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ABSTRACT

THEORY, DESIGN AND APPLICATIONS OF LINEAR
TRANSFORMS
FOR INFORMATION TRANSMISSION

by
Adil Benyassine

The aim of this dissertation is to study the common features of block
transforms, subband filter banks, and wavelets., and demonstrate how discrete
uncertainty can be applied to evaluate these different decomposition techniques. In
particular, we derive an uncertainty bound for discrete-time functions. It is shown
that this bound is the same as that for continuous-time functions, if the discrete-time
functions have a certain degree of regularity.

This dissertation also deals with spectral modeling in filter banks. It is shown,
both theoretically and experimentally, that subspectral modeling is superior to full
spectrum modeling if performed before the rate change. The price paid for this
performance improvement is an increase of computations. A few different signal
sources were considered in this study. It is shown that the performances of AR
and ARMA modeling techniques are comparable in subspectral modeling. The first
is desired because of its simplicity. As an application of AR modeling, a coding
algorithm of speech, namely CELP embedded in a filter bank structure was also
studied. We found that there were no improvements of subband CELP technique
over the full band one. The theoretica! reasonings of the experimental results are
also given.

This dissertation also addresses the problems of what type of transform to be
used and to what extent an image should be decomposed. To this aim, an objective

and subjective evaluations of different tansform bases were done.



We propose a smart algorithm for the decomposition of a channel into its
sub-channels in the discrete multitone communications. This algorithm evaluates
the unevenness and energy distribution of the channel spectrum in order to get its
variable adaptive partitioning. It is shown that the proposed algorithm leads to a near
optimal performance of the discrete multitone transceiver. This flexible splitting of
the channel suffers less from the aliasing problem that exists in blind decompositions
using fixed transforms. This dissertation extends the discrete multitone to the flexible
multiband concept which brings significant performance improvements for digital

communications.
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CHAPTER 1
INTRODUCTION

In the last two decades, there has been an ever increasing demand for more infor-
mation processing ability, larger storage capacity, and faster information transmission
capabilities. This phenomenon had impacted the research community so much that a
flurry of research activities was dedicated to novel signal representations, compression
algorithms, and new standards for speech, image, and video coding.

Most of the new compression technologies and signal representation techniques
make use of linear transforms. The popular transformations can be clustered into
four main groups: block, overlapping block, subband, and more recently wavelet
transforms. The first type involves mainly the Fourier transform and its extensions
that have historically been the prime tool for signal representation. Since the early
1970’s, the discrete cosine transform (DCT) emerged as a new block transform with
real basis functions and good image coding performance. All of the current standard
visual compression algorithms such as H.261, JPEG, MPEG I, and MPEG 1I incor-
porate the DCT as their signal decomposition tool. At very low bit rates, the coding
petformance of block transforms degrades significantly. This is due to the blockiness
which results {from independent coding of each sub-block and manifests itself as
undesirable discontinuities at the boundaries. As a remedy to this annoying effect,
lapped orthogonal transform (LOT) was proposed. This alternative transform to
the fixed block ones, uses overlapping blocks to smooth out the discontinuities at
the sub-block borders. The third widely used transform tool is the subband or filter
banks . This transform removes the restrictions imposed on the durations of its basis
functions which exists in the two previously cited transforms. Therefore, a better
[requency tuning of the basis functions is possible within this category of transforms.

Recently, the wavelet transform has been suggested as a new mathematical tool



for signal representation of continuous-time signals at flexible time and frequency
resolutions. The advantages of wavelet transform over the classical Fourier transform
and short-time Fourier transform (STFT) were shown. The linkages and common-
alities of the wavelet transform and discrete-time filter banks were also studied.
The time-frequency shaping of a hasis set is of particular interest in practice.
The trade-ofls of the time and frequency domain behaviors have been well known for
a single function. But, now the concept is extended to do time-frequency shaping of
a set of functions which must be complete. While bandwidth compression of a signal,
such as an image, requires transform operators with good frequency localization,
spatial features such as edge preservalion demand a high degree of localization in
the time domain. These requirements compete with each other and one is secured
at the expense of the other. The classical uncertainty principle in the continuous-
time domain provides the back drop for this trade-off. The main thrust of this
work is to study the common features of block transforms, subband filter banks,
and wavelets, and demonstrate how discrete uncertainty can be applied to evaluate
these different decomposition techniques. In particular, we evaluate the trade-off
between localization in time and frequency for several proposed signal decomposition
structures. Block transforms have the best localization in time as expected since
they have the shortest duration functions. On the other hand, they exhibit the
worst localization in frequency as predicted by the uncertainty principle. Filter bank
structures have sharper {requency responses and their frequency spreads decreases
at the expense of an increase in their time localizations due to their longer basis
functions. Since the filter banks come in two flavors, direct and hierarchical, their
products of the time and frequency spreads can be monitored depending on the
structure used. We found that direct structures offer the best time-frequency spread
product followed by hierarchical ones with the fixed block transtorms trailing at the

end. We also extended the original uncertainty principle in the analog domain to



its discrete counterpart. In addition, we present several applications that make use
of these popular linear transform techniques. In fact, the recent advances in the
generalized linear transform (GLT) theory have opened new avenues for the joint
treatment of the signal decomposition, spectral analysis and modeling problems.
Among these applications, we used the subband transforms in subspectral source
modeling, subband linear predictive coding (LPC) of speech, subband image coding,
and finally the discrete multitone transceivers (DMT). In subspectral modeling
application, a thorough analysis of the effects of multirate building blocks was done
along with an assessment of the merits of subspectral modeling over conventional
modeling techniques. We showed that subspectral modeling is superior to full
spectrum modeling if performed before the rate change. The price paid for this
performance improvement is an increase of computations. As an application of
subspectral modeling, we studied the performance of an analysis-by-synthesis speech
coder namely CELP in both a full band and subband environments. We found that
there were no improvements of subband CELP technique over the full band one.
The theoretical reasonings of the experimental results are also given in the thesis.
We also studied the performance of the different subband structures as decompo-
sition tools for an image codec. We observed that the hierarchical subband schemes
outperform the direct structures in image coding. It is also shown that the dyadic
tree subband codec outperforms the full-tree case for the image coding experiments
performed in this study. As the last application, discrete multitone transceivers were
evaluated using different basis functions as their modulator/demodulators. For this
application, we proposed a smart technique for the partitioning of the channel into
its sub-channels. This technique calls {for a judicious selection of the basis functions
for the modulation/demodulation functioning blocks. We also derived a distortion

measure for the evaluation of the discrete multitone transceivers.



This dissertation is organized as follows. In Chapter 2, we start with the
review of the fundamentals of multirate systems. We, then, link the theory of perfect
reconstruction filter bank with that of the wavelet transform. We also give a design
example of a multiplierless M-band PR filter bank. In Chapter 3, we address the
concept of time-frequency localizations in linear transform. We give a proof on a lower
bound of the discrete-time uncertainty principle. Chapter 4 gives a thorough analysis
of the subspectral modeling. It is shown that there is a performance improvement
in modeling subspectra of the signal over the full spectrum. A coding algorithm of
speech namely CELP embedded in a filter bank structure was also studied. Following
this, in Chapter 5, objective and subjective evaluations of different transform basis
were done. Last, in Chapter 6, we address the implementation issues pertaining to

the discrete multitone (DMT) transceivers.



CHAPTER 2

LINEAR TRANSFORMS

The goal of any aforementioned transforms is not only to represent a signal into its
constituents, but also to decompose its correlated samples into a set of uncorrelated
spectral coefficients in a compact fashion. In other words, these transformations
should be able to concentrate the total energy of the signal in as few spectral coefhi-
cients as possible, if compression is the application at hand for example. Any of
those transforms should satis{y certain characteristics depending on the application
under consideration.

The block transforms, lapped orthogonal transforms(LOT) and filter banks
are the most popular members of the linear transforms family employed in signal
processing and related cngineering applications[2]. It is commonly agreed that these
once competing signal decomposition techniques are actually the variations of the
same theory. The block transforms use the minimum possible time duration in
their bases functions. On the other hand, the conventional LOT basis doubles the
duration. The filter banks, in general, use arbitrary duration functions in their
basis. The duality property of the time-frequency analysis defines the trade-offs of
different bases with respect to their time and frequency domain characteristics. The
block and overlapping linear transform theories, therefore, provide the foundations of
orthonormal basis design for the applications considered. Additionally, the optimal
filter bank concept has been forwarded lately to design the overlapping orthonormal
sets based on the given criteria which is the extensions of optimal block transform,

Karhunen-Loeve Transform(KLT).



2.1 Theory of Block and Lapped Transforms
Suppose we have a signal z(n), 0 < n < N — 1. This signal can be ecasily expanded

as a linear combination of a set of sequences {¢x(n)} as
N-1
z(n) = Y pdi(n), 0<n<N-1 (2.1)
k=0

where {0;} are termed the spectral components of z(n). On the other hand, we can

obtain the coeflicients as
N-1
0, = Y_ z(n)¢i(n), 0<s<N-1 (2.2)
n=0
The basis functions {¢x(n)} has to satisfy the orthonormality, i.e.

N-1
> $(1)61(n) = brms (23
n=0
where § is the Dirac delta.
The basis {¢r(n)} can be lumped together as a matrix ® that satisfies the
unitary condition

¢! = (9*)F = ¥ (2.4)

such that

dp7 =71 (2.5)

As an example of the ® matrix, there is the DFT matrix. Ii consists of a set of

orthogonal complex sinusoids namely
du(n) = e~ kn=01,2N—1 (2.6)
The corresponding transform matrix is therefore given as
o = [ (2.7)

where W = e™%". The inverse DFT (IDFT) matrix is given by ®* scaled by 4 in

order to satisfy the orthonormality condition. A second example is the well known



discrete cosine transform (DCT). DCT, as alluded to in the beginning, is virtually
the industry standard in image and speech transform coding because of its superior
coding performance and the availability of its fast implementable realizations. The

DCT basis functions are defined as

(r,n) = b.(n) = (El;)co&'_”__;)_"’i

\/N, r=20
VIN/2, r#£0

Both of these are called block transforms since they operate on a segment of samples

,0<n,r <N -1 (2.8)

Cr

at a time. This kind of transform offers good coding results at low and medium
bit rate for both image and speech. However, their performance tends to degrade
significantly at very low bit rates, causing a blocking effect as a result of independent
coding of each sub-block.

Casserrau et al.[]9] came up with an overlapping block transform called the
Lapped Orthogonal Transform (LOT) which uses pixels in adjacent blocks to
alleviate the blocking effects. Malvar and Staelin[27] proposed a new LOT structure
that utilizes the basis functions of DCT for computational efficiency. Akansu and
Wadas[5] extended the concept of eflicient LOT by using other block transforms in
the design of LOT bases.

Let {Xg, Xy, cov--- . SRR } represent vectors of N contiguous
samples each. We form a new vector Y; of length L > N obtained by extending the
vector X; from both the left and right sides by crossing over to borrow % samples

from X,_; and X, blocks respectively. The transform produces

0; = Y] (2.9)

where 0; is N x 1, ® is N x L, and Y; is L x 1. In this case the ® matrix is no longer
square and consequently it should obey different rules from its block counterpart in

order to get perfect reconstruction. The basis functions {#(n)} are now 1 x L long.



They should satisfy the following requirements for perfect reconstruction (PR) [2]

S 6, (k)da(k + 2n) = §(r — 5)8(n) (2.10)
k

2.2 Theory of Subband Filter Banks
The purpose of a filter bank is to decompose a signal spectrum into non-overlapping
frequency bands before any further processing. This technique offers the advantage
of allocating bits separately to each subband according to some perceptual criteria

that are pertinent to that band for example in speech coding application.

2.2.1 Decimation and Interpolation in Multirate Filter Banks
The most basic operations taking place in a multirate signal processing are the
decimation and interpolation. These two processing tools alter the clock rate at

various points of the multirate system.

2.2.1.1 Decimation

The full spectrum signal occupying a bandwidth W is first filtered by an anti-
aliasing filter (e.g. lowpass, bandpass, or highpass). If the resulting signal occupies a
bandwidth %, we can throw away every other M samples of this new signal without
loss of information in order to meet the Nyquist criterion[2]{40]. What this criterion
calls for is that any signal occupying a bandwidth W, only 2W samples per second
are necessary to represent the signal perfectly. The process of filtering followed by the
proper downsampling is called decimation in time. Fig. 2.1 shows such an operation.

