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ABSTRACT

THEORY, DESIGN AND APPLICATIONS OF LINEAR
TRANSFORMS 

FOR INFORMATION TRANSMISSION

by
Adil Benyassine

T he aim  of th is dissertation is to  study  th e  common features of block 

transform s, subband filter banks, and wavelets, and dem onstrate how discrete 

uncertain ty  can be applied to  evaluate these different decom position techniques. In 

p articu la r, we derive an uncertain ty  bound for discrete-tim e functions. I t is shown 

th a t th is bound is th e  sam e as th a t for continuous-tim e functions, if the  discrete-tim e 

functions have a certain  degree of regularity.

This d issertation  also deals w ith spectral m odeling in filter banks. I t is shown, 

both  theoretically  and experim entally, tha t subspectral modeling is superior to full 

spectrum  m odeling if perform ed before the ra te  change. The price paid  for this 

perform ance im provem ent is an increase of com putations. A few different signal 

sources were considered in this study. It is shown that, the perform ances of A R 

and ARMA m odeling techniques are com parable in subspectral modeling. T he first 

is desired because of its  simplicity. As an application of AR m odeling, a  coding 

algorithm  of speech, nam ely CELP em bedded in a  filter bank stru c tu re  was also 

studied. We found th a t there were no im provem ents of subband CELP technique 

over the full band one. T he theoretical reasonings of the  experim ental results are 

also given.

This d issertation  also addresses the problem s of what type of transform  to  be 

used and to  w hat ex ten t an im age should be decomposed. To this aim , an objective 

and subjective evaluations of different transform  bases were done.



We propose a  sm art algorithm  for the decom position of a  channel into its 

sub-channels in the  discrete m ultitone com m unications. This algorithm  evaluates 

the unevenness and  energy distribution of th e  channel spectrum  in order to get its 

variable adap tive  partition ing . It is shown th a t the proposed algorithm  leads to  a near 

optim al perform ance of the discrete m ultitone transceiver. This flexible sp litting  of 

th e  channel suffers less from the  aliasing problem  th a t exists in blind decom positions 

using fixed transform s. This dissertation extends th e  discrete m ultitone to  th e  flexible 

m ultiband  concept which brings significant perform ance im provem ents for digital 

com m unications.



APPROVAL PAGE 

THEORY, DESIGN AND APPLICATIONS OF LINEAR 
TRANSFORMS 

FOR INFORMATION TRANSMISSION 

Adil Benyassine 

Dr. Ali N.Akansu Dissertation Advisor 

					

Date  
Associate Professor of Electrical 
and Computer Engineering, NJIT 

Alexander Haimovich, Committee Member 	 	Date 
Associate Professor of Electrical 
arid Computer Engineering, NJIT 

Dr. Loran Siveski, Committee Member 	 Date 
Assistant Professor of Electrical 
and Computer Engineering, NJIT 

Dr. Dennis Karvela, Committee Member 					Date 
Assistant P ofessor of Computer Science 
and Computer Engineering, NJIT 

Dr. Russell Hsing, Committee Member 	 Date 
District Research Manager, Bellcore, Morristown, NJ 



BIOGRAPHICAL SKETCH 

Author: Adil Benyassine 

Degree: Doctor of Philosophy 

Date: January 1995 

Undergraduate and Graduate Education: 

• Doctor of Philosophy in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1995 

• Master of Science in Electrical Engineering, 
San Diego State University, San Diego, CA, 1991 

• Bachelor of Science in Electrical Engineering, 
University of Texas at Austin, Austin, TX, 1987 

Major: 	Electrical Engineering 

Presentations and Publications: 

A. Benyassine and A.N. Akansu, "Subspectral Modeling in Filter Banks," NJIT 
Symposium on Applications of Subbands and Wavelets, March 1994, Newark, 
NJ. 

A. Benyassine and A.N. Akansu, "Evaluation of M-band Orthonormal Filter 
Banks: Hierarchical and Direct Structures," Visual Communications and 
Image Processing, Cambridge, MA., November 1993. 

R.A. Haddad, A.N. Akansu and A. Benyassine, "Time Frequency Localizations in 
Transforms, Subbands and Wavelets: A Critical Review," Optical Engineering, 
July 1993. 

iv 



This work is dedicated to 
my family

v



A C K N O W L E D G M E N T

I would like to  express m y deepest g ra titu d e  to  Professor Ali Akansu, who 

not only  served as m y research advisor, constantly  providing invaluable insights and 

in tu itions, bu t also gave m e suppo rt, encouragem ent, reassurance and help. Professor 

A kansu was m ore th a n  an advisor and  professor. He was like an older bro ther. 

T hanks a lot Ali. Very special thanks go to  m y labm ates: M ehm et Tazebay, N adir 

Sezgin, Dr. R aafat K am el, and M ichael M eyer, for the ir help and com panionship.

I would like also to  ex tend  m y thanks to  Professor Alex Haim ovich, Professor Zoran 

Siveski, Professor D ennis K arvelas, and  D r. Russell Using for tak ing  some of th e ir 

valuable tim e  to  read and  to  serve in  m y doctoral com m ittee. M y g ra titu d e  also 

goes to  B renda W alker and  Lisa F itto n . I am  deeply thankfu l to  Professor Iiuseyin  

A bu t of San Diego S ta te  U niversity. He was very in strum en ta l in in troducing m e to 

Professor Akansu. I am  also grateful to  Dr. Irving K alet of AT & T Bell Labs, and 

Professor S.U. P illai of Poly technic U niversity for the ir fru itfu l discussions. Last, 

bu t no t least, I would like to  th an k  m y wonderful paren ts, m y bro thers, m y sister, 

and  m y wife for the ir strong support, love and patience.



TABLE OF CONTENTS

Chapter Page

1 IN T R O D U C T IO N ........................................................................................................... 1

2 LIN EA R T R A N S F O R M S .............................................................................................  5

2.1 Theory of Block and Lapped T ransfo rm s......................................................  6

2.2 Theory of Subband F ilte r B anks....................................................................... 8

2.2.1 D ecim ation and Interpolation in M ultira te  F ilter B a n k s   8

2.2.2 Polyphase R epresentation of a F i l t e r .................................................  10

2.2.3 T he Tw o-Band and M -Band Subband T ra n s fo rm s ...................... 12

2.2.4 M -band M ultiplierless F ilter Design E x a m p le ................................  16

2.2.5 Tree Extensions and M u ltireso lu tio n .................................................  18

2.3 T he W avelet Transform  and Its Linkages with F ilter B an k s ...................... 20

2.3.1 T he D iscrete W avelet T ransfo rm .......................................................... 22

3 T1M E-FREQ U EN CY  LOCALIZATION IN TRA N SFO RM S, SUBBANDS
AND WAVELETS ......................................................................................................  24

3.1 Tim e-frequency D istributions and O ptim um  Signal S h a p in g .................  24

3.1.1 Classical U n c e rta in ty ...............................................................................  24

3.1.2 D iscrete-tim e U ncertain ty  T heorem ....................................................  26

3.1.3 G aussian D istributions ..........................................................................  30

3.2 Tim e-frequency P roperties of Block T ra n s fo rm s ..........................................  32

3.3 Tim e-frequency P roperties of Lapped O rthogonal T ra n s fo rm s ...............  33

3.4 Tim e-frequency P roperties of M -Band and Hierarchical F ilter Banks . 33

3.5 W avelets and Tim e-frequency D ecom position................................................ 38

3.5.1 T im e-frequency Resolution for W avelet F am ilie s ........................... 38

3.6 Discussions and Conclusions .............................................................................  43

4 SU B SPEC TR A L M ODELING IN FILTER B A N K S ..........................................  46

4.1 In tro d u c tio n .............................................................................................................  46

vii



C h a p t e r  P a g e

4.2 S tatistical Source M o d e lin g ................................................................................. 47

4.3 Relationships A m ong Model P a ra m e te r s .......................................................  48

4.4 Effects of M u ltira te  O perators on Spectral M o d e l in g ................................  49

4.4.1 Effects of F iltering  ...................................................................................  50

4.4.2 Effects of D o w n sam p lin g ........................................................................  52

4.4.3 Effects of D ecim ation .............................................................................. 52

4.4.4 Effects of U p sa m p lin g .............................................................................. 54

4.4.5 A R(1) Source C a s e ....................................................................................  54

4.5 Perform ance Analysis of Subspectral M odeling .........................................  55

4.5.1 A R M odeling and E rror A n a ly s is ........................................................  55

4.5.2 Discussions on E rror P e rfo rm an c e ........................................................  56

4.6 A Sim ple P roof of Perform ance Im provem ent in Subspectral M odeling 60

4.7 Subspectral C EL P Speech Coding and Perform ance Com parisons . . .  61

4.8 C o n c lu s io n s ................................................................................................................ 65

5 SUBBAND IM A G E C O D IN G .......................................................................................  67

5.1 In tro d u c tio n ................................................................................................................ 67

5.2 Problem  S ta te m e n t .................................................................................................  67

5.3 F ilte r B ank S tru c tu re s ............................................................................................ 68

5.4 O bjective Perform ance E v a lu a t io n ................................................................... 70

5.4.1 Energy C o m p ac tio n ....................................................................................  70

5.4.2 T im e-frequency L o ca liz a tio n s ................................................................. 71

5.4.3 Peak-to-peak Signal to  Noise r a t i o .....................................................  71

5.5 Discussions and  Conclusions ..............................................................................  75

6 D ISC R E T E  M U LTITO N E T R A N S C E IV E R S ........................................................  77

6.1 In tro d u c tio n ...............................................................................................................  77

6.2 D iscrete M ultitone M odu la tion ...........................................................................  77

6.3 QAM M ultitone System  ......................................................................................  79

viii



Chapter Page

6.3.1 QAM  S y s te m .............................................................................................  79

6.3.2 G eneral Concepts of M u lti to n e ............................................................  80

6.3.3 O ptim um  Power A llo c a tio n .................................................................. 82

6.4 P ractical R ealizations of M o d u la tio n /d e m o d u la tio n .................................. 85

6.4.1 I D F T / D F T ................................................................................................ 85

6.4.2 I D C T /D C T ................................................................................................ 85

6.4.3 M -band F ilte r B a n k ...............................................................................  87

6.5 Proposed Concept of Sub-channel S tru c tu r in g ............................................  89

6.5.1 A Sim ple Subchannel S tructu ring  A lg o r i th m ................................  89

6.5.2 A D istortion M easure in D iscrete M ultitone Transceivers . . . .  92

6.5.3 D istortion in N-band Discrete M ultitone T ransce ivers ................  97

6.5.4 D iscussions................................................................................................... 101

7 C O N T R IB U T IO N S O F DISSERTATION AND FU T U R E  RESEA RCH . . 104

A PPE N D IX  A Calculation of cru for G a u s s ia n ..........................................................  107

R EFER E N C E S .......................................................................................................................  108

ix



LIST OF TABLES

Table Page

2.1 F ilte r coefficients of a four band 8-tap P R  filter b a n k .....................................  17

3.1 Tim e-frequency localizations of D CT and W H T bases for 2,4, and 8-band
c a s e s .............................................................................................................................  34

3.2 Tim e-frequency localizations of 8 x  8 D C T and 8 x 16 D C T -L O T   35

3.3 The tim e-frequency localizations of several 8-ta,p PR -Q M F/w avelet filters 38

3.4 T he tim e-frequency localizations of hierarchical subband trees for 2-
level(4 -band )...............................................................................................................  41

3.5 The tim e-frequency localizations of hierarchical subband trees for 3-
level(S-band) ca se s .................................................................................................... 42

3.6 Tim e-frequency localizations of 6-tap wavelet filters, and corresponding
scaling and  wavelet f u n c t io n s .............................................................................. 44

4.1 ARM A m odeling error perform ance for different inpu t sources ..................  59

4.2 CELP SNR (dB)  perform ance a t 4.8 K b / sec  for different sch em es  65

5.1 G tc perform ance of 2-, 4-, 8-band hierarchical filter bank(based on
2-band PR -Q M Fs), along with the perform ance of direct-form  filter 
banks for an A R (  1) source of p =  0.95..............................................................  70

5.2 T he tim e-frequency localizations of 4-band hierarchical subband tree(2-
level, 8-tap B inom ial-Q M F) along w ith 8-tap  and 16-tap direct 4-band 
s truc tu re  ....................................................................................................................  72

5.3 T he tim e-frequency localizations of 8-band hierarchical subband tree(3-
level, 8 -tap  Binom ial-QM F) along w ith 16-tap and 32-tap direct 8-band 
s truc tu re  ....................................................................................................................  73

x



LIST OF FIGURES

Figure Page

2.1 The decim ation operation: (a) com posite filter and downsam pler, (b)
filtered signal a t fast clock rate, (c) downsam pled signal a t slow clock 
ra te , (d) signal spectrum  occupying I  of full band a t fast clock ra te  / s ,
(e) spectrum  of signal downsampled by 4, occupies full band a t / s/4  
clock r a t e ..................................................................................................................... 9

2.2 The in terpolation  operation: (a) com posite upsam pler and filter, (b)
and (d) inpu t to  upsam pler, tim e and frequency domains, (c) and (e) 
upsam pler o u tp u t, tim e and frequency dom ains for M = 4 ........................... 11

2.3 A cascade operation and its equivalent rep resen ta tio n ...................................... 12

2.4 Two band filter bank ...........................................................................   13

2.5 M axim ally decim ated M -band filter b a n k ...........................................................  16

2.6 M agnitude response of a  multiplierless four band filter b a n k ........................ 17

2.7 Four band regular binary tree  s truc tu re  ..............................................................  18

2.8 Noble id e n t i t i e s .............................................................................................................  19

2.9 Equivalent s t r u c tu r e .....................................................................................................  19

2.10 T hree level dyadic tree s t r u c t u r e ............................................................................  20

2.11 Irregular tree s t r u c t u r e ...............................................................................................  21

3.1 (a) T im e-Frequency plane showing resolution cells for ST FT , (b)
Resolution cells for wavelet t r a n s f o r m .............................................................  27

3.2 T im e and frequency plots for narrow-band Gaussian functions ..................  31

3.3 T im e and frequency plots for wide-band G aussian fu n c t io n s .......................  32

3.4 Im pulse response of the product filters of the  tw o-band binom ial QM F-
based hierarchical tree  for the (a) tw o-band and (b) four-band case . . 36

3.5 Basis functions of the  2 x 2  and 4 x 4  D C T ......................................................... 37

3.6 Frequency responses of (a) functions in Fig. 3.4.a and (b) functions in
Fig. 3 .4 .b ..................................................................................................................... 39

3.7 Frequency responses of (a) functions in Fig. 3.5.a and (b) functions in
Fig. 3 .5 .b ..................................................................................................................... 40

xi



Figure Page

4.1 A generic tw o-band filter bank s t r u c tu r e ...........................................................  50

4.2 Some typical interconnections a n a ly zed ..............................................................  51

4.3 Power spectral density  of AR(7)  and A R M A ( 5 , 5) sources  ..................... 57

4.4 Power spectra l density  of two sam ple speech f r a m e s .....................................  58

4.5 P rediction error in subbands vs. order p ............................................................ 59

4.6 P ertain ing  to  th e  p r o o f ............................................................................................. 60

4.7 a) CELP coder, b) d e c o d e r ..................................................................................... 64

5.1 Different tw o-dim ensional spectrum  s p l i t s .........................................................  69

5.2 T he rate-d isto rtion  perform ance of a 64-band subband im age codec with
direct and hierarchical decom position structu res for the test im age LENA 74

5.3 T he  rate-d isto rtion  perform ance of several different hierarchical subband
image codecs for th e  te st image LENA ..........................................................  75

6.1 A general digital com m unications s y s t e m .........................................................  78

6.2 Basic s truc tu re  of a D M T .......................................................................................  79

6.3 16 QAM c o n s te lla tio n ................................................................................................ 81

6.4 T he m ultitone QAM  system  .................................................................................. 82

6.5 Brickwall m agnitude r e s p o n s e ...............................................................................  83

6.6 Perform ance curve of the  M u lt i to n e ......................................................................  84

6.7 ID F T /D F T  DM T: a) tran sm itte r, b) r e c e iv e r ..................................................... 86

6.8 M -band realization of a DM T .................................................................................  88

6.9 Im pulse response of a  typical CSA lo o p ................................................................. 90

6.10 Derivative of m agnitude response of a  typical CSA l o o p .............................  90

6.11 M agnitude response of a  typical CSA loop ......................................................  91

6.12 M agnitude response and its unequal bandw idth  brickwall approxim ation 92

6.13 An eighteen unequal bandw idth sub-channel s truc tu re  for the given
e x a m p le .......................................................................................................................  93

6.14 A nine unequal bandw idth  sub-channel s tru c tu re  for the given exam ple . 94

6.15 An eight unequal bandw idth sub-channel s truc tu re  for the given exam ple 95

xii



Figure Page

6.16 A five unequal bandw id th  sub-channel s tru c tu re  for th e  given exam ple . . 96

6.17 N -band realization  of a D M T ....................................................................................  97

6.18 A generic branch for ICI c a lc u la tio n ........................................................   98

6.19 D istortion (IC I +  ISI) for different fam ily b a s e s ...............  100

6.20 D istortion (IC I +  ISI) for different unequal bandw id th  s p l i t t i n g .101

6.21 D istortion (IC I +  ISI) for different D FT  s i z e s .................. 102

xiii



CHAPTER 1 

INTRODUCTION

In the  last two decades, there  has been an ever increasing dem and for m ore infor­

m ation processing ability, larger storage capacity, and  faster inform ation transm ission 

capabilities. This phenom enon had im pacted the  research com m unity so m uch th a t a 

flurry of research activities was dedicated to novel signal representations, com pression 

algorithm s, and new standards for speech, image, and video coding.

