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ABSTRACT 

MODEL PARAMETER IDENTIFICATION FOR 
ROD AND CONE OSCILLATORY POTENTIALS 

by 
Kehur Banker 

The use of signal modeling of the oscillatory potential (OP) of the 

electroretinogram (ERG), in the study of cone-rod interaction is investigated. ERG 

response data were analyzed for red, orange, blue and white flashes on no background 

and with red flashes on a blue background (to suppress rod responses). The OP signals 

were extracted from the ERG by digital bandpass filtering and a signal model was fitted 

through a simplex algorithm to produce the parameters including "OP envelope-

amplitude", latency in terms of "center-time" of the OP-envelope and OP frequency. 

Amplitude for red flashes with or without a blue background showed similar increases 

at high stimulus intensities. White and orange flashes produced higher amplitudes at all 

stimulus intensities, thus demonstrating the presence of rod OP within the signal. 

Latencies changed relatively little for pure cone stimuli with increasing intensities, while 

latency sharply reduced for responses for blue stimuli. Use of signal modeling provides 

a simple procedure for summarizing the characteristics of the OP in rods and cones over 

a range of amplitudes. 
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CHAPTER 1 

INTRODUCTION 

In the eye, an image is converted 	to electrical signals by sensory cells and 

photochemical processes, producing signals feeding into the optic nerve fibers. These 

signals are processed in various centers of brain. This complex sequence of events is 

known as a vision. 

Electrophysiological testing has become an important diagnosis tool in clinical 

ophthalmology. It involves the recording of electrical responses, mainly the 

Electroretinogram (ERG), Electro-occulogram (EOG), Visual Evoked Response (VER). 

This thesis is concerned with the electroretinogram. 

The electroretinogram (ERG) is a response of electrical activity in the retina. 

More than hundred years ago, in 1865, Frithiof Holmgren had published the first report 

on the production of electrical potentials by the action of light upon the eye. Dewar & 

McKendrick [1], in 1873, studied the effect of variation in stimulus intensity upon the 

amplitude of the response and derived the conclusion that there was a relationship 

between the height of electrical response and the logarithm of stimulus intensity. In 1908, 

Einthoven and Jolly [2] described the three sub-components of the ERG recorded form 

frog retina. The first negative segment is called the a-wave, which is followed by a larger 

positive deflection b-wave and slower positive potential c-wave. The ERG, the recorded 

potential, actually represents the summation of electrical activity produced in different 

layers of the retina. Granit [3] postulated the existence of three processes which he called 
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PI, PII, PIII. Meanwhile, Kahn & Lowenstein [4] attempted the first clinical use of the 

ERG, by employing string galvanometer and leads from corneas and temporal point on 

anesthetized eye ball. Their method was too complicated and difficult to be used in 

clinical settings. Later, Hartline [5] was able to record human ERGs successfully with 

a string galvanometer. Granit [6], in 1947, in reviewing all the available knowledge at 

that time, recognized that fast developing corneal negative PIII forms the a-wave. The 

corneal positive PII (which is much larger) then develops, and resultant PHI and PII 

produces the b-wave. As PII decreases, PI grows slowly and thus produces the c-wave. 

Granit also stated that PII (the b-wave) originated somewhere in the neural pathway 

between the receptors and ganglion cells. The short latency of PIII (the a-wave) indicated 

that it developed very early in the chain of the events constituting retinal activity in 

receptors. 

In addition to the major components a number of other components contribute to 

the detailed form of the ERG. In 1954, Cobb & Morton [7] described rhythmic wavelets, 

known as Oscillatory Potentials (OP)1, on the ascending limb of the b-wave. The nature 

of wavelets, the OP, is still obscure. The origin of the OP has been the subject of 

numerous investigations. Brown [8], in 1968, recorded the maximum amplitude of the 

OP in the inner part of the monkey retina and demonstrated their dependence on the 

retinal circulation. He concluded that they could not originate in cellular structures of 

outermost layers of retina such as photoreceptor cells or horizontal cells. In 1973, Ogden 

[9] was the first to record the laminar profile of voltage of the OP-wavelets. He found 

1 In the literature, the OP - wavelets are generally referred as "Oscillatory Potentials" (OP). In the present work we denote the entire 

wavelets as "Oscillatory Potential" (OP) 
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the origin of the OP-wavelets separate from the b-wave. The maximum amplitude of the 

first three wavelets was found at inner neuronal layers indicating the involvement of the 

cells of inner plexiform layer. In addition, Wachtmeister and Dowling [10] (1978) found 

neurotransmitters such as glycine, gama-aminobutyric acid (GABA), dopamine, 

antagonist haloperidol, B-alanine, glutamate depress the Oscillatory Potentials. These 

findings suggest that the OP may be an independent component of the ERG, reflecting 

activity of inhibitory feedback synaptic circuits within the retina. The OP thus seems to 

reflect neuronal activity in inner plexiform layer and interaction the rod and cone 

mechanism in the inner part of retina. 

Yonemura [11] found that in diabetic retinopathy, main components of the ERG, 

a-wave and b-wave, were normal in amplitude and implicit time. But the oscillatory 

potentials disappeared or decreased greatly. In 1969, Berson, Gouras and Hoff [15] 

recorded distinguishable ERG responses from a normal subject, from a patient with night 

blindness and one with rod monochromatism. From these results they concluded that 

different light stimuli could excite either the rod system or the cone system or both. Neal 

Peachey, Alexander and Fishman [18] explained the effect of conditioning flash to the 

rod and cone systems and their contribution to oscillatory potentials. King-Smith, Loffing 

and Jones [16] also recorded the ERG responses from the various stimuli, and concluded 

that the first negative peak of the oscillatory potentials might be the rod system response. 

In summary, the exact origin of the oscillatory potential is unknown. The 

oscillatory potential is probably generated in the inner layers of retina and may indicate 

the condition of inner layer of the retina. Therefore, it is used as a diagnosis tool for 
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patients with severe cases of glaucoma, obstruction of central artery and diabetic 

retinopathy. Studies of the OP in humans have demonstrated that under specific stimulus 

conditions it can reflect activity in either the rod and cone systems of the retina or the 

interaction between these two receptor systems. 

This thesis deals with the modeling of the ERG and the OP, and the estimation 

of the model parameters, obtained by fitting experimental data. The model represents the 

original OP data in terms of a finite set of parameters. Previous work on parameter 

identification of the Oscillatory Potential was performed by Pan and Jang individually. 

Huizhong Pan [12] presented an initial mathematical model for the Oscillatory Potential. 

Later, Jang [13] modified the model and described the changes of the parameters for 

diabetic patients. The goal of the present work is to further improve the OP modeling 

and to examine its utility to distinguish rod and cone system contributions 



CHAPTER 2 

THE PHYSIOLOGY OF THE EYE 

A cross section of the eye is shown in Figure 2.1 The eye is filled with a clear jelly in 

its center, called vitreous humor. There are three layers of tissue surround the vitreous 

humor. The outer layer has tough tissues, sclera, that protects the eye, cornea and 

conjunctiva. Middle layer has pupil, iris, lens and choroid, the blood vessels that nourish 

the eye. Third inner layer contains the retina and the fovea. The retina is the light 

sensitive portion of the eye, containing millions of photoreceptor cells and neurons. 

When the photoreceptor cells are excited, signals are transmitted through successive 

neurons in the retina, into nerve fibers and to cerebral cortex. 

2.1 	Anatomy of the Structural Elements of the Retina 

Figure 2.2 shows the functional components of the retina arranged in layers. After light 

passes through the lens system of the eye and then the vitreous humor, it enters the retina 

from the inside, that is, it passes through the ganglion cells, the plexiform layer, the 

nuclear layer and limiting membranes before it reaches the layer of photoreceptors. 

Photoreceptors contain pigments that change the color when exposed to light. 

2.2 	Photoreceptors 

Figure 2.3 represents a diagrammatic presentation of photoreceptors. There are two kinds 

5 
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Figure 2.1 The cross section of the eye. 

of photoreceptors cones and rods. The cones are distinguished by having a conical upper 

end. The rods are narrower and usually longer than cones. Photoreceptor cell is 

segmented into four major functional segments (1) Outer segment, (2) Inner segment, (3) 

Nucleus and (4) Synaptic body. 

In the outer segment the light sensitive photochemical is found. In the case of 

rods, this is rhodopsin and in the cones it is one of several photochemicals collectively 

called iodopsin, which are almost exactly same as rhodopsin except for differences in 

spectral sensitivity. Both rhodopsin and iodopsin are conjugated proteins. These are 

incorporated into the membranes of the discs in the form of transmembrane proteins. 

These photosensitive pigment constitute nearly 40 per cent of entire mass of the outer 
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Figure 2.2 Organization of the retina. Light enters the eye through the lens and passes _ 
through the vitreous body and the font surface of retina. Since the tips of the rods and 
cones are on the side of the retina opposite to the light entry, the light must pass through 
all the layers before reaching the photoreceptors and stimulating them. (From Human 
Physiology, Fifth edition, McGraw-Hill Publishing Company, 1990.) 
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Figure 2.3 The schematic drawings of the functional parts of rod and cone. 
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segment. The inner segment contains the cytoplasm of the cell with the cytoplasmic 

organelles and mitochondria. Mitochondria plays an important role in providing an 

energy for the function of the photoreceptors. The synaptic body connects the rods and 

cones to subsequent neuronal cells, the horizontal and bipolar cells. They act as a relay 

between receptors and optic nerve fiber. The black pigment melanin, layer prevents light 

reflection through out the globe of the eye ball. 

2.3 	The Electroretinogram and the Oscillatory Potentials 

The Electroretinogram (ERG) is a light evoked response of the eye, obtained from 

contact lens on pupil and ground at ear. The ERG is a total retinal activity, consists the 

responses created from different parts of retina. Granit [3] had analyzed the ERG in a-

wave, b-wave and c-wave. The a-wave is a response of the receptor layer and b-wave is 

a response of neural pathway between receptors and ganglion cells. 

Cobb and Morton [7] had described the wavelets on the ascending limb of the b-

wave, known as oscillatory potential (OP). Figure 2.4 shows the unfiltered ERG response 

obtained from the normal subject for scotopic white flash. It contains a-wave, b-wave, 

c-wave and oscillatory potentials. This ERG response can be broken down into two 

categories. (1) The low frequency response, obtained by filtering the ERG response with 

low pass filter (< 70 Hz), mainly represents the a-wave, b-wave and c-wave. (2) The 

high frequency response, obtained by filtering the ERG with a high pass filter (100-200 

Hz), produces the oscillatory potential. Figure 2.5 gives the representation of low and 

high frequency responses. 
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Figure 2.4 The unfiltered ERG response, for scotopic white flash. 

Figure 2.5 The representation of low and high frequency response of unfiltered ERG. 
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Figure 2.6 represents a power density spectrum in the frequency domain for a 

typical ERG obtained from blue stimuli. Most of the power is concentrated below 60 Hz. 

However, small additional components appears between frequencies of 65 to 170 Hz, 

which matches the range of the oscillatory potential. Therfore, the oscillatory potentials 

are extracted form the ERGS by digital bandpass filtering between 65 to 170 Hz (the 

results are in Chapter 6). By reviewing the power density spectrum for other stimuli, it 

is found that, same as blue stimuli, the major power concentration is below 60 Hz, but 

a small power is concentrated either between 65 to 200 Hz or between 100 to 200 Hz. 

Therefore, second set of oscillatory potentials are extracted from their ERG responses 

by treating them individually (the results are in Appendix-C). 

Figure 2.6 Power density spectrum of the typical ERG, in frequency domain. 



CHAPTER 3 

ROD AND CONE COMPONENTS OF THE ERG 

Figure 3.1 presents (1) the scotopic luminosity curve and (2) the photopic luminosity 

curve, derived from the psychophysiological measurements of peripheral retinal function. 

