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ABSTRACT

DOCUMENT PREPROCESSING AND FUZZY UNSUPERVISED 
CHARACTER CLASSIFICATION

by
Shy-Shyan Chen

This dissertation presents document preprocessing and fuzzy unsupervised character 

classification for automatically reading daily-received office documents that have com

plex layout structures, such as multiple columns and mixed-mode contents of texts, 

graphics and half-tone pictures. First, the block segmentation algorithm is performed 

based on a simple two-step run-length smoothing to decompose a document into single

mode blocks. Next, the block classification is performed based on the clustering rules to 

classify each block into one of the types such as text, horizontal or vertical lines, graph

ics, and pictures. The mean white-to-black transition is shown as an invariance for textual 

blocks, and is useful for block discrimination.

A fuzzy model for unsupervised character classification is designed to improve the 

robustness, correctness, and speed of the character recognition system. The classification 

procedures are divided into two stages. The first stage separates the characters into seven 

typographical categories based on word structures of a text line. The second stage uses 

pattern matching to classify the characters in each category into a set of fuzzy prototypes 

based on a nonlinear weighted similarity function. A fuzzy model of unsupervised char

acter classification, which is more natural in the representation of prototypes for character 

matching, is defined and the weighted fuzzy similarity measure is explored. The charac

teristics of the fuzzy model are discussed and used in speeding up the classification pro

cess.



After classification, the character recognition procedure is simply applied on the 

limited versions of the fuzzy prototypes. To avoid information loss and extra distortion, 

an topography-based approach is proposed to apply directly on the fuzzy prototypes to 

extract the skeletons. First, a convolution by a bell-shaped function is performed to 

obtain a smooth surface. Second, the ridge points are extracted by rule-based topo

graphic analysis of the structure. Third, a membership function is assigned to ridge 

points with values indicating the degrees of membership with respect to the skeleton of 

an object. Finally, the significant ridge points are linked to form strokes of skeleton, and 

the clues of eigenvalue variation are used to deal with degradation and preserve connec

tivity. Experimental results show that our algorithm can reduce the deformation of junc

tion points and correctly extract the whole skeleton although a character is broken into 

pieces. For some characters merged together, the breaking candidates can be easily 

located by searching for the saddle points. A pruning algorithm is then applied on each 

breaking position. At last, a multiple context confirmation can be applied to increase the 

reliability of breaking hypotheses.
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CHAPTER 1

INTRODUCTION

Documents play a fundamental role in the communication of information. The rapid 

growing of knowledge and information exchange in today’s office makes us busier for 

handling such a great deal of daily received documents. It needs more filing space for 

maintaining valuable documents and takes more time for retrieving a document from the 

filing room. Furthermore, the problem of loss, damage, or degradation of documents has 

been encountered in each office. Therefore, there is an urgent need to develop such a sys

tem which can automatically encode a huge amount of documents into computer proces- 

sible forms in order to conquer the aforementioned problems. In a practical document 

processing system, the data of interests in any given text content take on a variety of for

mats such as character’s sizes and fonts, graphics and pictures. The interpretation of 

graphics and pictures can be achieved by image processing and analysis alluded to the 

descriptive paragraphs. Therefore, the document processing system is the state-of-the-art 

enterprise of automating and integrating a wide range of processes and representations 

used for document perception. It integrates as parts many techniques involved in com

puter vision, image processing, artificial intelligence, and pattern recognition. In the last 

decades, there are many essential inventions and evolutions on computing equipments 

which make the document automation realizable. Firstly, the storage devices have been 

highly improved; e.g., HITFILE 650E optical disk filing system [53] can store up to 

20,000 or 200,000 A4-size pages of compressed document image data per disk scanned at 

400 dpi (dots per inch). Secondly, the speeds of the microprocessors and data communi

cation have been tremendously increased. Thirdly, the high resolution digitizers have 

been successfully developed. Lastly, the powerful display facilities have been well manu

factured. As the price of the equipments become inexpensive, we believe that document 

automation will be more widespread in the future.
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1.1 System Overview

DPCS (Document Processing and Classification System) is designed for encoding a paper 

document into computer processible form to support the fundamental data which are used 

for document classification and information retrieval in TEXPROS (TEXt PROcessing 

System) [88], an intelligent document processing which includes filing and retrieval capa

bilities. In this section, the system requirements for DPCS are discussed. An overall 

organization of the system is proposed. The major functions and the input/output of each 

component of the DPCS are outlined.

1.1.1 System Requirements

A document can be interchanged either in an image form, which allows the document to 

be printed or displayed, or in a processible form [34], which allows document editing and 

layout revision. In today’s office, documents can be generated by word processing soft

ware. The software reads document definitions in processible form, and produces a two- 

dimensional image form which is ready for printing or displaying. DPCS, which aims at 

the transformation of any information presented on paper into an equivalent symbolic 

representation, can somewhat be viewed as an inverse processing from an image form to 

a processible form. Note that a document of an image form can be mapped into various 

processible forms. That’s still one of the active research issues in document analysis.

From a user’s perception, a document is composed of a set of objects, which repre

sent meaningful symbols to human comprehension, and the relationships among the 

objects. The intent of DPCS is to determine the physical layout structure and the contents 

of the objects. This result is then utilized to determine the logical meaning and the rela

tionships of the objects for document classification and information extraction. DPCS 

must have the ability to extract the information from a document and store it in a form 

that can be recognized by the computer. The most significant information can be obtained 

from the content of text regions. DPCS, therefore, must first have the ability to separate



and encode characters correctly in the text. This corresponds to the classical optical char

acter recognition (OCR). Secondly, some graphics may imply some important data, such 

as lines, that the user may want to know. Hence, DPCS must also be able to extract infor

mation from graphics regions. The third requirement for DPCS is to handle the photo

graphic data, which includes the extraction of logos. Finally DPCS must be able to detect 

physical layout structure, which explicitly describes the internal organization of a docu

ment. Before the character recognition, graphic interpretation, and photographic process

ing can be executed, a processible image of a document must be ready, and therefore 

DPCS must be able to segment a document into several portions each of which consists 

of a single constituent such as text, graphics, and picture.

As a result of its functionalities, DPCS comprises six major subsystems:

1. Image acquisition.

2. Preprocessing.

3. Text recognition (equivalent to OCR).

4. Graphics interpretation.

5. Logo/picture processing.

6. Layout structure analysis.

The overall structure of the proposed system is shown in Fig. 1.1. The office docu

ments are digitized and thresholded into binary images by a scanner or a facsimile. In 

order to encode information from a mixed-mode document which contains text, graphics 

and pictures, the first step is to segment the document image into individual blocks, 

namely, the te x t, graphics and picture blocks. The text blocks are further separated into 

isolated characters which are passed through a character recognition subsystem. The 

graphics blocks are further divided into text description and graphical primitives such as 

lines and curves. This text description can be dealt in the same way that the text blocks 

to be dealt with. The graphical primitives are further encoded into parametric
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Figure 1.1 An overall organization of the proposed document processing system.



representations or symbolic words, or passed through a picture compressor. For instance, 

the logical AND-gate circuit diagram is converted into the name “AND.” The logo pic

ture discriminated from the half-tone picture is identified and transformed into its sym

bolic words. The picture blocks, consisting of high transitional density of white-to-black 

pixels, can be compressed for efficient storage using existing compression techniques. 

The physical layout structure is carried out by grouping the related blocks and detecting 

the inter-block relationships. In the remainder of this section, the function of each sub

system is briefly described. The input and output of each component are defined as well.

1.1.2 Image Acquisition

Upon receiving a physical document, the image acquisition subsystem converts it into a 

digitized document image. In order to be in a form suitable for computer processing, a 

continuous image function f ( x , y ) must be digitized both in space and in amplitude, 

which are referred to as image sampling and gray-level quantization, respectively. Usu

ally, the device for document image acquisition is an optical scanner which is connected 

to a computer and a scanning control software to specify user’s requirements. Currently, 

desktop scanners are available and will be prevalent as their price continues to go down. 

Normally, these scanners can generate digitized images with 256 gray levels or colors, 

and 300 dot per inch (dpi), at least. Since a bi-level image, represented respectively by 1 

and 0 for object and background, is commonly used for document analysis, binarization 

must be included to transform a gray-level into a binary format. This can be done while 

scanning the document, to select a global threshold and decide which value should be set 

to each pixel. When the background of a document (such as patterns on paper or a scened 

check) is not clear, an adaptive thresholding technique must be applied on the local fea

tures of the image.



1.1.3 Preprocessing

The preprocessing subsystem transforms a binary or gray-scale image into text, graphics, 

or logo/picture blocks.

Preprocessing, also known as document segmentation, separates different content 

portions. For example, graphics, lines, photographies, and text must be distinguished. 

From a user’s perception, a document comprises a set of logical objects, i.e., blocks, such 

as title, author, text body, and other graphics. In the hierarchical structure of a document, 

objects which are close to each other are likely to be more related, and are linked together 

to comprise a block. This technique is known as block or area segmentation.

Each block is characterized by its basic geometric features, such as the coordinates 

of the upper-left comer, width, height, etc., and the derivative features, such as aspect 

ratio, density (number of black pixels in a block), centroid, number of crossing, etc. Note 

that the features of text blocks have some regularity and are invariant, which will be dis

cussed in chapter 2. Based on the features associated with each block, a rule base is estab

lished for block classification. Examples of classes are text, graphics, pictures, vertical 

and horizontal lines.

In preprocessing, many block segmentation methods, such as recursive X-Y cut, are 

sensitive to skew. In our system, a improved run-length smoothing algorithm (RLSA) is 

applied and is tolerant to skew degree. Even though RLSA can segment correctly with a 

small skew angle, the blocks seem to be intersected each other, and therefore it is difficult 

to conduct the layout analysis. Another problem is that the block images occupy more 

space than they are normalized.

Previous works on skew normalization are based on two facts. One is that the pro

jection profiles in horizontal and vertical directions are steepest than those in any other 

direction when the document is normalized. The other fact is that most of the characters 

within one text line are aligned with their base line. Using projection profiles, the docu

ment is rotated a small angle each time, say one degree, and the skew angle is detected
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where the maximum variation of the projection profiles happens. In order to find the base 

line, a text line must be located first, and then the direction of the collinear is extracted by 

a technique, such as Hough transform.

1.1.4 Text Recognition

The text blocks obtained by the preprocessing subsystem are transformed into ASCII 

(American Standard Code for Information Interchange) coded characters by the text 

recognition subsystem. Generally, a text recognition consists of four stages — segmenta

tion, feature extraction, character recognition based on the features and a set of rules, and 

error correction. To facilitate character recognition, an unsupervised character classifica

tion is performed prior to it. The proposed text recognition subsystem consists of the fol

lowing stages:

1. Character isolation.

2. Unsupervised character classification.

3. Character recognition.

4. Merged and ambiguous character recognition.

5. Dictionary checking.

Character isolation is a process to separate single characters from the text block. In 

general, the algorithms for character separation can be categorized into two types. One is 

the top-down method [23, 40] which is based on projection profiles obtained by project

ing an image onto specific axes. The profiles show the spatial structure of the document 

image. The other is the bottom-up method [77] in which the image is first decomposed 

into fundamental connected components, such as characters, and then merged into words, 

lines, paragraphs, and so forth. Our approach is a combination of both methods, since a 

text block obtained from block segmentation contains a single text line.
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A text line can be divided into words by detecting those valleys on the projection 

profile onto the A-axis with an appropriate spacing threshold. Characters can be further 

separated by setting a relatively smaller threshold. However, overlapped and merged 

characters (which may be caused by the font chosen, by the inadequacy of resolution of 

the scanning device or by the high brightness threshold we set to avoid breaking charac

ters) can not be correctly isolated by projection profiles. Overlapped characters can be 

handled by connected component analysis. On the other hand, text lines are grouped into 

paragraphs based on the line spacing and other geometric features.

Hundreds of font styles and sizes are available for printed characters. Mathematical 

symbols, foreign characters, and other special typographic elements may also appear in 

the machine-printed documents. The tremendous range of possible input for the docu

ment makes it very expensive for the character classification or recognition. Typically, a 

document may contain a few hundred of characters (e.g., a memo or a short letter), thou

sands of characters (e.g., an article or short paper), millions of characters (e.g., a book). 

It becomes impractical to recognize every character in the document one by one. In real

ity, most documents are composed of only a few different font styles and sizes (typically, 

one to three). Each font contains 26 upper-case, 26 lower-case, and some other symbols. 

Therefore, the text of the document can be considered as a combination of a set of finite 

symbols. If the recognition problem can be reduced to such a set of symbols, then the 

complexity of OCR will be significantly reduced. Unsupervised character classification 

will not extract complex features and recognize them. Instead, it only classifies the whole 

character elements into a set of pattern categories. Thus, a simple technique such as pat

tern matching can be applied.

Unsupervised character classification reduces the character recognition problem to 

one of identifying the set of prototypes. The prototypes are sorted according to their num

ber of occurrence in decreasing order. Prototypes are then recognized one by one accord

ing to certain rules. If an uncertainty of recognition is found for some prototype, the



classification halts and the next one is continued. As a result of recognition, characters 

with high reliability are recognized, and prototypes with uncertainty are labeled and fur

ther processing is needed.

After single character recognition, the remaining unrecognized prototypes include 

merged characters, broken characters, non-English symbols, etc. A more advanced tech

nique is necessary to cater for these ambiguous problems. A splitting or grouping tech

nique will be applied to the merged, or broken characters respectively. It performs a 

“hypothesize and test” cycle. In each cycle, entities are hypothesized by splitting a single 

object into pieces, or grouping different pieces into a single object. These hypotheses are 

tested by several evaluation algorithms and dictionary checking. Non-English symbols, 

such as Greek characters, can be stored in the rule base through learning. (Users must 

interactively enter the solution to the system at the first time.)

No dictionary of a living language can ever be complete. Therefore, dictionary 

checking is performed to reduce ambiguity and increase reliability of the final output. The 

errors may occur by mistyping or misclassification. The errors may be corrected accord

ing to the hypothesis with highest reliability. However, it is not possible to have 100% 

correctness. Moreover, the encoded data will be displayed, and those ambiguous words 

found in dictionary checking will be highlighted. Users can interactively edit or correct 

the errors due to classification or the originator.

1.1.5 Graphics Interpretation

The graphics interpretation transforms graphic block images into descriptions of sym

bolic representation. Graphics, which are mainly composed of a set of line drawings and 

some text, usually occur in technical and business reports. Always, graphics expresses 

information which is not easily described by description (such as an road map or an elec

tronics drawing) or information which is succinct (such as diagram, flow chart, table, 

etc.). Therefore, graphics interpretation, when applied to office documents, does not
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gather every logical meaning in the character description. For example, expressing a road 

map or a flow chart by a paragraph is more confusing than using its graphics representa

tion. In such a case, the interpretation converts the contents into computer-coded forms in 

terms of physical attributes, such as a line with its end points and its width, a rectangle 

box with its thickness, etc.

In some other graphics, such as tables, the contents and the logical relationships 

among the contents may become significant for the users. Thus, the logical relationships 

must be extracted based on the physical structure. To obtain the graphics description, the 

following operations are performed on the graphics block image [8, 40]:

1. Separation of text strings from graphics: Unlike text region, character strings in 

graphics can be distributed irregularly, e.g., the label of y-axis may rotate 905. 

Therefore, separation of text from graphics elements is more complicated than block 

segmentation. Top-down approach is not appropriate because of the irregularity and 

the bottom-up technique [23] is better. Component generation is firstly applied to 

locate each connected component. Character strings are grouped one by one accord

ing to their homogeneity and collinearity.

2. Recognition of text parts: After the character strings are separated from graphics, it 

is passed to the character recognition system as described above. The only differ

ence is that the rotation invariance must be considered, or the rotation angle of the 

strings must be detected.

3. Identification of line segments and their attributes: Graphics includes mostly line 

segments and some solid regions. Solid components can be extracted by the mor

phological opening, and encoded by their contours. The thin components are skele

tonized, and the segments and nodes, such as end points, and joint point, are 

extracted.

4. Recognition of graphical primitives and their attributes: The graphics interpretation 

system aims at the transformation of a line drawing from a set of pixels into a set of
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logical objects based on the user’s comprehension. Logical conception is based 

upon the individual knowledge background and the field of application. However, 

no matter how different it is, they are all based on the physical graphical objects and 

their attributes. According to this fact, the system should support a set of primitives, 

such as lines, arcs, triangles, etc., on which the logical objects are based.

1.1.6 Logo/Picture Processing

The logo/picture subsystem converts picture block images into logo descriptions or com

pressed image with their geometric attributes.

Photographies appears in a document at times whenever they can give a clear and 

concise description at a glance. The only purpose in this stage is to condense the data as 

much as possible without losing details. Furthermore, a logo frequently appears in the 

cover page or a commercial letter which may occupy a lot of space, but contains very lit

tle significant information. This must be recognized based on the user’s model base [73]. 

The user determines whether or not to add a picture which looks like a logo but not found 

in the model base.

1.1.7 Layout Structure Analysis

The layout structure analysis subsystem generates the structural representation of the 

physical layout of document from the description of blocks.

Any given document is characterized by its logical structure [34], which associates 

the content of the document with a hierarchy of logical objects. Examples of logical 

objects are title, abstract, author, date, paragraph, table, caption, etc. The logical structure 

is derived from the content and the internal organization of the document, corresponding 

to the layout structure. Typical layout objects are (text) line, block, frame, and page.

Layout objects are rectangular areas that do not overlap. Normally, the layout struc

ture can be built as a tree structure, according to some rules, with the layout objects
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forming the nodes, and the relationships between objects forming the edges in the graph. 

Basic objects are at the lowest hierarchical levels, the leaves of the tree. It is only through 

them that content portions can be directly associated by means of the attribute “refer

ences to content portions.” Any intermediate node represents a composite layout object, 

which consist of components that may be other composite objects and/or basic object.

1.1.8 System Output

The overall output is designed to minimize the storage need, and to support quick 

retrieval for a browsing system. It should be possible to reconstruct the original image 

either partially or completely. In addition, the output format may to be extended to the fil

ing system, browsing system, retrieval system, document classification system in TEX- 

PROS, or other applications. The representation of the encoded document comprises:

Document profile: document profile contains general information for handling the 

document as a whole. It may include the document ID, the original document image 

filename, the date, the number of pages, the size of each page, and other common 

information. The document type, editing and retrieval information, will be included 

when it is incorporated to a filing system.

Layout structure: layout structure yields the hierarchical document architecture of 

the document. The attributes associated with each node are described, and the 

addresses of the content to which the leaves reference are specified. This is the 

information on which the document classification and browsing system are based.

• Encoded data: the encoded data are stored block by block, corresponding to the

leaves of the layout structure. Note that only text, graphics, and logo blocks are

included. Along with the layout structure, certain blocks can be quickly extracted in 

a browsing system.

• Image data: the original image data should be maintained in such a way that the

users are allowed to browse through the image whenever it is requested. However,
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the original image needs huge space, and it is impractical to keep it as a whole. In 

addition, keeping a set of block images does not reduce storage significantly. For 

text regions, only a set of fuzzy prototypes, which are obtained through an unsuper

vised character classification, are stored. For each text block, the index of charac

ters, which correspond to the prototypes, are then sequentially recorded. The origi

nal block image can be approximately reconstructed upon the user’s request. The 

original image of line drawing and logo are not maintained, since they can be recon

structed from their description or their model base. However, picture image is only 

stored in a compress format.

1.2 Review of Literature

1.2.1 TEXPROS

Document automation is a document processing which integrates a classification system 

for converting a human-readable document image into machine-readable codes, a docu

ment classification system for determining the document types, a document categoriza

tion system for filing the document, an information retrieval system for locating a docu

ment according to the user’s query, a browsing system for viewing the document in either 

image form or encoded form, and a data management system for manipulating the huge 

amount of information.

Many systems have been developed to achieve parts of the document automation. 

Diamond [81] allows users to create, edit, and transmit multimedia documents. MULTOS 

(MULTimedia Office Server) [5, 67] is a distributed office system which extends the 

office document architecture (ODA) [34] by including a conceptual structure, and sup

ports a well-defined query language and many query processing techniques. MINOS [15], 

an object-oriented multimedia information system, describes multimedia documents 

using a logical model and a physical model. It provides integrated facilities for creating 

complex document objects, and for extracting and formulating new information from
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existing documents. MAIFIA (MAil-FIlter-Agent) system [51], based on the MULTOS 

document model, provides an automatic document classification. SMART [70] supports 

keyword based retrieval for bibliographic databases. Resumix [83] is concerned with the 

document categorization, which reads applicant’s resumes, creates a resume summary, 

matches candidates to job openings.

TEXPROS is an intelligent document processing system built based on object- 

oriented programming and rule-based specification techniques. The system is a combina

tion of filing and retrieval systems. TEXPROS has functional capabilities of automating 

(or semi-automating) the following activities [88]:

document classification according to their types (e.g., memos, books, letters, 

papers, etc.);

• document categorization depending on the user’s specification of the document 

filing organization;

information extraction from the document based on the user’s interest; 

information retrieval under the user’s query;

• information browsing through the documents;

synthesizing information from existing documents and either physically pro

ducing or storing the information as a view;

• document reproduction from the computer codes.

Based on the functional capabilities for which the system designs, most of them rely 

on the encoded information from the physical document. Therefore, another primary 

capability of TEXPROS is to efficiently and correctly transform the original documents 

into computer-recognized codes. The transformation needs to incorporate a classical 

OCR as well as a document analysis techniques such as the preprocessing, postprocess

ing, and layout structure analysis.



1.2.2 Review of OCR and Document Processing

Apart from the on-line character recognition, OCR is one of the research fields in off-line 

recognition, which deals with the recognition of optically processed characters rather than 

magnetically processed ones after the writing or printing is completed [39]. The history 

of OCR research is comparatively old in the field of pattern recognition. In the early days 

of the research dealing with pattern recognition, OCR is a major focus because characters 

were handy to be dealt with and were regarded as a problem that could be solved easily 

[MoS92], Later on, a great deal of difficulties are surfaced, and many people switched 

their interests to the other subjects. So far as we know, the earliest idea of OCR could be 

Tausheck [Tau35], who obtained a patent on OCR in Germany in 1929, and Handel 

[Han33] did the same in the U.S in 1933. The principle of Tausheck’s patent is a tem

plate/mask matching, which used an optical and mechanical template. Light passing 

through a set of mechanical masks is captured by a photodetector and scanned mechani

cally. When an exact match occurs, light fails to pass through, and so the machine recog

nizes the characters.

In the early age, OCR dealt with the isolated character images. At present, OCR, 

and document analysis in general, has a broad sense of dealing with the document as a 

whole. The field of document analysis can be traced back through a computer lineage 

that includes digital signal processing and digital image processing. Digital signal pro

cessing, initially fostered by the introduction of fast computers and algorithms such as the 

fast Fourier transform in the mid 60s, has its objective the interpretation of one

dimensional signals. In the early 70s, with larger computer memories and faster proces

sors, image processing methods and systems were developed for analyzed two- 

dimensional signals. Specialized fields of image processing are associated with particular 

applications such as biomedical image processing, machine vision, and computer vision. 

In the mid to late 80s, document image analysis began to grow rapidly due to the hard

ware advances that supported fast processing at reasonable cost.
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Commercial document analysis systems are now available for storing business 

forms, performing optical character recognition on typewritten text, and compressing 

engineering drawings [59]. Document analysis research continues to pursue more intelli

gent handling of documents, better compression, and faster processing. Several document 

processing and analysis systems [1, 3, 7, 14, 16, 44, 52, 71, 77, 95] have been developed 

in the last decade. Due to the variation of various documents, document analysis includes 

much more functions than before. Besides the character recognition, typically, these doc

ument analysis systems combine with segmentation techniques, normalization tech

niques, classification techniques, and postprocessing techniques. These systems are con

strained for their application. Some of them are designed for Japanese documents [1, 3]. 

Most of them described their overall architectures and focus on some specific functions. 

There are still many open problems remained.

Many works also have contributed to the subareas in the document analysis. In area 

segmentation, close components which are more related are intended to be merged 

together. Wang et. al [91] introduced the run length smoothing algorithm (RLSA) and has 

been improved by Shih et. al [73]; a recursive X-Y cut (RXYC) proposed by Nagy also 

has been widely used [55, 56, 90]; Yamada and Hasuike [96] developed an algorithm 

based on enhanced border following algorithm; and Scherl et. al [72] used a method to 

transform document image to spatial frequency domain and discriminated by testing 

background and by histogram moments. Block classification is based on some invariant 

features among text, graphics, and picture images; the rule-based systems have been 

developed [21, 95, 73]; Wang and Srihari [90] classify newspaper based on texture analy

sis by studying a black-white pair run length matrix and a black-white-black run length 

matrix. Layout structure is essential to classify a document, and many techniques have 

been carried out in this field; ANASTASIL [17], developed by Dengel and Barth, use a 

hybrid knowledge-based system for document layout analysis; Dengel et. al. [18] pre

sented the principles of the model-based document analysis system called IIODA (paper
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interface to ODA) for single-sided business letters in Germa; Nagy [55, 56] used x-y tree 

segmentation and labeling for a structure document and for classifying technical journals; 

Tsuji [84] developed a method to generate a syntactic tree structure; Bayer [4] built a 

frame system for interpretation of structured documents, which comprises a document 

representation language, a set of knowledge sources, an interpreter for this language (rule 

based), and a control algorithm; Tsujimoto and Asada [85] described the document pro

cesses consisting of a document analysis component to extract text, a document under

standing component to obtain logical structure, and a character segmentation/recognition 

component. From roadmap to engineering drawing, graphical image is a problem with 

highest variation, and still have many unsolved problems. In this field, many research 

achieved for specific issues; Freeman [24] described the computer processing of line- 

drawing images; Fletch and Kasturi [23] developed an algorithm for text string separation 

from mixed text/graphics images based on grouping collinear components; Bow and Kas

turi [8, 40] described a system for interpretation of line drawings; Ejiri et. al. [19] design 

a recognition system for engineering drawings and maps; an automaed conversion of 

engineering drawings to CAD form was presented by Filipski and Flandrena [22], Vax- 

iviere and Tombre [87]. Other areas also gained some contributions. Pavlidis [64] and 

White [94] developed dynamic thresholding techniques for character segmentation 

applied to scenic backgrounds of bankchecks. Zen and Ozawa [98] described a method to 

extract a fair document from handwritten mixed mode manuscript. Fujisawa et. al. [25] 

proposed a pattern-oriented segmentation method for tabular forms.

