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ABSTRACT

SYNTHESIS OF
BORON NITRIDE/VYCOR COMPOSITE MEMBRANE STRUCTURES

BY AN OPTIMIZED LPCVD PROCESS

by
Chenna Ravindranath

Since the advent of the idea of ultrafiltration , microporous membranes

have come through a long way in establishing a niche as an efficient technology

for gas separation applications. More and more research is aimed at reducing

pore size towards nanolevels, when separation factor is the criterion rather than

the permeability. This work is focused at synthesizing and characterizing

microporous inorganic membranes for gas separations by molecular sieving. BN

was deposited on mesoporous vycor tubes using triethylamine borane complex

(TEAK) and ammonia as precursors. Effect of temperature and deposition

geometry on permeability of various gases has been studied. Very high

selectivities have been achieved for separation of small inorganic gases such as

He, H2 from N2. Activation energy study indicate that the permeability of He and

H2 are thermally activated with activation energies of 39.7 kJ/mol and 50kJ/mol

respectively. XRD analysis indicate an amorphous BN deposit in the vycor tube.
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CHAPTER 1

INTRODUCTION

1.1 Growth of Ceramic Membranes

Historically , the progress of civilization has been earmarked by the ability to

separate and recombine materials and matter. Ability to separate various metals

at various periods led to the evolution of the Bronze Age and the Iron Age.

Current work in the area of separation of molecules and atoms will immensely

improve the quality of life in the coming years. It is in this realm of separation

technology that microporous ceramic membranes have gained considerable

interest and the improvements in their synthesis have been at a tremendous

pace.

The past has seen the increasing use of polymeric membranes' for

separation of mixtures in process industries such as desalination, food and

beverage, and waste water treatment. Extensive studies have been made and

are still being made on the properties and application of polymeric

membranes2.3. Polymeric membranes exhibit excellent selectivity, and stability

towards hostile environment. Moreover, the pore sizes and their distribution can

be tailored to obtain the desired properties. In spite of their advantages and the

constant research going on to improve their properties they have not been able

to meet the demands for high temperature applications. 0ne of the main reasons

for this is the fact that polymers, being organic compounds 4 with weak bonds,
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are highly unstable at high temperatures and soften to such an extent that they

collapse under their own weight. It is because of this fact that ceramic

membranes have attracted scientific interest for so long.

Ten years ago, the ceramic membranes employed for gas separations

were typically based on the use of Knudsen diffusion as the primary mechanism

of transport. However, currently available ceramic membrane technology allows

one to utilize not only Knudsen diffusion but also surface activated transport as

vehicles for bringing about molecular separations. Table 1.1 gives a list of some

of the currently available inorganic ceramic membranes.

Table 1-1 Commercial ceramic membranes

Manufacturer Membrane material Diameter of pores in the
membrane

US Filter Zr02 200A

US Filter Al203 50A

Alcan/Anotec Al203 200A

Gaston county Filtration
systems

Zro2 40A

Rhone-Poulene/SFEC Zr02 40A

TDK Zr02 -100A

Schott Glass Glass 100A

Fuji Filters Glass 40A
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1.2 Advantages of Ceramic Membranes

The following are the advantages of ceramic membranes over polymer

membranes:

• High temperature applications 5: Ceramics are outstanding when it comes to

high temperatures and are in fact stable even at temperatures as high as

1000°C 6 .

• Inertness: Their resistance to chemicals makes them virtually immune to a

wide variety of solvents, acids, alkalines, and detergents.

• Strength: Polymeric membranes are typically cast by polymerization

processes and hence are made up of networks of chains whereas ceramic

membranes are made by starting with assemblies of crystals and particles. As

a result of the compact crystal structure, chemical bonding and high field

strengths associated with the small and highly charged cations, ceramic

membranes have very good structural integrity. This feature allows them to be

used at very high pressures (30 atm) concatenated by high throughput. This

leads to more efficient energy usage especially for processes in which fouling

is a big problem.

• Cost economics': In the competitive arena of technologies or materials, cost

economics is undoubtedly a key selection factor. 	 Because ceramic

membranes have the capacity of providing extremely high filtration surface

area, they should be able to provide great economy-of-scale and therefore,

very cost-competitive operations. Moreover their structural integrity permits
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high-pressure operation and high-throughput production, further driving the

costs down.

1.3 Materials and Applications

Usually ceramic membranes are not free standing. Instead they are deposited

onto a substrate which has a larger mean pore size. This substrate should

possess some basic properties for the efficient performance of the membranes.

The basic requirements for membrane support are 7 ,

1. Ability to maintain structural/mechanical integrity over a wide range of

temperatures and pressures.

2. Large surface areas with mesopores providing high inherent permeabilities

3. Narrow pore size distribution

4. Pin hole, microcrack and defect free structures

5. Ability to withstand property degradation in corrosive environments

6. And finally the difference between the coefficients of thermal expansion for

the support and the deposit should be as low as possible to reduce the

possibility of microcrack formation in the membranes, the primary source of

membrane failures.

The substrate used in our study was a porous Vycor tube manufactured

by Corning Inc., and is commercially available as Vycor 7930. Vycor glass is

made up of 94-95% Si02 , the rest being Na20. Processing of the substrate is

discussed in the next chapter.
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There are approximately nine major types of ceramics used for the

manufacture of ceramic membranes: Alumina, borosilicate, cordierite, mullite,

silicon carbide, silicon nitride, zirconia, silica and titania. These membranes

usually come in three configurations: hollow fibers, flat plates, and honeycombs.

The following are the areas where ceramic membranes have set their mark:

• gas separation: involves mainly the removal of hydrogen from refinery

stream, and carbon dioxide and hydrogen sulfide from natural gas.

• biotechnology/pharmaceutical: Removal of viruses from culture broth and

purification of amino acids, vitamins, and organic acids.

• petrochemical: catalytic dehydrogenation' of large molecules at low

temperatures and also used for coal gasification

• environmental control: To get rid of precipitated radionuclides and

metaloxides.

• concentration and homogenization of milk and eggs.

