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ABSTRACT 

IMPLEMENTATION OF TIME-FREQUENCY DISTRIBUTION SOFTWARE 
AND ITS USE TO STUDY BIOLOGICAL SIGNALS 

by 
Mansour Adib 

The joint time-frequency signal representation has received considerable 

attention as a powerful tool for analyzing biological signals. It combine time-domain and 

frequency-domain analyses to yield a potentially more revealing picture of the temporal 

localization of a signal's spectral components. In this research we have developed 

algorithm which implement time-frequency signal analysis techniques on a computer 

system. Its primary function is to produce a variety of time-frequency representations 

and plots from the time series. Numerous generated signals were used to justify our 

computer algorithm. 

Variety of time-frequency distribution were utilized to expand the concept of spectral 

analysis of heart rate variability, to describe changes in vagal tone and sympatho-vagal 

balance as a function of time. As a result the assessment of the autonomic nervous system 

during rapid changes in heart rate was made. 

The smoothed Pseudo Wigner distribution was applied to electromyographic(EMG) 

signal during muscle fatigue. The mesh plot of the time-frequency analysis showed, the 

median frequency of the EMG decline during muscle fatigue. 
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CHAPTER 1 

INTRODUCTION 

Time-frequency signal representations characterize signals over a time-frequency plane. 

They combine time-domain and frequency-domain analyses to yield a potentially more 

revealing picture of the temporal localization of a signal's spectral components. In this 

research we have developed a time-frequency signal analysis toolbox. Its primary 

function is to produce a variety of time-frequency representations and plots from the time 

series, although it also has a number of auxiliary functions. Utilizing the time-frequency 

distribution, we compared median frequency and decline in median frequency of 

electromyography (EMG) signals during muscle fatigue with standard FFT spectral 

analysis methods. The time-frequency analysis was also used to compute the sympathetic 

and parasympathetic influence on heat rate variability. These applications will be further 

discussed in chapter 4. 

1.1 Scope of Thesis 

The aim of time-frequency analysis is to understand and develop the tools that can 

describe a time varying spectrum. The original computer algorithm(FORTRAN CODE) 

of time-frequency representation was presented by Boashash [1]. In this research we have 

regenerated his algorithm which implements time-frequency signal analysis techniques 

using Matlab software. Its primary function is to produce a variety of time-frequency 



representations and plots from the time series. Currently, our time frequency analysis 

software includes the short time Fourier transform (STFT), The Pseudo Wigner 

distribution (PWD), The smoothed Pseudo Wigner distribution (SPWD), The Choi 

Williams distribution (CWD), The Born Jordan distribution (BJD) and The Rihaczek 

Margenau distribution (RMD). The most important feature of our software is its ease of 

extendibility for additional time-frequency distributions. Numerous generated signals 

were used to justify our computer algorithm. 

In this research we have also applied our distributions to two types of biological signals. 

First, we used our distributions to better understand the information contained in an inter 

beat interval signal(heart rate variability). Expansion of the concept of spectral analysis 

into time-frequency analysis gave us the ability to observe how the parasympathetic and 

sympatho-vagal balance changed during rest, exercise and recovery. 

Second, we applied the smoothed Pseudo Wigner distribution (SPWD) to compare 

median frequency and decline in median frequency of electromyography (EMG) signals 

during muscle fatigue with standard FFT spectral analysis methods. The time-frequency 

distribution result showed decline of median frequency during muscle fatigue. The 

correlation coefficient was shown to increase as the length of the analysis window was 

increased. 

1.2 Time and Frequency Analysis 

The study of a signal as a function of time is " time analysis ". One of the most important 

ideas is how much energy is contained in signal x(t) at time I . We define the energy 

2 



density to be |x(t)|2 . That is, in a small amount of time ∆t , |x(t)| 2 At represents the 

amount of energy in the signal[1]. 

However if we want to gain more understanding it is often better to study the signal in 

the "frequency domain". One of the reasons for frequency analysis is that it simplifies our 

understanding of the wave forms which can be represented as simple sines , cosines and 

their sum. Hence if we have a complex signal but we realize that the signal is really the 

superposition of sine waves at fixed frequencies, the signal becomes simpler to 

understand and characterize. Another reason for frequency analysis is that in certain 

situations the propagation characteristics in a medium depend on the frequency, such as 

absorption of light by different materials[1]. 

Therefore we can expand the signal as 

and we can think of X(f) as the signal in the frequency domain and the energy density 

per unit frequency is (f) 

2 

. That is, the fractional energy in the frequency interval Af 

at frequency f is X(f) 2 ∆f . Note that by inverting equation 1.1, we can define the 

signal in the frequency domain[1]. 

X(f) is referred to as the Fourier Transform of x(t). Conversion back to the time 

domain is done using equation 1.1 and is referred to as the inverse Fourier transform of 
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The disadvantage of time and frequency analysis is that they do not fully describe what 

is happening. The Fourier transform tells us the frequencies that existed for the total 

duration of the signal, and not the frequencies which exist at a particular time. 

In figure 1, we illustrate three cases, where each contains three sine waves of equal 

duration time of 2 seconds and frequencies of 2 , 5 and 10 hertz. The only difference 

among cases "a", "b" and "c" is that different frequencies occurs at different times. The 

power spectrum, as shown in figure 2, is the same for all three cases and shows that 

frequencies 2 , 5 and 10 hertz were present for all cases but does not show when they 

existed. To fully describe such a situation we have to give the frequencies for each time. 

1.3 Properties of Joint Time-Frequency Distributions 

The method of musical notation is a time-frequency representation since it describes what 

frequency should be played as a function of time. In musical notation time is presented on 

the horizontal axis and the pitch on the vertical axis. 

We want a joint distribution which will give us the fraction of the total energy of the 

signal at time t and frequency f . We call that distribution p(t,f). 

Note, when we say "A function represents the number of things per unit something", that 

is called density. Hence joint time-frequency distribution p(t,f ) is really a joint time-

frequency density function. To understand joint density functions, we briefly list some of 

its desirable properties. Define x(t), X(f), 	) as signal, Fourier transform of signal 

and joint time-frequency density respectively. Then; 
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1. Joint time-frequency density should be positive for all values of time and frequency 

because it indicates how much of the total energy is in a particular time-frequency cell. 

That is ; 

p(t,f)  ∆t  • ∆f = Fraction of the signal's energy at time At and frequency ∆f 

2. If we add all bits of energy from joint time-frequency density, we should get the total 

energy. That is; 

3. If we add up all bits of energy at a fixed frequency, we should get the energy density 

at that fixed frequency. Similarly, If we add up all bits of energy at a fixed time, we 

should get the energy density at that fixed time. These are called marginal densities. 

That is; 

4. If the original signal is translated by a specific time to  , then the whole joint time-

frequency density should be translated by that time. Similarly if the original signal is 

translated by a specific frequency f , then the whole joint time-frequency density 

should be shifted by the same frequency fo . These are called time shift and frequency 

shift properties respectively. That is; 



Figure 1 The plots of three finite duration signal. All signals contain 
same three frequencies (2 ,5 and 10 hertz) except, it occurs 
at different time. 

Figure 2 The plots of power spectrum for the three finite signal. The 
spectrum just tells us that frequencies existed at 2, 5 and 10 hertz 

6 



6. For the joint time-frequency density function p(t, f), the mean time at a given 

frequency should present group delay. That is; 

7 

5. For the joint time-frequency density function p(t, f) , its global average is given as; 

where (g(t , )) is global average. The local or mean conditional value, the average 

of g(I , ) at a particular time, is 

and the local or mean conditional frequency (instantaneous frequency) should be; 

1.4 Joint Time-Frequency Analysis Illustration 

Time-frequency analysis was performed for the same three cases "a", "b" and "c" of 

section 1.1. This is summarized as follows; 

Figure 3.a shows that at intervals of [0 , 2], [3 , 5] and [6 , 8] seconds of the signal, 

frequencies of 5, 2 and 10 hertz exist respectively. Figure 3.b shows that at intervals of 



[0 , 2], [3 , 5] and [6 , 8] seconds of the signal, frequencies of 10, 5 and 2 hertz exist 

respectively and at last figure 3.c, shows that at intervals of [0 , 2], [3 , 5] and 

[6 , 8] seconds of the signal, frequencies of 2, 10 and 5 hertz exist respectively. 

As we described in section 1.1 the draw back of time and frequency analysis was that it 

did not tell us when the different frequency components existed. However using time-

frequency analysis one can fully describe the existence of a specific frequency at each 

instant of time. Source codes of the generated signals are presented in appendix A. 

8 



Figure 3 The contour plot of time frequency analysis of three finite duration signal 
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CHAPTER 2 

CATEGORIZATION OF TIME-FREQUENCY DISTRIBUTIONS 

2.1 Linear Time-Frequency Distribution 

All linear time-frequency distributions (TFD) satisfy the superposition or linearity 

principle which states that if x(t) is a linear combination of some signal components, 

then the TFD of x(t) is the same linear combination of the TFDs of each of the signal 

components[3]. 

where p x (t,f) , Pxt(t,f), Px(t,) 	are time-frequency distributions of x(t), x, (t) 

x2 (0 respectively and c1  , c2  are constant coefficients. 

Linearity is a desirable property in any application involving multicomponent signals 

(each part of a signal has its own identity) because there exist powerful analysis 

techniques for signals with such a property. One linear TFD of basic importance is the 

short-time Fourier transform and the basic idea is that: we can extract a small piece of the 

signal and take its Fourier transform and by continuing this process we can show the 

existing frequency components at each instant of time. 

2.2 Bilinear Time-Frequency Distribution 

Although linearity of the TFD is a desirable property, the bilinear(quadratic) structure of 

10 



11 

a TFD is an intuitively reasonable assumption when we want to translate a TFD as a 

time-frequency energy distribution, since energy is a quadratic signal representation. All 

quadratic TFD satisfies the quadratic superposition principle which is defined asp] 

where px (t,f) , p io (t, f) and p,2 (t,f)are the auto-time-frequency distributions of x(t), 

xi  (t), x2  (t) respectively and ci  , c2  are constant coefficients. 

The description of terms Px1x2(t  , f) and p 	, f) are presented as follows: 

Defining an expression of the form[5,6] 

where the aik  are numbers, is called a bilinear form in the 2n variables xi  ,...,x„ and 

. Writing B at length, we have 

The n -rowed square matrix A 	ik ) is called the coefficient matrix of the form. 

Introducing the vectors 
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we may write 

where x' = [x1 . . . x„] is the transpose of x . This follows immediately from the 

definition of matrix multiplication. 

If y = x, then (2.4) is called a quadratic form in the n variables x, ,...,x„ . Denoting this 

form by Q  , we have 

Since the signal x(t) is made of two components x1 (t) and x2  (t) , we evaluate equation 

(2.7) for n = 2 and carrying multiplication of matrixes. 

Note that to each pair of xl  and x2  there corresponds a cross components xl x2  and x2x1, . 