M ost of th e  new com pression technologies and signal representation techniques 

m ake use of linear transform s. T he popular transform ations can be clustered into 

four m ain groups: block, overlapping block, subband, and more recently wavelet 

transform s. T he first type involves m ainly the  Fourier transform  and its extensions 

th a t have historically been the  prim e tool for signal representation. Since the  early 

1970’s, the  discrete cosine transform  (DCT) em erged as a new block transform  with 

real basis functions and good im age coding perform ance. All of the current standard  

visual compression algorithm s such as H.2G1, JP E G , M PEG  I, and M PEG  II incor­

porate  the  DCT as the ir signal decom position tool. A t very low bit rates, th e  coding 

perform ance of block transform s degrades significantly. This is due to  th e  blockiness 

which results from independent coding of each sub-block and m anifests itself as 

undesirable discontinuities a t th e  boundaries. As a  rem edy to this annoying effect, 

lapped orthogonal transform  (LO T) was proposed. This alternative transform  to 

th e  fixed block ones, uses overlapping blocks to  sm ooth out the discontinuities a t 

the sub-block borders. T he th ird  widely used transform  tool is the subband or filter 

banks . This transform  removes th e  restrictions im posed on the durations of its basis 

functions which exists in th e  two previously cited transform s. Therefore, a  b e tte r 

frequency tuning of the  basis functions is possible w ithin this category of transform s. 

Recently, the wavelet transform  has been suggested as a new m athem atical tool

1
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for signal represen ta tion  of continuous-tim e signals a t flexible tim e and frequency 

resolutions. T he advantages of wavelet transform  over the classical Fourier transform  

and short-tim e Fourier transform  (ST FT ) were shown. T he linkages and  com m on­

alities of the  w avelet transfo rm  and d iscrete-tim e filter banks were also studied .

T he tim e-frequency shaping of a  basis set is of particu lar in terest in p ractice. 

T he trade-offs of th e  tim e  and frequency dom ain behaviors have been well known for 

a  single function. B u t, now the  concept is extended  to  do tim e-frequency shaping of 

a set of functions which m ust be com plete. W hile bandw id th  compression of a  signal, 

such as an im age, requires transform  operators w ith good frequency localization, 

spa tia l features such as edge preservation dem and a  high degree of localization in 

th e  tim e dom ain. T hese requirem ents com pete w ith each o ther and one is secured 

a t th e  expense of th e  other. T he classical uncerta in ty  principle in th e  continuous­

tim e dom ain provides the  back drop for this trade-off. The m ain th ru s t of this 

work is to  study  th e  com m on features of block transform s, subband filter banks, 

and  wavelets, and  d em onstra te  how discrete uncerta in ty  can be  applied to  evaluate 

these different decom position techniques. In particu la r, we evaluate th e  trade-off 

between localization in tim e and frequency for several proposed signal decom position 

struc tu res. Block transform s have the best localization in tim e as expected  since 

they have the shortest du ration  functions. On th e  o ther hand, they  exh ib it the 

worst localization in frequency as predicted by the  uncertain ty  principle. F ilte r  bank 

struc tu res  have sharper frequency responses and  the ir frequency spreads decreases 

a t the  expense of an increase in their tim e localizations due to the ir longer basis 

functions. Since th e  filter banks come in two flavors, d irect and hierarchical, the ir 

p roducts of th e  tim e and  frequency spreads can be m onitored depending on the 

s tru c tu re  used. We found th a t direct structu res offer the  best tim e-frequency spread 

product followed by hierarchical ones with th e  fixed block transform s trailing  a t the  

end. We also ex tended  the  original uncertain ty  principle in the  analog dom ain to
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its d iscrete coun terpart. In addition, we present several applications th a t m ake use 

of these popular linear transform  techniques. In fact, the  recent advances in the 

generalized linear transform  (GLT) theory have opened new avenues for th e  jo in t 

trea tm en t of the  signal decom position, spectral analysis and m odeling problem s. 

A m ong these applications, we used the subband transform s in subspectral source 

m odeling, subband linear predictive coding (LPC) of speech, subband im age coding, 

and finally the  d iscrete m ultitone transceivers (D M T). In subspectral m odeling 

application, a  thorough analysis of the effects of m u ltira te  building blocks was done 

along w ith an assessm ent of the  m erits of subspectral m odeling over conventional 

m odeling techniques. We showed th a t subspectral m odeling is superior to  full 

spectrum  m odeling if perform ed before th e  ra te  change. The price paid for this 

perform ance im provem ent is an  increase of com putations. As an application of 

subspectral m odeling, we studied the perform ance of an  analysis-by-synthesis speech 

coder nam ely C ELP in  bo th  a full band and subband environm ents. We found th a t 

there  were no im provem ents of subband CELP technique over the  full band one. 

T he theoretical reasonings of th e  experim ental results are also given in th e  thesis. 

We also studied th e  perform ance of the  different subband structures as decom po­

sition tools for an im age codec. We observed th a t th e  hierarchical subband schemes 

outperform  the  d irect structu res in image coding. It is also shown th a t the  dyadic 

tree  subband codec outperform s the full-tree case for the  image coding experim ents 

perform ed in this study. As th e  last application, discrete m ultitone transceivers were 

evaluated using different basis functions as the ir m odulator/dem odulators. For this 

application, we proposed a sm art technique for the partitioning of th e  channel into 

its sub-channels. T his technique calls for a  judicious selection of the  basis functions 

for th e  m odulation /dem odulation  functioning blocks. We also derived a distortion 

m easure for the  evaluation of the  discrete m ultitone transceivers.
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This d issertation  is organized as follows. In C hapter 2, we s ta rt with the 

review of the fundam entals of m ultira te  system s. We, then , link the theory of perfect 

reconstruction filter bank w ith  th a t of th e  wavelet transform . We also give a design 

exam ple of a  m ultiplierless M -band P R  filter bank. In C hapter 3, we address the 

concept of tim e-frequency localizations in linear transform . We give a  proof on a lower 

bound of the discrete-tim e uncertain ty  principle. C hapter 4 gives a  thorough analysis 

of th e  subspectral m odeling. It is shown th a t there is a  perform ance im provem ent 

in m odeling subspectra  of the  signal over the  full spectrum . A coding algorithm  of 

speech nam ely CELP em bedded in a filter bank struc tu re  was also studied. Following 

th is, in C hap ter 5, objective and subjective evaluations of different transform  basis 

were done. Last, in C hap ter 6, we address the  im plem entation issues perta in ing  to 

the  discrete m ultitone (D M T) transceivers.



CH APTER 2

LINEAR TRANSFORMS

T he goal of any aforem entioned transform s is not only to  represent a  signal in to  its 

constituen ts, b u t also to  decom pose its correlated  sam ples in to  a  set of uncorrelated  

spectra l coefficients in a  com pact fashion. In o ther words, these transform ations 

should be able to  concentrate  th e  to ta l energy of the  signal in as few spectra l coeffi­

cients as possible, if com pression is the  application a t hand for exam ple. Any of 

those transfo rm s should satisfy certain  characteristics depending on th e  application 

under consideration.

T he block transform s, lapped orthogonal transform s(L O T ) and  filter banks 

are th e  m ost popular m em bers of th e  linear transform s fam ily em ployed in signal 

processing and  rela ted  engineering applications[2]. It is com m only agreed th a t these 

once com peting signal decom position techniques are actually  th e  variations of the 

sam e theory. T he block transform s use the  m inim um  possible tim e  du ration  in 

the ir bases functions. O n the  o ther hand, th e  conventional LO T basis doubles the 

duration . T he filter banks, in general, use a rb itra ry  duration  functions in their 

basis. T he duality  p roperty  of the  tim e-frequency analysis defines th e  trade-offs of 

different bases w ith respect to  the ir tim e and  frequency dom ain characteristics. The 

block and overlapping linear transform  theories, therefore, provide th e  foundations of 

orthonorm al basis design for the applications considered. A dditionally, the  optim al 

filter bank  concept has been forw arded lately  to  design the overlapping orthonorm al 

sets based on th e  given criteria  which is th e  extensions of op tim al block transform , 

K arhunen-Loeve Transform  (K LT).

5



2.1 Theory of Block and Lapped Transforms

Suppose we have a  signal x ( n ), 0 <  n < N  — 1. This signal can be easily expanded 

as a linear com bination of a set of sequences {<j>k{n)} as

N - l

x (n ) =  Qk<!>k{n), 0 < n  < N  — I (2.1)
k=o

where {#*.} are te rm ed  th e  spectral com ponents of x(n).  On the  o ther hand, we can 

obtain  the  coefficients as

Qs = Y ,  x (n )^»(n )t 0 < s < N  — 1 (2.2)
71=0

T he basis functions {<)>k(n )} has to  satisfy the  orthonorm ality , i.e.

JV —1

2  <l>r(n)<l>*a(n) = fir—s (2.3)
71=0

where S is th e  D irac delta.

T he  basis {$k{n)}  can be lum ped together as a  m atrix  $  th a t satisfies the 

un ita ry  condition

(2.4)

such th a t

=  I  (2.5)

As an exam ple of th e  $  m atrix , there  is th e  D FT  m atrix . It consists of a set of

orthogonal com plex sinusoids nam ely

—j2irnk
<f>k{n) =  e n k , n  =  0 ,1 , 2, •, N  — 1 (2.6)

T he corresponding transform  m atrix  is therefore given as

$  =  [IT""*] (2.7)

where W  — e n , T he inverse D FT  (IDF’T ) m a trix  is given by scaled by jj in 

order to satisfy the  orthonorm ality  condition. A second exam ple is th e  well known
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discrete cosine transform  (D C T). D CT, as alluded to in the beginning, is v irtually  

th e  in d u stry  s tan d ard  in im age and speech transform  coding because of its superior 

coding perform ance and  th e  availability of its fast im plem entable realizations. T he 

D C T basis functions are defined as

$ ( r ,n )  =  $ r (n) =  ( ^ - ) c o s ^ n , 0 <  n , r  < N  -  1 (2.8)

cr =
[ y / N ,  r =  0 

I  s f m ,  r  /  0

B oth of these are called block transform s since they  operate on a  segm ent of sam ples 

a t a tim e. T h is  kind of transform  offers good coding results a t low and m edium  

b it ra te  for b o th  im age and speech. However, th e ir perform ance tends to  degrade 

significantly a t very low bit rates, causing a blocking effect as a result of independent 

coding of each sub-block.

C asserrau  e t al.[9] cam e up w ith an overlapping block transform  called the 

L apped O rthogonal Transform  (LO T) which uses pixels in ad jacent blocks to 

allev iate th e  blocking effects. M alvar and Staelin[27] proposed a new LO T struc tu re  

th a t utilizes th e  basis functions of D C T  for com putational efficiency. Akansu and 

Wadas[5] ex tended  th e  concept of efficient LO T by using o ther block transform s in 

th e  design of LO T bases.

Let { 2 fo > ii> ................ ............................} represent vectors of N contiguous

sam ples each. We form a  new vector Y j  of length L  > N  ob ta ined  by extending the 

vector X_i from  bo th  th e  left and righ t sides by crossing over to  borrow  y  sam ples 

from  2C,_i and  2Li+1 blocks respectively. T he  transform  produces

£i =  £11  (2.9)

where 0± is N  x  1, $  is N  x  L, and is L x  1. In th is case th e  <I> m atrix  is no longer 

square and consequently  it should obey different rules from its block coun terpart in 

order to get perfect reconstruction. T he basis functions {4>jt(«)} are now l x i  long.
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They should satisfy th e  following requirem ents for perfect reconstruction (PR ) [2]

Y ,  (j>T(k)<j>;,(k -f 2n) =  6(r — s)6(n)  (2.10)
k

2.2 Theory of Subband Filter Banks

The purpose of a  filter bank is to decom pose a  signal spectrum  into  non-overlapping 

frequency bands before any fu rther processing. This technique offers the  advantage 

of allocating bits separately  to  each subband according to some percep tual criteria 

th a t are pertin en t to th a t band for exam ple in speech coding application.

2.2.1 Decim ation and Interpolation in Multirate Filter Banks

T he m ost basic operations tak ing  place in a  m ultira te  signal processing are the 

decim ation and  interpolation. These two processing tools a lter the clock ra te  at 

various points of the  m ultira te  system.

2.2.1.1 Decimation

T he full spectrum  signal occupying a bandw idth  W  is first filtered by an an ti­

aliasing filter (e.g. lowpass, bandpass, or highpass). If the resulting signal occupies a

bandw idth  jjj, we can throw away every o ther M samples of this new signal w ithout 

loss of inform ation  in order to  m eet th e  N yquist criterion[2][40]. W hat this criterion 

calls for is th a t any signal occupying a bandw idth  W ,  only 2W  sam ples per second 

are necessary to represent the signal perfectly. T he process of filtering followed by the 

proper dow nsam pling is called decim ation in tim e. Fig. 2.1 shows such an operation. 

We can re la te  the  signals a t various points of the decim ation process as

y{n)  =  x ( M n )  (2.11)

y(n)  =  Y2 h ( M n  — k)u(h)  (2.12)
k
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I
(a)

S\  x(n)

M 2M *>

(b) (d)

y(n)

1 2 3 n
(c)

F ig u r e  2.1  T he decim ation operation: (a) com posite filter and downsam pler, (b) 
filtered signal a t fast clock ra te , (c) downsampled signal a t slow clock rate , (d) 
signal spectrum  occupying \  of full band a t fast clock ra te  f a, (e) spectrum  of signal 
dow nsam pled by 4, occupies full band a t f aj 4 clock ra te

Clearly, decim ation compresses th e  signal in tim e. This effect translates obviously 

into an expcinsion in the frequency dom ain. In fact, by tak ing  th e  Z-transform  of 

Eq. (*2.11), it can be shown th a t [2][40]

i M—i
Y (z ) = T f  2  X ( * 1/MW k), W  = t ~ i2*lM (2.13)

M . k=o
or

1 Af-l
n * n  =  (2-i4)

1V1 k= 0

Fig. 2 . 1  illu stra tes these two com peting phenom ena for the decim ation case.
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2.2.1.2 Interpolation

T he counterpart of decim ation is interpolation. This operation has the  purpose 

of increasing the sam pling ra te  of a signal by M. This is achieved by upsam pling 

th e  signal by M through the  insertion of M -l zeros between the samples of the 

original signal and passing th e  obtained signal through an in terpolation filter. 

T he upsam pling operation  stretches the tim e axis and thus is accom panied by a 

com pression of th e  signal in the  frequency domain. This phenomenon translates into 

th e  in troduction  of high frequency com ponents to  the  signal. These com ponents 

are called im aging eifects. T he purpose of the in terpolation filter is therefore to 

rem ove these high frequency com ponents by sm oothing the expanded signals. Fig.

2.2 depicts th e  in terpolation  operation. Likewise, we can relate the  signals a t various 

points of th e  in terpolation process as

< * ■ » >

2.2.2 Polyphase Representation of a Filter

Polyphase representation of a  filter is an efficient technique th a t finds a  lot of appli­

cations in m u ltira te  system s. Let H ( z )  be a  filter such as

H{ z )  =
k= 0

=  h(0) + h{ l ) z ~ l +  • +  h { N '  -  l ) s (Ar'-1) (2.16)

w here N 1 is the  num ber of taps. H{z)  can be recast in a polyphase representation as
J V ' - l

H{z)  = Y  h ( k M ) z ~ kM
k= 0

N 1- 1

+ Z - 1 y  h (k M  + 1 )z ~kM
k=0

J V ' - t

+ g - ( M - 1) h ( k M  + M -  1 ) z~kM (2.17)
k = 0
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I
to)

x(n)

0 21 3 n
(b)

y(n)

» ♦ »

(c)

W " )

' .In

(d)

y ( e JU') Images

Figure 2.2 T he in terpolation  operation: (a) com posite upsam pler and filter, (b) and 
(d) input to  upsam pler, tim e and frequency domains, (c) and (e) upsam pler ou tpu t, 
tim e and frequency dom ains for M =4.
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  H (z ) ----------------------------------------------  F iz ) -----

F ig u r e  2 .3  A cascade operation and its equivalent representation

where M is any integer. This representation can be com pactly w ritten  as

M - 1
H{z)  =  V  z - ‘ E , { z m )  (2.18)

l=o

where

Ei(z)  = y !  e , (k)zk (2.19)
k = 0

with

ei{k) =  h { k M  +  /), 0 <  / <  M  -  1 (2 .2 0 )

W hen an upsam pler is followed by a filter H{z)  and a dow nsam pler as shown

in Fig. 2.3, we can replace this s tru c tu re  by a simple filter F(z ) .  Notice th a t F{z)

is nothing else bu t the 0 t/l polyphase com ponent of H{z)  as given by

f ( k )  = e0(k) = h . (kM), 0  <  k < -  1 (2 .2 1 )

2.2.3 The Two-Band and M-Band Subband Transforms

Now, th a t we have laid out the  foundations of m ultira te  operations, we will analyze 

a generic tw o-band perfect reconstruction (PR ) filter bank as shown in Fig. 2.4. 