• metal refining: removal of impurities and undesirable metal oxides from

superalloys.

Innovative applications are still being discovered such as an integrated

membrane 9 . This composite membrane consists of a selective layer and a

catalytic layer. The selective layer allows the migration of only the reactant and

blocks the impurities. The reactant then comes in contact with the catalytic layer

where it is converted into the product and is subsequently swept off by

convective forces. The benefits of such a process are highly simplified
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processing, no byproducts and faster kinetics. A prototype has been developed

for use in hydrocarbon oxidation and hydrogenation processes.

1A BN as a Membrane Layer

The reason for selecting BN as the membrane layer was due to a an ongoing

project involving deposition of BN on Si wafers. BN thin films were obtained

using the same setup and precursors. The work showed that excellent films of

BN could be deposited using TEAB and NH 3. BN thus deposited was found to be

stable when exposed to atmosphere for a long time. The films also had a slight

compressive stress below a deposition temperature of 325 °C and had very little

carbon content. The effect of NH3 was found to lower the deposition temperature

down to 300°C.

Also BN l" 1 has some very attractive inherent properties which make it a

potential competitor as a membrane material. BN is not attacked by mineral

acids and, in general, has been found to be very resistant to other chemical

attacks. It starts dissociating at 2700 ° C in vacuum and is oxidized 12 in air only at

temperatures as high as 1200 °C.

1.5 TEAB as a Precursor

Extensive work has been done on the chemical vapor deposition l3 of BN thin

films on various substrates including silicon, quartz, and glass. A wide range of

precursors have been used to obtain these thin films which include diboranel4,
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borontrichloride 15 , triethyl boron 16, decarborane 17 and boron triethylamine

complex. This study indicates that TEAB has several advantages over many

of the other precursors.

TEAB is a relatively non-toxic and non explosive substance and this

obviates the need for expensive cabinets and a cross purging gas supply for

safety reasons. However, TEAB has a low vapor pressure and hence has to be

forced into the reactor under high pressure. The properties of TEAS are given in

Table 1-2 16 .

Table 1-2 Properties of TEAB

Chemical name Borane triethylamine complex (TEAB)

Chemical formula (C2H5)3N.BH3

Molecular weight (g/mol) 115.03

Specific gravity (g/cc) 0.777

Freezing Point -3°C

Boiling point 100°C

Appearance Colorless liquid

Vapor pressure ~ 20 mTorr

CAS Registry number 1722-26-5



CHAPTER 2

METHODS FOR MEMBRANE SYNTHESIS

Various methods have been developed for the synthesis of membranes which

include sol-gel technique, deposition process, leaching, controlled pyrolysis,

Anodic oxidation etc., However only those methods which are widely practiced

are discussed.

2.1 Sol-Gel Technique

This process has been so successful that it has been commercially utilized to

obtain membranes. It is multistage in nature involving many stages before the

ultimate product can be obtained.

Sol contains fine hydrated oxide particles of sub-micron size. These

particles are formed from polymerization of metal alkoxides. Sol-Ge1 19 '2° method

involves preparation of a suitable sol based on the type of membrane required,

gelation of the sol to obtain a solid deposit and then firing at elevated

temperatures until the deposit is firmly attached to the support. Each step has to

be controlled precisely since they in turn affect the properties of the final

membrane.

The size of the particles in the sol strongly determines the size of the final

pore and can be tailored by changing the pH of the medium, the molar ratios of

alkoxides, temperature, feed rate of the reactants etc., The particles have to be

8
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alkoxides, temperature, feed rate of the reactants etc., The particles have to be

uniformly21 distributed in the medium to obviate any non-uniform deposit. Also,

the particles have to behave individually rather than act together as an

agglomerate. For this purpose stabilizing or deagglomerating agents such as

aliphatic acids, or bases are added to control the pH of the sol and thus inducing

surface charge on the particles.

The sol is then applied to the support either by dipping the support in the

sol or by slip casting. Gelation involves the aggregation of particles when the

solvent is evaporated. The most important factor here is the rate of evaporation

which can be controlled by conventional means.

The final stage is the firing of the gelled sol along with the support. A

thorough understanding of the phase changes and thermal/hydrodynamic

stresses developed during firing is essential to hold the membrane to the

support.

Sol gel technique is extensively used for Alumina, Zirconia and Titania

membranes. One of the main limitations of this technique is that the pore size is

strongly dependent on the particles size which cannot be obtained accurately.

The final pore sizes rarely cross below the 40A diameter and hence are useful

for ultrafiltration. Research in this field is aimed mainly at obtaining finer particles

with diameter around 30A.
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2.2 Electroless Plating

The mechanism of separation of gaseous mixtures using membranes

synthesized by this method is different from porous ceramic membranes. The

principle involves the adsorption of gas molecules, solution in the metal film and

subsequent interdiffusion in the metal. Separation occurs depending upon the

extent of solution of the individual gases in the metal film. Hydrogen has higher

solubility than nitrogen and a separation factor of 1000-5000 has been obtained.

This technique has been used to obtain metal deposits on various

substrates. Basically metallic membranes are dense non-porous membranes. A

composite palladium-ceramic membrane has been obtained by Collins 22 .

Electroless plating involves the deposition of metal films with or without the aid

of voltage potential. The vycor tube, to be coated, is dipped in a suitable bath

containing metal complex and stabilizer or reducing agents as required.

This method has many disadvantages. First the vycor tube has to

undergo several pretreatment steps and a surface activation step prior to plating.

The tube has to be cleaned by ultrasonic rinsing in an alkaline solution,

deionized water and isopropylalcohol to remove sand and grit from the

membrane. The surface activation step is done to seed the inner membrane with

finely divided palladium nuclei to initiate the process. This step is important to

obtain defect free palladium films. Surface activation is done by immersing the

vycor in a suitable solution until a uniform activated membrane is achieved.

Additionally, metallic films are relatively unstable at high temperatures because
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of interdiffusion and the probability of oxidation in corrosive media. Interdiffusion

occurs when more than one different layer is deposited and which has to be

overcome by placing a barrier between the layers.

