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ABSTRACT

SOFT DECISION ADAPTIVE
MULTIUSER CDMA DETECTOR

FOR ASYNCHRONOUS AWGN CHANNELS

by
Frank Viehofer

A multiuser detector in an asynchronous, additive white Gaussian noise, code-

division multiple-access (CDMA) channel is proposed and analyzed. It employs a

combination of a decorrelator and a nonlinear multiuser interference canceler that

utilizes soft tentative decisions. The weights of the canceler are adaptively adjusted,

in a manner that renders the knowledge of received signal energies and the use of

training sequences unnecessary. The steady state error performance of the detector

is obtained and found to be superior to the performance of the same detector that

utilizes hard tentative decisions.
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CHAPTER 1

INTRODUCTION

Several techniques are used to transmit digital information simultaneously over a

common channel. They differ among each other in the way they make use of the

available resources; time, frequency, and code.

Figure 1.1 Communication cube

In Time-Division Multiple-Access (TDMA) the channel is partitioned into independent

time slots to which a single user is assigned. Within his time slot, each user has access

to the entire frequency band of the channel. In Frequency-Division Multiple-Access

(FDMA), on the other hand, the channel is subdivided into independent frequency

bands. Each user is allowed to transmit data consecutively but only within the

assigned frequency band. Both techniques allow a certain maximum number of users

to access the channel simultaneously, hence the preassigment of the channel tends to

be wasteful in applications where most users send information during only a small

percentage of the allotted time.

1
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Contrary to those strategies, Code-Division Multiple-Access (CDMA) allows

users to access the entire frequency band and to transmit their information simul-

taneously at the all time. CDMA does not impose a hard limit on the number

of users that simultaneously access the channel; adding more users only gradually

deteriorates the system performance.

In this thesis, we consider a CDMA system where a number of users simulta-

neously transmit information over a common channel by assigning different signature

sequences to their information. A receiver observes a superimposed version of all

asynchronously transmitted waveforms in additive white Gaussian noise (AWGN).

To obtain desired information from a specific user, the receiver correlates the received

signal with the same signature sequence that was originally assigned to that user in

the transmitter. Since the cross-correlations between signature sequences are non-

zero, the correlated signal consists of three parts:

• the desired signal,

• the multi-access interference (MAI), due to non-zero cross-correlations,

• and white Gaussian noise.

The goal of the CDMA detector is to separate the desired signal from the interference

and to decide which information was actually sent. Several approaches have been

taken in the past.

A conventional detector consists of a bank of matched filters followed by

decision devices. It requires the knowledge of received amplitudes and signature

sequences of all users. It demodulates each user's signal as if it were the only one

present and thus does not take care of the multi-access interference. The detector

has acceptable error performance as long as the interference component is not too

strong compared to the desired signal; that is, the cross-correlations are low and

the energies of the received signals are similar. The opposite of this is known as
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the "near-far" problem. The advantage of the conventional detector is obviously its

simplicity.

The optimum multiuser detector, based on the maximum likelihood principle,

was proposed by Verdii in 1986 [1]. Besides the bank of matched filters, the detector

consists of a decision system whose complexity is exponential with the number of

users. The significance is that under the given conditions you can't do better than

this detector regarding the output error probability. On the other hand, it requires

the knowledge of all signature sequences as well as all received amplitudes. The

main drawback is its complexity that makes it unsuitable for applications with a

large number of users.

Several suboptimum detectors have been proposed which are much less

complex, solve the "near-far" problem, and have error performance that comes

fairly close to that of the optimum detector especially when the energies of the

interferers increase. Suboptimurn detectors can be divided into two categories,

non-adaptive and adaptive detectors.

To the former category belongs Lupas and Verde's [2, 3] linear decorre-

lating detector. The decorrelator acts on the matched filter outputs by multi-

plying them with the inverse cross-correlation matrix resulting in interference-free

outputs; however, those outputs do not result in optimum decisions since their noise

components have larger variance compared to the matched filter outputs. It does not

require the knowledge of the received amplitudes, but it requires the computation of

the decorrelating coefficients from the cross-correlations.

Another approach is Varanasi and Aazhang's multistage detector, [4, 5], up on

which our detector is based. It consists of the above mentioned decorrelator followed

by hard tentative decisions on its first stage and a canceler with fixed weights on its

second. Assuming that the decisions obtained from the first stage are correct, the

second stage simply cancels the corresponding signals from the received waveform
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resulting in a single-user performance if the previous decisions are indeed correct. It

shows considerable improvement over the linear detector particularly in "near-far"

situations; that is, those in the presence of relatively strong interfering signals. The

knowledge of the received amplitudes is required here as well as in the next three

cases.

Reference [6] analyses several classes of detectors that are similar to the

preceding detector, except for using soft-decision tentative statistics instead.

The decorrelating decision-feedback detector proposed by Duel-Hallen, [7], is

suitable for synchronous CDMA channels only, since it utilizes the difference in users'

energies. A decorrelator estimates interference provided that the feedback data are

correct. The feedback-structure first forms a decision from the strongest user since

this is the most reliable one. Decisions of all other users are made in the order

of decreasing received energies, for example, prior to the decision on the kth user,

the decisions of the (k 1) stronger users are subtracted from the corresponding

decorrelator output of user k. As in the former case, the feedback detector shows a

performance gain with respect to the decorrelating detector especially for relatively

weak users. It also has lower complexity than two-stage detectors with comparable

performance.

Xie, Short, and Rushforth's, [8], detector consists of a linear transformation

that operates on the matched filter outputs, followed by a set of threshold devices.

They basically investigate two different versions of linear transformations using two

different performance criteria:

• minimum mean square error MMSE and

• weighted least squares WLS.

The complexity is linear with the number of users, and under typical operating

conditions these detectors perform nearly as good as the optimum detector.
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In adaptive detectors, parameters are self-adjusted from observed received

signals. The detector of Chen and Roy, [9], implements Verdi's decorrelating

detector; however, its coefficients are adapted by decision feedback thus sidestepping

the need to perform computations with cross-correlations. Here, the coefficients

are obtained as the solution of a Least Square criterion that require the knowledge

of all signature sequences but renders the computation of the coefficients from

cross-correlations unnecessary.

Kohno et al., [10] , consider a CDMA channel with limited bandwidth for which

they design an adaptive MMSE detector that uses decision-feedback to remove multi-

access interference. The first stage performs preliminary decisions which are then

used in the adaptive stage.

Rapajic and Vucetic, [11], investigate a similar adaptive MMSE detector, but

their detector has no knowledge of the signature sequences and timing of other users.

However there is a shortcoming: it has to be trained by a known sequence prior to

data transmission.

A multistage detector based on [4], but with a canceler using adaptive weights

on its second stage, was presented in [12] for the synchronous case and in [13] for the

asynchronous case. It operates without the knowledge of received signals' amplitudes,

and without the need to perform their prior estimation in order to set the values of

the weights of the canceler. Instead, the weights are determined adaptively, without

the requirement of a training sequence. The detector proposed here is also based on

[4], and uses an adaptive canceler as [13] does, but we investigate the influence of

soft tentative decisions, rather than hard decisions on the performance of a multiuser

detector. Chapter 2 of this thesis will give a thorough description of the soft decision

adaptive multiuser detector. Chapter 3, we present the output error performance in

different scenarios and compare it to other detector schemes.



CHAPTER 2

ADAPTIVE MULTIUSER DETECTOR

2.1 System Model

Figure 2.1 CDMA system model

A multi access AWGN channel is shown in Figure 2.1. A set of K trans-

mitters (users) desire to communicate with a base station over a common channel.

Each transmitter produces its own data sequence bk(i) E {±1 , k = 1,2... , K, for

symbol interval i of duration T. The narrow-band data sequence is multiplied by

the unit energy signature sequence sk(t) of the same duration T, thus spreading

the spectrum of the data sequence to that of the much wider signature sequence.

The so encoded signals superimpose asynchronously in the channel. The baseband

equivalent waveform r(t) at the input of the detector is expressed as:

6
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where n(t) is a zero-mean, white Gaussian noise with the two-sided power spectral

density N0 /2, and a k and rk are the received energy and relative delay for user k,

respectively. While it is assumed that precise relative delay estimates are available

for all users, their amplitudes are considered to be unknown to the detector.

2.2 Matched Filters

The detector has a bank of matched filters at its front end. To obtain desired infor-

mation from a specific user, a matched filter correlates the received signal with the

same signature sequence that was originally assigned to that user in the transmitter.

Undesired signals of other users are affected by the signature sequence in the same

way the original data sequence was affected at the transmitter, they are spread.

However, since the cross-correlations between signature sequences are non-zero, not

only the desired information is received but also the interference of all other users.