It can be concluded from the graph that rods are more sensitive than the cones almost 

through out entire visible spectrum. But at longer wavelength the difference between 

curves diminishes. This means that the cone response can be isolated with stimuli of 

longer wavelength. The scotopic luminosity curve represents the spectral sensitivity 

function of the rod system. The rod contribution to the ERG can be obtained by 

recording the response to stimulation of the dark-adapted eye to dim light-flashes of 

relatively short or long wavelength. From the spectrum of the visible light, dim short 

wavelength gives blue color while dim long wavelength gives orange-red color, and X 

> 680 nm is deep red. [19] 

This leads to a supposition that the rod contribution to the ERG can be generated 

by recording the ERG with blue or orange-red flashes. Separate cone response ERG can 

be obtained by stimulating the eye with single flashes of deep red light. But with the 

Grass Photosimulator as the light source, deep red light is too dim to elicit an easily 

detectable cone ERG. The cone ERG can be obtained by broad band filters like wratten 

26 (X > 600 nm). It can also be recorded, even more precisely, by suppressing rod 

contribution when the eye is stimulated in the presence of a blue background light. 

11 
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Figure 3.1 Continuous line is CIE (Commission International de l'Eclairage) scotopic 
luminosity curve (rod spectral sensitivity function)derived from psychophysical 
measurements and placed at level for normal human subjects; dashed line is Wald's 
photopic luminosity curve (spectral sensitivity function for the cone mechanisms under 
photopic conditions) derived from psychophysical measurements of peripheral retinal 
function. ERG • spectral sensitivity curves for normal rod and cone systems also 
respectively approximate solid line and dashed line curves. (From Berson, Adler's 
physiology of the eye. 460,1970.) 

Figure 3.2 The spectrum of the visible light. 
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Figure 3.3 ERG responses to scotopically balanced red and blue light stimuli, to 
photopically balanced orange and blue-green stimuli in presence of 5 to 10 ft-L 
background light, and to wickering (30 Hz) white stimuli are shown successively from 
top to bottom for patient with night blindness, normal subject and congenital rod 
monochromat. (From Berson EL, Gouras P, Hoff M: Arch Ophthalmol 81:207,1969.) 

In 1969, Berson et al [15] illustrated the cone and rod contribution to the total 

ERG. They represented the comparison of results recorded from a normal subject, from 

a patient with dominant stationary night blindness and from a patient with congenital rod 

monochromatism. The different ERG responses were recorded for five different stimuli, 

two scotopic (1) stimuli of red (X > 600 nm) and (2) blue (X < 470 nm), two photopic 

(3) stimuli of orange (X > 550 nm) and (4) blue-green (X < 550 nm), in presence of 

5 to 10 ft-L background light and last one (5) with flickering (30 Hz) white stimuli. For 

their special set of experiments, they obtained the responses shown in Figure 3.3. (1) For 

short wavelength light (i.e. rods) elicited responses were normal in amplitude and 

implicit time for the rod monochromat and normal subject. But the response of night 

blindness patient was poor. (2) For long wavelength light, only cone components were 

elicited in the night blindness patient, only rod components in rod monochromat and both 

components in the normal subject. (3) For stimulus conditions which eliminate rod 
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response, but stimulate long (orange) and medium (blue-green) wavelength cones, the 

responses were similar in implicit time and amplitude for the night blindness patient and 

normal subject, but no significant response from the rod monochromat was observed. (4) 

For flickering light, responses were similar to those received for photopic condition. 

From the results they concluded that short wavelength light stimulated rod system, long 

wavelength light stimulated both rod and cone both systems, while photopic flash and 

flickering light stimulated only the cone system. 

As the ERG is a response of total  retinal activity, the changes in the ERG for 

different light stimuli, may also cause a considerable changes in the oscillatory potential. 

Thus, there have been attempts to investigate and distinguish the OP generated in rod and 

cone system. King-Smith et al. [16] and Neal et al. [18] presented the same idea in 1986 

and 1987. These groups of investigators focused on recording the responses of eye to 

different stimuli, to stimulate the responses of rod and cone systems separately; they 

concluded that the differences between red and blue responses were due to responses 

generated by rods. While comparing blue, orange, and white flash responses, they [16] 

found the largest negative peak at similar implicit time, and interpreted that as a rod 

system response, while the following waves were considered to be due to the cone system 

response. 

The present study is based on the original responses recorded by Dr. King-Smith. 

The objective is to continue his initial ideas and to fit the rod and cone system generated 

oscillatory potentials to our mathematical model and to represent the rod and cone OP 

by our set of model parameters. 



CHAPTER 4 

MODELING OF THE OSCILLATORY POTENTIALS 

4.1 	A Model of the ERG. 

The total ERG can be considered to be the combination of the a-wave, b-wave, minor 

components c-wave and d-wave, as well as the high frequency component called 

oscillatory potential. This implies that recorded unfiltered ERG can be represented as a 

combination of major components a-wave, b-wave and OP. Researchers and clinical 

professionals have emphasis on a-wave, b-wave and OP due to their significant 

physiological and clinical meanings. 

Juan Castro [17] had established the model for separating a-wave and b-wave from the 

filtered ERG response. He represented the filtered ERG as: 

15 
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Figure 4.1 The filtered ERG and its model response (Equation 4.2) 

and the b-wave as: 

Fig. 4.1 illustrates the model of a-wave and b-wave of the ERG, represented by Juan. 

4.2 	The Model of the Oscillatory Potential 

The oscillatory potential appears as a series of wavelets on ascending limb of the b-wave. 

When the ERG response is filtered at higher frequency the OP resembles as a sinusoidal 

function whose amplitude rises and then flattens out. 

Pan [12] has described his model according to above explained shape of the OP. 
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Figure 4.2 The oscillatory potential (top) and the model OP1(t) (bottom). 

This model is illustrated in Figure 4.2. 

For a particular run, for which the parameter set is 

A second model was presented as a function of two sine waves 

where 	k2  • t" • e-12  • sin ( wt ) 	is the b-wave model of Castro, and the term 
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For very small w, sin ( w • t) 	w•t results in, 

Starting with Pan's OP model Jang [10] established an improved OP model 

Substituting, ko  = k2 . w/(a2n+1), ao  = α2, fO = f2, (Φ  = 4)2 and n+1 representing as n, 

he obtained 

Using a simplex method for parameter identification, he found n = 7 to provide a good 

fit. He disregarded the phase angle Φ as it appeared to be randomly distributed. 

As his final OP model, Jang used: 

For same particular run, the parameter set was found to be 
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A generalization of OP4(t) is 

This will be the general model considered in this thesis, whose parameters are 

ko, 	αo, f 0, Φ0, n 

Jang and Pan's mathematical models were tested with white flash oscillatory 

potentials. The recorded data from Dr. King-Smith, for flashes of different colors shows 

a characteristic of reduction in amplitude and increase in time delay with decrease in the 

luminance intensity. The parameters ko, αo, fo, Φ, n } can be transformed into another 

set which better illustrates the features of the waveform, shown in Figure 4.3. That set 

is defined below: 

a = amplitude of envelope of OP(t) [µV] 

Te  = "Center-time" = time at which envelope of OP(t) is maximum [msec] 

f o  = frequency of oscillatory potential [Hz] 

Φo = phase-angle of oscillatory potential 

n = exponent, the order of the model equation. 

In terms of these parameters, OP(t) can be written as 

where e = 2.718... Parameters f o  and Φo are the same for equation (4.11) and (4.12). 
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The relations between the remaining two parameters in equations (4.11) and (4.12) are 

α  = ko  (n / e)n, 	T, = n /αo 	 (4.13) 

In Appendix-A it is shown that a represents the maximum value of the OP-wave 

envelope and Tc  represents the time when it occurs. A simplex method was used for 

parameter estimation for the OP model of equation (4.12). 

Figure 4.3 The wave shape of OP(t) 

The Parameter Identification program is based on minimization of the Standard 

where Xi  is the error between data and the model at time i, n is number of samples used 

in each response. u is the average value of the error X, and m is number of 

parameters. 
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Parameter estimation was performed in two ways: 

(1) The entire parameter set {a, C, fo, 
	was estimated, (2) For several fixed 

values of n, the remaining set, {a, Tc, f0f  Φo}, was estimated. As one would expect, 

estimation of the full parameter set resulted in lower standard deviation error than 

estimation of the partial set (with n fixed) (Table 4.1). 

Table 4.1 Comparison of parameters and standard deviation error for (fixed) n = 6,7,8,9 
and for n as a estimated parameter (last raw) (These are the results for data KING-283, 
red stimuli.) 

Value of n a [µV] Tc [ms] fo [KHz] Ito 	[deg] n Std. Err 

6 2.33 27.51 0.137 -31.08 0.846 

7 2.39 28.17 0.135 -7.67 * 0.845 

8 2.54 27.14 0.137 -37.68 * 0.846 

9 2.59 27.02 0.137 -32.38 * 0.846 

n 2.42 28.07 0.135 -6.577 7.33 0.842 

It is seen from table 4.1 that fixing n to a value of 7 results in a reasonable close 

representation of the OP. So, our OP model becomes 

OP(t) - a • (e•—)7  •e 	• sin ( 2n f o t + Φ0 ) T  
T  

t 	-7-- 
	

(4.14) 

New established model of oscillatory potential gives the amplitude in µv, time delay in 

msec, frequency in KHz and phase angle in deg. 



CHAPTER 5 

PROTOCOLS AND PROCEDURE 

The data used were obtained by Dr. King-Smith in 1984-85 [16]. All data obtained 

should fulfil the protocols set up by International Standards of Electro-retinogram [20], 

so that same ERGs can be evaluated and analyzed at any time and any where with 

different procedures. In order to separate the rod and cone system distribution, Dr. King-

smith followed the International protocols and recorded the ERG responses for blue flash 

(X = 475 nm), red flash (X = 624 nm) orange flash (X = 587 nm), white flashes and 

red on blue flashes. 

5.1 	Testing Procedure 

Dr. King-Smith had used himself as a subject (normal subject) and performed the test on 

his left eye. The eye was dilated with two drops of 0.5 % tropicamide, and then dark 

adapted for nearly thirty minutes. Gold foil electrode (EL50, SC Electronics) were placed 

on the surface of the cornea and subjected to different stimuli. For scotopic condition, 

the ambient luminance of Ganzfeld was kept to a low level (about 2 X 10' scotopic 

cd/m2). For photopic condition, for red flashes on blue background, luminance of 

Ganzfeld was kept at 7 scotopic cd/m2  with blue light. 

22 
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Figure 5.1 Major components of the ERG testing system [16]. 

5.2 	Testing Setup 

Figure 5.1 shows the test setup used by Dr. King-Smith, which consists of an amplifier, 

computer and a Grass photostimulator. The subject was subjected to different flashes 

in 50 cm Ganzfeld illuminated by a Grass PS22 Photostimulator. In the Ganzfeld, 

different colors were produced by controlling Grass colored filters (Model 5CF). Various 
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intensities were obtained by photostimulator "Flash intensity" control and by Wratten 

neutral density filters. The intensities of white and colored flashes were calibrated by 

using a Pritchad 1980 photometer. The electrodes from the patients eye were connected 

to the amplifier (Data Inc. 2124, Fort Collins, CO) which had 0.2 and 500 Hz, low and 

high cut off frequency respectively. The amplifier was connected with the computer 

(Northstar Horizon). The amplified signal was fed to the computer where it was sampled 

with the interval of 1-msec. For every set of stimuli, the multiple responses were 

recorded at nearly 5 minutes interval. The final recorded responses were the average of 

50 to 200 individual recorded responses. These responses were stored on the magnetic 

disk and computer. 