2.3 Acid Leaching

This method 23 is based on the fact that some of the glasses separate into two

phases upon heat treatment. Turner and Winks 24 first published a paper in 1926

on the leaching of glasses containing boric oxide using hydrochloric acid.

Leaching has been done predominantly on alkali born silicate glasses.

Glass is first subjected to heat treatment wherein at high temperatures two

phases separate out. One phase is almost pure silica while the other is rich in

Na20 and B 203 . As the temperature is lowered, a tendency to form Na-O-B

bonds rather than Na-O-Si bonds is developed. Simultaneous separation

proceeds into an insoluble phase(-Si-O-Si-) and a soluble phase(-Na-O-B-) 25 .

The latter phase is then leached by either an acid or a base or just water.

Acid leaching is a complicated process and extreme care has to be taken

to obtain defect free porous glass. A strain is set up, partly from purely physical

causes, because of capillary forces developing in the pores due to the presence

of acid. The strain can be induced either by swelling of the leached layer or by

shrinking. Glass is then scrubbed with water and dried slowly to remove excess

water.
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The porous vycor glass thus obtained has a pore diameter ranging from

20 - 40A and with a porosity of about 30%. Porous vycor glass can absorb

atmospheric moisture by as much as 25% of its own weight. These glasses are

commercially available as Vycor No.7930.

2.4 Deposition Methods

These methods only modifiy existing large pores down to a size which is

favorable for separation. Hence, a porous substrate is required, which is free of

defects such as cracks or pinholes. Compounds or elements are deposited

inside the pores and thus narrowing down the pore size. Deposition methods

can be classified under two groups namely, Physical Vapor Deposition (PVD)

and Chemical Vapor Deposition (CVD). For the sake of convenience CVD is

discussed in detail in the next section. However, a variation of CVD is discussed

here.

2.4.1 Physical Vapor Deposition

PVD26 involves deposition of material onto a substrate without any chemical

reaction at the surface. The two most important methods under PVD are

Evaporation and Sputtering.

In evaporation, atoms are removed from the source by thermal means,

whereas in sputtering the atoms are dislodged from the target by the impact of
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gaseous ions. PVD gained considerable importance due to improvements in

vacuum pumping equipment as well as in the heating sources.

In general, the properties of the film obtained by PVD are governed by the

following:

• evaporation rate of the atoms

• vapor pressure of the target materials

• deposition geometry

• temperature

• pressure

• thermal history of the substrate

The factors that distinguish PVD from CVD are:

• Reliance on solid materials

• Physical mechanisms by which source atoms enter the gas phase

• General absence of chemical reactions

2.4.2 Spray Pyrolysis

Spray pyrolysis27 (Chemical Spray Deposition) is a low cost process which has

recently been utilized to prepare thin polycrystalline films of a wide variety of

compound semiconductors 28 . Spray pyrolysis of binary semiconductors invokes

the spraying of an aqueous solution containing soluble salts of the constituent

atoms onto a heated substrate. The parameters that control the process are
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spray rates and temperature of the substrate. Films made of CdS have been

prepared from a solution containing CdCl 2 and NH 2CSNH 2 (thiourea).

2.5 Chemical Vapor Deposition

Chemical Vapor Deposition is a well known method for the manufacture of films

in silicon integrated circuits. A very large variety of materials can be formed by

this method. A major advantage of this method over similar competing processes

is that the materials can be deposited at relatively lower temperatures by using

plasma enhanced CVD.techniques This is an important fact since the

interdiffusion of elements in integrated circuits caused by high temperatures is

highly undesirable. Low temperatures are also desired in view of the facts such

as material warpage due to the stresses developed, crystallographic damage

and contamination of the deposits can be minimized. Of particular note is the

nature of the deposits which can be easily controlled regarding their

homogeneity, conformality and composition. Both chemical composition and

physical structure can be modified by controlling the reaction chemistry and

deposition conditions. Membrane synthesis by CVD 29 has been studied by many

researchers.

2.5.1 Basic Aspects of CVD

Chemical Vapor Deposition comprises all those processes wherein the deposit is

obtained by a chemical reaction either on or near the substrate surface. The
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deposit can be single crystal, polycrystalline or even amorphous. Chemical and

physical conditions strongly affect the composition and structure of the film.

A complete study of CVD26 films involves an in-depth knowledge of areas

such as gas phase reaction chemistry, thermodynamics, kinetics, heat transfer,

fluid mechanics, catalysis, free radical chemistry, surface reactions, plasma

reactions, radiation chemistry, transport mechanisms, film growth phenomena

and reactor engineering. As such CVD is a complex process and a thorough

understanding of the above aspects becomes of utmost importance.

Deposits can be obtained by several different chemical reactions which

include pyrolysis, oxidation, reduction, hydrolysis, nitride and carbide formation,

synthesis reactions, and disproportination. Physical properties of the reactants

and the products also affect the deposition rate, If the reactants are in liquid

phase then high vapor pressures are favorable since they could then be

transported into the reaction chamber with the help of carrier gases. Solids are

usually melted and treated as liquids. The vapor pressure of side products

should also be high to facilitate their removal from the reaction sites, whereas

the resulting products should have low volatility. The chemical reactions can be

driven either by thermal energy (electric glow discharge or convection) or by

electromagnetic radiation (usually ultraviolet or laser radiation). These reactions

can be homogeneous or heterogeneous, or a combination of both.

Homogeneous reactions occur in the gas phase, away from the substrate and

are not desirable. This is because homogeneous reactions result in particulate
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deposits with lower density. Heterogeneous reactions on the other hand occur

on the substrate and hence are almost void less.

A study of the thermodynamics of the reactions is very important. It gives

information about the theoretical feasibility and efficiency of the reaction under

specified conditions of temperature and pressure. But the data obtained cannot

be taken as the sole criterion since in obtaining this data it is assumed that

thermodynamic equilibrium exists inside the reaction chamber.