Research cannot exist without its applications. OCR has its use in many field. For 

instance, a user would like to excerpt a section from a magazine or business report. 

Another example is to help blind people reading. On a larger scale, libraries face the 

ongoing degradation of paper material and insufficient space to store books; manufactur

ing firms have the costly task of maintaining, location, and modifying their engineering 

drawing; and the postal system has the inefficiency for handling huge volume of mails.
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Currently, the most important use of OCR stems from the general activities directed 

towards office automation dominating information processing [39], which is divided into 

three main application areas: text entry in office automation such as a desktop publishing, 

which integrates a scanner device into a word processing environment; data entry such as 

in banking applications, there are constrained paper formats, a limited character set, and 

high throughput requirements; and process automation such as the post automation for 

postal mail sorting. It is believed that OCR is at a historical juncture [62], In the next 

decade, the applications of OCR must be widely spread in many other areas. One of the 

main streams should be the office document processing and information retrieval system.

The problems of efficiency, accuracy, and reliability in an OCR system have been 

encountered because hundreds of font styles, character sizes, special symbols, and differ

ent printing devices producing various qualities of images are to be dealt with. Another 

serious problem is the unavoidable noise while printing. Therefore, some postprocessing 

strategies such as dictionary checking and semantics understanding are necessary to com

bine with OCR [36, 39, 71, 76]. In this disstation, we focus on the document preprocess

ing and text recognition. Our intention is to reduce the complexity of the document pro

cessing, and improve the system performance.

1.2.3 Feature Extraction and Character Recognition

In document processing, a main subject is the conversion of textual regions to their repre

sentative computer codes. This procedure associated with a supervised classification is 

known as the character recognition. Apart from the unsupervised classification, which is 

associated with a clustering technique to group similar objects, supervised classification 

is an act of abstraction, which establishes a mapping from a normally high-dimensional 

feature space into a discrete space of class labels. This mapping, in the case of character 

recognition, is the inverse of printing. The dominant problem is to cope with the variabil

ity in character image appearance.
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It is believed that feature extraction is one of the most difficult and key issues in pat

tern recognition. Many researches have been achieved in character recognition. Basi

cally, most of the previous works are based on the binary character images. Impedovo et 

al. [39] classified the main techniques into four categories based on the selected features 

used for the classification -  template matching and correlations, distribution of points, 

transformations and series expansions, and structural analysis.

(a) Template matching and correlations. Template matching is relatively old technique in 

pattern recognition since it is easy to implement. Back to 1929, Tausheck [80] proposed a 

template/mask matching which used an optical and mechanical template. When an exact 

match occurs, light fails to pass through the mechanical masks, and so the machine recog

nizes the characters. Mathematically speaking, the principle is the axiom of superposi

tion.

In essence, template matching is to match an input character matrix against a set of 

templates, and the distance or similarity representing the correlationship between the 

input pattern and each template is calculated. The input pattern is then classified accord

ing to a minimum distance or a maximum similarity criterion. Some pixel-based correla

tion functions have been discussed in chapter 3. In order to reduce the complexity of cal

culating the correlation, some logic template matching methods were developed. One of 

the simplest is called the peephole method. A set of appropriate pixels are chosen for 

both black and white regions, and the input character is distinguished from other charac

ters relying on the set of peepholes. The first announced OCR system using peephole 

method is called ERA [20], in which the total number of peepholes used was 100 to dis

tinguish printed numerals. Iijima et al. [38] used 44 peepholes at 10 pixels/character to 

recognize 72 alphanumerals.

If a set of common peepholes can be selected for every character, a binary decision 

tree can be built up for the classification. The leaves of the decision tree represent the 

character classes, and each internal node of the decision tree represents a specific
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peephole location having two branches, known as “black” and “white” , leading to a ter

minal node. Wong et al. [95] presented this approach in 1982, in which each peephole in 

a character has three statuses -  “white,” “black,” and “unreliable.” When an unreliable 

peephole of a character is encountered, the character class will appear in both subtrees 

lead from this node. Fig. 1.2 illustrates an example of the decision tree, where PI is

white” for class “B” , and “unreliable” for class “C.

A C A D  C E

Figure 1.2 Illustration of a decision tree based on peephole method.

Template matching is not restricted on pixel-based operation. One of the variation is 

performed on the contour of the characters. To reduce the complexity, a cross correlation 

of sampled boundary distances was proposed by Wang et al. [92], Samples of distances 

defined from a major axis to points located on the boundary of an object image and a cor

relation function was used to calculate the similarity.

(b) Distribution of  points. This category comprises techniques that extract features from 

the statistical distribution of points. Representative techniques in this category are the 

use of moments, crossing counts, and zoned features.

Two-dimensional moments have been used for a number of image processing tasks 

and character recognition [86, 12, 43]. The moment of order p + q of a continuous 

image function f ( x ,  y ) is defined as
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mpq = J J x pyqf ( x ,  y)dxdy (1.1)

where p and q are non-negative integers. For digital images, the moment of order p + q 

has the following form

mpq = ' L ' L x pyqf ( x , y )  (1.2)
* y

In order to preserve the invariance to translation, it is recommanded to use the central 

moments by the following equation

M pq = EEC* -  x)p(y -  y)q.f(x, y), (1.3)
j t  y

where x -  and y = denote x- and y-coordinates of the centroid of the image. 
' '»oo

Furthermore, normalized central moments, which are invariant to both translation and 

scale of an image, can be derived from the central moments as [27]

Tp<t=zT r ^ '  where n = + 1 , P + q Z  2. (1.4)
Mqo ^

The moments of high order are too sensitive to the noise, and low order moments 

are preferred to be applied for recognition. From the second and third moments, a set of

seven invariant moments, which are invariant to translation, rotation, and scale change,

have been derived as [35]:

= ^ 2 0  + r02 (1-5)

02 = (r2O- r O2)2 + 4r?1 d .6)

03 = (r30 -  3r12)2 + (r03 -  3r21)2 ( 1.7 )

04 = (r30 + r 12)2 + (r03 + r2I)2 (1.8)

05 = (r30 -  3r12)(r30 + r 12)[(r30 + r 12)2 -  3(r03 + r2I)2 (1.9)
+ (r03 -  3r21)(r03 + r21)[(r03 + r 21)2 -  3(r30 + r 12)2]

06 = (r20 -  r02)[(r30 + r 12)2 -  (r03 + r21)2] + 4ru(r30 + r I2x r03 + r21) (1.10)
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fa = (r03 -  3r21)(r30 + r 12)[(r3„ + r 12)2 -  3(r03 + r21)2] (l.ii)
- (r3„ -  3r12)(r03 + r2l)[(r„3 + r21)2 -  3(r30 + r12)2]

Peephole method is not always limited to a single pixel. Instead, it can be expanded 

into a slit or a window and becomes more flexible. Examples of this technique are cross

ing counting and zoning. In crossing counting technique [13, 33, 45], the crossing counts 

are measured in various directions and locations. Rohland [68] proposed this technique 

in 1954. In this method, Weeks [93] scanned in four directions, i.e., 0°, 45°, 90°, and 

135°, for each of which six equally spaced and parallel lines are used to cover a character. 

This technique is often used by commercial system, such as CSL 2610 marketed by Com

puter Gesellschaft Konstanz [39], because it can be performed at high speed and requires 

low complexity.

Zoning technique can be regarded as a hybrid of template matching and structural 

analysis. The general idea is that pixel wise matching is replaced by subregion wise

matching, and the matching objects are the so-called zoned features within the subre

gions. Specifically, zoning technique first divides the frame containing the character into 

subregions, in each of which some local features are detected. This method has been 

applied by Suen [78], who used the densities of points in the subregion as the features. 

NEC [58] obtained a U.K. patent with this approach, in which four kinds of directional 

features, i.e., vertical, horizontal, and two orthogonal diagonal directions, are detected.

(c) Transformations and series expansions. Transform theory has played a key role in 

image processing for a number of years, and has been applied in for image enhancement, 

restoration, encoding, and description. Fourier series expansion is the most popular and 

so naturally had been applied to character recognition systems. Fourier descriptors (FD) 

have been shown as a useful set of features to describe closed curves [97, 28, 65].

There are two kind of representations of FD’s. The FD’s given in [97] are defined as 

follows. Assume y is a clockwise-oriented simple closed curve with parametric represen

tation (a:(/), y(/)) = Z(/), where / is arc length and 0 <. I <, L. Denote the angular direction
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of y at point / by the function 6(1). The cumulative angular function </>(l) is defined as the 

net amount of angular bend between starting point and point /, i.e., <f>(l) = 6(1) -  6(0). 

Note that <)>(L) = -  2/r. The domain of definition [0, L] of <j>(l) simply contains absolute 

size information. A normalized variant <t>*(t), whose domain is [0, 2/r] and such that 

0*(O) = (f>* (2ji) = 0, is defined as:

(L t  \
<p (t)=(t>y— n y t .  (i.i2 )

<j>* is invariant under translations, rotations, and changes of perimeter L. Note that 

<p*(t) = 0 for a circle which is in some sense the most shapeless closed curve. Now <t>* is 

expanded as a Fourier series

00

<f(t) = /A) + Y*(ak c°s kt + bk sin kt). (1.13)
*=i

In polar form the expansion is

OO

</>*(t) = /u0 + £  Ak cos (kt -  a k) (1.14)
*=i

where (Ak, a k) are polar coordinates of (ak, bk). Ak and a k are the FD’s for curve y and 

are known as the k'h harmonic amplitude and phase angle.

The other representation was proposed by Granlund [28] and developed by Persoon

and Fu [65]. A point moving along the boundary generates the complex function

u(l) = x(l) + j'y(l) which is periodic with period L. The FD’s become

1 L
a " = 1 1 l l ^ e ~J('2n' L)n' d l (L15)

and

OO

u(l) = ' L a nej(2nlL)nl. (1.16)
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(d) Structural analysis. Humans look at a character as a linelike object. Structural fea

tures are generally used to derive the global structure of a pattern. They describe the geo

metrical and topological properties of a character. Generally, structural analysis consists 

of three stages -  Skeletonization, feature extraction, and classification. Ideally, a thinned 

line in Euclidean space is a line without width. However, this definition cannot be 

accepted in digital picture representation. Therefore a one-pixel width is used and the 

connectivity of a line needs to be defined. The most used features are strokes and curves 

in various directions, end points, corner points, junction points, intersection points, loops 

and their positions in the bounding box of a character.

One of the techniques in this class uses an attribute grammar to describe the general 

structure of a character and leads to a terminal node representing a character class. Fig.

1.3 illustrates an example of character generation by strokes. The generation diagram in 

Fig. 1.3 is similar to the state transition diagram that could be explained by a regular 

grammar, and can be implemented by a finite state automata. This approach was applied 

by Lee et al. [47], which employing attribute dependent regular programmed grammar 

for the recognition of Korean character.

Figure 1.3 An example of character generation by strokes.
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Another approach is stream following analysis. The strict description of stream fol

lowing was given by Perotto [66], Fig. 1.4 shows an example given by Perotto, which 

uses the order of raster scanning from top to bottom and from right to left. The descrip

tion of the numeral “6” is labeled as shown at the bottom of Fig. 1.4, where labels P, 

and P2 denote the two principles which are encountered while scanning, label D2 denotes 

the branching of order 2 for P2, and label U2 denotes the state D merges to one segment 

at the position close to the left.

P2<

vn

Description: £

nnri m ?

2 , , 2P2D*U

Figure 1.4 Illustration of the stream following method [66].

Siy and Chen [74] consider a character as a directed abstract graph, of which the 

node set consists of tips, corners, and junctions, and the branch set. The line segments of 

a character are fuzzily classified to branch types such as straight lines, circles or portions 

of circles, which in turn are divided into four, six, and five categories. The branch feature 

set are shown in Fig. 1.5, in which the branch features are labeled by the symbols under 

them. A character is characterized by its functional descriptions including the branch fea

tures and their corresponding nodes. In Fig. 1.6, for example, (a), (b), and (c) have the 

same functional descriptions, i.e., F(a) = F(b) = F(c) = H( 1,2) 1/(1,3) D(3,4). Other 

variants of the character 5, as shown in Fig 1.6(d) and (e), have the functional
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descriptions F(d) = H(l,2) P(l,3) D(3,4) and F(e) = F (l,2 ) V(l,3) D(3,4), respec

tively. Thus, the character 5 in Fig 1.6 can be represented by

F( 5) = F(5a) + F(5b) + F(5c) + F{5d) + F{ 5e)

= h(l,  2) V(l, 3) D(3,4) + H(  1,2) P( 1,3) D(3,4) + F (l, 2) V(l, 3) D(3,4).

Straight lines Portions of a circle Circles

-  i / \ C w 5 0 o o o o o
H V P N C D

(a)

Z OL OR OA OB 0 0

Figure 1.5 The branch feature set [74].

1 2
1 2

:
(b) (c) (d)

Figure 1.6 Some examples of character 5 [74],

(e)

Siy and Chen use a fuzzy logic for the measure of straightness and orientation to deter

mine a branch’s type. A measure of straightness for a branch is defined by

fsL ~ •
1-5/S, ,
0,

if S < S, 
if S Z S , .

(1.17)

where S, is the threshold least squares error. A given branch is classified as a portion of a 

circle if 0 £ f SL < 0.5; or a straight line otherwise.
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A new method of thinning using vectorization was developed by Pavlidis [63]. The 

method is based on a line adjacency graph (LAG), which can be performed directly on 

the run-length encoding. The resulting strokes and other shapes are mapped into binary 

features which are then fed into a statistical Bayesian classifier [2, 41]. Typical shape 

types which can be found by the LAG traversal are stroke, hole, arc, crossing point, and 

endpoint. It is called a “parameter-space” approach.

The parameterization of strokes is described as follows. Given two endpoints, a 

stroke can be represented as a 4-vector < x, y, r, i >, where < x, y > represents the loca

tion of the stroke’s center, and the complex number < r, i > represents its length and ori

entation in a special way. The stroke length is normalized into the range [0, 0.5] and the 

angle between the stroke and the .xr-axis is doubled to give the angle of orientation 

tan-1(//r). Fig 1.7 shows the parameterization of the strokes of a “P.”

.........o............
o

o 0 

o

o o ooo

Strokes <x,y> <r, i>

Figure 1.7 Parameterization of the strokes of a “P.”

Template matching is robust in the global matching, but is sensitive to noise and 

character variation. Therefore, for multifont character recognition, Template matching 

needs to include all the fonts of characters in its model base. This makes the searching 

problem more complicated. Two-dimensional moments are invariant to translation, orien

tation, and scaling change. However, it is not invariant to font style change. In addition, 

to compute moments is time consuming. FD’s are very useful for global feature extrac

tion and powerful for distortion. However, they are not so good for local feature
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extraction since they are insensitive to spurs on the boundary; e.g., they may not distin

guish O and Q. Another problem is that the selection of starting point of a boundary trac

ing is crucial for the invariant properties of FD’s.

From the nature of the characters, structural analysis seems closer to the perception 

of the human being. Especially for multifont and handwritten character recognition, the 

main advantage of structural analysis is its high flexibility to distortion and style varia

tions. However, sometimes the extent of tolerance may not easy to be controlled, thus 

different characters may have similar structures. For example, stream following analysis 

is very simple and is very strong against variations of shape. Perotto called the descrip

tion a morphotopological description. However, because of the simplicity, considerably 

different patterns may have the same descriptions, such as “U ” , “V ” , and and can 

not be distinguished. We may need another raster scanning horizontally, or some other 

attributes to separate them. Furthermore, the extraction of the features for structural 

description is very difficult and is still a research topic.

1.2.4 Segmentation for Merged Character

Merged character is still a major problem in OCR which may occurs due to low resolu

tion or smearing ink of a printing device when producing a document with small intra

character spacing. Especially when the text is printed in proportional spacing style, the 

characters within a word are close to each other. Even though the characters in the physi

cal document are not touched, the character images are frequently merged together with 

such a small spacing. Kahan et al. [41] characterize the most frequent types of joins into 

two categories: serif joins and double-o joins. As shown in Fig. 1.8, serif joins are usually 

near the bottom or the top of the characters and are due to overlap of the extreme points 

of a pair of serifs. Double-o joins usually occur near the middle of the characters and are 

due to osculating convex contours. Joins which are not belong to these two types may 

also occur such as shown in Fig. 1.8(c).
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(a) (b) (c)

Figure 1.8 (a) Serif join, (b) double-o join, and (c) other join.

General solution for merged character applies a “hypothesis and test” procedures, 

which mainly consists of three stages. First, the possible breaking positions are sought. 

Second, the candidates are recursively segmented and recognized. The possible candi

dates may be ranked by their reliabilities. At last, a linguistic context confirms the 

hypotheses. It is fundamental to locate the breaking positions properly. Vertical projection 

profile, skeletal features, and contour features have been used for touching character seg

mentation.

It is observed that the number of pixels at linking positions are relatively low in the 

vertical projection profile, denote as V, as shown in Fig. 1.9(b). However, it seems not 

sufficient since the horizontal strokes of a character also have a low number in V. A 

major difference between joins and thin horizontal lines is the quick change in V in the 

neighborhood of a join. Bsed on the sharp minimum of V, Kahan et al. [41] looks for a 

maximum in the second difference. That is

Vf = (VM -  Vt) -  (V,- -  V,_0 = VM + V,_, -  2Vi (1.18)

Fig. 1.9(c) illustrates the functions V' that are computed for breaking the merged charac

ters.

Tsujimoto and Asada [85] propose a break cost, which is a variation of vertical pro

jection profile, as a metric to nominate break positions. Break cost (BC) evaluates the
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Figure 1.9 (a) Examples of merged characters (b) vertical projection profile (c) differ
ence functions of projection profiles [41] (d) break cost function [85].

degree of contact for each pair of adjacent columns. It is calculated by accumulating the 

number of black pixels vertically in the image obtained after an AND operation between 

neighboring columns. Mathematically, BCj = £  (Xjj O  * ,j+1). Fig. 1.9(d) shows an 

example of break cost function, where the arrows indicate the candidates of break posi

tions.

Another splitting algorithm uses skeletal features, such as end points, junctions, and 

stroke segments, as the primary splitting features. Mitchell and Gillies [54] proposed a 

splitter which is designed for splitting handwritten digit numerals and is restricted for two 

merged digits only. The splits roughly sort the stroke segments of the form into two 

groups representing the left and right digits. However, there are situations where the 

desired sorting results in stroke segments that are in both or neither groups. For example, 

the vertical stroke segment created by two touching zeros is really a part of both digits, 

but a stroke segment that bridges two digits is not a part of either digit. Then, some enu

meration heuristics based on handwriting properties are used to limit the split number. 

For example,

Horizontal strokes with three-way junctions at both ends are assumed to belong to

neither split group, i.e., a bridge stroke.

After a split is generated, it is tested to see if the resulting form can possibly be a 

digit. Several pruning heuristics based on digit morphology properties are employed.
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Finally, from the splits that survive the digit tests, the split which produces the largest 

digit stroke centroid separation is selected as the best candidate.

Contour analysis has also been used to detected the break positions. Fujisawa et al. 

[25] proposed an approach which firstly finds the contour of each connected component.

The contour is separated into the upper and lower part as shown in Fig. 1.10(b) and (c),

where separation between upper and lower contours is done at the leftmost and rightmost 

points, giving two lists of contour points:

Cu = Lb(xup, y up̂ p  = l  URb (1.19)

CL = Lb(xlq, y lq)| q = l , . . . , L R b  (1.20)

The two lists of upper/lower contour points Cu and CL are then converted to single

valued functions Hy{x) and H L(x), which represent the lowest and highest y-coordinates 

of the contour points at x  respectively. An approximated measure of vertical width H(x) 

is given as follows:

H( x ) = \ H u (x ) - H l (x )| (1.21)

The candidate locations is obtained by comparing the vertical width H(x)  with a thresh

old h,. As shown in Fig. 1.10(d), this comparison is made in interval [X,, X 2] to limit the 

search range. Candidate locations are where the curve H (*) and line h, cross each other.

(a) (b) (c) (d)

Figure 1.10 Break location candidates by contour analysis, (a) A contour of touching 
character and candidates for touching points, (b) Upper contour Cv and 
function Hu{x). (c) Lower contour CL and function H L{x). (d) Measure of 
vertical width H(x).
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Traditional techniques for splitting merged characters are simply based upon the 

“hypothesis and test” procedures. These techniques are weak by two reasons. First, in 

the hypothesis phase, existing algorithms for detecting break candidates are suitable for 

certain types of joins and not robust. Second, in the test phase, there may exist multiple 

choices which survive the segmentation and recognition, and the text context confirma

tion test. Usually, the one with highest reliability is then selected. However, the reliability 

ranking is still questionable.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 presents a block seg

mentation and classification technique. Chapter 3 presents a fuzzy typographical analysis 

for character preclassification. Chapter 4 proposes a fuzzy model for unsupervised char

acter classification, which incorporates a fuzzy pattern matching technique. Chapter 5 

presents a topography-based approach of skeletonization for fuzzy degraded character 

images. Chapter 6 summarizes the contributions of our research and briefly discusses the 

future research directions.



CHAPTER 2

PREPROCESSING

To retrieve information from a mix-mode document, the first step is to distinguish the text 

from non-text. This procedure is called preprocessing. Preprocessing, when applied to 

document analysis, associates the decomposition and preparation of the document into 

proper subordinate areas, or blocks, which are ready for subsequent processes. It is 

known as area segmentation, or block segmentation. In this chapter, we propose a two- 

step block segmentation and a rule-based block classification which is relatively indepen

dent of the change of text font style and size.

2.1 Block Segmentation

The block segmentation decomposes a document image into rectangular blocks each of 

which includes one of text, horizontal or vertical lines, graphics, or pictures. Several 

techniques for block segmentation have been developed [21, 23, 91], A constrained run- 

length smoothing algorithm [91] is used to segment a document into areas of text, lines, 

and pictures. The graphics, except solid horizontal or vertical lines, is categorized into the 

same class as pictures. A rule-based block segmentation [21] consists of smearing the 

document image via the run-length smoothing algorithm, calculating the locations and 

statistical properties of connected components, and filtering out the image. The Bley 

algorithm [6] decomposes a connected component into subcomponents which makes it 

more complex in the recognition process and which is sensitive to text font and size vari

ations. A robust algorithm for block segmentation [23] which uses the Hough transforma

tion to group connected components together into logical character strings to be discrimi

nated from the graphics, is relatively independent of changes in text’s font, size, and 

string orientation.

33
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The office documents are digitized and thresholded into black-and-white (or binary) 

images through a scanner or a facsimile, where white pixels are represented as 0’s and 

black pixels as l ’s. A run-length smoothing algorithm (RLSA) [21,95] can be applied to 

scan the binary sequences row-by-row or column-by-column. A set of adjacent 0 ’s or 1 ’s 

is called a run. The algorithm converts a binary input sequence /  into an output sequence 

g by using the simple rule: the 0’s in /  are changed to 1 ’s in g if the run length of 0’s, i.e. 

the number of adjacent 0 ’s, is less than or equal to a predefined threshold value C. For 

example, if the threshold C = 5 is chosen and the input is

/: 00110000001001110001100000100,

then the output will be

g: 00110000001111111111100000100.

The smoothing rule merges two runs of 1 ’s together if the interval between them is 

not sufficiently spaced. Since the spacings of document elements are different horizon

tally and vertically, different values of C are used for processing the sequences row-by- 

row and column-by-column processing. With appropriate selection of C ’s, the merged 

runs will construct various blocks of a common data class. The original RLSA [95] con

sists of the following four steps:

(1) A horizontal smoothing is applied to the original document image by a predefined 

threshold Ch.

(2) A vertical smoothing is applied to the original document image by a predefined 

threshold Cv.

(3) The smoothing results of Step 1 and 2 are combined by a logical AND operation.

(4) An additional horizontal smoothing is applied to the output of Step 3 by a relatively 

small threshold Ca.