5.3 	Parameter Identification Program 

The stored data, which was in Northstar Horizon computer format, was converted into 

DOS format, so that it can be processed in our laboratory at the Eye Institute, UMDN.T. 

The analysis of the data was performed with two major programs at our laboratory, Multi 

Function Testing System (MFTS3) and the parameter identification program (OPFIT2) 

[Appendix D]. 

MFTS3 is used to perform the actual test, to calibrate the testing system, and to 

read the data files. OPFIT2 is a parameter identification program, which is modified and 

divided into two sub-programs [Appendix D]. The first sub-program consists the 

mathematical equations, the model and initial parameters. It has an option to use different 

mathematical equations. In this revision of program, it has mathematical equations for 
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the a & b-waves, for the oscillatory potential alone and for combination of the a & b- 

waves, and the oscillatory potential. The second sub-program performs the parameter 

identification by simplex method. The output presents the set of parameters, number of 

iterations, standard deviation error, estimated function error and the type of equation 

used. The output can be saved in formatted form so that it can be reviewed on 

spreadsheet. 



CHASTER 6 

RESULTS 

All the available data, with different stimuli and their various intensities, were tested by 

newly defined model (Equation 4.14). Set of parameters are obtained. Figure 6.1, 6.2, 

6.3, 6.4 and 6.52  show the ERGs and oscillatory potentials obtained with bilateral (12th  

order Butterworth) band-pass filter of 65 to 170 Hz, for the stimuli of red, orange, blue, 

red on blue and white respectively. The corresponding tables are showing the set of 

parameters for various intensities for that individual stimuli. Figures 6.6 and 6.7 present 

plots of parameters α (envelope - amplitude), Tc  (center-time, related to latency) f 

(frequency) respectively, each versus log intensity of the stimulus cd-sec/m2. Curves are 

shown for all runs considered. The oscillatory potentials and their model representations 

are shown in Appendix-B. 

The oscillatory potentials were also obtained by treating each ERG individually and 

filtered with 65-170 or 100-200 Hz, whose parameters are shown in Appendix-C. 

2  These figures are the representation of the first data of each stimuli. The oscillatory potential and its 
model representation for each data is shown in Appendix-B. 
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Figure 6.1 The ERG response and its oscillatory potential for red stimuli 

Table 6.1 Parameters of the oscillatory potential model for red stimuli 

Exp Log Intensity ci 	[pN] Tc [msec] fo [KHz] Std. Err 

KING-281 -0.51 10.26301 26.06931 0.123735 0.094731 

KING-282 -0.91 4.014149 19.07560 0.098099 0.75086 

KING-283 -1.17 2.369313 27.34898 0.139117 0.93174 

KING-284 -1.33 1.342331 32.87374 0.126735 0.50973 

KING-285 -1.60 1.53329 22.04616 0.105868 0.41993 
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Figure 6.2 The ERG response and its oscillatory potential for orange stimuli. 

Table 6.2 Parameters of the oscillatory potential model for orange stimuli. 

Exp Log Intensity a 	[µV] Tc [msec] fo [KHz] Std. Err 

KING-379 0.23 38.57754 20.83057 0.117046 3.03282 

KING-380 -0.16 25.64651 18.64779 0.092706 3.79435 

KING-381 -0.42 22.34930 23.78431 0.083447 2.20361 

KING-382 -0.59 20.30886 25.40015 0.084641 2.45324 

KING-383 -0.88 10.70566 30.61588 0.150388 3.84521 

KING-384 -1.34 8.778239 34.19713 0.133354 2.64063 

KING-385 -1.6 5.98896 35.00263 0.119559 1.5546 

KING-386 -1.77 3.719862 37.40871 0.108865 1.31892 

KING-387 -2.06 1.329832 59.28481 0.12259 1.07677 

KING-388 -2.39 1.082916 78.97556 0.112728 0.7801 

KING-389 -2.66 1.583515 84.60490 0.083066 0.26514 
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Figure 6.3 The ERG response and its oscillatory potential for blue stimuli,  

Table 6.3 Parameter of the oscillatory potential model for blue stimuli. 

Exp Log Intensity a 	[p.V] Tc [msec] fo 	[KHz] Std. Err 

KING-393 -0.53 22.57278 28.53132 0.104093 2.39072 

KING-394 -0.92 21.88391 27.17972 0.106076 2.74945 

KING-395 -1.18 21.75148 26.46883 0.109572 4.42003 

KING-396  -1.37 20.85893 28.50291 0.125943 5.0484 

KING-397 -1.69 13.34942  29.78435 0.13621 4.92066 

KING-398 -2.14 11.11591 34.88143 0.147321 3.65956 

KING-399 -2.41 7.510646 39.7816 0.137961 2.72174 

KING-400 -2.60 5.700554 37.46703 0.1175 2.82 

KING-401 -2.92 4.480616  48.16443 0.135338 1.63113 

KING-402 -3.26 3.480011 46.82095 0.076113 1.49662 

KING-403 -3.52 1.723057 47.94317 0.137844 1.25056 

KING-404 -3.71 2.12797 72.54427 0.091127 0.75427 



Figure 6.4 The ERG response and its oscillatory potential for red on blue stimuli. 

Table 6.4 Parameters of the oscillatory potential model for red on blue Stimuli. 

Exp Log Intensity a 	[µV] Tc [msec] fo 	[KHz] Std. Err 

KING-614 -0.51 12.36579 22.61574 0.123865 1.87389 

KING-615 -0.91 4.689181 27.40737 0.077014 1.7288 

KING-617 -1.17 2.39954 27.16956 0.137812 0.7967 
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Figure 6.5 The ERG response and its oscillatory potential for white stimuli. 

Table 6.5 Parameter of the oscillatory potential model for white stimuli. 

Exp Log Intensity a 	[µV] Tc [msec] fo 	[KHz] Std. Err 

KING-714 0.54 34.52987 20.20775 0.112826 2.15208 

KING-715 0.15 38.40489 23.27934 0.114867 3.24273 

KING-716 -0.12 39.33766 23.55699 0.119383 3.46881 

KING-717 -0.30 36.86165 23.82208 0.123271 3.95659 

KING-718 -0.60 30.72739 24.52002 0.129505 4.06387 

KING-719 -1.05 18.83768 28.23186 0.138661 3.39858 

KING-720 -1.32 12.04443 31.13251 0.139758 2.66432 

KING-721 -1.49 6.102283 30.08931 0.133634 2.14491 

KING-722 -1.80 4.602764 42.56737 0.133123 1.41546 



Figure 6.6 Representation of parameter "a" the amplitude. 

Figure 6.7 Representation of parameter "Tc" the center time. 
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Figure 6.8 Representation of "f o" the frequency. 
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CHAPTER 7 

CONCLUSION 

The new proposed mathematical model of the oscillatory potential provides the 

compressed information of the oscillatory potential obtained from different color stimuli 

and their various intensities. From Figure 6.6, we find that the amplitude for red flashes 

with or without a blue background shows similar increases at high stimulus intensities. 

White and orange flashes produce higher amplitudes at all intensities, thus demonstrating 

the presence of rod OP within the signal. In Figure 6.7, we note that parameter Tc, the 

center time of the OP envelope, changes relatively little for pure cone stimuli with 

increasing intensities. But Cc  (latency) reduces sharply for responses to blue stimuli. 

Although the model parameters contain most of the information of the oscillatory 

potential, their clinical and physiological importance needs to be investigated. This study 

provides the grounds for future study to determine the behavior of parameters for normal 

and abnormal subjects when subjected to different stimuli & their intensities. 

34 



APPENDIX A 

REPRESENTATION OF OP(t) MODEL IN TERMS OF 

AMPLITUDE "a" AND TIME "TC" OF ITS OCCURANCE 
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A generalized Equation of the oscillatory potential is: 

At any instant given time, in above equation (A-1), 

represents the amplitude of the OP envelope. The maximum value of function m(t) can 

be found by derivatina the equation with respect to time and equaling it to zero. 

That means at time t = Tc where Tc  = n/a„ the value of envelope will be maximum. 

Substituting Tc  in equation (A-2) 
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Conversely, 

Substituting the values of ko  and αo in Equation (A-1), final OP model becomes 



APPENDIX B 

OSCILLATORY POTENTIAL RESPONSES 

AND THEIR MODEL REPRESENTATION 

In this appendix, top wave (1) is the Oscillatory Potential and bottom 

wave (2) is its model representation, whose parameters are shown in Chapter 6. 
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Figure B-3 OP and its model representation for data KING-283, red stimuli. 

Figure B-4 OP and its model representation for data KING-284, red stimuli. 
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Figure B-5 OP and its model representation for data KING-285, red stimuli. 

Figure B-6 OP and its model representation for data KING-379, orange stimuli. 
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Figure B-7 OP and its model representation for data KING-380, orange stimuli. 

Figure B-8 OP and its model representation for data KING-381, orange stimuli. 
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Figure B-9 OP and its model representation for data KING-382, orange stimuli. 

Figure B-10 OP and its model representation for data KING-383, orange stimuli. 
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Figure B-11 OP and its model representation for data KING-384, orange stimuli. 

Figure B-12 OP and its model representation for data KING-385, orange stimuli. 
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Figure B-13 OP and its model representation for data KING-386, orange stimuli. 

Figure B-14 OP and its model representation for data KING-387, orange stimuli. 



46 

Figure B-15 OP and its model representation for data KING-388, orange stimuli. 

Figure B-16 OP and its model representation for data KING-389, orange stimuli. 
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Figure B-17 OP and its model representation for data KING-393, blue stimuli 

Figure B-18 OP and its model representation for data KING-394, blue stimuli. 
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Figure B-19 OP and its model representation for data KING-395, blue stimuli. 

Figure B-20 OP and its model representation for data KING-396, blue stimuli. 



Figure B-21 OP and its model representation for data KING-397, blue stimuli. 

Figure B-22 OP and its model representation for data KING-398, blue stimuli. 
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Figure B-23 OP and its model representation for data KING-399, blue stimuli. 

Figure B-24 OP and its model representation for data KING-400, blue stimuli. 
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Figure B-25 OP and its model representation for data KING-401, blue stimuli. 

Figure B-26 OP and its model representation for data KING-402, blue stimuli. 
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Figure B-27 OP and its model representation for data KING-403, blue stimuli. 

Figure B-28 OP and its model representation for data KING-404, blue stimuli 
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Figure B-29 OP and its model representation for data KING-614, red on blue stimuli. 

Figure B-30 OP and its model representation for data KING-615, red on blue stimuli. 
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Figure B-31 OP and its model representation for data KING-617, red on blue stimuli. 

Figure B-32 OP and its model representation for data KING-714, white stimuli. 
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Figure B-33 OP and its model representation for data KING-715, white stimuli. 

Figure B-34 OP and its model representation for data KING-716, white stimuli. 
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Figure B-35 OP and its model representation for data KING-717, white stimuli. 

Figure B-36 OP and its model representation for data KING-718, white stimuli. 



Figure B-37 OP and its model representation for data KING-719, white stimuli. 
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Figure B-38 OP and its model representation for data KING-720, white stimuli. 
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Figure B-39 OP and its model representation for data KING-721, white stimuli. 

Figure B-40 OP and its model representation for data KING-722, white stimuli. 



APPENDIX C 

PARAMETERS OF THE OSCILLATORY POTENTIALS 
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Table C-1 Parameters of the OPs when the ERGs treated individually and filtered. 