Without loss of generality, the attention will be on the detection of bit 0 of user 1,

and it will be assumed that 0 = r 1 < r2 < < TK < T . The sampled output of the

matched filter for user 1 is then:

K
Xi(0) = Va1b1(0) E ak [pkibk(-1) + plkbk(0)] + ni (0). 	 (2.2)

k=2

The normalized partial cross-correlations for k = 2, ... K are:

pki = 	 (t)sk(t T — rk )dt and pm = 	 s i (t)sk(t — 7-k )cit. 	 (2.3)
0

Also, n 1 (0) = fa n(t)s i (t)dt is a zero-mean Gaussian random variable with

variance N0 /2. Using the vector notations where pi = [p21, .. • , PK1, P12)

b1(0) = [b2(-1), 	 bK(-1), b2(0), . . bK(0)F, Al = diag[ ir2 ,...,VaK], and

A
A l 0

= , the matched filter output is:
0 A l

x 1 (0) = N/a1 b1 (0) pTAb i (0) n i (0). 	 (2 .4)
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The interference can be alleviated by using signature sequences with lower cross-

correlations or by using power control. Lower cross-correlations are usually achieved

by employing Pseudo-noise sequences of long periodicity. However, this results in a

lower bandwidth efficiency. The adaptive adjustment of transmitter power results in

reductions in the transmitted power of stronger users and is thus self-defeating to

the capability of a CDMA system.

2.3 Decorrelator

The goal of the first stage of our detector is to estimate the interference so that it

can be eliminated from the matched filter outputs by a second stage. A 1-shot decor-

relator is employed, meaning that it considers one bit interval of the received signal

at a time. It separates the users from each other so that each user's contribution to

the interference can be seen. This decorrelator is the same as the one proposed by

[14] for the two-user case here, extended to K users.

We now implement a mathematical model that allows us to compute the

statistics of the detector for user 1, and by simple reordering of indices, for all other

users.

Figure 2.2 Received asynchronous signal; general case



Vei (1—es)

is

[ 	P i j 
= 2, 3, 	 , K 1 and i = j + 1, 	 , K,

9

We make use of an idea that views an asynchronous channel as a synchronous

channel. As can be seen in Figure 2.2, bit 0 of user 1 overlaps with bit —1 of

user k, where k = 2, 3, ... , K , over the interval [0, Tk] and with bit 0 of the same user

over the interval [71,1 1]. We can view this situation as a (2K — 1)- user synchronous

channel with unit-energy signature waveforms .-§ i(t) s i (t), .-§2k_ 2 (t) = si1,1(t)/,

and .-§2k_ 1 (t) 	 sik-/(t)/V1 — ek. Thus every asynchronous user (except user 1) is

assigned two synchronous users which results in (2K — 1) synchronous users, where

L
it
, _ sk(t	 — Tk) 0 t Tic 	.5R (t) = {0 	 0 < t < Tk

0 	 T k t T, 	 sk(t 7-k)	 < t < T,

and
Tic

ek = f 31,(t T — -r-k )dt

is the partial energy of the interfering signal over the left overlapping interval.

The cross-correlation matrix between the synchronous users is given as follows:

H

(P2	 CP3

, ,T
"r 2

2)2'
"r3

•

(2. 5)     

I

where

SPi	
[ Phi 	 Pit 

=
	Vei N/1 — 	 ei] 	 = 2, 3, . 	 K ,

and

as well as
T

Pil = 0 Si(t)S (t) di and

which is a restatement of Eq. (2.3), and:

T
Phi	 S1(t).511: (t)dt

0

Pig ---=s - f (t).3R (t)dt,
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-rj
Os% =	 g2i_2(t),.§2i....2(t)dt and 9R = T g2j—i 	 (t)dt.

0 Ti

For each additional user another dpi , 
45) has to be added to the cross-correlation

matrix.

We thus get the output vector of the matched filter bank as:

HA s ks n s ,	 (2.6)

where Xs = [x1) x21 • • • X2K-1] T As = diag C al, a2 , v/a2, V/7"-63 ) VT3 ) • • •

bs = [b1 (0),b2 (-1),b2 (0),	 ,frK(-1),bK (0)] T , and ns = [fzi, n2, ... ,11- 2K-1] T with

Am = fo n(i).-§,(t)dt, m = 1, 2, .. . , 2K —1, are zero-mean Gaussian random variables

with a variance of N0 /2.

The decorrelator is simply the inverse matrix of the cross-correlation matrix

H, thus resulting in uncorrelated signals at its output:

z s =	 x, = A s ks + H -1 n s = "tabs	 (2.7)

The noise vector 	 can be written more explicitly by expressing the inverse cross-

correlation matrix as follows:
d1

11 -1 =
1

det(H)

where dm is a 1 x (2K — 1) vector. A specific entry of is therefore:

1
sm 	= 	 drn, ns •

det(H)

Since the n m 's are zero-mean Gaussian random variables and the performed

mathematical operation is linear, esm is also zero-mean Gaussian. We thus get for

the variance of 4 .87„,:

crL. Efenj = E{(41 3 ) 2 }•

Solving for bit 0 of user 1:

z1 (0) = a7b 1 (0) WO). 	 (2.8)
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The argument "0" indicates the corresponding time interval.

So far, the described model only allows us to compute the statistics of user

1. Other users can be computed simply by reordering the indices. Let k denote the

original order of the asynchronous users and k' the new order, with k, k' = 1, 2, , K.

Furthermore, let 1 be the desired user for which the output of the decorrelator ought

to be computed. The reordering must results in k' = 1 when k = 1. The corre-

sponding relationship between k and k' is:

k' modK (K k — 1) + 1. 	 (2.9)

The above described method can now be applied to the remaining (K — 1) users.

We thus get the decorrelator outputs affecting bit 0 of user 1:

z 1 (0) = Ab1 (0) C(0), 	 (2.10)

with C. (0) = 	 U(0)F a zero-mean Gaussian vector

having the covariance matrix E 1 , whose diagonal elements are denoted by atc .

2.4 Soft Tentative Decisions

As mentioned earlier, we want to investigate the influence of tentative decisions on

the performance of a multiuser detector in general and in particular the influence of

soft tentative decision nonlinearities.

Taking into account that the task of the canceler on the second stage is to

remove each user's interference from the output of the matched filters to obtain

the desired signal without interference, the interference first has to be estimated.

This is done by making decisions based on the decorrelator outputs. The vector of

corresponding tentative decisions affecting bit 0 of user 1 6 1 (0) is:

61(0) = g (zi(0)) = g (Ab1(0) + CO))
	

(2.11)

where g(•) denotes the performed tentative decisions.
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Figure 2.3 justifies the implementation of decision devices in the multiuser

detector in general. It shows the output error probability of the investigated detector

without decision devices (linear detector) and with hard limiters versus the relative

interference energy for fixed SNR1.

Figure 2.3 Error probability SNR1 8 dB, p12 = 0.2, P21 = 0.6, e l 0.4

We can see from this figure that the overall performance of the hard limiter detector

is better than that of the linear detector. Although the linear detector performs

better than the hard limiter detector over a region of weak interference, its error

probability gradually increases for increasing interference, whereas the hard limiter

detector converges to the single-user bound.

The behavior of the hard limiter detector is intuitive. A weak interferer results

in a bad or unreliable estimate. It is more likely to be faulty since the signal which

the decision is based on contains a dominant noise part. If such a faulty estimate

is used by a second stage for interference cancellation, the overall performance even

deteriorates.
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On the other hand, a strong interferer results in a good estimate, since most

likely we estimated it correctly. A subtraction of this estimate from the matched

filter outputs is desired since it results in interference cancellation.

To obtain better performance than the hard limiter detector, especially for

weak interference, different tentative decision nonlinearities are implemented instead.

The idea is to omit or attenuate weak interferers and thus bad estimates before

subtracting them from the matched filter outputs, whereas strong interferers and

thus good estimates should be subtracted without attenuation, thus they are hard

limited. This is exactly what a soft limiter does. We consider two different tentative

decision nonlinearities, a dead-zone limiter and a linear clipper.

Let us first consider how many decision devices are needed in the detector. Let

user 1 be the user we wish to detect.

Figure 2.4 Interferers and their cross-correlations

According to Figure 2.4, interval —1 and 0 of user 2 partially overlap with interval

0 of user 1. Since each of those interferers ought to be subtracted we end up with

two decision devices between the desired user and an interferer and consequently

2(K — 1)K decision devices for the general K-user case.

The dead-zone limiter is shown in Figure 2.5 with respect to user 1. If the magnitude

of a decorrelator output is smaller than the threshold, the corresponding estimate is

omitted. If it is larger, however, the dead-zone limiter operates like a hard limiter.



Figure 2.5 Dead-zone limiter

The entries of 6 1 (0) for a dead-zone limiter are defined as follows:

where i = —1, 0 and k = 2, 3, ... , K. Aii1 represents the threshold of the dead-zone

limiter for the kth interferer in time interval i.