By analogy, we define el  c2  p x1x2 	(t,f) and c2c1, Px2.xi (t,f) in equation 2.3 as the cross 

terms which are bilinear in the signals x, (t) and x7  (i) . 

Writing Q using equation (2.7) at length and taking corresponding terms a jk x j xk  and 

a kJ  .xk  x together, we obtain: 
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Thus, for an n-component signal x(t) the TFD p, (0) will comprise n signal terms 

= n(n —1) / 2 cross terms[3], a fact that makes the visual analysis of the TFD of 

multicomponent signals difficult. 

Among all the bilinear TFD, The Wigner distribution (WD) is the most widely studied 

and applied. The Wigner distribution (WD) is defined as: 

where z(t), .z'(t) are the signal and the complex conjugate of the signal respectively and 

pw(t,f) is the Wigner distribution (WD). 

From equation (2.11) we see that for a particular time we are adding up pieces made from 

the product of the signal at a past time multiplied by the signal at a future time, where the 

time into the past is equal to the time into the future. 

2.3 Analytic Signal 

In practical cases, the signals to be analyzed are real. An analytic signal z(t) is a 

complex-valued signal whose spectrum is single-sided 

( Z(f) # 0 for f > 0 or f < 0 ). Because of this property of its spectrum, the imaginary 

part of an analytic signal is the Hilbert transform of the real part. 

The Hilbert transform is defined as[4]: 
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where (t) is the Hilbert transform of the signal x(t) . 

Thus, to generate an analytic signal from a given signal Soriginal(t), one should take the 

Hilbert transform of Soriginal(t) which would become the imaginary part of analytic 

signal. 

Note, the lower limit of the integral is zero , because Sorigional(t) is a physical signal and is 

valid for the time interval [0,00) . Define Sre(t) 

Then; 

original • ( I ) 

where z(t) is an analytic signal. 

There are three basic reasons for using the analytic signal in calculating a joint time-

frequency distribution[2]. One of the reasons will be presented in next chapter and the 

other two are discussed below: 

First, the analytic signal does not have negative frequencies and therefore can not cause 

interference terms with positive frequencies, although it does not eliminate the 

interference of the positive frequencies with other positive frequencies. There will always 

be interference terms, no matter what part of the signal is eliminated, since that is an 

inherent property of bilinear distributions. 

Second, consider a real signal s(1) . Its energy density spectrum, 18(1) 2 is always 

symmetric about the origin. This is illustrated in figure 4 . Note, the average frequency 
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will always become zero which is not what we want because it does not give us a sense of 

what is really going on with the signal. Also we want to obtain a value for average 

frequency which is roughly centered in the middle of the right hand bump. To achieve 

that, we have to neglect the left bump in the averaging. This is illustrated as follows: 

Figure 4 Energy density spectrum 

Take the spectrum of the real signal s(t) 

Delete the negative part of the spectrum S(f) such that; 

Take the inverse Fourier transform of the positive part of 5(f) to form the new complex 

signal z(t). It turns out that the real part of signal z(t) is the real signal s(t) and the 

imaginary part is the Hilbert transform of s(t) which is the definition of an analytic 

signal. Thus, to calculate the instantaneous frequency, the analytic signal should be used. 
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2.4 General Class of Time-Frequency Distributions 

Most popular time-frequency representations can be expressed in terms of the general 

bilinear time-frequency distribution representations proposed by Dr. Leon Cohen. This 

allows one to generate all time-frequency distributions via a simple procedure. The 

mathematical formulation for the general class is [1]; 

The g(v,T) is an arbitrary function called the kernel and it determines the characteristics 

of the time-frequency distribution. Note that z is an analytic signal and z* is the complex 

conjugate of z . If the integration with respect to v is performed, then equation 2.17 

becomes: 

and the discrete time equivalent of equation 2.18 is: 

The advantage to using equation 2.19 is that once the desirable kernel is chosen the 

distribution is fixed. The kernels which generate some of the common distributions are 

given in table 1. 

2.5 Kernel Function 

The kernel is particularly useful to study time-frequency distributions. They are easily 

generated, and the properties of the distribution can be observed by examining the kernel. 
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Also, when a new distribution is considered its properties can readily be ascertained by 

examining its kernel. The kernel g(v,T) can depend on time, frequency and the signal; 

however, we will consider the kernels which do not depend on the signal. The kernel 

g(v,T) 
	

function of v and T only. where v ,T are time index and lag index 

respectively. 

2.5.1 Properties 

Nonnegativity: 

A distribution should be positive for all values of time and frequency because it indicates 

how much of the total energy is in a particular time-frequency cell. The question that 

arises here is: What is the significance of the negative and positive regions? It seems the 

positive part does very often contain a time-frequency structure consistent with what we 

expect. No one understands the meaning of the negative regions. Sometimes the 

nonnegativity and cross terms are closely related, since the cross terms in the time-

frequency domain are, in general, fluctuating and produce a plethora of negativity. Thus, 

in many cases, suppression of cross terms accompanies reduction of negative values in 

magnitude. 

Realness: 

The bilinear distributions are in general not positive definite, which implies, they are not 

strictly proper joint density functions. It has been argued that at least the kernel should be 

real [13]. That is for a given TFD 	; 



Table 1. Some distributions and their kernels[1]. 
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Take the complex conjugate; 

We have; 

Therefore to assure that; 

the kernel should satisfy; 

19 

Time and Frequency Shifts: 

A desirable property is that if we translate the signal by amount t0, we expect the whole 

distribution to be translated by the same amount. Similarly, if we shift the spectrum by a 

fixed frequency f0,  then the distribution should be shifted by the same amount. That is 

ifz(t) , s(t) , p,(t,f)and ps(t,f)are signal, shifted signal, distribution of signal and 

distribution of shifted signal respectively then; 

Similarly; 



Hence 

20 

The constraint for this property implies that the kernel should be independent of time and 

frequency. 

Time and Frequency Marginals: 

Another desirable property is that for a given time if we added up the bits of energy at 

different frequencies we will get the total energy z@) 
2 

at that instant of time. Also if for a 

given frequency we add all the time pieces we should get the density in frequency. That is 

ifz(t), p=(t, f) are signal and distribution of signal respectively then; 

Similarly; 

Let us integrate the left hand side of equation 2.28 

Using the definition of the Fourier transform we can write; 

The only way equation 2.33 can be made equal to |z(t)I2 is to take 
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which forces; 

Similarly, we can show the condition on the kernel to satisfy the frequency marginal is 

Instantaneous Frequency: 

If we fix time and ask for the expected value of frequency for that time, we obtain the 

first mean conditional frequency, given by: 

where p(t) is the marginal in time 

If the signal is analytic, the first moment of frequency for a given time is the 

instantaneous frequency because instantaneous frequency is defined in terms of the 

analytic signal. The instantaneous frequency is given in terms of the TFD: 

where fi(t) is the instantaneous frequency. Constraint for the kernel is: 
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Group Delay: 

From the point of view of joint time-frequency distributions we may think of the group 

delay as the mean time at a given frequency. Therefore everything we said for the 

expectation value of frequency at a given time allows us to write down the corresponding 

results for the expected value of time at a given frequency. That is 

and the constraint for the kernel should be: 

Time and Frequency Support: 

For a finite duration signal the distribution should be zero before the signal starts and zero 

after the signal ends (weak finite support). But it would be much better if the distribution 

was zero whenever the signal was zero (strong finite support)[1]. We can apply the same 

concept to the frequency axis. That is, if the signal has a spectrum that ranges between 

two frequencies f1 and f2; 

frequencies smaller then 

follows; For the time axis:  

and is zero otherwise, than the distribution should be zero for 

and for frequencies greater than f2 . This is summarized as 

and on the frequency axis 

and the associated kernel requirements should be respectively: 
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Reduced Interference: 

The distribution should not contain cross terms between frequency components. For a 

multicomponent signal, the spectrum of each signal should be clearly seen without 

interference. The constraint for the kernel is that g(v,T) be a 2-D low pass filter type. 

The summery of above properties and associated kernel requirements are presented in 

table 2. 

2.6 Ambiguity Function Relationship 

Let R,(t,T) be the instantaneous autocorrelation of the a complex signal z(t), defined as: 

Then the symmetrical ambiguity function (AF) is defined as the inverse Fourier transform 

of R_ (t,t) with respect to t. 

This relationship may be combined with equation 2.17 to show that p,(t,f) may be 

found by: 

Thus, any member of Cohen's class of distributions may be found by first multiplying the 

kernel, g(v,T) , by the symmetric ambiguity function and then carrying out the double 
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Table 2. Distribution properties and associated kernel requirements[1] 

Fourier transform[1]. The generalized ambiguity function, g(v,t )A(v,-E) is a key concept 

which helps one in clearly seeing the effect of the kernel in determining p,(t,f). 

We illustrate this concept in figure 5 [1], where the ambiguity function of two sine wave 



25 

signals is given. The auto terms of the two signals are placed near the center of figure 5 

and the cross-terms are placed in the upper right and lower left corner. Thus, to determine 

a desirable distribution, the kernel function should emphasize the auto terms near the 

center and de-emphasize the cross terms in the corners. 

Figure 5 Ambiguity function of two sinewave signals 



CHAPTER 3 

COMPARISON OF TIME-FREQUENCY DISTRIBUTIONS 

One of the facts regarding the time-frequency distribution is that so many 

plausible derivations and approaches have been suggested, yet the behavior of each 

distribution is dramatically different. In this chapter, I will present in depth some of the 

most popular time-frequency distribution with their properties, limitations, advantages 

and disadvantages. 

3.1 Short Time Fourier Transform 

The short time Fourier transform was the first tool devised for analyzing a signal in the 

time-frequency domain[13]. This is done by extracting a small piece of the signal and 

taking its Fourier transform and by continuing this process we show the existing 

frequency components at each instant of time. To present this idea mathematically we 

design a window function, h(T — t) which will emphasize the times around the fixed time 

of interest t . We then multiply the signal with the window function and take its Fourier 

transform: 

As we continue this process for each different time ,we get a different spectrum and the 

totality of these spectra makes a time-frequency distribution. The energy density of the 

26 
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signal at the fixed time t is; 

where psp(t,f ) is called the spectrogram. The spectrogram can be also written in terms of 

the Fourier transforms of the signal and window function. 

where H(f S(f)are Fourier transforms of the signal and window function 

respectively. Note, equation 3.3 can be used to study the behavior of the signal around the 

fixed frequency of interest f . The spectrogram should not be thought of as a different 

distribution because it is a member of a general class of distributions[2]. 

The questions that arise are, How large should the window be?, or , How should we 

weight each piece of the signal? To answer these questions we need to understand the 

uncertainty principle(time-bandwidth relation). 

Let us define the duration of a signal s(t) by At ; 

where is mean time and is defined as; 

Let us also define the bandwidth of the signal S(f) in the frequency domain by ∆f  ; 

where f is mean frequency and is defined as; 



The time bandwidth relation is; 

The physical interpretation of time bandwidth is that the duration and bandwidth can not 

be both made narrow because |s(t)| 2 and |s(f)|2 can not be changed independently[13].  