EXP Log Intensity Amplitude Center Time Freq Std. Err 

Red Stimuli cd-s/m2  a 	[µV] Tc 	[msec] fo [KHz] 

KING-281 -0.51 10.15662 26.23996 0.124023 1.05689 

KING-282 -0.91 3.805809 26.66327 0.119227 0.72639 

KING-283 -1.17 2.443827 28.62636 0.134688 0.92821 

KING-284 -1.33 1.3459 32.75505 0.126775 0.50131 

KING-285 -1.6 1.54852 22.1825 0.10563 0.42331 

Orange Stimuli 

KING-379 0.23 38.54199 20.87837 0.117155 2.98617 

KING-380 -0.16 25.56456 18.67231 0.09262 3.80203 

KING-381 -0.42 22.5413 23.64788 0.083607 2.45521 

KING-382 -0.59 20.41151 25.35355 0.084757 2.56957 

KING-383 -0.88 13.87424 25.2053 0.079743 3.30466 

KING-384 -1.34 8.638502 35.09233 0.136063 2.61895 

KING-385 -1.6 5.897897 35.08204 0.119436 1.58609 

KING-386 -1.77 -3.71341 37.48687 0.108649 1.32157 

KING-387 -2.06 -1.32855 59.27989 0.122791 1.07853 

KING-388 -2.39 1.59034 64.23165 0.086315 0.66095 

KING-389 -2.66 1.572536 84.16495 0.0829 0.32864 

Blue Stimuli 

KING-393 -0.53 22.52382 28.5035 0.104291 2.28919 

KING-394 -0.92 21.67401 27.22725 0.10582 2.75106 

KING-395 -1.18 21.73227 26.44661 0.109488 4.42903 

KING-396 -1.37 20.15051 28.87631 0.1307 2.43543 

KING-397 -1.69 14.21104 28.62064 0.123485 2.88002 

KING-398 -2.14 10.14268 31.62804 0.132746 1.40307 

KING-399 -2.41 7.209031 38.81053 0.134325 1.09234 
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KING-400 -2.6 6.548103 41.1276 0.135075 0.9695 

KING-401 -2.92 4.720441 46.71978 0.130042 0.85751 

KING-402 -3.26 3.223296 56.41539 0.118822 0.90975 

KING-403 -3.52 1.747989 58.82985 0.137389 0.75872 

KING-404 -3.71 0.447804 65.83806 0.155304 0.26417 

Red on Blue Stimuli 

KING-614 -0.51 12.36579 22.61574 0.123865 1.87272 

KING-615 -0.91 6.092481 24.61112 0.131017 0.72552 

KING-617 -1.17 3.056713 25.3675 0.119288 0.73454 

White Stimuli 

KING-714 0.54 34.7 385 20.20144 0.112907 2.2004 

KING-715 0.15 34.44234 23.54409 0.11895 2.72011 

KING-716 -0.12 33.1679 23.29385 0.127197 2.37549 

KING-717 -0.3 32.21531 24.18124 0.126304 2.64374 

KING-718 -0.6 30.49593 24.75387 0.132277 1.89628 

ICING-719 -1.05 18.79569 28.50713 0.140091 1.95565 

KING-720 -1.32 12.06275 31.06252 0.13818 1.37795 

KING-721 -1.49 5.963615 31.25409 0.138209 1.45838 

KING-722 -1.8 4.637379 42.6942 0.133193 1.08879 



APPENDIX D 

PARAMETER IDENTIFICATION PROGRAM 
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Main Program 

63 

#include < stdio.h > 
#include < math.h> 
#include < conio.h > 
#include <stdlib.h > 
#include < string.h > 
#include <io.h> 
#include <dos.h> 
#include <memory.h>  

/* ERG curve fitting */ 
/* building simplex method 	*/ 
/* Modified too many damn ways */ 

/* for Banker master thesis 	*/ 

extern double pmtr[15]; 
extern double initpmtr[15]; 
extern unsigned char lbf[15][3]; 
extern unsigned char unt[15][8]; 
extern double dbint; 
extern double pi; 
extern int numprmts,NN; 
extern int prnt(); 

int np; 
	

/* number of data point 	*/ 
int npm; 
	

/* last number of data point to be filtered */ 
int ns=1; 
	

/* first number of data point to be filtered */ 

int ntst,ntk,csr[2][2]={20,100,20,100}; 
int page, swch, rolloffp; 
char pathn[100],datafile[15],filt_flag, 
float lowf[5],highf[5]; 
float data[8][532],sen=30.; 
float lpf[5] = {500. ,500.,500.,500.,500.0},hpf[5] = {1.,1.,1.,l. ,1.}; 
unsigned char chn=1,file_flag[5]={0,0,0,0,0},tdate[5][15],hauptdate[15]; 
unsigned char f name[15],l_name[15],pfnm[40][15]; 
unsigned char ttype[5][5],bdate[10],sex[3],fflag[3],label[5][5]; 
unsigned char dgns[2][80],cmmts[3][80],tname[80][15],adrs[2][201; 
unsigned char phone[15],filename[15],tst[15],eye[5][3]; 
struct STIMULI{ 

unsigned char frqcy[10]; 
unsigned char ptn[40]; 
unsigned char cntrst[10]; 

sti[5]; 

main() 

void headQ,positionO,clsO; 



char key; 
int n; 

headQ; 
cls(0,24); 
header(); 
position(25,2); 
printf("Curve Fitting Program 
report(); 
cls(0,24); 

} 

report() 
{ 

char c; 
int s; 
void waitsec(),cls(),position(); 

cls(10,24); 
position(0,10); 
printf("Insert data disk into drive A"); 
strcpy(pathn,"a:"); 

printf("\n\nPress [ENTER] key to continue."); 
while(getchar()!='\n') 

b: 	chn=1; 
if(list()= =1) 

goto end; 
n: 	if(list1)= =1){ 

page=0; 
goto b; 
} 

chn=2; /*chn=4;*/ 
fit(); 
while((s=plot(2))>0){ 

switch(s){ 
case 1: 

fflag[0] =fflag[1] =fflag[2] =0; 
goto b; 
break; 

case 2: 
fflag[0] =fflag[1] =fflag[2] =0; 
goto f; 

64 



break; 
case 3: 

fflag[0] =fflag[1] =fflag[2] =0; 
chn=1; 
goto n; 
break; 

} 
} 

end: 
ntst=ntk=0; 
for(s=0;s< 60; + +s) 

strset(tname[s],'\0'); 
} 

double a[2][5],al,b1,tem[532]; 

Buterworth filter table 

float b [8] [4] = {1.4142,0,0,0, 1. ,0,0,0,0.7653,1.8477,0,0,0. 618,l. 618, 
0,0,0.5176,1.4142,1.9318,0,0.445,1.247,1.8019,0,0.3902,1.1111, 
l.6629,1.9616,0.3473,1.,1.5321,1.8794}; 

filter() 
{ 

double 	wc,B,k; 
char key; 
int 	n,m,i,j,c1 =2000; 

g_clean(95,99); 
position(5,24); 
filt_flag = 'f'; 
printf("Which waveform ?"); 
while(((key =getch()) > (chn+0x30)) i I (key < 49)); 
swch=key-49; 

r: 	g_clean(95,99); 
position(5,24); 
printf("Which order of filter? (enter EVEN number 0--18)"); 
scanf("%d",&n); 
rolloffp=n; 

/* 	while(getchar()!='\n'); 
if(n&0x01! =0) 
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goto r; 	 get even order number 
k=1.0/n; 
n =-n/2; 
if (n&0x01!=0){ 	first order filter required 	*/ 
m=1; 
n=(n-1)/2; 
} 
else{ 	 first order filter not required */ 
m=0; 
n=n/2; 
} 

/* Banker OP code insertion starts */ 
g_clean(95,99); 
position(5,24); 

erl: 	printf("%d total datapoints. Last data point to filter?",np); 
scanf("%d",&npm); 
if(npm>np){ 

goto erl; } 
if(npm<1){ 

goto erl; } 
g_clean(95,99); 
position(5,24); 

er2: 	printf("%d total datapoints. First data point to filter?",np); 
scanf(" %d",&ns); 
if(ns>npm){ 

goto er2; 
if(ns < 1){ 

goto er2; } 
/* 	while(getchar()!='\n'); 	*/ 
/* Banker OP code insertion ends */ 

g_clean(95,99); 
position(5,24); 
printf("Enter low cutoff frequency (0-500 Hz):"); 
scanf("%f",&lowf[swch]); 
while(getchar()!='\n'); 
g_clean(95,99); 
position(5,24); 
printf("Enter high cutoff frequency (0-500 Hz):"); 
scanf("%f",&highf[swch]); 
while(getchar()!='\n'); 
if(fflag[swch]= =0) { 

for(i=ns-1;i<np+30;++i){ 
data[44-swch][i]=data[swch][i]; 
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} 
else { 

for(i=ns-1;i <np+30; + -1-1){ 
data[swch][i] =data[swch+4][i]; 

} 

al =pi*highf[swch]/1000; 
al =tan(al)*cl; 
bl=pi*lowf[swch]/1000; 
bl =- tan(b1)*cl ; 
wc=al*bl; 
B=al-b1; 

1* 	second order filter parameter determination 
	

*1 

al =1.0/pow(0.4142,k); 
bl=al*B/c1; 
i=2*n+m-2; 

a[0][4]=1.0; 
a[0][2]=(2*wc+al*al*B*B)/cl/c1; 
a[0][0]=wc/cl/c1; 
a[0][0]=a[0][0]*a[0][0]; 

for (j=0;j<nj++){ 
a[0][3] =b[i][j]*bl; 
a[0][1]=a[0][3]*wc/cl/c1; 
a[1][4]=- a[0] [4] +a[0] [3] +a[0] [2] +a[0] [1] +a[0] [0] ; 
a[1] [3] =2 *(a[0] [1] +2*a[0][0]-2*a[0][4]-a[0][3]); 
a[1] [2] = 2*(3*a[0] [4]-a[0] [2] +3*a[0][0]); 
a[1][1] =2*(a[0][3] +2*a[0][0]-2*a[0][4]-a[0][1]); 
a[1] [0] = a[0] [4]-a[0][3] + a[0][2]-a[0] [1] + a[0][0] ; 

dpro(); 

if (m= =0) 
goto end; /* no first order filter required 	/ 

/* 	filter order filter parameter determination 
al =1/pow(0.4142,k); 
a[0][1] =b1 
a[0] [0] =wc; 
a[1][2]=c1 +a[0][1]+a[0][0]/c1 ; 



68 

a[1][1]=2*(a[0][0]/cl-c1); 
a[1][0] = cl-a[0][1] +a[0][0]/c1; 
tem[0] ,---bl*data[swch][ns-1]/a[1][2]; 
tem[1] (bl*data[swch][ns]-a[1][1]*tem [0])/a[1] [2]; 
for(i=ns+1;i< npm +30;i+ +){ 
tem[i]=a[1][1]*tem[i-1]+a[1][0]*tem[i-2]; 
tem[i] =(b1*(data[swch][i]-data[swch][i-2])-tem[i])/a[1][2]; 
} 
data[swch][npm +29] =bl*tem[npm +29]/a[1][2]; 
data[swch][npm +28] = (bl*tem[npm +28]-a[1][1]*data[swch][npm +29])/a[1][2]; 
for(i=ns+1;i<npm+30;i+ +){ 

data[swch][npm +29-i] =a[1][1]*data[swch][npm +30-i] + a[1][0]*data[swch][npm +31-i]; 
data[swch][npm +29-i] = (b1*(tem[npm +29-i]-tem[npm+31-i])-data[swch][npm +29-i] 
)/a[1][2]; 

} 
end: 	fflag[swch] =1.  

