





ABSTRACT

QUANTITATIVE STUDIES OF AN IMMOBLIZED CELL OXIDATIVE
BIOREACTOR

b
Timothy Lanze Borkowski

The purpose of this work was to determine a suitable method of utilizing dissolved
oxygen in reservoir solution data to quantitatively measure the amount of oxygen and
substrate consumed for an immobilized cell batch bioreactor in a recirculatién
configuration.  Statistical analysis was performed on multiple phenol injections to
determine the mathematical relationship between dissolved oxygen readout and the
amount of phenol degraded.

Factors considered in the mathematical analysis include amount of substrate
degraded, reaction time, recirculation flow rate, measured dissolved oxygen concentration
and oxygen consumption, oxygen conversion per pass through the bioreactor during
steady state, and vitality of the microorganisms. The recommended method of
quantitation was found to be independent of recirculation rate, steady state oxygen
conversion and vitality of the microorganisms, and was found to have a predictability error
0f 20.2%.

Additionally, four popular pesticides used in New Jersey: Acephate, Carbaryl,
Chlorpyrifos, and Diazinon were tested to determine the capability of the bioreactor to
degrade them. These pesticides were injected into the bioreactor to determine the

bioreactor’s oxidative response.
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CHAPTER 1

INTRODUCTION

1.1 Bio-Oxidation of Wasiewater Pollutants
Wastewater treatment applications provide methods for protecting the environment and
human health from residential, commercial, and industrial pollutants. The water is cleaned
of organics, metals, microorganisms and other pollutants and returned to the environment.
The principles of wastewater treatment also apply to groundwater treatment, surface
water treatment and drinking water treatment.

Biological treatment, also known as secondary treatment, involves the removal of
organic matter by mineralization, and also by converting them into flocculant settleable
solids. The four major biological processes are 1) activated sludge processes, 2) aerated
lagoons, 3) trickling filters, and 4) stabilization ponds. The activated sludge process
involves the biodegradation and oxidation of organics in the wastestream by
microorganisms. Biological treatment is widely used in high volume, regional water
treatment plants [17,10].

The development of immobilized bioreactors has led to a wider variety of
biological treatment applications, including the removal of raw materials before
processing, pre-discharge pipeline treatment, effluent stream treatment, and
decontamination of soils, surface and groundwater. Biological treatment can be
implemented at less cost than excavation, transportation and incineration of environmental

contaminants. It has been shown, in certain applications, that immobilized cell biological



treatment can optimize and reduce the cost of pre-treatment, as compared to steam
stripping, carbon adsorption and traditional biological treatment [10]. Immobilized
bioreactors have also been used for the removal of VOC’s in air phase [3] and the removal

of heavy metals from aqueous streams [5].

1.2 Advantages of Immobilization

Several immobilization techniques have been developed in the past few decades to
broaden the scope of activated sludge usage. Immobilization provides a support surface
to which microorganisms adhere, as compared to traditional free microorganism reactors
in which the biomass is suspended in a liquid medium. Methods of immobilization include
entrapment of the biomass into the gel beads or a polymer matrix (alginate, carageenan or
polyurethane) which provides a permeable membrane through which substrate and oxygen
pass. The biomass can also attach itself to the surface of inert supports, including
diatomaceous earth, silica beads, and polymeric membranes.

The primary advantage of immobilizing microbes is that they become more
resistant to higher toxic chemical concentrations. Immobilization also provides easy
recovery and reuse of biomass and there are no washout problems which occur with free
microbes. Biomass attached to the surface of a support provides reduction of external
mass transfer resistance and increases degradation rates. Immobilization also eliminates

the problem of rising and bulking sludge [17].



1.3 Advantages of Spiral Biosupport
Immobilization on a polymeric membrane surface allows the bio-support to be designed in
a more efficient spiral configuration. This design restricts the flow to the inner spacing of
the membrane and eliminates the channeling effect. The biomass directly contacts the
water flow (as compared to gel beads) which proﬁdes less diffusional resistance. The
spiral configuration provides high surface area and therefore more biomass per unit
volume of the reactor. The configuration also provides a structural resistance to water

pressure drop.

1.4 Batch Recirculating Reactor
The batch recirculating reactor is a closed system with no inflow or outflow of material.
The liquid contents are completely mixed and pass through the biosupport until the
reaction is complete. Batch reactors are generally more expensive than continuous
systems because laboratory and operational costs are higher. However, batch systems
provide more flexibility and control, and can be scheduled and monitored for reaction

completion,

1.5 Oxygen Measurements and Quantitation of the Bioreactor
Biological Oxygen Demand (BOD) is the amount of dissolved oxygen consumed by
microbes while oxidizing contaminants in water. The Dissolved Oxygen (DO)
concentration in water decreases while microorganisms degrade pollutants. Electrolytic
respirometers monitor the oxygen concentration in water and indicate the amount of

oxygen used by microbes. Analysis of continuous output from DO measurement during



degradation yields information concerning the nature of degradation. The total
degradation rate is easily determined by analyzing DO measurement if oxygen
consumption ceases at mineralization. It has been determined that different compounds
produce different types of oxidative behavior and different types of DO patterns [1].
Therefore, certain qualitative conclusions of the sﬁbstrate can be reached by analyzing the
DO pattern of degradation. The DO pattern of the reactor provides a tool for measuring
degradation rate and for distinguishing between types of compounds being degraded.
Further analysis of the DO output reveals the total amount of oxygen consumed by
the microorganisms. However, due to the physical set up of the reactor, this is not an -
accurate reading. Oxygen is replenished into the reactor solution while the solution flows
down the outer surface of the catalyst and also by constant air bubbling. Therefore, the
DO measurements indicate a relative oxygen consumption specific to the reactor
configuration. Mathematical analysis of the relative oxygen concentration throughout the
reaction offers the possibility of quantizing the bioreactor. The DO output can be used to

determine the amount of substrate oxidized.