The advantage of the short-time Fourier transform is that it has an easily understandable 

interpretation and is positive every where. This is a desirable property when we want to 

interpret the spectrogram as the signal energy distribution in the time-frequency plane. 

One of the shortcomings of the short-time Fourier transform is the trade off between time 

and frequency resolution. If we choose a narrow(peaked) window h(t) in the time 

domain then H(f) becomes broad in the frequency domain. This results in high time 

resolution and poor frequency resolution. Conversely if we choose a window peaked in 

frequency , high frequency resolution is obtained but then h(t) will be broad and poor 

time resolution is obtained. Consider two extreme choices of the analysis window h(t). 

The first case is that of perfect time resolution, that is, if the analysis window h(t) is a 

Dirac impulse, 

where s(t) , pst ft(t,f ) are the signal and short time Fourier transform of the signal 

respectively. In this case, the short time Fourier transform essentially reduces to the 

signal s(t) , preserving all time variations of the signal but not providing any frequency 
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resolution. The second case is that of perfect frequency resolution obtained with the all-

constant window h(t) = I , then; 

where H(f), S(.f) are Fourier transform of window and signal respectively. Here the 

short time Fourier transform reduces to the Fourier transform and does not provide any 

time resolution. Therefore, because of the uncertainty principle, both h(t) and H(f) can 

not be made arbitrarily narrow. 

Another shortcoming of the spectrogram is that for a particular signal, a particular 

window may be more appropriate than another. Consider for example a signal which 

consists of two parts, one whose phase is sinusoidally modulated and another component 

whose frequency is increasing linearly. 

Figure 6 Spectrogram of a signal which consists of two components 

The spectrogram of such a signal is illustrated in figure 6. Note we can not discern the 

sinusoidal modulation of the frequency of one of the components[1]. 
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Also the spectrogram does not satisfy time and frequency marginal properties at the same 

instant. That is: if we write the signal s(t) and window h(t) in terms of their amplitudes 

and their phase; 

and similarly for their Fourier transforms 

Then the marginals are; 

These do not equal the instantaneous energy or energy density spectrum, namely 

(t) and B 2  (f) [2]. But they do approach them as we narrow the window in the 

respective domains. However window h(t) and H(f)1 can not be narrowed 

simultaneously. 

The short time Fourier transform is a linear signal decomposition and there are no cross 

terms between signal components. However, the spectrogram is a bilinear signal energy 

distribution due to the magnitude squaring operation. Thus, the spectrogram has cross 

terms but are not noticeable because they are inherently filtered out by a low-pass filter 

defined by the ambiguity function of the window [13]. 

3.2 Wigner Distribution 

Among all the bilinear TFD, The Wigner distribution (WD) is the most studied and 
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applied [11]. The Wigner distribution can be obtained from the general 

class (equation 2.17 ) by taking g(v,T) = 1: 

}J w ki 5 j),,:At cuiu 	 LUG vv Ignel uistrioution, an analytic signal and the 

complex conjugate of the analytic signal respectively. From equation (3.11) we see that 

for a particular time we are adding up pieces made from the product of the signal at a past 

time multiplied by the signal at a future time, where the time into the past is equal to the 

time into the future. The Wigner distribution satisfies many properties, which are 

described as follows: 

The WD is a real valued function that is; 

Since the kernel of the WD is one for any value of v and T , then the complex conjugate 

of the kernel is always one. That is; 

This is the constraint of the kernel for the distribution to be real from section 2.5.1 . 

The WD does satisfy the time and frequency shift properties as long as the kernel of the 

WD is not a function of time and frequency that is; 

where z(i),.y(t) , p,(t,f ) and ps(t,f ) are the signal, the shifted signal, the distribution of 
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Signal and the distribution of the shifted signal respectively. To prove this property one 

should take the kernel of the WD independent of time and frequency and set it equal to 

one, that is: 

Let p:(t,f), p j) represent the WD of the signal z(i)and the shifted signal s(t) ,then 

To prove the frequency shifting one can use a similar argument. 

The WD is uniquely related to the signal up to a constant phase factor[2]. To understand 

this idea, take the inverse Fourier transform of equation 3.11 with respect to f , 

Then, let : 

which gives; 

Taking a particular value for t' = 0 and dividing both sides by z*(t '), we obtain; 



33 

One can therefore recover the original signal from the Wigner distribution for a given 

resolution. The preceding relation can be used to determine whether a signal exists which 

will generate a given p ,v (t, 

The Wigner distribution also satisfies the marginals properties. To prove these, one can 

use the constraint of the kernel for marginals properties from section 2.5.1, that is; 

By inspection, the kernel of the Wigner distribution g(v,r) = 1, satisfies both marginals. 

Since, the Wigner distribution satisfies both marginals properties, it will satisfy the total 

energy. Note the converse is not true[2]. For the first conditional moment at a fixed time, 

the Wigner distribution gives the instantaneous frequency and at a fixed frequency the 

first conditional moment would be the group delay. 

For a finite duration signal the Wigner distribution is zero before the signal starts and 

after the signal ends[2]. To prove this, consider a finite duration signal in the interval t i  

to t 2  shown in figure 7: 

t2  

Figure 7 . Arbitrary finite signal 

If we choose any point left of A l  and fold over the signal to the right, there will be no 
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overlap since there is no signal to the left of t, to fold over. This will remain true, up to 

the start of the signal at time t,: Hence for finite duration signals, the Wigner distribution 

is zero up to the start. Similar arguments hold for points to the right of t2  . Therefore for a 

time limited signal, the Wigner distribution is zero before the signal starts and after the 

signal ends. The same considerations apply to the frequency domain. If we have a band 

limited signal, the Wigner distribution will be zero for all frequencies that are not 

included in that band. These properties are called the support properties of the Wigner 

distribution. In general the Wigner distribution is not zero when the signal is zero[13]. To 

illustrate this idea consider the signal in figure 8: 

In the figure 8, the signal is zero from t2  to / 3  . Focusing on point ta  and folding the right 

and left parts of ta  , it is clear that there will be an overlap. Hence the Wigner distribution 

is not zero even though the signal is. These overlaps causes difficulty in interpretation of 

the Wigner distribution. 

Consider the multicomponent signal z(t): 

The Wigner distribution is: 
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P „,(t,f)= P (t,f)+ 	f) + 	f)+ P „.2, (/,1) 	(3.24) 

where p „,(t, 	, p (1,f ) and p„,,,  (t. ,f ) are the auto Wigner distributions of 

z(t),z1  (t) and z, (t) respectively. The terms p (I, f) and p (t, f) are called the cross 

Wigner distributions. Therefore the Wigner distribution of the sum of the two signals is 

not the sum of their respective Wigner distributions. In general the Wigner distribution 

puts cross terms in between any two frequencies and any two times[2]. 

Figure 9 . The Wigner distribution of the sum of two finite duration sine waves. The 
oscillating term in the middle of the two frequencies is the cross term. 

Figure 9 presents the Wigner distribution of a signal which is the sum of two sine 

waves of one second duration with frequencies of 100 and 400 hertz. Note the cross term 

in the middle of the two frequencies at 250 hertz. This is the most important draw back of 

the Wigner distribution (WD). 
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Another draw back of the Wigner distribution is that it always has negative regions 

throughout the time-frequency plane, except in the case of the Gaussian signal where the 

amplitude is modulated[1]. 

3.2.1 Windowed Wigner Distribution 

In practice one is forced to calculate the Wigner distribution using equation 3.25: 

where h(t) is a window function. This is due to the finite nature of the data. The resulting 

distribution has the effect of smoothing the Wigner distribution over frequency and is 

called the Pseudo Wigner distribution (PWD) [13]. The PWD sometimes results in a 

better looking distribution in that certain cross terms are suppressed. One can clean the 

cross terms by smoothing the Pseudo Wigner distribution over time which is called the 

Smoothed Pseudo Wigner distribution (SPWD). Smoothing the Pseudo Wigner 

distribution is performed as follows: 

where L , pws(t,f) and pw(t, f) are smoothing function, the Smoothed Pseudo Wigner 

distribution and the Pseudo Wigner distribution respectively. The advantages of the 

Smoothed Pseudo Wigner distribution are that for certain types of smoothing, a positive 

distribution is obtained and the cross terms are suppressed. However smoothing destroys 

some of the desirable properties of the Wigner distribution: if L is taken to be 
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independent of the signal, then the only way to obtain a positive distribution is by 

sacrificing the marginals properties[1]. 

3.3 The Exponential Distribution 

A new approach has been presented by Choi and Williams where they address the main 

draw back of the Wigner distribution (cross terms)[13]. In section 3.2.1 a method was 

described to remove the cross terms but this usually involves violating some of the 

desired properties like the marginals. Choi and Williams investigated using a generalized 

ambiguity function [13]. They choose exponential kernel, that is; 

Substituting equation 3.27 to in equation 2.17 and integrating with respect to v one 

obtains; 

where pcw(t,f) , z(t) and z' (t) are the Choi-Williams distribution, an analytical signal 

and complex conjugate of the analytical signal. The ability to suppress the cross terms 

comes by controlling σ . 

In figure 10, we illustrate three cases, where each contains two sine waves with 

frequencies of 100 and 400 hertz. The Choi Williams distribution was performed for the 

three cases but with different values for a . Note, in case "a" we are taking o to be 

10000 which makes the kernel effectively one and we have the Wigner distribution. In 

case "b" and "c" we are taking 6 to be 50 and 1, respectively which produces a kernel 
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which is peaked near the origin in the v,t plane and hence offers better cross term 

suppression. 

Hence one can control the relative suppression of the cross terms by reducing the value of 

σ . The Choi Williams distribution satisfies many of the desirable properties, as 

described below: 

The Choi Williams distribution is real. To prove this, one can replace the v,t  with 

—v,-t  respectively in to the kernel function and perform the manipulation; 

The Choi Williams distribution satisfies both the marginals properties, since; 

and similarly for the other marginal. Since the marginal properties are satisfied, the total 

energy property will be satisfied. 

The Choi Williams distribution does not satisfies the finite support properties. To show 

this we introduce the following condition for determining whether a distribution is zero 

before a signal starts and after the signal ends. This work was done by Claasen and 

Mecklenbrauker[11] and is expressed as follows: 

Similarly, for the signal that is bandlimited in the region (f1, f2 ) the distribution should 

be zero for values of frequency less than f1  and greater then f2  . 



Figure 10 Performance of the Choi Williams distribution upon three cases with 
a) σ = 1000 , b) σ = 50 and c) a = 1 . 
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If we replace the kernel of the Choi Williams distribution in equation 3.31 and carry out 

the integration using a table of integrals[11], we obtain: 

Note, the right hand side of equation 3.33 is not equal to zero, therefore The Choi 

Williams distribution does not satisfy the support properties. 