The selections of Ch, Cv and Ca in RLSA affect the resulting images. Too small Ch 

simply links the characters within a word but can not bridge the interword space. Too
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large Ch, however, may cause text to be joined with non-text regions, or may cause text 

multi-columns concatenation. Similar effect occurs for the Cv selection. The relatively 

small threshold Ca of Step 4 is used to fill in the horizontal gaps between words in a text 

line. The original RLSA algorithm requires scanning the whole image four times. An 

improvement is accomplished to reduce the number of scannings from four to only two.

Let A and B denote the outputs of Step 1 and 2 respectively in the RLSA. Step 3 is 

to perform A n  B, which is equivalent to A -  (~>B). Therefore, the four steps of RLSA 

can be modified as follows: Step 1 and 4 remain unchanged, but Step 2 and 3 are merged 

into one step which is:

• If the run length of 0’s in the vertical direction of the original image is greater than Cv, 

then reset the corresponding pixels in A to be 0’s and leave A unchanged otherwise.

The three-step algorithm can be revised by carrying out the vertical smoothing prior 

to horizontal smoothing.

(1) A vertical smoothing is applied on the original document image by a predefined 

threshold Cv.

(2) If the run length of 0’s in the horizontal direction of the original image is greater than 

Ch, then reset the corresponding pixels in the output of Step 1 to be 0’s and leave 

those unchanged otherwise.

(3) An additional horizontal smoothing is applied to the output of Step 2 by a relatively 

small threshold Ca.

The three-step algorithm can be further improved by combining Step 2 and 3 of hor

izontal smoothing into one step. Suppose that Ca could be greater than, smaller than, or 

equal to Ch. The effect of Ca compared with Ch on the above three-step algorithm is 

analyzed below.

Firstly, for Ch = Ca = C used in the Fisher’s segmentation algorithm [21], if the 

number of horizontally consecutive 0’s of the original image is greater than C, then the
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corresponding pixels must be set to be 0’s in Step 2 and will not be set to be 1 ’s in Step 3. 

If the number is less than or equal to C, then the corresponding pixels remain unchanged 

in Step 2 and will change to l ’s in Step 3. It can be observed that Step 3 is equivalent to 

checking on the original image while changes take place on the output of Step 1. Since 

Step 3 is independent of Step 2, Step 2 and 3 can be merged together as follows:

• If the run length of 0 ’s in the horizontal direction of the original image is greater than 

C, then set the corresponding pixels in the output of Step 1 to 0 ’s; otherwise set them 

to l ’s.

Note that the final results determined by checking on the original image horizontally are 

independent of Step 1 no matter what values are changed vertically in Step 1. Therefore, 

this is equivalent to making changes on the original image, so that its result is the same 

function as Step 1 of the original RLSA. As a result, the one-step algorithm (i.e. Steps 

2-4 of RLSA are redundant) can replace the four-step RLSA algorithm when Ca = Ch.

Secondly, for Ch < Ca, if the number of horizontally consecutive 0’s of the original 

image is between Ch and Ca, then the corresponding pixels which remain 0 ’s in Step 2 

will be converted to l ’s in Step 3. Therefore, Step 2 is redundant and can be removed.

Thirdly, when Ca < C h (used in the RLSA algorithm [95]), if the number of horizon

tally consecutive 0’s of the original image is between Ch and Ca, then the corresponding 

pixels in the output of Step 1 are checked whether they are subdivided into smaller seg

ments, and then the spacings between segments are compared with Ca to determine 

whether 0’s or l ’s are to be assigned. Thus, the final improved algorithm consists of only 

two steps:

(1) A vertical smoothing is applied to the original document image by a predefined 

threshold Cv.

(2) If the run length of 0’s in the horizontal direction of the original image (denoted by 

RL) is greater than Ch, then the corresponding pixels in the output of Step 1 are reset 

to 0 ’s. If RL <. Ca, then the corresponding pixels in the output of Step 1 are switched
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to l ’s. If Ca < RL <, Ch and if the run length of horizontally consecutive 0 ’s in the

output of Step 1 is less than or equal to Ca, then the corresponding pixels in the out

put of Step 1 are set to l ’s.

Another commonly used block segmentation algorithm, known as RXYC (or recur

sive X-Y cuts), is based on the projection profile. At each step of the recursive process, 

the projection profile is computed along both horizontal and vertical directions. Then sub

division along the two directions is accomplished by making cuts corresponding to deep 

valleys, with width larger than a predetermined threshold, in the projection profile.

RLSA is better than RXYC for getting small blocks where each block includes just 

a text line in the text area, . This is because the RLSA smearing process is done within 

each text line. On the other hand, the RXYC has to be done several times to make each 

text line in a block by setting threshold smaller than the inter-line space. If large blocks 

such as paragraphs are needed, then RXYC is better than RLSA. A merging algorithm 

has to follow the application of RLSA for merging blocks corresponding to single text 

lines to form blocks corresponding to paragraphs.

In comparison of the running time, the two-step RLSA scans the image twice, while 

the number of scan for RXYC depends on the structure of the document. Another disad

vantage of using RXYC is that it is more sensitive to skew than using RLSA. Further

more, the skewed angle is easier to detected by the smoothed image after applying RLSA.

Another advantage of RLSA is its flexibility, when applying to some irregular docu

ment such as a graphics spanning two columns in a three-column document. Fig. 2.1 

shows an example of such special cases which can only be segmented by RLSA. If 

RXYC is applied to this case, a deadlock occurs. Also the layout structure of this case is a 

graph instead of a tree.

A shortcoming of the RLSA method is that the resulting blocks may not be rectan

gular, and an component generation algorithm for finding the bounding rectangle of each 

connected component has to be used after applying the RLSA.
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Figure 2.1 An example of document with non-hierarchical layout structure.

2.2 Block Classification

In the preceding section, the mixed-mode (mixture of text, graphics and pictures) docu

ment is segmented into blocks, each of which contains the single-mode content. This sec

tion presents the block classification algorithm to classify the blocks into one of the text, 

horizontal or vertical line, graphics and picture classes. Most existing block classification 

techniques are based on the discrimination of statistical local or global features. The 

commonly used features, such as the height of a block and the aspect ratio, are elemen

tary for extracting the mostly popular text blocks. However, they are not sufficient in 

classifying the mixed-mode document blocks. Therefore, more complex features are 

needed to achieve higher reliability.

Since the text/nontext blocks tend to cluster in space with respect to some features, a 

threshold or a discriminant function is selected for separation. A two-dimensional plane 

consisting of mean value of the block’s height versus mean run length of the black pixels 

is established to classify document blocks into text, nontext, horizontal line, and vertical 

line [95]. A rule-based classification uses the features such as height, aspect ratio, den

sity, perimeter, and perimeter/width ratio [21]. A newspaper classification method creates
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the black-white pair run-length matrix and black-white-black combination run-length 

matrix to derive three features: short run’s emphasis, long run’s emphasis, and extra long 

run’s emphasis for clustering [90]. The distribution of the features used is dependent on 

the character’s font and size and the image resolution. An inappropriately chosen thresh

old can lead into misclassification.

This section presents a robust block classification algorithm based on clustering 

rules. Let the origin of the document image be located at the upper-left comer. Each block 

is measured in terms of the following:

• Minimum x- and y-coordinates and the width and height of a block 

Ĉ mim Jmin" Ax, Ay).

» Number of black pixels corresponding to the block of the original image (N ).

• Number of horizontal transitions of white-to-black pixels corresponding to the block 

of the original image (77/).

• Number of vertical transitions of white-to-black pixels corresponding to the block of 

the original image (TV).

• Number of columns in which any black pixel exists corresponding to the block of the 

original image (dx).

Since in most cases the projection profile of a block onto y-axis contains black pix

els in each row, it is redundant since it measures the number of rows in which black pix

els exist. The following features used in block classification can be easily calculated:

• Height of each block, H  = Ay.

Ax
• Ratio of width to height (or aspect ratio), R = — .

Ay

N
• Density of black pixels in a block, D = - —— .

AxAy



Horizontal transitions of white-to-black pixels per unit width, THX = ----
5x

• Vertical transitions of white-to-black pixels per unit width, TVx -  — .

Horizontal transitions of white-to-black pixels per unit height, 77/

Note that a text block constructed from the segmentation algorithm contains a text 

line only. Since typical office documents often contain the text with mostly one popular 

size and font, the mean value of all the block-heights in a document is approximately 

equal to that most popular text’s block-height. The ratio of width to height R can be used 

to detect the blocks, such as horizontal or vertical lines. Both the mean horizontal transi

tion THX and the mean vertical transition TVx play important roles in text and nontext 

discrimination. Both features are independent of variant text’s fonts and sizes as long as 

the ratio of the width to height of a character is not varied significantly.

Let 77/™x and 77/™" denote the maximum and minimum THx’s values of all char

acters, respectively, (and similar notations 7V™ax and 7V™" are used.) Intuitively,

Let H m be the average height of the most popular blocks, which dominate the text of 

a document. The rule-based block segmentation algorithm is described as follows:

• Rule 1: if c, Hm < H < c2H m, the block belongs to text.

• Rule 2: if H < c, H m and chl < THX < ch2, the block belongs to text.

• Rule 3: if THX < ch3, R > cR, and c3 < 7V* < c4, the block is a horizontal line.

• Rule 4: if THX > — , R < l/cR, and c3 < THy < c4, the block is a vertical line.

• Rule 5: if H > c2Hm, chl < THX < ch2, and cvl < 7Vv < cv2, the block belongs to text.

77/™" ^ THX <, TH™\  and (2 .1)

7V™" ^ TVx <> TVXm ax (2 .2)
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• Rule 6 : if D < c5, the block belongs to graphics.

• Rule 7: otherwise, the block belongs to a picture.

Rule 1 is used to extract most of the text lines. Rule 2 is used to capture the text 

lines with smaller sizes, such as footnotes or remarks. Rules 3 and 4 determine the hori

zontal and vertical lines, respectively. Rule 5 discriminates the text with larger sizes, 

such as titles and headings. The remaining blocks are therefore classified as nontextual. 

Rule 6  is used to distinguish the graphics and pictures by analyzing the block density. The 

graphics which contains a combination of line drawings and characters has lower density 

than the picture in most cases.

2.3 Parameters Adaptation

For our experiment, 100 documents with character size varying from 6  to 15 points were 

used. For each document, the mean values of height Hm and the standard deviation sd 

are derived from blocks of the most-popular height. The ratios of sdH/H m are distributed 

within the range of 0.027 and 0.044 with an average 0.034. For reliability, the tolerance 

of text height is selected to be six times of the average ratio, i.e. 0.2. Therefore, 

Cj = 1 -  0.2 = 0 . 8  and c2 = 1 + 0.2 = 1.2. This allows most of the text blocks to be 

extracted except those with significantly different sizes (e.g., title of text).

A set of text blocks with character sizes varying from 6  to 36 points mixed with four 

commonly used fonts -  Roman, Italic, Boldface, and Courier were collected. Results of 

the mean values of THX and TVx for different fonts and sizes are shown in Fig. 2.2. For 

all fonts, the mean value is slightly decreased as the character size decreases because the 

gaps between objects are relatively small and could be filled up easily in printing or scan

ning. The mean values of Roman, Italic, and Boldface fonts are almost the same. The 

mean value of THX of Courier font is slightly lower than the others because other fonts 

are printed in a proportional style, while Courier font is printed in a fixed pitch so that it 

consists of less vertical-like strokes within a unit length of text. On the contrary, the mean
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value of TVx of Courier font is slightly higher than the other fonts because horizontal ser

ifs of Courier font are longer. The standard deviation of THX and TVX for different fonts 

and sizes is less than 0.1. Therefore, the mean white-to-black transitions are reliable for 

text extraction with variant fonts and sizes. As a result with tolerance consideration, 

chl =  1.2, c h2 = 3.0, c vl = 1.2, and cv2 = 2. 6  are selected.

2.4

2.2

2

1.8

1.6

1-4.

I

i-tr ii
i _  ~i i
i

I
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Character size
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35

Boldface 
Courier 
Roman -a- 

Italic

15 20 25 30
Character size
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Figure 2.2 Mean values of (a) THX and (b) TVx for different fonts and sizes.

Different resolutions (dots per inch) of a scanner were also experimented. As 

shown in Fig. 2.3, the mean values of THX and TVx are slightly changed. The standard 

deviation is lower than 0 .1 , so that the mean transitions are reliable with respect to the 

scanning resolution.

2.4

2.2

1.8 4 -  -

1.6

14

Resolution

THx-
TVx

Figure 2.3 Mean values of THX and TVx for different resolutions.
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Results of THX and TVX for blocks of text, vertical lines, graphics, and pictures are 

shown in Fig. 2.4, where a great deal of graphics and pictures are out of the display range 

using the scale. The big cluster centered at (1.82, 1.60) represents text blocks, and the 

cluster centered at (0.12, 1.00) corresponds to vertical lines. Note that for vertical lines, 

TVx is always very close to 1, and the standard deviation is 0.0004, that means TVx is 

very stable for vertical lines extraction. Similarly, for horizontal lines, THy is very close 

to 1, and is stable for horizontal lines extraction. Therefore, c3 = 0.95 and c4 = 1.05 are 

selected. Disregard the line width, the aspect ratio of a horizontal line R approximates 

cotd, where 9 denotes the tilt angle of the scanned document. Therefore, cR is set to 5, 

that allows the document to be tilted up to 11.3 degrees. For a horizontal line, THX is 

within the range of ±tanft Therefore, ch3 is selected as 0.2.

10
text

horizontal line 
graphics 

picture
8

-b-6
TVx

4

2

0
2 60 4 8 10 1412

THx

Figure 2.4 The projected THX -  TVx plane.

Graphics and pictures are sparsely distributed on the THX — TVx plane, therefore it is 

not suited to use the mean transitions for discrimination. In principle, graphics composed 

of lines has lower density than pictures. From experiments, the mean value of density for 

graphics is 0.061 and the standard deviation is 0.033, while that for pictures is 0.853 and
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the standard deviation is 0.108. In practice, the value in the range of [0.15, 0.25] is suffi

cient to separate graphics and pictures. Therefore, cs = 0.2 is selected.

2.4 Experimental Results

Our document block segmentation and classification algorithms were implemented on a 

SUN SPARC workstation under UNIX operating system. Document images are captured 

by a DEST PC 3000 scanner at the resolution of 300 dots per inch. We have randomly 

selected 100 documents which are the mixture of text, graphics, and pictures. Our algo

rithms perform the block segmentation and classification successfully. The following 

shows an example of the document used and results.

Fig. A. la  in Appendix A shows a document image that contains text with different 

fonts and sizes, a flow-chart, a picture, and two horizontal lines. Figs. A. lb and A .lc 

illustrate the resulting images after steps 1 and 2  of our improved two-step smoothing 

algorithm. Theoretically, we need only 2 steps and therefore save almost 50% computa

tional time. Our step one is identical to the step two of the original algorithm. However, 

our step two is more complicated, and therefore takes about 10%-15% overhead. Gener

ally, our algorithm takes about 60%-65% of the computational time of the original algo

rithm. For example, the document shown in Fig. A .la takes 3.7432 seconds to perform 

the block segmentation by original algorithm, and takes 2.3682 seconds by our algrithm. 

Therefore, it save 37% computational time in this example. The result of our block clas

sification applied on Fig. A. la  is shown in Table A .l, where classes t, p, g, and h denote 

text, picture, graphics, and horizontal line, respectively. The result of applying Wong et 

al.’s algorithm [95] is shown in Table A.2 for comparison, where classes t, h, n denote 

text, horizontal line, and nontext, respectively. Note that in Table A.2, block 38 which 

should be a horizontal line is misclassifled as text.

Figs. A.2 and A.3 show the projected THX -H plane and TVx -H  plane of our algo

rithm, and Fig. A.4 shows the projected R-H plane of Wong et al.’s algorithm. Our
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algorithm has the following three advantages over their algorithm. First, the features of 

THX and TVx are more suitable in classifying text and non-text blocks than the feature of 

R. It is observed that THX and TVx are more convergent than R for text blocks. Further

more, the range of R of graphics blocks is mixed with that of text blocks. However, this 

effect does not occur in THX and TVx.

Second, our method is better in classifying solid lines than Wong et al.’s algorithm 

[95]. A thin line could be misclassified as text due to its spur by using their algorithm. 

From observation, TVx of a horizontal line is convergent to 1.0, and is also for THy of a 

vertical line. Thirdly, THX and TVx are independent of character sizes and fonts, while R 

is not. When the character size becomes larger, for example, twice, R will be as twice as 

the original one. Moreover, if a certain font of a character has the thickness twice, R 

tends to increase twice again. In many documents, the headline or the title has greater 

size and thicker font. These will double the influence of the value R. Wong’s algorithm 

restricts the text size up to three times of the most popular text blocks; this reduces its 

generality. Since our features are independent of the character’s font and size, this limita

tion is conquered.



CHAPTER 3

FUZZY TYPOGRAPHICAL ANALYSIS FOR 
CHARACTER PRECLASSIFICATION

In this chapter, we investigate the problems of character isolation, and present a fuzzy 

logic approach to efficiently preclassify characters according to the typographical struc

tures of textual blocks.

3.1 Introduction

The overall procedures of our document processing system is shown in Fig. 3.1. The 

office documents are digitized and preprocessed to extract the textual blocks as described 

in chapter 2. First, the individual character units are constructed based on the connected 

components and their relations. The typographical categorization divides the characters 

into seven categories based on their typographical structures such as upper zone, middle 

zone, and lower zone. The unsupervised character classification adopts the fuzzy match

ing technique to further classify them into a limited set of distinct fuzzy prototypes which 

will be presented in Chapter 4. The optical character recognition is employed to recog

nize the set of fuzzy prototypes. Finally, the postprocessing intends to correct the errors 

by means of dictionary checking or semantics understanding.

Preprocessing Typographical
Categorization

Optical
Character

Recognition
Postprocessing

Unsupervised
Character

Classification

Figure 3.1 Overall procedure of our document processing system.
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As illustrated in Fig. 3.2, a text line can be regarded as being composed of three 

stripes: the upper, middle, and lower zones, they are delimited by the top line, the upper 

baseline, the baseline, and the underline. The height of middle zone, being the major part 

of the text line, is about twice as high as the other two zones and can be further split by a 

mid-line.

=r -‘-huaatt-pruceBiHUK-.- H~
Figure 3.2 Typographical structure of a text line.

Typographical analysis can detect the particular word structures such as subscripts 

or superscripts. On the other hand, some characters in the upper and lower cases with the 

same structures, such as “ C” and “c ”, “O” and “o” , can be distinguished. Explicitly, 

the baseline appears in a text line. The upper baseline may not present in the case of a 

short text composed of ascenders only, and the top line and the underline may not exist if 

only centered characters appear. Therefore, it is essential to locate the baseline. The base

line can also be used for document skew normalization and for determining interline 

spacing to be more computationally efficient than the traditional Hough and Fourier 

transform approaches [32, 57].

Luca and Gisotti [50] used the typographical analysis in a word structure for charac

ter classification. However, if a word is too short containing insufficient character ele

ments, the structure analysis is quite unstable. In addition, the tolerance for variations in 

the reference lines was not incorporated. Our baseline detection algorithm based on a 

line of text is more reliable and efficient than the one based on a single word [50]. The 

remaining virtual reference lines are extracted by a clustering technique [30]. To allow 

the unpredictable noise and deformation, the tolerance analysis is included. To ensure the 

robustness and flexibility, a fuzzy-logic approach [42, 61] is used to assign a membership
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to each typographical category for ambiguous classes. A linear mapping function is 

adopted and its boundary conditions are derived to preserve the continuity.

The chapter is organized as follows. Section 2 discusses the problem of character 

isolation. Section 3 describes the character typographical structure. Section 4 presents the 

baseline detection algorithm. Section 5 analyzes the tolerance. Section 6  describes the 

fuzzy typographical categorization. Experimental results and discussion are given in sec

tion 7.

3.2 Character Isolation

Character isolation is used to extract individual character components from the seg

mented text lines. First, the connected components are detected. Then, the characters 

with multiple components are constructed by grouping the related components, and 

words are built up by the intercharacter space checking. A projection histogram on x- 

axis over this spacing contains two significant peaks: one for the interword spacing and 

the other for the intraword spacing.

The first step for building characters from a textual block image is to extract each 

connected components. This can be achieved by a connected component growing algo

rithm which is described as follows:

(1) The textual block image is scanned from top to bottom and left to right until an 

unmarked object pixel, which is considered as the starting pixel, is encountered. The 

scanning ordering is consistent with the writing habit of English language.

(2) The textual block image is considered as a graph with the pixels representing the 

nodes. A link is connected if two foreground pixels are 8 -neighboring. The depth- 

first search (DFS) or breadth-first search can be applied from the starting pixel, and 

the pixels are marked when they are traversed.
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(3) Continue the scanning from the starting pixel until an unmarked object pixel, which 

is considered as the new starting pixel, is encountered and go to step (2). The proce

dures are repeated until every object pixel is marked.

When the growing algorithm is performed, the x-  and y-coordinates of the top-left 

and bottom-right corners of the smallest enclosed rectangle of the component and the 

number of foreground pixels of the component are recorded. Two issues of the relation

ship of a character unit and a connected component are observed:

(1) Multiple connected components may construct a single character. A character may 

be broken into several components due to bad printing quality. Or, by nature, a char

acter is made up of several constituents. Examples of these characters in English are 

character “i ” which is composed of a base stroke and a dot, and several punctuation 

symbols such as “?” and Some special notations or diacritic characters even 

contain three components. For example, the percentage symbol “ %” and the second 

derivative x.

(2) One connected component represents multiple characters. This may occur by inten

tion such that the characters “f ” and “i” are set up in one component as “fi” , or by 

accident due to the low resolution of a printer or a scanner.

Two approaches can be used to solve the first problem. The first is to group the 

components into one single image, which is treated as an entity for the subsequent pro

cesses. While the second treats the components independently. Each of them is passed to 

the character classifier and then is combined to one character according to some specified 

rules. The advantage of the first approach is that the recognition phase is simpler than 

that of the second approach. Therefore, The components must be grouped together as 

early as they could. The multiple components, which construct a single character by defi

nition, normally have the characteristics of overlapping in vertical projection. Based on 

this assumption, the projections of components which overlap in a certain degree will be 

considered as a single unit. In our experiments, two components are grouped together if
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either one overlapped with the other one more than 50%. However, the broken characters 

may happen arbitrarily, and we may need to apply the second approach. Alternatively, a 

more complicated method is needed to group those pieces into a character.

For the second issue, since the ligatures are intentionally typed as an entity, they 

should be treated as special character objects, and no attempt should be made to separate 

them into their constituents. Hence, the classifier should include ligatures in the set of 

classes. Merged characters as well as broken characters have to be further processed in 

the postprocessing.

Note that the character isolation is affected by the document printing style. If the 

text is typed with a fixed pitch such as the typewritten style, there is no ligature at all. 

Furthermore, the broken character grouping and the merged character splitting become 

simpler. On the contrary, when the text is printed with the proportional spacing, character 

isolation becomes more difficult. Therefore, prior to further processing the spacing style 

is detected. If the fixed spacing is used, the character isolation is straight-forward.

3.3 Character Typographical Structure Analysis

According to the stripes the characters intercept, we classify characters into primary and 

secondary classes, which are in turn divided into four and three categories as follows:

(1) Primary class: This class consists of larger symbols including most of the Latin alpha

bets.

(a) Ascender: Characters intercept fully the upper and middle zones, such as A, B, 

and d.

(b) Descender: Characters intercept fully the lower and middle zones, such as g, q, y, 

and p.

(c) Center: Characters lie fully in the middle zone only, such as a, c, e, m, and x.

(d) Full-range: Characters span all the three zones, such as j, ( ,) ,{ , and / .
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(2) Secondary class:

(a) Subscript: Symbols locate around the baseline, such as and the

shifted characters as subscripts.

(b) Superscript: Symbols lie around the upper baseline, such as ", ~, ", and the shifted 

characters as superscripts.

(c) Internal: Characters locate around the mid-line and only partially intercept the 

middle zone, such as

Typographical structure analysis aims at categorizing each character unit into one of 

the seven categories. Mostly, the baseline appears explicitly in each text line. The upper 

baseline may not present in the case of a short text composed of ascenders only, and the 

top line and underline may not exist if only centered characters appear. Therefore, it is 

essential to locate the baseline. However, the typographical structure analysis is sensitive 

to skew even in a very little angle. Despite the image was skew-normalized, the text line 

may not be exactly horizontal due to some error while printing or scanning. Next, we 

will present an efficient algorithm to precisely locate the baseline.

3.4 Baseline Detection

In order to correctly analyze the typographical structure, the virtual baseline must be 

detected. Fortunately, the disalignment is very small and the line is nearly horizontal. An 

efficient approach to locating the precise baseline is given as follows:

(1) Let a text line (denoted as T) of n character units (c / ; , )  appear in the text line from 

left to right sequentially. That is, T = {chx, ch2, c h n). Let p, = (*,, y,) denote 

the x- and y-coordinates of the bottom-center point p, at the bounding box of the ith 

character, the set of those bottom-center points is P = {p u p 2, . . . ,  p„}. Because 

most of the characters are of ascenders or centered, they are aligned on the baseline. 

Therefore, P provides the basis to find out the virtual baseline.
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(2) Let Y '  = {3’j , y '2, . . . ,  y '_,} be the set of all the slopes, where the slope of the line 

segment WPi+\ is y'i = . Mostly, the slopes are near zero. That is, the con-

tiguous characters c/i, and chM are frequently aligned on the baseline or underline.