CHAPTER 2

LITERATURE SURVEY

Lakwala [2] has performed a study which compares two reactors with different types of
immobilization for degrading phenol. One reactor utilized calcium alginate gel entrapment
of bacteria, and the other utilized polymeric membrane attachment. He concluded that the
gel bead method of immobilization is more efficient at high concentrations of phenol,
while the polymeric membrane method of immobilization is more efficient at lower
concentrations (<150 ppm). Lakwala stated that substrate inhibition occurred at lower
concentrations of phenol with the polymeric membrane attachment because the substrate is
in direct contact with the microorganisms. Lakwala also concluded that polymeric
membrane sheets offer an additional advantage over gel bead entrapment. The entrapped
biomass in the gel beads can grow and break the beads. Polymeric membrane sheets
provide an environment where the biomass growth is regulated by the polymer area and
sloughing.

P. J. Allsop et al. [11] stated that the most probable site of substrate inhibitory
action of phenol degradation by Pseudomonas putida occurs at phenol permease or phenol
hydroxylase. Allsop has also shown a increase of Dissolved Organic Carbon in the reactor
solution after the addition of phenol. He concluded that this increase was due to 1) loss of
cell membrane integrity, 2) excretion of extracellular anabolites, or 3) production of
intermediate metabolites. According to Tang [4], the introduction of phenol to an
immobilized cell reactor produces extracellular phenol oxidase in the reactor solution.
Tang also indicated that the optimal conditions of the activated sludge phenol oxidase are:
phenol concentration of 100 ppm; pH = 6.0; temperature = 37 degrees Celsius. This

enzyme was also shown to oxidize 2-chlorophenol, styrene and methylene chloride.



Broholm et al. [6] has demonstrated the effects of biodegradation by different
mixed cultures. Mixed cultures of bacteria obtained from different water work sources
have shown varying abilities to degrade contaminants. The abilities of eight mixed
cultures of methane oxidizing bacteria to degrade TCE were compared. Three of the eight
cultures indicated the ability to degrade TCE in the thirty day experimental time, while the
other cultures showed little or no ability to degrade TCE.

It has been demonstrated by Buitron [14] that the characteristics of a mixed culture
change after repeated additions of phenol, and according to Jung [1], in an immobilized
gel bead reactor, the reaction rates increase as the number of phenol additions increase. In
relation, Naik [20] has shown the importance of acclimation to reduce lag time and
increase degradation rate in a suspended microorganism batch reactor.

Gonnabathula [19] utilized a suspended microorganism batch reactor to analyze
the effects of multiple substrates on the degradation of phenol. Multiple substrates were
introduced to the bioreactor simultaneously. It was found that 2,6 - dichlorophenol or
nitrobenzene inhibited phenol reduction, and nitrobenzene degradation was enhanced in
the presence of phenol.

M. G. Roig et al. [10] has stated that the greatest problem regarding biological
treatability of wastewater is when heavy metals in wastestreams delay or abolish biological
degradation. Rus [5] has demonstrated the biosorbent ability of gel entrapped immobilized
microorganisms to remove heavy metals (lead, chromium, cadmium and copper) from
wastestreams. Rus indicated that until metabolic activity is inhibited, the biomass can
adsorb the heavy metals, while continuing to degrade organic contaminants. Rus has also
indicated that proper adjustment of biosorption conditions (pH), allows specific metal ions
to be selectively removed from the wastestream.

Chien [13] has shown the effects of flow rate on the degradative capabilities of

immobilized yeast reactors. As flow rate increased, the productivity also increased due to



the improved mass transfer properties. Chien indicated that a maximum reaction rate was
achieved despite further increases in flow rate.

Shim [3] has demonstrated the use of a spirally wound polymeric membrane
immobilized bioreactor to degrade a model VOC, ethanol, in air. A mixed culture was
attached to the biocatalyst and air mixed with ethanol was fed through the batch reactor.
Shim concluded that the bioreactor was capable of degrading 99 percent of ethanol within
the 6 hour experimental time. The operating parameters flow rate and ethanol inlet
concentration were examined and optimized. Shim determined that as air flow rate
through the reactor increased, reaction rate increased. However, further increases in flow
rate produced a decrease in reaction rate due to sloughing of biomass from the polymeric
sheet. Shim also determined that reaction rate increased with ethanol concentration.
After a maximum was reached, the increase in ethanol concentration decreased the
reaction rate due to substrate inhibition.

Suschka et al. [7] has demonstrated the use of using a direct oxygen probe to
monitor the oxygen consumption of microorganisms during substrate biooxidation. He
determined that respirometric data of activated sludge can provide valuable information
regarding the kinetics of biooxidation, including the biomass yield coefficient. Suschka
demonstrated that the bacteria consume more after injection because of the increase in
substrate concentration. The bioactivity can be monitored by the respirometric data.

Larson et al. [8] used respirometric data to measure biodegradation of surfactants
at ppm levels. He showed at low substrate concentrations, an estimate of biodegradation
could be obtained from respirometric data, and he concluded that in the absence of
specific analytical methods, the respirometer can be used to measure biodegradation.

Jung [1] utilized an online direct oxygen probe to monitor the biodegradation of
substrates by an immobilized gel reactor. At the point of injection of a substrate into the
reactor, the oxygen consumption by the microbes increases and the oxygen concentration

in the water decrease. The oxygen concentration in the water is analyzed over the course



of biodegration. The oxygen concentration in the water returns to normal, or baseline,
when biodegradation ceases. Jung showed that complete mineralization of phenol occurs
on the basis of oxygen measurement. Jung has also shown that different substrates
produce different oxygen patterns, thus indicating the use of respirometric data for

qualitative purposes.