3.4 Reduced Interference Distribution (RID) 

Incorporating the idea of interference reduction in the Choi Williams distribution (P10 in 

Table 2) with other desirable properties (P0-P9 in Table 2), a new class of time-frequency 

distributions, called reduced interference distributions, has been introduced [9]. While not 

satisfying P0, the RID does satisfies Pl-P10 and provides high resolution in time and 

frequency. To meet the requirements for Pl-P10, the RID kernel should be a cross shaped 

low pass filter, satisfying [9] 

The following is the procedure to design a RID kernel[9]. 

Step 1: Design a primitive real valued function he) that satisfies the following: 
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frequency content. That is, |H(v)| « 1 for Iv »0 , where H(v) is the Fourier 

transform of h(t). 

Step 2: Take the Fourier transform of h(t), i.e., 

Step 3: Replace v by vt in H(v): g(v,t )= H(vt). 

Since g(v,T) is a function of the product of v and T , R1 implies that the RID satisfies 

both marginals properties. That is: 

Similarly one can show the RID satisfies the frequency marginal. Condition R2 produces 

a real H(v), which in turn implies the realness (P2) of the RID. Condition R2 also 

implies the instantaneous frequency and group delay exists under the condition that 

d H(v)/ 
exists[l 0]. The RID satisfies the time and frequency shift properties since the dv 

kernel does not depend on time or frequency. R3 does imply the time and frequency 

support properties[l 0]. To prove it, one should take the Fourier transform of the kernel 

with respect to v and use the scaling property of the Fourier transform to carry out the 

integral. That is: 

Based upon the kernel requirements in table 2, equation 3.36 has to equal zero in order to 

satisfy the time support. That is: 



By symmetry, one can also show that the RID satisfies the frequency support. R4 plays 

the role of suppressing the interference. In most cases, the auto terms are located near the 

origin of the ambiguity domain, while the cross terms occur far away from the origin[9]. 

Therefore, a low pass filter type kernel imposed by R4 can effectively reduce 

interference's while retaining the resolution of the auto terms. Using a primitive function 

h(t) designed according to requirements R1-R4, the RID has the following integral 

expression. 

where p R„) (1,1-  z(u)and z*  (u) are the reduced interference distribution (RID), an 

analytical signal and complex conjugate of the analytical signal. The requirements on 

h(t) and their counterparts are shown in table 3. 

The RID is not dedicated to a certain type of signal. The idea underlying the RID is to 

develop TFDs that satisfy many desirable properties. One can find signals that will not be 

effectively handled by the RID; for example, a chirp. Since the RID has a cross shaped 

kernel in the ambiguity domain, if the ambiguity function of the chirp falls on a 45° 

diagonal line, then it will not intersect well with the RID kernel, resulting in low time and 

frequency resolution[9]. 

In this thesis we will present one example of a RID distribution where 

This corresponds to the Born Jordan distribution. It satisfies all of 



and properties P1-P10 are satisfied. Since h(t) is flat on  [-1/2, 1/2], the resultant 

H(ντ) has a very narrow bandwidth. Hence, the Born Jordan kernel provides very good 

Table 3 Requirements on h(t) and Their Counterparts 

R1. unit area: 	∫h(t)dt 	= 1 P4 , P5 

R2. symmetrical: 	h(-t ) = h(t) P1 , P6 , P7 

R3.time limited: 	h(t) = 0 	Id> 1 7 
P8 , P9 

R4.low pass type: 	|H(ν)| << 0 	for 	|ν| >> 0 P10 

Note: In this kernel design procedure, P2 and P3 are always satisfied, while PO is not 
satisfied. 

interference at the expense of autoterm resolution[9]. The ambiguity domain kernel of the 

RID is shown in figure 11. 

3.5 Implementation of Algorithm Using Matlab Software 

This section presents algorithms which implement time-frequency signal analysis 

techniques on a computer system. Some of the Matlab code is presented. Matlab is a 

technical computing environment for high performance numeric computation and 

visualization. Matlab integrates numerical analysis, matrix computation, signal 

processing, and graphics in an easy to use environment. Matlab is an interactive system 



Figure 11 The ambiguity domain kernel of RID 

whose basic data element is a matrix that does not require dimensioning. The most 

important feature of Matlab is its ease of extendibility. 

Most time-frequency representations can be expressed in terms of the general bilinear 

time-frequency distribution. This is shown in equation 3.39 
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where z(t), z*(t) and g(v,T) are an analytic signal, complex conjugate of the signal and 

the kernel function respectively. The expression used for discrete time implementation is 

the discrete time equivalent of equation 3.39, which is shown in equation 3.40 . 

where z (n) is an analytic signal. 

3.5.1 Analytic Signal Calculation 

In section 2.3 we pointed out the necessity of using an analytic signal in calculating a 

joint time-frequency distribution. The third reason for using an analytic signal is 

discussed below : 

Equation 4.2 indicates that the discrete form of the general bilinear time-frequency 

distribution has a periodicity of n/2  rather than N N. This is shown below: 2 

(.1.  sampling 2f ax ) there are still aliasing components in the distribution. One way to ease 

this problem for practical purposes, is to increase the sampling frequency rate to twice the 

Nyquist rate. Another approach to avoid the aliasing is to use only the positive part of the 

signal's frequency components, the analytic signal. Using an analytic signal, N points of 

a real signal are converted into — 
2 
 points of its analytic signal. Therefore, aliasing is 



z(n + m)z n — m) for m 0 

for 	< 0 
K,(n,m)= (3.41) 

n,—m) 
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eliminated and the sampling rate is reduced to the standard Nyquist rate. To generate an 

analytic signal for our purpose, we have used hilbert.m which is a built in function in 

Matlab[18]. This function will generate the analytic signal, that is: the real part of the 

result is the original real data, and the imaginary part is the actual Hilbert transform. The 

source code of hilbert.m is shown in appendix A. 

3.6 General Approach to Computation of TFDs 

The discrete time definition of Cohen's class of time-frequency distributions given in 

equation 4.2 forms the basis of the general approach to implementation of time-frequency 

distributions. This approach can be expanded to three steps[1]: 

1. Form the bilinear product K (n, 	= n + m)z 	— in) . The bilinear product has 

Hermitian symmetry[6], that is: 

The following numerical example presents the idea of having Hermitian symmetry[5,6]. 

Given the complex matrix A and calculating the conjugate transpose A T  then A T  = A ; 

then 

 

This means that values of the bilinear kernel need only be calculated for positive time 

lags[6]. The efficient way to compute the bilinear product is to calculate them as they are 

required. 

2. Convolve the bilinear product with the desired kernel function G(n,m) in the n (time) 
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dimension for each time instant. In an actual implementation, either the product kernel 

matrix or the selection kernel matrix G(n,in), may be computed at the point of use (in the 

convolution). This saves memory and time. Thus, we the code was written in such way 

that the bilinear product will be computed at the point of use and selection kernel matrix 

G(n,m) is calculated and stored. The kernel matrix G(n, m) is known to be symmetrical 

in both time and lag dimensions, and so values are only used from the positive quadrant. 

3. Calculate the discrete Fourier transform of this result, to produce the time slice of the 

desired distribution. 

3.7 Code Fragments to Generate G(n,m) 

This section shows example code fragments to generate the kernel matrix G(n,m) [1]. 

Some TFDs and their determining kernel functions G(n,m) are shown in table 4. 

These code fragments were originally written in Fortran code. The equivalent codes for 

table 4, written for Matlab, are located in appendix A. 

3.8 Optimization of Algorithm Using Matlab Software 

Matlab works with essentially only one kind of object, a rectangular numerical matrix 

with the possibility of complex elements. In some situations, special matrices are 

allowed: I-by-I matrices, which are scalars, and matrices with only one row or one 

column, which are vectors[18]. Matlab also has control flow statements ( for loops, while 

loops) like those found in most languages. The control flow statements of Matlab can be 

used as a complete high level matrix language. Disk files that contain Matlab statements(  
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ordinary ASCII text) are called m-files and are named with extension of ".m". An m-file 

consists of a sequence of normal Matlab statements, including references to other m-files . 

An m-file can call itself recursively[18]. 

Table 4 TFDs and their determining function G(n,m) 

Time-Frequency Representation 

Pseudo Wigner Distribution (PWD) 

using rectangular window 

Smoothed Pseudo Wigner Distribution 

using a rectangular window of odd length P 

Rihaczek-Margenau 

SIFT using a rectangular window of odd length P 

Bon -Jordan- Cohn 

Choi-Williams (parameter a ) 
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Matlab's built-in vector and matrix operations are more than an order of magnitude faster 

than its compiler/interpreter operations[18]. This means that in order to obtain the most 

speed out of Matlab, every effort was made to vectorize the algorithms in our m-files. 

Wherever possible, for and while loops have been converted to vector or matrix 

operations. 

In places where we could not vectorize a piece of code, we preallocated any vectors in 

which output results were stored. If we did not preallocate, the Matlab interpreter has to 

resize the vector to one element larger each time through the iteration loop. Since the 

vector was preallocated, this step is eliminated and execution is faster. Also, since our 

program works with large matrices on computers with memory limitations, the 

preallocation uses memory much more efficiently in order to reduce fragmentation. 

Thus, the code fragment that was presented in section 3.7 is not efficient in terms of 

execution time, speed and memory limitations. However, it can be used to trace the 

symmetries among the loops. Using the code symmetries, we wrote the program in the 

most vectorized form. Also, we preallocated most matrices before starting the 

calculations. The complete source code for the computation of time-frequency 

distributions is presented in appendix A. 

Beside the implementation of the time-frequency distribution, we have also included 

other helpful algorithms, to: 

• Detrend the input signal. 

• Calculate the instantaneous frequency. 

• Calculate the median frequency. 
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To extract power spectral density for a certain range of frequency components. 

1. By detrending the input signal, one can remove very low frequency components 

(near DC) from the signal. One should be very careful in detrending the signal 

because the frequency components very close to DC are lost in the detrending 

operation. For detrending, we have used the . filifilt.m function [18], which is zero-

phase forward and reverse digital filtering. It operates in such a way that after filtering 

in the forward direction, the filtered sequence is reversed and run back through the 

filter. The resulting sequence has precisely zero-phase distortion and double the filter 

order. 

2. To calculate the instantaneous frequency, we used the fact that the first conditional 

moment of the distribution is instantaneous frequency. 

To calculate the median frequency, we used the fact that the median frequency is the 

frequency at which the area of the power density spectrum is divided into two equal 

portions [7]. 

4. In order to study biological signal ( vagal tone and sympatho-vagal balance), we 

developed an algorithm which calculates the area (power spectral density) under a 

designated band of frequencies for all time from the time-frequency distribution 
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matrix TFDs . Then, we used the ratio of these two area to calculate the sympatho-

vagal balance[16]. The further description are presented in chapter 4. 

The time-frequency distribution program is very user-friendly. It asks the user for certain 

input information and gives the option to do certain operations individually or as a group. 

The results are presented in a 2-D or 3-D graph, which can be saved for further reference. 

The typical questions asked by the time-distribution program are located in appendix A. 