The inpu t signal a:(n) occupying a bandw idth from 0  to tt is divided into two 

equal subbands. T he analysis filters H\(z )  and H2 {z) bo th  serve as anti-aliasing 

and frequency splitters. As m entioned above, the signals 6\{n)  and ^ ( « )  are each 

dow nsam pled by 2  to  give the subband signals v\ (n)  and v2(n).  In a typical appli­

cation the  two signals are further processed through a quantizer and transm itted  to
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#i(n) i>i(n) f i ( n )  y x{n)

x(n)x  (n)

G ,(z )

Figure 2.4  Two band filter bank

the receiver. In order to derive th e  P R  conditions, we will assum e th a t no processing 

occurs between the  tran sm itte r and receiver, and therefore, the  received signals are 

« i(n ) and  v^ (n) . A t the  receiver end, these two signals are upsam pled and filtered 

by the  in terpolation  filters to restore the missing sam ples. T he resulting signals are 

sum m ed up to  yield the reconstructed  signal. Tracing th e  signals through out the 

top branch gives

e1(z) = H i ( z ) X ( z )

Yx{z) =  G 1 (2 )F 1(^) (2 .2 2 )

T he in p u t/o u tp u t relationships of the downsam pler and upsam pler are

U W  =  5 h ( * ,/2) +  0 . ( - 2 ,/2 )]

Fi{z)  = V1( z 2) (2.23)

P u ttin g  all of these expressions together leads to

U W  =  [ A M A 'M  +  I h ( - z ) X ( - z ) \  (2.24)
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Likewise for the bottom  branch, we get

Y, (z )  =  \ g 2(z ) [J/2 (z)A '(z) +  H ^ - z ) X [ - z ) \  (2.25)

T he reconstructed  ou tp u t signal X ( z ) is the sum of Y\(z)  and Y2(z)  as

A (z )  =  i [ / / , ( z ) G , ( z )  +  / / 2(z)G 2(z )]A (z )

+ i [ / / , ( - z ) G 1( - z ) + H 2( - z ) G 2( - z ) ] A ( - 2)

=  T ( z ) X ( z )  +  S ( z ) X { - z )  (2.26)

T he reconstructed  signal consists of two parts. The first one rl \ z ) X { z )  is the original 

signal m ultip lied  by some transfer function T(z) .  T he second p a rt is term ed as the 

aliasing com ponent. This anom aly is introduced because of th e  finite roll-off in filter 

responses. To achieve perfect reconstruction, we require the  following

(1 ) 5 (z )  =  0 , f o r  all z

(2) T( z )  = cz~n° , where c is a constant  (2 .2 7 )

T he first requirem ent gets rid  of the  unw anted aliasing term s. W hereas th e  second 

one im plies th a t the ou tpu t should be a  scaled , translated  replica of the  input. This 

can be succeeded if we choose

G x{z) =  - H 2( z )

G 2( z )  =  Jh ( z )  (2 .2 8 )

This in tu rn  m akes T( z )  become

=  \  [ H i { - z ) H 2( z ) -  H x{z ) H 2{ - z )} (2 .2 9 )

Now th e  first requirem ent is m et. We let the  analysis filters be related as

/ / 2 (2 ) =  2 ~<yv- 1) / / 1( - 2 - 1) (2.30)
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T ( z )  fu rther becomes

T( z )  =  (2.31)

T hen, th e  second requirem ent imposes the following condition

Q ( z ) =  H i ( z ) H \ ( z ~ l ) -f- H \ { —z ) Hi { —z ~ 1) =  constant

=  R ( z )  +  R ( —z)  =  constant  (2.32)

We notice th a t R(z )  and R ( —z)  are nothing else bu t th e  spectral density of the  filters

H i ( z )  and H i ( —z),  respectively. Therefore, we w rite R (z) and R (—z) as
( J V - l )

R (z ) =  E  a kZ~k
f c = — ( T V - 1 )

(TV— 1)

R ( - z )  =  E  ( - 1 )k<*kz-k (2.33)
f c = — ( / V — 1 )

We can deduce from Eq. (2.33) th a t {a/t} has to be zero for even values of k  except 

k  =  0  in order to have Q(z)  be a constant. We can take th is result a bit fu rther 

by recalling th a t R(z )  is also the  Z-transform  of the  autocorrelation function p(n  ) o f  

/i i(?!.), p{n)  is given as

P(n ) = E  h i ( k )h i (n  +  k)  (2.34)
k

We are able to  recast Eq. (2.32) in to  a tim e dom ain requirem ent as

p(2n)  =  ^ 2  h i ( k ) h i ( k  +  2n) — 6(n)  (2.35)
k

w here S(n)  is the Dirac S. W hat this equation tells us is th a t if the  filters are chosen 

as above and if fu rther the  lowpass analysis filter satisfies Eq. (2.35), we get a  two- 

band  perfect reconstruction quad ra tu re  m irror filter (PR -Q M F) bank structu re . Eq. 

(2.35) can be in terp reted  as requiring hi (n)  to be orthogonal to its own translates 

shifted  by 2. This is called the  paraun itary  requirem ent for perfect reconstruction.

We can generalize th is resu lt for an M -band stru c tu re  as shown in Fig. 2.5. In

th is case, the  perfect reconstruction condition in tim e dom ain is found as [2 ]

E  hr( k )hs{k -f M n )  =  S(r -  s ) 6 (n) (2.36)
k
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Nh ■N-

x(n)

Ho(z) ■ KM

H x{z) ■ VM

Hm - i (z) ■ VM

Coder -

CoderN*

A M -

AM-

Coder A M

Analysis F ilters

Cr 0 ( z )

G i ( * )

i i

Synthesis Filters

F ig u re  2 .5  M axim ally decim ated M -band filter bank

T he above equation asserts th a t hr( k ) is orthogonal to  its  own translates shifted by 

m ultiples of M  and r  ^  s , hr(k)  is orthogonal to all M translates of hs(k).

2.2.4 M-band M ultiplierless Filter Design Example

At this point, we would like to  present a  design exam ple of filter banks. We designed 

a  four band eight-tap P R  linear phase filter bank. In addition, we restricted  the  filter 

coefficients to be m ultiplier-free. T he filter coefficients {a,} will be of the  form

(2.37)

where k  is an integer. This type of filters have great practical m erits because of the 

com putational efficiency they offer. In fact, the usual m ultiplication taking place in 

a  filtering operation is im plem ented via a simple shift (left or right) plus an addition 

in th is case. T he filter coefficients are tabulated  below (Table 2.1). The m agnitude 

responses of the four bands are depicted in Fig. 2 .6 .
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T a b le  2 . 1  F ilte r coefficients of a four band 8 -tap  P R  filter bank

B and 1 Band 2 Band 3 Band 4
— 2~2 +  1 

— 2 - 2  - 1 

— 2 1 - 1 

— 2 2 - 1 

—2 2 - 1 

— 2 1 - 1 

— 2 - 2  - 1 

—2 ~ 2 +  1

2 - 2  +  1 

2 " 2 - 1 

—2 2 - 1 

—2 1 - 1 

2 1 +  1 

2 2 +  1 

—2 - 2  +  1 

—2 - 2  - 1

2“2 +  1 
— 2 - 2  +  1 

—2 2 - 1 

2 1 +  1 

2 1 +  1 

—2 2 - 1 

- 2 ' 2 +  1 

2 - 2  +  1

—2 - 2  +  1 

2 “ 2 +  1 

—2 1 - 1 

—2 2 -1- 1 

2 2 - 1 

2 1 +  1 

—2 - 2 - 1 

2 - 2  - 1

------- -p ,

o.g

0.8

0.7

0.6

a  0.4

0.3

0.2

0.1

0.5 1.5 2.5 3.5

F ig u re  2 . 6  M agnitude response of a m ultiplierless four band filter bank



18

x («)

Ho - 1 2

Hi  - + 2

Analysis

+ 2
vo(n)

+ 2
yi ( n )

HS + 2
i’2 (n)

H'{ - + 2
V3(n)

+ 2 -  n<

+ 2 -  G[

+ 2

42 -  G'l

Q 4 2 Go

O 4 2 Gi

Synthesis"

F ig u re  2 .7  Four band regular binary tree structu re

2.2.5 Tree Extensions and Multiresolution

T he two band filter bank is the  progenitor for the  construction of tree  structu res. A 

variety of tree structu res can be obtained by a repetitive use of this p ro to type filter 

bank yielding a wide span of resolutions of the  original signal. Several tree  structu res 

capable of different decom positions were studied by Akansu and Liu[4]. If the  signal 

is decom posed a t each node beyond the first level, we obtain a regular binary tree. 

A four band binary  tree  is illustrated in Fig. 2.7. This structu re can be redraw n into 

an equivalent s tru c tu re  of Fig. 2.9 by invoking th e  “noble identities” shown in Fig. 

2.8[2][40]. It should be noted here th a t the sp litting  filters at different stages need 

not be th e  sam e [38]. However, if the en tire s truc tu re  is required to be PR, each 

stage should satisfy th a t requirem ent.
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G(z)

G(z)

F ig u re  2 . 8  Noble identities

x(n)

F ig u re  2 .9  Equivalent s tructu re
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LLL

LLH

Ievel3
—  LHx(n)

level 2

H 0{z)

level 0  level 1

F ig u re  2 .1 0  T hree level dyadic tree s truc tu re

A dyadic or octave-band tree is obtained when only the lower half of the  

spectrum  is partitioned  into two equal bands a t any level of the tree. Fig. 2.10 

depicts a  dyadic tree. At any level, the lower frequency com ponent is called the 

“coarse” approxim ation, whereas th e  high frequency term  is called the  detail at th a t 

resolution. A dyadic tree is then a  hierarchical d a ta  structu re  containing inform ation 

about a  signal a t different resolutions. It can be viewed as a m ultiresolution decom ­

position. Unlike in the  binary and dyadic tree structures, sp litting  a  spectrum  does 

not have to  follow a  repetitive scheme, bu t can take place a t any node depending on 

the need for the decom position. This type of split yields irregular tree structu res as 

shown in Fig. 2.11.

2 .3  T h e  W a v e le t T ra n s fo rm  a n d  I t s  L in k ag es  w ith  F i l t e r  B a n k s

The wavelet transform  is a tool to decompose an analog or continuous-tim e signal 

w ith a  fam ily of orthonorm al functions {'i'ah(L)}. These { ^ ab{t)} functions are derived
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Figure 2.11 Irregular tree s tru c tu re

from  a  p ro to type kernel function ij>[t) known as the  m other function through dilations 

and transla tions of 0(£) a s [17]

0a b(t) =  - 7 = 0  (-— -)  (2-38)
\ /  (I CL

where a > 0, and —oo < b < oo. So, we can define the  wavelet transform  of a  signal 

x ( t ) as [17]

/ OO

ipab(t)x(t)dt (2.39)
-OO

On the  o ther hand, x( t )  is synthesized through the  inverse wavelet transform  as

1 r o o  ro o  s l f i / J h

x (t) =  f ;  /  (a, b)i^ab(t) (2.40)
U  J —oo JO Cl

where

C = r  (2.41)
J o  SI

VP(ri) is th e  Fourier transform  of V;(0 - invertibility of the  wavelet transform  is

secured satisfies an admissibility condition, nam ely C  being finite[17].11
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2.3.1 The D iscrete Wavelet Transform

T he discretiza tion  of a and b leads to th e  d iscrete wavelet transform  (D W T ). T his is

somehow a  m isnom er because the operation still takes place in th e  continuous-tim e

dom ain. In th is case, th e  wavelet decom position of x( t )  behaves as

dm,n -  [  a :(f)0m,„(f)<ff (2.42)
J  — OO

and th e  synthesis form ula is

* (0  =  £ E < " V w ( 0  (2-43)
i n  n

where {0 a6 ('f)} as a  resu lt of the  discretization becom es

0m „(f) =  2 - w' 2 tf (2 ~mt -  n)  (2.44)

T he construction of th e  m other wavelet 0 ( f )  necessitates the  following steps[l7]:

1. D eterm ination  of th e  com plem entary scaling function 0(f) which satisfies 

the  inter-scale property

0(f) =  \/2  ^ 2  h(n)<f>(2t — n)  (2.45)
n

Similarly, th e  m other wavelet also satisfies the  containm ent condition

0 (f)  =  x /2 £ # ( n ) 0 ( 2 f  -  n)  (2.46)
n

It was shown th a t th e  inter-scale coefficients h(k)  and g{k)  are no th ing  else 

bu t the lowpass and highpass filters of a  two-band perfect reconstruction  

filter bank, respectively. T he Fourier transform s of 0 (f) and  0 ( f )  are 

related to  th e  Fourier transform  of inter-scale coefficients as

OO

<&(fi) =  I I  (2.47)
fc= i

and
OO

’J'(fl) =  G(ej %) J J  l-l(e3%)  (2.48)
Ar=2
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where / / ( e J'“') and G { e ^ )  are (.he Fourier transform s of h ( k ) and g ( k ), 

respectively. For these infinite products to  converge, we require tha t 

H ( z )  to  have a certain  degree of regularity, i.e. having a t least one zero 

a t lo — 7r or equivalently a t 2  =  — 1. It turns out th a t the  orthonor­

m ality  and finite support of the  scaling and wavelet functions are  set up 

by th e  orthonorm ality  and finite duration of h(k),  and g(k) .  Eq.(2.47) 

and  Eq.(2.48) provide the  m ethodology for the construction of wavelet 

and  scaling families. One sim ply s ta rts  w ith any paraunitary , com pact 

suppo rt (i.e. finite duration) two-band filter bank. T he Fourier transform s 

of th e  wavelet and scaling functions are then obtained  by th e  infinite 

products in Eq.(2.47) and Eq. (2.48). These equations im ply th e  following 

com pleteness properties of wavelet and scaling bases.

2. T he wavelets are orthonorm al in both  indices. They are orthonorm al in 

tim e n  a t the same scale m.  and orthonorm al across scales (intra- and 

inter-scale orthonorm alities),

<  0 m In ( O > V V 1n , ( O  > =  S m - m ' 6 n ~ n '  ( 2 ’4 9 )

3. T he com plem entary scaling function «-> 4>(fl) is orthonorm al within 

the  sam e scale (intra-scale orthonorm ality  only),

<  &n-n (2.50)

where

K n { i )  =  2-™ /V (2"m< -  n)  (2.51)

T he scaling function is a low-pass function.

4. Com plem entary property of the wavelet and scaling bases

< V W o .^ m V C O  > = °  (2.52)



CHAPTER 3

TIM E-FREQUENCY LOCALIZATION IN TRANSFORMS, 
SUBBANDS AND WAVELETS

T he goal of this chapter is to study and clarify the  notion of tim e and frequency local­

izations as it is pertinen t to bo th  the analog and the d iscrete-tim e signal domains. 

This notion is based on th e  famous uncertain ty  principle th a t gives a lower bound of 

the jo in t localization.

3.1 Time-frequency Distributions and Optimum Signal Shaping

T he tim e-frequency shaping of a  single function in both the  analog and discrete-tim e 

dom ain is very well understood. T he trade-offs between the  tim e and frequency 

dom ain localizations have been well know n[30] [13]. It, is sim ply explained by the 

well known uncertain ty  principle. From a  transform  point of view, we would like 

to ex tend  th is concept to do tim e-frequency shaping of a  set of functions which 

m ust be com plete. To b e tte r understand  this shaping, a d iscrete-tim e version of the 

uncertain ty  principle is derived.

3.1.1 Classical Uncertainty

T he basic objective in signal analysis is to devise an operator capable of extracting 

local features of a  signal in both  tim e and frequency domains. This requires a  basis 

function, or kernel, whose spread or ex ten t is simultaneously narrow  in both domains. 

This in tu rn  suggests th a t the transform ation kernel <f>{t) and its Fourier transform  

<!>(SI) should have narrow spreads about selected points Z0, and Ho-

However, the classical uncertain ty  principle asserts th a t for any function d>(/), 

(w ith \/t</>(t) —> 0, as t —> ±oo)[30)[13],

> -  (3.1)

24
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where o r ,  op are the RMS spreads in tim e and frequency, respectively, of <j>(t) and 

abou t th e  center values. T h a t is

O  y  —  ---------
E

rco
— 27T (3.2)

E

where E  is the  energy in the signal,

/ oo 1 r  oo
(3 .3 )

-00 27T J—oc

and t, 0  refer to  the  center-of-mass of these kernels,

/ .T o o  * W O  I2 *t =
E

fl =  A j ^ ( g ) E g  ( 3 .4 )

T he product o tc tq  is called the resolution cell. The equal sign holds in Eq. (3.1) if 

and only if <j>{t) (and consequently, its Fourier transform ), is Gaussian of th e  form 

e~ai~. T he derivation of this result can be found in[30].

T he Short-T im e Fourier T ransform (ST FT ) has been used to  ex trac t frequency 

characteristics of a  signal over some selected interval in lim e. T he S T F T  positions 

a  window function g{t)  at some point t  on the  tim e axis and calculates the  Fourier

transform  of the signal contained w ithin the spread or ex ten t of th a t window,

F ( / 3 , r ) =  r  f ( t ) g ( t - T ) e jl3tdt  (3.5)
J  — OO

W hen th e  window function g(t)  is Gaussian, the STFT is called G abor transform[18][13]. 

T he basis functions are generated by modulation and translation of th e  window 

function by the param eters /3 and r ,  respectively. Note th a t when r  increases, the 

kernel sim ply transla tes in tim e while keeping the spread of th e  window fixed.

Let g(t )  <-» G( f t )  be a  Fourier transform  pair, and assum e th a t t  =  0 , and 

Cl =  0 . T hen  the  translated , m odulated  kernel pair are given by

f f rA i )  = 9(t -  T ) e m  <-> GrACl)  = e - ^ l- ^ TG(Sl -  0)  (3.6)

33
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This tw o-param eter family is centered a t r , 0  in the  tim e-frequency plane, i.e.

tr,P = T, ClTf0 =  0  (3.7)

Now it is readily shown th a t th e  spread of this shifted, m odulated kernel is constant

in both  dom ains, i.e.

=  o ( « -
E

1 fZoin  -  P)\GTAci)\2dn„2   27rJ-ooV f  !\ r,p\ ]\ “ _2
a f2(T,/3) -  p  -

/ OO

(i -  r y ^ r A * ) ^  =  * r  ( 3 -8 )
•oo

where crQ,cry are the  RMS spreads of the unm odulated, un translated  kernels. This 

im plies th a t the resolution cell crxaQ has a  constant shape, as well as a  constant

area in th e  tim e frequency plane as shown in Fig. 3.1. For the  G aussian window

vtpq. =  1/2. T he wavelet transform , introduced in the  previous chapter, has a  

variable shape, bu t constant p roduct tim e-frequency tiles as seen in Fig. 3.1.