Commercial success of a process is determined by the rate of

productivity, in this case the deposition rate. Chemical kinetics allows the

determination of deposition rate. The activation energy derived from Arrhenius

plots gives an idea about the rate-controlling step. Two major rate controlling

steps are the surface processes and diffusion processes. The surface process is

the rate controlling step at low temperatures. This process is characterized by an

exponential temperature dependence. At higher temperatures the process is

diffusion controlled. Diffusion is less dependent on temperature and has a less

steep slope.

Transport phenomena relate to the transport of momentum, energy, and

mass. Transport phenomenon plays a vital role in obtaining uniform layers in

both composition and thickness. Gas flow in reactors is affected by velocity of

flow, temperature and its distribution in the reactor, pressure, system geometry,

and physical properties of the gases and vapors.
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2.5.2 Process Considerations: (vapor deposition)

The chemical reactions of CVD can be effected in a large variety of ways. A brief

discussion of these chemical reactions along with examples is given below.

2.5.2.1 Thermal Decomposition or Pyrolysis: In this type of process the

substrate is heated to high temperatures to decompose the precursors and thus

deposit the non-volatile compound. Since most of the processes involve high

temperatures, these type of reactions are further subclassified as high- and low-

temperature processes, as processes using organic or inorganic

compounds,and as polar or non-polar compounds. Any reaction occurring below

600°C come under low temperature decomposition and above 600 °C are high

temperature processes. Compounds such as metal hydrides, carbonyls, and

organometallics are used for low-temperature processes. Metal halides,

particularly iodides are used in the high temperature regime. However, the

compounds used for low temperatures can also used at high temperatures but

under conditions of either low pressure or in the presence of gaseous mixtures

rich in reaction products. This technique comes in handy when properties such

as preferred orientation, crystal structure or size are desired.

2.5.2.2 Hydrogen Reduction: One of the frequently used types of CVD

reactions is hydrogen reduction at elevated temperature. The compounds used

are metal halides, carbonyl halides or other oxygen containing compounds. In



18

the latter case, the reducibility of the compound by hydrogen determines the

amount of oxide in the deposit. Hydrogen may also be used in other type of

reactions where reduction is not the primary objective but to improve the deposit

characteristics. Another advantage can be found in the case of metalhydrides.

The presence of hydrogen precludes the early decomposition of the hydride and

permit the use of higher deposition temperatures.

Hydrogen reaction is carried out at elevated temperatures where the

reduction reaction is favored. This temperature may range from about 100 °C up

to temperatures where the reduction reaction becomes ineffective due to the

thermal decomposition of the compound. In this respect hydrogen reaction can

be regarded as a thermal decomposition reaction facilitated by removal of one or

more of the gaseous products. Consequently the temperature required is

lowered by several hundreds degrees. For this reason hydrogen may be used

even with easily decomposed compounds to effect a further reduction in the

deposition temperature.

It is desirable that the plating compounds have appreciable volatility at

temperatures well below the deposition temperature. If this cannot be met, then

the compound has to be vaporized by a stream of inert carrier gas and

introduced separately into the reaction chamber.

2.5.2.3 Reduction with Metal Vapors: Hydrogen is not always preferable as

reducing agent. For example, the hydrogen reduction of metals such as
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zirconium, titanium or beryllium from their halides is practically not feasible since

hydrogen is a weak reducing agent for these type of metal halides. It is found

that metal vapors are much stronger reducing agents than hydrogen. Hence,

vapors of zinc and magnesium are used to deposit these metals. In fact zinc

vapors have been used to deposit silicon and boron from their halide vapors.

The use of zinc results in higher yields of metals and faster deposition rates.

Alternatively, metal deposition can be carried out at a feasible rate at much lower

temperatures by the use of the stronger reducing agent.

Alkali vapors such as sodium are very strong reducing agents and

sometimes introduces the risk of premature reduction in the gas phase. This

results in the formation of powdered deposits instead of dense, coherent

deposits. Hence the selection of a proper reducing agent is critical in these type

of reactions.

The criteria for the selection of these agents is the free energy of

formation of their halides. Usually, those metals whose halide has a free energy

of formation within ±10 kcal/g-atom of that of the metal halide vapor to be

reduced are preferred.

2.5.2.4 Substrate Reaction: Deposition can also take place with the substrate

itself entering into a chemical reaction with the reactant gases. There are four

ways in which substrate can react.
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The substrate can act as a reducing agent for a metal halide vapor and

subsequently turning into a halide vapor. The major criteria required is that the

substrate halide be highly volatile.

The substrate can also react with the deposit in two ways. It can dissolve

the deposit and form either an alloy or a solid solution or it can react

exothermically to form a moderate or highly stable compound. The substrate

can indirectly affect the reaction chemistry by acting as a catalyst.

2.5.3 Type of Reactors

Various types of reactors have been developed over the years. These have

been broadly categorized and described by terms such as high and low

temperature, atmospheric and low pressure, cold and hot wall and so on.

Low temperature systems are used in the fabrication of Si bipolar and

MOS integrated circuits in the temperature range of 325-450 °C. However, high-

quality epitaxial films could be obtained only at high temperatures. High

temperature coatings are also used in metallurgical coatings. High temperature

systems can be further divided into hot-wall and cold-wall types. Hot-wall

reactors are tubular in form and heating is accomplished by surrounding the

reactor with resistance elements. Low temperature reactors are used extensively

for the deposition of Si films. The substrates are placed in thermal contact with

SiC susceptors and are then inductively heated, while the wails of the reactor are

water or air cooled.
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Low pressure CVD or LPCVD was first used to deposit polysilicon films. A

gas pressure of — 0.5 to 1.0 Torr is employed in LPCVD reactors. To

compensate for the low pressure the input gas concentration is increased

relative to the atmospheric reactor case. Low gas pressures mainly increase the

flux of gases through the boundary layer between the substrate and the gas

stream. This in turn is responsible for the higher film growth rates observed in

LPCVD systems.

Further, CVD reactors can be either plasma or laser enhanced. In both

the cases the energy available is used to decompose the gas molecules into a

variety of component species such as electrons, ions, atoms, and molecules.

The net effect of the interactions among these fragments is to cause chemical

reaction to occur at much lower temperatures than in conventional CVD systems.