We can relate the signals at various points of the decimation process as

y(n) = a(Mn) (2.11)

y(n) = > h(Mn — k)u(k) (2.12)
k



u(n) x(n) y(n)
- h(n
s (") \VM fs/M
(a)
M M - n
(b)
1 2 3 n w
() (e)

Figure 2.1 The decimation operation: (a) composite filter and downsampler, (b)
filtered signal at fast clock rate, (¢) downsampled signal at slow clock rate, (d)
signal spectrum occupying ;11- of full band at fast clock rate f;, (e) spectrum of signal
downsampled by 4, occupies full band at f,/4 clock rate

Clearly, decimation compresses the signal in time. This effect translates obviously
into an expansion in the [requency domain. In fact, by taking the Z-transform of
Eq. (2.11), it can be shown that[2]{40]

1 M=l . )
Y(z) = 57 3T XMW, W = ¢~i2m/M (2.13)
k=0

or

) 1 M-1 ez
Y(e¥) = 230 X( ) (2.14)
k

~=0

Fig. 2.1 illustrates these two competing phenomena for the decimation case.
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2.2.1.2 Interpolation

The counterpart of decimation is interpolation. This operation has the purpose
of increasing the sampling rate of a signal by M. This is achieved by upsampling
the signal by M through the insertion of M-1 zeros between the samples of the
original signal and passing the obtained signal through an interpolation filter.
The upsampling operation stretches the time axis and thus is accompanied by a
compression of the signal in the frequency domain. This phenomenon translates into
the introduction of high frequency components to the signal. These components
are called imaging effects. The purpose of the interpolation filter is therefore to
remove these high frequency components by simoothing the expanded signals. Fig.
2.2 depicts the interpolation operation. Likewise, we can relate the signals at various

points of the interpolation process as

0, olherwise (2.15)

2.2.2 Polyphase Representation of a Filter
Polyphase representation of a filter is an efficient technique that finds a lot of appli-

cations in multirate systems. Let H(z) be a filter such as

N'—1
H(z) = > h(k)z™*
k=0
= h(0) + h(1)z7" + - + A(N' — 1)z (2.16)

where N’ is the number of taps. H(z) can be recast in a polyphase representation as
N'-1
H(z) = > h(kM)z" M
k=0
N'-1
+270 > A(EM 4+ 1)z7FM

k=0

N'—1{
+z27 M0 N R(RM + M — 1)z7M (2.17)

k=0
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x(n) 4\ M y(n) e(n) v(n)

s M fs
(@) .
x(n) | X(e')
0 L 2 3 n ) ™ b W
(b (d)
yn) Y (e/¥) Images

2\

0 L i‘r ! 27 w
(e)

Figure 2.2 The interpolation operation: (a) composite upsampler and filter, (b) and
(d) input to upsampler, time and frequency domains, (c) and (e) upsampler output,
time and frequency domains for M=4.
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_@ H(z) __@ — Flo)  —

Figure 2.8 A cascade operation and its equivalent representation

where M is any integer. This representation can be compactly written as

M-1
H(z)=Y_ 27 B (M) (2.18)
=0
where
N'-1
Ez) = elk)* (2.19)
k=0
with
elf(k) =h(kM+1), 0<I<M-1 (2.20)

When an upsampler is followed by a filter H(z) and a downsampler as shown
in Fig. 2.3, we can replace this structure by a simple filter [7(z). Notice that F'(z)

is nothing else but the 0¢* polyphase component of H(z) as given by
g

S(k) = eo(k) = h(kM), 0<k<N -1 (2.21)

2.2.3 The Two-Band and M-Band Subband Transforms

Now, that we have laid out the foundations of multiraic operations, we will analyze
a generic two-band perfect reconstruction (PR) filter bank as shown in Fig. 2.4.
The input signal z(n) occupying a bandwidth from 0 to = is divided into two
equal subbands. The analysis filters H;(z) and Hz(z) both serve as anti-aliasing
and frequency splitters. As mentioned above, the signals 6,(n) and 0,(n) are each
downsampled by 2 to give the subband signals v;(n) and vy(n). In a typical appli-

cation the two signals are further processed through a quantizer and transmitted to
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01(n) vi(n) fi(n) y1(n)

5
—~
~
Z
8>
~
3
N’

Hy(2) | 2 ) Ga(2)

y2(n)
Figure 2.4 Two band filter bank

the receiver. In order to derive the PR conditions, we will assume that no processing
occurs between the transmitter and receiver, and therefore, the received signals are
v1(n) and vo(n). At the receiver end, these two signals are upsampled and filtered
by the interpolation filters to restore the missing samples. The resulting signals are
summed up to yield the reconstructed signal. Tracing the signals through out the

top branch gives

01(2) = 1[1(Z)X(2)

Yl(Z) = G](Z)F](Z) (222)

The input/output relationships of the downsampler and upsampler are

i) = Lo

Fi(z) = W(zY (2.23)

Putting all of these expressions together leads to

Vilz) = 5Ga(2) [H) (2)X (2) + Hh(~2)X ()] (2.24)
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Likewise for the bottom branch, we get
1 - .
Ya(z) = §G2(z) [Ha(2) X (2) + Ha(—2) X (~2)] (2.25)
The reconstructed output signal X(z) is the sum of ¥;(2) and Y3(2) as

() = %[Hl(z)G’l(z)—i-Hg(z)Gg(z)]X(z)
3 [Hr(=2)Gh (—2) + Ha(=2)Ga(~2)] X(2)

= T(2)X(z)+ S(z)X(—2) (2.26)

The reconstructed signal consists of two parts. The first one 7'(z) X (z) is the original
signal multiplied by some transfer function 7'(z). The second part is termed as the
aliasing component. This anomaly is introduced because of the finite roll-off in filter

responses. To achieve perfect reconstruction, we require the following

(1) S(z) = 0, forallz

(2) T(2) = cz™", where cis a constant (2.27)

The first requirement gets rid of the unwanted aliasing terms. Whereas the second
one implies that the output should be a scaled , translated replica of the input. This

can be succeeded if we choose
Gi(z) = —H(z)
Gqy(z) = H(2) (2.28)

This in turn makes 7'(z) become

T(z) = % [Hi(—z)Hz2(z) — Hy(2)Ho(—2)) (2.29)

Now the first requirement is met. We let the analysis filters be related as

Hy(z) = =~V (=271 (2.30)
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T'(z) further becomes

T(z) = %z"‘”‘l) [I-Il(z)Hl(z_l) + H1(—2)H1(—Z—1)] (2.31)

Then, the second requirement imposes the following condition
Q(z) = Hy(2)Hy(27") + Hy(—=2)Hi(—2z"") = constant
= R(z)+ R(-z) = constant (2.32)

We notice that R(z) and R(—z) are nothing else but the spectral density of the filters

H,(z) and H,(~z), respectively. Therefore, we write R(z) and R(—z) as
(N=1)
R(z) = S ezt
k==(N-1)
(N=1)

R(-2z) = S (et (2.33)

k=~(N-1)

We can deduce from Eq. (2.33) that {a} has to be zero for even values of k except
k = 0 in order to have Q(z) be a constant. We can take this result a bit further
by recalling that R(z) is also the Z-transform of the autocorrelation function p(n) of
hy(n), p(n) is given as

plr) = 5 halk)ha(n+ £) (2.34)

We are able to recast Eq. (2.32) into a time domain requirement as
p(2n) =" hi(k)hi(k + 2n) = 6(n) (2.35)
K

where 6(n) is the Dirac 6. What this equation tells us is that if the filters are chosen
as above and if further the lowpass analysis filter satisfies Eq. (2.35), we get a two-
band perfect reconstruction quadrature mirror filter (PR-QMF') bank structure. Eq.
(2.35) can be interpreted as requiring hi(n) to be orthogonal to its own translates
shifted by 2. This is called the paraunitary requirement for perfect reconstruction.
We can generalize this result for an M-band structure as shown in Fig. 2.5. In

this case, the perfect reconstruction condition in time domain is found as [2]

> ho(k)hy(k 4+ Mn) = 8(r — s)6(n) (2.36)
k
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-~ N= < N =
Ho(2) VM= Coder-j M Go(z)
H,(z) VMt= Coderlt= AM = Gi(z)
x(n) y(n)
I'[M—l(z) VMj> Coderf= AM G]u._l(Z'
IV L 1
Analysis Filters Synthesis Filters

Figure 2.5 Maximally decimated M-band filter bank

The above equation asserts that h.(k) is orthogonal to its own translates shifted by

multiples of M and r # s, h,(k) is orthogonal to all M translates of hy(k).

2.2.4 M-band Multiplierless Filter Design Example
At this point, we would like to present a design example of filter banks. We designed
a four band eight-tap PR linear phase filter bank. In addition, we restricted the filter

coefficients to be multiplier-free. The filter coefficients {a;} will be of the form
a; = £2%F £ 1 (2.37)

where k is an integer. This type of filters have great practical merits because of the
computational efficiency they offer. In fact, the usual multiplication taking place in
a [illering operation is implemented via a simple shift (left or right) plus an addition
in this case. The filter coefficients are tabulated below (Table 2.1). The magnitude

responses of the four bands are depicled in Fig. 2.6.



Table 2.1 Filter coefficients of a four band 8-tap PR filter bank

Band 1 Band 2 Band 3 Band 4
—272 411 272 4+1 | 272 +1 [-272 +1
—272.1 | 272-1 | =272 41| 272 +1

—2! -1 —22.1 —22 .1 -2 .1

—-22 -1 —21 -1 21 + 1 —-22 +1

—2.1 2! 41 2t +1 22 .1

—2! -1 22 +1 —22_1 2l 41
2721 | =224 1|-224+1} —-272-1
27T 1| —27%-1 | 272 41 272 .1

Magnitude Square
o o
> 4]

03[

0.2

0.1

Figure 2.6 Magnitude response of a multiplierless four band filter bank
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Figure 2.7 Four band regular binary tree structure

2.2.5 Tree Extensions and Multiresolution

The two band filter bank is the progenitor for the construction of tree structures. A
variety of tree structures can be obtained by a repetitive use of this prototype filter
bank yielding a wide span of resolutions of the original signal. Several tree structures
capable of different decompositions were studied by Akansu and Liu[4]. If the signal
is decomposed at each node beyond the first level, we oblain a regular binary tree.
A four band binary tree is illustrated in Fig. 2.7. This structure can be redrawn into
an equivalent structure of I'ig. 2.9 by invoking the “noble identities” shown in Fig.
2.8(2][40]. It should be noted here that the splitting filters at different stages need
not be the same [38]. However, if the entire structure is required to be PR, each

stage should satisfy that requirement,
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Figure 2.8 Noble identities
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Figure 2.9 Equivalent structure
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Figure 2.10 Three level dyadic tree structure

A dyadic or octave-band tree is obtained when only the lower half of the
spectrum is partitioned inlo two equal bands at any level of the tree. Fig. 2.10
depicts a dyadic tree. At any level, the lower frequency component is called the
“coarse” approximation, whereas the high frequency term is called the detail at that
resolution. A dyadic tree is then a hierarchical data structure containing information
about a signal at different resolutions. It can be viewed as a multiresolution decom-
position. Unlike in the binary and dyadic tree structures, splitting a spectrum does
not have to {ollow a repetitive scheme, but can take place at any node depending on
the need for the decomposition. This type of split yields irregular tree structures as

shown in I'ig. 2.11.

2.3 The Wavelet Transform and Its Linkages with Filter Banks
The wavelet transform is a tool to decompose an analog or continuous-time signal

with a family of orthonormal functions {+u(1)}. These {1/.4(1)} functions are derived
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Figure 2.11 Irregular tree structure

from a prototype kernel function 1(t) known as the mother funciion through dilations

and translations of ¥(t) as[17]

bult) = S

where ¢ > 0, and —oco < b < oo. So, we can define the wavelet transform of a signal

) (2.38)

z(t) as [17]

W(a,b) = f Yalt)a(t)dt (2.39)

On the other hand, z(t) is synthesized through the inverse wavelet transform as

s oo dadb |
2(t) = é- /_ ) /0 “ W (a, b)at) (2.40)

where
c=/0°° "y—g)‘—d{z (2.41)

U(§2) is the Fourier transform of (t). The invertibility of the wavelet transform is

secured if 9(t) satisfies an admissibility condition, namely C being finite[17].



2.3.1 The Discrete Wavelet Transform
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The discretization of a and b leads to the discrete wavelet transform (DWT). This is

somehow a misnomer because the operation still takes place in the continuous-time

domain. In this case, the wavelet decomposition of z(¢) behaves as

o = / " () n(t)dt

-

and the synthesis formula is

2(t) = Z Z dm,nwmn(t)
where {3q4(¢)} as a result of the discretization becomes

Pmalt) = 27 2H(27™ — n)

(2.42)

(2.43)

(2.44)

The construction of the mother wavelet 1(t) necessitates the following steps[17]:

1. Determination of the complementary scaling function ¢(¢) which satisfies

the inter-scale property

B(t) = VZY h(n)$(2t — n)

(2.45)

Similarly, the mother wavelet also satisfies the containment condition

P(t) = v23_ g(n)$(2t — n)

(2.46)

It was shown that the inter-scale coefficients A(k) and g(k) are nothing else
but the lowpass and highpass filters of a two-band perfect reconstruction
filter bank, respectively. The Fourier transforms of ¢(¢) and (¢) are

related to the Fourier transform of inter-scale coefficients as

() = ﬁ H(e'7) (2.47)
k=1
and
V(Q) = G(e’%) [] H(3F) (2.48)
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where H(e') and G(e’) are the Fourier transforms of h(k) and g(k),
respectively. For these infinite products to converge, we require that
H(z) to have a certain degree of regularity, i.e. having at least one zero
at w = 7 or equivalenily at z = —1. It turns out that the orthonor-
mality and finite support of the scaling and wavelet functions are set up
by the orthonormality and finite duration of h(k), and g(k). Eq.(2.47)
and Eq.(2.48) provide the methodology for the construction of wavelet
and scaling families. One simply starts with any paraunitary, compact
support (i.e. finite duration) two-band filter bank. The Fourier transforms
of the wavelet and scaling functions are then obtained by the infinite
products in I!q.(2.47) and Eq. (2.48). These equations imply the following

completeness properties of wavelet and scaling bases.

™o

The wavelets are orthonormal in both indices. They are orthonormal in
time n at the same scale m, and orthonormal across scales (intra- and

inter-scale orthonormalities),
< Ibm'n(t), wm',n'(t) >= 5m—m'6n—n' (2.49)

3. The complementary scaling function ¢(¢) <+ ®(Q) is orthonormal within

the same scale (intra-scale orthonormality only),

< (1), G (1) >=8,,_ v (2.50)

where

Gun(l) = 272 p(27™t — n) (2.51)
The scaling function is a low-pass function.