} 

dpro() 
{ 

int 

tem[0] =bl*bl*data[swch][ns-1]/a[1][4]; 
tem[1] = (bl*bl*data[swch] [ns]-a[1][3]*tem[0])/a[1] [4] ; 
tem[2] =b1*b1*(data[swch][ns+1]-2*data[swch][ns-1]); 
tem[2] = (tem[2]-a[ 1][3]*tem[1]-a[1][2]*tem [0])/a[1] [4] ; 
tern [3] =bl*b1*(data[swch][ns+2]-2*data[swch][ns]); 
tem[3] = (tem[3]-a[1][3]*tem[2]-a[1][2]*tem[1]-a[1][1]*tem[0])/a[1][4]; 
for(i =-ns +3;i < npm +30;i+ +){ 
tern [i] = bl*b1*(data[swch][i]-2*data[swch] [i-2] + data[swch] [i-4]); 
al =a[1][3]*tem[i-1]+a[1][2]*tem[i-2]+a[1][1]*tem[i-3]+a[1][0]*t m[i-4]; 
tem[i] = (tem [i]-a1)/a[1][4]; 

} 
data[swch][npm +29] =bl*bl*tem[npm +29]/a[1][4]; 
data[swch][npm +28] =(bl*bl*tem[npm +28]-a[1][3]*data[swch][npm + 29])/a[1] [4] ; 
data[swch][npm + 27] =bl*b1*(tem[npm +27]-2*tem [npm + 29]); 
al =a[1][3]*data[swch][npm +28] +a[1][2]*data[swch][npm +29]; 
data[swch][npm +27] =(data[swch][npm + 27]-a1)/a[1] [4]; 
data[swch][npm +26] =bl*b1*(tem[npm +26]-2*tem[npm +28]); 
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a 1 =a[1][1]*data[swch][npm +29] + a[1][2]*data[swch][npm +28] + a[1][3]*data[swch][ 
npm+27]; 

data[swch][npm+26]=(data[swch][npm+26]-a1)/a[1][4]; 
for(i =ns+3;i < npm +30;i++)t 
data[swch][npm+29-i]=bl*b1*(tem[npm+33-i]-2*tem[npm+31-i]+tern[npm+29-i]); 
al =a[1][2]*data[swch][npm+31-i]+a[1][3]*data[swch][npm +30-i]; 
al =al +a[1][0]*data[swch][npm +33-i] +a[1][1]*data[swch][npm + 32-i]; 
data[swch][npm+29-i]=(data[swch][npm+29-fl-a1)/a[1][4]; 
} 
} 

void head() 
{ 

int i,j; 
void waitsec(),c1s(),position(); 
union REGS inregs,outregs; 

inregs.h.ah=1; 
inregs. h.ch  =0x0f; 
inregs.h.c1=0x0f; 
int86(0x10,&inregs,&outregs); 
cls(0,24); 
for(j =0;j < 2; + +j){ 

for(i=0;i<5;++i)t 
position(0+j,15+i); 
w char(219,0x0f); 
} 

for(i=0;i<5;++i){ 
position(4+j,15+i); 
w_char(219,0x0f); 
} 

} 
position(2,19); 
w char(219,0x0f); 
position(0,21); 
printf("Multi-Function Test System. Version 1.51 1988."); 
printf("\nNo COPYRIGHT (C) 1988. No TRADE MARK (R) 1988."); 
printf("\nNo Use (N) 1988."); 
waitsec(2.5); 
cls(0,24); 
inregs.h.ah=1; 
inregs.h.ch =0x07; 
inregs.h.c1=0x07; 
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int86(0x10,&inregs,&outregs); 

header() 
{ 

void position° ; 
int i,j; 

position(10,0); 
printf(" %c",' \ 311 '); 
for(i =11;i <59; + +i){ 

for(j =0;j <8;j =j ±7)t 
position(i,j); 
printf(" %c", ' \315'); 

} 
} 

position(59,0); 
printf(" %c" , '1273 '); 
for(i=1;i< 8,+ +0( 

for(j =10;j < 60;j =j +49){ 
position(j,i); 
printf(" %c"  

} 

position(10,7); 
printf(" %c" \310'); 
position(59,7); 
printf(" %c" \ 274'); 

menu1(n) 
int n; 

void position(); 

g_clean(95,99); 
position(5,24); 
cprintf("Fl: Filter F2: Move F3:Scale F4:Print F5:Simpfit F6: Continue 

F7:Next"); 

} 

savedata() 



fin(m) 	/* Input patient's information 
int m; 	/* which one */ 
{ 

char name[15],c,tmp[6]; 
FILE *fp,*fopen(); 

strcpy(name,pathn); 
strcat(name,pfnm[m]); 	/* get file name 
fp=fopen(name,"r"); 
fgetstr(1_name,16,fp); 
fgetstr(f name,16,fp); 
fgetstr(bdate,15,fp); 
fgetstr(sex,4,fp); 
fgetstr(adrs[0],30,fp); 
fgetstr(adrs[1],30,fp); 
fgetstr(phone,15,fp); 
fgetstr(dgns[0],80,fp); 
fgetstr(dgns[1],80,fp); 
fgetstr(cmmts[0],80,fp); 
fgetstr(cmmts[1],80,fp); 
fgetstr(cmmts[2],80,fp); 
fgetstr(tst, 15 , fp); 
fscanf(fp,"%d\n",&ntk); 
for(ntst=0;fgetstr(tname[ntst],15,fp)! =0; + +ntst) 

fclose(fp); 

readdata(fname,n,m) 	/* Read test data 
	 */ 

char fname[]; 
int n,m; 	/* n is channel; m=0 only read test information */ 
{ 
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*/ 
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int k; 
char name[15]; 
FILE *fp,*fopen(); 

k=m?n-1:4; 
strcpy(name,pathn); 
strcat(name, fname); 
fp=fopen(name,"r"); 
if(fp= =0) 

strcpy(sti[k].ptn,"Data not available at this time"); 
else{ 

strcpy(datafile, fname); 
fgetstr(tdate[k],16,fp); 

strcpy(hauptdate, tdate[k]); 
fgetstr(ttype[k],6,fp); 
fgetstr(label[k],6,fp); 
fgetstr(eye[k],4,fp); 
fgetstr(sti [k] frqcy ,11 , fp); 
fgetstr(sti[k].ptn,40,fp); 
fgetstr(sti[k].cntrst,11,fp); 
fscanf(fp,"%f\n%fln",&lpf[k],&hpf[k]); 
if(m >0) 

for(np=0;fscanf(fp," %f",&data[k][np])!=E0F; + +np); 
fclose(fp); 
} 

if((np! =250)&&(np! =500)) 
np-=30; 

fgetstr(s,n,fp) 	/* read a string from file 	*/ 
char s[]; 
int n; 
FILE *fp; 	 /* get ride of the '\n' */ 
{ 

char *ptr,d=0; 

if(fgets(s,n,fp)! =NULL) 
d=1; 



if((ptr=-strchr(s,'\n'))!=0) 
*ptr='\0'; 

return d; 
} 

listlO 	/* Test information list 
	

*/ 

{ 
int maxpage,i,j,ln,flag=0; 
unsigned char c,loop,not_done=1; 
void cls(),position(); 

cls(0,24); 	 /* patient's information 
position(0,0); 
printf(" PATIENT : %s %s ",f name,l_name); 
position(30,0); 
printf(" 	BIRTHDATE: %-l0s SEX: %s",bdate,sex); 
printf("\n ADDRESS : %-20s TELEPHONE: %s",adrs[0],phone); 
printf("\n %-20s",adrs[1]); 
printfe\nDIAGNOSIS:\n%-s\n%-s",dgns[0],dgns[11); 
printf("\nCOMMENTS :\n%-s\n%-s\n%-s",cmmts[0],cmmts[1],cmmts[2]); 
printf(" \n\n FILE 	TEST DATE 	STIMULUS"); 
printf(" 	 LABEL"); 
for(j=12;j <25;j=j+11) 

for(i=0;i < 78; + +i){ 
position(i,j); 
printf(" %c",'\315'); 
} 

maxpage=(ntst-1)/10; 
while(not_done){ 

cls(13,22); 
position(0,12); 
for(i =0;i < 10 && i +page*10 < ntst; + +i){ 

readdata(tname[i+page*10],1,0); /* only read information 
printfe\n%-12s %4s",tname[i+page*10],ttype[4]); 
printf("%l0s %-35s",tdate[4],sti[4].ptn); 	/* show it 
printf(" %5s % 3s" ,sti[4].frqcy,label[4]); 
} 	/* end for loop */ 

In=13; 
loop =1; 
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lnrvs(ln,0,78); 
while(loop){ 

switch(keyin()) { 
case 200: 	/* move one line up 

if(ln>13){ 
lnrvs(ln,0,78); 
--In; 
lnrvs(ln,0,78); 
} 

break; 
case 208: 	/* down */ 

if(ln < 22 && page< =maxpage && 
ntst-page*10+12>ln )1 

lnrvs(ln,0,78); 
++1n; 
lnrvs(ln,0,78); 
} 

break; 
case 201: 	/* previous page 	*/ 

if(page>0){ 
--page; 
loop=0; 

break; 
case 209: 	/* next page */ 

if(page<maxpage){ 
+ +page; 
loop=0; 

break; 
case 13: 	/* accepte selection 	*/ 

readdata(tname[In+page*10-13],chn,1); 
strcpy(filename,tname[ln+page*10-13]); 
not done=loop=0; 
break; 

case 27: 	/* exit */ 
not done=loop=0; 
flag=1; 
break; 

default: 
loop=1; 
break; 

} 	/* switch 
/* loop */ 



/* not done 
return(flag); 

list() 	/* list all the patient's information data 
{ 
	

/* file name on the data disk 

int maxpage,ln,i,j,page,nf,flag=0; 
unsigned char x,not_done=1,loop=1; 
void cls(),position(); 

cls(0,24); 
nf=fsrch(); 	/* number of files with [.dat] extension 
maxpage=nf/20; 
page=0; 
for(j =l;j <23;j+ =21) 	/* two dividing line 	*/ 

for(i=0;i<70;+ +i){ 
position(i,j); 
printf(" %c",'\315'); 
} 

position(0,0); 
printf(" FILE 	NAME 	TEST"); 
position(0,24); 
printf(" 	TOTAL FILES: %4d",rif); 

while(not done) { 
cls(2,21); 
position(0, 1); 
for(i=0;i <20 && i+page*20<nf ; + +i) 	/* display 

fin(i+20*page); 
printf(" \n %4d: " + 20*page + 1); 
printf(" %-12s, %-12s",l_name,fname); 
printf(" %-l0s ",tst); 
} 

ln=2; 
lnrvs(ln,1,70); 
loop =1; 
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while(loop){ 
switch(keyin()){ 

case 200: 	/* one line up */ 
if(ln > 2){ 

lnrvs(ln,1,70); /* reverse old one 
--ln; 
lnrvs(ln,1,70); /* reverse new one 
} 

break; 
case 208: 	/* one line down 

	*/ 
if(ln <21 && page< =maxpage && 

nf-page*20+1>ln){ 
lnrvs(ln,1,70); 
++ln; 
lnrvs(ln,1,70); 
} 

break; 
case 201: 	/* previouse page 	*/ 

if(page>0){ 
--page; 
loop=0; 
} 

break; 
case 209: 	/* next page 

if(page< =maxpage){ 
+ +page; 
loop=0; 
} 

break; 
case 13: 	/* find one 	*/ 

fin(ln+page*20-2); 	/* read the information 
not_done=loop=0; 	/* finish 	*/ 
break; 

case 27: 	/* nothing, exit 	*/ 

flag=1; 
not_done=loop=0; 
break; 
/* end switch 

/* end loop 	*/ 
/* end not done */ 

return(flag); 
} 
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* 

........................................ 

draw(a,b,c) 	 /* plot waveform of test data 
int a; 	 /* which one */ 
float b; 	 /* vertical shift 
unsigned char c; 	/* write or erase 	*/ 
{ 

int i,xl,x2,yl,y2; 
float step,ratio,xr; 
char cl; 
void position(); 

x1=15; 	1* x-axis starting point 
xr =15.0; 
y1=10*data[a-1][0]/sen+b*20+5; /* data starting point */ 