CHAPTER 3

CHARACTERIZATION OF MEMBRANES

Several techniques are available to characterize ceramic membranes. The

performance of membranes depends largely on the following factors and hence

the need to evaluate these parameters arises.

1. Pore size and Pore Distribution

2. Activation energy of gas permeation

3. Stability of the membrane.

3.1 Pore Characterization

In ceramic membranes the flow of gases is largely controlled by the

characteristics of the pores and their distribution. Pores can be characterized 3" 1

by several methods. The main factor which distinguishes these types is the pore

size itself. In other words, the reliability of these various types depends on the

pore size of the material that has to be characterized. Other parameters that are

important in pore characterization are pore connectivity, porosity and surface

area.

Over the years the classification of pores has been undergoing changes

to comply with the ever growing knowledge about their sizes and to the extent to

22
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which they could be determined. The following gives an idea of the pore sizes

and their classification.

Macropores: greater than 500k

Mesopores :20A to 500k

Micropores :10k to 20k

Ultramicropores: less than 10k.

A brief description of the methods used for pore characterization is given

below.

3.1.1 Mercury Porosimetry

This method32 '33 works on the fact that mercury is non wetting on most surfaces

and hence has to be forced into pore under pressure. The relation between the

pore size and the applied pressure P, is given by the Laplace equation

r = -27 cos(0)/P 	 (3.1)

where y is the interfacial surface energy, 0 is the contact angle between the walls

of the pore and mercury.

This method is highly automated, can analyze wide pore size ranges (20A.

- 20mm), and has high volume resolution. However uncertainty in contact angle

and surface tension, inability to probe microporosity, destruction of the sample in
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several cases and the need to dry the sample before analysis make it

unfavorable for many purposes.

3.1.2 BET Method

This is probably the earliest method for determining the surface area. Langmuir's

work relating the volume of the gas adsorbed to the relative pressure p/po was

modified by Brunauer, Emmett and Teller (BET) 34 to account for multilayer

adsorption, since Langmuir assumed a monolayer adsorption. For BET analysis,

the adsorption data (V vs. p/p o ) is plotted in the linear form of the BET equation.

For values of P o/P in the range 0.05 - 0.3 equation (3.2) is usually linear and the

desired monolayer volume Vm and the parameter C can be obtained from the

slope and the intercept, respectively. Surface area can then be calculated from a

knowledge of the cross-sectional area of the adsorbed molecule. Pore sizes are

determined at higher pressures where Kelvin equation is employed. This

approach is usually limited for pore size greater than 500A.

3.1.3 Permeability Data

This is by far the easiest method for characterization of pores. But it lacks
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precision and only gives a rough estimate of the pore size. Moreover only those

gases that are not adsorbed on the surface can be used here. The pore size 35,36

can be obtained from a knowledge of the permeability coefficient for a particular

gas such as He or H2, which can be obtained as explained earlier. Diffusivity is

related to the permeation coefficient according to the equation,

where P i is the permeability of the gas, D i is the diffusivity (cm 2s -1 ) and 6M is the

porosity of the membrane, which in our case was 0.28 for a virgin vycor tube

(provided by the manufacturer). Pore sizes are then obtained from standard

plots of log10(D) against log10(d), where d is the pore diameter in Angstroms.

These plots can be found in literature.

The experiment could be repeated for several non adsorbing gases and

an average value for pore size could be obtained. As it is evident from the

procedure, this method doesn't require any sophisticated equipment and is less

time consuming.

3.1.4 NMR Measurements

NMR is a magnetic spectroscopy that relies on the quantization of the magnetic

moments of nuclei in the presence of a magnetic field. NMR is an energy
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transition that is very sensitive to the local environments surrounding the nuclei.

The property of interest is the relaxation time.

Relaxation time is the time required for the magnetization to reach

equilibrium along the magnetic field. It is found that the molecules lying along the

pore walls have more mechanisms for relaxation than those in the center and

hence have shorter relaxation times. The relaxation time is related to the pore

size by the relation,

where a and 3 are constants and rp is the hydraulic pore radius.

3.1.5 Gas Adsorption/Desorption

This method37 has been very successful for polymeric membranes. Pore sizes

down to 20A have been determined. It works on the principle that a hysterisis

loop occurs between adsorption and desorption curves when a full isotherm is

measured. This has been explained as due to the presence of a concave

meniscus in the pores which lowers the vapor pressure of the adsorbate. The

lowering of the vapor pressure (p) for a cylindrical capillary of radius r k is given

the equation
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where pp is the saturated vapor pressure of the system at temperature T, ,y and

VL are the surface energy and molar volume of the adsorbent, and 0 is the angle

of contact.

Pore radius rp can then be calculated by the equation

where t is the thickness of the adsorbed layer of vapor in the pores.

3.2 Mechanisms for Separation

A brief knowledge about the different mechanisms 37 for gas separation in

membranes is essential in order to explain the observed phenomenon. The next

few pages discuss the various mechanisms available for gaseous separation

and the limiting factors under which they operate.

3.2.1. Knudsen Separation

Differences in Knudsen diffusivities38 of the diffusing species in the pore can lead

to separation. According to Knudsen, separation is possible if the mean free path

of the gas molecules is greater than the mean pore diameter. The mean free

path is related to the molecular diameter, d m of the gas by the equation
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where ci is the molar concentration.

In the Knudsen regime, the flow of a gas depends on its molecular weight and is

related according to the equation

where, R is the pore radius, AP is the pressure differential across the membrane,

8 is the equivalent thickness of the membrane, M is the molecular weight of the

gas and q i< is the flux of atoms/molecules through the pore.

So at a given temperature and for a certain pore diameter the ratio of diffusivities

DA and DB, of gases A and B respectively, would be

This is the major mode of transport in microporous membranes with pore sizes

?_40A. but less than 100k At temperatures greater than 325 °C and pressures

less than 2 atm, the total flow approaches Knudesn diffusion39 . The separation

obtained by this method is the least of all cases.