CHAPTER 3

OBJECTIVES

The primary objective of this work was to develop a feasible quantitation method to

determine the relationship between oxygen consumption data and amount of substrate

degraded in the bioreactor.

The specific objectives are:

1.

2.

To evaluate the capability of the immobilized cell bioreactor to degrade pollutants,
To demonstrate the effect of recirculation flow rate on degradation,

To demonstrate the effect of substrate (phenol) concentration on degradation rate
and to determine an optimum operating range,

To derive a method of utilizing measured oxygen consumption data to qualitatively
identify classes of compounds,

To derive a method of utilizing measure oxygen consumption data to quantitatively
determine the amount of phenol injected, and

To evaluate the immobilized cell bioreactor’s oxidative response to and rough

quantitation of the pesticides Acephate, Carbaryl, Chlorpyrifos, and Diazinon.



CHAPTER 4
MATERIALS AND EXPERIMENTAL METHODS

4.1 Microorganisms and Immobilization

The activated sludge was obtained from the Parsippany Troy Hills Water Pollution
Control Plant in New Jersey. The sludge was sieved through a 297 um opening screen
and washed with %60.25 saline solution. About 50 liters of sludge were then acclimated
with 50 ml of oily industrial waste and 5 ml ethanol with constant air bubbling.

23.73 Liters of activated sludge were recirculated through the biocatalyst
overnight for attachment using a water pump at 1.5 psi water pressure. 11.15 Grams of
dry biomass were initially attached to the polymeric membrane. This was determined by

drying five 10 ml samples of washed activated sludge in a 120 C oven for 24 hours.

4.2 Polymeric Membrane for Bio-Oxidation

The organisms utilized during this experiment were immobilized on a spirally wound
polymeric membrane catalyst. The membrane is hydrophilic and consists of 55% silica,
45% PVC and carbon (trace) [2]. The following physical characteristics are attributed to
the membrane: porosity = 60% - 65%; pore size = 0.4 - 0.6 um; spacing = 1.2 mm; surface
area = 50 square feet.

The polymeric membrane sheet used is 2.5 feet wide and 20 feet long. The surface
of the membrane contains protective ribs that allow a spacing of 1.2 mm between the
layers after it is spirally wrapped. The total surface area of the sheet is 50 square feet, but

because both sides are utilized for immobilization by the bacteria, a potential of 100 square

10
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feet of polymeric sheet is obtained. The actual amount available for biomass attachment 1s
96.5 square feet because the outer surface of the catalyst is essentially unavailable for use.
After the membrane is wrapped in the spiral configuration, two plastic discs with a
diameter of 6.5 inches are attached to seal each end and to provide mechanical strength
and rigidity. The biosupport volume is 11 liters.

The reactor water is pumped to the top of the biosupport, and enters a cylindrical
space inside the reactor. The water exits the support by flowing through the 1.2 mm
spacing between wrappings and flowing spirally along the biosupport until it has reached

the end. Temperature readings of the water indicate a range of 25 - 35 degrees Celsius.

4.3 Experimental Set Up

Figure 1 shows a schematic of the reactor pump configuration. The reactor stands upright
in the 6.5 inch high reservoir. The capacity of the reservoir is 2.03 cubic feet (57.49
liters), and the water volume is maintained at 42 liters. The pump recirculates the
reservolr water into the top of the biosupport, and a small plastic container collects the
output from the surface of the support. This container was added to facilitate flow rate
and temperature measurements. Two bypass valves were added to the pump output to
control flow rate and water pressure, and to aid in mixing the reservoir. A pressure gage
measures the water pressure into the biosupport. A steady flow of constant air bubbling is
provided in the reservoir. Biooxygenation also occurs while the output of the biosupport
trickles down the outside of the cartridge.

Flow rate through the biosupport was measured before each substrate injection by
collecting the biosupport output in a beaker and measuring the volume and time.
Temperature of the biosupport output was also measured in the plastic container before
each injection.

Substrate injections were prepared by dissolving a weighed amount of substrate in

a beaker filled with reservoir water. The beaker solution was then poured throughout the
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reservoir. All experiments were done at room temperature inside a ventilating hood.
Fixed nitrogen was provided from time to time by adding 10 ml of NH«OH (29% W/W) in

42 liters of reservoir volume to stimulate bioactivity.

4.4 Dissolved Oxygen Measurements

Flow across the DO probe was provided by a small water pump. The inputs to the DO
probe were located 1) in the reservoir (biocatalyst input DO concentration) and 2) in the
plastic container which collected the catalyst output (biocatalyst output DO
concentration). An oscillating control valve with a 10 minute timer switched the flow to
the DO sensor periodically from input DO concentration to output DO concentration. On
the chart recorder, the higher DO concentration indicates biocatalyst input DO
concentration. The input and output measurements were constantly recorded on the chart
recorder during a reaction.

For a typical substrate injection of phenol, first a steady state baseline was
achieved, which indicates no reaction. Then, upon addition of substrate, the DO (input
and output) decreased, indicating bio-oxidation. The developed DO pattern then returned
to steady state baseline upon completion of biodegradation. It was shown by Lakwala [2]
and Jung [1] that the completion of this pattern represents 100% mineralization of phenol.
An example of chart recorder output for two injections of phenol is shown in Figure 5.

The chart speed was set at 0.01 cm/min.