4. Complementary property of the wavelel and scaling bases

< "l’mn(t)7 ¢mln'(t) >=0 (252)



CHAPTER 3

TIME-FREQUENCY LOCALIZATION IN TRANSFORMS,
SUBBANDS AND WAVELETS

The goal of this chapter is to study and clarify the notion of time and frequency local-
izations as it is pertinent to both the analog and the discrete-time signal domains.
This notion is based on the famous uncertainty principle that gives a lower bound of

the joint localization.

3.1 Time-frequency Distributions and Optimum Signal Shaping
The time-frequency shaping of a single function in both the analog and discrete-time
domain is very well understood. The trade-offs between the time and frequency
domain localizations have been well known(30][13]. It is simply explained by the
well known uncertainty principle. From a transform point of view, we would like
{o extend this concept to do time-frequency shaping of a set of functions which
must be complete. To better understand this shaping, a discrete-time version of the

uncertainty principle is derived.

3.1.1 Classical Uncertainty

The basic objective in signal analysis is to devise an operator capable of extracting
local features of a signal in both time and frequency domains. This requires a basis
function, or kernel, whose spread or extent is simultaneously narrow in both domains.
This in turn suggests that the transformation kernel ¢(¢) and its Fourier transform
®(§2) should have narrow spreads about selected points ¢y, and Q.

However, the classical uncertainty principle asserts that for any function ¢(¢),

(with V(1) — 0, as ¢ — 400)[30][13],

1
orog > 5 (3.1)

24
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where op, 0q are the RMS spreads in time and [requency, respectively, of ¢(¢) and
®(Q2) about the center values. That is
2 J(t = 1)%|6(2)|*dt

or =

E
= [% (2 —0)?|P(Q)]2dQ
where IV is the energy in the signal,
00 1 )
E= /_oo |6(8)|dt = %/_w |B()[2dQ2 (3.3)

and £, Q refer to the center-of-mass of these kernels,

O
E b
1 foo 2
o o EIRIEO)R )

The product oroq is called the resolution cell. The equal sign holds in Eq. (3.1) if
and only if ¢(t) (and consequently, its Fourier transform), is Gaussian of the form
¢~*", The derivation of this result can be found in[30].

The Short-Time Fourier Transform(STFT) has been used to extract {frequency
characteristics of a signal over some selected interval in time. The STFT positions
a window function g(t) at some point 7 on the time axis and calculates the Fourier

transform of the signal contained within the spread or extent of that window,

P,y = [ f(B)gtt -y (3.5)

When the window function ¢{t) is Gaussian. the STFT is called Gabor transform|[18][13].
The basis functions are generated by modulation and translation of the window
function by the parameters # and 7, respectively. Note that when 7 increases, the
kernel simply translates in time while keeping the spread of the window fixed.

Let g(t) «» G(Q) be a Fourier transform pair, and assume that £ = 0, and

! = 0. Then the translated, modulated kernel pair are given by

grp(t) = g(t — T)ej[” G 4(0) = e‘“""mTG'(Q - B) (3.6)
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This two-parameter family is centered at 7, 8 in the time-frequency plane, i.e.
L=, Dog=p (3.7)

Now it is readily shown that the spread of this shifted, modulated kernel is constant

in both domains, i.e.

2 3= 15,2 = )G s ()P
oq(r,8) I3 =0

ey = [ (=T lgal0)dt = o} (3.8)
where oq, op are the RMS spreads of the unmodulated, untranslated kernels. This
implies that the resolution cell oroq has a constant shape, as well as a constant
arca in the time frequency plane as shown in Fig. 3.1. For the Gaussian window
opoq = 1/2. The wavelet transform, introduced in the previous chapter, has a

variable shape, but constant product time-frequency tiles as seen in Fig. 3.1.

3.1.2 Discrete-time Uncertainty Theorem
The discrete-time version of uncertainty is as follows: Let f(n) « F(e?) be a

discrete-time Fourier transform pair,

F(e) = Y. f(n)e™™ & f(n) = él;/_: F(e)el™ duw (3.9)

By the Parseval theorem, the energy of the signal is given in both domains as

o0

AL 1 = ;
E= 3 [f(m) =5 | |F(e™)fdw (3.10)
We define the mean (analogous to the center-of-mass of a distribution) by[2]

3r 2wl () Pdw

D = 3.1
@ 7 (3.11)
o Elenlf(n)
n = T (3.12)
The spreads of a function in time and in frequency domains are defined as
P N D )
o E ’
g2 2 dla(w = @PIF(e™) Pd (3.13)

E
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Theorem: For any real signal @ = 0, and without loss of generality, we can also
shift the time origin to make 7@ = 0. For this case, we show that the time-frequency

product o, 0, or resolution cell is given by

11—y
>
Onluw 2 )
s JF(E)u=al* _ |F(=1)P
Proof: FFor convenience let 7 = 0, and note that
nf(n) e—)]z—g— (3.15)

so that
zyﬂﬂn = o /| duw (3.16)
By the Schwartz’ inequality, we have

2 1ofm jw 2 T2 jw |2 1 dF
= |— 1 < |l— Jw _ -
1 = 1o [ wre) it s o [ el [ 1% P @)

Integrating by parts,

I = —[wlF(e"")l | ~ 5 / (e7)] wdF*-{—F*dw]
2 w F* 1
=|H1N——/de) ot — o= [ F(e) o
= |[F(-)f-I"-E (3.18)
or
[+1" = |F(-1)} - E
But,

[+ 17 < 201

for any complex number, therefore

2= (=1 = 511~ ul
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In the analog version, F(doo) = 0, and the lower limit is simply 1/2. In the
discrete-time case F'(—1) need not be zero. Note that in our notation F(e?) at
w = 0, and w = 7 are denoted by F(1) and F(—1), respectively.

Remark: The frequency measure in Eq. (3.13) is not suitable for bandpass
signals with peak frequency responses centered at +&. In order to obtain a measure
of the spread about &, we need to define o on the interval [0, 7], rather than [—m, r].

In this case we will use

1 7I’ w) |2
. 2l wlF(e™)Pdw
= 3.19
w= _l_f ' (ejw)IQdW ( )
Lome sy F(edv)i2d
52 = xdr(@ = OFI Sl (3.20)
= Jo |F(e)|2dw
and o2 remains unchanged. It easily follows that
52 = op — (@)° (3.21)
and
. 1 o
5307 > 21— p)? — (&)%" (3.22)

Eq. (3.22) demonstrates the reduction in the time-frequency product when
using the [0, 7] interval for bandpass signals. An alternative derivation similar to the

above proof, shows that this product can be expressed as

1 '
Aw n.>_‘1"'
Guon 2 5|1 —p]

P _@IFQ)P @, | F(=1)
= - — — : b ()
r=""F + (1 7T) 7 (3.23)
For bandpass signals with zero DC gain, F'(1) = 0, Eq. (3.23) reduces to
r_ e PP :
p=01-— (3.24)

If, additionally, we have F(—1) = 0, then x' = 0, and

1
a-wgn 2 "2‘ (325)
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In the sequel we concentrate on low-pass filters such that F'(e’*),.q- occurs at
w = 0 and use Eqs. (3.13) and (3.14). In this case, there are two classes of filters

or signals. The first class is that of signals possessing a certain degree of regularity,

namely
1
Class L: F(-1)=0— 0,0, 2> 5 (3.26)
Whereas, the second class is free of this requirement,
T 1= 4
Class 1I: F(=1)#0 — on0, 2 5 (3.27)

The bound on the time-frequency product in the first case is the same as that for

the continuous-time case(in which F'(Zco) = 0). In the analog case, we know that

the equality in the lower bound is achieved when QF($2) is proportional to 2., or

F(Q) = Ke /2 3 Gaussian. In the discrete-time formulation, we have the same

[orm of integral resulting in the differential equation

dF :

—_— = —KwF*(e¥ 3.28

ad () (3.25)
whose solution is a Gaussian e=%%*/2, This Gaussian [unction satisfies the differential

cquation but cannot satisfy the Class I boundary condition F'(e’™) = 0. In this case
we conclude that the lower bound cannot be attained and the strict inequality holds,
TnOy > -12- For the Class Il set of functions, the Gaussian can satisfy both the
differential equation and the boundary condition resulting in the equality o,0, =

31— pl.

3.1.3 Gaussian Distributions

For the Class II signals, the Gaussian is

|F(e™))? = Ke '/ lw| < =
T/2

K cer[(r/o)

i

(3.29)
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Figure 3.2 Time and frequency plots for narrow-band Gaussian functions

The constant X is chosen so as to normalize the signal energy E to unity over [—, 7].

In Appendix A, we show that

0 = ofi=h

F(m)|?
o= I——-(-g,—)l— = Ke" 1% (3.30)
and hence
1-— 1-—
OOy = | #I'I'a — Op = 'u (3.31)

20
For the narrow-band case, ¢ < 7 /4, p < 1073, and F(—1) & 0, resulting in ¢2 ~ o2,
0,0y & 1/2. The corresponding tinme function is found to be approximately Gaussian,

2

e (3.32)

Examples of these narrow-band Gaussian functions are shown in Fig. 3.2. Again
note that the time-frequency product is very close to 1/2 in these cases.
For the wide-band case, with & > 37/8, we must use the more exact expansions

in Egs. (3.30) and (3.31). For example, {or ¢ = 7/2, we calculate g = 0.22625,
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Figure 3.3 Time and frequency plots for wide-band Gaussian functions

o, = 1.382, 0,0, = 0.3869, and o, = 0.28 time samples. In this case, there is
no simple approximation for f(n) which must be computed numerically from the
inversion formula, Eq. (3.9). These are shown in Fig. 3.3 where the very short

duration of f(n) is duly noted.

3.2 Time-frequency Properties»of Block Transforms
We can examine the time-frequency localization of established block transforms
by analyzing the time-frequency products of each basis function. The time-
frequency spreads for the Discrete Cosine Transform(DCT) and Walsh-Hadamard
Transform(WHT) basis functions are given in Table 3.1. The trade-offs in ¢,, and
o, as a function of filter length are obvious from this table. In order to sharpen
the frequency response, the transform size or filter lengths are increased. As seen
in Table 3.1, the frequency spread o2 is decreased significantly but at an appre-

ciable increase in o2 owing to the longer filter lengths or basis sequences. The
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time-frequency products or resolution cells also increase with the filter length, i.e.
with the size of transform.

As mentioned earlier, the basis lengths of block transforms are equal to the
number of functions which correspond to the size of the transforms. There is a very
limited flexibility in order to improve the frequency selectivity of basis functions.
For some of the applications, narrow frequency bands are desirable, and we are led
to consider a broader structure- the M-band filter bank, where the length of each
analysis and synthesis filter is not constrained. These extended length, or overlapping
basis, filters also provide additional degrees of freedom for optimizing other aspects

of system performance.

3.3 Time-frequency Properties of Lapped Orthogonal Transforms
In order to obtain narrower {requency bands o2, we can expand the length of each
analysis and synthesis filler. We should expect a concomitant increase in 2. The
extension of the unitary block transform, non-overlapping basis, results to this case
is called the paraunitary solution as discussed previously. We can now compute the
timne-frequency localization of LOT filter banks and compare them with their block
transform antecedents. Table 3.2 displays the localizalion characteristics of the 8 x 8
DCT and the 8 x 16 DCT-based LOT. Again we note the narrowing of the frequency
spread and the attendant increase in ¢2. The time-frequency products of DCT-LOT

basis is significantly less than that of DCT as expected.