Figure 2.6 Linear clipper

The same holds in the case of a linear clipper, Figure 2.6, when the magnitude of the

decorrelator output is larger than the threshold. If it is smaller, though, the output

of the linear clipper is a linear function of the input ranging between ±1, thus it

attenuates weak interferers. The output of a linear clipper is thus given as:

14

The question is how the threshold should be determined now that the above

mentioned is realized. The following has to be taken into account:
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• For relatively weak interference, the threshold should be large to omit or

attenuate the corresponding estimate whereas for relatively strong interference

it should approach zero. The amount of interference can be inferred from

the ratio between the energy of the desired and the interfering user. Those

energies are best obtained from the decorrelator output where the users are

uncorrelated.

• Other indicators for interference are the cross-correlation coefficients.

The best heuristic values of the thresholds can be obtained from the following inves-

tigation of the output error probability, shown here vicariously for the detector using

dead-zone limiters. Figures 2.7 and 2.8 show its error performance versus variable

strength of interference for fixed SNR1 . The thresholds for both dead-zone limiter

and linear clipper between user 1, the desired signal, and user 2, the interferer, are

chosen as follows:

where k = 2, 3, ... , K. a and b are functions of the cross-correlation coefficients.

Obviously, the solution with a = p1 2 and b = 4 provide the best results. This

brings us to the general values of the thresholds between user 1 and user k obtained

with the above reasoning:

where the above expectations are evaluated as:

For the elaborate computation of Eq. (2.15) see Appendix C.
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Figure 2.7: Comparison of heuristic thresholds, error probability of user 1 for K = 2,
SNR1 8 dB, P12 = 0.2, p21 = 0.6, e l = 0.4

Figure 2.8: Comparison of heuristic thresholds, error probability of user 1 for K = 2,
SNiti = 12 dB, P12 = 0.2, P21 = 0.6, e1 = 0.4
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Figures 2.9, 2.10, and 2.11 show that under the given conditions the so obtained

output error probability is very close to the best possible output error probability

for the given structure, obtained by search until the output error probability is

minimized.

Figure 2.9: Comparison between best and heuristic threshold, error probability of
user 1 for K 2, SNR1 = 4 dB, P12 = 0 . 2, P21 = 0.6, e 1 = 0.4

Figure 2.10: Comparison between best and heuristic threshold, error probability of
user 1 for K = 2, SNR1 = 8 dB, P12 = 0.2, P21 = 0.6, e1 = 0.4
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Figure 2.11: Comparison between best and heuristic threshold, error probability of
user 1 for K = 2, SNR1 = 12 dB, P12° 2= 	 P21 = 0.6, e 1 = 0.4

2.5 Adaptive Canceler

The adaptive canceler takes the soft tentative decisions of the interfering users,

multiplies each of them with a weight and subtracts them from the matched filter

outputs. Ideally all interference is removed. The final decision statistics y 1 (0) and

the corresponding final decision for bit 0 of user 1 are:

Yi(0) = xi(0) — w 7;(0)6 1 (0) 	 and 	 b1 (0) 	 sgn(y i (0)), 	 (2.16)

where w i (0) = [41 1) , , ut ) , tt, , wElT are the corresponding weights.

For controlling the weights, a steepest descent algorithm is used. This algorithm

belongs to the group of Least-Mean-Square algorithms. It converges slowly but has

good stability properties; its convergence is proven in [15].

The steepest descent algorithm minimizes the output signal energy E{q(0)}.

The weights that achieve this are obtained by iterative search:

w 1 (i + 1) 	 w1(i) 	
2 auyi(i) E{Y?(i)} = wi(i) 	 itE{Yi(i)61(i)}. 	 (2.17)
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The second term in Eq. (2.17) is forced to zero when the steady state values are

reached. In this case the old value w i (i) and the new value w i (i + 1) are identical.

Two important facts can be deduced from this:

• The output energy E{0(0)} of user 1 is minimized by this algorithm

• It forces the correlation between the output signal of user 1 and the vector

of tentative decisions i i (0) of interfering signals to zero. That means ideally

weights are chosen such that the output of user 1 no longer contains any inter-

ference.

Thus we get for the steady state values:

1 a
2 awi(0)

E{y?.(0)} = 0 = E{y 1 (0)b 1 (0)}

Elx i (0)6 1 (0) — w 1 (0)6 1 (0)6 1 (0)T 1, 	 (2.18)

with:

E fx1(0)b i ( 0 ) } = EfF--ribi(0 ) 61(0) p1Abi(0)b1(0) n1(0)1)1(0)}. 	 (2.19)

The expected value of the first term in (2.19) is zero since the independence between

a user and the estimates of all other users is a feature of the decorrelator. The

expected value of the third term results in Ef (0)C(0)}. The independence of

ni (0) and the noise of interfering users at the output of the decorrelator is proven in

[15]. Thus we get:

Efsi(0)61(0)} AE{bi(0 ) 62:( 0 )}P1-
	 (2.20)

Clearly Elk (0)6 1T (0)} is diagonal; therefore, the system of (2K —1) linear equations

(2.18), together with (2.20), gives the steady state values of the weights affecting the

first output as:

w1(0) = [Efi1(0)6 1 (0)}1 AE{b1( 0 ) 61(0 )}P1•
	 (2.21)

The expectations in the above expression are given in Appendix D.



20

2.6 Error Probability

The output probability of error Pe, of user 1 is evaluated as:

Pei Eb1 (0),b1(0) :61(o)P4 b1 (0) I b1 (0),19 1 (0),1 1 (0)}

1
Ebi(0)[Prfrii(0) > ViTt i - pTAb i (0)+ w iT(0) -i i (0) 14(0)}

2 b1(o)

Prin i (0) < 	 gAbi(0) w1 (0)1 1 (0) 1 6 1 (0)}1 Pr{b i (0)12.22)

	

Since Pr{191(0)}	 2-(2K-2), and the above expression contains pairwise

identical terms, it can be written as:

Pei = 22K-2 E E6 ,(0) Prfn i (0) > 	 Abi(0) wT (0 1 (0) 1 6 1 (0)}. (2.23)
b1 (o)

Focusing on the dead-zone soft tentative decision, the vector spans a (2K -

2)-dimensional space. Each dimension is partitioned as:

- N/Jrk bk (i) < G(i) <	 - Verkbk(i)

or 4.k(i) > A (kil - laTbk(i), G(i) < -41 - v/akbk(i),

with k = 2, 3, ... , K, i -1, 0. The created (2K - 2)-dimensional subregions Dm ,

m = , 22K-2 , have a corresponding vector b 1 (0) = 6 177,(0) whose elements,

according to (2.12), take values of ±1 and 0. Thus (2.23) can be rewritten as:
22K-21

P61 = 2K-2 Prfn1(0) > vri-i i -gAb i (0)+wT:(0)6 1 ,(0)}.Pr{ i (0) E Dm } .2	  E E
b1(o)

(2.24)

Since n 1 (0) and z i (0) are uncorrelated, we finally get:

22K-2
1 	 x--.\ 	 PTAbr(0) wT(0)101,,(0))

Pei 22K-2 I—, L `°6
b 1 (0) m=1	 .V.N012 I f mck1(0),D. 1

(2.25)

where fc (0) is a (2K - 2)-variate Gaussian density function.

In the case of a linear clipper, each entry of 6 1 (0) in (2.23) can, according to

(2.13), be zk(i)/A (kl or sgn(zk(i)). A transformed Gaussian random variable 01 is
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defined as:
(0)K

= ni(0) 	 c(o)wk, 6 (co v,
k=2 k Akio) k 	4-1 Ck 	A (-1)

k=2 	 Akl
where

Ck =
(i) 	 { 1 IZIc (0)1 < A (kl

0 otherwise

The error probability (2.23) becomes:

1 T: Abi (0) 	 (0)hi(0) 1)10)1,Pei = 22K-2 	 Ebi(o)Prf°1
b i (o)

where h i (0) = [h2(-1), 	 hi<(-1), h 2 (0), 	 , hK(0)F and each entry is defined as:

hk (i) 	 '\/Frkbk(i)i 	 1,4(01 < Ai1

sgn(zk(i)) 	 otherwise
	 = 2,3, . 	 = —1,0.

Defining the vector as:

C 	 [C17(2) 	 (2K-11T = [011 e2( -1 ), WO), 	 . • , 	 ( -1 ) , cK ( C) )1 T

that spans a (2K-1)-dimensional space, the final expression for the error probability

becomes

Pet 22K-2 E EID mf 	 (2.26)
bi(o) m=1

22K-2

where f c is a (2K — 1)-variate Gaussian density function. Each dimension is parti-

tioned as Vifj: — b 1 (0)T Api w?". (0)h i (0) < 6, and for j = 2,3, ... , 2K — 1, each Ci

falls in either of the following two regions:

— VFqbk(i) < < 	 Ncikbk(i)

or 	 > Vki? — ,\FCkbk(i), < 4,2i vfakbk(i),

again with k = 2,3, ... , K, i= —1,0.