3.2.2 Molecular Sieving

Molecular" sieving involves selectively allowing the qas molecules based or
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their radii. It is quite evident that for separation by this mechanism, the pore

sizes should lie somewhere in between the molecular radii of the two gas

molecules. The efficacy of separation is greater if the difference in molecular

radii is larger. A list of atomic radii is given below to have a better understanding

of the pore sizes needed for this mechanism to operate.

Table 3.1 Atomic Radii

Gas He H2 Ar N2 CH4

Radii(A) 2.15 2.70 3.58 3.70 4.14

From the table, we can conclude that the pore size has to be between 2.70A to

3.50A for separation of H2 from N2 . It is to be appreciated here that since the

difference in radii is very small, the pore size distribution has to be very narrow.

This mechanism is used in several nanoporous carbon membranes 35 .

3.2.3 Capillary Condensation and Multilayer Diffusion

In this case, gas molecules are selectively adsorbed or condensed 41 '42 in the

pores and then diffused through the condensed liquid. Very high permeabilities

are obtained here, since multilayer diffusion is faster than diffusion in air or gas.

This is the dominating mechanism in polymeric membranes and hence have

high permeabilities compared to ceramic membranes. This mechanism can be

explained by Kelvin's Equation.
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The occurrence of multilayer diffusion and capillary condensation is

mainly dependent on the relative pressure of the vapor, whereas the relative

pressure is dependent on temperature and pressure. A third variable is the mean

pore size of the membrane. Smaller pore sizes will give rise to lower relative

pressures. Two models which explain multilayer diffusion are the hydrodynamic

model and the hopping model. The first model considers the multilayer flux as a

two-dimensional fluid, slipping over the surface. The second model considers

flux by jumps of adsorbed molecules from site to site. A case of capillary

condensation occurs when the thickness of the adsorbed multilayers equals the

pore radius.

The adsorption of organic molecules is more favorable compared to

inorganic gas molecules because of their low vapor pressure s . This forms the

major difference from the earlier two mechanisms. The permeability of organic

molecules, which have higher mass and larger radii, is higher than the inorganic

molecules. The permeability of inorganic molecules in the presence of organic

molecules is almost zero since the pores are fully clogged by the condensed

liquid and also due to the fact that these molecules are not readily soluble in the

condense.

Asaeda et al l" employed this technique to separate water from alcohol,

with water being the preferentially permeating component. The multilayer

diffusional flux is much larger than the gas phase flux.
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Aseada et a/41 employed this technique to separate water from alcohol,

with water being the preferentially permeating compound. The multilayer

diffusional flux is much larger than the gas phase flux.

3.2A Configurational Diffusion

It has long been known that as the pore size decreases, the effects of molecule-

wall collisions increase, and the flux tends to decrease. In this case Knudsen

diffusion cannot explain the transport phenomenon, because of its assumption

that molecule-pore wall interactions are negligible.

Configurational diffusion42 is a relatively new model introduced to explain

the transport properties in pores with molecular dimensions. According to Bird

eta/48 . there exists a kind of layer close to the walls in which the molecule-wall

interaction is not simple collision. The heavier molecules remain in the layer for a

longer time and will collide with the walls more frequently than the smaller

molecules. This situation gives rise to segregation in the fluxes of molecules with

different radii. In this regime, diffusion depends on the size and configurational

structure of molecules. Configurational structure includes the dynamics of

rotations and vibrations of the different groups in the molecule. Thus, there is a

difference of two orders of magnitude between the diffusivities of cis- and trans-

butene molecules. Configurational diffusion is flanked on one side by Knudsen

diffusion and on the other probably by molecular sieving. Fig 3-1 shows the
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Figure 3-1 Type of diffusion regime as a function of the pore diameter
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CHAPTER 4

EXPERIMENTAL PROCEDURES

4.1 Setup of the Apparatus

A schematic diagram of the apparatus is shown in figure 4-1. It consists of a 3-

zone horizontal reactor made of fused quartz with an inner diameter of 13.5 cm

and a length of 144 cm. The reactor is heated by resistance elements wound

around it. Heat transfer takes place by convection. One end of the reactor is

connected to a vacuum system, while the other end is provided with a door along

with a vent for inserting the vycor tube. The vacuum system consists of a dual

stage rotary vane pump and a roots blower. The pressure in the system was

monitored by standard MKS baratron gauges, while it was also controlled

through the use of a butterfly valve. Together the system could maintain a base

pressure of about 30 mTorr. The reactor had a peak pressure limit of 760 Torr

and hence all the measurements were carried out below atmospheric pressure.

Also, the reactor had an effective temperature control range from 200 °C to

1400°C. However, in our study the maximum temperature reached was less than

500°C. This care was taken to prevent any undesirable sintering of the porous

vycor tube into a non-porous tube.

Stainless steel tubing's were used to deliver the reactants and the

permeate gases into the reactor. The setup was made leak proof by using Cajon

33
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fittings and 0-rings, wherever necessary. TEAB was injected into the reactor

using a gas bubbler, but in the opposite sense of its actual function. Nitrogen

gas was introduced through the outlet port at a pressure of 6psi while TEAB was

forced out through the inlet port. TEAB was subsequently carried through a

capillary tube into the reactor.

Figure 4-1: Apparatus setup for the synthesis of BN membranes

4.2 BN Deposition

Once the equipment was ready for deposition, the reactor was gradually heated

up to the desired temperature following a steady rate of 150 °C/Hr. The reactor

was then pumped overnight to get rid of degassing from the vycor tube and the
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walls of the reactor. Sufficient time was allowed for the rate of degassing to fall

below 3mTorr/min. Degassing was checked regularly by closing all the valves

leading to the reactor and monitoring the rate of increase in pressure inside the

reactor.

The reactants were then introduced into the chamber. TEAB lines were

heated up to 80 °C-1 00°C to vaporize the liquid before it enters the chamber.

After a predetermined time of deposition had elapsed, the deposition was

ceased by closing all the inlet valves and pumping down the chamber. The

reactor was again pumped overnight before permeability measurements could

be carried out.