(3) Let Y^p denote the set of the most-popular slope obtained by clustering analysis 

from the set Y'. That is

Y'mp= { y ' \ \ y ' - y ' mp\ Z e , i  = l , 2 , . . . , n - l } ,  (3.1)

where y'mp denotes the most-popular slope, and e denotes the clustering factor. The 

initial slope approximation of the whole baseline is derived as follows:

Z  y'M>
mappr = * Ax ■. where A*, = * f+1 -  x t . (3.2)

y fe  Y'mp

(4) A line can be expressed in the form y = nvc + b, where m is slope and b is the inter

cept of the line with y-axis. Let B denote the set of intercepts where the lines pass 

through the points in P with the slope mappr. That is

B = {bj | bj = y, -  mapprxh i = 1, 2 , . . . ,  n), (3.3)

where b( denotes the intercept of a line with the slope mappr passing through ph 

Since the baseline slope is approximately equal to mappn the bottom-center points of 

the characters which are aligned on the baseline will be collinear and tend to cluster 

with respect to b. Some other small clusters, which may be sparsely distributed, rep

resent some characters which are aligned in the same orientation as baseline. For

example, “g ” and “y ” are clustered on the underline. Similar to Y„p, the set of the 

most-popular intercepts can be derived as

Bmp={b i \\bi - b mp\ ^ 6 } .  (3.4)
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(5) Bmp represent all the points located at the baseline Pbi, where

Pbi = {Pi \b i£  Bmp}. (3.5)

In order to obtain the precise baseline expressed by y  = mb,x + bbh a linear regres

sion is performed on the points in Pb) by using the least-square-error approach [10]. 

The equations are

%  =

Z/ Zi Xj
Pi'6  p bl P iE P b l

£  y,
Pit Pbl

Z xf Z X;
P i £ P b l Pi £  Pbl

Z X ,  N P u

Pi £  Pbl

(3.6)

and

bb,=

Z x f  £  jr,-yf
Pi £  Pbl P i '£  Pbl

Z Xi £  yi
P i£  Pbl P i£  Pbl

£  *? £  x,
P i£ P b i  P i£  P bi

Z Xi NPbi
P i^  Pbl

where /Vphl = £  x°, denotes the number of the elements in PbI.
Pi £  P bl

(3.7)

3.5 Tolerance Analysis

Typographical analysis is a statistical approach to locate the virtual reference lines in a 

text line. Due to the unavoidable noise in an image, a variable tolerance must be allowed 

in the baseline detection algorithm and in the typographical categorization described in 

the next section. The tolerance is defined as z = 28 as illustrated in Fig. 3.3, where the 

shaded areas denote the tolerance of the reference lines. Suppose that the tolerance of
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each reference line is equal. Let H denote the height of the text line including the toler

ance, and H, denote the height between baseline and underline. Assume H, =45.  Since 

the heights of the upper zone and the lower zone are the same and approximately half of 

the middle zone, H = 185 can be obtained.

Figure 3.3 Tolerances of the reference lines

Let Q = {<?!, <72, .. ■, <?„} be the set of points with q{ = (*,, y,) representing the 

upper-center x- and y-coordinates of the character ch,. The set of intercepts of the lines 

passing through the points in Q with y-axis can be defined as:

Bq = {b, | bt = y, -  mapprx it where(*„ y,) £ Q}. (3.8)

The height of the text line is derived as

H = * -  (max { a  I a  £  BP} -min{ft> I a  £ BQ}). (3.9)
"^1 + Wlappr

When mappr is very small,

H ~ max {o I <a £ BP} -  min {a>\ a> £ BQ}. (3.10)

H
The tolerance 6 = —  is then computed and used in Step (4).

For example of an image with the resolution 300 dpi (where 1 dot = 1 pixel), the

s x 300
height of a text line is equal to — ——  pixels, where s denotes a font size, because the

point size of 72 is 1 inch high. If the point size is 12 and H = 50 pixels, the upper and 

lower zones are approximately equal to 1 2  pixels and r  = 6 .



Assume that the distance between centers of the adjacent characters is no more than 

twice of the text height. Let </> denote the angle of the virtual baseline with respect to x- 

axis. If two adjacent characters, say c/i, and chi+u are baseline-aligned, the line p , p M 

may exist in the range of the orientations from tj> + 6 to <p -  6 as shown in Fig. 3.4, where

9 ~tan277 = tan_177 ' 3̂'n^

2H

2d

Figure 3.4 Tolerance of the slope of the baseline.

In other words, the slope varies from m,i+e to m ^ ,  where

m
tan 0  + tan 6 

w  = tan( 0  + 6) = -— -— —— -  
1 -  tan 0  tan 6

= tan(0 -  Q) =
tan <f> -  tan 6

(3.12)

(3.13)
1 + tan </> tan 6

When <t> and 6 are small, the term tan 9) tan 0  is negligible. Eqs. (12) and (13) can be sim

plified as

« tan <f> + tan Q = m + e ,  (3.14)

m^g » tan <j> -  tan 6 = m -  e, (3.15)

where



56

3.6 Fuzzy Typographical Categorization

The detection of other reference lines can be easily achieved by deriving from the base

line. First, the upper baseline is detected by projecting in parallel to the baseline the set 

of upper-center points Q of the characters whose sizes are larger than a threshold. The 

threshold is used to exclude the characters in the secondary class. Since the centered 

characters have the smallest height in the primary class, the threshold is selected as 

H H 7
— -  —  X 2 = —  H by considering the tolerance. The projected points onto y-axis tend
2  l o  l o

to have two clusters. The most popular cluster corresponds to the upper baseline, while

the other cluster corresponds to the top line. These results can be verified if the height of 

upper zone approximates to a half of the height of middle zone. In other words, 

bUb ~ b,i ~ ( bbl — bub ) /  2 .

Similarly, the underline can be detected by projecting to the y-axis the set of bot

tom-center points of the characters whose sizes are larger than the above threshold and 

whose bottom-center points are not located at the baseline.

The projected locations of upper-center points would appear only one cluster if a 

textual block contains only ascenders (e.g., a title with capital letters) or centered charac

ters (e.g., the last line of a paragraph with a few characters). The block is hypothesized as 

the ascender if it does not exist in a paragraph or the number of characters in the block is 

reasonably large.

A character is assigned to one of the seven typographical categories based on its 

location listed in Table 3.1, where yq and y p denote y-coordinates of the upper-center and 

lower-center points of a character, respectively. The tolerance zones of the top line, 

upper baseline, mid-line, baseline, and underline are denoted as r lt r3, r5, r7, and r9, 

respectively, and the ranges in between are denoted as r2, r4, r6, and r 8 as illustrated in 

Fig. 3.5. The seven categories are denoted as t  (superscript), X (subscript), A (ascender), 

D (descender), C (center), F (full-range), and I (internal). Most of the characters belong to
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the deterministic classes, denoted as (y q, ypy s  pair such as (1,7), (1,9), (2,7), and (2,9), 

which are classified as the ascender, full-range, center, and descender, respectively. For 

other classes containing more than one category, an uncertainty for each class is detected. 

In Table 3.1, the category enclosed in parentheses represents a weak class.

Table 3.1 The decision table for typographical categorization.

y P\ y q r\ r2 r3 >4 r5 r 2 r 8 r9

fi T - - - - - - - -

r2 t t - - - - - - -

r3 T t t - - - - - -

4̂ t t T,(i) T,i - - - - -

r5 t T t , i i, ( t) I - - - -

r6 T .a t ,  A, C i, c, (T) C ,I I, ( ^ 1,1 - - -

r  7 A A, C c c, I, (4) I, ^ J'.O) i - -

r8 A, F A, C, F, D C, D c, D , i I I I 4 -

r9 F F,D D D , i I I I 4 1

. . .  . f t . C

3 3 . rx.... . . .  y ,

3 3 . ra.... -  y3
33.rs.. . ys

... y n

ID.ra.... ... yP

Figure 3.5 The illustration for the tolerance ranges used in Table 3.1.

Due to unpredictable noise or deformation, a character may be detected in an 

ambiguous position, for example y q in r x and y p in rs, it could be an ascender or a full- 

ranged character. In this case, the memberships are assigned with the degrees of the char

acter belonging to typographical categories.
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Definition 1: The fuzzy typographical categorization of a character or is a list of ordered 

pairs such that a  = {(Q., where Q. £ {T, -I, A, D, C, F, I}, and z(&)< ranging in

[0 , 1], represents the grade of membership the character belongs to the category Q.

Essentially, the memberships are characterized by size and position of characters, 

which in turn are determined by yp and yq. The size is y p -  yq and the position can be 

indicated by y p + yq. Let y0, y l t . . . ,  yg be the y-coordinates which delimit 

/■,, r2, . . . ,  rg respectively as shown in Fig. 3.5. For simplicity, the tolerance ranges 

rh i = 1 , . . . ,  9, are normalized and denoted as r\. The normalized y-coordinate of

y • ~~ yj-1
y j  = p, q, in r< will be y'- = — by linear interpolation. For example, the mem-

1 y t~  yi-1

berships in the class ( 1 ,8 ) are given as:

= = *,.«,(« = / ,  = 7 ^ .  (3-17)
ys -  y 7 y« ~  y  7

where (1,8) denotes the decision class with yq £ r, and y p £ rs. Note that the member

ship functions in eq. (3.17) is continuous with X(i,i)(Q) and X(i,9)(^)-

Similarly, the membership functions Xq.,i)(Q), X(2,9)(Q)> and jjr(3,8)(£2) can be defined

as:

*<2j>(A ) = = XaA  0.18)
y i ~ y \  y2 - y i

W D >  = / ,  = . W F )  = 1 - ' - r - T  • <319>y  2 ~ y  i y 2 — yi

and

W D )  = yr = • *3.8,(C) = ! - / „  = . (3.20)
ys ~ y  7 y s ~  y 2

Now, the membership in the most ambiguous decision class (2,8) will be determined 

by the characteristics of the typographical categories and the boundary conditions which 

are ensured the continuity with the memberships in classes (1,8), (2,7), (2,9), and (3,8). In



59

class (2 ,8 ), the character could be one of the ascender, descender, centered, and full- 

ranged characters. First, let us discuss the membership of the full-ranged character, 

which has the following boundary conditions:

*<M)(F (3-21)

and

* u ,C F )v *  = 1 -  (3-22)

The membership of the full-ranged character is characterized by the size only. Let

s = y'p -  y'  and t = y'p + y'q. The membership function, which is linear with respect to

the size, has the following characteristics:

a w p) = C[ when * (2.8)((F) > 0, (3.23)

where cx is a positive constant, and

— (fp P ?  = 0. (3.24)
dt

From eqs. (3.21)-(3.24), the membership function of the full-ranged character can be 

derived as:

#(2,8) (F) - y'p ~ X  y'p > X  (325)
0  otherwise.

Similarly, the membership function of the centered character, which also simply 

depends on the character size, can be formulated as:

# (2 ,8 ) ( C )  -
X  -  y'p if y'p <  y'q (3  26)
0  otherwise.

The memberships of the ascender and descender are more complicated since they 

depend on size and position. For the ascender, the membership function has the following 

boundary conditions:
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W A ) , ^ .  = 1 -  y'p. (3.27)

■̂(2,8) (A)yp=y1 = l ~ y q. (3.28)

In the other hand, the membership function should have the following characteristics:

^̂ ■(2,8)(A)
dt =  C 2,

and

^X( 2,8) (A) 
ds

if y'p < y'a3 “ •'p " Jq
—c3 otherwise,

where c2 and c3 are positive constants.

From eqs. (3.27)-(3.30), the membership function can be obtained:

i -  y'q if  y'p ^  y'q
1 -  y'  otherwise.2f(2,8)(A)

Similarly, the membership function of the descender can be derived as:

otherwise.

(3.29)

(3.30)

(3.31)

(3.32)

The membership functions in class (2,8) are continuous together with neighboring cate

gories since the boundary conditions are considered. The membership functions in class 

(2,8) are shown in Fig. 3.6. Note that the sum of the memberships is equal to one.

1

(b)

ztC)

(C) (d)

Figure 3.6 The membership functions in class (2,8) of (a) ascender, (b) descender, (c) 
center, and (d) full-range.
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x(A)

yp

yq

y2

(a)

x(D)

yp

y3

(b)

x(F)

yp

y-

(c)

yq

x(C)

y4

x(X)

(d) (e)

yi

x(T)

y4

yp

(f)

x(i)

y6

yp

(g)

Figure 3.7 The membership functions of (a) ascender, (b) descender, (c) full-range, (d) 
center, (e) internal, (f) superscript, and (g)subscript.
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The membership functions of other ambiguous decision classes can be similarly 

derived. The entire membership functions for each typographical category are shown in 

Fig. 3.7. Note that the membership functions of the internal, centered, and full-ranged 

characters are diagonally symmetric in the normalized (y^.y^-plane. In addition, the 

membership functions of the ascender and superscript are diagonally symmetric with 

those of the descender and subscript.

3.7. Experimental Results and Discussion

The textual blocks extracted from chapter two are used as the input. In this stage, the 

typographical structure of each text line is analyzed independently. The result of apply

ing our virtual reference lines detection is shown in Fig. 3.8. Various character sizes from 

5 to 12 points, each consisting of 500 text lines, have been tested. The baseline is 100% 

correctly detected for the character size larger than 5 points. For 5-point characters, 2.5% 

error rate for baseline detection is found because the merged characters are highly 

increased. As shown in Table 3.2, 48.65% of characters are touching together. Besides, 

the touching characters may contain more characters as their sizes decrease. In our exper

iment, 26.28% of merged characters contain more than three characters, which makes the 

slope approximation inaccurate.

Beyond the seven basic typographical categories, one more category, semi-ascender, 

which corresponds to the class with yq G r2 and yp G r7 as listed in Table 3.1, has been 

included. This category includes character “ t” . In the experiment of a sample document 

with the 7-point character size, 78 input patterns which are character “ t” in Roman or 

Italic fonts are classified as semi-ascenders, and 10 input patterns are classified as ascen

ders due to noise.

When the baseline is correctly located, the overall ability for typographical catego

rization is 100%, in which more than 99% of the characters are classified from the deter

ministic classes. According to the experimental results, there are a few special symbols



Threshold Decomposition of Gray-Scale Morphology

(a)

rrh rm n  n-ni i .yzpDlm □□□tzQ-Dxti □ q jifb tx ]

(b)

(c)

Figure 3.8 The typographical analysis of a textual block, (a) A sample text image, (b) 
the bounding boxes for each corresponding character, (c) the virtual reference 
lines of the text line.

Table 3.2 Experimental Results from Our Algorithm

Character
size

Error rate for 
baseline detection

Ambiguous
character

Merged
character

Ave. Run time 
(ms/ch)

5 2.5% 0.50% 48.65% 85

6 0% 0.27% 28.23% 82

7 0% 0.10% 17.17% 84

8 0% 0.21% 17.59% 84

9 0% 0.19% 13.39% 81

10 0% 0.62% 5.56% 81

11 0% 0.68% 1.90% 79

12 0% 0.41% 1.45% 80
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which may fall into the ambiguous classes. Sometimes, for example, the symbols

“)” > and “] ” are detected in class (1, 8) and is detected in class (3, 8). 

When the fuzzy logic is applied, is classified as ascender, is classified as descen

der, and the remainders are classified as full-range if the category with highest member

ship is selected. Other ambiguous characters happen when merged characters contain 

these symbols or some characters belonging to the secondary class. For example, merged 

character “ t,” and “ t;” have been detected as belonging to class (2, 8). This typographi

cal knowledge may help to separate them in the recognition phase.

FTA has been tested on 4,000 text lines containing 307,221 characters. The average 

running time (denoted as t) is independent of the number and size of characters. When 

FTA is executed to each text line individually, t = 160.5 ms/ch (microsecond per charac

ter). However, when a whole document is processed, the initial slope of the baseline need 

not be estimated every time. Instead, the slope of the previous text line is used. There

fore, the running can be reduced to / = 82 ms/ch. In other word, for one second, FTA can 

process 12,195.12 characters. Comparing to the speed of character recognition, it is wor

thy of preclassifying the characters by FTA so that OCR can be simplified and improved.

One problem has to be considered is the tolerance estimation. When the character 

size is small, the tolerance will be relatively small. Therefore, a small noise may induce 

the misclassification. For example, the text line shown in Fig. 3.9 is firstly estimated with

21.6 pixel-high and the tolerance <5 = 1.2. Therefore, 5 = 2 is enforced when the derived 

tolerance is smaller than 2. However, the tolerance of top line and upper baseline will be 

overlapped in the case of the text height which is smaller than 16, i.e., smaller than a 4 

point-size character. Fortunately, it is rarely used for normal documents. The results 

show that the text line can be correctly categorized for the character size as small as 6 

points.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND M ACHINE INTELLIGENCE. VOL. II. NO. I. JANUARY 1989

Figure 3.9 A text line with a small character size
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Another problem is occurred if a text line includes different sizes of characters. This 

special case is illustrated in Fig. 3.10, where the characters belonging to the string “IEEE 

MEMBER” are categorized as centers. In this example, every word contains only a sin

gle type of characters, i.e., the ascender or the center.

FRANK YEONG-CHYANG SHIH. i e e e .  m e m b e r ,  a n d  OWEN ROBERT MITCHELL, s e n i o r  m e m b e r ,  i e e e  

Figure 3.10 A special case of text contains different sizes of characters

FTA can also be extended to handwritten characters. Particularly, it is significant to 

determine that a character should be an upper- or lower-case. Several examples are illus

trated in Fig. 3.11. For the first example of the left column, the skew angle is also 

detected. For the second example of the left column, the word could be recognized as 

“RosemARiE” and would be corrected as “Rosemarie” by FTA.
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Figure 3.11 Sample sets of handwritten characters for fuzzy typographical analysis.



CHAPTER 4

A FUZZY MODEL FOR UNSUPERVISED 
CHARACTER CLASSIFICATION

In this chapter, we present a fuzzy logic approach to efficiently perform the unsupervised 

character classification for improvement on robustness, coiTectness, and speed of a char

acter recognition system.

4.1 Introduction

Traditionally, OCR employs the rule-based or supervised approach [1, 3, 7, 16, 44, 52, 

71, 77] to convert the digital document image into ASCII codes in order for a computer 

to further editing, manipulation, and storage. The problems of efficiency, accuracy, and 

reliability have been encountered because hundreds of font styles, character sizes, special 

symbols, and different printing devices producing images of different qualities are to be 

dealt with. Another serious problem is the unavoidable noise while printing. Therefore, 

some postprocessing strategies such as dictionary checking and semantics understanding 

are necessary to combine with OCR [36, 39, 71, 76].

The character classification is performed prior to character recognition in order to 

extract a set of representative prototypes in which the similar patterns of characters are 

grouped together. Therefore, the character recognition procedure becomes simpler and 

faster if it has to apply on the limited versions of the fuzzy prototypes. Compared to the 

existing OCR systems, our classification reduces the scope of characters to be recognized 

significantly, and our fuzzy model is more robust. Wong e t a l. [11, 95] proposed a deci

sion network using a binary tree in which each leaf denotes a prototype and the most dis

tinguishable pixel among character patterns is placed at each node for decision making 

leading to the closest prototype. However, the reliability of the pixel at each node is

67
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questionable since noise or some variations can happen. In addition, their methodology in 

searching for the most distinguishable pixel is unclear.

For each typographical category, the fuzzy unsupervised character classification 

classifies its characters into a set of fuzzy prototypes. Initially, the set of fuzzy prototypes 

associated with each category is empty. Given a category of characters, the first input of 

the category is set to the first element of the corresponding fuzzy prototypes set. The fol

lowing input character is matched against the first element. If it is matched, the input 

character is grouped to that element; otherwise it is placed as the second element of the 

set of fuzzy prototypes. The procedure is repeated until all inputs are classified.

This chapter is organized as follows. Section 2 discusses the advantages of the fuzzy 

character classification. Section 3 presents the similarity measurement. Section 4 dis

cusses the statistical fuzzy model for classification. Section 5 proposes the similarity 

measure in fuzzy model. Section 6 describes the matching algorithm. Section 7 presents 

the classification hierarchy. Section 8 elaborates the preclassifier for grouping the fuzzy 

prototypes. Section 9 provides experimental results.

4.2. Advantages of Unsupervised Fuzzy Character Classification

Our unsupervised character classification combines the topological and statistical 

approaches to group all the input characters into a relatively small set of categories, 

namely prototypes. It can simplify the character recognition problem with the following 

advantages:

(1) It reduces the recognition scope into a set of prototypes, and therefore reduces the 

processing time. As mentioned above, there exists hundreds of font styles and differ

ent character sizes in today’s documents. These variations make the character recog

nition task to be much more complicated. It has been suggested that recognition of 

individual characters can be improved by combining multiple independent feature 

sets/classifiers, so that the weakness of one is compensated for by the strength of the
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other [7, 9, 37, 79]. However, it also increases the running time. If the recognition is 

performed on every individual characters, the speed efficiency of the recognition will 

be reduced significantly. Therefore, a character classification prior to recognition is 

critical to simplify the recognition task.

(2) The special-font words can be detected easily, thus it helps to extract key words 

which are used in an information retrieval system. Usually, Roman font is applied for 

the main body of the text in a document. Most of the authors intend to emphasize 

some keywords by using a different font such as bold-face or Italic. The counts of 

the characters which constitute the prototypes provide the information of the major

ity and minority of characters in the document. Thus, the characters with different 

fonts can be separated, and the keywords could be captured from the words which 

are composed of the minor set of characters. Without the classification, an OCR sys

tem must be able to distinguish the fonts for every characters and therefore the per

formance will be reduced significantly. Moreover, even though we include the tech

niques to recognize the character fonts to the limited version of prototypes, the effi

ciency of the system will not be considerably affected.

Unsupervised character classification simplify the characters in the whole document 

into a set of prototypes. However, what is the appropriate representative image pattern for 

each prototype? If we use the first character image of each prototype as its representative 

image [95]. Should the first one of a prototype be a noisy image and be misrecognized, all 

the characters belong to this prototype are misclassified. That why the fuzzy logic is 

applied with the additional advantage:

(3) The fuzzy logic reduces the noise in the character images, and therefore increases the 

recognition rate. The noise often occurs on the boundary of the character to produce 

missing or extra pixels. Conventional approaches require a smoothing or enhance

ment algorithm to remove the noise. Sometimes, pixels are difficult to determine 

whether they belong to noise or not. In essence, pattern classification refers to the
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problem of fuzziness. With the help of fuzzy logic, the membership of each pixel in 

a character pattern is assigned, and noise can be equivalently removed. Fig. 4.1 

illustrates five images of character “a.” If 8-connectivity is used for the object, the 

first and the fifth images appear to have two loops because the insufficient presence 

of the low resolution of the scanner. The recognition of these characters based on 

topological features is difficult since they have two holes [41]. When fuzzy classifi

cation is applied, the noise can be removed, and the correct topological features can 

be extracted.
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Figure 4.1 Character images of “a.”

Incorporating fuzzy logic in the unsupervised character classification yields the 

increasing reliability for single character recognition. Furthermore, there is one more 

advantage in improving the recognition of the ambiguous characters.

(4) The recognition of ambiguous characters such as merged or broken characters, can 

be easily performed, thus it increases reliability. Recognition of ambiguous charac

ters is still remaining as unsolved problem, and the merged characters are encoun

tered frequently in a document. For example, “ t” and “h” often touch with each 

other. Firstly, classification will assign those merged characters into one category, 

and the splitting algorithm will be applied only once to the representative prototype. 

Secondly, the linking pixels of these merged characters have lower membership val

ues and these characters are said to be weakly linked when the fuzzy model is 

employed. Therefore, the splitting locations of characters are easy to detect.



Thirdly, the candidates of the break position can be searched by traditional splitting 

algorithms or by a partial match with the recognized prototypes. In particular, the 

possible break position can be verified using the dictionary checking not only to a 

single word but also to all corresponding words in a document.

Similarity is an abstract concept of fuzziness which provides a quantitative measure to 

the relationship between two variables. Given two patterns A and B. Let I/II denote the 

cardinality of set A. The similarity measurement or correlation coefficient, denoted as 

f(A , B), can be expressed in the following ways [26, 69, 73]:

where a'j denotes the complement of aijt a = / \A\ and b = /  Ifll. Assume

A = {ajj\l <, i <. cols, 1 <. j  <. rows} and B = { 11 <. i <, cols, 1 <. j  <, rows} are 

images with the size m = cols x rows. If they are binary images, let 0 or 1 represent 

background and foreground, respectively. Eqs. (4.1)-(4.3) are specifically for binary 

images. In order to preserve the symmetricity, i.e., C(A, B) = £(fl, A), eq. (4.3) is modi-

4.3 Similarity Measurement

(4.1)

(4.2)

(4.3)

(4.4)



The weight lA is added to normalize the similarity ranging between -1 and 1. Eq. (4.4) is

a general form for gray-scale images, which is known as the Pearson product moment 

correlation,.