3.1.2 Discrete-time Uncertainty Theorem

T he discrete-tim e version of uncertain ty  is as follows: Let. f ( n ) F{c iu>) be a  

d iscrete-tim e Fourier transform  pair,

n ^ )  =  E  f ( n )e~JU“ «-» / ( « )  =  7T~ /  (3.9)
n = —co 2 ? r

By the  Parseval theorem , the  energy of the  signal is given in both  dom ains as

00 1 rir

E =  £  l / M P  = 5 - /  | f ( O I 2̂  (3-10) ________________J-*
We define the  m ean (analogous to  the center-of-mass of a d istribution) by[2 ]

_ _  j ;ui =  ----------------------------
E

(3.11)

E - o o " i / ( » ) rn = - ( 3i l 2)
hj

T he spreads of a function in tim e and in frequency dom ains are defined as

E ^ ( n - n ) 2 | / ( n ) | 2

(3.13)

E
  f T T  (

.2   2 t

E
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T h e o r e m : For any real signal Q =  0 , and w ithout loss of generality, we can also 

shift th e  tim e origin to  m ake n  =  0. For this case, we show th a t the  tim e-frequency 

p roduct crn(Tw or resolution cell is given by

I1 -  tA

P ro o f :  For convenience let n =  0 , and note th a t

.dF

(3.14)

lf {n)  j du>

so th a t

By the Schw artz’ inequality, we have

| / | 2 -  s W

In tegrating  by parts,

I  =  4 - (u . |C (e '" ) |2J I .  -  ± - j ' j ( e . i “) lu d F ’ +  F ~ M

(3.J5)

(3.16)

i  r

=  \ F( - i ) \ 2 - r - E (3.18)

or

B ut,

for any complex num ber, therefore

2 E F ~  | ^ ( - 1 ) | 2 =  oil ~ d \
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In the analog version, E (± c o )  =  0 , and the  lower lim it is sim ply 1 / 2 . In the 

d iscrete-tim e case F ( —1) need not be zero. Note th a t in our no ta tion  F ( e ^ )  at 

co =  0 , and co =  ir are denoted by i ?1( l)  and F { —1 ), respectively.

R e m a rk :  T he frequency measure in Eq. (3.13) is not suitable for bandpass 

signals w ith peak frequency responses centered a t ±u>. In order to  ob ta in  a  m easure 

of the  spread about to, we need to define <r2 on the  interval [0 , 7r], ra th e r than  [—tt, tt] . 

In this case we will use
I /o -c o l  F ( e - ) | 2du;

co (3.19)

( 3 ' 2 0 )

and a \  rem ains unchanged. It easily follows th a t

=  < £ - ( * ) *  (3.21)

and

ol<rl > ^(1 -  V ?  ~  ( ^ ) V 2 (3.22)

Eq. (3.22) dem onstrates the reduction in the time-frequency product when 

using the [0 ,7r] interval for bandpass signals. An alternative derivation sim ilar to the 

above proof, shows th a t this product can be expressed as

<Tw<Tn >  ^ | 1  -  I* |

, c o | F ( l ) | 2 . co I E ( - 1 ) | 2„ = - L U L  +  ( ! _ _ ,  L _ L _ JL  (3.23)

For bandpass signals w ith zero DC gain, F (  1) =  0, Eq. (3.23) reduces to

If, additionally, we have F ( — 1 ) =  0 , then / /  =  0 , and

PujVn > "  (3.25)
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In the sequel we concentrate on low-pass filters such th a t F { e ^ ) max occurs a t 

co =  0 and  use Eqs. (3.13) and (3.14). In this case, there are two classes of filters 

or signals. T he first class is th a t of signals possessing a certa in  degree of regularity, 

nam ely

Class I: F ( ~ l )  = 0 —y crncru,>  ^  (3.26)

W hereas, th e  second class is free of th is requirem ent,

Class II: F (  — 1 ) 0 —*■ crncr  ̂ (3.27)

T he bound on th e  tim e-frequency product in th e  first case is th e  sam e as th a t for 

the continuous-tim e case(in which T / i o o )  =  0). In the analog case, we know th a t 

the  equality  in th e  lower bound is achieved when f lT /f!)  is p roportional to  or 

F(Q)  — K e ~ bn2!2  ̂ a  G aussian. In th e  discrete-tim e form ulation, we have th e  same 

form of in tegral resu lting  in the differential equation

d F
—  =  - K w F * ( e ’w) (3.28)

whose solution is a  G aussian e~Ku>2/ 2. T his G aussian function satisfies the  differential 

equation bu t cannot satisfy the  Class I boundary condition F (e J7r) =  0. In this case 

we conclude th a t  th e  lower bound cannot be a tta ined  and the  s tric t inequality  holds, 

o'ncr^ >  I .  For th e  Class II set of functions, th e  G aussian can satisfy bo th  the  

differential equation  and the boundaiy  condition resulting in th e  equality  anaw —

| | i  -  H-

3 .1 .3  G a u s s ia n  D is t r ib u t io n s

For the  Class II signals, the  Gaussian is

|F ( e ju)\2 = K e r w2F ° \  |w | < 

V^ / 2

7r

K  =  i'7'~ / (3.29)crerj(ir/cr)
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F ig u r e  3 .2  T im e and frequency plots for narrow -band G aussian functions

T he constan t K  is chosen so as to  norm alize the signal energy E  to  un ity  over [—ir, 7r] 

In  A ppendix A, we show th a t

<ru =  try/I

/( =
i n * )

E
=  K e "3 ' 2' 3

and hence

O'ojO' ji & Ti --
V 1 -  A*

(3.30)

(3.31)
2  ' 2 <t

For the narrow -band case, rr <  7r / 4 , g  <  10—3, and F ( —1) ~  0, resu lting  in of, «  a 2, 

o’wo‘„ ss 1 / 2 . T he corresponding tim e function is found to be approxim ately G aussian,

K  2 2 

/ ( ’■> =  6
(3.32)

Exam ples of these narrow -band G aussian functions are shown in Fig. 3.2. Again 

note th a t the  tim e-frequency product is very close to 1 / 2  in these cases.

For th e  w ide-band case, w ith a  >  37r / 8 , we m ust use the m ore exact expansions 

in Eqs. (3.30) and (3.31). For exam ple, for a = ir/2. we calculate g =  0.22625,
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<j u =  1.382, <Jn<rw — 0.3869, and  crn =  0.28 tim e samples. In th is case, there is 

no sim ple approxim ation  for f ( n )  which m ust be com puted num erically from the 

inversion form ula, Eq. (3.9). These are shown in Fig. 3.3 where the very short 

duration  of f ( n )  is duly noted.

3 .2  T im e - f re q u e n c y  P r o p e r t i e s  o f  B lo c k  T ra n s fo rm s

We can exam ine the  tim e-frequency localization of established block transform s 

by analyzing the  tim e-frequency products of each basis function. T he time- 

frequency spreads for the  Discrete Cosine Transform (D CT) and W alsh-H adam ard 

Transform (W H T ) basis functions are given in Table 3.1. T he trade-offs in crn , and 

as a  function of filter length are obvious from this table. In order to  sharpen 

the  frequency response, th e  transform  size or filter lengths are increased. As seen 

in Table 3.1, the  frequency spread cr  ̂ is decreased significantly bu t a t an appre­

ciable increase in <r\ owing to the  longer filter lengths or basis sequences. The
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tim e-frequency products or resolution cells also increase w ith  the  filter length, i.e. 

w ith  the  size of transform .

As m entioned earlier, th e  basis lengths of block transform s are equal to the 

num ber of functions which correspond to the  size of the transform s. T here is a very 

lim ited  flexibility in order to  im prove the  frequency selectivity of basis functions. 

For some of th e  applications, narrow  frequency bands are desirable, and we are led 

to  consider a  broader s tru c tu re - th e  M -band filter bank, where th e  length  of each 

analysis and  synthesis filter is not constrained. These extended length, or overlapping 

basis, filters also provide additional degrees of freedom for optim izing o ther aspects 

of system  perform ance.

3.3 Time-frequency Properties of Lapped Orthogonal Transforms

In order to  obtain  narrower frequency bands <r®, we can expand th e  length  of each 

analysis and synthesis filter. We should expect a  concom itant increase in The 

extension of th e  un itary  block transform , non-overlapping basis, results to  this case 

is called the  parau n ita ry  solution as discussed previously. We can now com pute the 

tim e-frequency localization of LO T filter banks and com pare them  w ith their block 

transform  antecedents. Table 3.2 displays the  localization characteristics of the  8 x 8  

D C T  and the  8 x 1 6  D CT-based LO T. Again we note the  narrowing of the frequency 

spread and  th e  a tten d an t increase in crft. The tim e-frequency products of DCT-LO T 

basis is significantly less than  th a t of D CT as expected.

3.4 Time-frequency Properties of M-Band and Hierarchical Filter
Banks

For our present purposes, we w ant to evaluate the tim e-frequency localization 

properties of some known filter banks. Table 3.3 lists these characteristics for three 

different 8-tap tw o-band filter banks, th e  Binomial QMF[3], the Smith-Barnwell
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T a b le  3 .1  Tim e-frequency localizations of DCT and W H T bases for 2,4, and 8-band 
cases

u n *1
2 x 2  DCT 0 0.50 1.2899 0.2500 0.3225
and W HT 7r 0.50 1.2899 0.2500 0.3225
4 x 4  DCT 0 1.50 0.6787 1.2500 1.2234

1.27 1.50 0.3809 1.9570 0.7454
1.85 1.50 0.2424 1.2500 0.3030

7T 1.50 0.4896 0.5428 0.2657
4 x 4  W IIT 0 1.50 0.6787 1.2500 0.8484

1.29 1.50 0.2424 1.2500 0.3030
1.85 1.50 0.2424 1.2500 0.3030

7T 1.50 0.6787 1.2500 0.8484
8 x 8  DCT 0 3.50 0.3447 5.2500 1.8097

0.74 3.50 0.3021 8.4054 2.5393
1.02 3.50 0.2413 5.9572 1.4375
1.36 3.50 0.1957 5.4736 1.0712
1.71 3.50 0.1488 5.2500 0.7812
2.08 3.50 0.1206 5.0263 0.6062
2.45 3.50 0.0797 4.5428 0.3621

7T 3.50 0.1388 2.0955 0.2908
8 x 8  W H T 0 3.50 0.3447 5.2500 1.8097

0.82 3.50 0.3485 5.2500 1.8296
1.15 3.50 0.2977 5.2500 1.5629
1.43 3.50 0.1488 5.2500 0.7812
1.72 3.50 0.1488 5.2500 0.7812
1.99 3.50 0.2977 5.2500 1.5629
2.33 3.50 0.3485 5.2500 1.8296

7r 3.50 0.3447 5.2500 1.8097
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T a b le  3 .2  Tim e-frequency localizations of 8 x 8 DCT and 8 x 1 6  D CT-LO T

U) n < *1 X °-n
8 x 8  DCT 0 3.50 0.3447 5.2500 1.8097

0.74 3.50 0.3021 8.4054 2.5393
1.02 3.50 0.2413 5.9572 1.4375
1.36 3.50 0.1957 5.4736 1.0712
1.71 3.50 0.1488 5.2500 0.7812
2.08 3.50 0.1206 5.0263 0.6062
2.45 3.50 0.0797 4.5428 0.3621

7T 3.50 0.1388 2.0955 0.2908
8 x 16 0 7.50 0.0917 4,654 0.4269

D CT-LO T 0.59 7.50 0.0549 7.615 0.418
0.98 7.50 0.0345 8.387 0.2898
1.37 7.50 0.0523 8.645 0.4523
1.76 7.50 0.0367 8.35 0.3070
2.16 7.50 0.0608 7.549 0.4596
2.55 7.50 0.0389 7.778 0.3026

7T 7.50 0.119 5.360 0.6419

CQF[35], and  the multiplierless Ptt-Q M F[1]. Tables 3.4 and 3.5 also display this 

com parison for hierarchical s truc tu re  4-band(22-tap product filters), and 8-band(50- 

tap  p roduct filters) configurations. In all these cases, the m ultiplierless s truc tu re  

has the  best tim e-frequency product followed by the  Sm ith-Barnw ell CQF,

and the  B inom ial QM F. As expected, longer duration filters have narrow er a j 1 s and 

wider crn’s. Again, as expected, the  8-ba.nd, 8-tap block transform s (Table 3.1) have 

m uch narrow er <7n’s than  any of the 8-band tree-structured  filter banks, bu t very 

poor frequency localization.

F igure 3.4 displays the im pulse responses of the  product filters of the two-band 

B inom ial Q M F based hierarchical regular tree for the  2 and 4-band cases along with 

the  basis functions of th e  2 x 2  and 4 x  4 D CT (Fig. 3.5). Figures 3.6 and 3.7 

show the  corresponding frequency responses. These dem onstrate the  drawbacks of 

blindly repea ting  a  two-band P ll-Q M F  module in a hierarchical subband tree. The
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T a b le  3 .3  T he tim e-frequency localizations of several 8-tap  PR -Q M F/w avelet filters

uj n 2 2

B-Q M F (8-tap) 0 1.46 0.9468 0.6025 0.5704
7r 5.54 0.9468 0.6025 0.5704

M ultiplierless 0 2.50 0.9743 0.3750 0.3654
(8-tap) 7r 4.50 0.9743 0.3750 0.3654

Sm ith-Barnw ell 0 4.17 0.9174 0.5099 0.4678
(8-tap) 7T 2.83 0.9174 0.5099 0.4678

tim e spread increases considerably while the  tim e-frequency product degrades. This 

suggests two possibilities: either design th e  M -band, single level s tru c tu re  directly 

or use th e  hierarchical tree structu re , bu t m onitor the product functions from level- 

to-level.

3 .5  W a v e le ts  a n d  T im e - f re q u e n c y  D e c o m p o s it io n

T he orthonorm al wavelets were introduced in Section 2.3 as a  tool for m ultireso­

lution decom position of continuous-tim e signals to potential applications in several 

fields. T he wavelet transform  is a  m apping w ith superior tim e-frequency localization 

com pared w ith the  STFT.

3 .5 .1  T im e - f r e q u e n c y  R e s o lu t io n  fo r  W a v e le t F a m ilie s

T he tim e-frequency localization of the  wavelet transform  is d istinctly  different from 

th a t of the S T F T . Define i, f1 as the centers of mass of V; (0> ’f(D ) on (—oo, oo), and 

[0,oo) respectively. T hen the RMS spreads for the prototype are

^

T  ------------- £ -------------  (3.33)

This wavelet function is centered a t /, Q in time-frequency plane w ith spreads 

and <7fi. It follows th a t ^ ab{t) ^ ( f l )  is centered at ( la/.,^ab) =  ( a l + b , f i / a )  with
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Fig. 3.4.b
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Fig. 3.5.b
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T a b le  3 .4  T he tim e-frequency localizations of hierarchical subband trees for 2- 
level(4-band)

UJ n <^XCTn
B-Q M F H ierarchical 0 4.05 0.2526 2.7261 0.6886

4 Band Tree 1.23 12.88 0.1222 3.8269 0.4676
(22 tap  product 1.91 16.28 0.1222 2.7757 0.3392

filters 7r 8.80 0.2526 2.2622 0.5714
M ultiplierless 0 7.50 0.2747 1.5817 0.4345

(22 tap  product 1.24 11.50 0.1346 2.1683 0.2918
filters) 1.90 13.49 0.1346 2.1675 0.2918

7T 9.50 0.2747 1.5818 0.4345
Sm ith-Barnw ell 0 12.45 0.2339 2.14-58 0.5019
(22 tap  product 1.22 9.88 0.1077 2.9463 0.3173

filters) 1.92 8.45 0.1077 3.0185 0.3251
7T 11.22 0.2339 2.0772 0.4859

spread

2 1 2

"  ^  0

2 2 2
t ( ab) =  a V f

and resolution cell crt(ab)Vn{ab) >  1/2. Thus, the resolution, i.e. localization, in tim e 

and  frequency depends on th is scale param eter a. T he shape of the  resolution cell 

depends on a although the cell area is constant. This can be contrasted w ith the 

S T F T  which has constant shape resolution. These are shown in Fig. 3.1, and the 

span of these cells in th e  tim e-frequency plane is called a  “tiling” of the plane.

An often quoted exam ple of a wavelet is the second derivative of a  G aussian

?/,(*) =  ( i  -  t2) er t2/ 2 <-> =  v / M V ^ 2

This m other function has excellent localization in tim e and frequency and satisfies the 

adm issibility  condition. B ut it is not of com pact support, and is not com plete. For 

this case, we calculate (t =  0, o f  =  7 /6), and (D. =  1.505, o f  =  0.23646), resulting in 

a  tim e-frequency cell otctq — 0.525.
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T a b le  3 .5  T he tim e-frequency localizations of hierarchical subband trees for 3- 
Jevel(8-band) cases

u> n <

bXT
3

B -Q M F Hierarchical 0 9.12 0.0644 11.726 0.7552
8 Band Tree 0.63 26.96 0.0490 15.953 0.7817

(50 tap  product 1.01 34.11 0.0961 11.326 1.0884
filters) 1.45 19.65 0.0496 9.7846 0.4853

1.68 22.56 0.0496 10.510 0.5213
2.13 37.99 0.0961 12.013 1.1544
2.52 31.54 0.0490 14.950 0.7326

7T 14,36 0.0644 10.777 0.6940
M ultiplierless 0 17.53 0.0724 6.3415 0.4591

(50-tap product 0.64 25.46 0.0688 8.8171 0.6066
filters) 1.02 29.46 0.1193 9.1282 1.0890

1.45 21.54 0.0558 7.2005 0.4018
1.68 23.47 0.0558 7.2099 0.4023
2.11 31.53 0.1193 9.1234 1.0884
2.50 27.54 0.0688 8.8269 0.6073

7T 19.47 0.0724 6.3371 0.4588
Sm ith-Barnw ell 0 28.86 0.0591 8.6494 0.5112
(50-tap p roduct 0.6137 24.03 0.0321 11.837 0.3800

filters) 0.9951 21.22 0.0688 12.623 0.8685
1.4488 26.55 0.0436 9.5939 0.4183
1.6927 25.32 0.0436 9.6769 0.4219
2.1465 19.57 0.0688 12.599 0.8668
2.5279 22.51 0.0321 11.912 0.3824

7T 27.93 0.0591 8.5379 0.5046



43

We have seen in  Eqs.(2.47) and (2.48) th a t orthonorm al wavelet families can be 

generated  by any pair of two-band paraunitary  filters I I q( z ), I I \ ( z ), w ith H q{— 1) =  0. 