2.7 Two-User Case

To illustrate the above general case, the derivations of the statistics for the two-user

asynchronous detector are given here in detail.
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s,(t)

s2(t)
1.2

Figure 2.12 Received asynchronous signal; two-user case

From the view of bit 0 of user 1, Figure 2.12, it overlaps with bit —1 of user

2 over the interval [0, 72], assuming without loss of generality that 7 1 = 0, and bit

0 of user 2 over the interval [72 , T]. This situation can be viewed as a three-user

synchronous channel. The unit-energy signature waveforms of the synchronous users

can be derived from the waveforms of the original asynchronous users; 3' 1 (t) = s i (t),

:§.2(t) = 4(01 fei, and ;§3 (t) = s - (t),W1 e2 , where

s (t) = 	 k(t T 72 ) 0 <t < T2 	 R	 {0 0 < t < T2
32(00T2 << T, 	 — 72) 72 < t < T,

and
T2

e2 = f 	 (
S 	 -r

r	
72 )ELL

0

The received signal r(t) in the synchronous channel is:

r(t) = via1 bi (0)s i (t) AF:(2 b2(-1)4(t) fi 2 b2 (0)4(t) n(t).

The cross-correlation between the signature waveforms are given as follows:

P21 	 l(t) 4(t)dt and 1912 =I s i (t)s12'1 (t)dt.
0

The cross-correlation matrix between the three synchronous users is given as:

P21 	 P12  -
e2 	 .11 — e2

1

H
	

al 1 	 0

P12 
— 0. — e2

0 	 1
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The sampled output the matched filters is:

x 1 bi(0) 	 - n1

X2 = HA, b2 (-1)

X3 _ 	 b2 (0) 	 _ n3

where A s = diag 	 , and nm = fo n(t):§,(t)dt, m = 1,2,3, are zero-

mean Gaussian random variables with a variance of N0 /2.

In order to get interference-free signals, the decorrelator matrix can be chosen

as the inverse of the cross-correlation matrix H:

1	 ___ _221_	 112 
	- vreT 	 —e2

H-1
1

P21— 1 	 P?2
P12 P21

1_ /2212 	—
1 —e2 Ve2 (1 — e2

1 — e2e2 P12 P12 P21 1 	 PL 
e2- Ve2 (1 — e2)

Thus, the interference-free outputs of the decorrelator are:

bi (0)

= As b2 (-1)

_ b2 (0) _

The resulting noise at the output of the decorrelator for user 1 in time interval 0 is:

nl

= 61(0) 	
1 

	[1	
P21 	 P12 

n3

det(H) (Th 	/F2-n2 -V1 — 62 n3)

1 	P21  _ 	 P12 

1 	 (0) 	 P21 n2
I,
	n

P12  16
det(H) 	 e2 	 1 — e2 2 )

61 (0) is a zero-mean Gaussian random variable with the variance:

2
Cr i(0) = E{ 1(0)2}

1, 	 eE-{ (ni (0) P21 	 —aet(H) 2
P12  R) 2n 2

1 — e 2

det(1H) 2 {E{n(°)} 	
E2 Pe2:E{ni(0)4 	 P12 1 — 2 	 e2 {n i (0)4}

z1

z2

Z3

es1

es2

683

det(H) 	 -11—e2
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620L — 62 	 e2 11'2 62 	
}]P21

	 n2+ 2  Pr i2P21  E L2 4} + r2i f,,L2-t+  vi2 

1 	 n2

det(H) 2	e2
1 2' 21

2  P12 
1 — 6 2

No 
2

1 	 P31 	 P12 
e2 	 1—e2

and thus the output of the decorrelator for user I in the time interval i = 0:

zi (0) = a1 b1(0) 	 e1(0).

Likewise, we get the decorrelator output of user 2:

z2(0) = g02(0) + e2(0),

with
1 P12 nL 	 P21  R

det(H) (n2(°) 	1 — n1)

and

___ 	2 
aei 0) — 	 2 	 2 '

	

212. 	P21 

	

e 1 	1—ei

Having computed the statistics for all users involved, we can now rewrite the

equation for the output of the matched filter for user 1 using the vector notations

	

[..\/E2 	 0
where p i = {P21, P12F , b1(0) = [b2 (-1),b2 (0)] T , and A =

	

0	 v/r22-

x 1 (0) = .1c-ri b/ (0) p iTAb i (0) + n 1 (0),

and the decorrelator output affecting bit 0 of user 1:

z 1 (0) Ab 1 (0)

with C(0) = [6( -1),6(0 )7-

The decorrelator follows the tentative decision part of the detector. Its task

is it to provide estimates on the amount of interference which is then subtracted

from the desired user using an adaptive network of weights. The definitions for the

n2
v21.+ + Pia No
6 2 1 — 62 2
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tentative decisions 6 1 (0) and the thresholds 	 respectively, are straightforward, see

Eq. (2.12) to Eq. (2.15). We thus obtain the final output yi (0) of the interference

canceler and the corresponding final decision:

Yi(0) = xi(0) — w1(0)6 1 (0) 	 and 	 b1 (0) = sgn(y1 (0))

where w 1 (0) = {t141 1) ,41T. It follows a detailed computation of the steady state

values of the weights for the dead-zone limiter and the linear clipper.

The steady state values of the weights can be inferred from Eq. (2.21) by

substituting the matrices for the general case with their two-user case equivalent;

b1 (0)	 [b2 (-1), b2 (0)F b 1 (0) = [L 1 (-1):61 (0)F , A = di a gk/ 2 , Nfi2 , and pi

[P21, P12J T .
,E {b2 (0);2 (0)} 

wn(0) = Pi.2\,/a2 	 (2.27)
E{b2 (0) 2 } •

is obtained when considering time interval i 0 only, which can be done without

loss of generality.

2.7.1 Steady State Values of Weights for Dead -Zone Limiter

The numerator of Eq. (2.27) can be written as follows:

Efb2 (0)b2 (0)} 	 E{b2(0) • 0 I.z2(0)1 < 	 + Efb2 (0)sgn(z2 (0)) I fz2 (0)1 > 491) }.

Only the expected value for the interval 1z2(0)I > )4 is non-zero.

E{b2 (0)b2 (0)} = [PrO2 (0) = 1 1 b2 (0) 1}Pr{b2 (0) = 1}

- Prib2 (0) = —1 I b2 (0) = 1}Pr{b2 (0) 1}

- Pr{b2 (0) = 1 i b2 (0) = —1}Pr{b2 (0) —1}

Pr{b2 (0) = —1 I b2 (0) = —1)-Pr{b2 (0) = —1}] .

With Pr{b2 (0) = 1} = 2and the fact that the above expression contains pairwise

identical terms, it can be written as:

Efb2(0)1)2 (0)} 	 [Pr{6(0) > A (2°I) — /7(2}
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	— Prfe2(0) >	 + Va21]

= [Q (401) — VI2 )
0- 2 (0)

where:
00

Q (x) 	 I e -t2 / 2 dt
N/27r

The denominator of Eq. (2.27) can be subdivided equivalently:

E{12 (0) 2 } 	 E{12(0)2 I 1z2 (0)1> 41) 1

= E {fiz2(0)1>A(1.) i)2 (0) 2 f (Z2 (0)) dZ2 0)12 

Efiz,(0)<Agp f (z2 (0))dz2 (0) + z2 (©)>A2 f (z2 (0))dz2 (0)1

—A °I) —v c(772b2 (0) 	 /00
E{ f (WO)) de2(0) + h (2,1) _,,,,7262(0) f (62(0)) de2 (0)}

1	 ,x(2°,) 	 -A —

—00 	
f 6 	 d62 	 , 	 f 62 0) 42(0)

+ 1 00

	

	 00

,(201)+,,r2 f (62(0)) 42(0) + J(°
21
)_ a2 f (62(0)) 42 (31

0:(201)+\cli I (62 (0)) d62 (0) + 	 f (62(0)) de2(0)a21 	as

	- vir i2 	.4°1) + Ver2 + Q 	 (Two )ae2 (0)

The weights for time interval i = — 1 results similarly only by substituting i = 0 by

i = —1 and p12 by P21-

2.7.2 Steady State Values of Weights for Linear Clipper

Again, the numerator of Eq. (2.27) can be written as follows:

K(1)2 (0)4 2 (0)1 	 Efb2(0)z2:(0°)) 1z2 (0)1 < AO}

+ Efb2 (0)sgn (z2 (0)) I 1z2 (0)1 > A2°1) }

For 1z2 (0)1 > AO we get:

Efb2(0)sgla ( 22(0)) I 1z2(0 )1 >

(

+ VT1 2  )1
c%2(0)

[Q
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[Pr-02 (0)

Pr{62 (0)

Pr{1)2 (0)

1

= —1

=1

b2 (0)

b2 (0)

b2 (0)

1}Pr{b2 (0) = 1}

1}Pr{b2 (0) = 1}

—1}Pr{b2 (0) = —1}

PrIL2 (0) = —1 b2 (0) —1)-Pr{b 2 (0) = —1}} .