4.5 Substrate Characteristics
Phenol was chosen as the initial substrate to perform optimum operating parameters for
degradation with the reactor. It has been shown that phenol degrades quickly and easily

and is therefore suitable for determining the reactor characteristics [1,2].
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Phenol, CsHsO, is a colorless acicular crystal or a white crystalline mass. It 1s
obtained from coal tar, or by fusing sodium benzenesulfonate with sodium hydroxide. It
can also be obtained by heating monochlorobenzene with aqueous sodium hydroxide
under high pressure.

Phenol is reported as poisonous and caustic. Ingestion of small amounts cause
nausea, vomiting, circulatory collapse, tachypnea, paralysis, convulsions, coma, green
urine and possible death from respiratory failure. The average fatal dose is 15 grams but 1
gram deaths have been reported [16].

Phenol is primarily used as a disinfectant for toilets, floors, drains, etc. It is also
used in the manufacture of colorless or light colored artificial resins. Therapeutic uses are
as a topical anesthetic in aqueous solution, topical antiseptic and topical antipruritic.

Four easily obtainable, over the counter pesticides (Acephate, Carbaryl,
Chlorpyrifos, and Diazinon) were obtained to determine the affect on the oxygen uptake
pattern and therefore bio-oxidation.

Acephate, CsHioNOsPS, also known as phosphorothioic acid O,0-diethyl O-
(3,5,6-trichloro-2-pyrdinyl) ester is a white solid with solubility in water of 790,000 ppm
at 20C. The solution used in this experiment contains 8.0% Acephate. It is classified by
NJDEP as a potential leacher, or a potential groundwater contaminant in New Jersey, but
has not yet been detected in New Jersey groundwater. It is used on New Jersey
vegetables and soybeans and its trade name is Orthene.

Carbaryl, C12H11NOz orl-naphthyl N-methylcarbamate, is the active ingredient in
Sevin (5% Carbaryl-used in this experiment), one of the most widely used insecticides on

the market. NJDEP has reported that carbaryl is not a leacher and not a NJ ground water
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threat. Other characteristics of carbaryl include its non-persistence due to fast microbial
degradation, and its non toxicity to mammals.

Chlorpyrifos, CsH11Ci3NO3Ps, is also known as phosporothioic acid O, O-diethyl
0-(3,5,6-trichloro-2 pyridinyl) ester. It is the active ingredient in Dursban and used for
mosquito, fly and other household pest control. It has been classiﬁed by NJDEP as not a
likely leacher and a small threat to NJ groundwater. In NJ it is used on field comn,
soybeans, vegetables and fruits. It is not soluble in water (0.4 ppm at 23 degrees Celsius).
A 0.5% Chlorpyrifos solution was used in this experiment.

Diazinon, Ci2H21N20s, or phosphorothioic acid O,0 diethyl O-[6-methyl-2-(1-
methylethyl)-4-pyrimidinyl] ester has a solubility in water of 40 ppm at 20 C. The
concentration of diazinon in the spray used in this experiment is 25%. It is recommended
by the manufacturer that this product be diluted at a rate of 1:384 for most domestic
applications. Diazinon is the active ingredient in Basudin and Sarolex pesticides. It 1s
normally used for the control or soil insects and household pests, and is used by NJ
farmers on field corn, vegetables, and fruit. DEPE reports that Diazinon is not a threat to
NJ groundwater because it is tightly absorbed by soil and degrades rapidly. It has been
reported that Diazinon degrades rapidly with parathion hydrolase, an enzyme produced by

a mixed culture of pseudomonas sp. [15,16].



CHAPTER §

RESULTS AND DISCUSSION

5.1 Effect of the Recirculation Flow Rate for Bio—Oxidation

Figure 7 shows the effect of recirculation flow rate through the biosupport on reaction
rate for each injection made of phenol. The flow rate was controlled for each injection by
adjusting the bypass valves on the pump outflow apparatus, and monitoring the change in
water pressure through the biosupport. It was noted that generally the water pressure
increased with flow rate but no specific relationship between flow and pressure was
observed. At maximum pressure of 20 psi, the flow rate was measured at 1750 ml/min
during the 1.0 gram phenol injections, and only 900 ml/min during the 0.5 gram injections.
Another variable, besides pressure, influenced the flow rate through the reactor support.
It is speculated that the biomass configuration on the biosupport arranged itself to obstruct
flow at times. Thus, adjusting the control valves and coordinating the pressure did not
have a consistent effect on flow rate and therefore, reproducing specific flow rates was
impossible.

It is normally expected that reaction rates initially increase with flow rate because
of better mass transfer. Subsequently, rates reach a plateau when substrate and product
transfer to the biosurface is no longer limiting. Rates may decrease at higher flows due to
the stripping of biomass from the support surface, or as a result of substrate inhibition.

For each phenol amount injected, the reaction rates increase with flow. However,

maximum reaction rate due to optimum flow is not clear from the data. The 2.5 gram

16
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phenol injections indicate a reaction rate decrease above 800 ml/min, and for 1.5 gram
injections reaction rates decrease above 800 ml/min also. This corresponds to the
expectations outlined in the previous paragraph.

However, the 1.0 gram phenol injections appear to increase after 1400 ml/min, and
the 0.5 gram and 5.0 gram injection data do not indicate an achieved rﬁaximum reaction
rate. The flow rate for which biomass is stripped from the support is about 5,000 ml/min,
and is therefore not observed in this figure. It can be concluded that reaction is
independent of recirculation rate at these flow levels.

There are additional factors which influence to a small degree the isolated effect of
flow rate on reaction rate. The reaction rate may be influenced by the amount of enzymes
in the reservoir at the time of injection. It was observed that the color of the reservoir
water was yellowish at times of some injections. This indicates the existence of enzymes
in the reactor solution which would in effect degrade phenol while in the reservoir. Also,
biomass which may have been stripped from the reactor support surface may enter the
reactor solution and continue to degrade the substrate similar to a free microorganism
reactor. Finally, biomass growth and residue buildup inside of the spiral configuration
may block spacing passageways and, therefore, limit the flow of substrate containing

solution.