Let us discuss the characteristics of the forementioned similarity functions. Let 

nA =1/41 and nB = \B\ denote the cardinality of sets A and B, respectively. Also let 

x  = \A O  B\ denote the number of common elements in A and B. Let m denote the total 

number of elements in the domain of A and B, i.e. 

m = 1/41 + \A'\ = Ifll + \B'\ = cols X  rows. Eqs. (4.1), (4.2), (4.5), and (4.4) can be rewrit

ten respectively as

Eq. (4.6) is a parabola function and eqs. (4.7)-(4.9) are linear functions. Fig. 4.2 

shows the relationship of correlation coefficient and the percentage of the intersection 

when nA = nB = n.

Eq. (4.9) is not suitable for binary image matching since the number of the domain

image m affects the value of £  Eq. (4.8) seems more appropriate because it measures the

x tx *{* tx “■ 2 x
differences of the equality, , and the inequality, A , 3  -— . However, if the

- J n jq  2 y [ w i i

weight of the inequality is a constant, the calculation of inequality is redundant since it is 

implied from the equality.

\ A C \B \  _  x
| / 4 U f i |  nA + nB - x '

(4.6)

£  @ij bij _ x (4.7)

C = (4.8)

Ti(aij ~ a)(bjj ~ b) _  mx -  nAnBmx -  nAnB
(4.9)
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Figure 4.2 The relationship of f  and — when nA = nB = n.

eq. (4.6) 
eq. (4.7) 
eq. (4.8) 
eq. (4.9)

A major problem occurs in eqs. (4.6)-(4.9). Since their matching is based on the per

centage of intersection of the two patterns, the location of inequality between the two pat

terns is not taken into account. By observing three images A x, A2, and A3 in Fig. 4.3, A2 

and A3 have the same number of foreground pixels, and the total number of common pix

els of Ai and Az is the same as that of A x and A3. From human’s perception, A x and A 2 

look more similar than A x and A3 since the differences of A x and A 2 are the boundary 

pixels, but the differences of A x and A3 are significant noise. However, the results show 

that the correlation of A x and A2 is identical to that of A x and A3 by applying the fore

mentioned functions.

It is concluded that the similarity measure must include the location differences. The 

differences lying along the pattern’s boundaries should be considered less significant than 

lying far away from the object. We propose a nonlinear weighted similarity function 

which can be expressed as

^  (djjbjj — — layby — — VyCijj)
B) = ------------- 2 ■ 2--------- , (4.10)

V E 4
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A\ a 2 A3

(a)

C tti .  a 2) C(A], A 3)

eq. (4.6) 
eq. (4.7) 
eq. (4.8) 
eq. (4.9)

0.941799
0.970463
0.940477
0.958100

0.941799
0.970463
0.940477
0.958100

(b)

Figure 4.3 (a) Sample images A u A 2, and A 3 (b) Correlation coefficients by eqs. 
(4.6)-(4.9).

where coy and vy are the weights representing a distance measure of pixel (/, j )  to objects 

A and B, respectively. Since the 8-connectivity for objects and 4-connectivity for back

ground are used, we adopt a simple city-block distance measure. It can be formulated as

a  = {coy | toy = max ( d4(ay) - 1 , 0  )}, (4.11)

V = {vy I Vy  = max ( d 4{ b y )  - 1 , 0 ) } ,  (4.12)

where d4(ay) denotes the city-block distance of pixel ay from the object A. Note that 1 is 

subtracted because a pixel along the contour of A  is considered as a reasonable tolerance 

of noise. Fig. 4.4 shows the weights of the patterns in Fig. 4.3(a) and their correlations

by eq. (3.10). Note that f ( A it A 2) has the same value as eq. (4.7) is applied, but
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f ( A lt A3) decreases because the noisy pixels away from the boundary receive higher 

weights in the subtraction of eq. (4.10).

F E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8 9 ABCDEF 
F E D C B A 9 0 7 6 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8 9 ABCDEF 
F E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8 9 ABCDEF 
E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 2 3 4 5 6 7 B 9 A B C D E F  
E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9ABCDE 
E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9ABCDE 
D C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D E  
C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D  
C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 S 9 A B C  
C B A 9 8 7 6 5 4  3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8  9ABC 
C B A 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9ABC 
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Figure 4.4 (a) The weights of A u A2, and A3 (b) Their correlation coefficients by eq.
(4.10).

4.4 Statistical Fuzzy Model for Classification

The set of fuzzy prototypes is constructed based on statistical analysis in grouping similar 

patterns into a single class. An image of a fuzzy prototype is a matrix of pixels with each 

element being associated with a membership representing the degree of the pixel which 

belongs to the object. The definitions, propositions, and theorems pertaining to fuzzy 

matching are described below.
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Definition 1: Let E 2 be two-dimensional Euclidean space. A fuzzy model A in E2 is a 

matrix of ordered pairs such that A = {(/?,-,, Xij)}< where represents a pixel and Xij> 

ranging in [0, 1], represents the grade of membership of the pixel belonging to the object.

Note that the memberships of the pixels outside the matrix are considered as 0. In 

addition, a binary image can be regarded as a special case in fuzzy model whose member

ship has values only 1 or 0. In reality, a fuzzy model is more natural to represent the 

fuzziness of the image boundary. The concept of the fuzzy model is different from the 

gray-scale image whose element represents the gray levels in brightness.

Proposition 1: Assume a fuzzy prototype A is composed of a set of merged binary images 

{A t , Az, . . . ,  Am}. The membership of each pixel in A is computed as

Zij =

Am
£  Ay

’ije A  1

m
(4.13)

The properties of the fuzzy model extended from the crispy model are also fuzzy. 

Some properties pertaining to character classification are discussed in this section.

Definition 2: Let A = {(plt Xi), (Pi, Xi), ■ • •. (/>„. Xn)} be a fuzzy set. The cardinality 

of A, denoted as a x, is a fuzzy number and can be formulated as: 

a x = {(/, w)  | i = 0, 1, 2 , . . . , « } ,  where y/j denotes the membership of the cardinality 

being equal to i.

From probability theory, it is plausible to formulate as follows:

Vo = x ' i X 'l--- X'n = f l  X'i
i=i

(4.14)

/  >
n nii£

Xi n x ' j . • ' • . Vn-1 = £ n Xj x 'i
/=i 7=1..." i'=l 7=1..."

j*‘ I J*‘

. V n = T l  Xi-i=l
(4.15)



Eq. (4.15) can be expressed in a general form as
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Wm- L Zi,Z h Zim n z ' j
j*‘ 1
j*i 2 

j*‘m

(4.16)

Note that the fuzzy cardinality has the property that £  w  = 1. The expected value
1 = 0

of the cardinality can be derived as

£ ( ^ J  = £ * > / = L Z i -i=i i=i
(4.17)

The detail of the derivation is omitted here. It is significant to simplify the cardinality of a 

fuzzy set to a unique value, i.e. the expected value of the fuzzy cardinality, which is the 

sum of the membership of the fuzzy set.

Example: Let A = { (p t, 1/2), (p2, 1), (p3, 1/4) }. The fuzzy cardinality

= { (0. 0). (1. 3/8), (2, 1/2), (3, 1/8) }. The expected value of cardinality is

0 x 0  + 1 X3/8 + 2 x 1/2 + 3 x 1/8 = 1/2 + 1 + 1/4 = 7/4.

Proposition 2: The cardinality of a fuzzy prototype A in E 2 is equal to the sum of the

membership values. That is, a x = X  Zij-

Similar to the derivation in cardinality, the centroid of a fuzzy prototype can be sim

plified to be a unique number.

Proposition 3: The centroid of the first moment of a fuzzy prototype A in E 2 is formu

lated as

_ j  Zij _  i Zij

” £ * 7 '  y“ ~ T n ‘
(4.18)



Proposition 4: The width of a fuzzy prototype A in E2 is the summation of the maximal 

memberships in columns, and the height of a fuzzy prototype A in E 2 is the summation of 

the maximal memberships in rows. That is

= £ 0 ™ x(^Ty)), hk = £(max(^,7)). (4.19)
J ' *■ J

Theorem 1: If a fuzzy prototype A is composed of a set of merged binary images

{Al , A2, . . . ,  Am] with widths (w,,  w2 wm] and heights [hlt h2 , h m], then the

width of A is less than or equal to the average width of the set of the images, and the 

height of A is less than or equal to the average height of the set of the images. Mathemat

ically,

m u>. m h-
(4.20)

;=1 m ,=1 m

[Proof]:

The proof is given by the induction hypothesis. For case when m = 1, we have wk = vv,, 

that satisfies eq. (4.20).

1 x
Assume that m = x  also satisfies eq. (4.20) such that wA<.— £ w (. Let

X  ('= i

ccj = max(Zij) denote the maximal membership value of j " 1 column in the fuzzy proto

type A. Let fij = m axiz***') denote the maximal membership value of j"' column in

Ax+1, which is either 1 or 0. Let pj  denote the maximal membership value of j ‘h column 

in the new fuzzy prototype A'. When a new image Ax+l is merged, the following inequal

ity is derived:

X C C j  +  6 :

The width of the new fuzzy prototype will be



The proof for the height can be similarly derived.

QED

Since the fuzzy prototype is a group of similar patterns, the difference between wx

and — £  wi is small. Thus, the latter can be applied to approximate the width of the
m ,=i

fuzzy prototype for simplicity.

The similarity measure between two binary patterns discussed in Section 3.5.1 can be 

extended to the fuzzy model. Similar to eq. (4.10), the similarity measure of two fuzzy 

prototypes is proposed below.

Proposition 5: Let A, = {(p,j, xjjU)} and A2 = {(Py, X™)) be two fuzzy prototypes in E 2. 

Let yA] = {ylj1}) yAz = {y^ } represent the weight functions associate with Ax and A2, 

respectively. The similarity measure of Ax and A2 is defined as

where A is the symbol for minimum representing the intersection on fuzzy sets. That is

1 £

4.5 Similarity Measure in Fuzzy Model

r U i ,  4t) = (4.21)
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^ n A 2 = { (pij, z - l ) a * ? ) }  (4.22)

The z p  , where n = 1,2, denotes the self-intersection j^y0 A z p  •

The reason why the denominator z p  A ^ n) is used instead of z p  x  X p  comes 

from the viewpoint of fuzzy properties. Consider a membership, Zij — 0- 8, which repre

sents a concept that 80% of the area in a pixel /> ,y  belongs to the object (i.e. has value 

“ 1”), and 20% of the area belongs to the background (i.e. has value “0 ”). Therefore, zfj 

should be carried out as 0 .8  x  l 2 + 0 .2  x  02 = 0 .8  instead of 0 .82 = 0 .64 . Moreover, the 

first term of the numerator is z p  A z p  instead of z p  x  X p  because two fuzzy subsets 

are equal if their membership functions are equal. That is

A , =A 2 iff x f  = x f .  (4.23)

Therefore,

U x i l ’A z ^  -  4 "  -  4 ” )
f W i . A , ) -   ------  . 2 2 - ^ -  =  l .  (4.24)

(1)T

but not

£(zl,n x x f  -  x r#’4 "  -  ^ rt/'z'”)
fWi ,A, )  = ---------------  z } ------------ <S1. (4.35)

i L x f L x f

Eq. (4.21) is the extended form of eq. (4.10) except that z p  and x p  are in the 

interval [0, 1], and y p  and y p  are real numbers instead of integers. Therefore, it is the 

superset of eq. (4.10). The weight function yx which represents a fuzzy distance measure 

from the object is also fuzzy. Similarly, it should be derived from the weight function a> 

of all the patterns comprising the prototype.
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Proposition 6 : Assume that A, a fuzzy prototype, is composed of a set of merged binary 

images {A x, A 2 , A m} associated with the weight functions {eoAl, coAl, a Am}, 

which are obtained from eq. (4.11). The weight function, y, of A is defined as

“/tr,
£a.,€ o j .

Yij= ' • (4.26)J m

where co,j’s are the elements in a)A{, coAl, . . . ,  coAm.

4.6 Matching Algorithm

Given two fuzzy patterns A and B, the way to find the best matching is to shift A around 

B. Calculate the correlation coefficient for every position, and select the highest value. 

But, it is not efficient. If two patterns are similar, they should have similar geometric 

properties. If two patterns are dissimilar, it does not make sense to find the best matching. 

A simple way is to calculate the centroids of both patterns, and the similarity measure is 

calculated by matching the centroids. Some allowance must be considered due to noise. 

The algorithm is described below.

(1) Calculate cA and cB, which represent the centroids of A and B. That is,

£ J z t  ,  X i x T
y  y (A) ’ T  y (A) °B ~ y  y(B) ’ V y(B) 'jCij L* A ij L* Aij Zw A ij

(2) Compute ^(A, B) with minimum distance cAcB. Mathematically speaking,

Ca/)(A, B) is derived by shifting pattern A with (a , J3):

L id ?  A x\?a,j+p - 1 r!jA)ziZj+p -  \  ri+aj+PXijA))
CaM* B) = ----------------------- j ? ,   , (4.28)

where a  = ronnd(xCB -  x cJ  and = round(yCfl -  yĉ ), which are approximately 

the x  and y components of cAcB. If the correlation coefficient is C is higher than the 

threshold, say 0.9, A and B are considered to be the same.
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(3) If £"is in critical range, say 0.8 to 0.9, then the values of C„p(A, B) are also calcu

lated with a  and p  in the range of:

la “  (*c,  -  x cA)I ^ 1 and \p -  (yCB -  ycJ I  £ 1 (4.29)

Normally, there are three more points to be matched in this step, if the values of 

x Cg -  xCa and yCfl -  yCA are not integers. If there is a match, i.e. higher than 0.9, A 

and B are set to the same class. Otherwise, the two patterns are considered as dis

tinct objects.

Step (3) represents the fuzzy reasoning since the similarity is ambiguous in a critical 

range. The similarity between two similar patterns could be measured in this range 

because of the distortion of the centroid of the image due to noise, and a better match 

could be obtained by shifting one pixel for pattern A. Fig. 4.5 illustrates an example of 

two primitive images. The ambiguous similarity calculated in Step 2 is shown in Fig. 

4.5(b), and a better match found by Step 3 is shown in Fig. 4.5(c). Note that Figs. 4.5(b) 

and (c) show the superposition of images ax and a2 in their matching positions. The sym

bols “# ” , “ 1” , and “2” are used to respectively represent the common pixel of two 

images, the pixel in image a x only, and the pixel in image a2 only.

4.7 Classification Hierarchy

It is inefficient if the matching is performed against all the character prototypes in 

sequential. In this section, a hierarchical-tree approach is proposed as illustrated in Fig. 

4.6. The leaves in the classification tree represent the primitive patterns, i.e., the raw char

acter images. The intermediate nodes represent the fuzzy model of prototypes which 

comprise their descendant subtrees. The root is finally the set of prototypes which is com

posed of the characters of the whole document.

There are two advantages for the hierarchical approach. First, the searching time for 

matching is less in comparing with sequential approach. Consider two fuzzy subsets of
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Figure 4.5
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(a) The sample images and a2 (b) A critical similarity is measured (c) A 
good matching is found by shifting cix one pixel down.

P, Po P, P4 Pn-3 Pn-2 Pn-1 P„

Figure 4.6 The general view of hierarchical classification.

prototypes, X  and Y, which consist of the same set of n prototypes. Let the two fuzzy 

subsets X  and Y be constructed from two primitive subsets A and B, respectively, each 

containing m primitive images. Assume the searching times for matching an input
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through a set of n distinct prototypes is n. Therefore, to merge fuzzy sets X  and Y 

n(n + 1)
requires  —  times since the matched prototypes are removed from the set sequen

tially. Let T{A) and T(B) denote the total searching times in classifying A into X  and B 

into Y, respectively. The worst case in T{A) or T(B) is the first n patterns are distinct and 

the sequential classification is applied, of which the searching times for the total m pat

terns are 0 ,1  n -  1, n, n, ..., n, that sum up to be ^  ^  + n(m -  n ) . The compari

son of searching times using hierarchical and sequential methods is expressed as

Thier = T(A) + T(B) + „ + ( / , -  l) + . . .  + l (4.30)

<.T(A)+ n-~ 2  ^  + n(m -  n) + n n̂ *  ̂  (4.31)

= T(A) + run = Tseq, (4.32)

where Tscq and Thier denote the searching times required for sequential and hierarchical

approaches, respectively.

Fig. 4.7 shows an example of 16 inputs with 3 categories by (a) sequential classifi

cation, and (b) hierarchical classification. The number under each input in (a) represents 

the searching time for the classification, and the number under each node in (b) represents 

the times for merging two sets of fuzzy prototypes.

A B C B B C A A C B C A B A B C

1 2 3 3 3 3 3 3 3 3 3 3 3 3 3

(a)

{A, B, C}

rfim riim rffm [ fm
A B C B B C A A C B C A B A B C

(b)

Figure 4.7 Illustration of searching times (a) Tseq = 42 (b) Thier = 38.
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Another advantage of the hierarchical classification is the capability of being pro

cessed in parallel. Two kinds of parallelism can be carried out. Firstly, each node in clas

sification can be performed in parallel. Secondly, the merging of two fuzzy subsets can 

be implemented in parallel since all elements can be processed at the same time.

A textual block after segmentation typically represents a line of characters. Usually, 

the sizes of characters in a line are the same. Therefore, the text line is considered as the 

processing unit in classification. Firstly, the characters within a text line are classified, 

and the set of fuzzy prototypes of each line is hierarchically grouped. This facilitates the 

comparison of the character sizes. If the sizes of two text lines are obviously different, the 

merged prototype set is split into two disjoint subsets correspondingly and the matching 

is not performed. The hierarchy of our classification is shown in Fig. 4.8, where TL( 

denote the fuzzy set of prototypes of a text line.

Set of Fuzzy Prototypes

t l 2 TL„_, TLn
I j |__________L__|  ̂ I

n  n  :::::: :::::: : : : :
p. p2 * "  p3 p4 ...................  .........................................

Figure 4.8 The hierarchy of our classification.



4.8 Preclassifier for Grouping the Fuzzy Model

For the lower levels in the hierarchical classification tree, the representative fuzzy subsets 

of prototypes contain only a few elements. Therefore, it is simple to search similar 

objects in two subsets. However, in the higher levels it becomes impractical to perform 

the matching one by one since the size of the libraries increases. To reduce computation, 

therefore, a preclassifier is used to find out the possible matching prototypes.

Casey et al. [11] applied a binary decision network with each interior node repre

senting a comparison of a specific pixel location to the input character and having two 

branchs, which are known as “black” and “white” , leading to a terminal node which 

represents a possibly matched prototype. However, the reliability is questionable since 

the reliable pixels of each prototype are different. In addition, a noise may produce the 

problem in decision making.

To solve the aforementioned problems, a rule-based preclassifier is used. Consider

ing two fuzzy patterns Ax and A2, the similarity measure is computed using eq. (4.21). 

The correlation coefficient, can be divided into two terms of equality measure E and 

inequality measure /.

Let Ci be the threshold of the similarity measure, Ax be the input model, and A2 be 

the fuzzy variable in the library in which Ax is searching for a matching. For tjAi > crA2,

the best equality measure happens if At ^  A2, i.e., ^  • Therefore, A2 is a possible

matching prototype only if

(4.33)

2VcrA,cr/l2
(4.34)
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Similarly, for crA| < cr^, A2 is a possible matching prototype only if

V ,  (4.36)

Therefore, the first rule is concluded using eqs. (4.35) and (4.36).

•y G i
Rule 1: A2 is a possible matching prototype of Ax iff o-Al <, <, —j-

Ct

Since the similar prototypes posses similar features, additional heuristic rules based 

on the features of the prototypes are described as follows:

Rule 2: Two fuzzy prototypes are impossible to be matched if the difference between 

their widths exceed a threshold wt.

Note that the height is not taken into consideration since the prototypes in the same 

typographical category have the similar heights.

Rule 3: Two fuzzy prototypes are impossible to be matched if the difference of two proto

types in the total number of columns of the left or right region to the centroid is greater 

than a threshold cx.

Rule 4: Two fuzzy prototypes are impossible to be matched if the difference of two proto

types in the total number of rows of the upper or lower region to the centroid is greater 

than a threshold c2.

In our system, each category of prototypes are sorted by their cardinalities. The set 

of prototypes to be possibly matched are extracted by Rule 1. Rules 2, 3, and 4 filter out 

the prototypes which are impossibly matched. Finally, a rough estimation of the similar

ity measure based on the projection profile is applied to extract the prototypes to be possi

bly matched prior to the two-dimensional pattern matching.
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Rule 5: Let y f  denote the summation of the membership values on i"' column of fuzzy 

prototype A. Two fuzzy prototypes Ax and A2 are possibly matched iff the following con

dition holds:

£ Hr?' A r?2a) for \ a - (x Cg -  X CA) I i£ 1, (4.37)

where A denotes the symbol of minimum.

4.9 Experimental Results and Discussion

The unsupervised character classification is performed on each text line and a fuzzy sub

set of prototypes is generated correspondingly. Note that a fuzzy set contains 8 subsets of 

the typographical categories including the semi-ascender. The subsets with the similar 

height are grouped hierarchically. Finally, several fuzzy sets of prototypes corresponding 

to different sizes of characters are produced. The set of fuzzy prototypes for the main text 

of the document shown in Fig. 2.5 and their features are illustrated in Table 4.1, including 

25 ascenders, 6 descenders, 23 centers, 1 full-ranges, 2 subscripts, 2 internals, and 2 

semi-ascenders. Fig. 4.9 shows the details of a few prototype examples, where the nota

tions “# ” and represent the membership greater than 0.95 and less than 0.05 respec

tively, and an integer i represents the membership between ^  -  0.05 and + 0.05.

Obviously, the fuzzy prototypes are more reliable to be recognized since each pixel is sta

tistically analyzed and the pixels with low membership values can be considered as 

noises and removed. Some of the merged characters are illustrated in Fig. 4.10. It is 

observed that the membership values of the linking pixels are lower when more patterns 

are included, and they can be separated. Those, which do not have lower values on the 

linking pixels because the prototype contains too few patterns, can be split more easily by 

means of splitting algorithm, partial matching, and dictionary look-up.

The problem in this stage is the selection of a suitable threshold for the similarity 

measure. For bigger character size, the boundary between distinct character categories is
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Figure 4.9 Examples of some fuzzy prototypes.
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Figure 4.10 Examples of fuzzy prototypes with merged characters.

clear. However, when the characters are smaller, the scope of different categories may be 

overlapped. There are two reasons. Firstly, for smaller size the cardinality of the patterns 

is relatively small. However, the tolerance of noise, which may be caused by scanning or 

printing, is not affected by the character sizes. Therefore, the possible minimal equality 

measure for the same category will be lower. Secondly, the inequality measure may be 

smaller for different categories since the different part of two different patterns in smaller 

size is smaller, and the weight is linear to the distance from the object. For example, the 

inequality measure between character “ i” and “1” in smaller size is usually less than that 

in bigger size for the same font because the latter contains more pixels of difference and
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Table 4.1 The fuzzy set of prototypes for the main text of the document in Fig. 2.5.

Ascenders Centers
No. Prototype No. of patterns Cardinality No. Prototype No. of patterns Cardinality

1 i 96 114.24 l r 1 92.00
2 t 10 121.00 2 s 2 103.50
3 1 66 130.03 3 c 1 107.00
4 I 1 147.00 4 y 5 114.80
5 f 7 165.43 5 r 77 119.57
6 1 2 176.50 6 s 76 125.11
7 T 1 191.00 7 c 46 124.74
8 V 1 195.00 8 e 2 136.00
9 b 1 199.00 9 X 1 137.00

10 L 1 201.00 10 e 108 145.99
11 A 1 203.00 11 X 1 146.00
12 T 3 208.33 12 0 100 161.63
13 S 1 216.00 13 a 1 171.00
14 k 3 216.67 14 a 88 182.75
15 A 1 223.00 15 n 1 184.00
16 b 9 223.56 16 u 19 189.11
17 d 1 225.00 17 w 17 195.91
18 d 36 236.97 18 n 75 197.16
19 b 41 240.85 19 sc 3 260.33
20 G 1 259.00 20 ec 5 275.6
21 fi 1 271.00 21 oc 2 284.00
22 B 2 318.00 22 m 31 293.16
23 R 1 345.00 23 rm 1 366.00
24 M 1 369.00 Subscripts
25 ffi 1 434.00 No. Prototype No. of patterns Cardinality

Descenders 1 • 10 28.80
No. Prototype No. of patterns Cardinality 2 « 9 45.22

1 y 27 144.67 Infom  q 1 c
2 p 36 242.69
3 g 33 244.52 No. Prototype No. of patterns Cardinality

4 pe 13 391.31 1 - 19 35.26
5 gy 1 399.00 2 — 2 91.00
6 po 5 402.00 Semi-ascenders

Full-range No. Prototype No. of patterns Cardinality
No. Prototype No. of patterns Cardinality l t 2 107.00

1 J 1 152.00 2 t 76 117.25
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has a higher weight. Therefore, the threshold must be adaptive to the character size. One 

approach is to emphasize the inequality measure such as

E - I ^ C ,  + cl or £ - ( c  + l ) / ; > £ ,  (4.38)

where c is an coefficient. For the sample image, c = 4 and = 0 . 8 6  are adopted in classi

fying the main text with about 30-pixel high (point size 7). By emphasizing the inequality 

measure, the different categories are guaranteed to be separated, which is the principle of 

the classification. While the patterns belonging to the same category may be split due to 

the noise, and the fuzzy set may contain more prototypes than it really has. We can per

form the similarity comparison again for the final set. Since the noise effect is reduced for 

the fuzzy set, the similar prototypes being separated before probably will be merged. In 

the main text of the sample document, there are 1 2  prototypes which are finally merged.