/* Banker OP code change starts */ 
if(npm! =0){ 

ratio = 250.0/(npm-ns + 1);} 
else{ 

ns=1; 
npm=np; 
ratio=1.0; 
} 

step=npm>300?1.0:(2.0*ratio); 	/* decide the graphic size 
for(i=ns;i<npm;++0{ 

xr=xr+step; 
x2=xr+0.5; 
y2=-10*data[a-1][i]/sen+b*20+5; /* compute data position 
line(xl,x2,200-y1,200-y2,c); 
xl =x2; 
y 1 =y2; 
} 

/* Banker OP code change ends */ 
c 1 =c?a+48:0; 	/* for label display */ 
xl=(x1+15)/8; 	/* at the last data point 	*/ 
yl =24-y1/8; 
position(xl,y1); 
w char(cl, l); 	 /* put it on 
position(xl + 2 , yl) ; 
c1=c?label[a-1][0]:0; 
w char(cl,c); 
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position(x 1 +3,y1); 
cl =c7label[a-l][1]:0; 
w char(cl,c); 

} 

/* ....................................... 
	 *1 

csrm(l) 
	

/* a pair of cursor measure the peak value 
float 1[]; 
{ 

int i,j,k,x,y1,y2,key=49,swch,p=0; 
void position(); 
float a,b,c; 

for(i =0;i < chn; + +i) 	/* the initial position */ 
for(j =0;j <2; + +j) 

csrin(i,j,l,1); 
g_clean(95,99); 
position(5,24); 
swch=key-49; 	/* channel 1 first 	*/ 
cprintf(" 	Cursor of waveform %d",swch+l); 
while((key=keyin())!=27){ 

	
/* not finish *1 

switch(key){ 
case 203: 
	

/* move left */ 
csrin(swch,p,1,0); 
--csr[swch][p]; 
csrin(swch,p,l,1); 
break; 

case 205: 	/* move right */ 
csrin(swch,p,1,0); 
+ +csr[swch][p]; 
csrin(swch,p,1,1); 

if(key = =9711key= =65) /* A cursor 	*7 
} 	/* end of switch 	*/ 

break; 

p=0; 
if(key==9811key= =66) /* B cursor 	*7 

p=1; 
if(key > 48&&key < chn +49) { 	/* change channel 

	
*1 

g_clean(95,99); 
position(5,24); 



79 

swch=key-49; 
cprintf(" 	Cursor of waveform %d",swch+1); 

/* end of if */ 
/* end of while */ 

} 

csrin(i,j,l,$) /* draw the little cursor line */ 
int i,j; 	 /* which one 	*/ 
float 1[]; 	/* vertical shift of the data 
int s; 	 /* on or off 	*/ 
{ 

int x,y1,y2,k,step; 

step=np > 30071:2; 
x=15+step*csr[i][j]; 
k=csr[i][j]; 
yl =10*data[i][k]/sen + l[i]*20 + 6; 
y2=y1+10; 
line(x,x ,200-y1,200-y2,$); 
if(s) 

	

for(k = 0;k < chn; + +k){ 	/* data */ 
position(40,2+k); 
printf("#% Id: %3d< => %7.3f",k+1,csr[k][0],data[k][csr[k][0]]); 
printf(" %3d< = > %7.3f",csr[k][1],data[k][csr[k][1]1); 
} 

plot(n) 
int n; 
{ 

int o_mode,mode=6,flag,i; 
char key; 
float offset[4]; 
void positionQ,axisQ; 



offset[0] =4.0; 
offset[1] =4.0; 
offset[2]=6.0; 
offset[3]=6.0; 
o mode=getmode(); 
cmode(mode); 

r: 	g_clean(0,99); 
axis(); 
for(i=1;i< =chn;++i) 

draw(i,offset[i-1],1); 
m: 	menul(n); 
k: 	if((key=getch())= =27) 

flag=0; 
else if(key= =0){ 

switch(getch()){ 
case 59: 

filter(); 
goto r; 
break; 

case 60: 
move(offset); 
goto m; 
break; 

case 61: 
g_clean(95,99); 
position(5,24); 
cprintf("Enter New Scale:"); 
scanf("%f",&sen); 
while(getchar()!='\n') 

1 

goto r; 
break; 

case 62: 
g_clean(95,99); 
prnt(); 
goto r; 
break; 

case 63: 
if(numprmts < 10) 
{ 

simpfit(); 
goto r; 
break; 

} 
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else 
{ 
simpsave(); 
goto r; 
break; 
} 

case 64: 
flag=2; 

npm =np; 
ns=1; 

break; 
case 65: 

flag=3; 
npm=np; 
ns=1; 

break; 
default: 

goto k; 
break; 

} 
} 

else 
goto k; 

cmode(o_mode); 
return(flag); 

move(shift) 
	

/* move waveforms 
float shift[]; 
{ 

float 11=0,12=0; 
char key,not_done=1; 
int swch; 
void position(); 

g_clean(95 ,99); 
position(5,24); 
cprintf("Which one do you want to move :"); 
whileakey =keyin()) > (chn +0x30)11key < 49) 
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swch = key-48; 
g_clean(95,99); 
position(5,24), 
cprintf(" 	MOVING WAVEFORM %d",swch); 
while(not_done) 

switch(keyin()){ 
case 200: 	/* up */ 

draw(swch,shift[swch-1],0); 
shift[swch-1]+ =.2; 
draw(swch,shift[swch-1],1); 
break; 

case 208: 	/* down */ 
draw(swch,shift[swch-11,0); 
shift[swch-1]-=.2; 
draw(swch,shift[swch-11,1); 
break; 

case 27: 	/* exit */ 
not done=0; 

/* redraw plots */ 

for(swch=1;swch< =chn;swch++) 
draw(swch,shift[swch-1],l); 

break; 
default: 

break; 
} 

} 

void axis() 
{ 

int i,j,k; 	/* Banker OP code added */ 
float ratio; 
void position(); 

/* Banker OP code insertion starts */ 
if(npm = = 0) 

{ 
npm =np; 
ns=1; 
} 



ratio = 250.0/(npm-ns+1)*5; 
line(10,630,185,185,1); 
line(10,10,15,185,1); 
j =150/ratio; 
for(i=1;i< =j;++ ) 

/* x-axis 
/* y-axis 

/* x scales 
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k = 15.0 +i*4*ratio+0.5; 
line(k,k,185,180,1); 

} 
for(i =0;i < 17; + +i) 	/* y scales 	*/ 

line(10,13,15+i*10,15+i*10,1); 
j =15/ratio; 
for(i=1;i<=j;++i) 	 1* x scales X 10 div. */ 
{ 

k= 15.0 +i*40*ratio +0.5; 
line(k,k,180,176,1); 

} 
position(65,21); 
cprintf("%2d ms/div",(npm-ns+2)>300?20:10); 

/* Banker OP code insertion ends */ 
position(3,2); 
printf("%4.2f uv/div",sen); 

} 

#define GRSEG 0xb800 	/* define video memory segment */ 
/* for small memory model 

g_clean(m,n) 
	

/* graphics clean 
	 */ 

int m,n; 
	 /* start and finish line 

	 */ 

f 
unsigned char rw[80]; 
int i; 
struct SREGS reg; 

segread(&reg); 	/* read DS value 	*/ 

memset(rw,0, 80); 
for(i=m;i<=n;++i){ 

movedata(reg.ds,rw,GRSEG,i*80,80); 
movedata(reg.ds,rw,GRSEG,i*80+0x2000,80); 
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} 

void prtsc() 
	

/* print graphics using BIOS 

union REGS inregs,outregs; 
int86(0x05,&inregs,&outregs); 

} 

w char(c,atr) 
char c,atr; 
*/ 

{ 
union REGS inregs,outregs; 

/* write a character on screen */ 
/* character and it's attribute 

inregs. h. ah =9; 	 /* write character 
*1 

inregs.h.bh =0; 
inregs. h . al  =c; 
inregs.h.bl=atr; 
inregs.x.cx =1; 
int86(0x10,&inregs,&outregs); 	/* BIOS call Hex 10; video function 

} 

void getcurs(row,col) 
	

/* get cursor position 
int *row,*col; 
{ 

union REGS inregs,outregs; 

inregs.h.ah=3; 
inregs.h.bh =0; 
int86(0x10,&inregs,&outregs); 
*row=outregs.h.dh; 
*col=outregs.h.d1; 

} 

void position(c,r) 	/* set the cursor position 
int c,r; 	 /* column and row 

union REGS inregs,outregs; 

inregs.h.ah =2; 



inregs. h.dh = r; 
inregs. h.d1=c; 
inregs. h. bh  =0; 
int86(0x10,&inregs,&outregs); 
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void cls(rl,r2) 
int rl,r2; 

{ 
union REGS inregs,outregs; 

inregs.h.ah=6; 
inregs.h.bh  =0x07; 
inregs.h.a1=0; 
inregs.h.ch =-r1; 
inregs.h.c1=0; 
inregs.h.dh=r2; 
inregs. h. dl =79; 
int86(0x10,&inregs,&outregs); 

} 

void cursupO 
{ 

int row,col; 

getcurs(&row,&col); 
if(row >0) 

position(col,row-1); 
} 

void cursdn() 
{ 

int row,col; 

getcurs(&row,&col); 
if(row <24) 

position(col,row+1); 
} 

r_ char(c,atr) 
unsigned char *c,*atr; 
{ 

/* clear screen in text mode 
/* start and end line 

/* move cursor up one position */ 

/* cursor down one position 

/* read character at current cursor 
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union REGS inregs,outregs; 

inregs.h.ah=8; 
inregs.h.bh=0; 
int86(0x10,&inregs,&outregs); 
*c=outregs.h.al; 
*atr=outregs.h.ah; 

lnrvs(ln , cll, c12) 
	

/* reverse a line on the screen */ 
int ln,cll,cl2; 
	

/* line position and columns 	*/ 
{ 

int i; 
char c,a; 
void position(); 

for (i =cl1;i < =c12; + + i){ 
position(i,ln); 
r char(&c,&.a); /* what's in there 	*/ 
a=(—a)&0x77; /* revers the attribute */ 
w_char(c,a); 

getmode() 	/* get video mode 
{ 

union REGS inregs, outregs; 

inregs.h.ah = 0x0F; 	 /* Use BIOS call to get mode *1 

inregs. h . al  = 0; 
int86(0x10,&inregs,&outregs); 

return(outregs. h . al) ; 

} 

cmode (num) 
*/ 

int num; 
{ 

union REGS inregs, outregs; 

inregs.h.ah = 0; 	/* Use BIOS call to set mode 
inregs.h.al  = num; 

/* change mornitor mode 



int86(0x10,&inregs,&outregs); 
return(num); 

} 

line(x,x1,y,y1,c) 
int x,xl,y,yl; 
unsigned char c; 

{ 

/* draw line between two dots 
/* corespondents 	*/ 
/* write or erase 

87 

int p,q,e,deltax,deltay,hlfx,hlfy; 
int ix,iy,cont; 

deltax=abs(x1-x); 
deltay=abs(yl-y); 
hlfx =deltax/2; 
hlfy =deltay/2; 
ix=(x1<x)?-1:1; 	/* going left or right 
iy=(y1<y)?-1:1; 	/* going up or down 
if(abs(deltay)> ----abs(deltax))1 	/* slope 

e=0; 
p=x; 
q=Y; 
cont=deltay; 
while(cont> =0)1 

putdot(p,q,c); 
q=q+iy; 
e=e+deltax, 
if(e>hlfy){ 

e =e-deltay; 
p=p+ix; 
} 

cont=cont-1; 

} 
else{ 

e=0; 
p=x; 
(1=Y; 
cont=deltax; 
while(cont>0){ 

putdot(p,q,c); 
p=p+ix; 
e=e+deltay; 