CHAPTER 4 

APPLICATIONS OF TIME-FREQUENCY DISTRIBUTIONS 

In this chapter, the basic concepts concerning the autonomic nervous system 

(ANS), structure and function of muscle and Data acquisition are briefly discussed. The 

PWD was applied to investigate the vagal tone and sympatho-balance during exercise on 

a bicycle. We then investigated the effect of detrending the signal using the SPWD. Other 

distribution such as, the Choi Williams and the Born Jordan distributions were applied 

toward the same signal. The SPWD was then applied to electromyographic signal (EMG) 

during muscle fatigue using different electrodes. We also compare our result from TFD 

with the spectral analysis of the EMG signal. 

4.1 Autonomic Nervous System 

One system that changes rapidly in the human body is the autonomic nervous system 

(ANS) [19]. The autonomic nervous system (ANS) is made up of two functional 

divisions: the sympathetic (SMP) division and the parasympathetic (PSMP) division. 

These two divisions are anatomically, physiologically and functionally distinct[20]. In 

general, the PSMP division enhances activities that gain and conserve energy, such as 

slowing down the heart. The SMP division increases energy expenditures and prepares an 

individual for action by accelerating the heart. When SMP and PSMP nerves innervate he 

same organ, they often (but not always) have antagonistic effects[20]. At rest there is 
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considerably more parasympathetic activity to the heart than sympathetic. 

The interplay of the SMP and PSMP outflow plays an important role in the circulatory 

system. For the heart, sympathetic fibers terminate at the sinus node pacemaker, 

conduction system, atria, ventricles, and coronary vessels, while parasympathetic fibers in 

the vagus nerve terminate at the sinoatrial and atrioventricular nodes, atrial and 

ventricular musculature, and coronary vessels[21]. Although the inherent rhythmicity of 

the heart is due to a natural pacemaker situated in the sinoatrial node, continuous beat to 

beat control of the heart is dependent on the relative balance of the SMP and PSMP 

impulses delivered from the brain to the sinus node. From drug studies, three discrete 

frequency ranges in the spectrum of heart rate variability were found to be of importance: 

a very low frequency range(VLF, 0.02 to 0.06 Hz); a low frequency range (LF, 0.06 to 

0.15 Hz); and a high frequency range (HF, 0.15 to 0.4 Hz) [22]. The VLF band was 

equated with the renin-angiotensin system; the LF band with blood pressure and 

baroreflex control, and the HF band with respiration. The HF band is mediated by 

parasympathetic pathways, while the LF band is mediated by both parasympathetic and 

sympathetic pathways. 

Assessment of parasympathetic activity from spectral analysis is obtained via a 

measurement of the area under the HF peak. Sympathetic activity is less easy to quantify 

using this methodology [20]. A more realizable goal is that of the "sympatho vagal 

balance", which recognizes both reciprocal and non-reciprocal parasympathetic and 

sympathetic influences on heart rate, with a further measure, the LF:HF ratio [20,25]. 

Factors other than the cardiac nerves can also alter heart rate (HR). The HR is also 
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sensitive to changes in body temperature, plasma electrolyte concentrations and 

hormones. However, those factors are normally of lesser importance than SMP an 

PSMP nerve pathways to the heart [24]. 

4.1.1 Protocol and Acquisition of InterBeat Interval 

This protocol is designed using an exercise bicycle. The protocol consists of acquiring 

data two minutes prior to exercise (rest), six minutes of exercise at 70% of age predicted 

maximum heart rate and four minutes following the halt of the exercise (recovery). The 

IBI signal, which is derived from the patient's electrocardiogram, is stored in a single file 

to prevent the loss of any information during the run. The acquisition of the InterBeat 

interval (IBI) data was initially done by Fernando and collection can be found in his 

thesis [16]. 

4.1.2 Vagal Tone and Sympatho-vagal Balance via Time-Frequency Distribution 
during Exercise on a Bicycle. 

This section looks at some applications of the time-frequency distribution techniques. As 

well, comparisons of different types of time-frequency distributions are done to find the 

best one for the sympatho-vagal balance case. First, we start with the problem of 

detrending a signal. 

The Pseudo Wigner distribution(PWD) was calculated using our time-frequency 

distribution software. This distribution was then applied to the original (no detrending) 

IBI signal and detrended IBI signal. The details of the detrending process are described in 

chapter 3. The vagal tone was then obtained for the entire file by calculating the area 
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[rider the high frequency (HF) range for each instant of time. The sympatho-vagal 

balance ( the ratio of the LP to HF range) was also obtained. As mentioned earlier drug 

tudies indicate the LF range is a mixture of sympathetic and parasympathetic division 

.ctivity. The ratio is an indication of both reciprocity and non-reciprocity [20]. 

The PWD was then applied to a detrended IBI signal from a normal healthy individual. 

Figure 12 displays the typical response of a normal healthy individual to the protocol. 

Figure 12 Applying PWD to IBI signal. a) sympathetic and parasympathetic b) vagal 
tone c) sympatho-vagal balance, during 2 minutes of rest(120 sec), 
6 minutes of exercise (360 sec)and 4 minutes of recovery(240 sec) 
respectively 

Figure 12.a displays a drop of vagal tone as the subject initiated exercise at the two 

ninute mark. During the six minutes of exercise the vagal tone activity was suppressed. 

When the subject was asked to halt exercise at the 8 minute mark, the sympatho-vagal 

balance (figure 12.b) decreased to rest conditions. The PWD was then applied to the 
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original (non-detrended)IBI signal using the same subject. Figure 13 displays this 

response. Observing the graphs in figure 12 and 13 , two facts are relevant. First, it is 

evident that the reciprocal relationship between the parasympathetic and sympathetic 

nervous systems influencing the heart is depicted. Second, figure 13 contains more 

information and it is more precise in the sense of the presentation of the frequency 

Figure 13 Applying PWD to IBI signal. a) sympathetic and parasympathetic b) vagal 
tone c) sympatho-vagal balance, during 2 minutes of rest(120 sec), 
6 minutes of exercise (360 sec)and 4 minutes of recovery(240 sec) 
respectively 

existing at a fixed time. That is due to the detrending process of the IBI signal. For 

detrending, we have used a low pass digital filter with cutoff frequency of 0.03 hertz. 

Since ideal filters cannot be implemented, and narrow band filters smear the frequency 

response, the IBI signal has lost some of its information due to the non-ideal filter. This 

loss occurs in the neighborhood of 0.03 hertz. We have analyzed all ten subjects that are 

presented in by Fernando's[16]. The behavior of the vagal tone and sympatho-vagal 
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balance are similar in all cases. Thus, in this technique extracting certain frequency bands 

does not require detrending the signal. 

Taking advantage of our time-frequency distribution software, other distributions were 

then applied to the original (non-detrended) IBI signal using all ten subjects that are 

presented in by Fernando's{16]. Each distribution performed in the same way for all ten 

subjects. We used one of the subjects to present the behavior of each distribution. Since 

the PWD was already presented for one of the subject, we used the same one to 

demonstrate the responses of other distributions. 

The SPWD was first applied to the original (non-detrended) IBI signal, results are shown 

in figure 14. 

Figure 14 Applying SPWD to IBI signal. a) sympathetic and parasympathetic b) vagal 

tone c) sympatho-vagal balance, during 2 minutes of rest(120 sec), 
6 minutes of exercise (360 sec)and 4 minutes of recovery(240 sec) 
respectively 

Figure 14.b displays a drop of vagal tone as the subject initiated exercise at the two 
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minute mark. During the six minutes of exercise the vagal tone activity was suppressed. If 

:he wave in figure 14.c were smoothed, the interval between two minutes and eight 

minutes will be higher in amplitude than the previous and following intervals. 

Figure 15 Applying CWD to IBI a) sympathetic and parasympathetic b) vagal tone c 
sympatho-vagal balance, during 2 minutes of rest(120 sec), 6 minutes of 
exercise (360 sec) and 4 minutes of recovery(240 sec) respectively. 

The Choi-Williams distribution(CWD) was then applied to the original (non-detrended) 

IBI signal. Figure 15.b displays clearly a drop of vagal tone as the subject initiated 

exercise at the two minute mark. During the six minutes of exercise the vagal tone 

activity was suppressed. When the subject was asked to halt exercise at the 8 minute 

mark, the sympatho-vagal balance(figure 15.c) decreased. 
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Next, the Born-Jordan distribution(BJD) was applied to the original (non-detrended) IBI 

signal. Figure 16 displays the response. At the two and eight minute marks, drop and rise 

of vagal tone (figure 16.b) was observed respectively. The sympatho-vagal balance 

(figure 16.c) looked different than the sympatho-vagal balance we obtained from other 

distributions. That is, the overall amplitude variation was very small (1 to 1.5) and the 

amplitude variation between the two and eight minute marks were much smaller than the 

overall amplitude variation. 

Figure 16 Applying BJD to IBI signal. a) sympathetic and parasympathetic b) vagal 
tone c) sympatho-vagal balance, during 2 minutes of rest(120 sec), 6 
minutes of exercise (360 sec) and 4 minutes of recovery(240 sec) 
respectively. 

In this case smoothing the interval between two minutes and eight minutes might show 
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that the amplitude is higher than the previous and following intervals. 

Lastly, the Rihaczek-Margenau(RMD) distribution was applied to the original (

non-detrended) IBI signal. Figure 17 displays the response. we can notice a drop of vagal tone 

(figure 17.b) as the subject initiated exercise at the two minute mark and suppression of 

vagal tone during the six minutes of exercise. Also when the subject was asked to halt 

exercise at the 8 minute mark, the sympatho-vagal balance (figure 17.c) 

decreased to rest conditions. 

Figure 17 Applying RMD to IBI signal. a) sympathetic and parasympathetic b) vagal 
tone c) sympatho-vagal balance, during 2 minutes of rest(120 sec), 6 
minutes of exercise (360 sec) and 4 minutes of recovery(240 sec) 
respectively. 

We tried each distribution for all ten subject. For any of the subjects, we also used the 

same distribution with different parameters(length of analysis window, FFT length, skip 

point). Changing the size of analysis window, FFT length and skip points toward the 
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time-frequency calculation did not show any substantial changes. As can be seen in 

above demonstration, the responses of the different distribution showed similar kinds of 

activity and some different . There has been many arguments about using a particular 

distribution. One approach is to argue that the performance of a distribution is best for a 

particular property that is deemed desirable [2]. Another approach is that the choice of 

distribution should depend on the application and possibly the class of signals used [2]. 

For our future research, we decided to use the smoothed pseudo Wigner 

distribution(SPWD). The smoothed Wigner pseudo distribution contain many good 

properties of the Wigner distribution, but it also losses some of the properties. That is 

because of the selection of smoothing function. But some previous knowledge about the 

signal can help one to design a proper smoothing function for that particular signal. The 

smoothed pseudo Wigner distribution suppress the cross terms, which is a desirable 

property when we are analyzing the biological signals. Also for certain types of 

smoothing, a positive distribution is obtained. 