T he generation of Daubechies wavelets are given in [17]. These wavelet filters are 

identical to the B inom ial QMF[3]. These filters have the  m axim ally flat m agnitude 

square responses. In [15] and [16] other wavelet families(e.g. the m ost regular, 

Coiflcts) are devised by im posing other requirem ents on H q{z ).

Table 3.6 com pares the tim e-frequency resolutions of scaling and wavelet 

functions for th ree  wavelet families generated by 6-tap paraun itary  filters; the  

D aubechies, m ost regular and Coiflet, along w ith the  localization properties of the 

progenitor d iscrete-tim e filters. As seen in Eq. (2.47) and Eq. (2.48), th e  Fourier 

dom ain equalities require infinite product term s theoretically. T he localization 

m easures in this table assum ed th e  m axim um  product order of k =  8 in Eq. (2.47) 

and Eq. (2.48). I t considered th e  frequency range of —2h7r <  D <  2fc7r. Table 

3.6 dem onstrates th a t  th e  time-frequency localizations are im portan t m easures in 

th e  evaluation of a wavelet fam ily as an analog filter bank. In particu la r, the 

role of regularity in wavelet transform s should be evaluated for signal processing 

applications.

3.6 Discussions and Conclusions

In this chapter, we exam ined th e  discrete-tim e uncertain ty  principle, its m easure 

by a resolution cell, and lower bounds for different classes of signals. We also 

evaluated th e  tim e-frequency resolutions of some known orthogonal signal decom ­

position techniques; block transform s, lapped orthogonal transform s, subband filter 

banks and wavelets.

Historically, the design of transform  bases and filter banks has em phasized 

e ither the tim e or frequency dom ain with orthogonality as their m ain feature. It 

is well observed and understood in visual signal processing and coding applications
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T a b le  3 .6  Tim e-frequency localizations of 6-tap wavelet filters, and corresponding 
scaling and wavelet functions

Daubechies[19][21] Mostregular[29] Coiflet[27]
Scaling erf. 0.134 0.143 0.086

Function 5.22 5.77 11.86
0.699 0.825 1.02

Wavelet (jf. 0.178 0.188 0.108
Function 8.97 11.70 39.36

1.596 2.199 4.25
Low-Pass 0.453 0.470 0.305
PR -Q M F 0.987 0.996 1.059
High-Pass < 0.453 0.470 0.305
PR -Q M F 0.987 0.996 1.059

th a t the  behavior of transform  basis or filters should be m onitored jo in tly  in tim e 

and  frequency dom ains. I t is expected th a t this po in t will be considered in th e  fu tu re 

designs.

T he F IR  tw o-band orthonorm al filter banks have a vital role as th e  inter-scale 

coefficients in the design of com pactly supported  orthonorm al wavelet transform  

bases. T he wavelet theory em phasizes the  differentiability or regularity property  

of th e  basis functions in the  design. W avelet regularity  implies a flat frequency 

response for the  wavelet filters a t u> =  0 and tu =  ir. In Table 6, the  tim e and 

frequency localizations of wavelet filters along w ith the corresponding wavelet and 

scaling functions were evaluated for three different families proposed by D aubechies. 

In addition  to  the  regularity  m easure, new perform ance m easures may be needed in 

th e  design of wavelet bases for signal processing applications.

T he transform  bases or filter banks consist of a  set of functions. T he in ter-band 

leakage or overlapping of frequency functions should also be considered in the design. 

This m eans a good localization a t the desired region of tim e-frequency plane for all 

the  functions in the  basis.
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We conclude th a t the  overlapping transform  basis or filter bank design has 

significantly m ore degrees of freedom than  has been utilized. We expect m ore flexible 

basis designs in th e  fu tu re  for more efficient spectral decom position of signal sources.



CH APTER 4 

SUBSPECTRAL MODELING IN FILTER BANKS

4.1 Introduction

The popular linear transform  techniques, block transform s and subband filter banks, 

have been successfully used lor spectra l decom position. T he generalized linear 

transform  (GLT) theory  has m atu red  and  well established [2][40]. This general 

approach provides non-overlapping and overlapping block transform  bases w ith 

m ultiresolution properties. In addition , th e  unequal bandw idth basis solutions are 

shown to be  feasible. Therefore, th e  cu rren t trend  in decom position field is to 

search th e  best transform  basis for th e  given inpu t signal s ta tistics. T he subband 

struc tu ring  (tim e-frequency tiling) along w ith  the optim al basis design techniques, 

provide th e  m a them atica l tools for spectra l decom position .

T he spectra l analysis and m odeling has found its applications in m any diverse 

areas like speech coding to forecasting. The recent advances in th e  GLT theory have 

opened new avenues for the jo in t trea tm e n t of th e  signal decom position, spectral 

analysis and m odeling problem s. We a tte m p t to  assess th e  m erits  of subspectral 

m odeling over th e  conventional m odeling techniques which u tilize th e  full spectrum .

T he basic idea  here is to  split th e  signal spectrum  into its subspectra  based on 

certain  criteria , and  m odel them  individually  ra th e r th an  m odeling th e  full spectrum . 

I t is shown th a t the  subband or sub-interval m odeling is superior to  th e  full interval 

m odeling of th e  spectrum .

Linear predic tive(L PC ) m odeling technique has been widely used particu larly  

for low b it-ra te  speech coding and synthesis [7][14]. There have been contrad icting  

reports in th e  lite ra tu re  on the practical m erits of subband LPC m odeling, coding. 

We also address th a t problem  in this chap ter as the  special case of the  general topic 

studied. We will show th a t perform ance im provem ent is possible in subspectral 

LPC  m odeling over full spectrum . We give the possible reasonings why the  earlier

46
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studies on subband LPC were not perform ing satisfactorily and contradicting to the 

expectations.

T he idea of selective linear prediction of speech was first m entioned by 

Makhoul[26]. Later, subspectral m odeling was studied by R oberts, and Wiggins 

[33]. It was reported  in [7] th a t th e  subband LPC was not superior to the conven­

tional case for speech coding applications. On the other hand, Ref. [14] reports tha t 

subband LPC provided a be tte r coding perform ance than  the full band case in their 

experim ents. All of these studies were m ainly experim ental. More recently, Rao and 

Pearlm an [32] have addressed some aspects of the  problem.

We will, therefore, a ttem p t to  jointly  trea t the spectral decom position and 

m odeling steps and provide the theoretical reasonings for the experim ental obser­

vations.

4.2 Statistical Source Modeling

P aram etric  m odeling has been found to  be an attractive  m ethod for the  represen­

ta tion  of signals. Among the widely used models, the moving average (M A), the 

autoregressive (A R), and the autoregressive-m oving average (ARM A) models have 

been the  m ost popular ones [23]. In  all of these models, a signal x(n)  is assum ed to 

be generated  by exciting  a  filter h( n ) w ith w hite noise sequence u{ n ) as

X ( z ) = U ( z ) H ( z )  (4.1)

where X ( z ) ,  U(z) ,  and H ( z )  are the  z-transform s of x(n) ,  u(n) ,  and h(n),  

respectively.

More specifically, in the case where x(n)  is an MA signal, the  transfer function 

H m a ( z )  o f  h M A ( n ) is given by
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H M a { z )  =  B ( z )  =  £  bkz~k (4.2)
fc=o

w here q is th e  filter order, and &o =  1. Clearly, h,MA{n) is an F IR  filter. We 

call .x(n) an  M A(^) process. In the  tim e dom ain, x(n)  is w ritten  as

x (n ) =  ]C  h u { n ~  k) (4.3)
fc-o

W hen x(n)  is an AR signal, th e  spectral shaping filter used has a  transfer 

function H a r {z ) given by

Hah{z)  =  A & j  =  1 +  akz-*  (4‘4)

where p is th e  order of filter. It is assum ed stable, since / i ^ ( n )  is an HR filter. 

We call x (n )  as an AR(p)  process. Similarly, x{n)  is w ritten  in th e  tim e dom ain as

p
x(n)  = — ^ 2  akx ( n  — k) + u(n)  (4.5)

k= 0

where Go =  1. Last, in ARM  A m odeling which is a com bination of both AR 

and MA m odels, we find I I a r m a {z ) expressed as

„  . B ( z )  E L . . . . .
a r m a (  )  a ( : ! )  ! +  ^  ( 4 -6 )

This one is also an HR filter which is assumed to be stable. x(n)  is referred to 

be an A R M A ( p , q )  process. In this case, a:(n) is w ritten as

9  9

"(n ) =  “  5 3  akx ( n  -  fc) +  ]C  bku(n -  k)  (4.7)
k=0 k=0

4.3 Relationships Among Model Parameters

For a given A R, MA, or ARMA m odel of a  finite order, it is possible to express it in 

term s of the o ther two . For instance, an MA or ARMA process can be represented by
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a unique A R m odel of infinite order. Particularly  for ARMA to AR transform ation, 

vve derive th e  relationship between an ARMA w ith finite param eters and its A R 

coun terpart. For ARMA, we know th a t

B ( z )  =  E L o  bkz~k
A { z ) 1 +  E L l  akZ~H (*) =  T7IT =  ■ S  - k (4-8)

Let

OO

c ( z )  =  i  +  Y ^ ° kZ k (4-9 )
k=1

be the A R ( oo) model. Therefore , we can rew rite Eq. (4.8) as

=  W ) = W )  (4 ' 10)

T he sequence ( c(?j )} where n  goes from 0 to  oo is easily obtained in a recursive

m anner as

c(n ) =  ~  bkc{n -  k ) +  ^ 2 a kS(n -  k) (4.11)
k=l k- 0

where 6(n)  is the Kronecker delta. This infinite series will converge if the zeros 

of B{z)  are inside the  unit circle. In o ther words, for th is series to  converge, H ( z ) 

will be assum ed m inim um  phase. H ( z )  will then be both  stab le and invertible.

4.4 Effects of M ultirate Operators on Spectral Modeling

In th is work, we study the  m odeling problem  in a  m u ltira te  environm ent and inves­

tig a te  th e  efFects of m ultira te  processing on modeling. We assum e th a t our inpu t 

x (n)  to  be an A R ( p ) process. Its power spectrum  (PS) is given by

S x { z )  A ( z ) A ( z ~ l )
(4.12)
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S ,( s )

F ig u re  4 .1  A generic two-band filter bank structu re

where A ( z ) =  1 -f- Y%=i akZ~k• We study the  two-band subband stru c tu re  

given in Fig. 4.1 This s truc tu re  decomposes a signal in to  two subband signals 

by passing it through a  lowpass and a highpass filters. The subband signals are 

dow nsam pled to  satisfy N yquist ra te  requirem ent before any processing (m odeling, 

coding). A t th e  receiver side, each of the downsampled subbaud signals is upsam pled 

and  fu rther processed by in terpolation filters before th e  sum m ation a t the  ou tp u t. 

T he filters are chosen in such a way th a t aliasing and im aging distortions introduced 

by the  dowusam plers and upsam plers, respectively, are removed, resulting in a  perfect 

reconstruction  of the  original signal.

T he operators used in a  m ultira te  or filter bank struc tu re  are displayed 

individually  in Fig. 4.2

4 .4 .1  E ffe c ts  o f  F i l t e r in g

T he filter ou tp u t in Fig. 4.2.a is expressed as y(n)  = x ( n ) * b(n) where * stands for 

linear convolution. B ( z ) is assum ed to be an F IR  . T he power spectrum  density of 

th e  process y(n)  is easily expressed as

S y ( z )  = (4.13)
A( z )A ( z ~ ' )

T he ou tp u t Y { z )  is an A R M A { p , q )  process. B ( z )  may be any one of the 

spectra l sp litting  or anti-aliasing filters and T (^) is its ou tpu t.
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x(n)

Sx(z)

g (” )

Sx(z)
b(n)

a)

y{n)

Sy{ z )

x (n) f  I J \ J ( n )

S x ( z )  —  SD(z)

b)

x ( n )

S x ( z )

b(n)

c)

2/ (» )

Sy ( z )

d(n)

S d ( z )

M * )  S y (* )

d)

F ig u r e  4 .2  Some typical interconnections analyzed
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4.4.2 Effects of Downsampling

x(n)  is an inpu t to  the  dow nsam pler as given in Fig. 4.2.1). T he o u tp u t d(n)  of the 

dow nsam pler has a  PS given as

Sd(z)  = \  + S ,(-**)] (4 .1 4 )

Let us now expand the above equation to find out what kind of process d{n)  

is. A(.~) can be w ritten  in a  factorizable form as

A (z ) =  f i t 1 - P k *  *)
k = l

where p ^ s  are the  zeros of A { z ) .  Therefore, S'd ( z ) is expressed as

(4.15)

sD(*) =  j +
L n L i l i - p ^ - ' K i - ? ^ )  n L , ( i + p « z - ' ) ( i + w ^

where Z  = z  2 . We can rew rite Eq. (4.16) as

(4.16)

(4-IT)T l l L i l i  +  P t g - ‘)(1 +VkZ)  +  n £ _ i ( i  -  P t Z - ' K  1 - P i Z y  
. n L i ( i - p * z - ' ) ( i - P i Z ) ( i  +  p t Z - ' ) ( i + Puz )

We notice th a t th e  num erator in Eq. (4.17) is a  polynom ial in degree [ |] and 

the  denom inator is a  polynom ial in degree p. [x] stands for th e  integer p a rt of x. 

Thus, the ou tpu t D(z)  in Fig. 4.2.b is an A R M A ( p ,  [ |])  process.

4.4.3 Effects of Decimation

T he com bination of anti-aliasing filtering and downsam pling is called the decim ation 

operation. y ( n )  is the  inpu t to  the decim ator as seen in Fig. 4.2.C. In th is case, the 

ou tp u t d ( n )  of the  decim ator has a PS given as

S d (z ) =  -  S Y {z2) +  S V ( - ^ 2)]

S d {z ) =  \  S x {z ^ ) S b { z*) + S x { - ^ ) S B { - z ? ) \ (4.18)
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We will expand th e  above equation again to find out w hat kind of process d{n)  

is. T he filter function B ( z ) can be w ritten  in a factorizable form as

B( z )  = j j a - Z k Z - 1) (4.19)
k=i

where z ks  are th e  zeros of polynom ial B ( z ) .  Therefore, S d ( z )  is expressed as

Sd{z )  =  ^ f l L i U  zkZ )  +  n .L i(l +  ZkZ- 1)(1 + z kZ ) }
n U i i i  -  PkZ-*) ( i  -  Pkz )  m = i ( i + P k Z - i ) ( i + Pkz ) \

where Z  = z  2 . We can rew rite Eq. (4.20) as

(4.20)

=  (« •« )

where th e  num erator and denom inator polynomials are given as

p u )  = n ( i + P ‘ z " i ) ( i + w z ) f [ ( i - * ‘ 2 ‘ , ) ( i - ^ z ) +
*=1 *=1

I l ( l - p kZ - ' ) ( l - p kZ ) i l ( l  + z kZ - ' ) { l  + z kZ)  (4.22)
k=\ k= 1

Q(*) =  II ( l - P k Z - 1) ( L - p kZ ) ( l + p i lZ - l ) ( l + p kZ)  (4.23)
k= 1

We notice th a t the  num erator is a polynom ial in degree [^ j2] and the  denom ­

inato r is a polynom ial in degree p. [x] stands for the integer p a rt. Thus, D ( z )  is 

an A R M A ( p ,  [^y2]) process. If B( z )  is one of the sp litting  filters in th e  filter bank, 

and is a good tt /2  filter, Y ( z )  is essentially sim ilar to an AR{p' )  where pt < p. The 

in tu ition behind th e  sm aller order is th a t the  effects of any poles located in [)r/2 ,7r] 

interval are negligible. Thus, the signal can be represented by a  sm aller num ber of 

poles.
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4.4.4 Effects of Upsampling

Taking th e  o u tp u t of the decim ator as inpu t to the  upsam pler as seen in Fig. 4.2.d., 

we can easily trace the  combined effects of the upsam pler and th e  in terpolation filter 

on th e  spectrum . T he input and output, spectra  of the upsam pler are related as[28]

S u  W  =  i s D(22) (4.24)

Hence, the  spectrum  at the  o u tp u t of the interpolation filter becomes

S y ( z )  =  \ w T ) F { z ) F { z ~ ' ) (4-25)

w here

P (z ) =  I I ( 1 + p * z ” 1)(1 +Pkz )  E U 1 ~  zkz ~1)(l  ~  zkz)  +  
fc=i k=\

n (1 -  PkZ~x){l  -  PkZ) n ( l  +  zkZ~x){ 1 +  Zkz)  (4.26)
k = 1 k —1

Q ( z ) =  T l ( l  -  P k Z ^ X l  -  pkz ) ( l  + phz~x)(l + pkz)  (4.27)
fc= i

We see th a t the  spectrum  at th e  ou tpu t of the in terpolation filter is an 

A R M A ( 2 p , p  +  2q) process.

4.4.5 AR(1) Source Case

If an /177(1) process is assumed as inpu t to  the filter bank, we can easily trace the 

spectral changes through a typical branch of th e  filter bank. Therefore, the spectra 

at different points of the branch are as follows:

1. T he inpu t is an A /?(l) process.

2. T he spectrum  a t the o u tp u t of th e  analysis filter is therefore an A R M /4(1,3 ) 

process if a four-tap filter is used.
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3. T he output, of the  dow nsam pler can be shown to be an A B M A (l,2 )  process.