*1 

greater than 1 

*1 /* increment horizontally 
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if(e>hlfx){ 
	

/* increment vertically */ 
e = e-deltax; 
q=q+iy; 

cont =cont- , 
} 

putdot(col,row,c) 	/* write the dot in the video memory directly 
int col,row; 	/* position 	*/ 
unsigned char c; 	/* set or clear */ 
{ 

unsigned char far *scrptr; 
unsigned int offset,shift; 

scrptr=(unsigned char far *) (0xb8001< <16); 
shift =7-col&0x7; 
offset=80*(row> > 1)+(col> >3); 
if(row&0x 1) 

scrptr + =0x20001; 
*(scrptr+offset) &= (0x0l< <shift); 
*(scrptr+offset) I =(c< <shift); 

} 

#define clockfreq 1193180L 
#define spkrmode 0xb6 
#define t_modeport 0x43 
#define freqport 0x42 
#define spkrport 0x61 
#define spkron 0x03 
#define freq0 0xl2c 
#define freql 0xl9f 
#define div0 clockfreq/freq0 
#define div 1 clockfreq/freq 1 
#define click .40 
void waitsec(); 

void sound() /* sound using the speaker 
{ 

unsigned char port0; 



unsigned int d0=div0,d1=divl,ct=0; 
float delay=click; 
int i; 

outp(t_modeport, spkrmode); 
port0=inp(splcrport); 
outp(freqport,d0&0xff); 
outp(freqport,d0> >8); 

spkron),  
waitsec(delay); 
outp(freqport,dl&0xff); 
outp(freqport, dl > > 8); 
outp(splcrport,port0lsploon); 
waitsec(delay); 
outp(splcrport,port0); 

} 

#define tper_s (18.2) 
long t_counts(); 

void waitsec(secs) 
	

1* timing function 
double secs; 
{ 

unsigned long count0,countl; 

count0 = t counts(); 
countl=count0+secs*18.2; 
while(t_counts(<countl) 

} 

#define int time 0xla 
long t_counts() 
{ 

union REGS rin,rout; 
long tc; 

rin.h.ah =0; 
int86(int_time,&rin,&rout); 
tc=((long)rout.x.cx)< <16; 
tc+ =rout.x.dx; 
return tc; 
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} 

keying 
	

/* keyboard input for IBM 

char key; 

if((key =getchQ)! =0) 
return(key); 

else 
return(getch()+128); 	/* function keys 

/* ======================================= 

/*by Marco Caceci, with help from William Caceris. 	1983*/ 
/*Chem. Dept. Florida State University Tallahassee FL32306*/ 
/*no copy-right. SSSD floppy disk copies on request*/ 

/*see Nelder J.A. & R. Mead, Computer J. 7, 308 (1965) and */ 
/*L.A. Yarbro & S.N. Deming,Anal. Chim. Acta 74, 391 (1974)*/ 

/*NOTE: INSTRUCTIONS FOR MODIFYING THE PROGRAM TO HANDLE 
OTHER */ 
/*FUNCTIONS, USE MORE (OR LESS) PARAMETERS, AS WELL AS THE */ 
/*THEORY BEHIND IT, CAN BE FOUND IN THE MAY 1984 ISSUE OF BYTE */ 
/*MAGAZINE, P.340) */ 

/*Modified and adapted to C by Zhongquan Li, Nov., 1988*/ 

/* 
*/ 

#define date 
#define memo 
/* #define m 
extern int m; 
#define nvpp 
/* #define n 
extern int n; 
/*#define mnp 
int mnp = 532; 

it O/r'SO/OOtt 

" Fit a ERG response with mathmatical functions ti 

5 */ /*number of parameters to fit*/ 

2 	/*total number of vans per data point*/ 
6 */ /*m + I*/ /*some compilers don't like this*/ 

1000 */ /*maximum number of data points*/ 
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#define alfa 	1.0 /*reflection coefficient, >0*/ 
#define beta 	0.5 /*contraction coefficient, 0tol*/ 
#define gamma 2.0 /*expansion coefficient, >1*/ 
#define lw 	7 /*width of line in data fields+1*/ 
#define root2 1.414214 

/* ======================================= 
	 *1 

int 	h[10],1[10]; 	 /*number high/low paramts*/ 
int 	maxiter; 	 /*max number iterations*/ 
int 	niter; 	 /*number of iterations*/ 
double next[10]; 	 /*new vertex to be tested*/ 
double center[10]; 	/*center of hyperplane described 	*/ 

/* by all vertexes of the simplex excluding the worst*/ 
double 	mean[10],error[10]; 
double maxerr[10]; 	/*maximum error accepted*/ 
double 	p[11],q[10]; 	/*to compute first simplex*/ 
double 	step[10]; 	 /* starting steps for this function 

double 	simp[10][10]; 	 /*the simplex*/ 
double 	adata[532][2]; 	 /*the data*/ 
double sigma; 	 /* error term */ 

double tanh(va) 
	

/* hypabolic tangent function */ 
double va; 

double a,b; 

a=exp(va); 
b=exp(-va); 
return((a-b)/(a+b)); 

/* end of tanh */ 

/* 



enter() /* enters data from disk file fname. 
data in the order: 

-maximum number iterations (integer), 
-initial guesses of parameters) 
-starting increments (e.g:0.1 1) 
-maximum errors (e.g: le-4 le-4 le-4) 
-data (x,y 

x,y 	etc*/ 
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int i,j; 

for(i=0;i<m;+ +i) 	 /* #m of initial guesses 
simp[0][i]=-pmtr[i]; 

for(i =0;i < m; + +i) 	 /* #m of first steps 
step[i]=fabs(pmtr[i]/10.0)==0?0.1:fabs(pmtr[i]/10.0); 

step[n] =0.01; 
for(i=0;i<n;++i) 	 /* #n of maximum errors 

maxerr[i]=0.01; 
for(i=ns-1,i<npm;++i){ 

adata[i][1]=data[0][i]; 
adata[i][0]=i*1.0; 
} 

/* end of enter */ 

double sum of_ residuals(x) /*computes the sum of the squares of the residuals*/ 
double x[]; 	 /*x(l..m) passes parameters. Result returned in x(n)*/ 
{ 

int i; 
double u,v; 
double f(); 

x[n-1]= 0.0; 
for(i=ns-1;i<npm;++i){ 

u=f(x,adata[i][0])-adata[i][1]; 
v=u*u; 

x[n-1] =x[n-1] +v; 

} 
/* end of sum of residuals */ _ _ 
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------- --  *7 -------------- 

double y,dy,xr; 
int j,i; 
char fitname[15]; 
FILE *fpl,*fopen(); 
double f(); 

printf("\nEnter output file name:"); 
scanf("%s",fitname); 
fpl =fopen(fitname,"a+"); 

fprintf(fpl,"\n\n 
   \n\n"); 
fprintf(fpl,"Data from file----%s \n",filename); 
fprintf(fpl,"%5d data points",np); 
fprintf(fpl,"\n Program exited after %10d iterations.",niter); 
fprintf(fpl,"\nThe estimated best parameters are:\n\n"); 
for(i=0;i < (n-2); + +i) 

fprintf(fp 1 ," x[%2d] ",i +1); 
fprintf(fpl,"\n"); 
for(i =0;i < m; + +i) 

fprintf(fpl,"%8.4r,mean[i]); 
fprintf(fpl,"\n\n The estimated fractional error is\n\n"); 

for(i =0;i < n; + +i) 
fprintf(fpl,"%7.4f",error[i]); 

fprintf(fpl,"\n 	 \n"); 
sigma= 0.0; 

for(i=ns-1,i < npm; + +i){ 
y= f(mean,adata[i][0]); 
dy= adata[i][1] y; 
sigma = sigma + dy*dy; 
} 

xr = sqrt(sigma / (npm-ns + 1)); 
fprintf(fpl,"\nThe standard deviation is %10.5f",xr); 
xr = xr / sqrt((npm-ns+1)*1.0 - m); 
fprintf(fpl,"\nThe estimated error of the function is %10.5f",xr); 

fprintf(fpl,"\n\n 
\n\n\n"); 

START 

END 
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fclose(fpl); 

1*_ 	 ------- -------- 

new vertex() 
	

/*next in place of the worst vertex*/ 

int i; 

for(i 	< n; + +i) 
simp[h[n-l]][i] 	next[i]; 

} 
	

/* end of new vertex */ 

order() 	 /*gives high/low in each parameter*/ 
/*in simp. caution:not initialized*/ 

{ 
int i,j; 

for(j =0;j <n; + +j){ 	/*all dimensions*/ 
for(i=0;i<n;+ +Of 	/*of all vertexes find best and worst*/ 

if(simp[i][j] < simp[l[j]][j]) 
l[j] = i; 

if(simp[i][j] > simp[h[j]][j] ) 
h[j] = i; 

/* end of i loop */ 
/* end of j loop */ 

/* end of order */ 

/* 

simpfit() 	 /* Curve fitting program 
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char not_done=1,key; 
int i,j; 
double sum of residuals(); 
void positiono,c1s0; 

cmode(2); 
cls(0,24); 
printf("\n\nSimplex Fitting ProcedureAn"); 
printf("\n\n\n Max Number of iterations:"); 
scanf("%d",&maxiter); 
while(getchar()!='\n') 

enter(); 	 /* read the data 
sum of residuals(simp[0]); 	/*first vertex*/ 
for(i=0;i<m;++i) 	 /*compute offset of the vertexes*/ 

/*of the starting simplex*/ 
p[i] = step[i] * (sqrt(n*1.0) + m - 1.0) / (m * root2); 
q[i] = step[i] * (sqrt(n*1.0) - 1) / (m * root2); 

for(i=1;i<n;++0{ 	/*all vertexes of the starting simplex */ 
for(j =0;j < m; + +j) 

simp[i][j] = simp[0][j] + q[j]; 
simp[i][i - 1]= simp[0][i - 1] + p[i - 1]; 
sum of residuals(simp[i]); 	/*and their residuals*/ 

for(i=0;i<n;++i) 	 /*preset before calling*/ 
l[i] = h[i] = 0; 

order(); 
cmode(6); 
for(i=0;i<n;++i){ 	 /*average each parameter*/ 

mean[i] .= 0.0; 
for(j =0;j < n; + +j) 

mean[i]= mean[i] + simp[j][i]; 
mean[i] = mean[i] / n; 

pmtr[i] = mean[i]; 

view(); 
niter = 0; 	 /*no iterations yet*/ 
while(not_done&&(niter < maxiter)) ( 	/*keep iterating*/ 

not_ done = 0; 	 /*wish it were... */ 
+ +niter; 
position(60,3); 
printf("%3d",niter); 



position(30,24); 
printf(" fitting 	"); 
for(i=0;i<n;++i){ 

mean[i]= 0.0; 
for(j=0;j<n;+ +j) 

mean[i]= mean[i] + simp[j] 
mean[i]= mean[i] / n; 
pmtr[i] = mean[i]; 

if(niter%10= =0) 
view(); 

for(i -=0;i<n;++i) 
center[i] = 0.0; 

for(i =0;i < n; + +i) 	 /*compute centroid*/ 
if(i! =h[n- 1] ) 	 /*excluding the worst*/ 

for(j =0;j < m; + +j) 
center[j]= center[j] + simp[i][j]; 

for(i=0;i<n;++i){ 	 /*first attempt to reflect*/ 
center[i] =center[i] / m; 
next[i] = (1.0 + alfa) * center[i] - alfa * simp[h[n- 1 ]] [i] ; 
/*next vertex is the specular reflection of the worst*/ 
} 

sum_ of residuals(next); 

if(next[n-l] < = simp[1[n-1]][n-1]){ 	/*better than the best 7*/ 
new vertex(); 	 /*accepted !*/ 
for(i =0;i < m; + +i) 	 /*and expanded*/ 

next[i] =gamma * simp[h[n-l]][i] + (1.0 - gamma) * center[i]; 
sum of residuals(next); 	/*still better 7*/ 
if(next[n-1] < = simp[1[n-1]][n-1] ) 

new vertex(); 
} 
	

/*expansion accepted*/ 
else{ 	 /*if not better than the best*/ 

if(next[n-1] < = simp[h[n-1]][n-1]) 
new vertex(); 	 /*better than worst*/ 

else{ 

	