4.2 Physiology of Electromyographic Signal (EMG) 

Skeletal muscle is composed of a large number of muscle fibers. Each muscle fiber is 

composed of many fibrils, and is filled with the contractile proteins, actin and myosin. 

These proteins are extremely well organized and are capable of slipping past each other 

when the calcium level in the muscle fiber increases[26]. As they slip past each other, the 

muscle fiber shortens and produces a force. The increased calcium level, which causes 

this contraction, is triggered by a muscle action potential that propagates along the 
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muscle. This muscle action potential is triggered by a nerve action potential that 

propagates down the motor nerve and innervates the muscle at the motor end plate. One 

motor nerve can innervate one or many muscle fibers. When an action potential reaches 

the motor end plate, the nerve releases a neurotransmitter (acetylcholine)[27]. 

Acetylcholine diffuses from the motor nerve to the muscle fiber and initiates a single 

muscle action potential (AP). The AP produces a single muscle twitch (contraction). 

Thus, a train of nerve action potentials will produce a train of muscle action potentials 

and a train of twitches. If the frequency of the nerve action potentials is high, the twitches 

summate and produce a contraction that is a function of the frequency of the action 

potentials. Further, other motor nerves will innervate other muscle fibers in the muscle, 

and recruiting additional motor nerves will produce greater muscle contractions and 

greater muscle forces[26]. Any muscle activation will produce many muscle action 

potentials that, while not totally synchronized, summate to produce an electromyogram. 

4.2.1 Integrity of the EMG Signal 

The characteristics of the EMG waveform depend on the type of electrode, the placement 

of the electrode, and the activity of the muscle. The bioelectric potentials associated with 

muscle activity can be measured at the surface of the body near the muscle of interest or 

directly from the muscle by penetrating the skin with needle or fine wire electrodes. In 

our experiment, we obtained an EMG signal using one pair of surface electrodes (surface 

active to surface reference) and three fine wire (Fw) electrodes (Fw#1 to Fw#2 and Fw#2 

to Fw#3) .The contractile fatiguability of muscles has been related to the muscle fiber 
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types that comprise a muscle. Muscles with predominantly slow twitch motor units(Type 

I) resistant to contractile fatigue more than those that are more evenly mixed with slow 

and fast twitch motor units or a predominance of fast (type II) fibers. In our research, the 

data is obtained from muscles with fast fibers (Type II). 

A power spectrum of an electromyogram spans the frequency range of 10 - 3000 hertz 

with most of the power in the 50 to 60 hertz range[28]. An action potential of a muscle 

has a fixed magnitude, regardless of the intensity of the stimulus that generates the 

response. Increasing the firing rate of individual motor units or the number of motor units 

that fire will increase the muscle force. 

4.2.2 Data Acquisition 

The EMG signal from 3 different electrode configurations was fed to an isolated 

preamplifier (Gould #11-5407-58). This preamplifier in turn was connected to a signal 

conditioning universal amplifier (Gould #13-4615-58). In the amplifier, the signal was 

bandpass filtered between 10 Hz and 1000 Hz and amplified 200-600 times. The 

conditioned 3 analog data signals were fed into a 12 bit resolution analog to digital 

converter interface board (Kiethley MetraByte #DAS1601) through screw terminal 

accessory kit (Kiethly MetraByte #STA-16). The converted data were then stored in 

binary form in an IBM compatible 286 computer using data acquisition software 

(Keithley MetraByte # Streamer V3.5). The output of the signal conditioner units were 

monitored using a 4 channel digitizing oscilloscope (tektronix #TDS 455A) during 

muscle contraction to check for signal free of any noise of artifact. The details of data 
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collection is further explained in by Maniar [15]. 

4.2.3 Electromyographic Signal (EMG) via Time-Frequency Distribution during 
Muscle Fatigue 

In the past, published studies have investigated the power density spectrum of the EMG 

signal to quantify metabolic muscle fatigue. The techniques limited application to 

muscles accessible by surface electrodes. Recent studies at the Kessler Institute for 

Rehabilitation have centered around the power spectral density technique. This type of 

analysis compares median frequency (MF) and decline in median frequency (MF) with 

fatigue using surface electrodes and fine wire (FW) electrodes. 

The objective of our study is to apply the time-frequency distribution to the EMG signal 

during muscle fatigue. The EMG signals were collected using surface electrode. Figure 

18 shows a mesh plot of the EMG signal during muscle fatigue using the smoothed 

pseudo Wigner distribution. In this calculation, the length of analysis window, length of 

FFT and the skip points were 0.0423 second, 256 points and 100 points respectively. 

Looking at figure 18, we observe that as time goes from zero to 30 seconds, the range of 

frequencies with significant power is declining and power density increases. This is in 

agreement with the result of standard FFT spectral analysis during muscle fatigue. Thus, 

we obtained the same conclusion (declination of frequency during muscle fatigue) by 

looking at the mesh plot of the time-frequency distribution. 



Figure 18 The mesh plot of CMG signal during muscle fatigue 

The median frequency was calculated for each time slice(length of 0.0423 second). The 

variable analyzed was the slope of a regression line, fit to the median frequencies. To 

establish reliability between the median frequency and the regression line, we also 

calculated the correlation coefficient. Figure 19 superimposes the median frequency and 

the regression line. 
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Figure 19 The above plots are calculated from the EMG signal using 
surface electrodes. The variables are as follow Lwin=127; 
FFTlen=256; skip=100; rcoef=-0.4 

The slope of the regression line, the initial median frequency and the correlation 

coefficient recorded as -0.7, 76.1(hertz) and -0.4 respectively. The negativity of the slope 

is acceptable since the median frequency decays with fatigue. The correlation coefficient 

was very small because the length of the analysis window was very small. Thus, taking 

the length of analysis window small(0.0423 sec), it gives us very good time resolution 

(0.033 sec) but poor correlation coefficient(-0.4). 

In the next case, we applied the SPWD to the same data file(the EMG signal during 

muscle fatigue using surface electrode), but we increased the length of the analysis 

window to 0.17 second , the FFT length of 512 and kept the skip point same as 

before(100). Figure 20 superimposes the median frequency and the regression line. 



Figure 20 The above plots are calculated from the EMG signal 
using surface electrodes. The variables are as follow: 
Lwin=511; FFTlen=512; skip=100; rcoef=-0.7 

We recorded the slope of the regression line, the initial median frequency and the 

correlation coefficient as -0.77, 71(hertz) and -0.7 respectively. The negativity of the 

slope is acceptable as we explained before(the median frequency decays with fatigue). 

The initial median frequency decreased and the correlation coefficient decreased, since 

we used larger analysis window but still correlation coefficient of -0.7 is low. Table 5 

shows the statistical value from the smoothed Wigner distribution for surface to surface 

electrode. 
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Table 5 Results from SPWD of EMG using surface electrode 
surface 

to surface 
electrode  

length of analysis 
window 

FFT 
length 

skip 
point 

slope 	I 
 

initial 
median 

frequency 

correlation 
coefficient 

trial 	#1 127 256 100 -0.7 76.1 -0.4 
trial #2 511 512 100 -0.77 71.0 -0.7 

We also applied the smoothed pseudo Wigner distribution to the EMG signal during 

muscle fatigue, using fine wire electrodes. To compare the fine wire electrodes with the 

surface electrodes, we used the length of analysis window, length of FFT and the skip 

point to be 0.0423 second, 256 points and 100 points respectively. Figure 21 

superimposes the median frequency and the regression line in case of the fine wire 

electrode. 

we also computed the slope of the regression line, the correlation coefficient and the 

initial median frequency for fine wire electrodes. The slope of the regression line, the 

initial median frequency and the correlation coefficient recorded as -0.83, 125.8(hertz) 

and -0.4 respectively. The negativity of the slope is acceptable since the median 

frequency decays with fatigue. The correlation coefficient was very small because the 

length of the analysis window was very small. 
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Figure 21 The above plot is calculated from the EMG signal 
using fine wire electrodes. The variables are as follow: 
Lwin=127; FFTlen=256; skip=100; rcoef=-0.4 

Next, we applied the SPWD to the same data file(the EMG signal during muscle fatigue 

using fine wire electrodes), but we increased the length of the analysis window to 0.17 

second , the FFT length of 512 and kept the skip point same as before(100). Figure 22 

superimposes the median frequency and the regression line. 

We recorded the slope of the regression line, the initial median frequency and the 

correlation coefficient as -0.74, 120.3(hertz) and -0.62 respectively. The initial median 

frequency decreased and the correlation coefficient improved, since we used larger 

analysis window but still correlation coefficient of -0.62 is very low. Table 6 shows the 

statistical value from the smoothed Wigner distribution for fine wire electrode. 
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Figure 22 The above plot is calculated from the EMG signal 
using fine wire electrodes. The variables are as follow: 
Lwin=511; FFTlen=512; skip-100; rcoef= -0.62 

The results from the time-frequency distribution were compared with the work(spectral 

FFT analysis) of Maniar[15]. Table 7 shows the statistical values from Maniar's work. 

Table 6 Results from SPWD of EMG using fine wire electrode 

fine 
wire 

electrode 

length of analysis 
window 

FFT 
length 

skip 
point 

slope initial 
median 

frequency 

correlation 
coefficient 

trial #1 127 256 100 -0.83 125.8 -0.4 

trial #2 511 512 100 -0.74 120.3 -0.62 

In the case of surface to surface electrode, we used the results from trial #2 to compare 

with Maniar's work[15]. The slope's are both negative, but the magnitudes are very 

different. 
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The initial median frequencies are very close but not exact. The correlation coefficient 

from Maniar's work is close to -1, which is the desirable coefficient. The time-frequency 

distribution method showed poor correlation coefficient(-0.77). 

Table 7 The Statistical Values from Maniar's Work 

Surface to surface electrode fine wire electrode 

slope -1.810 -1.473 

initial median frequency 69.110 117.687 

correlation coefficient -0.958 -0.925 

In the case of fine wire electrode, we also used the results from trial #2 to compare with 

Maniar's work. The time-frequency distribution showed poor correlation coefficient. the 

magnitudes of slope are very different. The initial median frequencies are close but not 

exact. Since the correlation coefficients were very low, we did not compare the surface to 

surface electrode with fine wire electrode. 

As can be seen, results from the spectral analysis and the time-frequency distribution 

were different. but, as we increased the length of analysis window the correlation 

coefficient improved . More work has to be done on time-frequency distribution before 

one can deny the capability of time-frequency analysis in case of the EMG signal during 

muscle fatigue. 



CHAPTER 5 

CONCLUSION 

5.1 Development of the Time-Frequency Signal Analysis Toolbox 

We have developed a time-frequency signal analysis toolbox. The original computer 

algorithm(FORTRAN CODE) of time-frequency representation was presented by 

Boashash[1]. In this research we have regenerated his algorithm which implement time-

frequency signal analysis techniques on the Mathlab software. Its primary function is to 

produce a variety of time-frequency representations and plots from the time series. Time-

frequency distributions (TFDs) are powerful tools for the analysis and processing of 

nonstationary signals for which separate time-domain and frequency-domain analysis are 

not adequate. In this thesis, we have outlined the motivations, interpretations, 

mathematical fundamentals, properties, and applications of various linear and quadratic 

TFDs. Although we have attempted to provide a coherent framework of TFDs, a truly 

unified framework is difficult to obtain because of the large variety of existing methods 

and approaches causing the field of time-frequency analysis to be somewhat disparate. 