With Pr{b2 (0) = 1} = 2 and the fact that the above expression contains pairwise

identical terms it can be written as:

Ef b2(0)sgn(z2(0 )) iz2(0)1 > A (291) 1 	 [Pr{6(0) > 	 — F21

PrI6(0) > A (2°1) AAl2}1

[Q	
\/a2) 	 (A2°1) \F;r2)]

cle2 (°) 	 Cr2 (C) )

For 1z2(0)1 < 	 we get:

Efb2(0) z2(°) 1z2(0)( < 4 ) 1

The first term of Eq. (2.28) is:

AO Efb2 (0)(Vi2 b2 (0) + 6(0)) 1z 2 (0)I < AO}

= 	 [Etici2b2(0)2 z2(0)1 < A (2T}
A21

Efe2(0 )b2(0) (Z2(0 )1 < 41) }1 •
	

(2.28)

Etvrcr2 b2 ( 0) 2
 z2 (0) 1 < A (2T}

Ft2E 	
(o)i<4,0

 f (z2(0))dz2(0)}

frt2Eff A,?...vcri212(0) f(z2 (0))dz2 (00:1

1/c7r2 [j( 1\ 	f (6(0)) 42(0) + / A('cir +jc--c2 f (2(0)) d6(01(o)2

A(211)—va.262(o)

S°1)-(72

)

(2 	

va72
cre2 (0)

—A21

The second term of Eq. (2.28) can be written as:

Ef6(0 )b2(0) I 1 z2(0 < A (291) 1

v cr7; [Q 	/In 7- NI (42 

Cre2 (0)

N(0)



—VaTb2 (0)
E{

= b2 (0) b2 0)6 (0)f (6 (0)) 42 (0)}

1 fAV1 ) .— gti
= 2 	e2 (0)f (62 (0)) 4 2 (0)

-1 --.A;c1) ) —Nic—C2

f +■//Fti 
6 (0)/ (6(0)) 42(0)

1 	 I po Thic-,-,2 	 63(0) = 	 6(0) exp 	 (0)
2-V2r4 . 2 (0) 	 a21a2 	 26(0)

A21)-{- a 2

./.. ),(201) +vcr, #2 0 ) exp 	 e3( °) 	d6(0)]
2a 26(0)

where b2 (0) E {±1} and z2 (0) within the given limits. Thus:

	

(AO + VT2) 
2 
) 	 A&01) viE.) 

2

)
[
exp 

(
— 

	2a 2(0)
exp 	 22ae2 (0 )

ae2 (0) 

The denominator of Eq. (2.27) is given as:

.02 (0) 2 } = A(10)2 E{z2(0) 2 I 1z2( 0 )1 < 	 + E-02(0) 2 I lz2(0)1 > A2°) }.

For iz2 (0)1 > AO we get:

E(02 (0) 2 I 1z2 (0)1 >

E{ 	 „ 	 f(z2 (0))dz2 (0)}
ii ‘z2 0)1>4,1

	E{
fz2 (0) < — 

20) f(z2 (0))dz2 (0) 	 jr, (0)> ,,,,,,f (z2 ( 0 ))dz2 ( 0 ) ,

c.
—VF2b2 (0)

E{f f (60)) <2(0) +
.141) —V712 b2 (0) 

f (2(0)) d6(0)}

= f (
2

[j( 	 +.\fir2 	4•2(0)) 420) +	 41) \17E2 f (2(0)) d2(0)

+ Ar:207A of4 :0)) d:2:0):A fx01)(201):f (2(0)) de2 (0)]

= 1
_4)

j 	f (60)) de2(0) + f 70) f (6(0)) de2(0)
—00 	 21

	6 6(0) 	 \ 	 Cr e2 (3)

28

E{ 6 ( 0) b2 (	 =
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For 1z2(0)1 < A l°1) we get:

Etz2(0) 2 I 1z2(0)1 < 42°1) } 	 Efa2b2(0)2 2\FC2e2(0)b2(0) + 62(0) 2 I 1z2(0)1 < 4.) }

• a2E{b2(0)2 I jz2 (0)1 < AO}

• 2Vir2E{6(0)b2(0) I 1z2 (0)1 < AO}

• E{2(0) 2 I iz2(0)i < AO),

with:

2 (0)

Elb2 (0) 2 112z(0 )1 < A (291.) } = 	 (-41) + 	 (A/31)(_41\fir2) -:2) )1
(°) 	 Cie2 (o)

as derived before, and:

Ete2(0)b2(0) iz2( 0 )1 <

0- 	(A,+,)2)C exp 	 exp
2o-L (0) 	2o-2e2 (0)

furthermore:

E{62 (0) 2 }
	

.E f f A(2q)-Jcb2(0)2(
0)2 f (62(0)) 42 (0)1

),(2`))-„F-,b2(o)

, 1 	
A,,--,/cri . 	,

2- [Jr A:', )....., 	62(0)41(2(0))d62(0)fir, 

A(2°)+,/cL7
+ I.A(20,)+,(672 (0 ) 2 f (4.2 (0)) de2 (0)

= 	 A2())+VE2
fe20) 2 / (42(0 )) 42(0)

A(2°I) +N/7-42
1 	 fA2°1.)+\/712 	 e(()) 6(0) 2 exp 	 2 ) de2(0)

47T0- 2 (0) J-A(2-'+icr2 	 0r.e2 (0)

ci6(°) (A91.) + Nici2 ) exp

	

-4-Tr 	 2o-2
e2(0)

- (-AO + v/a-,2) exp ( 
(42+ VTt2)  )1

2ct (0) 	•

2

+ (7 2(0) Q 
(— AO + rc-1 2 ) 	 (AO + fcii)

	[
	

(76(0) 	
Q 	

0.6(o)

(A (2°I) + 	 2
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The weights for time interval i = — 1 result similarly only by substituting i 0 by

i = —1 and p12 by P21.

2.7.3 Error Probability

An elaborate computation of the output error probability of the multiuser detector

using dead-zone limiters and linear clippers is given in Appendix A.



CHAPTER 3

PERFORMANCE ANALYSIS

We now want to investigate the performance of the proposed detector, especially its

output error probability compared to other detector schemes.

3.1 Preliminaries

The determination of the output error probability involved simulations and compu-

tations carried out on a SUN SPARC workstation. The simulations assume an

already demodulated stream of information bits at the input of the detector. It

is obtained from a random generator that provides ±1 uniformly distributed.

Figure 3.1 Received asynchronous signal; two-user case

To generate the noise at the output of the matched filters and especially the

correlated noise at the output of the decorrelator, the partitioning depicted in Figure

3.1 is used. It shows the received waveform for the two-user case with respect to bit

0 of user 1. Those signals can be subdivided into four intervals. For each interval,

a random generator generates the corresponding independent white Gaussian noise

components n1R, n1L, n2R, and n2L .

The signal at the output of the matched filters is obtained by Eq. (2.2), the

noise n1 (0) is simply the addition of n iR and niL.

31
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The reason for partitioning the noise becomes apparent when the noise at the

decorrelator output and the corresponding output, Eq. (2.10), have to be simulated.

Because of the partitioning, the correlated noise can be obtained by performing the

matrix multiplication of H -1 , the inverse cross-correlation matrix, and the noise

components, see Eq. (2.7).

In order to obtain the values for the threshold, the expected values of the

decorrelator outputs have to be determined. This is done by time averaging.

This leads us to the outputs of the decision devices according to Eq. (2.11)

and the final decision corresponding to Eq. (2.16). An error event is determined by

comparing the bit at the detector output with the originally generated bit in each

interval i. Appendix E shows the flowchart of the simulation program.

The computation of the error probability is realized according to the equations

in Appendix A. In general MATLAB was used. However, for correlated Gaussian

random variables we used FORTRAN since we have a FORTRAN subroutine that

can handle those cases.