5.2 Effect of Substrate (Phenol) Concentration for Bio-Oxidation
Figure 8 shows the relationship between the amount of phenol injected into the reactor
solution and average biodegradation rate. The average biodegradation rate was calculated

by averaging the reaction rates for each amount of phenol injected. As expected from the



18

literature, reaction rates increase from zero with substrate concentration, level off to a
maximum and may decrease with additional substrate concentration due to substrate
inhibition. The average biodegradation rate maximizes after 1.5 gram of phenol injected
into the 42 liter reactor solution, thus indicating that the optimum operating range with
respect to substrate concentration begins at 1.5 gram of phenol in 42 liters reaétor solution
(36 ppm).

Initially, rate increases with concentration and subsequently decreases when
substrate inhibition possibly occurs. The entire operating range from 0 - 5.0 grams phenol
in 42 liters (O ppm - 119 ppm) is satisfactory. The optimum operating range may continue

beyond the 5.0 gram injection amount.

5.3 Quantitation Method 1: Utilizing The Area Under The Dissolved Oxygen Curve
For each injection of phenol, a curve representing the DO output was drawn from the DO
probe readout (see sample calculations for details). Quantitation Method 1 utilizes this
area between the DO curve and baseline to represent the amount of oxygen consumption
by the bacteria, and further to represent the amount of phenoi injected. Figure 9 shows
the DO curve areas for the 0.5 gram phenol injections. Theses curves are generated using
the data obtained by the DO probe readout (Figures 5 and 6). The DO probe measures
the concentration of oxygen in the reactor solution, and the deviation from baseline
indicates an oxygen depletion. This drop in oxygen concentration is converted to grams
of oxygen depleted which is assumed to be proportional to the rate of oxygen
consumption by the microorganisms. Therefore, the area under the DO curve is assumed

to be proportional to the amount of oxygen consumed by the microbes and can be



19

correlated with amount of phenol using the stoichiometric relationship of phenol
oxidation. For example, 1 gram of phenol theoretically requires 2.408 grams of oxygen
for complete oxidation.
Bacteria
CsHsO + 71/202-=mmmmmmemeaee > 6CO02 + 3H20

The average areas of each group of phenol injections (Figures 15-18) were plotted
with their corresponding amount of theoretical oxygen consumed to obtain Figure 2. The
best fit line was superimposed over the points, and the slope of the line was found to
0.478 grams of oxygen consumed / oxidation area (min*g). This number, K1, represents
the conversion factor between area under the DO curve and the amount of oxygen
consumed by the bioreactor. For example, a DO curve with area of 2 min*g would
correspond to 0.956 grams of oxygen consumed and a predicted phenol amount of 0.379
grams. Tables 1 to 6 show the results of Quantitation Method 1, 2 and 3 with averages

and standard deviations.

5.4 Quantitation Method 2: Area Under DO Curve with Baseline CPP Correction
A second method of utilizing the DO output to represent the amount of phenol degraded
was investigated utilizing baseline Conversion Per Pass (CPP). It was noticed during
experimentation that the DO probe readout for similar injections varied when the baseline
(DO probe readout before injection) thickness varied. The points used in obtaining the
DO curve from Method 1 were divided by the thickness of the baseline DO output.
Figure 10 shows the resulting DO curves with the baseline offset. As in Method 1, the

altered data were plotted for each injection and the areas and standard deviations were
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calculated for each group of phenol injection (Figures 19-22 and Tables 1-6). The average
areas were then plotted with corresponding amount of theoretical oxygen consumed and
the best fit line was superimposed (Figure 3). The slope of this line, K2, represents the
conversion factor for Quantitation Method 2. K2 was determined to be 0.450 grams
oxygen consumed / oxidation area with baseline CPP offset. It can be ea‘silyi determined
from Figure 3 that this method does not produce an accurate correlation between DO area

and oxygen consumed.

5.5 Quantitation Method 3: Area Under DO Curve with Initial Slope Correction
It was noticed during experimentation that some injections of phenol produced an
immediate decrease in DO readings while other injections decreased at a lower DO rate,
most likely due to the vitality of the microorganisms at the time of injection. The area
curves from Method 1 were plotted together with the 1.0 gram phenol injection curve to
determine the relative difference in initial slope. Figure 11 compares multiple area curves
for both 0.5 and 1.0 grams of phenol. The two 0.5 gram areas with lower slopes (flow
rates: 560 ml/min and 760 ml/min) were multiplied by an arbitrary number of 1.3. It was
similarly found that two 2.5 gram injections (flow rates: 380 ml/min and 1090 ml/min) had
a lower initial slope, and their areas were also multiplied by 1.3. All 5.0 gram phenol
injection areas (with the exception of flow rate 1200 ml/min) were likewise multiplied by
1.3 because of their lower initial slope as compared to 1.0 gram phenol slopes. Higher
initial slopes as compared to the 1.0 gram curves are multiplied by a correction of 0.8, but
no slopes in this category were found. DO areas with slopes which do not deviate beyond

the 1.0 gram range are not corrected (multiplied by 1.0).
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The new average areas were then calculated and plotted with their corresponding
oxygen amount to obtain Figure 4. The error distance (deviation from the best fit line)
due to this method is reduced. However, because of the arbitrary and complicated nature
of this method, it is not recommended for (area)/(grams of oxygen consumed) correlation.
The slope of the line, K3, represents the conversion factor of Quantitation Method 3. K3
was found to be 0.407 grams of oxygen consumed / DO area with initial slope offset

(min*g).

