pijnjsgn(y/ajbj  +  5 3  Pjky/akh  +  n ^ )}

fc = l

= - J j t z i S  n i exP ( - n 2j / 2 a 2)dn

f-y/aJbi-Yjfri. Pjk^kbk \
— J *f n j e x p { —n - j 2 a ) d r i j \

2 -  E f ; ; « * V W '

V 2i  ^  I 2(72

(B.6)

(B.7)

A

E {b2sgn(y2)}
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= E{sgn(y/a^b2 + Pi^y/aih + n 2 )sgn(^/a^b2 + puy/a ih  -  w12bx + n2)}

=  — 5 3  {P r{n 2 > -yfaib-i, — Pi2 \ /a \b i, n2 >  —y/a2b2 — Pi2 y/oibi +  ^ 12?
61.62

™1 >  —y/O-l&l ~  />12\/«2^2}

+  P r{ ra2 >  —y / a i h  — p i 2y / a ^ b i , n 2 >  —y/a^b2 -  p i 2y/ a [ h i  -  to12,

< —y/o^bi ~ P ii\/^2 b2}

+ P r{n 2 < -y /a lb 2 -  /Ji2 , n 2 < -^/cT2b2 -  p\2yfa{hx + wl2, 

n\ > - y / a l h  -  pi2i/a^b2}

+  P v { n 2 <  —■\f(i2b2 — Pi2y/&ib\, n 2 <  —\ /a 2b2 — Pi2y/&ibi — w  12,

72l <  — y / a \ b \  — />12\/^^2}

-  P r{n 2 < -y fa 2b2 -  p\2\fa\bx,n 2 > -y/a^b2 -  pi2 y/albi + w12, 

tii > —y/^Ibi — Pi2 y/o^b2}

~ P r{n 2 < -y/chb2 -  pi2y/aibl ,n 2 > -y/a^b2 -  p^y/aiK  -  io12,

ni < - y /a ih  -  pi2 y/a^b2]

-  P r{n 2 > -yJaT2b2 — pi2y/a[bi,n2 < -y/a^b2 -  pi2\/aib1 -f w12,

til > —y/^lbi — Pi2y/a2b2}

-  P r{n 2 >  —i/chb2 -  Pi2 y /a ib i ,n 2 < —y/a^b2 — p\2 \fa \b i  -  tn12,

til < -y /a \b i  -  Pi2y/02b2}, (B .8)

where W1 2  can be either positive or negative depending on p\2. If Wi2 >  0 , we get: 

E {b 2sgn{y2)}

=  j  5 3  > -y /a ^b 2 -  pi2\/a[bi + wi2,rii > -y /a^b i -  pi2\fa^b2,}
61.62

+ P r{n 2 > -y/a^b 2 -  pi2\/ai&i,rci < -y/aibi -  pi2 y/a^b2, }

+  P r { n 2 < -y /a ^b 2 -  pi2 y /a lb i,n i > -y /a^b i -  pi2y/a^b2, }
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+  P r{n 2 < -y/oT2b2 -  Pi2\/albi -  toi2,ni < - y / a l h  -  pi2\falb2y }

-  0

-  Pr{-y/ lT2b2 -  P\2\fo\b\ -  w12 < n2 < -y /a lb2 -  pi2y/a[bu

ni < -y/albi -  pws/aibi, }

-  P r { —y/a2b2 — />i2\/oi&i < n2 < —s/a2b2 — pi2y/albi +  ui12,

7ii > — y/albi — pi2\fo^b2y }

-  0)

=  j Y l  ( ^ ' { ”'2 >  -\fo^b2 -  pi2\/albi +  w 12, nx > -y /a lb t -  pi2y/alb2, }
61,62

+  P r{n 2 > -y /a lb2 -  p12y/albly ni < -y /a lb  1 -  pl2y/alb2, }

-\- P r {n 2 < -y /a /b2 -  pi2y/albu rn > -y/albi -  pi2y/a~2b2y }

+  P r{n 2 < -\fa2b2 -  P\2y/alh -  w12, nx < -y /albi  -  pi2y/alb2, }

-  P r { - s f a / ) 2 -  p\.2y/albi -  w12 < n 2 < — y/(P2b2 -  pi2y/albi, 

nt < -y/albi -  pi2y/alb2y }

— P r { —\fa2b2 — Pny/albi < n2 < —y/alb2 — pi2y/albi -f Wi2,

rii > -y/albi -  pi2y/alb2, }). (B.9)

Every term  of the above equation involves a two-dim ensional Gaussian  

integration.