3.2 Probability of Error Curves

Since the numerical analysis of the error probability for the K-user case (where K is

a considerably large number) is computational very intensive, we restrict ourselves to

the two-user case. For the purpose of comparison, the decorrelating and the detector

using hard tentative decisions are also shown in most cases. In the examples the

signal-to-noise ratio for user k is defined as SNRk = a/c /No . The first examples,

depicted in Figure 3.2 to 3.4, are related to our discussion in Chapter 2.4, where we

introduced soft tentative decisions with the goal of improving the output error proba-

bility for low interference compared to the detector using hard tentative decisions

only (see Figure 2.3).
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Figure 3.2: Error probability of user 1 for K = 2, SNR 1 = 4 dB, p12 = 0.2,
P21 = 0.6, e 1 = 0.4

Figure 3.3: Error probability of user 1 for K = 2, SNRI. = 8 dB, P12 = 0.2,
P21 	 0.6, e1 = 0.4
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Figure 3.4: Error probability of user 1 for K	 2, SNR1 = 12 dB, P12 = 0.2,
P21 = 0.6, ei = 0.4

The figures show the output error probability of user 1 for several detector schemes

versus the relative interference energy for fixed SNR1 . The decorrelator alone is a

straight line since the users are uncorrelated at its output. The detectors using soft

limiters bring significant improvement over the one using hard limiters for weak inter-

ference, especially as SNR1 increases. In general, the multistage detectors clearly

outperform the decorrelator and achieve the single-user bound for a relative inter-

ference level above 5dB.

The next figure, 3.5, shows the output error probability of user 1 versus its SNR

for the two-user case. The given ratio between the energy of users 1 and 2 indicates

weak interference. Weak interference means that the conventional detector doesn't

fail completely, but it also means that the detector using soft tentative decisions

performs better than the one using hard decisions since it diminishes the influence of

bad estimates that would otherwise deteriorate the error performance as described

in Chapter 2.4. The linear clipper slightly outperforms the dead-zone limiter. Also,
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given the single-user bound as a reference, it represents the best possible error

performance.

Figure 3.5: Error probability of user 1 for K	 2 , P12 = -- 0.2, P21 = 0.6, e 1 	0.4,
a 2 /a 1 = 0.6

In the next figure, 3.6, all quantities remain the same except that the ratio

between users 1 and 2 has changed. Strong interference is now being considered.

Obviously, in this case the conventional detector exhibits its lack of coping with the

"near-far" problem. It can also be seen that the detector using hard limiters performs

slightly better than that using dead-zone limiters. For strong interference we actually

wish to have a hard limiter anyway, since most of our estimations are correct. In

fact, the dead-zone limiter seems to omit some of the good estimates. Nevertheless

I would still say that the dead-zone limiter is superior because its error performance

varies in a smaller range for the changing strength of interference compared to the

hard limiter. For an error probability of 10 -6 for example, the hard limiter varies by

4dB from 17dB to 13dB whereas the dead-zone limiter varies only by about 1dB.

And still the linear clipper performs better than the hard limiter.



36

Figure 3.6: Error probability of user 1 for K = 2, P12 = 0.2, p21 = 0.6, el = 0.4,
a1/a2 = 0.6

Figures 3.8 and 3.9 give insight into the performance of the detector in a more

practical environment where the delay T between asynchronous users is subject to

changes. They show the average and worst error probability of users 1 versus the

SNR of user 1 and 2. The signature sequences are Gold-codes, shown in Figure

3.7. The delay between them is gradually increased from 0 to T, the period of the

sequences. For each delay the output error probability is computed, and at the end

the average and worst error probabilities are determined. In the scenario of Figure

3.8, where the signal energies of users 1 and 2 are equal, dead-zone limiter and linear

clipper virtually perform identically, which is why only one curve is drawn for them.

Again, the performance of the conventional detector is rather poor, whereas the

average error probability of the soft limiters is very close to the single-user bound.

Compared to the hard limiter, the curves are not too dissimilar since we didn't choose

a scenario with weak interference.



Figure 3.7 Gold-code signature waveforms
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Figure 3.8 Error probability of user 1 for K 2, a1 a 2

This difference becomes more apparent when we consider a scenario with weak inter-

ference, as in Figure 3.9. The linear clipper now outperforms the dead-zone limiter

above SNR1 = 12dB and the gap between soft and hard limiters increased.



Figure 3.9 Error probability of user 1 for K = 2, a 2 /al = 0.6
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CHAPTER 4

CONCLUSION

A multiuser detector in an additive white Gaussian noise, code-division multiple-

access (CDMA) channel was proposed and analyzed. It employed a combination

of a decorrelator and a nonlinear multiuser interference canceler utilizing soft

tentative decisions and adaptively adjusted weights. Because of the adaptability

of the canceler, neither the knowledge of received signals' amplitudes nor training

sequences are necessary, while it is assumed that precise relative delay estimates are

available for all users.

Emphasis was placed on the influence of soft tentative decisions on the output

error performance. The thresholds of those tentative decision nonlinearities, in

particular dead-zone limiters and linear clippers, are adjusted by heuristically

obtained equations that were shown to be very close to the best threshold under the

prospect of minimizing the output error probability. The statistics of the detector

were calculated analytically for the general K-user case. The superiority of this

detector versus the detector using hard tentative decisions was illustrated in figures

for the two-user case.

Future effort should investigate other tentative decision nonlinearities such as

the multilevel quantizer, look into other possibilities to determine the threshold of

the nonlinearities, and attempt to apply other algorithms to adjust the weights of

the canceler.
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APPENDIX A

Error Probability of Detector Using Soft Tentative Decisions

A.1 Dead-Zone

The computation of the error probability for the two-user case clarifies the derivation.

Without loss of generality, consider only user 1:

Pei
	 E 

bi(o),03.(o),61 (0)Prf 7)1(0) 0 b1 (0) b 1 (0),14(0),1 1 (0)}

E [Prfn i (0) > N/ai — Pi Ab i (0) wT(0)6 1 (0)}
2

b 1 (o),b,(o)

Prfni (0) < — v/Tri — pTAb i (0) wT(0)19 1 (0)}1 •

Pr{b2 (-1), b2 (-1), b2(0), b2(0)}.

Random variables in distinct time intervals are not correlated. The joint probability

can thus be written as:

Pr{b2 (-1), b2 (-1), b2 (0), b2 (0)} = P r	 (	 ) b ( —1)1Pr-02 (0), b2 (0)}.

Since all random processes are wide sense stationary, only one joint probability has

to be considered in the sequel. Additionally, the above expression contains pairwise

identical terms, thus:

Pe, 	E Prfn i (0) > \Fri — 14: Ab1(0) w 21' (0)61(0)1Pr {62(0), b2(0 )} 2

b 1 (0),b 1 (o)

Q 
(vcii — Ab1(0)	 (41(01 prl b2(0), b2(0)} 2 ,

b1(o),61(0)	 N0/2

where:
1  r 2

Q (x)	
r27r

=	 12 dt
N

The joint probability Pr-01 (0), b1 (0)} has the following outcomes:
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2.

Q (AO + 7C2)
2 	 ,(72(0)

PrO2 (0) = 1 I b2 (0) = —1}Pr{b 2 (0) = —1}

1.

41

Pr-17)2 (0) = 1 I b 2 (0) = 1}Pr{b2 (0) = 1} 	
1
—Pr{g(z2(0)) = 1 I MO) = 1}
2
1

= —
2
Prf \gt 2 +62 (0) > ATI) }

1
—Pr{62(0) > 41) Va22

2 
(AO — „/Ft2)

Cr6 (0)

1

where g(.) denotes the dead-zone limiter.

3.

Pr{b2 (0) = 0 I b2 (0) = 1}Pr{b2 (0) = 1}

1 /3—
2

7-1-4) < Ni12 +6(0) <

1 	 (—,X0 /CF2	 VEC2

Cr2 (0) 2(0)

Pr-162 (0) = 0 I b2 (0) —1}Pr{b2 (0) = —1}

= 1—
2
Prt—.4) < 	 +62(0) < AO}}

1 (—AO 	 Ft2) 	 (4) 
— 2 Q

(CI)	 ("72 (0)

Pr{b2 (0) = —1 I b2 (0) = 1}Pr{b2 (0) = 1} = see 2.

	

Pr{b2 (0) = —1 I b2 (0) —1}Prfb 2 (0) = 	 = see 1.

4.

5.

6.