CHAPTER 5

SKELETONIZATION FOR FUZZY DEGRADED CHARACTER IMAGE

In this chapter we present a topography-based approach of skeletonization for fuzzy 

images which is capable to skeletonize degraded images.

5.1 Introduction

Most of the existing algorithms for skeletonization are canied out on binary images [46, 

49, 75] where a thresholding on gray-scale images is required. To avoid information loss 

and extra distortion, an topography-based approach is proposed to apply directly on fuzzy 

or gray-scale images with tolerance to degradation. First, a convolution by a bell-shaped 

function is performed to obtain a smooth surface. Second, the ridge points are extracted 

by rule-based topographic analysis of the structure. Third, a membership function is 

assigned to ridge points with values indicating the degrees of membership with respect to 

the skeleton of an object. Finally, the significant ridge points are linked to form strokes 

of skeleton, and the clues of eigenvalue variation are used to deal with degradation and 

preserve connectivity. Experimental results show that our algorithm can reduce the 

deformation of junction points and correctly extract the whole skeleton although a char

acter is broken into pieces. For some characters merged together, the breaking candidates 

can be easily located by searching for the saddle points. A pruning algorithm is then 

applied on each breaking position. At last, a multiple context confirmation can be applied 

to increase the reliability of breaking hypotheses.

Our approach for skeletonization, based on topography, can directly deal with the 

fuzzy character prototypes as well as gray-scale images. The approach competes favor

ably with the one by Wang and Pavlidis [89] for the following advantages:

92
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(1) A fuzzy membership is assigned for each ridge point to indicate the degree of mem

bership with respect to the skeleton.

(2) A precise location of the ridge point is sought on each crack of a pixel.

(3) The resulting skeleton is represented by a set of skeletal strokes which can be traced 

easily by their eigenvectors.

Besides, our approach distinguishes from traditional thinning algorithms [46, 49, 75]

in the following aspects:

(1) Object distortion avoidance. Since our algorithm applies directly on fuzzy images 

without an ar-cut, information loss and object distortion can be prevented. For exam

ple, a fuzzy image shown in Fig. 5.1(a) apparently indicates a horizontal line, where 

4, 5 and # denote memberships of 0.4, 0.5 and 1, respectively. If an a-cut with 

a  = 0.5 is applied, the binary image shown in Fig. 5.1(b) is quite noisy compared to 

the original.

5 4 5 5 4 4 5 5 4 4 5 5 5 4 4  # ##  # #  # # #
# # # # # # # # # # # # # # #  # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # #  # # # # # # # # # # # # # # #
4 5 5 4 5 4 4 4 5 5 4 4 5 5 5  # #  # # #  # # #

(a) (b)

Figure 5.1 A fuzzy image and the corresponding binary image by an a-cut with a  = 0.5.

(2) Less deformation on junctions o f a skeleton. Conventional algorithms usually pro

duce a deformed skeleton around junctions. Some algorithm adds knowledge rules 

to reduce the deformation [60]. However, the knowledge-based approach is quite 

heuristic. Our topography-based model produces less deformed skeletons along 

junctions.

(3) Separation o f the skeleton o f merged characters. The skeleton of merged characters 

by our method are the union of skeletons of individual characters and bridge strokes. 

The possible breaking positions can be easily located based on topographic features.



(4) Linkage o f skeletons o f broken characters. Our algorithm can link broken compo

nents of a character together in a reasonable way to form a complete skeleton.

The remainder of this chapter is organized as follows. Section 5.4 introduces the 

topographic structure analysis. Section 5.5 presents the transformation of a fuzzy image

Section 5.7 presents the procedures for handling degraded character images. Section 5.8 

provides experimental results.

5.2 Topographic Structure Analysis

5.2.1 Directional Derivatives and Eigenvectors

In this section, we review three-dimensional geometry [60, 82] and introduce the mathe

matical notations used. Let g(x, y) denote the intensity function of an image in Cartesian 

coordinates. A three-dimensional surface can be constructed if the function value g(x, y ) 

is viewed as z-axis. The gradient of g(x, y), Vg, is a vector field such that

dg dg
v* = 3fi + a^ <51>

where i and j  are unit vectors in x- and y-axes, respectively. Note that Vg points in the 

direction in which g(x, y) increases at the maximum rate. Let u be a unit vector of orien

tation d counterclockwise from jr-axis, i.e., u = (cos 6, sin d).

The directional derivative of g(x, y) in the direction of u is defined as

into a smooth function. Section 5.6 describes the extraction of ridge lines and skeleton.

dy
(5.2)

The second derivative of g(x, y) in the direction of u is defined as 

g" = uHur  = gxx cos2 Q + 2gxy sin 0  cos d + gyy sin2 6, (5.3)

respectively, and H is a Hessianwhere gxx, gxy,  and gyy denote
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matrix defined as

H = Sxx Sxy  
S x y  S yy

Since the second derivative of g(x, y) has the form of uHur , the eigenvalues of the 

Hessian matrix are the extrema of the second directional derivative and the eigenvectors 

are the directions in which the second directional derivative is extremized. Furthermore, 

the two eigenvectors are orthogonal because H is symmetric. Therefore, the eigenvectors

dg"
can be obtained by setting = 0. That is

d C
de -  ~  ^ 8 xx cos 0  sin 0  + 2 g^,(cos2 0  -  sin2 0 ) + 2 g y y sin 0  cos 0

= “  8xx sin 2 0  + 2gxy cos 20 + g^  sin 20 = 0 .

We have

tan 20 = 2 8

Two solutions can be obtained.

1 2  gx

8  xx 8  yy

1

(5.4)

„  i - l  x y  _  x  _ i  2 g  J t0{ = -  tan ------- -— , 02 = - t m  ------- —  + —2 Sxx S yy 2 S  xx S y y 2
Let Wj and w2 denote the eigenvectors.

Wi = (cos sin 0 i), w2 = (cos 0 2, sin 0 2).

Replacing u in eq. (5.3) by W] and w2, we obtain the two eigenvalues Ax and A2, respec

tively.

, _ // _ S xx S y y "f "\ji8xx  S y y)2 "1" 48 %  i _ // _ S xx  S y y  "sjiSxx S y y ) 2 48 \
M -  Swi -  2  ’ 2 “  ^w2 “  2  !

xy
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Note that from eq. (5.4), if gxy = 0 and gxr ~ 8yy* 0» the two eigenvectors are 

respectively in the horizontal and vertical directions and the corresponding eigenvalues

are g xr and g w . If g^ -  g^ = 0 and g^ *  0, then d = ± If g„ -  gw = 0 and g^ =  0,

then the eigenvectors do not exist.

5.2.2 Mathematical Topographic Features

Topographic features of an image g(*, y) can be derived from its gradient and the eigen

values and eigenvectors of the Hessian matrix [31]. They can be categorized as follows.

(a) Peak: A peak is a point being a local maximum in all directions. It can be formu

lated as

||Vg|| = 0, A, < 0, A2 < 0 .

(b) Pit: A pit is a point being a local minimum in all directions. It can be derived from

||^ s ||= 0, > 0, A2 >0.

(c) Ridge: A ridge occurs when a local maximum exists in one of the eigenvectors; 

while the other is neither a local maximum nor a local minimum. Mathematically, a 

point is called a ridge if it satisfies

IP̂ sll=o,  ̂0, ^-2 =

or

a j = o, /i2 < o,

or

||V g ||*0 , /IjCO, Vg ■ W] = 0,

or

I N I * o ,  A2 < 0, Vg • w2 = 0.
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(d) Ravine: A ravine is analogous to a ridge except that a local minimum exists in one 

of the eigenvectors. Therefore, it satisfies

||^ s || = 0» Aj > 0, A2 — 0,

or

1 I = =  0, A2 > 0,

or

||V g||*0, A, > 0, Vg • w, = 0,

or

||V g||*0, A2 > 0, Vg • w2 = 0.

(e) Saddle: A saddle occurs when a local maximum and a local minimum exist respec

tively in two eigenvectors. It can be formulated as

||^s || = 0» AjA2 <0.

(f) Flat: A point is called a flat if it satisfies

||Vg|| = 0, Aj = 0, A2 = 0.

(g) Hillside: A hillside is a point which does not belong in the preceding categories.

5.2.3 Ridge Lines and Skeleton

The set of ridge lines is defined as consisting of peak, ridge, and saddle points for the 

extraction of skeleton in an image. From the mathematical formulae of the preceding 

section, we can easily summarize that the ridge lines of an image g(x, y) consist of the 

points which satisfy the conditions below. If ||Vg||^ 0, then (1) Xx < 0 and Vg • W! = 0,

or (2) A2 < 0 and Vg • w2 = 0. If ||Vg|| = 0, then Xx < 0 or A2 < 0. Note that ||Vg|| = 0

implies Vg • w, = 0, for / = 1, 2. Therefore, the conditions can be further simplified as
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A,- <0, Vg • w, = 0, for i = 1 or 2. (5.5)

The concept of fuzzy logic is then applied to represent the membership grade of 

ridge lines belonging to the skeleton.

Proposition: The membership grade of a ridge point, denoted as v(x, y), represents its 

strength pertaining to the skeleton of an object in the direction perpendicular to w, and is 

defined as

(5-6)

where A, and w, are the eigenvalue and eigenvector satisfying the condition in eq. (5.5) 

and Aj is the other eigenvalue.

A ridge line is called significant if it receives a high membership grade; otherwise, it 

is called less-significant. The significant ridges constitute the skeleton, and the less- 

significant ridges are discarded except those are bridges between significant ridges.

Example: Let a hemi-elliptical surface be defined as

g(x, y) =
I x* y2 x 2 y2

a y  a2 b2 a2 + b2
<. 1

(5.7)
0  otherwise,

where a and b are constants and a <b. The hemi-elliptical surface is shown in Fig.

x 2 y2
5.2(a). Let a  = 1 — -  -  — . The first and second partial derivatives of g with respect to x

a2 b2

and y can be calculated as

r)o r
(5.8)

(5.9)

d l  = X

dx a*Ja ’

dg ay
dy b2̂ '
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(c) (d) (e) (f)

Figure 5.2 (a) a hemi-elliptical surface, (b) the gradient stream flows and the contour 
lines, (c) the stream flows of the eigenvectors, (d) the ridge lines based on eq. 
(5.5), (e) the local maximum of curvatures in each contour line, (f) the exact 
ridge of the hemi-elliptical surface by fuzzy logic.
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(5.10)
d x 2 a a3

(5.11)

(5.12)

The gradient, eigenvalues, and eigenvectors can be easily computed using the equations 

in Section 5.4.1. The stream flow of gradient is shown in Fig. 5.2(b), where dotted lines 

represent the contour lines of g(x, y), which are orthogonal to the gradient. The stream 

flow of the eigenvectors is shown in Fig. 5.2(c), where dotted lines represent the minor 

eigenvectors. As observed from Figs. 5.2(b) and 5.2(c), the gradient is perpendicular to 

one of the eigenvectors, i.e. Vg • w, = 0, for i = 1, 2, along x- and y-axes. Following eq. 

(5.5), we can extract two ridge lines as shown in Fig. 5.2(d). However, the two ridge lines 

as being the skeleton of an ellipse are unintuitive to human’s perception. Instead, a ridge 

line along the major axis should be observed as the skeleton. This can be obtained by 

selecting the local maximum of curvatures at each contour line, i.e., g(x, y) = c, where c 

is a constant in the range of [0, gmax], as shown in Fig. 5.2(e). However, its computation 

is costly.

Now, we adopt eq. (5.6) for computing fuzzy membership grades. Since that

0  occurs at the two ridge lines, the two eigenvalues are The mem

bership function along *-axis is

d2g/dy2
-  a<> x  <, a, (5.13)

Vy=0  d2g/dx2 + d2g/dy2 a2 + b2 -  x 2 '

and the membership function along y-axis is

d2g/dx2 b2 -  y2
-b < , y <, b. (5.14)

Vx=0 d2g/dx2 + d2g/dy2 a2 + b2 -  y2 ’
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We observed that the values of eq. (5.13) are always smaller than 0.5 because a < b. If 

an a-cut at 0.5 is applied, then the x-axis (i.e. y = 0) is discarded. Note that the two end

b 2 — y2
points of the ridge line on x = 0 can be solved from —— —-----   = 0.5. That is

a2 + b2 -  y2

x 2 y2
(0, 'lb2 -  a2) and (0, -  'lb2 - a 2) which are the two foci of the ellipse, —  + — = 1. The

a2 b2

skeleton obtained from our fuzzy model is shown in Fig. 5.2(f). Furthermore, we should 

note that if a = b, eq. (5.7) becomes a hemi-spherical surface. The membership grades 

are smaller than 0.5 everywhere except at the origin which is equal to 0.5. Therefore, the 

skeleton of a circle vanishes to the center point.

5.3 Transformation of a Fuzzy Image

5.3.1 Transformation Function

Let f ( x ,  y) denote a fuzzy image. A point spread function h(x, y) used for the smooth 

transformation is defined as

h(x, y) = C(x)C(y), (5.15)

where

C(x) = .

1 ,— cos (— ) if bA<,a 
(7 2a

0  otherwise,

and cr is a constant. The image f ( x ,  y) is convolved with the function h{x, y) and the 

result is denoted by g(x, y).

OO 00
g(x, y) = f f /(« , V)h(x - u , y -  v)dudv.

J-oo J —00

Assume that

f f r  \ -  if  Xl *  x  *  * 2’ yi  *  y  *  j2
’ ^ 1 0  otherwise,
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where /i is a constant, x2 -  x x <, 2a, and y 2 -  yi ^  2cr. Therefore, we obtain

g(x, y) = fi f 2 C(m -  x)C(v -  y)dudv 
Jyi jx\

where

1 (u-  x)n u
—  sin + —
2/r a 2 a

1 . (v -  y)n  v—  sin------------+ —
2;r a 2a

0 ,

v2
. X̂i — a £ x £ x2+a, 

y i ~ a £ y < i y 2 + a,

otherwise.
(5.16)

V, =

x  -  a  if x > JCj + <T 
jcj otherwise,

y — a  if y > y x + a  
otherwise,

and u2 =

and v2 =

x + a  if x < x 2 — a  
x2 otherwise,

y + a  if y < y 2 ~ a  
y2 otherwise.

Figure 5.3 The coordinates within a pixel (/, j).

We select a  to be a positive integer. As shown in Fig. 5.3, let the upper left corner of 

a pixel be the origin. For the coordinates (x, j )  within the pixel (/, j), where 0 <, x, y <, 1, 

the convolution of f ( x ,  y) and h(x, y) is

S i j  (■"''> ) 0  — X I  X *  M i+ m ,
m^-cr n=-a

J+n
1 . (u -  x )n  u

—  s in ------------+ —
2  n  a  2  a

1 . (v - y ) n  v
—  sin----------- + —
2  n a  2  a

V2
, (5.17)

where / l̂+m,,+n denotes the membership value of pixel (/ + m, j  + n), and
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u I =
m + x if m = - a  \m + x  li m = a

and u 2 = 1
m otherwise, \m + 1 otherwise,

v, =1
n + y if n = -  a  
n otherwise,

and v2 =
n + y if n = cr 
n + 1 otherwise.

Likewise, the first and second derivatives of gyix, y) can be derived as follows:

m=-a n=—a

d s  o  a
=  £  £  Mi+m,

d g

j+n
1 (w -  x)n  

— -— cos-----------
2cr a

->“2
1 . (v -  y)n  v—  sin ----------- + —

2  n a  2  cr

dy — ZL £  Mi+m,J+n
m=-<j n=>-a

1 . ( « -  *)/r «
—-  s in ------------+ —
2n a  2  cr

- l “ 2

d2g 17
0^.2 ~  ^  ^  Mi+mJ+n

m=-cr n=-er

n  . (n-x)^- 
sin------

-l“2

2cr2
l“i

1 (v -  y)n  
-  -— cos----------

2 £7 £7

1 . (v -  y)n  v—  sin ----------- + —
2 JV £7 2 £7

d2g a a 
3,, 2 — ^  ^  Pi+m.j-u y  m~-cj n --c t

,j+n
1 . (n -  ;t);r n

—  sin ------------+ —
2n  £7 2£7

- | “ 2

I“1

^  . (v -  v)/rsm ----------

V2

vi

*2

Vl

- v 2

v 2

2 a 2

(5.18)

(5.19)

(5.20)

(5.21)

d2g
dxdy ,J+ n

m=—cr n=—a

1 (u — x)n
—  co s-------
2(7 £7

-l“ 2
1 i y - y ) n

—  cos----------
2 £7 £7

V2
(5.22)

5.3.2 Matrix Representation of the Transformation Function

By using eqs. (5.17)-(5.22), we have to perform a convolution for each x and y. The 

computation is quite expensive. A matrix representation can be achieved as follows. Let

1 x n  x
<t>(x) = —  sin —  + —— and substitute it into eq. (5.17). For m = - a ,  we have 

2  n  £7 2a

. . „ 1 . ( - £ 7  + l)n  x n  1 ( -£ 7  + l);r . x n  x  1
<t>(u ~ x) = —  sm ------------ cos------- —  cos--------------sm ------- —  + —  .

1 2 n  £7 £7 2n a  a  2a  2a

For m -  £7 , we have

, i „ 1 . x n  x<p(u-x) £  = -  — sin —  + — . 
1 2  n  a  2a
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Otherwise,

. Iu, 1 . .  (m + l) n  . m n s x n  1 , (m + l)n  m n , . x n
(j>{u -  x) LJ = —  (sm -------------- sm -----) cos-------—  (cos--------------- cos----- ) sm —

2  n  a  a  a  2  n a  <j  a

1

+ 2 ^ ‘

Therefore, <p{u -  *) I uu2 can be represented in terms of cos — , sin — , and x. Similarly,
a  a

yn  yji
<f>(v - y ) \ l 2 can be represented in terms of cos — , sin — , and y. By using the matrix 

1 a  a

representation, we have

g(x, y) = v(.r)r Kv(y) 

^  = v(x)r K xv(y)

^  = v(x)r Kyv(y)

i*
dx2

dy2

d2g
dxdy

= v(Jc)r Kxrv(y) 

= v(jc)r Kw,v(y)

= v(x)r K^,v(y),

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

where T denotes the transpose of a vector, and v(x) and v(y) are vectors defined as

x n

v(*) =

cos

sm
a

x n

x

1

Note that K, Kx, Kr  K**, K ^, and K^, are 4 x 4 matrices. Let K
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K =

'  ^11 A’12 ■̂'13 A14 "
■̂21 A'22 2̂3 2̂4
3̂1 ■̂32 3̂3 3̂4

Tt . 1 A42 4̂3 -̂43 _

where A,-,-’s can be computed by summing up the corresponding terms in the convolution. 

Therefore, we have

K ,=

- A"21a
- - A"11cr

0

3̂1

- A"■22a
- - A—  k 1 2

a
0

- A"■23a
- K- k  

a 13

K v =

- A"1 2a
- A"22a
- A"3 2a
- A"■42

n
K „ =  r

i f ___
a 2

^32 ^33

- - A "■11
cr

0 ^13

- - A "21
c r

0 ^23

- - A "-31a
0 ^33

-  — k"41
c r

0 ^43

An ^1 2 ^13 A m

A2i A 22 A23 A24

0  0 0 0

0  0 0 0

"An ^ 1 2 0 0 -

A21 a 22 0 0

^31 ^ 3 2 0 0

AdTt
Ad 

.. 
I 0 0

- A"■24cr
- * A

cr
0

3̂4

14

K ^ =

2 k22

-  —  A a 2 k«

!L k
"-32a

-  —  Ao "21 t*-a
n 2

2 kn

- - A 
a 31

0

0

0

n
v23

o - - A , 3
cr

0

3̂3
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It is not practical to search for a ridge line within a pixel. Instead, we check whether a 

ridge line passes through the boundary of a pixel. For example, in the upper boundary 

(i.e., y  = 0), g(x , y ) in eq. (5.23) can be simplified as

gy=o = v(x)r Kv(0) =
x n  . x n  

cos —  sm —  x  1 
a  a

’ ^11 + k 14
k2i + ku
■̂'31 + ^34

_̂ 41 + ^44

Similarly, from eqs. (5.24) to (5.28) we have

^ = v{x )tK M 0) = v(x ?

(̂ 21 + ^24)
c r

(£11 + ^14)
c r

0

£31 + 3̂4

^  = v (x )% v(0 ) = v W r

— k12 + k 13 
c r

— k22 + k23 
a
— £32 + ^33 
c r

— k42 + k. 
a 43

d2g
dx2

= v(x )tK „ \(0) = \ ( x ?

r*n+*i4  
k2i + ku  

0 
0

02 8 = v(jr)r K™v(0) = v(x)r
dxdy

n  n
—; k 22 + — k-^ 
cr cr

n  , n
2 12

c r  cr

0

n
k32 + k 33
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5.4 Extraction of Ridge Lines and Skeleton

5.4.1 Determination of the Parameter a

To obtain a smooth function in eq. (5.15), the parameter a  must be determined. From pre

vious discussion a  must be greater than or equal to a half of the maximal width of strokes 

in an image. Since our image is associated with fuzzy memberships in the range [0, 1], 

the two-pass distance transformation [69] can be modified as

where x'(.P) and x "(p ) denote the outputs of a pixel p = (x , y) after the first and second 

scans of an image, respectively. N l denotes the set of 8-neighbors that precede p  in the 

raster scan. That is, = {(x -  1, y + 1), (x, y + 1), (x + 1, y + 1), (x -  1, y)}. N2 denotes 

the remaining 8-neighbors of p. Fig. 5.4 illustrates the result of distance computation of a 

fuzzy image. The value of a  is therefore selected as the smallest integer which is greater 

than the maximal distance. For this example, the maximal distance is 2.8, and therefore 

cr = 3 is chosen.

5.4.2 Existence of Ridge Points within a Segment

Since g(x, y) is an image after smooth, its gradient and eigenvectors vary continuously 

with respect to x  and y. Each pixel with a nonzero function value has to be examined for 

the existence of a ridge line passing through it.

qeN 1

M p  i f  M P < 1

min X\<1) + 1  if MP = 1
/ i f f  A /. '

X"(p) = vcan[x'{p), x ' \q )  + 1],
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Figure 5.4 An example of a fuzzy image and its chessboard distance transformation.

A pixel is surrounded by 4 cracks (or grid segments) as shown in Fig. 5.3. For each 

crack, the gradients at two end points are calculated. Any end point must be a skeleton 

point if the gradient is zero. Otherwise, the eigenvectors and eigenvalues at the end point 

are calculated and if eq. (5.5) is satisfied, the end point is classified as a ridge point. If 

both end points are ridge points, they are linked. If only one end point is a ridge point, it 

is marked. If none is a ridge point, the following algorithm using a linear approximation 

is performed to determine whether a ridge point exists between the two end points.

First, the gradients at the two end points are checked. Two cases need to be consid

ered.

Case I: The two gradients are in parallel. If they point in the same direction, the whole 

segment must belong to the hillside and therefore is discarded. If they point in the oppo

site directions, there exists a point within the segment which has zero-gradient. However, 

the zero-gradient point could be a ridge or a ravine point. As shown in Fig. 5.5(a), the 

two gradients are considered as pointing to each other, i.e. d < 90°, and the zero-gradient 

point will be a ridge point. Otherwise, as shown in Fig. 5.5(b), the zero-gradient point 

will be a ravine point.
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ridge line

(a)

ravine line

(b) (c)

Figure 5.5 (a) Gradients are in parallel and point to each other, (b) gradients are in paral
lel and point away from each other, (c) gradients are not in parallel.

Case II: The two gradients are not in parallel. In this case, the gradient and eigenvectors 

are changed smoothly along the segment. In other words, let v(0) and v(1) denote the gra

dients and w-0) and w[l}, where i = 1, 2, denote the eigenvectors at the two corresponding 

end points p0 and p x. By a linear approximation, the gradient and eigenvectors at 

p, = (1 -  t)p0 + tpx, as shown in Fig. 5.5(c), can be derived as

v(,) = (1 -  r)v(0) + tv(1), = (1 -  0  w|0) + tv t" \

where 0 ^  t <. 1. A ridge point exists within the segment p0p { if there exists 0 <. t <, 1, so 

that v(,) and w-° satisfy eq. (5.5). That is

v(0w-° = (̂1 -  t)v(0) + ?v(1)j  (̂1 -  r)w-0) +

=  (1 - r)2v(0)W;0) + *(1 -  0 v (V °  + t ( l  -  Ov(1)w|0) + t2v(1)w,(1) =(5129)

Therefore, the two solutions for t can be obtained. If one of the solution is a real number 

in the range of 0 <. t <> 1, the algorithm described in the following section is applied to 

extract the correct ridge points.
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5.4.3 Extraction of Ridge Points

Once the existence of ridge points within a segment has been detected, the gradient and 

eigenvectors at p, = (1 - t ) p 0 + tpx are calculated. If eq. (5.5) is satisfied, point p, is 

extracted as a ridge point. Otherwise, the segment p0p x is split into two at point p,. 