4.3 Permeability Measurement

Permeability can be roughly defined as the ease with which a gas can pass

through the open pores of the membrane. As has already been discussed the

mode of permeation depends on the interaction between the permeate

molecules and the walls surrounding the pores. Transport properties can be

determined by studying the pure gas permeability behavior of the membrane

Individual gas permeability study is done to find the permeability

coefficient of a gas. The main drawback is that it does not show the interaction

effects due to the presence of other gases. Here permeate is fed at high

pressure into the chamber (max. 400 Torr) while a very low pressure is

maintained in the tube. This pressure differential causes the gas molecules
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such as He, H2 and N2 to permeate through the membrane into the tube. This

results in the increase in the pressure inside the tube, when the tube is isolated

from the vacuum system. The rise of pressure is noted with time. It is assumed

Figure 4-2 Method of estimating permeability coefficient

that there is no appreciable drop in the pressure outside the tube which can

affect our data. A plot of rate of pressure rise with respect to the pressure

differential is plotted in figure 4-2. As can be seen the plot yields a straight line

and the slope of this line is proportional to the permeability coefficient. The

proportionality constant is the standardised volume of the vycor tube. The

volume estimated for the experimental vycor tube which had a length of 63.5cm

and an inner diameter of 0.518cm was 13.38cm 3 .
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CHAPTER 5

RESULTS AND DISCUSSION

Before going any further, it is reiterated here that the setup of the apparatus and

some of the deposition conditions were similar to an earlier project dealing with

BN thin films. Hence the calibration for the flow of TEAS through the capillary

has been used directly from this project.

5.1 Virgin Vycor Tube Measurements

Permeability measurements were carried out on virgin Vycor tube before

deposition. In figure 5-1, the permeation coefficient is plotted as a function of

inverse square root of the molecular weight of the permeate gases. The figure

Figure 5-1 Permeability value-Molecular weight relationship of various gases for
a virgin vycor tube at 300°C
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shows that the permeability values are linearly related to the inverse square

root of the molecular weight. This proves that the transport properties are

fundamentally dominated by Knudsen diffusion, which was expected since the

mean pore size was about 40.k. The same behavior was observed when the

temperature was varied. The results also confirm that the vycor tube is void of

any defects, since the presence of cracks would indicate diffusion by molecular

flux mechanism. It is of utmost importance to be assured that the vycor tube is

free of cracks or pinholes since the data obtained on subsequent deposition

could be quite erroneous.

5.2 Deposition at 475 °C

Boron Nitride was deposited at different temperatures and at different NH 3

pressures. Throughout the experiment the flow of TEAB and the pressure inside

Figure 5-2 Temperature-growth rate relationship for depositing BN thin films on
Si wafers
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the reactor was maintained steady at l7sccm and 0.5 Torr respectively, which

was determined to be reasonable for depositing thin films in our reactor. Figure

5-2 shows the trend in variation of growth rate47 of BN on Si wafer against

temperature as a variant.

Initial deposition was carried out at 475°C using same-side reactants

geometry. Both TEAB and NH 3 were introduced by separate lines into the

reactor while maintaining vacuum inside the vycor tube. The results are shown in

figure 5-3 which gives the drop of permeability of He, N2 and Ar with deposition

Figure 5-3 Drop in permeability values of inorganic gases with deposition time
for membranes obtained at 475 °C using same side reactant geometry

time. The foremost observation is that there is a drop in permeability with

increasing deposition time. This implies that the resistance to the flow of gases

through the vycor tube increased due to deposition of BN. However, the rate of

drop of permeability for each gas is the same and thus no effective increase in
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separation factor was observed, apart from the initial Knudsen separation. The

most probable reason for such a behavior is that the BN layer could contain a

large number of pinhole defects, but with a porosity less than the virgin vycor

tube. The presence of pin holes could be explained by taking into factor high

deposition temperature and the probability of occurrence of gas phase. As was

Figure 5-4 Variation of separation factor for various gases with deposition time
for a membrane obtained at 475 °C using same-side reactant geometry

explained earlier, gas phase nucleation resulted in particulate deposit and

enhanced the formation of pinholes. Figure 5-4 shows the change in separation

factor with increasing deposition time. From fig.5-4 it is apparent that, though

there is a drop in permeability, separation is still effected through Knudsen

diffusion.

BN was then deposited using opposite-reactants geometry, which is

reported to yield better resuits44 . TEAB was passed outside the Vycor tube while
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NH 3 was passed inside the vycor tube. This configuration was conducive for in-

situ permeability measurements. In this case, the drop in permeabilities was

much rapid than in the earlier case. Still, the rate of drop was similar for all the

gases and hence no further improvement in separation was observed. The

reason for such a behavior is believed to be similar to the previous experiment.

Also, both the experiments revealed that the permeabilities of the gases

increased after a sufficient long deposition had occurred. This was possibly due

to the formation of cracks in the layer. Cracks are believed to be initiated due the

development of stress in the deposit. As more and more material is deposited,

the film stress increases, thus opening up the cracks that had been initiated.

According to Paturi 47 , BN thin films deposited on Si wafers had tensile stresses

in the temperature range of 350 °C to 475°C, while compressive stresses

prevailed below 325 °C. Though, the stress conditions are entirely different on a

curved surface, as in the case of porous membranes, when compared to flat

surfaces, to a first approximation it is reasonable to deduce the type of stresses

that can prevail in porous membranes based on film stress on flat surfaces. To

overcome the problem of stresses and gas phase nucleation, deposition was

then carried out at lower temperatures. Boron nitride was deposited at 300 °C

and 250°C. The chamber pressure was again maintained at 0.5 Torr with a

TEAB flow rate of 17sccm.
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5.2 Deposition at 300 °C

The results for deposition at 300 °C are shown in fig 5-5, which gives the

decrease in permeability with deposition time, As before there is an appreciable

drop in permeability with deposition time. Interestingly, the rate of drop is

substantially different for different gases. Larger molecules face more resistance

to permeation than smaller gases. The percentage drop in permeability for

lighter gases such as He and H2 is much lower than for the heavier gases. The

transport of heavier gases, such as N2 and Ar, is now restricted to the larger

Figure 5-5 Permeability drop of various gases with deposition time for
membranes obtained at 300°C

pores which are still large enough to allow larger molecules to diffuse under

knudsen regime. Hence they still obey the knudsen equation as can be inferred

from figure 5-7. The lighter molecules such as He and H2 can diffuse through

both the larger and the smaller pores. However, due to the large percentage of
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smaller pores resulting from a narrow pore size distribution, the contribution to

total flux by the larger pores is negligible. Hence, smaller molecules do not show

Knudsen behavior even though some of them permeate through the larger

pores.