4. T he spectrum  of the  ou tp u t of the  branch can be shown to  be A B M >1(2,7) 

w ith th e  assum ption of a  four-tap interpolation filter used for exam ple the 

B inom ial-QM F.

4.5 Performance Analysis of Subspectral Modeling

A utoregressive m odeling of signals is often used because it is easily im plem entable 

and  fairly understood. We give the  theoretical setting  of AR m odeling perform ance 

in general and specify it to  the  sub-spectral configuration.

4.5.1 AR M odeling and Error Analysis

A signal can be expressed as a linear com bination of its previous samples in AR 

m odeling as

p
x{n)  =  — ^ 2  a,kx{n — k) +  n(n)  (4.28)

k=i

w here {a,} are the  prediction coefficients and (u (n )}  is th e  prediction error 

signal. T here are several efficient algorithm s to calculate AR model param eters 

{a,}, based on the m easured sta tis tics  of a  given signal. T he relations between {«;} 

and  in p u t correlation sequence R x x { r n )  are found as

p

ak R x x { \  i -  k  |) =  - R x x { i ) 1 < i < P  (4.29)
k= 1

Eq. (4.29) implies a  set of p linear equations in p  unknowns. T he m inim um  

predic tion  error em ploying {a;} is found as[26]

E p — f?A'A'(0) +  a k R x x ( k )
k=i

(4.30)
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4.5.2 Discussions on Error Performance

It is readily seen from  Eq. (4.30) th a t the m odeling perform ance depends on the 

spectrum  of the signal. We would like to com pare the  performance of m odeling at 

various points of the filter bank. Fig. 4.5 displays th e  A R modeling perform ance for 

several inpu t sources. These inputs were chosen to  have different sta tistica l features. 

Fig. 4.3 and Fig. 4.4 illu stra te  the power spectral density  of two pure A R and ARM A 

processes along with those of two sam ple speech fram es.

For com parison purposes, ARM A m odeling errors are also included in Table 4.1. 

It is observed from Fig. 4.5 and Table 4.1 th a t AR and ARM A techniques perform  

com parably  for the given cases. It is clear th a t the  subspectral modeling before the  

ra te  change, using either technique, significantly outperform s both  the full spectrum  

case and the  one after th e  ra te  change. This is due to the following facts. F irs t, the 

superio rity  of subspectral m odeling over full spectrum  is a ttrib u ted  to the  fact th a t 

each portion of the  spectrum  is approxim ated by an independent model (piecewise 

approxim ation). Thus, th e  whole spectrum  is fitted b e tte r and sm aller m odeling 

errors are obtained. Second, th e  superiority of subspectral modeling before ra te  

change over the one after ra te  change is due to  the  fact th a t the decim ation operation 

d isto rts  the  spectrum  by in troducing aliasing com ponents in the subband signals [2]. 

M ore interestingly, subspectral m odeling error after th e  ra te  change was found to  

be com parable or inferior to  th e  full spectrum  case depending on the inpu t source. 

Therefore, th e  subband m odeling is not justified theoretically  for the experim ents 

perform ed in this study. T he results suggest th a t perform ance im provem ents are 

possible if the  subspectral m odeling is done before the  downsampler.
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F ig u re  4 .3  Power spectral density of AR(7)  and A R M >1(5,5) sources
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F ig u re  4 .4  Power spectral density of two sam ple speech fram es
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Modeling Error: AR(7) as input Modeling Error:ARMA(5,5) as input
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F ig u re  4 .5  Prediction error in subbands vs. order p

T a b le  4 .1  ARMA modeling error performance for different inpu t sources

Inpu t Soui’ce O rder (p-fq) Full Band Subband Before 
Downsampler

Subband After 
Downsam pler

A R {  7) 8 0.1378 0.0522 0.1818
A R M /1(5, 5) 10 0.2577 0.0387 0.2649

Speech A 10 0.1094 0.0144 0.1749
Speech B 10 0.0422 0.0088 0.1051
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Figure 4.6 Pertaining to  th e  proof

4.6 A Simple Proof of Performance Improvement in Subspectral
Modeling

Lot x(n)  be the  process to be m odeled as an AR. A(z ) ,  the  m odeling filter, is such 

th a t E r r  is m inim um  as depicted  in Fig. 4.6. The m odeling error is calculated as

N - l

E r r  =  e2(n ) =  7T  /  I E (w)k=0 J - 7T

E r r  -  ^  j ^ \  A{uj) \2\ X ( u )  \2d

du>

(4.31)

A ssum e th a t x ( n ) is sp lit in to  two equal bands in the  frequency dom ain. W ith 

the  sam e token, Ai ( z ) ,  th e  model of band 1, is such th a t the  m odeling error E r r l  is 

m inim um  , where

N —l

E r r l  = Y ,  ei ( n ) = I  I E i H  f duJ 
k=o ^  J- n

= ■ ^ £ j M u ) \ 2\ H l ( iv) \2\ X ( i o ) \ 2duJ (4.32)

Similarly, ^ 2 (0 ), th e  m odel of band 2, is such th a t Err 2  is m inimized , where



If the filters t l \ ( z )  and  J’h ( z )  are power com plem entary, such th a t

\ H t i u )  \2 + \ H 2(w) \2 = 1 (4.34)

we can w rite th e  to ta l modeling error E r r  of the system  as

E r r  =  ±  T  \ A ( u , ) \ 2(\Ht(u>)\2 + \ H i ( u , ) \ 2)\X(u>)\*(h>
Z7T j  “ 7T

Err = 9̂  /  I Â  l2l l2l x(w) \2(iu + ̂  I  I Â  ^ l2f/cj
E r r  =  E a +  Efc (4.35)

For each hand , the re  is a unique modeling filter th a t leads to  a  m inim um  

error for a  given order. Since A\{z)  is unique for X \ (n), any o ther filter used will 

give a higher m odeling error. Therefore, it is clear th a t E a is g reater than  E r r l  . 

Similarly, we conclude th a t E\, is also g reater than  Err2 .  This im plies then  th a t 

always E r r  > E r r \  +  E r r 2.

4.7 Subspectral CELP Speech Coding and Performance Comparisons

One of the  widely used applications of A R m odeling is LPC based speech coding.

In th is case, speech sequence is subdivided into frames of 160 — 2 0 0  sam ples at 

the  sam pling ra te  of 8  K I I z .  Then A R m odeling or LPC analysis is perform ed on 

each fram e. T he A R  coefficients along with the  residual m odeling error are encoded 

and tran sm itted  to  th e  decoder. The AR coefficients or LPC param eters are not 

quantized directly  since their quantization m ay not always lead to  a stab le filter. 

A dditionally, th e  quantization  effects on th e  shape of the spectrum  are of practical 

concern. Instead , an a lternative  set of param eters called line spectral pairs (LSP) or 

line spectral frequencies (LSF) are used to encode {a;} coefficients. The LSFs exhibit
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nice in trinsic properties which perm its efficient coding of LPC coefficients [19],[36]. 

T he LSPs are the roots of the  sum and difference filters given by

Pn+i(z )  =  A„(z) z~(n^ A n{z~l ). S u m  f i l t e r  (4.36)

Q n+i( z )  = A n(z)  -  z _(n+1)An(z“ 1). D i f f e r e n c e  f i l t e r  (4-37)

where n  is the  order of prediction filter A(z) .

T hese filters have their zeros on the un it circle (UC). Thus, only the phase of 

these roots has to  be com puted. T he polynomials P (z )  and Q(z)  have extraneous 

roots a t  z =  1 and  z =  — 1, respectively. Therefore, each filter has n j 2 root pairs. 

The roots of P ( z )  and  Q(z)  are ordered on UC and interlaced w ith each other. These 

properties are exploited in order to  have an efficient coding. A fter quantization of 

LSP coefficients, the reconstructed filter A qn (z) retains its stability . T he reconstructed 

filter is expressed as

A l ( z )  =  0.5 x (P?l+1(z)  +  Q*+1(*)). (4.38)

In th is study, we used a prediction order n  =  1 0 . Let vector u F  =[uq,tU2 , ...,cuio] 

represents these LSPs frequencies. An efficient vector quantization  (VQ) procedure 

has been devised by Paliwal and Atal[29]. The full range of is partitioned  in two 

parts , uja and cuj. T he size of each of these vectors is 4 and 6  respectively. Each of 

these sub-vectors is quantized separately. In subband LPC  coding application, for 

th e  tw o-band filter bank exam ple, th e  {af}  and {a[f }, the  low and high band LPC 

param eters, respectively, are m apped into LSP dom ain for quantization  purposes. 

In this application, the  full range of off  arid off} is not partitioned  in two parts. It 

is worth m entioning th a t the particu lar partition ing  of the  vector uff  used in this 

work lends itself to 7t / 2  subspectral decom position. The reason behind this is th a t
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sta tis tics  have shown th a t m ore than  99 % of LSF vectors of order fO have their first 

4 L SF’s confined to the interval 0  to  irj2.

Code Excited Linear P redictive (CELP) coder has been found to  be the leading 

cand idate  for relatively h igh quality  speech com pression th a t will transm it speech in 

the  range of 4800 — 9600 bit s / sec  w ith  an acceptable level of com plexity[6 ]. T he basic 

approach in this coder is to  use tim e-varying predictive filters to model the correlation 

between speech sam ples . To do th a t, the digitized speech signal s ( n ) is filtered 

using a  short-tim e predic tor to ex trac t the form ants (LPC) coefficients or vocal tra c t 

inform ation. The coefficients are quantized and used for the  prediction of the  signal. 

T he signal th a t rem ains after removal of the correlation between adjacent sam ples is 

fu rther filtered using a long-tim e predictor to ex trac t th e  pitch inform ation and thus 

rem oval of th e  correlation between adjacent p itch  periods. T he pitch d a ta  com posed 

of th e  p itch  lag and th e  p itch  prediction coefficient are also quantized and used for 

predictive filtering of th e  signal. T he transm itted  inform ation consists of quantized 

filter param eters (side inform ation), gain term , and th e  quantized residual sam ples 

from  th e  filters (residual inform ation). This rem aining inform ation is m odeled by 

sam ples draw n form a stochastic codebook such th a t the  resulting synthetic signal 

is a  close replica to the  original speech signal. Fig. 4.7.a shows the  basic s truc tu re  

of the coder.

T he codebook contains N excitation vectors. The selection of the  best 

excita tion  vector is perform ed by a  full search procedure through the codebook 

using a  weighted m ean square error criterion. Each excitation vector is scaled by a 

gain factor gi and passed through th e  long and short tim e filters, to restore the pitch 

and  th e  vocal trac t inform ation, respectively. T he resulting signal .r,(n) is then  used 

in com puting the optim al gain term  <7,- for tha t vector and the resulting error e,(n). 

th e  index of the vector codeword and the quantized scalar gain corresponding to the 

m inim um  distortion d; are tran sm itted  to  the  receiver.



64

Prediction
ChannelSpeech Coefficients r

Predictor Analysis

s(n)
LPC

Pitch

s(n)

Z.I.RRandom Codebook Synthesis

Channel

Min W.M.S.E

(a)

s(n)
SynthesisRandom Codebook

9 o p t

(b)

F ig u re  4 .7  a) CELP coder, b) decoder
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T a b le  4 .2  CELP SNR (d B ) perform ance a t 4.8 K b /s e c  for different schemes

Speaker Full B and Subband w ithout 
Downsam pler

Subband w ith 
Downsam pler

Lowpass Highpass overall Lowpass Highpass overall
Male 10.07 9.25 3.30 8.94 9.71 3.15 9.12

Female 8.73 8.54 3.82 8.37 8.40 4.04 8.05

At th e  receiver end, the  decoder simply m ultiplies th e  excitation vector by 

an appropria te  gain and  passes the  resulting signal through th e  synthesis filters to  

generate th e  replica of the  original speech. Illustration of th e  CELP decoder appears 

in Fig. 4.7.b.

To assess the benefits of subband modeling, we em bedded a  two-band filter 

bank w ithin th e  CELP structure . Several sim ulations, running a t 4.8 Kb/sec ,  were 

conducted using th e  CELP coding approach. The first one used no filter bank decom­

position. T he second and th ird  sim ulations had 2  band-split configuration being 

incorporated in the  CELP structu re  w ith /w ith o u t downsamplers respectively. The 

SNR results between the  original speech and the  coded one are tabu la ted  below for 

both a  m ale and  a  fem ale speakers. As i t  can be seen, the CELP algorithm  performs 

be tte r in te rm s of SNR for the fullband than  for either type of the  two band scheme. 

However, listening tests revealed no preference is given to anyone of them . In other 

words, all of th em  exhibited a  com parable speech quality. It should be noticed th a t 

CELP favors low frequencies to the high ones. This is expected, since high frequency 

signals exhib it low correlation between the  samples.

4.8 Conclusions

We presented a  jo in t trea tm en t of spectral decom position and modeling problem s in 

this chapter. A com plete analysis of the subspectral modeling problem  is given. The
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perform ance of subspectral m odeling and the  conventional m odeling approaches are 

com pared. It is shown th a t subspectral modeling provides significant perform ance 

im provem ents if used carefully. T he proposed approach was tested  for several 

signals, including speech signals, and is shown to follow the theoretical residts. It 

is expected th a t the  com bination of spectral decom position and m odeling steps 

will open new avenues for b e tte r  trea tm en t of m any signal processing problem s. 

However, when subband modeling was combined w ith coding of speech nam ely 

CELP technique, it was found th a t no real gain was obtained. The im provem ents 

in this scenario are shown to  be qu ite  random . Therefore, this study explains the 

reasons of conflicting perform ance results w ith subband LPC based speech coders 

reported  in the literature.



CHAPTER 5 

SUBBAND IMAGE CODING

5.1 Introduction

In the  last two decades or so, trem endous research activities were geared tow ard the 

area of im age compression. The m ain reasons for this are th e  high dem and for tran s­

mission of pictorial inform ation using digital com puters and the rapid  deploym ent 

of d ig ita l transm ission facilities. Im age compression has found m any areas of appli­

cations. A m ong these, there is th e  recent em erging video-telephone technology and 

teleconferencing. Also of great com mercial interest is the  high quality coding of 

broadcast television nam ely High Television (H DTV). Besides these, transm ission 

and storage of medical images and archives ju st to nam e a few m ake use of im age 

com pression technologies for efficient handling of the  data .

A vast m yriad of com pression algorithm s were developed to  m eet the bandw idth 

constrain ts required for po ten tia l transm ission of digital pictures. From a simple 

differential pulse code m odulation (D PCM ) coder th a t provides acceptable coding 

quality  a t b it ra te  slightly below 1 b it per pixel to the powerful vector quantization 

(VQ) based coder th a t can supply good image quality a t rates below 0.5 bits per 

pixel, we find a  sea of algorithm s. Some are based on block transform s (D C T), 

some on lapped transform s, o thers on subband filter banks, or any com bination of 

all of these schemes. Of particu la r interest is the investigation and com parison of 

the  perform ance of different subband filter bank structu res used in a typical image 

codec.

5.2 Problem Statement

Subband coding of images is a technique by which an im age is decomposed into a set 

of subbands each comprising a particu lar frequency band. This task is accomplished 

by the  usage of an analysis filter bank. The obtained subband signals are presented

67
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to I,lie encoder for com pression purposes via an optim al and efficient bit allocation 

scheme. A fterwards, th e  encoded subband signals are sent, through the channel. At 

the  receiver side, th e  received signals are decoded and passed through a synthesis 

filter bank to recom bine the  subbands in order to  get a  close replica of th e  original 

image. A t this point, we would like to pose the following questions:

a W hat type of filter bank ought to be used? T h a t is, should we use an h ierar­

chical sp litting  or d irect partition ing  of th e  image?.

•  To w hat extend should the  im age be split into subbands prior to  coding? th a t 

is how many subbands should we split the image to?.

Since our a tten tion  is to use filter banks in a  com plete codec system , we cannot, 

stric tly  speaking, separate  this study from the use of quantization of th e  subbands. 

T he reason is th a t it is the  coding part th a t makes the difference on the quality  of the 

decoded images. Nonetheless, we will use the sam e coding algorithm  in all upcom ing 

experim ents in order to study the effects of th e  different filter bank structures raised 

up earlier.

5.3 Filter Bank Structures

F ilte r banks come in two categories hierarchical and direct structures as m entioned 

earlier. T he former m akes a  repetitive use of a generic, two-band (P R  or non-PR ) 

filter bank in order to  get th e  desired frequency split. T he la tte r, however, as its nam e 

im plies, split the signal in a single shot. Fig. 5.1 illustrates several two dim ensional 

frequency band splitting. Fig. 5.1.a and c) can only be obtained using hierarchical 

structu res. W hereas Fig. 5.1.b and d) can be obtained using either type of structu re , 

ft is evident from Fig. 5.1 th a t the direct form M -band struc tu re  does not provide 

m ultiresolution signal representation  which is a  by-product in hierarchical M -band 

struc tu re . In addition, since there can not lie any linear-phase two-band paraun itary
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a) b)

c) d)

F ig u re  5 .1  Different two-dim ensional spectrum  splits

filter bank solutions[2] [40], all the product filters in hierarchical filter bank have non­

linear phase. In con trast, it  is possible to design linear-phase M -band paraun itary  

filter banks with equal bandw idths.
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T a b le  5 .1  G tc  perform ance of 2-, 4-, 8 -band hierarchical filter bank(based on 2- 
band PR -Q M Fs), along w ith the  perform ance of direct-form  filter banks for an A R (  1) 
source of p — 0.95.

2  — B a n d 4 — B a n d 8  — B a n d
6 -tap  B Q M F (Hier.) 
8 -tap  B Q M F (Hier.) 