We showed the trade off between time and frequency resolution in case of the short-time 

Fourier transform. The resolution of the Wigner distribution was relatively poor, in spite 

of high auto component concentration. The pseudo Wigner distribution and the smoothed 

pseudo Wigner distribution all require a careful choice of the window, with the resolution 

dependent on that choice. The smoothed pseudo Wigner distribution contained many 
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good properties of the Wigner distribution. Among all the distribution, we decided to use 

the smoothed pseudo Wigner distribution(SPWD) for our further research, because it 

suppressed the cross terms and for certain types of smoothing, a positive distribution is 

obtained. The advantage of the Choi-Williams distribution was that it is insensitive to the 

signal component scaling, so an acceptable smoothing parameter can be chosen 

independently of the data. The Born-Jordan distribution has been introduced, which have 

many desirable properties. It has been shown that this new distribution provides a high 

resolution, easy to interpret localization of the signal energy spectrum in the time-

frequency plane. A systematic procedure to design the new kernels has been introduced. 

5.2 	Biomedical Application of Time-Frequency Distribution 

5.2.1 Sympatho-vagal balance 

The utilization of time-frequency analysis is vast. Calculation of sympatho-vagal balance 

from the time-frequency distribution describes the changes of the parasympathetic and 

sympathetic influences on heart rate. Time- frequency calculation of the sympatho-vagal 

balance recognized the reciprocal parasympathetic and sympathetic influences on heart 

rate, through the ratio of low frequency power to high frequency power. The time-

frequency calculation of the sympatho-vagal balance indicated how this ratio changed as 

a function of time. The time-frequency presentation indicated that, detrending the IBI 

signal can remove information at low frequencies. 
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5.2.2 Time-Frequency Distribution of EMG Signal 

Utilizing the time-frequency distribution, we compared median frequency and decline in 

median frequency for the EMG signal during muscle fatigue with the spectral analysis 

method. The time-frequency distribution result showed decline of the median frequency 

during muscle fatigue. We obtained very poor correlation coefficient via time-frequency 

distribution, but as we increased the length of analysis window the correlation coefficient 

improved . The results from the spectral analysis and the time-frequency distribution 

were different and the comparison failed due to very poor correlation coefficient. 



APPENDIX A 

For our purpose, part of the main source code is presented at this point and number each 
line for further explanation. 

I. 	for K= I :Timeslice, 
2. for m=0:h11 
3. R(m+ .1)=G(1,m+1)*z(l+m+n)*conj(z(1-m+n)); 
4. for 	shlf 
5. .12('n+ 1)=R(m+ I)+(G(P+ 1,m+ 1)*((z(1+13+m+n)*conj(z(l+P-m+n)))+(za-P+m+n conj(z(1-P-

m+n))))); 
6. if m>0, Rfftlen-m+1)=conj(R(m+1)); end 
7. end 
8. end 
9. for m=h1f+21filen-hIf R(m)=0; end 
10. tfds=2/Iftlen*abs(ift(R)); 
I 1 . TEDs(..,K)=1fds(1 ffilen)'; 
12. n=n+skip 
13. end 

where description of variables are as follows: 

• z() is an analytic input signal. 

• conj(z( )) is complex conjugate of the input signal. 

• G() is selection kernel matrix. 

• R( ) is matrix where result of convolution is stored. 

• I indicate the center of the analysis window. 

• skip the number of time samples to skip between successive slices of analysis 

• TFDs is matrix where the result of TFD is stored. 

• Timeslice indicates the number of time slice. 

• m and p are lower and upper indexes of summation. 

In the code fragment shown above (line 2-5), the symmetry is used by multiplying the 
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G(n,m) value with the required two bilinear product values at the same time, for a signal 

window of length 2 xhlf +1 . On line 6, we take advantage of symmetry of 	and  

the corresponding kernel product to compute the upper half of the result matrix R() from 

the lower half through conjugation. On line 9 we are adding sufficient number of zeros to 

matrix R() , called zero padding, before taking the discrete Fourier transform each time. 

This is due to restrictions in the fast-Fourier transform routine (FFT) on the length of 

each data segment (usually to a power of two). This way any points containing calculated 

values are set to zero, as the FFT length may be greater than the analysis window. On 

line 10-11 we compute the power spectral density of each time slice and place them by 

order into the matrix TFDs respectively. 

Variable hlf determine the size of the kernel and bilinear product for analysis. It is 

defined as: 

Lwin +1  
hlf = 	1 

where Lwin is the size of the analysis window and must be odd. Variable skip 

determines the number of time samples to skip between successive slices of the analysis 

window and dividing the skip by the sampling frequency of input signal gives us the time 

resolution. The presence of index I (= 2 x half + 1) as the center of the analysis window 

guarantees the nonnegativity of indices into the signal z() since the Matlab compiler 

generates code to check array bounds for negativity. 
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The following are typical questions and respond which user has to understand. 

• Please enter the name of datafile with no extension. 

The user has to make sure that the extension of the datafile is ".asc", and the datafile 

contains ASCII data in a columnwise fashion. 

O Which column do you want to analyze. 

If the user's datafile contains many columns of data, the user should indicate which 

column s/he wants to analyze. i.e., >_< 

• Please enter the length of analysis window. 

The user has the option to pick the size of analysis window (odd number), as described in 

the previous section. 

O Please enter the length of FFT analysis. 

The user can enter a number equal to or greater than the length of the analysis window. 

Note if the number is a power of 2, Matlab uses one of the fast discrete Fourier transform 

routines, otherwise Matlab uses a non power of two algorithm. Note, if the length of FFT 

is greater than analysis window then zero padding is applied. 

0 	Please enter the number of the skip points. 

The number of skip determines the time resolution. Usually this number should be 

smaller than the length of analysis window. 

skip po int s 
time resolution= 

	

	  
sampling frequency of signal 

f resolution = 
2 * FFTlength 

.l sampling 
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The number "2" is due to the analytical signal. 

6 	Please enter the sample rate of the data. 

The user should enter the sampling frequency of datafile. 

Do you want to detrend the input signal. 

If the user answers yes, then the user will be asked to enter the order of the low pass filter 

and the cutoff frequency. 

Do you want to calculate instantaneous frequency. 

The user has the option to enter yes <y>, or no <n> 

6 	Do you want to calculate median frequency. 

If the user answers yes, then the user will be asked to enter the low and high frequencies 

(frequency band of interest in hertz). 

Do you want to extract certain frequency range. 

If the user answers yes, then the user will be asked to enter the low and high frequency of 

interest in terms of the index. In order to calculate index values divide the desired 

frequency by the frequency resolution. 

Do you want to look at, a)mesh&contour b)mesh c) contour d)none 

The user can choose the plotting method. 
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signal.m 

This is the source code for creating three different 
% 
	

signals, which each signal is made of three sine wave 
with frequencies of 2 , 5 and 10 hertz. 
the sampling frequency for the all signals is 100 
samples per second. 

% 
	

Each signal is located as a one column of matrix 
sig_tes. The length of FFT is 2048 points. 
The plots of power spectrum are zoomed in. 
The last two line of the instructions is used to 
save the figures in Metafile format and then 
is imported to Microsoft word (ver, 6.0a). 

t=0:0.01:1.99; 
signal_1=[zeros(1,50) sin(2*pi*5*t) zeros(1,50) sin(2*pi*2*t) zeros(1,100) 
sin(2*pi*10*t)]'; 
signal_2=[zeros(1,50) sin(2*pi*10*t) zeros(1,50) sin(2*pi*5*t) zeros(1,100) 
sin(2*pi*2*t)T; 
signal_3=[sin(2*pi*2*t) zeros(1,100) sin(2*pi*10*t) zeros(1,100) sin(2*pi*5*t)]'; 
sig_tes=[signal_l signal_2 signal_3]; 
ref=length(signal 1); 
Pyy=abs(fft(sig_tes,2048)); 
F=:(100*(0:511)12048)'; 
T--(ref/100)/(ref-1)*(0 :ref-1); 
figure(1); 
subplot(3,1,1), plot(T,signal_1); xlabel('Time(second)'); ylabel('Amplitude'); 
subplot(3,1,2), plot(T,signal_2); xlabel('Time(second)'); ylabel('Amplitude'); 
subplot(3,1,3), plot(T,signal_3); xlabel('Time(second)'); ylabel('Amplitude'); 
pause 
figure(2); 
subplot(3,1,1), plot(F,Pyy(1:512,1)); xlabel('Frequency(hertz)'); ylabel('Power Density'); 
subplot(3,1,2), plot(F,Pyy(1:512,2)); xlabel(Frequency(hertz)'); ylabel('Power Density'); 
subplot(3,1,3), plot(F,Pyy(1:512,3)); xlabel('Frequency(hertz)'); ylabel('Power Density'); 
print -dmeta -ftigure(1) sine.cgm; 
print -dmeta -ffigure(2) sin_fft.cgm; 

Sine.m 
This is the source code for generating the 

data file for the PWD cross term and Choi-Williams illustration 

clear 
close("all") 
t=0:0.001:4; x=(sin(2*pi*100*t)+sin(2*pi*400*0)'; ref--length(x); 
T—(ref/100)/(ref-1)*(0:ref-1); plot(T,x); save sincl .asc x -ascii 



The following program written in Matlab was utilized to perform Time-Frequency 
analysis. 

TFD.m 
This the source code for utilizing the time-frequency representation. 