Thus, the error probability is:

Pel 	
[Q (\al + Vi-22 ( —P12 — P21) + 

VINO/2

▪ Q V4 + 22 ( — P12( —P12 + p21) — 	+ tvT:1)

\Mop

• Q F:ri \F:r2 (P12 — P21) + 4.) —

\ 2

+ Q 
(Vral + VE-1 2 (P12 + P21) — 41) — tt)i-1) ) 1 1 	 Ao 	

VN0/2 	 4 Q 	°-6(0)

[— (VF-11 + Vci2 ( —P12 — P21) + 4 1) 
+ Q 

N/No / 2

+ Q	
rt I . + virj2 ( —P12 — P21) + 2.1401)

+ Q
jva-7. + \A2(p12 — p21) —147 1) ) -

Vivo /2

(4) vict;) [Q (—AO vEr2 	Q 	- A/a2)1
66(0) 	 Cr.e2(0) 	 )

• Q (k\A:2(0)+ c\i-t2 (—p12 	 74p21) — 	 +4; 1) 

\i/N0 /2

• Q (Vai + a2 (—P12 + p21) +41) +747 1) )

.VN0 /2

+ Q (N
Fri + Ve2(— P12 p21) + w — w21 1 )

v/No / 2

Q 	al + VT.12 (—P12 + p21) 	 — 

\IN() 12

+ Q (
v•rt i + ,./Tf2 (P12 — P21) + 	 tt);1))

VN0 /2

vaT +a2 (p12 + p21) 	 + /41
Q .fi\7012:

42

VN0 /2

+ Q v
+ vidi (- P12 + p21) — 41) )

No /2
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Q 	+ NAT2 (m2 — p2i) — 	 — /41 1) )
VN0/2

vrt i + a2 (m2 + p21) + 	 14-1-1))

JN0 / 2

1 Q (4) — VZC2) Q 

	cr

(AO +1
4 	 Gr6(o) 	 2(0)

[Q VErl N/C72- ( — P12 + P21) + t1411)

VINO / 2

Q Ca1 + NI2 (m2 — p21) + wVi) )
\NV 	2

Q ( N/Fri + viEr2 (m.2 +p2i) — 4) )
\MO

Q g4 + Vrt2 (P12 + P21) W21-1) 

/ 2

1 (,) 41) — Ft  ) [Q 	+ fC-12 	 ( 	+ va2-.)
4 	 (76(o) 	 ort2(o) 	 ci.2(0)

▪ Q 	'fc42 (—P12 — P20)

VIV0 ,/ 2

41 [Q (—AO — vrcl Q (AO — 
(7 2(0) cr2(ü)

▪ [Q, (\gri- ic12( —P12 — P21) — w c)i) )
\MO/2

	.111 VFr2 (—P12 + P21) + 	)+ Q
VN0/2

+ Q 
( \fa17 + vc12( — P12 — P21) — u4T. 1) )

"12

(v7c i. + vE2(p12 p2i) + 4.1]+ Q
/No/2

1Q
+ iFt2) (—AO + irt2)[Q

4 cre2(o) Cr\ 	 2(ü)

Q

2

Q (AO + VF12)]
—

C7C2 (0)



Q ( A2(q) 
4 	 0.6(0)

2
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[Q 	a1 + via 2 (-1012 + p21))

VN0 /2

▪ Q 	+ v/5; (P12 -- P21))
JN0/2

1 rQ 
	e,

+ fcc2) Q (4) + 
4 	 cro) C

[Q 	+ vEr2) Q (A0 + 

r 2 (0)

(76(0 	 )

[Q ( N/Fti 	 evrr2 	 — P21) — wV1)

.N.M.0,/ 2 (76(0) 	)

Q ( \firj. + Ng12 ( — P12 4- P21) + wVi) 
viN0/2

Q \Fir + Vci (P12 — p2i) _ 	)

V/V0 /2

+ 	 Fri + VFC2 (p12 + P21) + wVi) +7411))]
+

VN0/2

Q ( viraT+ v/F12(P12 + P21) --1-14-3: 1) )
+

VN0/2

+ (vrEri + ViT2 (—p12 + p21) — u43. 1) )

/No /2

+
Q ( v/ CET + VA7t 2 ( P 1 2 - P21) -- 43.))

VN0 /2

+
Q (vrcri + VE2 (P12 + P21) + w9]

\/N0/2

1 Q (AO +yrrt2) [Q ( — AO + ijr2)
4 	 cr2 (0) 	 a,e2 (0) 	

Q

+ Q (
vzri, + \To12(912 + p21) 

\Mop

1 [(2 (1 2+0>jr2 ) 	 (4 ) - F\P5i)] 2 .C r 2 (0)

(

4°) + 
cr6(o)
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A.2 Linear Clipper

The computation of the error probability for the two-user case clarifies the derivation.

Without loss of generality, consider only user 1:

Pe, = Ebi(o), L (o),u (o)
 Pr{ k (0) 	 bi (0) 1)1 (0), b i (0), 6 1 (0)1upi 

E 	 [Prfni (0) > VC]. — px Ab1 (0) w1(0)6 1 (0) l b 1 (0)}
b i (o),bi (o)

Prfn i (0) < 	 — pTAbi(0) wT(0)61(0) I 61(0)}1 Pr{b1(0 )}.

Since Pr{b 1 (0)} = 1/4, and the above expression contains pairwise identical terms,

it can be written as:

P„

= 1 E [Prfn i (0) > virt i — pTAbi(0) wT( 0 ) 1 1(0 ), 1z2( 0 )1 < 41) ,
b1(o)

1z2( -1 )1 < 41 1) }

Prfni(0) > \Fri — PTAbi(0) wT(0)61(0), lz2(0)1 < 4,1z2( -1 )1 > ti 1) }

Prfni(0) > NidT: — pi Abi(0) wT(0)b1(0),1z2(0)1 > ATI ) ,1z2( -1 )1 < 414) 1

Prfni(0) > VF11 — gAbi. (0) + wl:(0)61(0), 1z2 > A (20) , lz2( — 1)1 > A (2-1.-1) }]

where:

z2(0) = vi---t2b2(0) +62(0),

z2 (-1) vz12b2(-1)+62(-1),

and:
1 4 2(0) = 1 rig	 4
-

1-ei

(-1)
Pet = 	 E [Prfoi(o) > 	 — Ab1 (0) va 2 [w21 	 b2(0) w"

1)
 b2(-1)]4 b1 (o) 	 A(2-1-

kfir2b2(0) + 62(0)1 < A (2°1) , kgC2b2(-1) 62(-1)1 <



w(o)
plAb i (0) +  21 .V.Ft2b2 (0) + 147 1) ,

A21
< 	 1N/Ft2b2 — + 2 (-1)I > t i) }

pl'Ab i(0) 41) 	"	  T2 b2 (-1),
A21

> Ap, 1,\L2b2(-1) e2(-1)1 	 *I.)}

+ Pr{04(0) > \1671. pfAbi(0) 	 +

fi2b2( 0 ) + 6(0)1 > 	 v4E12b2( —1) + 6(-1)I > A1 1) }] •

Where the noise terms are the following zero mean Gaussian random variables:
(0) 	 (-1)

= ?MO) 1A 	 e2(0) W;1) e2 — 1)

(o)
02 = ni(0) 1 e2 (0)

A21
_(-1)

n1(0) w21 	— 1)
A21

'04 = n1.(0),

w(0) 	 w( -1 )

	

Pei = 	 Pr-{6(0) > ax — p1Ab i (0) + fa2 	 b2(0) + 	 b2(— 1)
4 

bi(o)	 21 	 21

—A — -V-Ft2b2(0) < 6(0) < A2°1) — irt2 b2 (0),

vrc12b2(-1) < e2(-1) < 41 1) — virt2b2(-1)}
w(0)

+ Pr{02(0) > a 1 — pl'Abi(0) 	 (01')	 fc2b2(0) + 4. 1) ,
'21

—4°1) — vq2b2(0) < 62(0) < 	 — N/cb2( 0),

6(-1) <_A21 1) — vrcr2b2(-1) or 62(-1) > 	 — for2b2 (-1)}
w (-1)

Pr{03 (0) > 	 — AT'Abi (0) + 41) 	r i)  iC2 b2 (-1),
'21

62 (0 < —4) — .\/E2b2(0) or 4 .2(0) > 	 — irt2b2(0),

— v/Ft2b2(-1) < 62(-1) < 4 1 1) V672 b (-1)}

Pr{ b4 (0) > Nirti pTAbi(0) 74.1) 141 1) ,

6(0 < —40 — Ft2b2(0) or 4-2 (0) > 	 — frt2b2(0),
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• Pr{02(0) > a x —

Ivq12 b2 (0) + 6(0)1

Pr{03(0) > \ATI —

Ivra2b2 (0) + 4.2(0 )1



and
1 Po,,6 (0) P•o„6 (-1)

K. Po„e2(0) 1 0 X =

0 1

6(0)

62( — 1 )

47

e2(-1 ) < —4 1) — fir2b2(-1) or e2 (	 >	 — \ici2 b2( — 1 ) 1] •

Solving this equation for all possible b 1 (0) = {b2 (-1), b2 (0)F and b2 (i) E {E1} leads

to sixteen terms that are omitted here for brevity's sake.