6 -tap  (D irect)
8 -tap  (D irect)

8 - tap  (D irect, M ultiplierless) 
16-tap (D irect)
32-tap (D irect)

3.7588
3.8109
3.7588
3.8109

6.7665
6.9076

6.25
6 . 0

6.85
7.05

8.5293
8.7431

6.42

7.80
8.24

5 .4  O b je c t iv e  P e r f o r m a n c e  E v a lu a t io n

In th e  beginning p a rt of this evaluation, we shall com pare the  two struc tu res  as they 

stand  by them selves w ithout any coding incorporated in the  system . A t th e  end, we 

will add the  coding block in order to  evaluate the  en tire  image codec.

5 .4 .1  E n e r g y  C o m p a c t io n

T he gain of transform  coding over pulse code m odulation(PC M ), G t c , has been 

widely used for th e  perform ance com parison of transform s and filter ban k s[2 0 ] [2 ], 

This m easure for an M -band paraun ita ry  filter bank is defined as

Gtc = m5T?)W <5'‘>
where <7 * is the  in p u t variance and {crj} are the variances of subband signals. So 

the  coding can be in terp reted  in two ways: first, it is the ratio  of the  inpu t variance 

a* to the geom etric m ean of the subband variances {crj}. Second, is th e  ratio  of the 

arith m etic  to  geom etric m ean of the  subband  signal variances. Table 5 . 1  provides 

Gt c  perform ance of several different decom position techniques for an A R (1 ) source. 

It is seen from  th e  tab le  th a t the  hierarchical s tru c tu re  has b e tte r  energy com paction 

th an  the  d irect s truc tu res considered here.
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5.4.2 Time-frequency Localizations

The tim e and frequency spreads of a discrete-tim e sequence were discussed a t length 

in C hap ter three. We reproduce their definitions here as a rem inder

2 _  E - c > - n ) 2 | / ( n ) l 2 

E
£ £ > - * ) W w) l2^

-  Jji V ,-0

where the m eans are given as

E

n —
E

Table 5.2 and Table 5.3 displays the  tim e-frequency localizations of several direct 

and h ierarchical paraun itary  filter banks. These tables indicate th a t the  tim e spreads 

hierarchical s tructu res are worse than  the  direct structures. On th e  o ther hand, the 

hierarchical cases have be tte r frequency and jo in t time-frequency localizations.

5.4.3 Peak-to-peak Signal to Noise ratio

The com pression algorithm  used in this work is a  lossy one. In o ther words, the 

decoded im age is a d istorted  version of the original image. Therefore, an evaluation 

m easure should be devised in order to assess the quality of the reproduced image. 

This kind of evaluation is term ed ail objective measure in contrast to  a subjective 

one. T he la tte r  is a  visual judgem ent of the  quality of the decoded im age m ade by the 

hum ans. O ne of the  often used m easure of objective perform ance is the  peak-to-peak 

signal to noise ratio  (PSNR). It is defined as

2552
P S N R ( d B )  =  (5.3)

where e(n)  is the  error between the  original and the  reconstructed image.

A generic im age codec sim ulation program  was utilized in this study. The 

codec em ploys any paraunitary  filter bank, hierarchical or d irect form, for spectral
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T a b le  5 ,2  T he tim e-frequency localizations of 4-band hierarchical subband tree(2- 
levcl, 8 -tap  B inom ial-Q M F) along with 8 -tap  and 16-tap direct 4-band structu re

10 n
B -Q M F Hierarchical 0 4.05 0.2526 2.7261 0 . 6 8 8 6

4 B and Tree 1.23 1 2 . 8 8 0 . 1 2 2 2 3.8269 0.4676
( 2 2  tap  product 1.91 16.28 0 . 1 2 2 2 2.7757 0.3392

filters) 7T 8.80 0.2526 2.2622 0.5714
M ultiplierless 0 3.5 0.3763 1.1946 0.4495
4 Band Direct 1.17 3.5 0.1357 2.2465 0.3049

( 8  tap ,linear phase) 1.97 3.5 0.1357 2.2465 0.3049
filters) 7r 3.5 0.3763 1.1946 0.4495

D irect S tructure 0 3.50 0.3422 1.1511 0.3950
(8 -tap , linear phase) 1.16 3.5 0.1399 2.038 0.2852

filters) 1.97 3.5 0.1399 2.038 0.2852
7T 3.5 0.3422 1.1541 0.3950

D irect S tructure 0 7.5 0.2643 1.84 0.4855
(16-tap, linear phase) 1 . 2 2 7.5 0.116 2.62 0.3045

filters) 1.93 7.5 0.116 2.62 0.3045
7T 7.5 0.2634 1.84 0.4855
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T a b le  5 .3  T he tim e-frequency localizations of 8 -band hierarchical subband tree(3- 
level, 8 -tap  B inom ial-Q M F) along w ith 16-tap and 32-tap direct 8 -band s truc tu re

UJ n °-n ° l  x
B-Q M F Hierarchical 0 9.12 0.0644 11.726 0.7117

8  B and Tree 0.63 26.96 0.0490 15.953 0.7818
(50 ta p  product 1 . 0 1 34.11 0.0961 11.326 1.0880

filters) 1.45 19.65 0.0496 9.7846 0.4857
1 . 6 8 22.56 0.0496 10.510 0.5215
2.13 37.99 0.0961 12.013 1.1540
2.52 31.54 0.0490 14,950 0.7327

7T 14.36 0.0644 10.777 0.6942
D irect S tructure 0 7.5 0 . 1 1 1 4,675 0.5192

(16-tap, linear phase) 0.69 7.5 0.2313 8.087 1.8703
filters) 1.16 7.5 0.2158 7.3715 1.5912

1.44 7.5 0.0681 5.296 0.3605
1.70 7.5 0.0681 5.296 0.3605
1.98 7.5 0.2158 7.3715 1.5912
2.45 7.5 0.2313 8.087 1.8703

7r 7.5 0 . 1 1 1 4.675 0.5192
D irect S tructu re 0 15.5 0.0727 4.675 0.5327

(32-tap , linear phase) 0.71 15.5 0.2158 11.48 2.4785
filters) 1.13 15.5 0.2092 10.70 2.2391

1.45 15.5 0.0520 8.14 0.4237
1 . 6 8 15.5 0.0520 8.14 0.4237
2 . 0 1 15.5 0.2092 10.70 2.2391
2.43 15.5 0.2158 11.48 2.4785

7r 15.5 0.0727 4,675 0.5327
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F ig u r e  5 .2  T he rate -d isto rtion  perform ance of a 64-band subband im age codec w ith  
d irect and hierarchical decom position structu res for the  te s t im age LENA

decom position of images. T he  subbands are allocated th e  available b its according 

to  th e ir variances. T here were no visual weighting tab le  nor fine tun ing  used in 

th is codec m odel for th e  purpose of a, fair im age coding perform ance com parison 

of different filter banks. Fig. 5.2 displays the ra te -d isto rtion  curves of 64-band 

subband  im age codec em ploying hierarchical and d irect s truc tu res for the te st im age 

LENA. We also included th e  perform ance of a 16-band subband im age code using 

four band  eight tap  m ultiplierless direct structu re . This perform ance is depicted w ith 

th e  d o tted  line in Fig. 5.2. T his figure shows th a t the hierarchical full-tree subband 

im age codec outperform s th e  d irect form cases considered here. Fig. 5.3 displays 

sim ilar perform ance curves for th e  hierarchical subband im age codecs of different tree 

s truc tu res. It is seen th a t th e  dyadic-tree based subband im age codec outperform s 

th e  fu ll-tree based codec for th e  coding experim ents perform ed.
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5 .5  D isc u ss io n s  a n d  C o n c lu s io n s

'The following conclusions were drawn from  th e  theoretical and experim ental studies 

perform ed in this thesis:

1. T he hierarchical 8 -band split(50-tap p roduct filters) provides a  b e tte r  

energy com paction than  the direct 8 -band split(32-tap  filters) for th e  cases 

considered here. T he com paction perform ance increases when th e  num ber 

of bands is increased.

2 . T he tim e spread  of hierarchical 8 -band split is m ore th a n  th e  d irect 

form  8 -band  split for the cases considered in this study. T he first has 

a  non-linear(linear-like) phase response while th e  la tte r has linear phase 

response. T he  hierarchical s tru c tu re  has b e tte r  frequency and jo in t tim e- 

frequency localizations than  the d irect form s considered.

3. The hierarchical structure(64-ba,nd) gave b e tte r rate-d istortion  perform ance 

than  the  d irect l'orm(64-band) s tru c tu re  for the  test im age LENA. T he
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visual quality of the  compressed images for the 64-band hierarchical case 

were superior to  the 64-band d irect form cases considered.

4. T he hierarchical dyadic tree of 10-bands outperform ed the  hierarchical 

full tree  of 64-bands both  objectively and subjectively for the  exper­

im ents perform ed in this study. This somehow agrees w ith the  concept 

of having b e tte r time-localized functions for the representation of high- 

frequency signal com ponents. This observation suggests th e  com puta­

tionally efficient dyadic-tree structu res over full-tree structu res for image 

coding.

5. T he tree structuring or time-frequency tiling is an im portan t concept in 

subband signal decom position^]. The different subbands of different 

applications should be trea ted  accordingly. This also im plies a flexible 

filter bank design concept which is expected to  find its applications in the 

future.

6 . M ore experim ental studies for the  visual assessm ent of quantization  noise 

in subband im age coding are expected in the  future. T he com m only agreed 

Q -tables of subband image coding are to  be delined.



CHAPTER 6 

DISCRETE MULTITONE TRANSCEIVERS

6.1 Introduction

A general digital com m unications system  is depicted in Fig. 6.1[25]. A bit stream  

is passed th rough  a coder to  generate d a ta  symbols depending on th e  type of 

m odulation needed. These d a ta  symbols are applied to a transm it filter, which 

generates a continuous-tim e signal fit for transm ission over th e  continuous-tim e 

channel. T he channel reshapes the tran sm itted  signal and corrupts it w ith additive 

noise. A t the receiver end, the received signal is processed by a  receive filter to  undo 

th e  effects of the  channel and thus useful inform ation is recovered. T he decoder 

basically rem aps the  received symbols into a  b it stream .

6.2 Discrete M ultitone Modulation

D iscrete m u ltitone (DM T) or m ulti-carrier m odulation is a  class of orthogonal 

frequency division type of m odulation. This concept dates back to  th e  m iddle of 

1960’s[l0] , bu t received more a tten tion  since 1980[31][12]. A discrete version of 

m ultitone (D M T) has been proposed as a  s tandard  for high-speed digital subscriber 

line (HDSL) and  asym m etric digital subscriber line (ADSL) communications[12][39]. 

In this frequency division type m odulation, a  m ultitude of parallel QAM sub-channels 

are used to  tran sm it d a ta  in order to  m axim ize the  throughput of th e  channel. The 

basic s tru c tu re  of a  D M T transceiver is illu stra ted  in Fig. 6.2. Instead of using a 

single m odulation  filter, the system m akes use of a set of N  m odulating filters called 

transform  basis functions. These filters can be represented as a  set of vectors for 

discrete system s. These vectors are norm ally chosen to be an orthonorm al family, 

i.e.

> = S i j  ( 6 . 1)

where < , >  stands for the dot product.
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F ig u re  6.1  A general digital com m unications system

T he sub-sym bols (X o ,A i, th a t are applied to  the  m odulating vectors

{p;} are usually complex for quadratu re  am plitude m odulation (QAM ) schemes and 

real for pulse am plitude modulation. (PAM ) ones. These sub-sym bols are form ed by 

grouping sub-block of bits in the  constellation step. T he parsing of the  incoming bits 

to  the  sub-sym bols is controlled by the  channel a ttenuations. Since the  transm itted  

signal is the com posite of N  independent sub-signals or sub-channels, each of the 

sub-channels will carry a different num ber of bits com m ensurate on th e  sub-channel 

a ttenuation . Therefore, sub-channels th a t suffer less a ttenuation  will carry m ore 

bits of inform ation. This discussion leads to the work of I<alet[2 2 ]. In fact, K alet 

studied the  perform ance of m ultitone for the  case of two and infinite num ber of sub­

channels. He showed th a t m ultitone QAM systems provide a substantial increase in 

the  achievable b it ra te  as com pared to th a t of a single tone QAM for brickwall channel 

response cases. lie  also showed th a t m ultitone becomes theoretically  optim um , i.e.
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F ig u re  6 .2  Basic structu re  of a DM T

approaching the channel capacity  to  w ithin 8  to 9 dB ,  when an infinite num ber of 

carriers is used.

6.3 QAM Multitone System

M ultitone system s can take m any forms of m odulation/dem odulation  schemes. 

However, QAM based m utitone system s were studied more widely in the litera tu re . 

In order to  understand  th e  operation of a  QAM m ultitone system , we would like to  

review  some of the basic concepts of the  scheme.

6.3.1 QAM System

We can think of a  QAM system  as a  two-dimensional system  and the signal constel­

la tion  is on a two-dim ensional plane. In general, the constellations take a variety of 

forms. For simplicity, we will assum e th a t these constellations take a square shape 

containing some power of 4 symbols. Fig. 6.3 illustrates the constellation points of 

24 or 16 poin t QAM. T he probability of error, Pe, of a two-dim ensional symbol in
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QAM  is given by[24]

PD = K Q ^ )  = KQ{La J l - )  ( 6 .2 )
2tO  y  ,/ V q

w here K  is th e  num ber of neighboring symbols. It is given by

t f  =  4 ( l - - i = )  (6.3)

w here n  is the  num ber of b its and it is assumed to  be even. The distance betw een 

adjacent symbols in th e  constellation is d = 2a. N 0 is the  power spectral density

(PSD ) and cr2 is the  noise variance such th a t cr2 =  4^-. The average sym bol energy

is given by

E  =  | ( 2 n -  l ) a 2 (6.4)

From this, we can relate n to the probability of error as

3 P
n = lo(/2 1 +

where P  =  E W  and W  is the  bandw idth.

(6.5)

6.3.2 General Concepts of M ultitone

Fig. 6.4 depicts a  QAM  m ultitone system[22]. The transm itted  signal consists 

of N  QAM signal tones com bined, each w ith a  rectangular Nyquist spectrum  of 

bandw idth  equal to  H z .  We assum e th a t the  channel has a  m agnitude response 

of a  staircase shape as shown in Fig. 6.5. In o ther words, the channel exhibits a 

brickvvall m agnitude response in each sub-channel, rendering the  system ISI free.

T he individual M -ary QAM tones have different num ber of bits per symbol 

where M  =  2"*, n, being the  num ber of bits per symbol assigned for the i th 

subchannel. It is assum ed th a t each tone has different transm it power P, such th a t 

th e  to ta l tran sm itted  power P  =  Pi — constant .  The total bit ra te  Ri, is given 

by R b = YlfLi riiWi where VF; is the bandw idth of th e  i lh sub-channel. T he idea 

behind m ultitone is to  m axim ize R.b by optim ally dividing the to tal power P  among
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F ig u re  6 .4  T he m ultitone QAM system

th e  different tones or equal bandw idth sub-channels. As m entioned before, the 

sub-channels th a t suffer from more a ttenuation , receive less power and vice-versa.

6 .3 .3  O p t im u m  P o w e r  A llo c a tio n

We extend the  optim al power allocation scheme of Kalet[2 2 ] th a t considered only 

two-tone and oo of tones to an a rb itra ry  num ber of sub-channels. This derivation 

is general in con trast to  the indirect proof given by Kalet[2 1 ]. We assum e th a t the 

probability  of sym bol error in each sub-channel to be equal to Pe. I t can be shown 

th a t the  b it assignm ent for the i th channel to be given by[2 1 ]

7ii =  log2{\ -f NMikiU)  (6 .6 )

where N  is the  to ta l num ber of sub-channels, fc, is the proportion of the  to tal power 

P  allocated to  the  ith, sub-channel, /,■ is the  gain of th a t sub-channel, and M,- is a
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F ig u re  6 .5  Brickwall m agnitude response

constan t th a t can be shown to be equal to  [2 2 ]

3 P
Mi  = (6.7)

W N 0Q~1(Pe/ K n i )

where W  is the to tal bandw idth of th e  channel, Pe is the symbol probability  of error, 

and  finally K n ,  is th e  num ber of neighbors in the i ih sub-channel.

We w ant to  m axim ize th e  to ta l bit ra te  Rt, given by

W  JL
R b =  T 7  X><fe(l + N M i k,li)

■'V i= l

sub ject to the following constraints

N

£  = i
t=l

and ki >  0  for all i’s. This optim ization leads to

■>/v

( 6 .8 )

(6.9)

1 4 . y P   1  .
, _  ^  N M j l , _______ 1 _ _

N  MiUN
( 6 . 1 0 )

It should be noted tha t the optim al bit allocation algorithm  described here assumes 

the decom position of a  given channel into equal bandw idth sub-channels. T he 

optim al values of At,- given by Eq. (6 .1 0 ) reduce to A,- ■ a t high signal-to-noise
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F ig u re  6 . 6  Perform ance curve of th e  M ultitone

ratio . This is exactly the  optim um  value given by K alet [21]. The perform ance curves 

of a m ultitone system  for a  typical subscriber loop, nam ely CSA Loopl a t 640 K H z  

sam pling rate , corrupted by w hite Gaussian noise a t — 1 0 0  d B m  for several different 

scenarios are depicted in Fig. 6 .6 . T he input power is 20 m W  in this exam ple. The 

probability  of symbol error is of 1 0 “7. These curves suggest th a t the  more num ber of 

sub-channels we use, the larger the bit ra te  we can achieve. However, no significant 

theoretical perform ance im provem ent is observed beyond 20 sub-channels or so. T he 

solid curve in Fig. 6 . 6  assumes a  brick wall split of the channel into sub-channels and 

thus it is ISI free. The dashed curve assumes integer values for the  different bits 

allocated to  the sub-channels.
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6.4 Practical Realizations of M odulation/demodulation

T heoretically  speaking, m ultitone justifies itself. However, the practical issues 

regarding th e  im plem entation of a  m ultitone do not seem to  be appealing from a, 

system  designer point of view because of the need of having m any QAM generators 

a t the  transm itte r. T he receiver will also require the  sam e com plexity as well. 