3.4 Time-frequency Properties of M-Band and Hierarchical Filter
Banks

For our present purposes, we want to evaluate the time-frequency localization
properties of some known filter banks. Table 3.3 lists these characteristics for three

different 8-tap two-band filter banks, the Binomial QMF[3], the Smith-Barnwell
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Table 3.1 Time-frequency localizations of DCT and WHT bases for 2,4, and 8-band

cases

w n o? o2 | o2 x of

2x2DCT 010.50 [ 1.2899 | 0.2500 | 0.3225
and WHT 7 | 0.50 | 1.2899 { 0.2500 | 0.3225
4 x4 DCT 0)1.50|0.6787 | 1.2500 | 1.2234
1.27 | 1.50 | 0.3809 | 1.9570 | 0.7454

1.85 | 1.50 | 0.2424 | 1.2500 | - 0.3030

w | 1.50 | 0.4896 | 0.5428 | 0.2657

4 x4 WHT 0(1.50 | 0.6787 | 1.2500 | 0.8484
1.29 | 1.50 | 0.2424 | 1.2500 | 0.3030

1.85 | 1.50 | 0.2424 | 1.2500 | 0.3030

w | 1.50 | 0.6787 | 1.2500 | 0.8484

8 x8 DCT 0| 3.50 | 0.3447 | 5.2500 | 1.8097
0.74 | 3.50 | 0.3021 | 8.4054 | 2.5393

1.02 | 3.50 | 0.2413 | 5.9572 | 1.4375

1.36 | 3.50 | 0.1957 | 5.4736 | 1.0712

1.71 | 3.50 | 0.1488 | 5.2500 | 0.7812

2.08 | 3.50 | 0.1206 | 5.0263 | 0.6062

2.45 | 3.50 | 0.0797 | 4.5428 | 0.3621

7 | 3.50 | 0.1388 | 2.0955 | 0.2908

8x 8 WHT 0] 3.50 | 0.3447 | 5.2500 | 1.8097
0.82 | 3.50 | 0.3485 | 5.2500 | 1.8296

1.15 | 3.50 | 0.2977 | 5.2500 | 1.5629

1.43 | 3.50 | 0.1488 | 5.2500 | 0.7812

1.72 | 3.50 | 0.1488 | 5.2500 | 0.7812

1.99 | 3.50 { 0.2977 | 5.2500 | 1.5629

2.33 | 3.50 | 0.3485 | 5.2500 | 1.8296

m | 3.50 | 0.3447 | 5.2500 | 1.8097
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Table 3.2 Time-frequency localizations of 8 x 8 DCT and 8 x 16 DCT-LOT

w n o o2 | o2 x ol
8 x 8 DCT 0| 3.50 | 0.3447 | 5.2500 | 1.8097
0.74 | 3.50 | 0.3021 | 8.4054 | 2.5393
1.02 | 3.50 | 0.2413 | 5.9572 | 1.4375
1.36 | 3.50 | 0.1957 | 5.4736 1.0712
1.71 | 3.50 | 0.1488 | 5.2500 0.7812
2.08 | 3.50 | 0.1206 | 5.0263 | 0.6062
2.45 | 3.50 | 0.0797 | 4.5428 | 0.3621

7 | 3.50 | 0.1388 | 2.0955 | 0.2908

8 x 16 0(7.50]0.0917 | 4.654 | 0.4269
DCT-LOT | 0.59 | 7.50 | 0.0549 | 7.615 0.418
0.98 | 7.50 | 0.0345 | 8.387 | 0.2898
1.37 | 7.50 [ 0.0523 | 8.645 | 0.4523
1.76 | 7.50 { 0.0367 835 | 0.3070
2.16 | 7.50 | 0.0608 | 7.549 0.4596
2.55 | 7.50 | 0.0389 | 7.778 | 0.3026

7| 7.50 ] 0.119 | 5.360 | 0.6419

CQF[35], and the multiplierless PR-QMF[1]. Tables 3.4 and 3.5 also display this
comparison for hierarchical structure 4-band(22-tap product filters), and 8-band(50-
tap product filters) configurations. In all these cases, the multiplierless structure
has the best time-frequency product o¢,0,, followed by the Smith-Barnwell CQF,
and the Binomial QMF. As expected, longer duration filters have narrower o,,’s and
wider 0,,’s. Again, as expected, the 8-band, 8-tap block transforms (Table 3.1) have
much narrower o,’s than any of the 8-band tree-structured filter banks, but very
poor frequency localization.

Figure 3.4 displays the impulse responses of the product filters of the two-band
Binomial QMI" based hierarchical regular tree for the 2 and 4-band cases along with
the basis functions of the 2 x 2 and 4 x 4 DCT (Fig. 3.5). Figures 3.6 and 3.7
show the corresponding frequency responses. These demonstrate the drawbacks of

blindly repeating a two-band PR-QMF module in a hierarchical subband tree. The
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Table 3.3 The time-frequency localizations of several 8-tap PR-QMF /wavelet filters

= 2 2

w D o2 ol | ol xo?

B-QMF (3-tap) | 0 | 1.46 | 0.9468 | 0.6025 | 0.5704
7 | 5.54 | 0.9468 | 0.6025 0.5704

Multiplieriess | 0 | 2.50 | 0.9743 | 0.3750 | 0.3654
(8-tap) 7w | 4.50 | 0.9743 | 0.3750 0.3654
Smith-Barnwell | 0 | 4.17 | 0.9174 | 0.5099 | 0.4678
(8-tap) 7w | 2.83 [0.9174 | 0.5099 | 0.4678

time spread increases considerably while the time-frequency product degrades. This
suggests two possibilities: either design the M-band, single level structure directly
or use the hierarchical tree structure, but monitor the product functions from level-

to-level.

3.5 Wavelets and Time-frequency Decomposition
The orthonormal wavelets were introduced in Section 2.3 as a tool for multireso-
lution decomposition of continuous-time signals to potential applications in several
fields. The wavelet transform is a mapping with superior time-frequency localization

compared with the STFT.

3.5.1 Time-frequency Resolution for Wavelet Families

The time-frequency localization of the wavelet transform is distinctly different from
that of the STFT. Define 7,2 as the centers of mass of 1(1), ¥(£2) on (—oo, 00), and
[0, 00) respectively. Then the RMS spreads for the prototype are

L(0 - D2|w(@)dn

o =
L
0 (4 D\2lah(1)]2

This wavelet function is centered at 7, in time-frequency plane with spreads oy,

and oq. It follows that 1.4(t) = W (82) is centered at (T40, Qup) = (al+ b, Q/a) with
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Table 3.4 The time-frequency localizations of hierarchical subband trees for 2-
level(4-band)

w n o2 o2 | 02 x ok

B-QMF Hierarchical 0| 4.05]0.2526 | 2.7261 | 0.6886
4 Band Tree 1.23 | 12.88 | 0.1222 | 3.8269 0.4676
(22 tap product 1.91 | 16.28 | 0.1222 | 2.7757 0.3392
filters w | 8.80|0.2526 | 2.2622 | 0.5714
Multiplierless 0| 7.500.2747 | 1.5817 | 0.4345
(22 tap product 1.24 | 11.50 | 0.1346 | 2.1683 0.2918
filters) 1.90 | 13.49 | 0.1346 | 2.1675 0.2918

x| 9.5010.2747 | 1.5818 0.4345

Smith-Barnwell 011245 | 0.2339 | 2.1458 | 0.5019
(22 tap product 1.22 | 9.88 | 0.1077 | 2.9463 | 0.3173
filters) 1.92 | 8.45 7 0.1077 | 3.0185 0.3251

w | 11.22 | 0.2339 | 2.0772 0.4859

spread
1
Us%(ab) = ;0'(22
Oty = @*0} (3.34)

and resolution cell gyasy0aas) = 1/2. Thus, the resolution, i.e. localization, in time
and frequency depends on this scale parameter ¢. The shape of the resolution cell
depends on a although the cell area is constant. This can be contrasted with the
STFT which has constant shape resolution. These are shown in Fig. 3.1, and the
span of these cells in the time-frequency plane is called a “tiling” of the plane.

An often quoted example of a wavelet is the second derivative of a Gaussian
P(t) = (1 = 2)e™/2 o P(Q) = V2rQte~ /2
This mother function has excellent localization in time and [requency and satisfies the
admissibility condition. But it is not of compact support, and is not complete. For

this case, we calculate (f = 0,02 = 7/6), and (1 = 1.505, 03 = 0.23646), resulting in

a time-frequency cell opoq = 0.525.
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Table 3.5 The time-frequency localizations of hierarchical subband trees for 3-
level(8-band) cases

o n al ol | o x o

B-QMF Hierarchical 0 9.1210.0644 | 11.726 | 0.7552
8 Band Tree 0.63 | 26.96 | 0.0490 | 15.953 | 0.7817

(50 tap product 1.01 | 34.11 { 0.0961 | 11.326 | 1.0884
filters) 1.45 | 19.65 | 0.0496 | 9.7846 | 0.4853

1.68 | 22.56 | 0.0496 | 10.510 | 0.5213
2.13 | 37.99 | 0.0961 | 12.013 | 1.1544
2.52 [ 31.54 | 0.0490 | 14.950 | 0.7326

m | 14.36 | 0.0644 | 10.777 | 0.6940

Multiplierless 0]17.53 | 0.0724 | 6.3415 | 0.4591
(50-tap product 0.64 | 25.46 | 0.0688 | 8.8171 | 0.6066
filters) 1.02 | 29.46 | 0.1193 | 9.1282 1.0890

1.45 | 21.54 | 0.0558 | 7.2005 | 0.4018
1.68 [ 23.47 | 0.0558 | 7.2099 | 0.4023
2.11131.53 { 0.1193 | 9.1234 | 1.0884
2.50 | 27.54 | 0.0688 | 8.8269 | 0.6073

w | 19.47 | 0.0724 | 6.3371 [ 0.4588

Smith-Barnwell 0 | 28.86 | 0.0591 | 8.6494 | 0.5112
(50-tap product | 0.6137 | 24.03 | 0.0321 | 11.837 | 0.3800
filters) 0.9951 | 21.22 | 0.0688 | 12.623 | 0.8685

1.4488 | 26.55 | 0.0436 | 9.5939 [ 0.4183
1.6927 | 25.32 | 0.0436 | 9.6769 | 0.4219
2.1465 | 19.57 | 0.0688 | 12.599 [ 0.8668
2.5279 | 22,51 1 0.0321 | 11.912 | 0.3824

m | 27.93 | 0.0591 | 8.5379 | 0.5046




43

We have seen in Eqgs.(2.47) and (2.48) that orthonormal wavelet families can be
generated by any pair of two-band paraunitary filters Ho(2), H1(2), with Hy(—1) = 0.
The generation of Daubechies wavelets are given in [17]. These wavelet filters are
identical to the Binomial QMF[3]. These filters have the maximally flat magnitude
square responses. In [15] and [16] other wavelet families(e.g. the most regular,
Coiflcts) are devised by imposing other requirements on Hy(z).

Table 3.6 compares the time-frequency resolutions of scaling and wavelet
functions for three wavelet families generated by 6-tap paraunitary filters; the
Daubechies, most regular and Coiflet, along with the localization properties of the
progenitor discrete-time fillers. As seen in Eq. (2.47) and Eq. (2.48), the Fourier
domain equalities require infinite product terms theoretically. The localization
measures in this table assumed the maximum product order of £ = 8 in Eq. (2.47)
and Eq. (2.48). It considered the frequency range of —2fr < Q < 2z, Table
3.6 demonstrates that the time-frequency localizations are important measures in
the evaluation of a wavelet family as an analog filter bank. In particular, the
role of regularity in wavelet transforms should be evaluated for signal processing

applications.

3.6 Discussions and Conclusions

In this chapter, we examined the discrete-time uncertainty principle, its measure
by a resolution cell, and lower bounds for different classes of signals. We also
evaluated the time-frequency resolutions of some known orthogonal signal decom-
position techniques; block transforms, lapped orthogonal transforms, subband filter
banks and wavelets.

Historically, the design of transform bases and filter banks has emphasized
either the time or frequency domain with orthogonality as their main feature. It

is well observed and understood in visual signal processing and coding applications
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Table 3.6 Time-frequency localizations of 6-tap wavelet filters, and corresponding
scaling and wavelet functions

Daubechies[19][21] | Mostregular[29] | Coiflet[27]

Scaling | o4 0.134 0.143 0.086

Function | o3 5.22 5.77 11.86
oo | 0.699 0.825 1.02

Wavelet | ok 0.178 0.188 0.108

FFunction | o 8.97 11.70 39.36
o2od | 1.596 2.199 4.25

Low-Pass | o2 0.453 0.470 0.305

PR-QMF | o2 0.987 0.996 1.059

High-Pass | o2 0.453 0.470 0.305

PR-QMF | o2 0.987 0.996 1.059

that the behavior of transform basis or filters should be monitored jointly in time
and frequency domains. 1t is expected that this point will be considered in the future
designs.

The FIR two-band orthonormal filter banks have a vital role as the inter-scale
coefficients in the design of compactly supported orthonormal wavelet transform
bases. The wavelet theory emphasizes the differentiability or regularity property
of the basis functions in the design. Wavelet regularity implies a flat frequency
response for the wavelet filters at w = 0 and w = 7. In Table 6, the time and
frequency localizations of wavelet filters along with the corresponding wavelet and
scaling functions were evaluated for three different families proposed by Daubechies.
In addition to the regularity measure, new performance measures may be needed in
the design of wavelet bases for signal processing applications.

The transform bases or filter banks consist of a set of functions. The inter-band
leakage or overlapping of frequency functions should also be considered in the design.
This means a good localization at the desired region of time-frequency plane for all

the functions in the bhasis.
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We conclude that the overlapping transform basis or filter bank design has
significantly more degrees of {reedom than has been utilized. We expect more flexible

basis designs in the future for more efficient spectral decomposition of signal sources.



CHAPTER 4

SUBSPECTRAL MODELING IN FILTER BANKS

4.1 Introduction

The popular linear transform techniques, block transforms and subband filter banks,
have been successfully used for spectral decomposition. The generalized linear
transform (GLT) theory has matured and well established [2][40]. This general
approach provides non-overlapping and overlapping block transform bases with
multiresolution properties. In addition, the unequal bandwidth basis solutions are
shown to be feasible. Therefore, the current trend in decomposition field is to
search the best transform basis for the given input signal statistics. The subband
structuring (time-frequency tiling) along with the optimal basis design techniques,
provide the mathematical tools for spectral decomposition .

The spectral analysis and modeling has found its applications in many diverse
areas like speech coding to forecasting. The recent advances in the GLT theory have
opened new avenues for the joint treatment of the signal decomposition, spectral
analysis and modeling problems. We attempt to assess the merits of subspectral
modeling over the conventional modeling techniques which utilize the full spectrum.

The basic idea here is to split the signal spectrum into its subspectra based on
certain criteria, and model them individually rather than modeling the full spectrum.
It is shown that the subband or sub-interval modeling is superior to the full interval
modcling of the spectrum.

Linear predictive(LPC) modeling technique has heen widely used particularly
for low bit-rate speech coding and synthesis [7][14]. There have been contradicting
reports in the literature on the practical merits of subband LPC modeling, coding.
We also address that problem in this chapter as the special case of the general topic
studied. We will show that performance improvement is possible in subspectral

LPC modeling over full spectrum. We give the possible reasonings why the earlier

46
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studies on subband LPC were not performing satisfactorily and contradicting to the
expectations.