5.6 Pesticide Injections

Figure 12 shows the resulting DO curves for three successive injections of the pesticide
Acephate. It can be determined that the introduction of Acephate produces bio-oxidative
activity among the microorganisms in the bioreactor. However, it cannot be concluded
that total mineralization of Acephate is completed because analytical methods for substrate
disappearance were not within the scope of this work. Because several distinct peaks
appear on the original DO output (and can be seen in the Figure 13 DO curve), the
microorganisms seem to respond by changing DO consumption in stages, indicating the
possible appearance of various by-products of Acephate degradation.

Figure 13 shows the resulting DO curve of one injection of the pesticide Diazinon.
Again, the curve indicates bio-oxidative activity of the microorganisms, and the various
peaks may indicate the oxidative response of Diazinon by-products. However, no
conclusive determination can be made concerning the complete mineralization of
Diazinon. Further, it was noted during the Diazinon injection that a milky white substance

formed in the reservoir and persisted well beyond the DO readout return to baseline. This
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may indicate a developed by-product of Diazinon biodegradation that cannot be oxidized
by these microorganisms. Because of this occurrence, the reactor water was replaced and
no further injections of Diazinon were made.

Figure 14 shows the resulting DO curves for three injections of the pesticide
Chlorpyrifos. The curves indicate that the presence of Chlorpyrifos st‘imulates bio-
oxidative activity. As before, it can not be conclusively determined that complete
mineralization of Chlorpyrifos was achieved. However, disappearance of odor and return
of DO baseline indicate possible mineralization.

Two injections of the pesticide Carbaryl were performed on the bioreactor. 5
grams and 20 grams of Sevin 5.0% solid mixture Carbaryl (0.25 grams Carbaryl and 1.0
gram Carbaryl, respectively) were dissolved in a 1 liter beaker of water and injected into
the bioreactor. Both resulting DO curves remained at baseline with no deviation, and the
reservoir water remained murky until replaced. The presence of Carbaryl did not stimulate
any measurable bio-oxidative activity of the microorganisms. This is ironic because

Carbary! has been reported to be very biodegradable [15].

5.7 Qualitative Determinations from DO Probe Readout
Figure 6 shows the DO probe readout for three sample injections of phenol: a 5 gram
injection and two 0.5 gram injections. The 5 gram phenol injection DO measurements
curve down after injection, then appear to level off and finally return sharply to baseline.
After the 0.5 gram phenol injection, DO measurements are quickly reduced at injection
and then gradually return to baseline. By noting the characteristics of these phenol

injections, no conclusive correlation can be made to qualitatively identify the substrate by
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analyzing the DO readout. However, it can safely be concluded that a simple organic
compound is being degraded because of the simplicity of the peak. The DO oxidative
pattern produced by Acephate (Figure 12) indicates that a more complex compound, or a
multitude of compounds is being oxidized, because of the various DO peaks throughout

the reaction.

5.8 Quantitation Method Summary
The following tables compare the results of each quantitation method. For each method,
the DO areas were obtained from the DO curves for each reaction, and each area was
multiplied by the appropriate K conversion factor to obtain the measured oxygen
(K1=0.478, K2=0.450, K3=0.407). This amount of oxygen was then divided by 2.408 g
O2/g phenol to give the predicted or measured amount of phenol. The percent errors of
phenol degradation prediction are compared in Table 6. The percentage of standard
deviation related to average predicted phenol are shown for each injection amount, and the
average of these percentages is used to indicate the predictability error % for the three

guantitation methods.
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Table 1 Quantitation Method Comparison for 0.5 Gram Phenol Injections
(Theoretical Oxygen Consumption = 1.204 grams)

Flow METHOD 1 METHOD 2 METHOD 3

mbi/min DO Area Measured | Measured DO Area Measured | Measured DO Area Measured | Measured
min'g Oxy..g Phenol, g | min*gfom | Oxy. g Phenol, g min®g Oxy, g Phenol, g

360 3.71 1.77] 0.735 3.12 1.40 ] 0.581 371 -151 ] 0.627

480 2.78 133 0.552 1951 0.878 | 0.365 2.78 1.13 | 0.469

560 2.89 1.38 | 0.573 1.80 0811 0.336 3.75 1.53 | 0.635

760 2.84 1.36 | 0.565 3.54 1.59 | 0.660 3.70 1.51 ] 0.627

900 2.37 1.13 ] 0.469 1,981 0891} 0.370 237 0965 0401

Average 2.92 1.40 ] 0.581 2.48 1.12| 0.465 3.26 1.33 | 0.552

Swd Dev. | 0,436 | 0.208 [ 0.0865| 0.55]0.2480| 0.103 | 0.576 | 0.234[0.0971

Table 2 Quantitation Method Comparison for 1.0 Gram Phenol Injections
(Theoretical Oxygen Consumption = 2.408 grams)

Flow METHOD 1 METHOD 2 METHOD 3
ml/min DO Area Measured Measured DO Area Measured Measured DO Area Measured Measured
min*g Oxy., g Phenol, g min*g/cm Oxy., g Phenol, g min*g Oxy, g Phenol, g