E{bisgn(y2)} =  E{biSgn(y/alb2 +  pny/albi -  W12&1 +  n2)}
I

=  -  Yh{biPr{n2 >  - y f a 2b2 -  pi2y/al  +  u?i2,ni >  - y / a l h  -  puy/a^}
61,62

+  biPr{n2 > - y /a lb2 -  P \2 \ fa l -  u>i2,«i < - y / a l h  -  p12y/al}

— biPr{n2 <  — y/alh — p\2y/al  +  wi2y n 1 >  —y/albi — Pi2y/a2]

-  biPr{n2 <  -y /a lb 2 -  pl2y/al -  Wi2,rii < - y / a lh  -  p12y/al}(B.10)
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an cl

E { n xs(jn{y2)} E { n 1sgrt{y/a ib 2 +  pX2y /a lh  -  wx2bj +  n 2)}

E {n xP r {n 2 > - y / a l h  -  p\2yfalh  +  wX2h ]

E { n xP r {n 2 <  - y / a l h  -  p\2y/alh  +  wx2bx}

E { n xP r { n 2 >  - y / a l h  -  p l2y /a lbx +  w X2, n x >  —y / a l h  -  pX2y / a l h }

E { n xP r { n 2 >  - y / a l h  -  pX2y / a l h  -  w x2, n x <  —y / a l h  -  pX2y / a l h }

E { n xP r { n 2 <  —y / a l h  -  p X2y / a l h  +  w x2, n x >  - y / a l h  -  Pi2y / a l h }

E { n xP r { n 2 <  — y / a l h  -  pX2y / a l h  — w x2, n x < —y / a l h  — Pi2y / a l h } -

( B. l  1)
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B .3  T w o-user E xam ple —  D ecorrelating  A lgorith m

Tlio sampled outputs of the bank of matched filters in the 2-th bit interval can be 

expressed as:

X\ = y/ayby + py/a^b2 +  n x (B.12)

*2 =  y/o-2̂ 2 +  Py/&ibi +  n 2. (B.13)

The canceler’s output is given by:

2/1 =  * i -  w2yb2

=  y/a\h  +  Py/a^b2 -  w21b2 +  ni

2/2 =  \ / a 2 b2 +  p y f a l b i  -  w X2bx - f  n 2 .

Using the decorrelating criterion,

E {y isg n (y2)} =  0

a n d

E i m s g n fa ) }  = 0.

We have two equations and two unknowns, we will be able to solve the 

equations:

E{yysgn{y2)} =  E { ( y/a^b l +  ps/a^b2 -  w2Xb2 +  n x)sgn(y2)} 

=  y/ayE{bisgn(y2)} +  pyfa2E{b2sgn{y2)}

-  w21 E{b2sgn{y2)} +  E {n isgn (y2)},
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where E {b isgny2}, E { n l sgn(y2)} and E{b2sgn(y2)} have been computed in 

(B .6), (B.7), (B .8) respectively, and E {b2sgn(y2)} can be computed similarly as 

E {b isgn{y2)}.



A P P E N D IX  C

COMPUTATIONS FOR CHAPTER 7

E{bibi} = 1 (C .l)

and

=  E { s g n ( y /a i b i  +  € i)sg n (y /a ]b j  +  &) }  

1 
4
1

=  — '> ~ ^  — y/E jb j}  +  P r { £ i  <  —y/albi,  £j  <  — y/E jb j}
bi ybj

-  P r { i i  <  -  y/a ibu  >  - y /E J b j }  -  jPr{& > -  y/albi, £j <  ~ y /E ] b j } }

= >  V 5f.fi >  y/Ej} +  Pj'{& < V ^ .f i  < y/oj]

-  P r { ( i  <  y /o l i£ j  >  y /E j}  ~  P r {£t V ^ . f i  <  y/E j}

4- P r {£i >  V ^ .f i  >  y/^j}  d" P r {£i y/®li fj <  V^j}

-  P r { ( i  <  y / a u i j  >  - y / E ] }  -  P r { £ i  >  V 5 f , f i  <  - y / E j ]

+  P r { £ i  >  - y / a l , £ j  >  y / a ] }  +  P r{ &  <  - y ^ f . f i  <  y / a ] }

-  P r { &  <  ~ V 5 f . f i  >  y / a ] } -  F V { &  >  — V 5 f ,f i  <  y / E ] }

4" Pf {^ i  >  y/El,£j y/Ej} 4" P r {£i < y/&li£j ^  y/Ej}

-  P r { &  < - y / a l , t j  >  - y /a ]} -  Pr{&  >  - V 5 7 . f i  < - y / E j } )