The idea of selective linear prediction of speech was first mentioned by
Makhoul[26]. Later, subspectral modeling was studied by Roberts, and Wiggins
[33]. It was reported in [7] that the subband LPC was not superior to the conven-
tional case for speech coding applications. On the other hand, Ref. [14] reports that
subband LPC provided a better coding performance than the full band case in their
experiments. All of these studies were mainly experiinental. More recently, Rao and
Pearlman [32] have addressed some aspects of the problem.

We will, therefore, altempt to jointly treat the spectral decomposition and
modeling steps and provide the theoretical reasonings for the experimental obser-

vations,

4.2 Statistical Source Modeling
Parametric modeling has been found to be an attractive method for the represen-
tation of signals. Among the widely used models, the moving average (MA), the
autoregressive (AR), and the autoregressive-moving average (ARMA) models have
been the most popular ones [23]. In all of these models, a signal z(n) is assumed to

be generated by exciting a filter A(n) with white noise sequence u(n) as

X(2) = U(2)H(z) (4.1)

where X(z), U(z), and H(z) are the z-transforms of z(n), u(n), and h(n),
respectively.
More specifically, in the case where a(n) is an MA signal, the transfer function

Haa(2) of hara(n) is given by
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fIMA Zbkz k (4'2)
where ¢ is the filter order, and 0 = 1. Clea.rly, hya(n) is an FIR filter. We

call z(n) an MA(q) process. In the time domain, x(n) is written as

q9
n) =Y bgu(n — k) (4.3)
k=0
When z(n) is an AR signal, the spectral shaping filter used has a transfer

function Hap(z) given by

1 1
o A(z) 14 b1 arz™k

where p is the order of filter. It is assumed stable, since hgagr(n) is an 1IR filter.

Hap(z)

(4.4)

We call x(n) as an AR(p) process. Similarly, (n) is written in the time domain as

Z arz(n — k) + u(n) (4.5)
where ag = 1. Last, in ARMA modeling which is a combination of both AR

and MA models, we find Happma(z) expressed as

B(Z) _ Z;{::0 bkz_k
A(z) 1470 aez"F

This one is also an IIR filter which is assumed to be stable. z(n) is referred to

HARMA(Z) = (46)

be an ARM A(p, q) process. In this case, z(n) is written as

z(n) = Z apz(n — k) + Z bru(n — (4.7)

4.3 Relationships Among Model Parameters
For a given AR, MA, or ARMA model of a finite order, it is possible to express it in

terms of the other two . For instance, an MA or ARMA process can be represented by
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a unique AR model of infinite order. Particularly for ARMA to AR transformation,
we derive the relationship between an ARMA with finite parameters and its AR

counterpart. 'or ARMA, we know that

B(Z) — Z:?::O bkz_k

H(z) = = 4.8
(2) A(z) 147, a2k (4.8)
Let
C(z)=1+ Eckz"k (4.9)
k=1
be the AR(oco) model. Therefore , we can rewrite Eq. (4.8) as
_B(z) 1

H(z) = ie) " @ (4.10)

The sequence {¢(n)} where n goes from 0 to oo is easily obtained in a recursive

manner as

c(n) =~ Zq: bre(n — k) + zpzaké(n - k) (4.11)
k=1

k=0

where 6(n) is the Kronecker delta. This infinite series will converge if the zeros
of B(z) are inside the unit circle. In other words, for this series to converge, H(z)

will be assumed minimum phase. H(z) will then be both stable and invertible.

4.4 Effects of Multirate Operators on Spectral Modeling
In this work, we study the modeling problem in a multirate environment and inves-
tigate the effects of multirate processing on modeling. We assume that our input

x(n) to be an AR(p) process. Its power spectrum (PS) is given by

1

EATEVTER

(4.12)



50

hi(n) Y \2) gu(n)

Se(z)
hi(n) @ @ gu(n)

Figure 4.1 A generic two-band filter bank structure

where A(z) = 1 4+ T8_ arz~*. We study the two-band subband structure
given in Fig. 4.1 This structure decomposes a signal into two subband signals
by passing it through a lowpass and a highpass filters. The subband signals are
downsampled to satisfy Nyquist rate requirement before any processing (modeling,
coding). At the receiver side, each of the downsampled subband signals is upsampled
and further processed by interpolation filters before the summation at the output.
The filters are chosen in such a way that aliasing and imaging distortions introduced
by the downsamplers and upsamplers, respectively, are removed, resulting in a perfect
reconstruction of the original signal.

The operators used in a multirate or filter bank structure are displayed

individually in Fig. 4.2

4.4.1 Effects of Filtering
The filter output in Fig. 4.2.a is expressed as y(n) = x(n) * b(n) where * stands for
linear convolution. B(z) is assumed to be an FIR . The power spectrum density of

the process y(n) is easily expressed as

_ B(z)B(z"")

Sr(2) = A(2)A(zY)

(4.13)

The output Y(2) is an ARMA(p,q) process. B(z) may be any one of the

spectral splitting or anti-aliasing filters and Y(2) is its output.
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Figure 4.2 Some typical interconnections analyzed
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4.4.2 Effects of Downsampling
z(n) is an input to the downsampler as given in Fig. 4.2.h. The output d(n) of the

downsampler has a PS given as

[S2(27) + Sa(—27)] (4.14)

[\Dlr—-‘

Sp(z) =
Let us now expand the above equation to find out what kind of process d(1.)

is. A(z) can be written in a factorizable form as

P
H (1 —pez™) (4.15)

where pys are the zeros of A(z). Thel efore, Sp(z) is expressed as

] 1 1
+
[H;. 1(1=prZ71)(1 = pe2) Hl’=1(1+pr‘1)(1+ka)]
where Z = 2. We can rewrite Eq. (4.16) as

SD(Z)

(4.16)

oA+ 27 YA + 2 2) + T, (L — e 27H)(1 —ka)] (4.17)
b1 (L= Z7 )1 = Z) 1+ pe Z-1)(1 + prZ) '

We notice that the numerator in Eq. (4.17) is a polynomial in degree [2] and

Sp(z) = % [

the denominator is a polynomial in degree p. [x] stands for the integer part of x.

Thus, the output D(z) in Fig. 4.2.b is an ARM A(p, [E]) process.

4.4.3 Effects of Decimation
The combination of anti-aliasing filtering and downsampling is called the decimation
operation. y(n) is the input to the decimator as scen in Iig. 4.2.c. In this case, the

output d(n) of the decimator has a PS given as

[Sy(z%) + S)'(—Z%)]

(ML

o] — N =

[Sx(z8)S(:3) + Sx(~=)$p(—2})] (4.18)
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We will expand the above equation again to find out what kind of process d(n)

is. The filter function B(z) can be written in a factorizable form as

1 — zp2 ) (4.19)

i ::]-a

where zs are the zeros of polynomlal B(z). Therefore, Sp(z) is expressed as

S (Z) l HZ‘:I(I_sz—l)(l—sz) HZ:I(]‘ +sz—1)(1+sz) (4: 20)
ST M (- pZ )1 - p2) " oL+ 2 )1+ p2) ‘
where Z = zz. We can rewrite Eq. (4.20) as

1 P(z)
S Z) == 4:.21
where the numerator and denominator polynomials are given as
P
P2) = TIQ+m2™)(1+p2) [T - 2271~ 22) +
k=1 k=1
P
0 -nz 1 -n2) [J0+a2 )1 +a2)  (4.2)
k=1 k=1
»
Q(z) = II (1=peZ7 )L = peZ)(1 + peZ71)(1 + i 2) (4.23)

We notice that the numerator is a polynomial in degree [2£] and the denom-
inator is a polynomial in degree p. [x] stands for the integer part. Thus, D(z) is
an ARM A(p, [B4]) process. If B(z) is one of the splitting filters in the filter bank,
and is a good 7 /2 filter, ¥'(z) is essentially similar to an AR(p') where p/ < p. The
intuition behind the smaller order is that the effects of any poles located in [7/2, 7]
interval are negligible. Thus, the signal can be represented by a smaller number of

poles.
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4.4.4 Effects of Upsampling
Taking the output of the decimator as input o the upsampler as seen in Fig. 4.2.d.,
we can easily trace the combined effects of the upsampler and the interpolation filter

on the spectrum. The input and output spectra of the upsampler are related as[28]

Su(z) = %Sp(zg) (4.24)

Hence, the spectrum at the output of the interpolation filter becomes

P(z)

, 1 . - 4§
() = T PEFE) (4.25)
where
P(z) = fI(l-}-pkz )1+ prz) H(l—— D - z2) +

k=1

ﬁ(l — prz" (1 — pi2) ﬁ[(l + 2z ) (1 + 242) (4.26)

k=1 k=1

Q) = T10 = pe=™)(1 = pez)(L+ pez™)(1 + pu2) (4.27
k=1

We see that the spectrum at the output of the interpolation filter is an

ARM A(2p,p + 2q) process.

4.4.5 AR(1) Source Case
If an AR(1) process is assumed as input to the filter bank, we can easily trace the
spectral changes through a typical branch of the filter bank. Therefore, the spectra

al different points of the branch are as follows:
1. The input is an AR(1) process.

2. The spectrum at the output of the analysis filter is therefore an ARMA(1,3 )

Iy . d . .
process if a {our-tap filter is used.
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3. The output of the downsampler can be shown to be an ARM A(1,2) process.

4. The spectrum of the output of the branch can be shown to be ARM A(2,7)
with the assumption of a four-tap interpolation filter used for example the

Binomial-QMF.

4.5 Performance Analysis of Subspectral Modeling
Autoregressive modeling of signals is often used because it is easily implementable
and fairly understood. We give the theoretical setting of AR modeling performance

in general and specify it to the sub-spectral configuration.

4.5.1 AR Modeling and Error Analysis
A signal can be expressed as a linear combination of its previous samples in AR

modeling as

x(n) = — zp: agz(n — k) + u(n) (4.28)

k=1

where {a;} are the prediction coefficients and {u(n)} is the prediction error
signal. There are several efficient algorithms to calculate AR model parameters
{a;}, based on the measured statistics of a given signal. The relations between {a;}

and input correlation sequence Ryx(m) are found as

P
D arBxx(li—k|)=—-Rxx(i) 1<i<p (4.29)
k=1

Eq. (4.29) implies a set of p linear equations in p unknowns. The minimum

prediction error employing {a;} is found as[26]

14
EP = Rxx(0) 4+ > arRxx (k) (4.30)

k=1
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4.5.2 Discussions on Error Performance
It is readily seen from LEq. (4.30) that the modeling performance depends on the
spectrum of the signal. We would like to comnpare the performance of modeling at
various points of the filter bank. Fig. 4.5 displays the AR modeling performance for
several input sources. These inputs were chosen to have different statistical features.
Fig. 4.3 and Fig. 4.4 illustrate the power spectral density of two pure AR and ARMA
processes along with those of {wo sample speech frames.

For comparison purposes, ARMA modeling errors are also included in Table 4.1.
It is observed from Fig. 4.5 and Table 4.1 that AR and ARMA techniques perform
comparably for the given cases. It is clear that the subspectral modeling before the
rate change, using either technique, significantly outperforms both the full spectrum
case and the one after the rate change. This is due to the following facts. First, the
superiority of subspectral modeling over full spectrum is attributed to the fact that
each portion of the spectrum is approximated by an independent model (piccewise
approximation). Thus, the whole spectrum is fitted better and smaller modeling
errors are oblained. Second, the superiorily of subspectral modeling before rate
change over the one after rate change is due to the fact that the decimation operation
distorts the spectrum by introducing aliasing components in the subband signals [2].
More interestingly, subspectral modeling error after the rate change was found to
be comparable or inferior to the full spectrum case depending on the input source.
Therefore, the subband modeling is not justified theoretically for the experiments
performed in this study. The results suggest that performance improvernents are

possible if the subspectral modeling is done before the downsampler.
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Figure 4.5 Prediction error in subbands vs. order p

Table 4.1 ARMA modeling error performance for different input sources

Input Source

Order (p+q)

Full Band

Subband Before

Subband After

Downsampler | Downsampler
AR(T) 8 0.1378 0.0522 0.1818
ARM A(5,5) 10 0.2577 0.0387 0.2649
Speech A 10 0.1094 0.0144 0.1749
Speech B 10 0.0422 0.0088 0.1051
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—_— A(z) =
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Figure 4.6 Pertaining to the proof

4.6 A Simple Proof of Performance Improvement in Subspectral
Modeling

Let x(n) be the process to be modeled as an AR. A(z), the modeling filter, is such

that £y is minimum as depicted in Fig. 4.6. The modeling error is calculated as

Err = 2(n / w) |Pdw
L 0 2m

o = L[ 2 2 .
Err = 27r/_1r|A(w)| | X (w) [*dw (4.31)

Assume that z(n) is split into two equal bands in the frequency domain. With
the same token, A;(z), the model of band 1, is such that the modeling error Errl is

minimum , where

N- : 1
Errl = ;1 =or /. |E()|c/w
1 T
= = [ 1A [ Huw) Pl X () P (432

Similarly, As(2), the model of band 2, is such that Err2 is minimized , where

N-1 1
Err2 = " e3(n) / | EBa(w) |Pdw
k=0 2'/7
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- 21 | Ax(w) [ Halw) | X () [deo (4.33)

If the filters Hy(z) and H,(z) are power complementary, such that

| Hi(w) [* + | Haw) [P =1 (4.34)

we can write the total modeling error Err of the system as

o = %/ T A@) P H ) [P+ Hafoo) ] X () P

1 ,
Brr = s [T 1AW P W) PIX(@) Fdo+ o [T 1 Aw) P Haw) )] X (@) Pdo
Err = Ea—I—Eb (4.35)

For each band, there is a unique modeling filter that leads to a minimum
error for a given order. Since A;(z) is unique for z;(n), any other filter used will
give a higher modeling error. Therefore, it is clear that £, is greater than Errl .
Similarly, we conclude that [ is also greater than Err2. This implies then that

always Err > Erry + Err,.