Existence of ridge points is again examined on these two segments, p0p, and p ,p x, to 

determine which one the ridge point belongs to. The procedures repeat until a ridge point 

is extracted. Since the procedures are recursively applied, the calculations of the gradi

ents, eigenvalues and eigenvectors by eqs. (5.18)-(5.22) are expensive. Therefore, a 

matrix representation described in Section 5.5.2 is applied to reduce computational time. 

According to our experiments, the average of the number of repetition is about 3 or 4.

5.4.4 Construction of Skeleton

At this stage, the ridge points are linked to form the skeleton of the fuzzy image. First, the 

significant ridge points are linked according to their positions and directions. Second, if 

the less-significant ridge points are isolated or they are connected to the end of a ridge 

line, they are discarded. The less-significant ridge points are considered important only 

when they play a role as a bridge between ridge lines. In essence, they appear around the 

significant ridge points such as comers or junctions. Besides, they may play an important 

role in broken characters to be linked.

5.5 Skeletonization for Degraded Character Images

Two problems exist in degraded character images: one, a single character is broken into 

multiple pieces, and the other, multiple characters are merged into a single connected 

component. In this section, we present our strategy in dealing with degraded images to 

correctly extract skeletons.
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5.5.1 Broken Characters

When dealing with broken characters, two approachs can be used. One is to group the 

components into a single image and treat it as an entity for subsequent processes. The 

other is to treat the components independently. Each of them is passed through a classifier 

and then is combined together according to knowledge rules. However, the rules are quite 

heuristic and case-dependent. Therefore, the first approach makes the recognition phase 

simpler.

To illustrate how our algorithm works on broken characters, consider the broken 

pieces shown in Fig. 5.6(a). Its three-dimensional figure is shown in Fig. 5.6(b) if z-axis 

represents the gray level. Since our algorithm performs a convolution in the preprocess

ing, the two segments can be linked. The smoothed image is shown in Fig. 5.6(c), where 

the dark line represents the skeleton extracted using our ridge detection.

(a)

■ \ l

(b)

Figure 5.6 (a) A broken segment (b) its corresponding 3-D image (c) the smoothed im
age and its skeleton.

It was observed from Section 5.5 that our algorithm can link the gap width up to la .  

Since a half of the stroke width is selected, the components can be linked with the maxi

mal distance of the stroke width. This will be sufficient for most of the broken charac

ters.
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5.5.2 Merged Characters

Merged characters may occur due to low resolutions or smearing ink of printing devices. 

Most of the merged character segmentations [25, 41, 54] used vertical projection profile, 

skeletal features, and contour features. A splitting algorithm based on the sharp change 

in the vertical projection profile was proposed by Kahan et al. [41], where a maximum of 

the second difference in the vertical projection profile was selected as the possible break

ing position. However, this method is limited on certain joins (e.g. serif joins and double- 

o joins). Some merged characters, such as those written in the Italic font, will be difficult 

to find. Tsujimoto and Asada [85] proposed a breaking cost, which is a variation of verti

cal projection profile, as a metric to nominate breaking positions. Break cost evaluates 

the degree of contact for each pair of adjacent columns. However, it has the same prob

lem as Kahan’s algorithm. Fujisawa et al. [25] proposed an approach using contour anal

ysis. However, the breaking position may not be accurate, and some joins, such as serif 

join, may not be detected. Another splitting algorithm using skeletal features was pro

posed by Mitchell and Gillies [54], The splits roughly sort the stroke segments of the 

form into two groups representing the left and right digits. However, it is restricted for 

merged characters consisting of two characters only. Besides, the desired sorting may 

result in stroke segments that are not in either group. Therefore, some enumeration 

heuristics incorporating the handwriting properties are used to limit the split number.

Our splitting algorithm, applied on the skeleton obtained in the preceding section, 

uses the gradient and eigenvalues to detect the breaking candidates. The algorithm con

sists of three stages:

(1) Searching for possible splitting positions.

(2) Pruning the linking strokes.

(3) Recognizing individual characters and context confirmation.
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5.5.2.1 Searching for Possible Splitting Positions Essentially, joined positions of 

merged characters usually have less-pixel connections or lower membership values than 

the positions within a stroke. Therefore, after performing a convolution, the smoothed 

membership values at joined positions are relatively low. However, thin strokes may also 

have low membership values. The difference between the thin stroke and the joined posi

tion is that the membership values change smoothly within the thin stroke, while they 

change sharply around the joined positions. Thus, the joined position can be characterized 

as the local minimum of membership values with sharp curvature in the tangent of the 

ridge line. In other words, a joined position is a saddle point with high eigenvalues. 

Therefore, the first step to segment merged characters is to locate the saddle points.

The procedure for searching for saddle positions is straight forward. Since each 

stroke is composed of a set of ridge points, we simply trace each point within a stroke 

sequentially. Based on the features of a saddle point, the gradient of each point is 

checked. A saddle point is classified if its gradient is zero and its eigenvalue with respect 

to the eigenvector in parallel to the ridge line is negative. In most cases, the saddle points 

are not exactly at ridge points. Instead, a saddle point may exist within a ridge line seg

ment. We simply check the gradients of the two end points of each ridge line segment. A 

saddle point exists within a ridge line if both gradients on the end points point outward. 

Mathematically speaking, It satisfies the following two conditions: (1) Vgi ■ Vg2 ^  0 and

(2) Wj > 0  and w2 > 0, where V g u Vg2 and wlt w2 denote the gradients and eigenvalues 

with respect to the eigenvector in parallel to the ridge line of the two end points. For sim

plicity, the larger eigenvalue of the two is selected as the eigenvalue of the saddle point.

Once the saddle points are located, the ones whose eigenvalues exceed a threshold 

are selected as possible breaking positions. The possible breaking positions are then 

ranked according to their eigenvalues and the membership values of the pixels where the 

saddle points are located. The membership values reflect the breaking cost of the break

ing pixels. Therefore, the points with lower membership values are ranked as higher
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possibilities. If the membership values of two points are identical, the eigenvalues are 

then checked. The eigenvalues reflect the breaking cost in the neighborhood of the break

ing candidates. The higher eigenvalue represents the lower breaking cost. Therefore, the 

point with the higher eigenvalue is ranked as a higher possibility. After ranking, the split

ting algorithm is then applied and the reliability is confirmed from the highest ranked 

candidate.

5.5.2.2 Pruning the Linking Strokes Kahan et al. [41] characterized the most frequent 

types of joins into two categories: serif joins and double-o joins, as shown in Figs. 5.7(a) 

and 16(b). When applying our skeletonization algorithm on a merged character with dou

ble-o join, there exists an extra stoke at the join position as shown by dotted line in Fig. 

5.7(e). This extra stroke should not be a part of any character and must be entirely 

removed. However, the extra skeleton line for the serif join is a part of a stroke, as shown 

in Fig. 5.7(d), and only needs partially pruned. Other joins may have extra skeleton lines 

as a part of one character. For example, the extra skeleton line as shown in Fig. 5.7(f) is a 

part of one of the strokes belonging to character “y” . In this example, the extra skeleton 

in the left-hand side of the saddle point needs to be removed, but the skeleton line in the 

right-hand side can only be partially pruned.

Our criteria for pruning the extra skeleton line is described below. First, the stroke 

which includes a breaking point is split into two at the saddle point. Each half is then 

checked independently. If the segment is short and the other end of the segment is a “T ” 

junction, then the join must be an “O” type join. “ O” type join can be double-o join or a 

convex contour osculating to another stoke (e.g. Fig. 5.7(e)). Therefore, the segment 

must be entirely removed. The judgement of the segment which is long or short depends 

on the value of a. If the segment is long or the other end of the segment is not a “T ” 

junction, then the extra segment is not an “O” type join. In this case, the segment con

tains an actual skeleton line and part of the extra line. To prune the extra skeleton, we
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Figure 5.7 (a) Serif join, (b) double-o join, (c) other join, (d), (e), and (f) are the skele
tons of (a), (b) and (c).

simply trace down from the saddle point to until a zero-crossing of the eigenvalue occurs. 

The segment from the saddle point to the point with a zero-crossing of the eigenvalue is 

then deleted.

S.5.2.3 Recognition of Individual Characters and Context Confirmation Once the 

pruning procedure is performed, the skeleton of the merged character is split into several 

skeletons of individual characters. For most of the existing splitting algorithms [25, 41, 

85], each breaking hypothesis needs further processing on the separated character images 

to extract individual features. This increases the processing time. However, our method 

has the advantage that after the pruning procedure, no more processing is needed. Each 

individual skeleton is just passed through a character classifier. For example, the
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skeletons of two merged characters shown in Fig. 5.7(e) are separated. The two skeletons 

are then passed through a character classifier [47, 63, 74]. If the recognition fails, the 

hypothesis of the breaking candidate is rejected and not considered. Otherwise, a context 

confirmation is then applied to the hypotheses which survive in the recognition to deter

mine the reliability of the splitting hypotheses. The context confirmation is based on the 

corresponding words which contain the merged character. The reliability can be calcu

lated by the number of words which survive in the dictionary checking divided by the 

total number of the words which contain the merged character. For the example of Fig. 

5.7(b), there are six words of “operations” , three words of “property” , a single word of 

“ inspection” , “ speed” , “paper” , and “superposition” , which contain this merged char

acter. The characters with the breaking candidate shown in Fig. 5.7(e) are recognized as 

“p ” and “e” which will succeed for all the words by dictionary checking. Therefore, the 

reliability of the hypothesis is 1.

5.6 Experimental Results

A set of fuzzy character image prototypes which were obtained from preceding chapter 

were used as our input. Besides, binary and gray-scale images captured from a scanner 

were also included in our experiments. In this chapter, we focus on the skeletal process

ing which has been implemented in C language on a SUN workstation 4/490 under UNIX 

operating system. Splitting and pruning algorithm for merged characters have been 

developed and tested as well. In the following, we present test results on fuzzy, binary, 

and gray-scale images. Additionally, several handwritten character images were also 

include in our experiments.

Example 1: Fig. B.l(a) in Appendix B illustrates three fuzzy images which were obtained 

by unsupervised character classification from a document. The three images are built up 

by 88, 9, and 7 character images from the selected document, where “# ” represents the 

membership greater than 0.95 and the number represents the closest integer of 10 times
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of the membership. Since the fuzzy images are composed of a set of character images 

belonging to the same classes, the memberships around the contours of the images are 

quite ambiguous. Fig. B.l(b) shows the smooth surface patches. The skeletons of the 

fuzzy images are shown in Fig. B.l(c).

Example 2: This example shows the result when our algorithm is applied on a binary 

image. Fig. B.2(a) shows a binary image of character “T ” . If we use the thinning algo

rithm in [69] which deletes simple points successively from north, south, east, and west 

boundaries, the skeleton is shown in Fig. B.2(b). The skeleton by our method is shown in 

Fig. B.2(c). The deformation around the junction point becomes relatively small.

Example 3\ This example illustrates the processing on the merged characters. As shown 

in Fig. B.3(a), two merged character images were constructed by the unsupervised char

acter classification from a document. The first one is constituted by 5 original images, and 

the second one is simply by one image. Again, the convolution is performed on the fuzzy 

images, and smoothed images are obtained as shown in Fig. B.3(b). The entire skeletons 

of the merged character images are then extracted as shown in Fig. B.3(c), including the 

dotted lines.

To separate individual character skeletons, we trace on the skeleton lines and search 

for the saddle points. To avoid the trivial saddle points due to some noise, a threshold of 

the eigenvalue associated with the tangent of the skeleton line must be selected. From our 

experimental results, the range between 0.015 to 0.02 is distinguishable for those trivial 

saddle points. In our experiments, 0.015 is used. The crosses shown in Fig. B.3(c) show 

the saddle points with eigenvalues exceed the threshold. There are five and six candidates 

for the two examples, respectively. Among the set of saddle points, the original member

ship values of the pixels where the saddle points locate are first evaluated. For the first 

example, the membership of the saddle point at the linking stroke is 0.4. Therefore, this 

point is ranked by 1. For any other saddle point, which has membership 1, the
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eigenvalues are further checked and ranked accordingly. Besides, it is observed that the 

eigenvalue of the saddle point 1 is also the highest. The eigenvalues for the five saddle 

points are 0.0627, 0.0507, 0.0482, 0.0465, and 0.0354, respectively. Since the second 

example is a single binary image, all the membership values at saddle points are 1. There

fore, only the eigenvalues are compared. The points are ranked by the numbers with the 

six eigenvalues 0.2903,0.2438,0.1929,0.1630,0.1156, and 0.0845, respectively.

The pruning algorithm is then applied on the first candidate of each skeleton. In the 

first example, the stroke containing the saddle point is short. The determination of a 

stroke which is short or long is based on the comparison of the stroke length and the 

value 2a, which represents the maximum width of the image. The length of this stroke is 

6.6103 which is quite close to 2o\ where a  = 3 in this example. Besides, the two end 

points of this stroke belong to a “T ” junction which tells the join is due to two osculating 

vertical convex contours (i.e. double-o join). Therefore, the entire stroke is removed. For 

the second example, the stroke containing the saddle point is long. Therefore, the pruning 

algorithm is applied on the two segments on the left- and right-hand sides of the saddle 

point separately. The segment on the left-hand side is short and has a “T” junction at the 

end point. It is therefore erased. However, the segment on the right-hand side is a long 

stroke. Therefore, it is pruned from the saddle point to the point with zero-crossing of the 

eigenvalue. The dotted lines shown in Fig. B.3(c) are the extra skeletons which are 

removed.

As observed, the first candidates in these two examples are the correct hypotheses. 

The resulting split skeletons will be recognized directly without any further preprocessing 

for features extraction. The multiple context confirmation is then applied to evaluate the 

reliability of the hypotheses. This is specially useful when a fuzzy image is constructed 

by multiple images. For the first example, the recognized characters “p ” and “o” will be 

confirmed by dictionary checking with the corresponding words containing the merged 

character. That is, the five words “ important” , “decomposition” , “decomposed” ,
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“superposition” , and “decomposition” as shown in Fig. B.4 will be confirmed, which 

results a reliability of 1. Our splitting algorithm has been tested on 100 merged charac

ters. There are 75 cases succeed at the first candidate.

Example 4\ Fig. B.5(a) shows three broken characters which are captured from a poor- 

printed document. When the convolution is performed, the broken gaps are linked by rel

atively small membership values as shown in Fig. B.5(b). Therefore, connected skeletons 

are extracted as shown in Fig. B.5(c).

Example 5: When the input are gray-scale images, our algorithm can also directly apply 

on them without converting into binary images. Fig. B.6(a) illustrates two gray-scale 

images. The first one was captured from [89]. First, we convert the gray-levels into fuzzy 

memberships by a linear mapping. Mathematically, the memberships are calculated by

the mapping function: p  = — — ^mm , where g denotes the gray-level of a pixel, and
8 m ax — 8 m in

gmax and gmin denote the maximum and minimum of gray-levels in the images. There

fore, even though the background of the images may not clear, the membership values on 

the background will be close to 0 if the background is shaded uniformly.

However, since the memberships on the background are not all zeros, the method 

for determining a  (Section 5.6.1) is not appropriate. Here, we simply apply an edge 

detection [69], and then a raster scan is applied to find the most popular run length. To 

allow a tolerance, the smallest integer greater than 1.2 times of the most popular run 

length is then selected as a. After performing convolution and ridge detection, the results 

of skeletonization are shown in Fig. B.6(b).

Example 6\ Lastly, we show a few test results for handwritten characters. To allow more 

flexibility of handwritten characters, larger a  can be used. In these test results as shown 

in Fig. B.7, a  is still selected as the smallest integer which is greater than the maximal 

distance, some small gaps small than up the stroke widths, such as the close loop of



character “a ” may leave an opening due to the quick movement of writing, have been 

connected. We also experimented with selecting a  from the stroke width up to 3 times of 

stroke width. However, when the value of a  is increased, the deformations at junctions 

and corners are also increased. Additionally, some actual gaps may also be linked. 

According to our trial experiments, a  up to twice of the stroke width gave quite good 

results, and the the deformations are tolerable. Most linking positions of merged charac

ters can be detected by our algorithm. However, the pruning procedure is more compli

cated since some long strokes containing breaking points do not belong to any character.



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this chapter we summarize the contributions of our research and briefly discuss further 

research directions.

6.1. Contributions of This Dissertation

The motivation of this dissertation is to provide the fundamental data and information for 

an office document management and filing system. The significant information and data 

which appear in a paper document must be captured and encoded. The unsupervised char

acter classification has been experimented to be a suitable approach to simplify an OCR 

system. Fuzzy theory and technology have been investigated and used as a natural tool 

for the character classification and feature extraction.

The block segmentation based on a run-length smoothing algorithm [21, 95] has 

been developed into a concise two-step method. Therefore, the computational time can be 

reduced significantly almost 40% comparing to the original algorithm. The block classi

fication has been developed based on the feature of mean transition which has been veri

fied as invariance to character size, font style, and even though the scanning resolution. 

The mean transition TVx for classifying vertical lines and THy for classifying horizontal 

lines has been examined in a statistic way and found to be a very stable features with 

standard deviations lower than 0.0005. When they are applied on single-font and fixed

sized documents, the standard deviations of the mean transitions are lower than 0.005. 

For multi-font, variable-sized documents, even the scanning resolution changes, the stan

dard deviations are still less than 0.1. The parameters can be adaptively adjusted with the 

consideration of tolerance. These algorithms have been successfully experimented.

121
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We have presented an efficient method for fuzzy typographical analysis (FTA) of a 

textual block to improve the character classification and recognition performance. Each 

text line is decomposed into three zones and the typographical categorization is per

formed based on word structures. An efficient baseline detection technique has been 

developed, and the tolerance for baseline detection and the typographical analysis have 

been discussed. Baseline detection can also be used for skew angle detection when a doc

ument is tilted. Another usage of baseline is to determine the interline spacing, which is 

useful for grouping textual blocks in a paragraph for layout structure analysis. FTA has 

been tested for different font sizes with satisfactory performance. The results show that 

FTA can correctly preclassify characters as small as 6-point, and is efficient to process 

more than 10,000 character per second. FTA can be extended to handwritten character to 

simplify the classification problem. Fuzzy consideration is incorporated to ensure the 

robustness for special cases. Partial differential equations are formulated as the con

straints on the fuzzy membership functions. Their boundary conditions are considered to 

preserve the continuity. The fuzzy membership functions are then derived according to 

the character size and location within the typographical structure of a text line.

We have also presented a fuzzy model of unsupervised classification for preclassify

ing characters in the document processing system. A fuzzy model of prototypes is 

defined and several propositions of the features of the fuzzy model are given. The exist

ing similarity equations for matching are investigated. However, those methods have a 

common problem because their matching is based on the percentage of intersection of 

two patterns. They can not distinguish noises nearby or far away from the boundary of an 

object. Therefore, we proposed a nonlinear weighted similarity function based on dis

tance transformation. Furthermore, a similarity measure of the fuzzy model is proposed 

from the extension of the nonlinear similarity function. A simple matching algorithm is 

applied for grouping input images into the fuzzy prototypes. A hierarchical scheme for 

classification is proposed for the prototype grouping in order to save the computational
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time as compared to the sequential grouping. The hierarchy also has the advantage for 

parallel processing. The characteristics of the fuzzy model are discussed and used in 

speeding up the classification process. The emphasis of inequality measure for small 

characters guarantees no misclassification, but a little redundancy is encountered on the 

fuzzy prototype set. This redundancy can be removed by self-grouping the final prototype 

set. The propositions and algorithms have been tested with satisfactory performance.

The fuzzy model of prototypes is verified that it can reduce the effect of noise. After 

classification, the character recognition which is simply applied on a smaller set of the 

fuzzy prototypes, becomes much easier and less time-consuming. Based on the proto

types which is free of noise, the recognition problem will be simplified and the speed as 

well as recognition rate will be increased. For ambiguous characters, probably as merged, 

the accuracy of postprocessing will be also improved. Since the scope of the proposed 

model is limited and the matching algorithm is easy to implement, the complexity of a 

document processing system is reduced.

It is believed that feature extraction is one of the most difficult and key issues in pat

tern recognition. A topographic approach for skeletonization on fuzzy images has been 

presented. The method works directly on a fuzzy image or a gray-scale image, so that it 

is less sensitive to noise and can avoid information loss and extra distortion. A convolu

tion by a bell-shaped function is applied on the original images which is able to link bro

ken characters in a certain degree. The coefficient a  used for convolution is determined 

by a distance computation which can reduce the deformation close to junctions. Topo

graphic features are based on the first- and second-order directional derivatives on the 

transformed image. Ridge points are extracted by rule-based topographic analysis of the 

structure. A matrix representation of the transformation function is derived to save the 

computational time for locating the accurate ridge points. A membership function is then 

assigned to ridge points with values indicating the degrees of membership with respect to 

the skeleton of an object. The significant ridge points are linked to form strokes of
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skeleton, and the clues of eigenvalue variation are used to deal with degradation and pre

serve connectivity. A splitting algorithm is proposed for merged characters based on the 

skeletons which includes three stages: 1. searching for significant saddle points as possi

ble breaking positions, 2. pruning the linking strokes based on the type of joins, and 3. 

recognizing individual characters and applying multiple context confirmations. Our algo

rithm has another advantage that the separated individual character skeletons do not need 

further processing for feature extraction. The algorithm has been tested on 100 merged 

character images obtained from scanned documents as well as from unsupervised charac

ter classification; 75 of them the correct breaking positions are located from the first 

breaking candidate.

6.2. Directions of Future Research

In this section, we discuss further studies to improve our algorithms and some potential 

researches to which our current works can be applied.

1. Typographical analysis for degraded text blocks: The fuzzy typographical analysis 

yields the accuracy to the baseline detection. From our experimental results, 2.5% of 

errors are found for the baseline detection when the character size is reduced to 5 points. 

The major problem is that the merged characters are highly increased. One of the solution 

is to split the merged characters into several components. The rules for splitting in order 

to correctly detect the baseline of degraded text images is our further study.

2. Applications on typographical analysis: Our original intent for typographical analysis 

is to preclassify characters. However, the information can be used for other applications. 

For example, the skew angle of document image, interline spacing, and character size are 

precisely obtained to assist in skew normalization and layout structure analysis. This 

could be useful for determination of the orientations of captions contained in graphical 

blocks which usually use Hough transform in a time consuming fashion. How the tech

nique can be transported in the handwritten characters recognition is another issue.
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3. Parallel processing for unsupervised character classification : The mechanism of unsu

pervised character classification is simple and has the merit for parallel processing. The 

study for parallel implementation should be a direction which can highly increase OCR 

performance.

4. Application o f unsupervised character classification: Automatic information retrieval 

is still an unsolved problem. In many documents, keywords are printed in special fonts, 

which can be easily separated by unsupervised character classification. Therefore, certain 

keywords can be extracted easily.

5. Fuzzy theory and technology: Fuzzy technology has been applied in many fields. In 

this dissertation, we discover that fuzzy theory and technology is quite natural and suc

cessful to interpret many ambiguous situations in classification and skeletonization. The 

applications of fuzzy technology still remains on many research topics in document pro

cessing and analysis. In this dissertation, we formulate two dimensional fuzzy member

ship functions. The technique can be extended to higher dimensional formulation.

6. Applications o f topographic analysis: Unlike the edge of an image, topographic primal 

sketch is invariant with respect to monotonic image transformations [31]. There should 

be some high-level matching can be applied on the topographic structures in a computer 

vision system. The research issues include that what other transformation or curve fitting 

functions can create a better smoothed surface function, and how well the topographic 

structures can be performed in the three-dimensional object matching.

Statistics, fuzzy theory and technology, typography, topography, and morphological 

operations have been applied in our research. I strongly hope that this dissertation will be 

helpful not only in document processing, but also for some problems in computer vision 

and pattern recognition.