460 10.6 5.07 2.11 4.05 1.82 ] 0.756 10.6 4.31 1.79

540 8.21 3.92 1.63 3.62 1.63 | 0677 8.21 3.34 1.39

1220 7.05 3.37 1.40 5.40 2.43 1.01 7.05 2.87 1.19

1430 7.08 3.38 1.40 7.05 3.17 1.32 7.08 2.88 1.20

1500 6.13 2.93 1.22 6.10 2.75 1.14 6.13 2.49 1.03

1860 7.19 3.44 1.43 7.33 3.30 1.37 7.19 2.93 1.22

Average 7.70 3.68 1.53 5.59 2.52 1.05 7.70 3.13 1.30

Stnd. Dev. 1.43 0.68 | 0.282 1.39] 0.626| 0.260 1431 0.582| 0.242




Table 3 Quantitation Method Comparison for 1.5 Gram Phenol Injections
(Theoretical Oxygen Consumption = 3.612 grams)
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Flow METHOD 1 METHOD 2 METHOD 3
ml/min DO‘ Ares | Measured | Measured | DO Area | Measured | Measured | DO Area | Measured | Measured
min*g Oxy., g Phenol, g | min*g/om Oxy., g Phenol, g min*g Oxy., g Phenol, g
650 8.09 3.87 1.61 5.09 2.29 | 0951 8.09 3.29 1.37
820 4.38 2.09 1 0.868 222| 0999 | 0415 4.38 1.78 | 0.739
1050 6.74 3.22 1.34 3.79 1.71 1 0.710 674  2.74 1.14
1120 8.18 3.91 1.62 3.32 1.49] 0.619 8.18 3.33 1.38
1200 6.77 3.24 1.35 3.88 1.75 | 0.727 6.77 2.76 1.15
Average 6.83 3.26 1.35 3.65 1.64 | 0.681 6.83 2.78 1.15
Stad. Dev. 1.37] 0.655| 0.272 093] 0419] 0.174 1.37 | 0.558 | 0.232
Table 4 Quantitation Method Comparison for 2.5 Grams Phenol Injections
(Theoretical Oxygen Consumption = 6.02 grams)
Flow METHOD 1 METHOD 2 METHOD 3
ml/min DO Area | Measured | Measured | DO Area | Measured | Measured | DO Area | Measured | Measured
min*g Oxy., 8 Phenol, g | min*g/cm Oxy., g Phenol, g min*g Oxy., g Phenol, g
380 7.67 3.67 1.52 19.7 8.87 3.68 9.97 4.06 1.69
400 15.0 7.17 2.98 17.2 7.74 3.21 15.0 6.11 2.54
500 25.1 12.0 4.98 18.3 8.24 3.42 25.1 10.2 4.24
1090 12.8 6.12 2.54 25.8 11.6 4.82 16.6 6.76 2.81
Average 15.1 7.22 3.00 20.3 9.14 3.80 16.7 6.80 2.82
Stad. Dev. 6.35 3.04 1.26 2.92 1.31] 0.544 5.46 222 0922




Table S Quantitation Method Comparison for 5.0 Gram Phenol Injections
(Theoretical Oxygen Consumption = 12.04 grams)
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Flow METHOD 1 METHOD 2 METHOD 3
ml/min DO. Area Measured | Measured | DO Area | Measured | Measured | DO Ares | Measured | Measured
min'g Oxy., g Phenol, g | min*p/em Oxyv., g Phenol, g min*g Oxy., g Phenol, g
527 20.9 9.99 4.15 15.3 6.89 2.86 27.1 11.0 4.57
660 20.7 9.89 4.11 17.0 7.65 3.18 26.9 10.9 4.53
660 26.0 12.4 5.15 36.7 16.5 6.85 33.9 13.8 5.73
700 25.1 12.0 4.98 16.2 7.29 3.03 32.6 13.3 5.52
800 24 .4 11.7 4.86 26.9 12.1 5.02 31.7 12.9 536
1200 19.9 9.51 3.95 12.9 5.81 241 19.9 8.10 3.36
Average 228 10.9 4.53 20.9 9.41 3.91 287 11.68 4.85
Stad. Dev. 2.43 1.16 | 0.481 8.37 3.77 1.57 4.73 1.93 | 0.801

Table 6 Summary of Measured Phenol for Each Quantitation Method

Quantitation Method 1 | Quantitation Method 2 | Quantitation Method 3
Amount of Measured Standard Measured Standard Measured Standard
Phenol Amount of Deviation % of Amount of Deviation % of Amount of Deviation % of
Degraded (g) Phenol (g) Average Phenol (g) Average Phenol (g) Average
0.5 0.581 14.9 0.465 222 0.552 17.6
1.0 1.53 18.4 1.05 248 1.30 18.6
1.5 1.35 20.1 0.681 25.6 1.15 20.2
2.5 3.00 420 3.80 143 282 32.7
5.0 4.53 10.6 391 40.2 485 16.5
Average
Standard
Deviation % 212 254 21.1
Error

5.9 Using Quantitation Method 1 on Pesticide Injections

Quantitation Method 1 was used to analyze the DO curves generated for the three

pesticides: Acephate. Diazinon, and Chlorpyrifos. Tables 7-9 show the results of this

analysis. The amount of Oz utilized by the microorganisms was predicted by multiplying

the DO area (min*g) by K1 (0.478 g O2/min*g). Then the predicted amount of pesticide

was found by the stoiciometrical relationship to oxidation (see appendix for sample
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calculations). It was found that the method satisfactorily predicted the amount of
Acephate injected into the reactor solution (5.0 % - 37.2 % error). Quantitation Method
1 also satisfactorily predicted the amount of Chlorpyrifos injected into the reactor solution
(8.5 % - 20.5 % error). However, the error of prediction for Diazinon was approximately
72 %. It had been observed during the Diazinon run that a white color .appeared in the
reservoir solution indicating that total mineralization did not occur. The large error

between the amount injected and amount predicted by Quantitation Method 1 supports

this observation.