Here, the permeability characteristics of toluene gas were also studied.

After a total deposition time of 6 hours, no detectable amount of toluene was

observed in the permeate side. This is an indication that the pore size is now

down to a level where it selectively blocks off toluene. Figure 5-6 shows the

increase in separation factor with deposition time at 300° C.

Figure 5-6 Variation of separation factor of inorganic with deposition time for
membranes obtained at 300°C

The membranes obtained at 300 °C showed some peeling effect when it was

exposed to atmosphere. It can indicate bad adhesion of BN to the vycor tube or

small depth of penetration of TEAR into the pores.



isS

He

H2
Ar na

121

Fi 1
E

c
E.

tu 0.01uN

i
1 	 0
a)
i. 0 	 0.1 	 0.2 	 0.3 	 0.4 	 0.5	 0.6 	 0.7 	 0.8

1/Sqrt of Molecular wt

0.02

44

He/N2

H2/N2

1E+05

1E+04

1E+03

1E+02

1E4-01

-r.

.,
....re

.........--""

1E+00 	
0 200 	 400 	 600 	 800 	 1000

Deposition time (min)

Figure 5-7 Deviation of smaller molecules from Knudsen behavior for a
membrane obtained at 300 °C

5-3 Deposition at 250°C

BN was also deposited at 250 °C to study the effect of temperature on the rate of

drop of permeability. Figure 5-8 shows that a separation factor of 11000 for

Figure 5-8 Variation of separation factor for various gases for a membrane
obtained at 250°C
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He/N 2 could be achieved in 16 hours, which is much longer than the time

required for the same separation factor at 300 °C. This is confirmation of the fact

that the deposition rate decreases with temperature, thus leading to slower

plugging of pores in the membrane. However, no cracks were observed during

or after deposition and even when exposed to air for a long period.

5.5 Activation Energy

Activation energy study was done by measuring the change in the permeabilitiy

values of the gases at different temperatures. For this study, the membrane was

synthesized at 300°C for 6 hours. Permeability was measured at 250°C, 300°C,

325°C, and 350°C. The permeability values have been modified so that only the

effect of BN deposit could be studied. The total flux of the membrane, Q is given

by

where Q t and Qf are the gas flux contributions of the virgin vycor tube and of the

BN film respectively. Since, the values of Q t and Q are measured, the value of Qf

could be determined from the above equation.

A semilog plot of permeabilitiy coefficients against the inverse of absolute

temperature yielded linear relationship as shown in figure 5-9 for He and H2, and

in figure 5-10 for N2. It is clear from the exponential behavior of the
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permeabilities, the transport of He and H2 follow Arrhenius behavior and hence

are thermally activated. However, permeability of N2 exhibits a totally different

Figure 5-9 Arrhenius behavior of gas permeation exhibited by smaller molecules
for a membrane obtained at 300°C

Figure 5-10 Temperature-permeability relationship for larger molecules such as
N2 in accordance with Knudsen diffusion
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behavior and is not thermally activated. Permeabilities of N2 decrease with

increase in temperature. This could indicate that N2 molecules still obey Knudsen

equation (eqn 3.8), probably due to the presence of residual microporosity or

pinholes. Similar results have been reported by Megiris 44 et al. The activation

energies from the slope are 40 kJ/mol for He and 50 kJ/mol for H2. These values

are very high compared to those reported in literature 444  because of the

extremely small size of the pores.

5.6 Stability of the Membrane

Stability of the membranes has been assessed by two methods: Thermal

stability46 and environmental stability. Thermal stability was carried out in-situ

during permeability measurements at different temperatures. The results showed

that membranes obtained at 300 °C were in excellent condition as long as the

temperature was maintained at 300°C. But, when the membranes were

subjected to activation energy studies, cracks developed at temperatures in

excess of 350 °C. This was noted by observing the sudden increase in the

permeability values of all the gases. Cracks could be clearly seen in an electron

microscope as well as in optical microscope. Another reason could be that at

these high temperatures, sintering could take place and thus increase the pore

size. These membranes were then placed in atmosphere to further evaluate the

effect of moisture on the structural integrity of the deposits. After a few days, it
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was found that the deposit started to peel off from the support indicating lack of

enough adhesion.

The same procedure was carried out for membranes obtained at 250 °C.

No significant changes were observed in the permeability values even after

going through a thermal cycle. The membranes stayed intact and no cracks

were observed. Again, in atmospheric conditions no further damage was

observed.



CHAPTER 6

CONCLUSIONS

The synthesis and characterization of BN membranes using TEAB and NH 3 as

precursors has been investigated. BN was deposited on mesoporous vycor

tubes at different temperatures and by different deposition geometries.

Membranes obtained using counter reactants geometry yielded more favorable

results than same-side reactants geometry. Also, higher deposition temperatures

did not result in an increase in separation factors beyond the Knudsen value.

Lower deposition temperatures gave excellent separation factors. At 300 °C,

He/N 2 and H2/N2 permeability ratios were close to 11,000 and 1000 respectively.

However, no separation was observed between N2 and Toluene. Also, the

membranes were rather weak and exhibited peeling behavior when exposed to

atmosphere. Membranes obtained at 250 °C also had high separation factors, but

longer deposition time was required. Once again, no separation between N2 and

toluene was achieved. The membranes were very stable and showed no cracks

or peeling under atmospheric conditions. XRD analysis indicated that the BN

deposit was amorphous.

There is additional work to be done in this field. Future research is aimed

at enhancing the deposition rate and in investigating the effect of gaseous

mixtures on the separation factors. More importantly, the separation of VOC's

from inorganic gases will be given more attention.
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