4

71 {E I I D
foii6(0),E2(-1) (01, 62(0), 62( — 1)) th,bid62(0)42(-1)+

i

4
+ EH ,/ fi,b,e2(0),e,(-1) (02, 4-2(0), 62(-1)) thi)242(0)d4-2(-1)+

Mt

4
• E f f I /03,6(0),6(-1) (037 e2 0), 4-2 ( -1 )) d0342(0)42(- 1)+

i=1
4

• E I f fRi

where the three-dimensional zero-mean jointly Gaussian random variables can be

computed as follows:

fo„6(0),6(-1) (0i, e2(0)) e2 (-1)) =
exp (- 2 xT.K- lx)

(2701110

P„

fo4 ,e2(o),e2(-1 ) (04, 4.2 (4 2 (- 1 )) d0442(0)42(-1 )] ,

Again under the constraint of brevity the regions of integration are:

(0)w 	(-1)1
Di : 10-1 > \F.0 + /312 NiC72 P21Agr2 ,j2011) VCl2 41-1) 0223

—AO — NicF262(0) < 6(0) < AV ) — Va2b2(0),

Nfi2b2(0) < 6(-1) < A -17 1) Vrt2 b2 (0) .]

w (0) 	 to-1

)

-1)M1 	 > ViTtl 1012AF2 + P21Ver2 A(201) NF:(2 A (v Vrt2,

—AO Vrt2b2(0) < 6(0) <	 b2(0)

e2(-1) < —47 1) — Vi 2 b2(0) or 4.2(-1) > 	 — Vci2 b2 (0)]
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	4 )w21 	 714V)   
:Sz 	 [03 > -VF4 p12 a2 P2i N a2 	 a2 	 v a2,

	21 	 21

4-2(0) < —AO — vi2b2(0) or e2(13) > 	 — Ve2b2(0),

viT2b2(0) < 6(-1) < )41 1) — Vi2b2(0)1

wo)
P 	 P j"-4 > „ 	 . 12 a2 	 21 , a2 	 A 2,011-) 	 -Vir2 wT1) _

41 1) v a2

6( 0 ) < — AO — VT2b2(0) or 2 (0) > 	 — 'F2b2(0),

e2( -1 ) < — 414) — \/702( 0) or 4.2(- 1) > )41 1) — Arc12 1)21 0 )1



APPENDIX B

Pairwise Identical Terms

PrIi 1 (0)1b 1 (0)}

Pr{A-1) (z2 (- 1)), 	 , A71) (zif ( — 1)), gV ) (z2 (0)), 	 , gV ) (zic (0))}.

Without loss of generality consider only one random variable:

gnzk(i))	 zk(i)/4
sgn(zk(i))

1. lzk(i)1 <

lzk(i)l <
otherwise.

1,k . 1,2,...,K, l 	 k.

Prfik(i)lbk(i)} = Prflzk(i)1 < Ain

	= Prf—AV — vrrtkbk(i) < 4.k(i) < 	 — frocbk(i)}

= Pr{
—Aj va-iv bk (i) < 6,(i) 4,) + Ngiibk(i)}

	Pr{—g — .070,bk(i)] < ek(i) < 	 Virkbk(i)1}

Pr{—bk (i)I — bk(i)}.

2. l zk (01 >

Pr{19k(i)lbk(i)} = Prfsgn( \AOk (i) ek(i))}

= Prik(igk(i)) > — N/7:rkbk(i) 14(i)}

= PrIbk(i)ek(i)) < Nfirkbk(i) 14(i)}

= 	 — bk(i)}.

The same properties can be shown for all other random variables of the joint proba

bility. Thus:

Pr{bk(i)Ibk(i)} 	 bk(i)}.
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In case of a dead-zone limiters, the first part of the proof becomes zero whereas

the second part remains the same, making the proof also valid for the dead-zone

limiter.



APPENDIX C

Thresholds of Tentative Decision Nonlinearities

The thresholds of the tentative decision nonlinearity are determined heuristically

from the observed values of the decorrelator outputs as:

and

VT..1)- PL[E{lZ1(0 )1}] 2

 E{Z2(-1)I}

(21) - Ph {E {1 Z2 0)1}} 2 
/I 

Ef I Z1 (- 1 )11

and

and

401) _ P21[E{lz1( 0 )1}?
E{Iz2( 0 )1}

	

VC)) 	 PL[E{lZ2(0)1}]2
	12 	E{ 1Z1(01}

As shown in Chapter 3, these thresholds provide good results versus other

heuristically determined thresholds.

Without loss of generality, only the threshold influencing the tentative decision

of user 1 is considered and this only for time interval i = 0. The other cases can be

easily deduced from the following derivation of the above expectation.

Eflz2(0)11 = Eflfct2b2(0) +6(0}

= 1—
2 E{IVEr2b2(0) + 6(0)1 I b2(0) = —1}
1

▪ —2 E{IVT2b2(0) + 6(0)1 I b2(0) =

	

= 1
	

+ 62( 3 )11 +EIVF12 62( 0 )(1]
1• [E{va,-6(0) I — ve2 +6(0) < 0}

62(0) I — 	 62(0) > 0}

▪ E{ — a2— 6(0) 1 -V712 + 6(0) < 0}

E{ a 2 +6(0) I VT2 + e2(0) > OH •

Since 62 (0) is a zero-mean Gaussian random variable:

Efl z2 (0) 	 [f 	 (012 62(0)) f (6(0)) d6(0)
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J;( ----\fit2+ 62(0)) f (6(0)) A2(0)

1672 ( — a2 — 62(0)) f (62(0)) A2(0)
oa

17/7, _, ( Nirt2 + 6(0)) f (62(0)) d62 (0)]

[N/cr (1 	))	 6e2(°) 
exp

 ( 	 )ore2(o) 	 2-Vr 	 2cq2(0)

22
— VF12(2 *\/ -12 	Cr6 (0) exp

 ( 	 )
	0. 2 (0) 	 V-27 	 2.7

Tr/2 

	 2(0)r

- \Q ( 	 °"6(°) exp 	

:

2 

2(7 2

	

(0) 	 AfiTr. 	 2(0)

▪ \ -r2 (1 — Q ( .\ -(2 )) + a'6 ( (3) exp 	 a2
fi 2 

0-e2 (o) 	 V27r 	 2cr 2
6 (0) 

-

2VT2 (1 — 2Q ( vici2 )) 2°-6(°) exp 	 a2 

CI. 2(0 ) 	 V27r. 	 2at(0)
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APPENDIX D

Steady State Values of Weights

Let fzk be the density function of zk(i), and f zkz, the joint density function of zk (i)

and zl(i). For the entries in the matrix K161 (0)6: (0)1 in (2.21), the diagonal elements

in the case of a linear clipper are:

E{b2k (i)} = — 2 	 fzkdzk + 	
4(0 

 fzkdzki2 
bk(i) L i 	L2 A

k

while for the dead-zone limiter:

-"Co l= fzkdzk-

The off-diagonal entries for the linear clipper are:

E{ bk (i)bk(i) }

E{ bk (i )b l (i)} = x,

Ld
sfin(zk(i))3971(zi(i))fz,zidzkdzi

bk (2),N(i)

• 	 J zk(i)  sgn(zi(i))f zkzi dzkdzi
I Z2 A(i)kl

+ zi() sgn(zk(i))t,kz, dzkdz
Z3 4.1) 

+ I f zk(9zicofzk dZkdZi]
Z4	 A	 zi

= 2 
bk(i)	

bk(i)sgn(zk(i))Lkdzk

+ b k Zk(i) hkdzd,
L2 A(i)

and for the dead-zone:

E{bk(i)bl(i)}

E{bk(i)bk(i)} =

"
.1 .1z sfin(zk(i))sgn(zi(i))fzi,zidzkdzi

b k (i),N (i )

2 	 bk(i)sgn(zk(i))fzkdzk.
bk (i)
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For the second expectation in (2.21), Elk. (0)if (0)}, we have in the case of the linear

clipper:

(i)
Efb (O	

1
k(i)} = E [Jr bk(i)sgn(zk(i))fz,dzic +	 bk

zk
 ,;) fzk dzki,

b k(i) 	 *Li 1 	 La	 A(kl

and for the dead-zone:

Elbk(i)4(i)} = 
72
1 E 	 bk(i)sgn(z,,(0)fzk dzk,

bk (i)

where we assume i, j = —1, 0, k, 1 2, ... , K, k 1.

La , j	 1, 2 corresponds to the appropriate intervals of zk, and Zj , j = 1, . , 4

corresponds to the appropriate rectangular regions in the (zk, zi) plane.



	I
Generate info bits; uniformly distributed

Choose SNR

Determine signal energy of user 1 and 2

Start

Define correlation matrix between independent noise

at input of detector and output of decorrelator.

Start simulation

Received signal=info bit*signal amplitude

Generate four independent Gaussian noise components

Output matched filter=received signal+AWGN

Create correlated noise (output of decorrelator)

APPENDIX E

Flow Chart Simulation Program

Figure E.1 Flow chart simulation program
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Continue simulation?
n

Further SNR?
n

Output decorrelator=decorrelated users+
correlated noise

Determine threshold from decorrelator outputs

Soft limit decorrelator outputs

Determine final decision

Update weights

Determine if error occured

Determine output error probability

End

Figure E.2 Flow chart simulation program (continued)
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