Table 7 Application of Quantitation Method 1 to Acephate DO Curves

Amount Injected | DO Curve Area | Measured 02, g | Predicted Amount | % Difference
of Active min*g (XK1 Degraded
Ingredient, g
1.28 2.648 1.266 0.804 37.2
2.56 8.853 4232 2.689 5.0
3.84 11.287 5.395 3.428 10.7

Table 8 Application of Quantitation Method 1 to Diazinon DO Curve

Amount Injected | DO Curve Area | Measured 02, g | Predicted Amount | % Difference
of Active min*g (XKD Degraded
Ingredient, g
4.835 6.581 3.146 1335 72.4

Table 9 Application of Quantitation Method 1 to Chlorpyrifos DO Curves

Amount Injected | DO Curve Area | Measured 02, g | Predicted Amount | % Difference
of Active min*g (XK1) Degraded
Ingredient, g
0.0967 0.300 0.143 0.105 8.5
1.547 2.378 1.370 1.01 11.4
1.818 6.216 2971 2.191 20.5




CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This study has demonstrated the ability of the spirally wound immobilized bioreactor to
oxidize a model compound, phenol, and has demonstrated the ability of utilizing dissolved
oxygen data over the course of degradation as a useful source of quantitative information
regarding the substrate.

The biodegradation reaction rate was determined to be independent of
recirculation flow rate through the biosupport.

The optimum amount of phenol injected into the 42 liter reactor solution was
determined to range from 1.5 grams to 5.0 grams (36 ppm - 119 ppm) and produced an
average degradation rate of 0.006 g/min or 0.36 g/hr.

It was determined that the area produced under the dissolved oxygen curve can be
used to determine a satisfactory approximation of the amount of oxygen consumed and
the amount of phenol injected into the reactor. The mathematical correlation between
area under the DO curve and amount of oxygen consumed was determined to be 0.478
grams of oxygen / DO curve area (min*g), using the recommended (because of simplicity)
Quantitation Method 1, which utilizes no correction values applied to the DO readout.
The error of prediction for this method was found to be 21.2%. Quantitation Method 3
was found to be most accurate, but requires more computation time.

This experimentation also demonstrated that bio-oxidative activity of the

microorganisms is produced by the introduction of pesticides Acephate, Chlorpyrifos, and
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Diazinon into the bioreactor. Diazinon was shown to produce an undegradable milky
white substance in the reservoir solution, and it can be assumed that complete
mineralization did not occur. The pesticide Carbary! stimulated no bio-oxidative activity
when introduced into the reservoir solution.

The three pesticides which produced an increased use of oxygeﬁ were analyzed
using Quantitation Method 1 to measure the amount of substrate injected into the
reservoir. It was determined that Acephate and Chlorpyrifos produced relatively accurate
measurements of the substrate. Diazinon did not produce accurate results. This supports
the observation that complete mineralization of Diazinon did not occur.

This study has also determined that qualitative determinations from the dissolved
oxygen patterns cannot be made. However, certain types of compounds are expected to
produce patterns based on their complexity.

Further studies are recommended to broaden the observed optimum operating
parameters. A pump which can produce higher and easily controlled flow through the
reactor should be used to determine the effects of higher recirculation flow rates on bio-
oxidation. Also, analytical equipment should be used to verify degradation of the
pesticides. The degradation of the pesticides should be further analyzed to determine if by-
products are produced and if the dissolved oxygen pattern corresponds to the

development of these by-products.



APPENDIX

Sample Calculations

1. The following is a‘description of the calculations involving the analysis of the
dissolved oxygen readout. Figure 5 shows the DO probe readout from two sample phenol
injections. This sample calculation will concern itself with the first injection (5.0 grams -
660 ml/min).

The first step in analyzing the DO pattern is determining the baseline before and
after injection, or where the reaction begins and ends. The DO pattern deviates from
baseline and returns when the reaction is complete. At the beginning and ending baseline,
the center of the conversion per pass (CPP) is determined. The CPP is the thickness
produced by the oscillating DO measurements of input and output of the biosupport. A
line is then drawn connecting the baseline CPP centers, which represents the course of DO
measurements if no injection had been made.

The reaction length (time) is divided into a sufficient amount of equal distances.
At each division, the length of the reaction (representing time) is recorded. For each
division, the center of the CPP is determined, and its distance from the baseline is
measured (CPP Midpoint Distance). The CPP Midpoint Distances at the beginning and
end of the reaction will be zero. The DO curve utilized in this experimentation is obtained
by plotting the measured CPP Midpoint Distances vs. Reaction Time. This DO curve

represents the DO pattern for anaytical purposes. The areas under each DO curve were
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obtained by weighing the curves and converting them from grams to min*g using the
weight of a known area.
Table 10 contains the data obtained from the 5.0 gram injection at 660 ml/min as

shown in Figure 5.

Table 10 Example Phenol Data for DO Curve Calculations: 5 Grams Phenol - 660 ml/min

Point # Reaction Length, mm CPP Midpoint Distance, cm

1 0 0

2 20 0.55
3 40 0.80
4 60 0.95
5 80 1.30
6 100 0

2. The following is a description of the calculations involved to determine the amount

of oxygen needed to fully oxidize Acephate. A similar method was used on the other
pesticides. The chemical formula of Acephate is CaH10NO3Ps. It was assumed that the

constituents are oxidized as follows:

Ca+402--- 4CO2 4 moles Oz used

Hio + 5/2 O2 --- 5H20 5/2 moles O2 used
NOs3 ---NO2 + 1/2 O2 1/2 moles Oz liberated
P+3/202---PO3 3/2 moles O2 used

S +3/2 02 --- SOs3 3/2 moles Oz used

A total of 9 moles of Oz is required to oxidize 1 mole of Acephate. This corresponds to

288 grams of oxygen required to oxidize 183 grams of Acephate.
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