4.7 Subspectral CELP Speech Coding and Performance Comparisons
One of the widely used applications of AR modeling is LPC based speech coding.
In this case, speech sequence is subdivided into frames of 160 — 200 samples at
the sampling rate of 8 K Hz. Then AR modeling or LPC analysis is performed on
each frame. The AR coefficients along with the residual modeling error are encoded
and transmitted to the decoder. The AR coeflicients or LPC parameters are not
quantized directly since their quantization may not always lead to a stable filter.
Additionally, the quantization effects on the shape of the spectrum are of practical
concern. Instead, an alternative set of parameters called line spectral pairs (LSP) or

line spectral frequencies (LSI') are used to encode {a;} coefficients. The LSFs exhibit
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nice intrinsic properties which permits efficient coding of LPC coefficients [19],[36].

The LSPs are the roots of the sum and difference filters given by

Poi1(2) = An(2) + z'("H)An(z_l). Sum filter (4.36)

Qnir(2) = An(2) — 274, (7Y, Dif ference filter (4.37)

where n is the order of prediction filter A(z).

These filters have their zeros on the unit circle (UC). Thus, only the phase of
these roots has to be computed. The polynomials P(z) and Q(z) have extraneous
roots at 2 = 1 and z = —1, respectively. Therefore, each filter has n/2 root pairs.
The roots of P(z) and Q(z) are ordered on UC and interlaced with each other. These
properties are exploited in order to have an eflicient coding. After quantization of
LSP coelficients, the reconstructed filter A?(z) retains its stability. The reconstructed

filter is expressed as

A%(2) = 0.5 x (Piya(2) + Qrpa(2))- (4.38)

In this study, we used a prediction order n = 10. Let vector w” =[wy,wy, ...,w)(]
represents these LSPs frequencies. An efficient vector quantization (VQ) procedure
has been devised by Paliwal and Atal[29]. The full range of w” is partitioned in two
parts, w, and wy. The size of each of these vectors is 4 and 6 respectively. Each of
these sub-vectors is quantized separately. In subband LPC coding application, for
the two-band filter bank example, the {af} and {af}, the low and high band LPC
parameters, respectively, are mapped into LSP domain for quantization purposes.
In this application, the full range of w? and w?; is not partitioned in two parts. It
is worth mentioning that the particular partitioning of the vector w’ used in this

work lends itself to 7/2 subspectral decomposition. The reason behind this is that



63

stalislics have shown that more than 99 % of LSF vectors of order 10 have their first
4 LSF’s confined to the interval 0 to /2.

Code Iixcited Linear Predictive (CELP) coder has been found to be the leading
candidate for relatively high quality speech compression that will transmit speech in
the range of 4800 --9600 bits/sec with an acceptable level of complexity[6]. The basic
approach in this coder is to use time-varying predictive filters to model the correlation
between speech samples . To do that, the digitized speech signal s(n) is filtered
using a short-time predictor to extract the formants (LPC) coeflicients or vocal tract
information. The coeflicients are quantized and used for the prediction of the signal.
The signal that remains after removal of the correlation between adjacent samples is
further filtered using a long-time predictor to extract the pitch information and thus
removal of the correlation between adjacent pitch periods. The pitch data composed
of the pitch lag and the pitch prediction coefficient are also quantized and used for
predictive filtering of the signal. The transmitted information consists of quantized
filter parameters (side information), gain term, and the quantized residual samples
from the filters (residual information). This remaining information is modeled by
samples drawn form a stochastic codebook such that the resulting synthetic signal
is a close replica to the original speech signal. Fig. 4.7.a shows the basic structure
of the coder.

The codebook contains N excitation vectors, The selection of the best
excitation vector is performed by a full search procedure through the codebook
using a weighted mean square error criterion. Each excitation vector is scaled by a
gain factor g; and passed through the long and short time filters, to restore the pitch
and the vocal tract information, respectively. The resulting signal 2;(n) is then used
in computing the optimal gain term g; for that vector and the resulting error e;(n).
the index of the vector codeword and the quantized scalar gain corresponding to the

minimum distortion d; are transmitted to the receiver.
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Table 4.2 CELP SNR (dB) performance at 4.8 Kb/sec for different schemes

Speaker | I'ull Band Subband without Subband with
Downsampler Downsampler
Lowpass | Highpass | overall | Lowpass | Highpass | overall
Male 10.07 9.25 3.30 8.94 9.71 3.15 9.12
lemale 8.73 8.54 3.82 8.37 8.40 4.04 8.05

At the receiver end, the decoder simply multiplies the excitation vector by
an appropriate gain and passes the resulting signal through the synthesis filters to
generate the replica of the original speech. Ilustration of the CELP decoder appears
in Fig. 4.7.b.

To assess the benefits of subband modeling, we embedded a two-band filter
bank within the CELP structure. Several simulations, running at 4.8 Kb/sec, were
conducted using the CELP coding approach. The first one used no filter bank decom-
position. The second and third simulations had 2 band-split configuration being
incorporated in the CELP structure with/without downsamplers respectively. The
SNR results between the original speech and the coded one are tabulated below for
both a male and a female speakers. As it can be seen, the CELP algorithm performs
betier in terms of SNR for the fullband than {for either type of the two band scheme.
However, listening tests revealed no preference is given to anyone of them. In other
words, all of them exhibited a comparable speech quality. It should be noticed that
CELP favors low frequencies to the high ones. This is expected, since high {requency

signals exhibit low correlation between the samples.

4.8 Conclusions
We presented a joint treatment of spectral decomposition and modeling problems in

this chapter. A complete analysis of the subspectral modeling problem is given. The
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performance of subspectral modeling and the conventional modeling approaches are
compared. It is shown that subspectral modeling provides significant performance
improvements if used carefully. The proposed approach was tested for several
signals, including speech signals, and is shown to follow the theoretical results. It
is expected that the combination of spectral decomposition and modeling steps
will open new avenues for better treatment of many signal processing problems.
However, when subband modeling was combined with coding of speech namely
CELP technique, it was found that no real gain was obtained. The improvements
in this scenario are shown to be quite random. Therefore, this study explains the
reasons of conflicting performance results with subband LPC based speech coders

reported in the literature.



CHAPTER 5

SUBBAND IMAGE CODING

5.1 Introduction

In the last two decades or so, tremendous research activities were geared toward the
area of image compression. The main reasons for this are the high demand for trans-
mission of pictorial information using digital computers and the rapid deployment
of digital transmission facilities. Image compression has found many areas of appli-
cations. Among these, there is the recent emerging video-telephone technology and
teleconferencing. Also of great commercial interest is the high quality coding of
broadcast television namely High Television (HDTV). Besides these, transmission
and storage of medical images and archives just to name a few make use of image
compression technologies for efficient handling of the data.

A vast inyriad of compression algorithms were developed to meet the bandwidth
consiraints required for potential transmission of digital pictures. From a simple
differential pulse code modulation (DPCM) coder that provides acceptable coding
quality at bit rate slightly below 1 bit per pixel to the powerful vector quantization
(VQ) based coder that can supply good image quality at rates below 0.5 bits per
pixel, we find a sea of algorithms. Some are based on block transforms (DCT),
some on lapped transforms, others on subband filter banks, or any combination of
all of these schemes. Of particular interest is the investigation and comparison of
the performance of different subband filter bank structures used in a typical image

codec.

5.2 Problem Statement
Subband coding of images is a technique by which an image is decomposed into a set,
of subbands cach comprising a particular frequency band. This task is accomplished

by the usage of an analysis filter bank. The obtained subband signals are presented



68

to the encoder for compression purposes via an oplimal and efficient bit allocation
scheme. Afterwards, the encoded subband signals are sent through the channel. At
the receiver side, the received signals are decoded and passed through a synthesis
filter bank to recombine the subbands in order to get a close replica of the original

image. At this point, we would like to pose the following questions:

o What type of filter bank ought to be used? That is, should we use an hicrar-

chical splitting or direct partitioning of the image?.

e To what extend should the image be split into subbands prior to coding? that

is how many subbands should we split the image to?.

Since our attention is to use filter banks in a complete codec system, we cannot,
strictly speaking, separate this study from the use of quantization of the subbands.
"The reason is that it is the coding part that makes the difference on the quality of the
decoded images. Nonetheless, we will use the same coding algorithm in all upcoming
experiments in order to study the effects of the different filter bank structures raised

up earlier.

5.3 Filter Bank Structures
Filter banks come in two categories hicrarchical and direct structures as mentioned
earlier. The former makes a repetitive use of a generic two-band (PR or non-PR)
filter bank in order to get the desired frequency split. The latter, however, as its name
implies, split the signal in a single shot. Fig. 5.1 illustrates several two dimensional
frequency band splitting. Fig. 5.1.a and c¢) can only be obtained using hicrarchical
structures. Whereas Fig. 5.1.b and d) can he obtained using either type of structure.
It is evident from Fig. 5.1 that the direct form M-band structure does not provide
multiresolution signal representation which is a by-product in hierarchical M-band

structure. In addition, since there can not he any linear-phase two-band paraunitary
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c) d)

Figure 5.1 Different two-dimensional spectrum splits

filter bank solutions[2][40], all the product filters in hierarchical filter bank have non-
linear phase. In contrast, it is possible to design linear-phase M-band paraunitary

filter banks with equal bandwidths.
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Table 5.1 Gr¢ performance of 2-, 4-, 8-band hierarchical filler bank(based on 2-
band PR-QMFs), along with the perforiance of direct-form filter banks for an AR(1)
source of p = 0,95,

2 — Band | 4 — Band | 8 — Band
6-tap BQMF (Hier.) 3.7588 | 6.7665 |  8.5293
8-tap BQMF (Hier.) 3.8109 |  6.9076 |  8.7431

6-tap (Direct) 3.7588

8-tap (Direct) 3.8109 6.25 6.42
8-tap (Direct, Multiplierless) 6.0

16-tap (Direct) 6.85 7.80

32-tap (Direct) 7.05 8.24

5.4 Objective Performance Evaluation
In the beginning part of this evaluation, we shall compare the two structures as they
stand by themselves without any coding incorporated in the system. At the end, we

~will add the coding block in order to evaluate the entire image codec.

5.4.1 Energy Compaction
The gain of transform codihg over pulse code modulation(PCM), Grc, has been
widely used for the performance comparison of transforms and filter banks|[20][2].

This mcasure for an M-band paraunitary filter bank is defined as

o2

Gro = ——%——
(H_;'M=1 J_f)llM

(5.1)

where o2 is the input variance and {o}} are the variances of subband signals. So
the coding can be interpreted in two ways: first, it is the ratio of the input variance
02 Lo the geometric mean of the subband variances {o}}. Second, is the ratio of the
arithmetic to geometric mean of the subband signal variances. Table 5.1 provides
Gire performance of several different decomposition techniques for an AR(1) source.
It is seen {rom the table that the hierarchical structure has better energy compaction

than the direct structures considered here.
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5.4.2 Time-frequency Localizations
The time and frequency spreads of a discrete-time sequence were discussed at length
in Chapter three. We reproduce their definitions here as a reminder

2 _ Zle(n—0)?f(n)

q
|

n E ?
1 qm _—2F Jw 2d
i - IR 62)

where the means are given as
L7 ol ()P
E
Lo nlf ()
E

w =

=

Table 5.2 and Table 5.3 displays the time-frequency localizations of several direct
and hierarchical paraunitary filter banks. These tables indicate that the time spreads
hierarchical structures are worse than the direct structures. On the other hand, the

hierarchical cases have better frequency and joint time-frequency localizations.

5.4.3 Peak-to-peak Signal to Noise ratio

The compression algorithm used in this work is a lossy one. In other words, the
decoded image is a distorted version of the original image. Therefore, an evaluation
measure should be devised in order to assess the quality of the reproduced image.
This kind of cvaluation is termed an objective measure in contrast to a subjective
one. The latter is a visual judgement of the quality of the decoded image made by the
humans. One of the often used measure of objective performance is the peak-to-peak
signal to noise ratio (PSNR). It is defined as

255°

PSNR = —_—
((lB) 10[0!]10['){6(7’1)2}

(5.3)

where ¢(n) is the error between the original and the reconstructed image.
A generic image codec simulation program was utilized in this study. The

codec employs any paraunitary filter bank, hierarchical or direct form, for spectral
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Table 5.2 The time-frequency localizations of 4-band hierarchical subband tree(2-
level, 8-tap Binomial-QMF) along with 8-tap and 16-tap direct 4-band structure

w ﬁ ol o2 | ok x o2

B-QMF Hierarchical 0| 4.05|0.2526 | 2.726]1 | 0.6886
4 Band Tree 1.23 | 12.88 { 0.1222 | 3.8269 0.4676

(22 tap product 1.91 | 16.28 | 0.1222 | 2.7757 | 0.3392
filters) 7 | 8.80 | 0.2526 | 2.2622 0.5714
Multiplierless 0 3.5 03763 | 1.1946 | 0.4495

4 Band Direct 1.17 3.5 | 0.1357 | 2.2465 0.3049
(8 tap,linear phase) | 1.97 3.5 10.1357 | 2.2465 | 0.3049

filters) i3 3.5 | 0.3763 | 1.1946 0.4495

Direct Structure 0] 3.50|0.3422 | 1.1541 | 0.3950
(8-tap, linear phase) | 1.16 3.510.1399 | 2.038 | 0.2852
filters) 1.97 3.5 01399 | 2.038 | 0.2852

™ 3.5 1 0.3422 | 1.1541 0.3950

Direct Structure 0 7.5 | 0.2643 1.84 | 0.4855
(16-tap, linear phase) | 1.22 7.5 0.116 2.62 | 0.3045
filters) 1.93 7.5 ] 0.116 2.62 0.3045

T 7.5 | 0.2634 1.84 | 0.4855




73

Table 5.3 The time-frequency localizations of 8-band hierarchical subband tree(3-
level, 8-tap Binomial-QMF) along with 16-tap and 32-tap direct 8-band structure

w A a2 o2l o2 xo?