APPENDIX A 

EXPERIMENTAL RESULTS OF CHAPTER 2

Table A .l The Result of Block Classification of Our Algorithm

No. • ^ m in Ax 7 m in Ay 5x 8x/Ax TH TV 77/, TVx N D Class

1 81 1591 38 23 1118 0.7027 2191 1676 1.96 1.50 9557 0.26117 t
2 2173 26 40 24 19 0.7308 47 33 2.47 1.74 197 0.31571 t
3 88 2101 127 101 1848 0.8796 3954 3210 2.14 1.74 43263 0.20388 t
4 676 936 247 94 836 0.8932 1888 1446 2.26 1.73 20493 0.23292 t
5 88 2101 408 45 1599 0.7611 3079 2707 1.93 1.69 18257 0.19310 t
6 88 1027 588 34 803 0.7819 1478 1166 1.84 1.45 8917 0.25537 t
7 77 1038 630 33 797 0.7678 1580 1210 1.98 1.52 9447 0.27579 t
8 77 1037 672 33 827 0.7975 1667 1254 2.02 1.52 10114 0.29555 t
9 1336 795 687 582 792 0.9962 19117 20627 24.14 26.04 338680 0.73198

10 77 1037 713 34 833 0.8033 1589 1286 1.91 1.54 9624 0.27296 t
11 77 1036 755 32 843 0.8137 1635 1292 1.94 1.53 10130 0.30556 t
12 77 1035 796 33 824 0.7961 1594 1206 1.93 1.46 9971 0.29193 t
13 76 1036 837 34 802 0.7741 1526 1177 1.90 1.47 9447 0.26820 t
14 76 1036 879 33 722 0.6969 1394 1078 1.93 1.49 8671 0.25363 t
15 76 1035 920 35 820 0.7923 1584 1263 1.93 1.54 9709 0.26802 t
16 75 1035 962 35 774 0.7478 1526 1208 1.97 1.56 9374 0.25877 t
17 74 1036 1004 34 811 0.7828 1577 1219 1.94 1.50 9765 0.27723 t
18 74 253 1046 31 208 0.8221 375 341 1.80 1.64 2365 0.30154 t
19 74 1035 1087 35 794 0.7671 1507 1163 1.90 1.46 9391 0.25924 t
20 72 1037 1129 34 820 0.7907 1606 1206 1.96 1.47 9764 0.27693 t
21 71 1038 1170 36 822 0.7919 1528 1217 1.86 1.48 9360 0.25048 t
22 71 1038 1212 34 809 0.7794 1608 1226 1.99 1.52 9706 0.27502 t
23 70 1039 1254 34 744 0.7161 1439 1125 1.93 1.51 8782 0.24860 t
24 70 1036 1294 34 802 0.7741 1581 1212 1.97 1.51 9536 0.27072 t
25 70 1039 1337 34 800 0.7700 1618 1261 2.02 1.58 9795 0.27727 t
26 1313 833 1351 38 634 0.7611 1315 1074 2.07 1.69 6102 0.19277 t
27 70 286 1378 32 232 0.8112 447 338 1.93 1.46 2794 0.30529 t
28 1314 462 1392 33 345 0.7468 677 566 1.96 1.64 3130 0.20530 t
29 70 1034 1444 35 823 0.7959 1443 1239 1.75 1.51 8820 0.24371 t
30 69 921 1485 35 747 0.8111 1450 1096 1.94 1.47 8698 0.26983 t
31 523 1350 1609 11 1350 1.0000 93 1350 0.07 1.00 11991 0.80747
32 649 461 1640 39 343 0.7440 672 554 1.96 1.62 3857 0.21453 t
33 647 145 1693 3 145 1.0000 17 145 0.12 1.00 371 0.85287
34 951 535 1737 32 213 0.3981 410 385 1.92 1.81 2241 0.13090 t
35 517 1359 1774 630 1359 1.0000 7286 7972 5.36 5.87 51075 0.05966
36 740 94 2413 25 83 0.8830 172 139 2.07 1.67 948 0.40340 t
37 1548 107 2417 29 94 0.8785 183 181 1.95 1.93 1054 0.33967 t
38 514 1350 2478 5 1349 0.9993 143 1349 0.11 1.00 2436 0.36089 h
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Table A.2 The Result of Block Classification of Wong’s Algorithm

No. •̂ min A* ^min Ay 77/ N N/TH Ax/Ay Class

1 81 1591 38 23 2191 9557 4.36 69.17 t
2 2173 26 40 24 47 197 4.19 1.08 t
3 88 2101 127 101 3954 43263 10.94 20.80 t
4 676 936 247 94 1888 20493 10.85 9.96 t
5 88 2101 408 45 3079 18257 5.93 46.69 t
6 88 1027 588 34 1478 8917 6.03 30.21 t
7 77 1038 630 33 1580 9447 5.98 31.45 t
8 77 1037 672 33 1667 10114 6.07 31.42 t
9 1336 795 687 582 19117 338680 17.72 1.37 n

10 77 1037 713 34 1589 9624 6.06 30.50 t
11 77 1036 755 32 1635 10130 6.20 32.38 t
12 77 1035 796 33 1594 9971 6.26 31.36 t
13 76 1036 837 34 1526 9447 6.19 30.47 t
14 76 1036 879 33 1394 8671 6.22 31.39 t
15 76 1035 920 35 1584 9709 6.13 29.57 t
16 75 1035 962 35 1526 9374 6.14 29.57 t
17 74 1036 1004 34 1577 9765 6.19 30.47 t
18 74 253 1046 31 375 2365 6.31 8.16 t
19 74 1035 1087 35 1507 9391 6.23 29.57 t
20 72 1037 1129 34 1606 9764 6.08 30.50 t
21 71 1038 1170 36 1528 9360 6.13 28.83 t
22 71 1038 1212 34 1608 9706 6.04 30.53 t
23 70 1039 1254 34 1439 8782 6.10 30.56 t
24 70 1036 1294 34 1581 9536 6.03 30.47 t
25 70 1039 1337 34 1618 9795 6.05 30.56 t
26 1313 833 1351 38 1315 6102 4.64 21.92 t
27 70 286 1378 32 447 2794 6.25 8.94 t
28 1314 462 1392 33 677 3130 4.62 14.00 t
29 70 1034 1444 35 1443 8820 6.11 29.54 t
30 69 921 1485 35 1450 8698 6.00 26.31 t
31 523 1350 1609 11 93 11991 128.94 122.73 h
32 649 461 1640 39 672 3857 5.74 11.82 t
33 647 145 1693 3 17 371 21.82 48.33 h
34 951 535 1737 32 410 2241 5.47 16.72 t
35 517 1359 1774 630 7286 51075 7.01 2.16 n
36 740 94 2413 25 172 948 5.51 3.76 t
37 1548 107 2417 29 183 1054 5.76 3.69 t
38 514 1350 2478 5 143 2436 17.03 270.00 t
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Figure A .l An example of our improved two-step smoothing algorithm (a) the document 

image, (b) the resulting image after step 1, (c) the resulting image after step 2.
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Figure A.2 The projected THX - H  plane of our algorithm.
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Figure A.4 The projected!? - H  plane of Wong’s algorithm [WoC82],



APPENDIX B 

EXPERIMENTAL RESULTS OF CHAPTER 5

Figure B .l (a) Examples of fuzzy images, (b) transformation of fuzzy memberships, (c) 
skeleton of fuzzy images.
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Figure B.2 (a) A binary image of character “T” 

the skeleton by our method.

(c)

(b) the skeleton extracted by [69], (c)
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Figure B.3 (a) Examples of merged characters, (b) transformation of fuzzy memberships,
(c) skeletons of merged character images.
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Figure B.4 Multiple context confirmation for merged character illustrated in Fig. 5.10.
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Figure B.5 (a) Examples of broken characters, (b) transformation of fuzzy memberships,
(c) skeletons of broken character images.
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Figure B.6 (a) Two examples of gray-scale images, first one is captured from [89]. 
The skeletons of gray-scale images.
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Figure B.7 Examples of hand-written characters and their skeletons.



BIBLIOGRAPHY

[1] T. Akiyama and N. Hagita, “Automated entry system for printed documents,” 
Pattern Recognition, vol. 23, no. 11, pp. 1141-1154, 1990.

[2] Henry S. Baird, “Feature identification for hybrid structural/statistical pattern 
classification,” Proc. IEEE Computer Vision and Pattern Recognition, pp. 150-155,
1986.

[3] K. Banno, T. Kawamata, K. Kobayashi and H. Nambu, “Text recognition system for 
Japanese documents,” Proc. IEEE 9th Int. Conf. Pattern Recognition, Rome, Italy, 
pp. 176-180, Nov. 1988.

[4] T. Bayer, “Interpretation of structured documents in a frame system,” in Pre-Proc. 
IAPR Workshop on SSPR, pp. 47-56, June 1990.

[5] E. Bertino, F. Rabitti, and S. Gibbs, “Query processing in a multimedia document 
system,” ACM Transactions on Information Systems, vol. 6, pp. 1-41, Jan. 1988.

[6] H. Bley, “Segmentation and preprocessing of electrical schematics using picture 
graphs,” Computer Vision, Graphics, Image Processing, vol. 28, no. 3, pp. 271-288, 
1984.

[7] M. Bokser, “Omnidocument technologies,” Proc. o f the IEEE, vol. 80, no. 7, pp. 
1066-1078, July 1992.

[8] S.-T. Bow and R. Kasturi, “A graphics-recognition system for interpretation of line 
drawings,” Image Analysis Applications (edited by R. Kasturi and M. M. Trivedi), 
Marcel Dekker, New York, NY, pp. 37-72, 1990.

[9] R. Bradford and T. Nartker, “Error correlation in contemporary OCR systems,” in 
Proc. 1st Int. Conf. Document Analysis and Recognition, vol. 2, Saint Malo, France, 
pp. 516-523, 1991.

[10] R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis, 3rd Ed., 
Prindle, Weber & Schmidt, Boston, MA, 1985.

137



138

[11] R. G. Casey, S. K. Chai and K. Y. Wong, “ Unsupervised construction of decision 
networks for pattern classification,” Research Report RJ 4264, IBM Research Lab., 
San Jose, California, 1982.

[12] G. L. Cash and M. Hatamian, “Optical character recognition by the method of 
moments,” Computer Vision, Graphics, Image Processing, vol. 39, pp. 291-310,
1987.

[13] T. W. Calvert, “Nonorthogonal projections for features extraction in pattern 
recognition,” IEEE Trans. Comput. vol. 19, pp. 366-372, May 1970.

[14] R. G. Casey and K. Y. Wong, “Document-analysis systems and techniques,” Image 
Analysis Applications (edited by R. Kasturi and M. M. Trivedi), Marcel Dekker, 
New York, NY, pp. 1-36, 1990.

[15] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, “Multimedia 
document presentation, information extraction, and document formation in MINOS: 
A model and a system,” ACM Transactions on Information Systems, vol. 4, pp. 
345-383, Oct. 1986.

[16] G. Ciardiello, M.T. Degrandi, M.P. Roccotelli, G. Scafuro, and M.R. Spada, “An 
experimental system for office document handling and text recognition,” Proc. 
IEEE 9th Int. Conf. Pattern Recognition, Rome, Italy, pp. 739-743, Nov. 1988.

[17] A. Dengel and G. Barth, “ANASTASIL: a hybrid knowledge-based system for 
document layout analysis,” Int. Joint Conf. o f Artifitial Intellegience, vol. 2, pp. 
1249-1254, 1989.

[18] A. Dengel, R. Bleisinger, R. Hoch, F. Fein, and F. hones, “From paper to office 
document standard representation,” IEEE Computer, vol. 25, no. 7, pp. 63-70, 1992.

[19] M. Ejiri, S. Kakumoto, T. Miyatake, S. Shimada, and K. Iwamura, “Automatic 
recognition of engineering drawings and maps,” Image Analysis Applications 
(edited by R. Kasturi and M. M. Trivedi), Marcel Dekker, New York, NY, pp. 
73-126,1990.

[20] ERA, “An electronic reading automation,” Electronic Eng., pp. 189-190, Apr. 
1957.



139

[21] J. L. Fisher, S. C. Hinds and D. P. D’Amato, “A rule-based system for document 
image segmentation,” Proc. IEEE 10th Int. Conf. Pattern Recognition, Atlantic 
City, NJ, pp. 567-572, June 1990.

[22] A. J. Filipski and R. Flandrena, “Automated conversion of engineering drawings to 
CAD form,” Proc. o f the IEEE, vol. 80, no. 7, pp. 1195-1209, July 1992.

[23] L. A. Fletcher and R. Kasturi, “A robust algorithm for text string separation from 
mixed text/graphics images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, 
no. 6, pp. 910-918, Nov. 1988.

[24] H. Freeman, ‘Computer processing of line-drawing images,” Computing Surveys, 
vol. 6, no. 1, March 1974.

[25] H. Fujisawa, Y. Nakano, and K. Kurino, “Segmentation methods for character 
recognition: from segmentation to document structrue analysis,” Proc. o f the IEEE, 
vol. 80, no. 7, pp. 1079-1092, July 1992.

[26] R. N. Goldman and J. S. Weinberg, Statistics -  An Introduction, Prentice-Hall, 
Englewood Cliffs, NJ, 1985

[27] R. C. Gonzalez and P. Wintz, Digital Image Processing, 2nd ed., Addison-Wesley, 
Reading, MA, 1987.

[28] G. H. Granlund, “Fourier preprocessing for hand print character recognition,” IEEE 
Trans. Computers, vol. C-21, pp. 195-201, 1972.

[29] P. W. Handel, “Statistical machine,” U.S. Patent 1915993, June 1933.

[30] J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, New York, NY, 1975.

[31] R. M. Haralick, L. T. Watson, and T. J. Laffey, “The topographic primal sketch,” 
Int. J. Robotics Res., vol. 2, pp. 50-72, 1983.

[32] S. C. Hinds, J. L. Fisher, and D. P. D ’Amato, “A document detection method using 
run-length encoding and the hough transform,” Proc. IEEE 10th Int. Conf. Pattern 
Recognition, Atlantic City, NJ, pp. 464-468, 1990.



140

[33] A. W. Holt, “Algorithm for a low-cost hand print reader,” Comput. Design, pp. 
85-89, Feb. 1974.

[34] W. Horak, “Office document architecture and office document interchange formats - 
a current status of international standardization,” IEEE Computer, vol. 18, no. 10, 
pp. 50-60, Oct. 1985.

[35] M. K. Hu, “Visual pattern recognition by moment invariants,” IEEE Trans. Inform. 
Theory, vol. 8, pp. 179-187, Feb. 1962.

[36] J. J. Hull, “Word shape analysis in a knowledge based system for reading text,” in 
Proc. 2nd IEEE Conf. Artificial Intell. Appl., Miami, FL, 1985.

[37] T. Ho, J. Hull, and S. Srihari, “Combination of structural classifiers,” in Proc. 
Workshop on Syntactic and Structural Pattern Recognition, pp. 123-136, 1990.

[38] T. Iijima, Y. Okumura, and K. Kuwabara, “New process of character recognition 
using sieving method,” Information and Control Research, vol. 1, no. 1, pp. 30-35, 
1963.

[39] S. Impedovo, L. Ottaviano, and S. Occhinegro, “Optical character recognition — a 
survey,” Int. J. o f Pattern Recognition and Artificial Intelligence, vol. 5, no. 1 & 2, 
pp. 1-24, 1991.

[40] R. Kasturi, S.-T. Bow, W. El-Masri, J. Shah, J. R. Gattiker, and U. B. Mokate, “A 
system for interpretation of line drawings,” IEEE Trans. Pattern Anal. Machine 
Intell., vol. 12, no. 10, pp. 978-991, Oct. 1990.

[41] S. Kahan, T. Pavlidis and H. S. Baird, “On the recognition of printed characters of 
any font and size,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9, no. 2, pp. 
274-288, March 1987.

[42] A. Kandel, Fuzzy Techniques in Pattern Recognition, John Wiley & Sons, New 
York, NY, 1982.

[43] A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike moments,” 
IEEE Trans. Pattern Anal. Machine Intell., vol. 12, no. 5, pp 489-497, May 1990.



141

[44] H. Kida, O. Iwaki and K. Kawada, “Document recognition system for office 
automation,” Proc. IEEE 8th Int. Conf. Pattern Recognition, Paris, France, pp. 
446-448, Oct. 1986.

[45] S. K. Kwon and D. C. Lai, “Recognition experiments with handprinted 
numerals,"Proc. Joint Workshop on Pattern Recognition and Artificial Intelligence, 
pp. 74-83, June 1976.

[46] P. C. K. Kwok, “A thinning algorithm by contour generation,” Communications 
ACM, vol. 31, pp. 1314-1324, Nov. 1988.

[47] K. H. Lee, K. B. Eom, and R. L. Kashyap, “Character recognition using attributed 
grammar,” Proc. IEEE Computer Vision and Pattern Recognition, pp.418-423,
1988.

[48] B. Lindgren, “Machine recognition of human language. Part ni-cursive script 
recognition,” IEEE Spectrum, pp. 104-116, May 1965.

[49] B. Li and C. Y. Suen, “A knowledge-based thining algorithm,” Pattern 
Recognition, vol. 24, no. 12, pp. 1211-1221, 1991.

[50] P. G. De Luca and A. Gisotti, “Printed character preclassification based on word 
structure,” Pattern Recognition, vol. 24, no. 7, pp. 609-615, 1991.

[51] E. Lutz, H. V. Kleist-Retzow, and K. Hoernig, “MAFIA - An active mail-filter-agent 
for an intelligent document processing support,” in Multi-User Interfaces and 
Applications (S. Gibbs and A. A. Verrijn-Stuart, eds.), North-Holland: Elsevier 
Science Publishers B. V., 1990.

[52] I. Masuda, N. Hagita, T. Akiyama, T. Takahashi, and S. Naito, “Approach to smart 
document reader system,” Proc. IEEE CVPR, pp. 550-557, 1985.

[53] H. Masuzaki, N. Takahashi, and . Kurosu, “ HITFILE 650E optical disk filing 
system,” Hitachi Review, vol. 38, no. 5, pp. 257-264, 1989.

[54] B. T. Mitchell and A. M. Gillies, “A model-based computer vision system for 
recognizing handwritten ZIP codes,” Machine Vision and Applications, pp. 
231-243, 1989.



142

[55] G. Nagy, “Towards a structured-document-image utility,” in Pre-Proc. I APR 
Workshop on SSPR, pp. 293-309, June 1990.

[56] G. Nagy, “A prototype document image analysis system for technical journals,” 
IEEE Computer, vol. 25, no. 7, pp. 10-22, 1992.

[57] Y. Nakano, Y. Shima and H. Fujisawa, “An algorithm for the skew normalization of 
document image,” Proc. IEEE 10th Int. Conf. Pattern Recognition, Atlantic City, 
NJ, pp. 8-11, June 1990.

[58] NEC (Nippon Electric Company), “Inmprovements in or relating to character 
recognition apparatus,” U.K. Patent 1124130, Aug. 1968.

[59] L. O’Gorman and R. Kasturi, “Guest editors’ introduction: document image 
analysis systems,” IEEE Computer, vol. 25, no. 7, pp. 5-8, 1992.

[60] P. V. O ’Neil, Advanced Engineering Mathematics, 3rd ed., Wadsworth Pub. Co., 
Belmont, CA,Belmont, CA, 1991.

[61] Sankar K. Pal, Fuzzy Mathematical Approach to Pattern Recognition, John Wiley & 
Sons, New York, NY, 1986.

[62] T. Pavlidis and S. Mori, “Scanning the issue,” Proc. o f the IEEE, vol. 80, no. 7, pp. 
1027-1028, July 1992.

[63] T. Pavlidis, “A vectorizer and feature extractor for document recognition,” 
Computer Vision, Graphics, Image Processing, vol. 35, pp. 111-127, 1986.

[64] T. Pavlidis and G. Wolberg, “An algorithm for the segmentation of bilevel images,” 
Proc. IEEE Computer Vision and Pattern Recognition, pp.570-575. 1986.

[65] E. Persoon and K. S. Fu, “Shape discrimination using Fourier descriptors,” IEEE 
Trans, on Syst., Man, Cybern., vol. SMC-7, no. 3, pp. 170-179, Mar. 1977

[66] P. G. Perotto, “A new method for automatic character recognition,” IEEE Trans. 
Electron. Comput., vol. EC-12, pp. 521-526, Oct, 1963.



143

[67] F. Rabitti, “A model for multimedia documents,” Office Automation (D. Tsichritzis, 
ed.), pp 227-250, 1985.

[68] W. S. Rohland, “Character sensing system,” U.S. Patent 2877951, Mar. 1959.

[69] A. Rosenfeld and A. Kak, Digital Picture Processing, vol. 2, Academic Press, New 
York, NY, 1982.

[70] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.

[71] J. Schurmann, N. Bartneck, T. Bayer, J. Franke, E. Mandler, and M. Oberlander, 
“Document analysis - from pixels to contents,” Proc. o f the IEEE, vol. 80, no. 7, 
pp. 1101-1119, July 1992.

[72] W. Scherl, F. Wahl and H. Fuchsberger, “Automatic separation of text, graphic and 
picture segments in printed material,” Pattern Recognition in Practice, E. S. 
Gelsema and L. N. Kanal, eds, pp. 213-221, North-Holland, Amsterdam, 1980.

[73] F. Y. Shih, S.-S. Chen, D. D. Hung and P. A. Ng, “A document segmentation, 
classification and recognition system,” Proc. o f the 2nd Int. Conf. on System 
Integration, Morristown, NJ, pp. 258-267, June, 1992.

[74] P. Siy and C. S. Chen, “Fuzzy logic for handwritten numeral character recognition,” 
IEEE Trans. Syst., Man, Cybern., pp. 570-575, Nov. 1974.

[75] R. M. K. Sinha, “A width-independent algorithm for character skeleton 
estimation,” Computer Vision, Graphics, Image Processing, vol. 40, pp. 388-397,
1987.

[76] S. N. Srihari, Ed. Computer Text Recognition and Error Correction, Silver Spring, 
MD: IEEE Computer Science Press, 1985.

[77] S. N. Srihari and G. W. Zack, “Document image analysis,” Proc. IEEE 8th Int. 
Conf. Pattern Recognition, Paris, France, pp. 434-436, Oct. 1986.

[78] C. Y. Suen, M. Berthod, and S. Mori, “Automatic recognition of handprinted 
characters - the state of the art,” Proc. IEEE, vol. 68, no. 4, pp. 469-498, 1980.



144

[79] C. Suen, C. Nadal, T. Mai, R. Legault, and L. Lam, “Recognition of totally 
unconstrained handwritten numerals based on the concept of multiple experts,” in 
Proc. Int. Workshop on Frontiers in Handwritting Recognition, pp. 131-140, Apr. 
1990.

[80] G. Tauschek, “Reading machine,” U.S. Patent 2026329, Dec. 1935.

[81] R. H. Thomas, H. C. Forsdick, T. R. Crowley, R. W. Schaaf, R. S. Thomlinson, V. 
M. Travers, and G. G. Robertson, “Diamond: A multimedia message system build 
on a distributed architecture,” IEEE comput. 18, 12, pp. 65-78, 1985.

[82] G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry, 7th ed., Addison- 
Wesley, Reading, MA, 1988.

[83] L. Tokuda, “Computers assist humans in human resources,” in AAAI Proc. 2nd 
Annual Conf. on Innovative Applications o f Artificial Intelligence, Washington, D. 
C„ pp. 31-35, 1990

[84] Y. Tsuji, “Document image analysis for generating syntactic structure description,” 
Proc. IEEE 9th Int. Conf. Pattern Recognition, Rome, Italy, pp. 744-747, Nov.
1988.

[85] S. Tsujimoto and H. Asada, “Major components of a complete text reading 
system,” Proc. o f the IEEE, vol. 80, no. 7, pp. 1133-1149, July 1992.

[86] N. D. Tucker and F. C. Evans, “A two-step strategy for character recognition using 
geometrical moments,” Proc. 2nd Int. Joint Conf. on Pattern Recognition, pp. 
223-225, Aug. 1974.

[87] P. Vaxiviere and K. Tombre, “ Celesstin: CAD conversion of mechanical drawings,” 
IEEE Computer, vol. 25, no. 7, pp. 46-54, 1992.

[88] J. T. L. Wang and P. A. Ng, “TEXPROS: An intelligent document processing 
system,” Int. J. o f Software Engineering and Knowledge Engineering, vol. 2, no. 2, 
pp. 171-196, 1992.

[89] L. Wang and T. Pavlidis, “Direct gray-scale extraction of features for character 
recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 10, pp. 
1053-1067, Oct. 1993.



145

[90] D. Wang and S. N. Srihari, “Classification of newspaper image blocks using texture 
analysis,” Computer Vision, Graphics, Image Processing, vol. 47, no. 4, pp. 
327-352, 1989.

[91] F. M. Wahl, K. Y. Wong and R. G. Casey, “Block segmentation and text extraction 
in mixed text/image documents,” Computer Vision, Graphics, Image Processing, 
vol. 20, no. 4, pp. 375-390, 1982.

[92] D. T. Wang, C.-S. Wei, S.-S. Chen, B.-C. Sung, T. H. Shiau, and R A. Ng, “Cross 
correlation of sampled boundary distances - an application to object recognition,” 
Proc. o f the 2nd Int. Conf. on System Integration, Morristown, NJ, pp. 224-235, 
Apr. 1990.

[93] R. W. Weeks, “Rotating raster character recognition system,” AIEE Trans. 
Communications and Electronics, vol. 80, pt. I, pp. 353-359, Sep. 1961.

[94] J.M. White and G.D. Rohrer, “ Image thresholding for optical character recognition 
and other application requiring character image extraction,” IBM J. Res. Devel., 
Vol. 27, no. 4, pp. 400-411.

[95] K. Y. Wong, R. G. Casey and F. M. Wahl, “Document analysis system,” IBM J. 
Res. Develop., vol. 6, pp. 642-656, Nov. 1982.

[96] M. Yamada and K. Hasuike, “Document image processing based on enhanced 
border following algorithm,” Proc. IEEE 10th Int. Conf. Pattern Recognition, 
Atlantic City, NJ, pp. 231-236, June 1990.

[97] C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves,” IEEE 
Trans. Computers, vol. 21, no. 3, pp. 269-281, Mar. 1972.

[98] H. Zen and S. Ozawa, “Extraction of the fair document from mixed mode 
manuscript,” Proc. IEEE on Computer Vision and Pattern Recognition, San 
Francisco, CA, pp. 544-549, June 1985.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Preprocessing
	Chapter 3: Fuzzy Typographical Analysis for Character Preclassification
	Chapter 4: A Fuzzy Model for Unsupervised Character Classification
	Chapter 5: Skeletonization for Fuzzy Degraded Character Image
	Chapter 6: Conclusions and Future Research
	Appendix A:  Experimental Results of Chapter 2
	Appendix B: Experimental Results of Chapter 5
	Bibliography

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