Fortunately, the  linear orthonorma.1 transform  bases cam e to the rescue.

6.4.1 ID FT /D F T

We m entioned previously th a t the  m odulating /dem odulation  vectors form in general 

an o rthononnal basis. Peled and Ruiz 1980[3l] proposed the  ID F T /D F T  basis 

fam ily as th e  m odulating /dem odulating  vectors. L ater, Ruiz, et al[34] im proved 

this scheme. ID F T /D F T  based D M T is shown in F ig .6 .7. A m apping scheme of the 

N  com plex QAM symbols is perform ed before taking the  ID FT in order to  produce 

a real tim e dom ain sam ples. Basically, the scheme maps N  complex X ( k )  symbols 

in to  2 N  X{ k )  symbols th a t satisfy a  certain conjugate sym m etry  property nam ely

X { k )  =  X * {2 N  -  k) (6 .1 1 )

in order to obtain  a  suitable real signal as input to a  real channel. The tim e-dom ain 

sam ples are passed through the  channel as usual. A t th e  receiver end, the  dem od­

ulation process takes place through the use of a  D FT  to  analyze th e  signal into 

th e  sub-sym bols. An inverse m apping is fu rther applied to get back the N  QAM 

sub-sym bols, hence th e  b it stream .

6.4.2 ID C T /D C T

T he ID F T /D F T  pair is replaced by an ID C T /D C T  basis family. Since this is a 

real transform , the  sub-sym bols are assumed to be generated by a real m odulation 

scheme, nam ely PAM. In order to  get the optim um  power allocation as applied to
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PAM DMT, we follow the same trea tm en t done using QAM. In this case [24],

P, = I < Q ( f ) = K Q ( - )  (6.12)
Z<T <7

where K is given in this case as

K  = 2 (-tL w 1  l6A3}

and A =  §. In PAM  system s, the average energy of the symbol is expressed[24]

E  = ^ ^ A 2 (6.14)

where M  is the num ber of symbols in a PAM constellation. The bit ra te  for the i th 

sub-channel becomes

1 +  ( 6 . 1 5 )ni =  ^ log2
N oW Q - h ^ )

T he constant M i  of Eq. (6.7) is modified accordingly as

Mi W N 0Q - \ P e/ K m )  (6-16)

6.4.3 M-band Filter Bank

T he superiority of filter bank in frequency selectivity over block transform s is 

very well known[2][40][8]. F ilter banks provide basis functions th a t are longer in 

tim e than the basis functions of block transform s. Therefore, they should have 

superior signaling perform ance if they are applied as the building block of the 

inodu lato r/dem odu la to r in a  DMT transceiver. Tzannes et al.[39] have proposed 

such an approach in their discrete wavelet m ultitone (DW M T) as a su b stitu te  to  the 

D FT  based DMT[11][12], They showed th a t D W M T is superior to its Fourier based 

D M T because of th e  b e tte r sub-channel isolation. A block diagram  of D W M T is 

illustrated  in Fig. 6.8. It should be noticed from this figure tha t DW M T is the dual 

of an M -band filter bank. Therefore, G{(z) and H i(z)  are the synthesis and analysis 

filters of an M -band filter bank, respectively, as defined in Fig. 2.5.
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Figure 6.8 M -band realization of a DM T
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6.5 Proposed Concept of Sub-channel Structuring

Any spectral sp litting  should not be perform ed blindly. R ather, a sm art, justified 

unequal bandw idth  sp lit is to be performed for practical perform ance im provem ents. 

We propose the  following algorithm  for spectral decom position as it is applied to 

the sp litting  of a channel into its sub-channels. To appreciate the advantages of the 

concept of sub-channel structu ring , we p lo tted  th e  im pulse response of the  channel 

(Fig. 6.9) along w ith its m agnitude response in d B  (Fig. 6.11). We, further, included 

the first derivative of its m agnitude response (Fig. 6.10) and the m agnitude response 

(Fig. 6.12). It is clear from these figures th a t the spectrum  of the channel does 

not change significantly for some regions. Therefore, these regions can be com bined 

together to form  sub-channels of unequal bandw idths w ithout significant perform ance 

degradation from  the  equal bandw idth decom position of the channel. In practice, 

less num ber of channels im plies less energy leakage am ong sub-channels. Hence, there 

is less d istortion due to  the  interchannel interference (ICI). We can therefore highlight 

the conceptual advantages of this sm art channel structuring  over th e  conventional 

fixed decom positions as follows:

• It prevents redundan t splitting  of the  channel, hence yielding a reduced 

complexity.

• The unnecessary sp litting  causes an increased aliasing between subchannels 

which is to  be kept a t its  m inim um .

6.5.1 A Simple Subchannel Structuring Algorithm

T he full channel spectrum  is divided into two equal bandw idth subchannels. If the 

energy aI  of the paren t node is greater than  a certain  predefined threshold 7 \ ,  and if 

the ratio  of th e  energies of the two children nodes is greater than another predefined 

threshold Yjj, the sp litting  is justified at tha t paren t node. Therefore, two new nodes 

or subchannels are obtained. If these unevenness tests fail, the sp litting  process is
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Figure 6.11 M agnitude response of a typical CSA loop

stopped a t th a t level. O therwise, it continues individually for each of the  two new 

nodes. This algorithm  somehow checks if there  is both a.) enough unevenness in 

the paren t spectrum  or node and b.) enough energy in it to  justify  another spectral 

split. This unevenness check of the channel spectrum  tries to mimic the  derivative of 

the m agnitude response. Based on this sp litting  scheme, we obtained the  following 

sub-channel s tru c tu re  for the given channel (Fig. 6.13). Fig. 6.12 shows a  brick wall 

unequal bandw idth  approxim ation of the  channel. It is clear from this figure th a t 

the channel split is finer a t portions where both  the m agnitude response changes 

faster and the  energy content is significant. On the other hand it is coarser when 

its slope levels off an d /o r energy content is insignificant. We can obtain different 

decom positions of the channel by varying the  thresholds Z'l and T2. Figs. 6.14, 6.15 

and 6.16 illu stra te  this aspect.
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6 .5 .2  A  D is to r t io n  M e a s u re  in  D is c re te  M u lt i to n e  T ra n s c e iv e rs

All of the  realizations of the D M T transceivers discussed before suffer from two 

kinds of distortions. The first kind of these distortions is the  intersym bol in ter­

ference (IS1) caused by the dispersive na tu re  of the channel. ISI, therefore arises 

because the  channel does not have a brickwall (ideal) type of frequency response. 

T he second kind of distortions th a t plague D M T’s is the interchannel interference 

(1CI). It is caused by the non-ideal natu re of the synthesis/analysis filters used 

as m odulato rs/dem odulato rs. Therefore, interchannel interference im m unity is not 

possible in a  realizable DMT. We would like to develop a quan tita tive  assessm ent of 

these two im pairm ents which are inherent in a  real digital com m unications scenario.
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Figure 6.17 N -band realization of a DM T

6.5.3 Distortion in N-band Discrete Multitone Transceivers

T he polyphase representation  of a filter, introduced in C hapter 2,, is the ground 

for th e  study  of distortion in N -band discrete rnultitone transceivers. We can easily 

trace  th e  o u tp u t of the k th subchannel. Fig. 6.17 depicts an  N-band realization of 

a, D M T transceiver. This realization is general and it can be applied to  both equal 

and unequal bandw idth  sub-channel cases. Let P£[z) be the  product filter of the 

synthesis filter Gk(z), the analysis filter t 'h (z ) ,  and the channel C (z) .  Therefore, the 

o u tp u t Y £ (z )  of th e  k lh subchannel due to the  input X k (z )  of the k Ul subchannel is 

given as

(6 .i7 )

where Fk{z) is the 0th polyphase com ponent of the com posite filter Pk(z) .  The overall 

subchannel o u tp u t Yk{z) due to  th e  inpu t X k(z )  and all of the o ther inputs X j ( z ) ,  

where l < j < N , N ^ j \ s  readily given as

» )  = % ?!(!)+  e  nT) (6.i8)
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F ig u re  6 .1 8  A generic branch for ICI calculation

sYA=)

where the  first term  is Y£(z) .  T he second term  is due to  the influence of the o ther 

subchannels. This d istortion  is term ed interchannel interference (ICI). We would like 

now to  derive an expression for th e  energy of this distortion. Let us analyze one of 

th e  pa th s th a t contributes to ICI. We consider Fig. 6.18 for this analysis. Let 

S x j (z ) be the input power spectral density of the  j th subchannel, where j  ^  k. T he 

upsam pler M ,  a t the  j th subchannel implies th a t

1
Sv ,(z )  = W j S x , ( * Ul)

T he filters Gj(z) ,  C( z ) ,  ancl Hk{z)  further set the following relation 

S Qi(z)  =  Sv>(z)G J(z)G i ( z - ' ) C ( z ) C ( z - ‘)H k-(z)Hl, ( z - ' )

so th a t
i Mk- i  ,

SyiM - j z ' L s^ W )

(6.19)

(6 .20 )

( 6 .2 1 )

where W  =  e i  , L  is th e  duration  of the aggregate of filters Gj(z) ,  C( z )  ancl 

Hk(z) .  Since the different subchannel inputs Xj ( z )  are assumed to be uncorrelated, 

and  w hite noise w ith equal energies £, i.e S x j (z )  — £, we can easily express the to tal 

energy for the ICI distortion as

° I C I  =  £  i  r  S y A e ^  d u :  (6.22)
j =i j *k  ^  J k

We derived a closed form expression for ICI. Similarly, we would also like 

to define the expression for the intersym bol interference (IS1) distortion caused by
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Fk[z) on I,he o u tp u t Vfc'(z), given earlier by Eq. (6.17), can be w ritten  in tim e

dom ain as
N£-i

Vkin ) =  £  h { l ) x k{n -  I) (6.23)
l=o

w here Nji is th e  num ber of taps of Fk(z). We can rew rite Eq. (6.23) as a  sum  of the 

desired te rm  plus ISI as

jv£-i
Vk(n ) =  f k { D )x k{n -  D)  +  ]T  f k ( l ) x k( n - l )

1=0,l^D
(6.24)

where D is an app ro p ria te  delay. The energy of th e  ISI d istortion  for a  zero-m ean 

inpu t is derived as

'  JV * -l '  N * - l

< £  f k ( l ) x k { n - l ) ■ ►
1=0,l ^ D l '= 0 ,l '£ D .

a 2]Si _  E

where E  is the  expecta tion  operator. We can still pursue this derivation as

A /jf- l  N £ - l

<4s; = E \  E  Y ,  h ( l ) m > k ( n - l ) x H n - l ' )
l= 0 ,lj tD  l '= 0 ,l '^ D  

N £ - 1 N g - 1

= E E M I ) f m E { x t ( n - l ) x l ( n - l ' ) }
1=0,t ^ D  l '= 0 ,l '± D  

JV*-1

= e E mnw
l=0,lj=D  

N * - l

(6.25)

= £ £  I /*(0 I2
1=0,l^D

(6.26)

T he last equation utilizes the  fact th a t sam ples of .rfc(n) and x/.(m)  are uncorrelated 

except when n = m  since they  are assum ed to  be w hite sequences. Therefore, the 

to ta l d istortion  a t th e  k th subchannel due to bo th  ISI and ICI is sim ply th e  sum  of

cr2[SI and cr]CI as

'D
2 , 2 

a I S l  +  a I C I (6.27)

Fig. 6.19 illu stra tes  the  to tal d istortion (ICI +  ISI) for different fam ily bases 

in a  D M T transceiver using a  CSA Loopl. It is clear from Fig. 6.19 th a t the
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unequal decom position of the channel suffers th e  least from th e  aggregate ICI and 

ISI d istortions. We also com puted the distortions for different kinds of channel 

decom positions. Fig. 6.20 depicts th e  (ICI +  ISI) distortions for several unequal 

bandw id th  sp litting  of the channel. Furtherm ore, we included results for different 

D FT  sizes in Fig. 6.21.

6 .5 .4  D isc u s s io n s

Theoretically  speaking, having m ore bands is b e tte r  if the sub-channels are brickwall 

shaped. However, in practice, th e  sub-channels will have a  finite roll-off due 

to the non-ideal basis functions. Therefore, significant interchannel interference 

or aliasing energy exists between sub-channels [2], This fact natura lly  causes a 

perform ance degradation. The realization of DM T transceivers based on discrete-
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tim e subband/w avelet transform  (D W T), a b e tte r a lternate  to the D FT  based DM T, 

in order to alleviate the  interchannel interference, was forwarded by Tzannes et. 

ah [39]. Nonetheless, the large num ber of sub-channels, nam ely 256 as suggested 

in the proposed standards, makes the aliasing or energy leakages from  band to 

band quite large[2][37]. T he proposed adaptive structuring  of the  channel offers 

th e  advantages of having orthogonal transform  basis tailored to the unevenness of 

the. channel. Therefore, a less num ber of sub-channels is necessary in order to  get 

adequate perform ance. I t  is seen from Fig. 6.6 th a t the perform ance of th e  proposed 

sub-channel s tructu ring  algorithm  is near optim al w ith significantly reduced system  

com plexity over the existing techniques.



CHAPTER 7 

CONTRIBUTIONS OF DISSERTATION AND FUTURE RESEARCH

The focus of this dissertation was on the theory, design and applications of the 

generalized linear transform s for inform ation transm ission. In particu lar, we showed 

th e  practical im portance of tim e-frequency shaping of the transform  bases. In order 

to  achieve th is  goal, we extended th e  concept of classical uncertain ty  principle to 

its discrete-tim e counterpart by deriving a lower bound on the jo int tim e-frequency 

spreads of functions. We showed th a t this bound is the same for both  continuous and 

discrete-tim e functions if the la tte r  have a certain degree of regularity. This bound 

can be lowered for th e  discrete-tim e case, if the regularity constraint is relaxed. 

Furtherm ore, we evaluated the trade-offs between localization in tim e and frequency 

for several proposed signal decom position techniques. Block transform s have the 

best localization in tim e as expected since they have the shortest duration basis 

functions. On the  o ther hand, they exhibit the worst localization in frequency domain 

as predicted  by the  uncertain ty  principle. In contrast, filter bank structures have 

sharper frequency responses. Therefore, the ir frequency spreads decrease at the 

expense of an increase in their tim e localizations. Since the filter banks can be utilized 

in two different types, direct and hierarchical, their tim e and frequency spreads can 

be m onitored depending on the s tru c tu re  used. We found th a t direct structures 

offer the best tim e-frequency spread product followed by hierarchical ones with the 

fixed block transform s trailing  at th e  end. We also evaluat.ed the tim e and frequency 

spreads of a fam ily of wavelet and scaling functions. Since: the s tarting  point of 

designing these analog functions is a  tw o-band P R  discrete-tim e filter bank, the tim e 

and frequency spreads of the generating filters should be monitored in such a  way tha t 

a good tim e-frequency localized wavelet and scaling functions are obtained. In other 

words, a good tim e-frequency localized two-band P R  discrete filter bank may not 

lead to a good tim e-frequency localized wavelet and scaling functions. This concept
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of optim ally  designing wavelet and scaling functions from a jo int tim e and frequency 

localizations is an in teresting topic for further research. As a design exam ple of M- 

band perfect reconstruction filter banks, we proposed an efficient four-band linear 

phase P R  m ultiplieriess structu re . This type of filters have great practical m erits 

because of the ir com putational efficiency.

T he second m ain topic which we exam ined was th a t of subspectral modeling. 

We showed, both  theoretically  and experim entally, th a t subspectral modeling is 

superior to  full spectrum  m odeling if perform ed before the  ra te  change. T he price 

paid  for th is perform ance im provem ent is an increase of com putations. A few different 

signal sources were considered in this dissertation. I t  is shown th a t the perform ances 

of A ll and  ARM A techniques are com parable in subspectral modeling. The first 

is desired because of its simplicity. A coding algorithm  of speech, nam ely CELP 

em bedded in a  filter bank s truc tu re , was also studied. We found th a t there were no 

im provem ents of subband CELP technique over th e  full band one. T he theoretical 

reasonings of th e  experim ental results were also given.

O ur last contribution in th is study was on the d iscrete m ulti tone transceivers. 

We showed th a t the channel should not be divided in to  its sub-channels blindly. 

R ather, an intelligent, unequal bandw idth  split should be perform ed for practical 

perform ance im provem ents. For this purpose, we proposed a  sm art algorithm  for the 

decom position of a channel into its sub-channels for the discrete m ultitone com m u­

nications. This algorithm  evaluates the unevenness and energy d istribution of the 

channel spectrum  in order to  get an adaptive partitioning. We were able to achieve 

alm ost the  sam e theoretical perform ance th a t is based on brickwall approxim ation of 

the channel by using this new sp litting  of the channel. Therefore, the best possible 

basis for th e  given channel response is used instead of using the  sam e basis of D FT for 

any arb itra ry  channel. T his adap tiv ity  brings significant perform ance im provem ents. 

In fact, it was shown th a t an unequal bandw idth filter bank based DMT suffers much



less from th e  com bined interchannel and intersym bol interferences, as com pared to 

th e  D FT  based DM T. As a  possible work continuation on th is topic, we suggest 

a  com plete im plem entation of unequal bandw idth filter bank based DM T. F urther 

assessm ents of the perform ance gain it brings as com pared to the D FT based D M T 

in term s of B ER  are to  be done.



<T2. =  ^

APPENDIX A 

Calculation of a w for Gaussian

u,2\F(ej“)\*dw I<
=  fL  (A .l)

b  7T JO

Let x  =  d / g and in tegrate  by p arts  to obtain

Gu

—  { [ - s e - * 2/ ^ / *  +  r ' °  e~x2/2dx}
7T JO

 - \ /2 7 r e r /(7 r /( j ) -----------[i[ j
7T 7r

<r2( l -  X e -" 2/2"2) =  cr2( l - / i )

^ \ / l  -  0 (A .2)
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