B-QMF Hierarchical 0| 9.12|0.0644 | 11.726 | 0.7117
8 Band Tree 0.63 | 26.96 | 0.0490 | 15.953 0.7818

(50 tap product 1.01 | 34.11 | 0.0961 | 11.326 1.0880
filters) 1.45 | 19.65 | 0.0496 | 9.7846 | 0.4857

1.68 | 22.56 | 0.0496 | 10.510 | 0.5215
2.13 | 37.99 | 0.0961 | 12.013 | 1.1540
2.52 | 31.54 | 0.0490 | 14.950 | 0.7327

7 | 14.36 | 0.0644 | 10.777 | 0.6942

Direct Structure 0 7.5 0.111 | 4.675 | 0.5192
(16-tap, linear phase) | 0.69 7.510.2313 | 8.087 | 1.8703
filters) 1.16 7.5 0.2158 | 7.3715 | 1.5912

1.44 7.510.0681 | 5.296 | 0.3605
1.70 7.5 ]0.0681 | 5.296 | 0.3605
1.98 7.50.2158 | 7.3715 | 1.5912
2.45 7.510.2313 | 8.087 | 1.8703

s 7.5( 0111 | 4.675| 0.5192

Direct Structure 0] 15.5|0.0727 | 4.675| 0.5327
(32-tap, linear phase) [ 0.71 | 15.5 | 0.2158 | 11.48 | 2.4785
filters) 1.13 | 15.5(0.2092 | 10.70 2.2391

1.45 | 15.5 | 0.0520 8.14 | 0.4237
1.68 | 15.5 | 0.0520 8.14 | 0.4237
2.01 [ 15.50.2092 | 10.70 | 2.2391
2.43 | 15.5|0.2158 | 11.48 | 2.4785

7| 15.50.0727 | 4.675 | 0.5327
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Figure 5.2 The rate-distortion performance of a 64-band subband image codec with
direct and hierarchical decomposition structures for the test image LENA

decomposition of images. The subbands are allocated the available bits according
to their variances. There were no visual weighting table nor fine tuning used in
this codec model for the purpose of a f(air image coding performance comparison
of diflerent filter banks. Tig. 5.2 displays the rate-distortion curves of 64-band
subband image codec employing hierarchical and direct structures for the test image
LENA. We also included the performance of a 16-band subband image code using
four band eight tap multiplierless direct structure. This performance is depicted with
the dotted line in Fig. 5.2. This figure shows that the hierarchical full-tree subband
image codec outperforms the direct form cases considered here. Fig. 5.3 displays
similar performance curves for the hierarchical subband image codecs of different tree
structures. It is seen that the dyadic-tree based subband image codec outperforms

the full-tree based codec for the coding experiments performed.
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Figure 5.8 The rate-distortion performance of several different hierarchical subband
image codecs for the test image LENA

5.5 Discussions and Conclusions
The [ollowing conclusions were drawn from the theoretical and experimental studies

performed in this thesis:

1. The hierarchical 8-band split(50-tap product filters) provides a better
energy compaction than the direct 8-band split(32-tap filters) for the cases
considered here. The compaction performance increases when the number

of bands is increased.

2. The time spread of hierarchical 8-band split is more than the direct
form 8-band split for the cases considered in this study. The first has
a non-linear(linear-like) phase response while the latter has linear phase
response. The hierarchical structure has better frequency and joint time-

frequency localizations than the direct forms considered.

3. The hierarchical structure(64-band) gave better rate-distortion performance

than the direct form(64-band) structure for the test image LENA. The
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visual quality of the compressed images for the 64-band hierarchical case

were superior to the 64-band direct form cases considered.

. The hierarchical dyadic tree of 10-bands outperformed the hierarchical
full tree of 64-bands both objectively and subjectively for the exper-
iments performed in this study. This somehow agrees with the concept
of having better time-localized functions for the representation of high-
{requency signal components. This observation suggests the computa-
tionally efficient dyadic-tree structures over full-tree structures for image
coding.

. The tree structuring or time-frequency tiling is an important concept in
subband signal decomposition(4]. The different subbands of different
applications should be treated accordingly. This also implies a flexible
filter bank design concept which is expected to find its applications in the
future.

. More experimental studies for the visual assessment of quantization noise

in subband image coding are expected in the future. The commonly agreed

QQ-tables of subband image coding are to be defined.



CHAPTER 6
DISCRETE MULTITONE TRANSCEIVERS

6.1 Introduction
A general digital communications system is depicted in Fig. 6.1[25]. A bit stream
is passed through a coder to generate data symbols depending on the type of
modulation needed. These data symbols are applied to a transmit filter, which
generates a continuous-time signal fit for transmission over the continuous-time
channel. The channel reshapes the transmitted signal and corrupts it with additive
noise. At the receiver end, the received signal is processed by a receive filter to undo
the effects of the channel and thus useful information is recovered. The decoder

basically remaps the received symbols into a bit stream.

6.2 Discrete Multitone Modulation

Discrete multitone (DMT) or multi-carrier modulation is a class of orthogonal
frequency division type of modulation. This concept dates back to the middle of
1960’s[10] , but received more attention since 1980[31][12]). A discrete version of
multitone (DMT') has been proposed as a standard for high-speed digital subscriber
line (HDSL) and asymmetric digital subscriber line (ADSL) communications[12][39].
In this frequency division type modulation, a multitude of paraliel QAM sub-channels
are used to transmit data in order to maximize the throughput of the channel. The
basic structure of a DMT transceiver is illustrated in Fig. 6.2. Instead of using a
single modulation filter, the system makes use of a set of N modulating filters called
transform basis functions. These filters can be represented as a set of vectors for
discrete systems. These vectors are normally chosen to be an orthonormal family,
i.e.

<p.p >=6; (6.1)

where <, > stands for the dot product.
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Figure 6.1 A general digital communications system

The sub-symbols (Xg, X1,..., Xn—1) that are applied to the modulating vectors
{p:i} are usually complex for quadrature amplitude modulation (QAM) schemes and
real for pulse amplitude modulation (PAM) ones. These sub-symbols are formed by
grouping sub-block of bits in the constellation step. The parsing of the incoming bits
to the sub-symbols is controlled by the channel attenuations. Since the transmitted
signal is the composite of N independent sub-signals or sub-channels, each of the
sub-channels will carry a different number of bits commensurate on the sub-channel
attenuation. Therefore, sub-channels that suffer less attenuation will carry more
bits of information. This discussion leads to the work of Kalet[22]. In fact, Kalet
studied the performance of multitone {or the case of two and infinite number of sub-
channels. e showed that multitone QAM systems provide a substantial increase in
the achievable bit rate as compared to that of a single tone QAM for brickwall channel

responsc cases. He also showed that multitone becomes theoretically optimum, i.e.
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Figure 6.2 Basic structure of a DMT

approaching the channel capacity to within 8 to 9 dB, when an infinite number of

carricrs is used.

6.3 QAM Multitone System
Multitone systems can take many forms of modulation/demodulation schemes.
However, QAM based mutitone systems were studied more widely in the literature.
In order to understand the operation of a QAM multitone system, we would like to

review some of the basic concepts of the scheme.

6.3.1 QAM System

We can think of a QAM system as a two-dimensional system and the signal constel-
lation is on a two-dimensional plane. In general, the constellations take a variety of
forms. For simplicity, we will assume that these constellations take a square shape
containing some power of 4 symbols. Fig. 6.3 illustrates the constellation points of

21 or 16 point QAM. The probability of crror, £, of a {wo-dimensional symbol in
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P, = KQ(;;) = I(Q(a\/—%) (6.2)

where K is the number of neighboring symbols. It is given by

QAM is given by[24]

K =4(1 — —ﬁ) (6.3)

where n is the number of bits and it is assumed to be even. The distance between
adjacent symbols in the constellation is d = 2a. Ny is the power spectral density
(PSD) and ¢? is the noise variance such that 02 = 22, The average symbol energy
is given by

2

E = ;(2" —1)a? (6.4)

IFrom this, we can relate n to the probability of error as

n = logs |1 +

3P ] (6.5)

NoW Q1 (%)

where P = EW and W is the bandwidih.

6.3.2 General Concepts of Multitone
IFig. 6.4 depicts a QAM nmwltitone system[22]. The transmitied signal consists
of N QAM signal tones combined, esch with a rectangular Nyquist spectrum of
bandwidth equal to W; Hz. We assume that the channel has a magnitude response
of a staircase shape as shown in I'ig. 6.5. In other words, the channel exhibits a
brickwall magnitude response in each sub-channel. rendering the system ISI {ree.
The individual M-ary QAM tones have different number of bits per symbol
where M = 2™, n; being the number of bits per symbol assigned for the :*
subchannel. It is assumed that each tone lias different transmit power P; such that
the total transmitted power P = 32N . P; = constant. The total bit rate R, is given
by Ry = YN, n;W; where W; is the bandwidth of the i** sub-channel. The idea

behind multitone is to maximize Ry by optimally dividing the total power P among
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Figure 6.4 The multitone QAM system

the different tones or equal bandwidth sub-channels. As mentioned before, the

sub-channels that suffer from more attenuation, receive less power and vice-versa.

6.3.3 Optimum Power Allocation

We extend the optimal power allocation scheme of Kalet[22] that considered only
two-tone and oo of tones to an arbitrary number of sub-channels. This derivation
is general in contrast to the indirect prool given by Kalet[21]. We assume that the
probability of symbol error in each sub-channel to be equal to P,. It can be shown

that the bit assignment for the :** channel to be given by[21]
n; = logy(1 + NM;k:l;) (6.6)

where NV is the total number of sub-channels, k; is the proportion of the total power

P allocated to the i sub-channel, [; is the gain of that sub-channel, and M; is a
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constant that can be shown to he equal o [22]
3P
M; (6.7)

=~ WN,Q-(P./Kn;)
where W is the total bandwidth of the channel, P, is the symbol probability of error,
and finally Kn; is the number of neighbors in the #** sub-channel.
We want to maximize the total bit rate R, given by
w N
Ry =57 ; loga(1 + N M;kil) (6.8)

subject to the following constraints

d k=1 (6.9)
and k; > 0 for all i’s. This optimization leads to

N
o 1+Zj:1NT14,-_1,‘_ | (6.10)
P N M LN )

It should be noted that the optimal bit allocation algorithm described here assumes
the decomposition of a given channel into equal bandwidth sub-channels. The

optimal values of k; given by Eq. (6.10) reduce to k; = ﬁ at high signal-to-noise
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Figure 6.6 Performance curve of the Multitone

ratio. This is exactly the optimum value given by Kalet [21]. The performance curves
of a multitone system for a typical subscriber loop, namely CSA Loopl at 640 K Hz
sampling rate, corrupted by white Gaussian noise at --100 dBm for several different
scenarios are depicted in Fig. 6.6. The input power is 20 mW in this example. The
probability of symbol error is of 10~7. These curves suggest that the more number of
sub-channels we use, the larger the bit rate we can achieve. However, no significant
theoretical performance improvement is observed beyond 20 sub-channels or so. The
solid curve in Fig. 6.6 assumes a brickwall split of the channel into sub-channels and
thus it is ISI free. The dashed curve assumes integer values for the different bits

allocated to the sub-channels.
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6.4 Practical Realizations of Modulation/demodulation
Theoretically speaking, multitone justifies itself. However, the practical issues
regarding the implementation of a multitone do not seem to be appealing {rom a
system designer point of view because of the need of having many QAM generators
at the transmitter. The receiver will also require the same complexity as well.

Fortunately, the linear orthonormal transform bases came to the rescue.

6.4.1 IDFT/DFT

We mentioned previously that the modulating/demodulation vectors form in general
an orthonormal basis. Peled and Ruiz 1980[31] proposed the IDFT/DFT basis
family as the modulating/demodulating vectors. Later, Ruiz, et al{34] improved
this scheme. IDFT/DIFT based DMT is shown in Fig.6.7. A mapping scheme of the
N complex QAM symbols is performed before taking the IDF'T in order to produce
a real time domain samples. Basically, the scheme maps N complex X (k) symbols

into 2N ,‘2"(1;:) symbols that satisfy a certain conjugate symmetry property nainely
X(k)= X*(2N - k) (6.11)

in order to obtain a suitable real signal as input to a real channel. The time-domain
samples are passed through the channel as usual. At the receiver end, the demod-
ulation process takes place through the use of a DI'T to analyze the signal into
the sub-symbols. An inverse mapping is further applied to get back the N QAM

sub-symbols, hence the bit stream.