-  2^P r ^ i ' > \/®i>fj •> y/Ej} d- P r {£i < V 5f.fi <  y/Ej}

P r { &  <  y/Eli Cj >  y /E j} — P r { f f  >  y/El,  <  V®j}

4" P r {£i >  y/Eli^j >  v% } d* F ^ f f  <  y/Elt^j <  V^J}

-  P r { f ,  <  V 5 i . f i  >  — >/57} “  ^M f« ' >  V 5 7 ,f i  <  - V 5 J } -  (C .2 )

Every term  of the above equation is a two-dimensional Gaussian integration.
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E { k b i } E{sgn(yfaibi + £,i)bi}

^ { P r { £ i  >  - y / a i )  + P r { i i  <  y/a i }

P r { £ i  >  \ / a i }  ~  Pr{Ci  <  ~ y / a i } )

( P r { £ i  >  - y / a i }  -  P r { £ i  > y /a i}

1 - 2  q ( ^
V at.

E{bibj} =  0.

(C.3)

(C.4)



A P P E N D IX  D

TWO-USER EXAMPLES FOR CHAPTER 8

The error probability of user one, Pet,  for K  =  2 is given by:

Pei =  P r { i 1 ? b 1} = P r { £ i * b l , \ z 2\ < T 2 i }  + P r { £ l ? h , \ z 2\ > T 2l }

= — {P r{y /ra i  +  Pi2-\/®2^2 — W2 1 Z2 IT 2 } +  n x < 0, |z.'21 <  T21}
4 b2

+  Pi'{y/<H +  Pi2y/ô i>2 ~  a}2isgn(z2) 4- n\ <  0, \z2\ >  T2i)

+  { P r { —y/ai  +  pi2y/aib2 — W21Z2IT21 +  ni >  0, |^21 <  ^21}

+  P r { - y / a [  +  P\2 \fo^ \ ) 2  -  w2isgn(z2) +  « i  > 0 , \z2\ > ? 2 i } }

=  9 +  ^i2\/®2̂ 2 — W2 1 Z2 /T 21 +  n\ < 0, \z2\ <  T21}
2 62

+  Pr{y /a i  +  pi2y/a^b2 -  w2isgn(z2) +  n x <  0, \z2\ >  T2X}}

=  9 { P H y f c  ^  Pl2 \ / ^ 2  ~  W2l {y/aib2 +  £2)^21 +  7ZX <  0, \y/aib2 +  £2| <  ?21}
1 62

+  P r { s f a l  +  p i 2y /a ib 2 -  w2isgn(z2) +  n x <  0 , z2 > T 21 }

+  P r { +  Pi2y/o2b2 -  w2isgn{z2) +  n x <  0 , z2 <  - T 2 1 } }

=  2  { -P r { \ / « r  +  P\2\/a2 — W21  (v /« 2  +  & )/T 2i +  n x <  0 , — T 2i <  - f  £2 <  T2i }

+  P r {\/<H +  Puy/^i — ^21 +  «i <  0, y/ai  +  f 2 >  T21}

+  P t {  y/ai  +  pny/ai  +  w2i +  rii <  0, y/ai  +  £2 <  ~ 1 21}

+  P v { \ /a i  — p\2\f&2 — w2i('-y/a2 +  &)/T2i +  n x <  0 , — T2X <  —y/ai  +  £2  <  T21}

+ P r{y/a i — p\2\f&2 — w2i + ni < 0, —y/ai. + £2 > T21}

-1- Pr{yfai -  p\2\fa2 +  w2i +  nt <  0 , - y / a i  +  £2 <  - T 21}}

Denote:

Cl = n l ~  w 21^2/ T 2i
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above equations become:

P a  =  2 ~  U;21V®2/^21 +  Cl <  0) — “  ^21 <  2̂ <  ~ \/« 2  +  ^ 21}

+  Pr{y/tti  +  Pl2 y/a2 — W2I +  Tl\ <  0 } P r{ 6  >  P2I — V 02}

+  P r {y/<H  +  P \2 \f^ 2  +  ^21 +  n l  <  0 } P r { £ 2  <  —y / a 2 — 2 2 1 }

+  P r { y / a {  — p \ 2 y/ & 2  +  w 2ly / ^ / T 2,  -f Ci <  0, y/ ^ 2  — P 21 <  C2  <  y / 0 ^ 2  +  P 2 1 }

+  P i '{  \f&\ — Pi2y/&2 ~  w 2i +  n \  <  0}Pr{C 2 ^  \f&2 +  P 21}

+  P r{y /a l  — pxiy/a/. +  W21 +  n\ <  0}Pr{C 2 <  y/o-'•2 ~  P21}}
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