	

% 
	

User should refer to the beginning of this appendix for further instruction to 
operate this software. 

close('all') 
clear 
clc 

choose=menu('SELECT YOUR DISTRIBUTION','SPWD',... 
'Choi_Wilhams','Spectrogram',... 
'Bornjordan_Cohen (RID)','RihaczekMargenau','PWD'); 

clc 

disp(") 
dispffblanks(30) 'WELLCOME TO]) 
disp([blanks(21) 'TIME FREQUENCY DISTRIBUTION]) 

disp([blanks(33) 'WORLD]) 
disp(") 
disp(") 
SIGNAL=input('Please enter name of datafile with no extension -- 
filename=[SIGNAL,'.asc']; 

eval([ load ' filename]); 
original_rawdata=eval(SIGNAL)'; 
clear eval(SIGNAL) s1 10994b; 
Question_l=inputeWhich column do you want to analyze? [1 2 3] -->' 

	

if 	Question 
rawdata=original_rawdata(1,:); 

elseif 	Question_l 
rawdata=ori gi nal_rawdata(2,:); 

elseif 	Question_1=='3' 
rawdata=original_rawdata(3,:);  

end 
clear original_rawdata; 
Signa=rawdata; 

Lwin=input('Please enter the length of analysis window 
fftlen=input('Please enter the length of FFT analysis --> 
skip=input('Please enter the number of the skip points --> '); 
sample=input('Please enter the sample rate of the data --> '); 
Question_2=input('Do you want to deterend the input signal? [yin] --> 
if Question_2==ty' 

order=input('Please enter the order of the lowpass filter --> '); 
freq=input('Please enter the cutoff frequency for LPF --> ')• 
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nfreq=freq/sample; 
[poles,zero]=butter(order,nfreq); 
dtrend=filtfilt(poles,zero,rawdata 
Result_Signa=rawdata-dtrend; 
Signa=Result_Signa; 

else 
end 
Question 3=input('Do you want to calculate Instantaneous Frequency? [y/ n] 
Question_4=input(Do you want to calculate Median Frequency? [yin] --> 
if Question_4=='y 

LF=input('Please enter the low frequency? [Hz] -->'); 
HF=input('Please enter the High frequency? [Hz] -->'); 

else 
end 
Question_6=input('Do you want to extract certain Frequency range? [yin] --> ','s'); 
if Question 6=='y'; 

LFC=input(Please enter the low frequency range in index -->'); 
HFC=input(Please enter the high frequency range in index 

else 
end 
hlf=(Lwin+1)/2-1; 
I=2*hlf+1; 
signal=hilbertffzeros(1,2*hlf) Signa zeros(1,2*hlf)]); 
signal_conjugate=conj(signal); 

(Smoothed WVD using a rectangular window of odd len h) 

if choose==1 
P=input('Please enter the length of smoothing region 
distribution=['Smoothed WVD']; 
G—(17(2*P-1))*ones(hlf+1,h1f+1); 
smooting_region=ones(hlf+1,hlf-P+1);  
G(:,P+1 :hlf+1)—zeros(size(smooting_region)); 
% 

(Choi-Williams) 
% 

elseif choose==2 
distribution=['Choi_Williams]; 
Sigma=0.1; 
G=zeros(hlf+1,h1f+1); G(1,1)=1.0; 
for j=1 :hlf; 
for i=0:hlf, G(i+1,j+1)=exp(((-1)*Sigma i)/(4*j*j)); end 
G(:,j+1)=G(:,j+1)/(2*sum(G(:,j+1))- G(1,j+1)); 
end 

(Spectrogram) 
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elseif choose==3 
distribution=[' Spectrogram'],  
G=(1 /(2*hlf-1))*fliplr(triu(ones(hlf+1,h1f+1),0)); 

(Born-Jordan-Cohen)  

elseif choose==4 
distribution-1' Born_Jordan_Cohen']; 
G=triu(ones(hlf+ 1 ,h1f+1), 0); 
for i=0:hlf, G(i+1,:)--(1/(1+i))*G(i+1,:); 
end 

(Rihaczek-Margenau) 

elseif choose==5 
distribution—TRihaczek_Margenau']; 
G=ones(hlf+1,h1f+1); 
G-0.5*diag(diag(G)); 
G(1,1)=1; 
end 

(Computation of TFDs) 

Timeslice=flooralength(signal)-4*hlf-1)/skip); 
kernel=zeros(fftlen,Timeslice); 
TFDs=zeros(Lwin,Timeslice); 
if Timeslice<=0 
disp(") 
disp(---> The size of data file is less than the length of FFT'); 
dispC---> Therefor the process will be terminate now.');  
disp('---> Please reduce the length of FFT and try again.'); 
break; 
end 
h = waitbar(0,'Please wait while it is processing...');  
if choose<6 
for n=0:skip:skip*(Timeslice- ); 
for m--0:hlf, 
kernel(m+1,(n/skip)+1)--(G(1,m+1)*signal(I+m+n)*signal_conjugate(I-m+n))... 
+sum(G(2:hlf+1,m+1)'.*(signal(I+1+m+n:I+hlf+m+n).*signal_conjugate(I+1-m+n:I+hlf- 
m+n)... 
+signal(i- 1 +m+n:- 1 : I-hlf+m+n).*signal_conj ugate(I- 1 -m+nr- 1 :I-hlf-m+n))); 
end 
waitbar(n/(length(signal)-4*hlf-1)) 
end 
clear signal_ conjugate signal 
kernel(fftlen-hlf+1:fftlen,:)=flipud(conj(kemel(2:hlf+1,:))); 
TFDs=2/fftlen*abs(fft(kernel,fftlen)); 



close(h) 
else 
distribution=PWD1; 
for n=0:skip:skip*(Timeslice-1); 
V 1 =signal(I+n:I+hlf+n).* si gnal_conj ugate(I+n: -1 :I-hlf+n); 
kernel(1 :hlf+1 ,(n/skip)+ 1)=(V 1 +sqrt(- 1)*V 1)'; 
kernel(fftlen: - 1:fftlen-hlf+ 1 ,(n/skip)+ 1)—((sqrt(- 
1)*conj(V1(2 :hlf+1))+(imag(V I (2:hlf+ 1 ))+(real(V 1 (2:hlf+1 ))*sqrt(-1)))))`; 
waitbar(n/(length(signal)-4*hlf- 1)) 
end 
kernel=flipud(kernel); 
TFDs=2/fftlen*abs(fft(kernel)); 
close(h) 
end 
clear signal kernel signal_ conjugate; 

(Algorithem to calculate instantaneous frequency) 

if Question_3=='y'; 
[r,C]=size(TFDs); 
for i=1:C, 
W=TFDs(:,i); 
Y—(1:0'; 
M=W.*Y; 
S=sum(M); 
F=sum(W); 
E(i)=S/F; 
end 
elseif Question_3== 
end 
end 

(Algorithem to extract certain frequency) 

if Question_6==tyl; 
symvag=sum(TFDs(LFC,1:Timeslice)); 
vagal=sum(TFDs(HFC, 1 :Timeslice)); 
symtopar=symvagivagal; 
end 

elseif Question_6=='n'; 
end 

(Three Dimensional Graphics) 

T=(length(Signa)/sample)/(Timeslice)*(0:Timeslice- ); 
Nsample/(2*fftlen))*(0:fftlen-1); 
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c=length(Signa); 
ref=(c/sample)/(c-1)*(0: 	, 

if Question_4=='y';  
low=1; 
while glow <LF 
low=low+1; 
end 

low_freq=low; 
high=fftlen/2+1; 

while f(high)>HF 
high=high-1; 
end 

hi ..I,h_freq=high; 
lo_hi=low_freq:high_freq; 
desire_median_power=sum(TFDs(lo_hi,:))12; 
[ROW,COL]=size(TFDs); 
median_frequency=zeros(1,COL); 

for slice_power=1 :COL 
col_index=low_freq; 
Median_Power=TFDs(low_freq,slice_power); 

while Median_Power < desire_median_power(slicepower) 
col_index=col_index+1; 
M.edian_Power=Median Power+TFDs(col_index,slice_power), 

end 
median_frequency(slice_power)=f(col_index); 

end 
(Algorithem to Line fit the Median frequency) 

feeding=polyfit(T, median frequency,1); 
fit=polyval(feeding,T); 

elseif Question_4=='n'; 
end 
disp('Do you want to look at (a)mesh&Contor (b)mesh') 
disp([blanks(24) '(c)contour, 	(d)None']) 
FigType=input('-->','s'); 
if FigType=-='al; 

figure(1); subplot(2,1,1), mesh(T,f,TFDs); 
xlabel('Time(sec)'); ylabel('Frequency(hertz)'); zlabel('Magnitude'); 
title(rMesh & Contour oft,eval(filename'),' using ',eval('distribution'),' distribution']); 
subplot(2,1,2), contour(T,f,TFDs); xlabel('Time(sec)'); ylabel('Frequency(Hz)'); 

pause 
elseif FigType=='b'; 

figure(1); mesh(T,f,TFDs); 
xlabel('Time(sec)'); ylabel('Frequency(Hz)'); zlabel('Magnitude'); 



title(Nesh of ',eval('filename'),' using ',eval('distribution'),' distribution' 
pause 
elseif FigType=='c'; 

figure(1 ); contour(T,f,TFDs); 
xlabel('Time(sec)'); ylabel('Frequency(hertz)'); 
title(['Contour of ','sine.asc',' usinp, ',eval('distribution'),' distribution']);  

pause 
elseif FigType=='d'; 
end 

(Algorithem to calculate Median frequency) 

if Question_4=='y ; 
slope=(fit(3)-fit(1))/(T(3)-T(1)); 
S1 = sprintf('slope is %5.2f ,(fit(3)-fit(1))/(T(3)-T(1))); 
S2 = sprintf('Y_intercept is %5. 1 f ,fit(2)-slope* T(2)); 
COEF=corrcoef([median_frequency' fit']); 
rcoef—COEF(1,2); 
figure(2); 
plot(T,fit,T,median frequency,'*'); 
title(['Median frequency of,",eval(filename')„e al(S1'),",eval('S2'),",'Hert z ); 
xlabel('Time(sec)'); ylabel('Frequency(Hertz)'); 
else 
end 
pause 
if Question_3=='y' & Question 2=='y'; 

figure(3); 
subplot(3,1,1), plot(ref,rawdata); 
title(['Superimpose of rawdata & detrended & IF of ',eval('filename')]); 
xlabel('Time(sec)'); ylabel('Amplitude'); subplot(3,1,2),plot(ref,Signa); 
xlabel('Time(sec)'); ylabel('Amplitude'); subplot(3,1,3), plot(T,E); 
xlabel('Time(sec)'); ylabel(frequency'); 

elseif Question_3=='y' & Question_2=='n' 
figure(3); 
subplot(2,1,1), plot(ref,rawdata); 
title([' Superimpose of rawdata of ',eval('filename'),' & IF']); 
xlabel(Time(sec)'); ylabel('Amplitude'); subplot(2,1,2),plot(T,E); 
xlabel('Time(sec)'); ylabel('Amplitude'); 

elseif Question_3=='n' & Question_2=='y' 
figure(3); 
subp lot(2, 1 , 1 ), p lot(ref, Si gna); 
title(['plot of rawdata & detrended of ',eval('filename')]); 
xlabel('Time(sec)'); ylabel('Amplitude'); subplot(2,1,2),plot(ref,Signa); 
xlabel('Time(sec)'); ylabel('Amplitude'); 

elseif Question_3=—'n' & Question_2=='n' 
figure(3); 
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plot(ref,Signa); title(['plot of rawdata of eval(ifilenamet))); 
xlabel('Time(sec)');ylabel('Amplitude); 

end 
pause 
if Question_6--='y , 

figure(4); 
subplot(3,1,1), plot(T,symvag); 
title(['Mixture of Sym&Parasym & Parasym range & Ratio of Lowfreq to HighFrea; 
xlabel(iTime(sec)'); ylabei('Amplitude'); 
subplot(3,1,2), plot(T,vagal); 
xlabel(Time(sec)'); ylabel('Amplitudel); 
subplot(3,1,3), plot(T,symtopar); 
xlabel('Time(sec)'); ylabel('Amplitude'); 

if Question_6=='n'; 
end 
end 
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