6.4.2 IDCT/DCT
The IDFT/DFT pair is replaced by an IDCT/DCT basis family. Since this is a
real transform, the sub-symbols are assumed to be generated by a real modulation

scheme, namely PAM. In order to get the optimum power allocation as applied to
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PAM DMT, we follow the same treatment done using QAM. In this case [24],

d LA
YA R T Y
PC_I\Q(%)_AQ(G) (6.12)
where K is given in this case as
K = 2,@:";1_) (6.13)

M
and A = -g— In PAM systems, the average energy of the symbol is expressed{24]

M? -1

E = 3

A? (6.14)

where M is the number of symbols in a PAM constellation. The bit rate for the 7%

sub-channel becomes

1 6Nkl P
R 6.15
e [1 PR, ] o
The constant M; of Eq. (6.7) is modified accordingly as
M; 6F (6.16)

T WN,Q(P./Kny)

6.4.3 M-band Filter Bank

The superiority of filter bank in frequency selectivity over block transforms is
very well known[2][40][8]. Filter banks provide basis [unctions that are longer in
time than the basis functions of block transforms. Therelore, they should have
superior signaling performance if they are applied as the building block of the
mnodulator/demodulator in a DMT transceiver. ‘Tzanues et al.[39] have proposed
such an approach in their discrete wavelet multitone (DWMT) as a substitute to the
DFT based DMT([11][12]. They showed that DWMT is superior to its Fourier based
DMT because of the better sub-channel isolation. A block diagram of DWMT is
illustrated in Fig. 6.8. It should be noticed from this figure that DWMT is the dual
of an M-band filter bank. Therefore, G;(2) and H;(2) are the synthesis and analysis

filters of an M-band filter bank, respectively, as defined in Fig. 2.5.
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6.5 Proposed Concept of Sub-channel Structuring
Any spectral splitting should not be performed blindly. Rather, a smart, justified
uncqual bandwidth split is to be performed for practical performance improvements.
We propose the following algorithm for spectral decomposition as it is applied to
the splitting of a channel into its sub-channels. To appreciate the advantages of the
concept of sub-channel structuring, we plotted the impulse response of the channel
(I'ig. 6.9) along with its magnitude response in dB (I'ig. 6.11). We, further, included
the first derivative of its magnitude response (Fig. 6.10) and the magnitude response
(I'ig. 6.12). It is clear from these figures that the spectrum of the channel does
not change significantly for some regions. Therefore, these regions can be combined
together to {form sub-channels of unequal bandwidths without significant performance
degradation from the equal bandwidth decomposition of the channel. 'In“pract,ice,
less numiber of channels implies less energy leakage among sub-channels. Hence, there
is less distortion due to the interchannel interference (1C1). We can therefore highlight
the conceptual advantages of this smart channel structuring over the conventional

fixed decompositions as follows:

e It prevents redundant splitting of the channel, hence yielding a reduced

complexity.

¢ The unnecessary splitting causes an increased aliasing between subchannels

which is to be kept at its minimum.

6.5.1 A Simple Subchannel Structuring Algorithm

The full channel spectrum is divided into two equal bandwidth subchannels. If the
energy o2 of the parent node is greater than a certain predefined threshold 74, and if
the ratio of the energies of the two children nodes is greater than another predefined
threshold 73, the splitting is justified at that parent node. Therelore, two new nodes

or subchannels are obtained. If these unevenness tests fail, the splitting process is
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stopped at that level. Otherwise, it continues individually for each of the two new
nodes. This algorithm somehow checks if there is both a.) enough unevenness in
the parent spectrum or node and b.) enough energy in it to justify another spectral
split. This uncvenness check of the channel spectrum tries to mimic the derivative of
the magnitude response. Based on this splitting scheme, we obtained the following
sub-channel structure for the given channel (Fig. 6.13). Fig. 6.12 shows a brickwall
unequal bandwidth approximation of the channel. It is clear from this figure that
the channel split is finer at portions where both the magnitude response changes
faster and the energy content is significant. On the other hand it is coarser when
its slope levels off and/or energy content is insignificant. We can obtain different
decompositions of the channel by varying the thresholds 7'l and T'2. Figs. 6.14, 6.15
and 6.16 illustrate this aspect.
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6.5.2 A Distortion Measure in Discrete Multitone Transceivers

All of the realizations of the DMT {ransceivers discussed belore suffer from two
kinds of distortions. The first kind of these distortions is the intersymbol inter-
lerence (IS1) caused by the dispersive nature of the channel. ISI, therefore arises
because the channel does not have a brickwall (ideal) type of frequency response.
The second kind of distortions that plague DMTs is the interchannel interference
(ICI). It is caused by the non-ideal nature of the synthesis/analysis filters used
as modulators/demodulators. Therefore, interchannel interference immunity is not
possible in a realizable DMT. We would like to develop a quantitative assessment of

these two impairments which are inherent in a real digital communications scenario.
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6.5.3 Distortion in N-band Discrete Multitone Transceivers

The polyphaée representation of a filter, introduced in Chapter 2,, is the ground
{or the study of distortion in N-band discrete multitone transceivers. We can easily
trace the output of the k** subchannel. Fig. 6.17 depicts an. N-band realization of
a DMT transceiver. This realization is general and it can be applied to both equal
and unequal bandwidth sub-channel cases. Let PF(z) be the product filter of the
synthesis filter G¢(z), the analysis filter Hy(z), and the channel C(2). Therefore, the
output Y;*(z) of the £ subchannel due to the input Xj(z) of the k** subchannel is
given as

YiE(2) = Fiu(2)Xi(2) (6.17)
where Fy(z) is the 0% polyphase component of the composite filter Pf(z). The overall
subchannel output Y;(z) due to the input Xy (z) and all of the other inputs X;(z),
where 1 < 5 < N, N # j is readily given as

N ,
Yi(z) = Fi(z)Xe(2) + D, Yi(2) (6.18)
j=l,j?fk
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Figure 6.18 A generic branch for ICI calculation

where the first term is Y}*(z). The second term is due to the influence of the other
subchannels. This distortion is termed interchannel interference (ICI). We would like
now to derive an expression for the energy of this distortion. Let us analyze one of
the paths that contributes to ICI. We consider Fig. 6.18 for this analysis. Let
Sx,(z) be the input power spectral density of the j* subchannel, where j # k. The

upsampler M; at the j* subchannel implies that

Sy,

() =31 S, (M) (6.19)

The filters ;(2), C(z), and Hi(z) further set the following relation

'SQi(z) = Sv,(2)G;(2)G;(27")C(2)C(z~ YV Hy(2) Hi:(271) (6.20)
so that
] M- P

where W = ¢™£*, L is the duration of the aggregate of filters G;(z), C(z) and
Hy(z). Since the different subchannel inputs X;(z) are assumed to be uncorrelated,
and white noise with equal energies £, i.e Sx,(z) = £, we can easily express the total
cnergy for the ICI distortion as

ol = W/ Sy () dus (6.22)
j= I.Jaék 2m Jn

We derived a closed form expression for ICI. Similarly, we would also like

to define the expression for the intersymbol interference (ISI) distortion caused by
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F(2) on the output Yi(2). YF(2), given earlier by Eq. (6.17), can be written in time
domain as
NE-1
yi(n) = 3 fu(Dar(n = 1) (6.23)
=0
where N} is the number of taps of F(z). We can rewrite Eq. (6.23) as a sum of the
desired term plus IST as
NE-1
yi(n) = fi(D)er(n = D)+ >°  fu(Dzs(n —1) (6.24)
1=0,l#£D

where D is an appropriate delay. The energy of the ISI distortion for a zero-mean

input is derived as

Nk-1 NE-1
B =EL| Y Az | Y K- (6.25)
1=0,l#£D U'=0l'#D

where E is the expectation operator. We can still pursue this derivation as

k k_ 1
NE-1 N1

ois; = B¢ 322 3 fulDfe(W)zr(n ~ Dag(n ~1)

1=0,1£D ['=0,1'# D

k k
NE-1  NF-1

= 2 2 SDREOE fae(n = Dai(n - 1}

1=0,l#£D I'=0{'#D
NE-1

= £ > [l

1=0,I£D
NE-1
=& > |hOP (6.26)

1=0,l#£D
The last equation utilizes the fact that samples of zy(n) and xx(m) are uncorrelated
except when n = m since they are assumed to be white sequences. Therefore, the
total distortion at the &** subchannel due to both ISI and ICI is simply the sum of
ols; and 0¥, as

2 2 2
op = 01s; + 0oy (6.27)

Fig. 6.19 illustrates the total distortion (IC1 + ISI) for different family bases

in a DMT transceiver using a CSA Loopl. It is clear from Fig. 6.19 that the
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unequal decomposition of the channel suffers the least from the aggregate ICI and
IST distortions. We also computed the distortions for different kinds of channel
decompositions. Fig. 6.20 depicts the (1CI + ISI) distortions for several unequal
bandwidth splitting of the channel. Furthermore, we included results for different

DFT sizes in Iig. 6.21.

6.5.4 Discussions

Theorectically speaking, having more bands is better if the sub-channels are brickwall
shaped. Ilowever, in practice, the sub-channels will have a finite roll-off due
to the non-ideal basis functions. Therelore, significant interchannel interference
or aliasing cunergy exists between sub-channels [2]. This fact naturally causes a

performance degradation. The realization of DMT transceivers based on discrete-
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time subband/wavelet transform (DW'T), a better alternate to the DFT based DMT,
in order to alleviate the interchannel interference, was forwarded by Tzannes et.
al.[39]. Nonetheless, the large number of sub-channels, namely 256 as suggested
in the proposed standards, makes the aliasing or cnergy leakages from band to
band quite large[2][37]. The proposed adaptive structuring of the channel offers
the advantages of having orthogonal transform basis tailored to the unevenness of
the channel. Therefore, a less number of sub-channels is necessary in order to get
adequate performance. It is seen from IFig. 6.6 that the performance of the proposed
sub-channel structuring algorithm is near optimal with significantly reduced system

complexity over the existing techniques.



CHAPTER 7
CONTRIBUTIONS OF DISSERTATION AND FUTURE RESEARCH

The focus of this dissertation was on the theory, design and applications of the
generalized linear transforms for information transmission. In particular, we showed
the practical importance of time-{requency shaping of the transform bases. In order
to achieve this goal, we extended the concept of classical uncertainty principle to
its discrete-time counterpart by deriving a lower bound on the joint time-frequency
spreads of functions. We showed that this bound is the same for both continuous and
discrete-time functions if the latter have a certain degree of regularity. This bound
can be lowered for the discrete-time case, if the regularity constraint is relaxed.
IPurthermore, we evaluated the trade-ofls between localization in time and frequency
for several proposed signal decomposition techniques. Block transforms have the
best localization in time as expected since they have the shortest duration basis
functions. On the other hand, they exhibit the worst localization in frequency domain
as predicted by the uncertainly principle. In contrast, filter bank structures have
sharper frequency responses. Thercfore, their frequency spreads decrease at the
expense of an increase in their time localizations. Since the filter banks can be utilized
in two different types, direct and hierarchical, their time and [requency spreads can
be monitored depending on the structure used. We found that direct structures
offer the best time-frequency sprcad product followed by hierarchical ones with the
fixed block transforms trailing at the end. We also evaluated the time and frequency
spreads of a family of wavelet and scaling functions. Since the starting point of
designing these analog functions is a two-band PR discrete-time filter bank, the time
and frequency spreads of the generating filters should be monitored in such a way that
a good time-frequency localized wavelet and scaling functions are obtained. I[n other
words, a good time-frequency localized two-band PR discrete filter bank may not

lead to a good time-{requency localized wavelet and scaling functions. This concept
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of optimally designing wavelet and scaling [unctions from a joint time and frequency
localizations is an interesting topic for further research. As a design example of M-
band perfect reconstruction filter banks, we proposed an efficient four-band linear
phase PR multiplierless structure. This type of filters have great practical merits
because of their computational efficiency.

The second maiu topic which we examined was that of subspectral modeling.
We showed, both theoretically and experimentally, that subspectral modeling is
superior to full spectrum modeling if performed before the rate change. The price
paid for this performance improvement is an increase of computations. A few different
signal sources were considered in this dissertation. It is shown that the performances
of AR and ARMA techniques are comparable in subspectral modeling. The first
is desired because of its simplicity. A coding algorithm of speech, namely CELP
cmbedded in a filter bank structure, was also studied. We found that there were no
improvements of subband CELP technique over the full band one. The theoretical
recasonings of the experimental results were also given.

Our last contribution in this study was on the discrete multitone transceivers.
We showed that the channel should not be divided into its sub-channels blindly.
Rather, an intelligent, unequal bandwidth split should be performed for practical
performance improvements. For this purpose, we proposed a smart algorithm for the
decomposition of a channel into its sub-channels for the discrete multitone commu-
nications. This algorithm evaluates the unevenness and energy distribution of the
channel spectrum in order to get an adaptive partitioning. We were able to achicve
alimost the same theoretical performance that is based on brickwall approximation of
the channel by using this new splitting of the channel. Therefore, the best possible
basis for the given channel response is used instead of using the same basis of DFT for
any arbitrary channel. This adaptivity brings significant performance improvements.

In fact, it was shown that an unequal bandwidth filter bank based DMT suffers much
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less from the combined interchannel and intersymbol interferences, as compared to
the DI'T based DMT. As a possible work continuation on this topic, we suggest
a complete implementation of unequal bandwidth filter bank based DMT. Further
assessments of the performance gain it brings as compared to the DFT based DMT

in terms of BER are to be done.



APPENDIX A

Calculation of ¢, for Gaussian
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