	 /*worse than worst then: contract*/ 
for(i=0;i<m;++i) 

next[i]=beta*simp[h[n-1]][i]+(1.0-beta)*center[i]; 
sum_ of_ residuals(next); 
if(next[n-1]< =simp[h[n-1]][n-1]) 

new vertex(); 	 /*contraction accepted*/ 
else 	 /*if still bad*/ 

/*shrink all bad 

96 

/*average each parameter*/ 

vertexes*/ 
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for(i=0;i<n;++i) 
for(j =0;j < m; + +j){ 

beta; 
	 simp[i][j] = (simp[i][j] + simp[l[n- 1 ]][j]) * 

sum of residuals(simp[i]); _ 
/* end of i loop*/ 
/* end of else */ 
/* end of else*/ 
/* end of else*/ 

order(); 
for(j =0,j < n; + +j){ 
	

/*check for 
convergence*/ 

error[j] =(simp[h[j]][j] - simp[l[j]][j]) / simp[h[j]][j]; 
if(not_done= =0) 
if(error[j] > maxerr[j]) 

not_done=1; 

} 

cmode(2); 
finial(); 
cmode(6); 

view() 
{ 

int i,j; 
float offset[4]; 
void position(),axis(); 

for(i=ns-1;i<npm;++i) 
data[1][i] =f(mean,adata[i][0]); 

offset[0]=3.5; 
offset[1] =3.5; 
offset[2]=6.; 
offset[3]=6.; 
g_clean(0,99); 
axis(); 
for(i =1;i < =chn; + +i) 

draw(i,offset[i-1],1); 
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fsrchQ 	/* search all the patient's information file name */ 
/* 	file with [.DAT] extension 

	 *1 

int nf; 	/* number of files 	*/ 
unsigned char buffer[64],fcb[50]; 
unsigned char *ptr; 

strcpy(fcb, pathn); 
strcat(fcb,"*.dat"); 
ptr=buffer; 	 /* pointer to buffer 
bdos(0xla,ptr,0); 	/* put file name in FCB */ 
ptr=fcb; 	 /* set pointer to FCB */ 
nf=0; 
if(bdos(0x4e,ptr,1)= =0){ 	/* find the first one match 	*/ 

strcpy(pfnm[nf],buffer+30); 	/* get the file name from FCB 
+ +nf; 
while(bdos(0x4f,ptr,1)==0){ /* continue to look */ 

strcpy(pfnm[nf],buffer+30); 
+ +nf; 

/* end while 
/* end if 	*/ 

return nf; 
} 

simpsave() 
{ 

int w; 
char filename[20]; 
FILE *fpp; 

cmode(2); 
cls(0,24); 
printf("\nYou cannot simpfit more than nine (9) parameters."); 
printf("\nParameters and filtered waveform will be saved."); 
while(getchar()!='\n'); 
printf("\nEnter path and output file name: "); 
gets(filename); 
if((fpp=fopen(filename,"a")) -== 0) 

printf("Can't open file -> %s\n",filename); 
else 



fprintf(fpp, "1n % 12 s " , d atafil e) ; 
fprintf(fpp, "\n % 15 s" ,hauptdate) ; 
fprintf(fpp, "\n %5d",npm); 
fprintqfpp," 1n %5d",ns); 
fprintf(fpp , "1n % 5 d " ,NN); 
fprintf(fpp, "1n % 10.5f" ,sen); 
for(w = 1 ; w < numprmts + 1; + +w) 

fprintf(fpp, "\n % 17. 6f" , pmtr[w-1]); 
for(w = 1 ;w < numprmts +1; + +w) 

fprintqfpp," n %3s",lbf[w-1]); 
for(w =1;w < numprmts + 1 ; + +w) 

fprintf(fpp, "\n % 8s" , unt[w-11); 
fprintf(fpp, "\n"); 
for(w=ns-1;w<npm+30;+ +w) 

fprintf(fpp," % 10.5f" ,data[swch] [w]); 
} 
cmode(6); 
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} 
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Sub-program for Mathematical Equations 

#include <stdio.h> 
#include < math. h > 
#include <conio.h> 
#include < stdlib.h > 
//include < string. h > 
#include < io. h > 
#include < dos. h > 
#include < memory. h > 

/* ERG curve fitting */ 

	

/* building simplex method 	*/ 
/* Modified too many damn ways */ 

	

/* for Banker Master Thesis 	*/ 

int NN = 7; /* Order of OP eqtn term */ 

int numprmts; /* NUMBER OF PARAMETERS USED BY SIMPLEX PROGRAM*/ 
int m; 	/* SHOULD BE SAME AS numprmts */ 
int n; 	/* SHOULD BE m + 1 */ 
char prmstr; /* NUMBER OF PARAMETERS AS STRING */ 
char prmstrl; /* NUMBER OF PARAMETERS + 1 AS STRING */ 

int tnumprmt = 10; /* TOTAL NUMBER OF PARAMETERS */ 
int tm = 10; 	/* SHOULD BE SAME AS tnumprmt */ 
int to = 11; 	/* SHOULD BE m + 1 */ 
char tprmstr = 'A'; /* TOTAL NUMBER OF PARAMETERS AS STRING */ 
char tprmstrl = 'B'; /* TOTAL NUMBER OF PARAMETERS + 1 AS STRING */ 

/* USE 'A' IF 10 PARAMETERS */ 
/* USE 'B' IF 11 PARAMETERS, ETC. */ 

int opnumprm = 4; /* ENTER NUMBER OF OP PARAMETERS */ 
int opm = 4; 
	

/* SHOULD BE SAME AS opnumprm */ 
int opn = 5; 
	

/* SHOULD BE opm + 1 */ 
char opprmstr = '4'; /* ENTER NUMBER OF OP PARAMETERS AS STRING */ 
char opprmstrl = '5'; /* ENTER NUMBER OF OP PARAMETERS + 1 AS STRING 

int abnumprm = 6; /* ENTER NUMBER OF A & B WAVE PARAMETERS */ 
int abm = 6; 	/* SHOULD BE SAME AS abnumprm */ 
int abn = 7; 	/* SHOULD BE abm + 1 */ 
char abprmstr = '6'; /* ENTER NUMBER OF A & B WAVE PARAMETERS AS 
STRING */ 
char abprmstrl = '7'; /* ENTER NUMBER OF A & B WAVE PARAMETERS + 1 
AS STRING */ 

/* CHANGE HERE EQUATION THAT APPEARS ON SCREEN */ 
/* OP WAVE MODEL EQUATION */ 
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char opecitn[100] = "OP(t)=A*[expOrt/Tc]''n * [exp(-t*n/Tc)] * sin(2*pi*t*Fo + 
Po)"; 
/* A & B WAVE MODEL EQUATION */ 
char abeqtn [100] 	= 	" AB(t) =K1*(1 	exp(-a1((t/Tpl)exp(1-t/Tpl)r5)) 
+K2*(a2V3*exp(-a2*t)*sin(Wt)"; 

double pmtr[15]; 
double initpmtr[15]; 
unsigned char lbf[15][3]; 
unsigned char unt[15][8]; 

/* ENTER STARTING VALUES FOR OP PARAMETER OPTIMIZATION */ 
double oppmtr[15]=138.0,25.0,0.130,-45.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.01; 

/* DO IT AGAIN */ 
d 	 o 	 u 	 b 	 1 	 e 
opinitpm[15]={38.0,25.0,0.130,-45.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}; 

/* ENTER SYMBOLS OF OP PARAMETERS */ 
unsigned char oplbf[15][3]=1"A","Tc","Fo","Po"," "," " " "," "," 
.. .1;  

I" 	t 	" 	II" " " " " " t 

/* ENTER UNITS OF OP PARAMETERS */ 
unsigned char opunt[15][8]={"uV","ms","kliz","deg."," "," "," "," "," " " "," "," "," 
it ii .;. .1;  

/* ################################################## */ 

/* ENTER STARTING VALUES FOR A & B WAVE PARAMETER OPTIMIZATION 

d 	 o 	 u 	 b 	 1 
abpmtr[15]={-350.0,200.0,125.0,1777.8,0.15,0.019,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
0.0}; 

/* DO IT AGAIN */ 
d 	 o 	 u 	 b 	 1 
abinitpm[15]={-350.0,200.0,125.0,1777.8,0.15,0.019,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 
,0.0}; 

/* ENTER SYMBOLS FOR A & B WAVE PARAMETERS */ 
unsigned char ablbf[ 15] [3] = { "Kl " , "Tp" , "al " , "K2" , "a2" , "W" , " " , " 
11 	Ii 	it 	II 	II 

}, 

/* ENTER UNITS FOR A & B WAVE PARAMETERS */ 

II 	If 	If 	II 	II 	If 	it 	It 	tt 	U 
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unsigned char abunt[15][5]=-{"uv 
,,
,

II 	tt 
;
ii 	It 	11 	19 ; 	It }; 

"none","uv","1/rns","rd/ms" ," "," U It II it 

double dbint=0.0; 

extern char opflag; 

double pi = 3.1415926; 

/* PUT MODEL EQUATION HERE!!! */ 

double f(x,d) /* fitting the data with the function */ 
double x[],d; /* x(1..m) the parameters, d has the data*/ 
{ 

double a,b,r,s,op,y,dum, tanh(); 

/* 	IIIIIIIIIIII11111111111111111111111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIt*/  
/* EQUATION RIGHT HERE!!! */ 

if(opflag= ='o') 
	

/* OP WAVE EQUATION */ 
{ 

if(x[1] < 0.0001) 
x[1] = 0.0001; 

y=x[0]*pow((exp(1)*d/x[1]),NN)*exp(-d/x[1]*NN)*sin(2*pi*x[2]*d+x[3]*pi/180); 
} 

if(opflag=='a') 
	

/* A & B WAVE EQUATION */ 
{ 

if(x[1] = =0) 
x[1]=.001; 

if(x[1] > 300) 
x[1]=300; 

a=pow((d/x[1]) * exp(1-(d/x[1])),5.0); 
b=-(x[3]/100*pow(x[4]*d,3.0)* exp(-x[4]*d)*sin(x[5]*d)); 
/* x[0] (a-wave amplitude) must be negative or zero*/ 
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if(x[0] > 0) 
x[01=0; 

r=((1 - exp(-x[2]*a))*x[0]); 
y=r+b; 

} 

if(opflag=='b') 	/* OP WAVE PLUS A & B WAVE EQUATION 
*/ 

if(x[1]= =0) 
x[1]=.001; 

if(x[1]> 300) 
x[1]=300; 

a=pow((d/x[1]) * exp(1-(d/x[1])),5.0); 
b=(x[3]/100*pow(x[4]*d,3.0)* exp(-x[4]*d)*sin(x[5]*d)); 
/* x[0] (a-wave amplitude) must be negative or zero*/ 
if(x[0] >0) 

x[0]=0; 
r=((1 - exp(-x[2]*a))*x[0]); 
if(x[7] < 0.0001) 

x[7] = 0.0001; 

op=x[6]*pow((exp(1)*d/x[7]),NN)*exp(-d/x[7]*NN)*sin(2*pi*x[8]*d+x[9]*pi/180); 
y=r+b+op; 

} 

/*111111111111t111111111111111ifittifilltifillifitffillIttlIMIllifirn/ 

return(y); 
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