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ABSTRACT

REMOVAL OF VOCs FROM AIR BY ABSORPTION AND STRIPPING IN
HOLLOW FIBER DEVICES

by

Tarun K. Poddar

Large volumes of exhaust air streams contaminated with volatile organic

compounds (VOCs) such as toluene, xylene, acetone etc. are discharged into the

atmosphere by various industrial facilities. Common technologies for VOC emission

abatement e.g., activated carbon adsorption, absorption in a liquid, incineration and

catalytic oxidation, have many strengths as well as considerable limitations. In this study,

a regenerative absorption-based removal of VOCs from N2 in an inert, nonvolatile,

organic liquid flowing in compact hollow fiber devices has been developed. The process

eliminates flooding, loading and entrainment encountered in conventional absorption

devices.

Contaminated air/N 2 stream was fed through the tube side of the hollow fiber

module; a suitable inert absorbent liquid having a high solubility for the VOCs and

extremely low vapor pressure was pumped countercurrently over the outside (shell side)

of the fibers. The absorbent liquid was regenerated by vacuum in a separate hollow fiber

membrane-based stripper. Two types of hollow fiber membranes were studied: one having

microporous wall and the other having a nonporous VOC-permeable coating on the outer

surface of a microporous hollow fiber. Criteria for nondispersive operation have been

developed for each case. Experiments were conducted for the absorption of acetone,

methylene chloride, toluene and methanol from the respective VOC-N 2 gas mixture using

two different inert absorbent liquids, silicone oil and Paratherm 114 . Theoretical models

have been developed from first principles to simulate the behavior of absorption as well

as the combined absorption-stripping process.



Highest mass transfer coefficient was obtained for toluene absorption followed by

methylene chloride, acetone and methanol absorption. Studies with multicomponent VOC-

N2 gas mixtures also showed that percent toluene removal was highest followed by

methylene chloride, acetone and methanol. The behaviors of VOC mass transfer

coefficients have been illustrated as a function of the gas and liquid flow rates. A

comprehensive characterization of different resistances making up the overall resistance

in VOC absorption has been carried out to develop a predictive capability and compare

two types of fibers. Relative absorption performance between the two types of fiber for

a given VOC was dependent on the diffusivity of the VOC in the absorbent liquid used.

VOC absorption characteristics were determined and compared for the two absorbents

used. The absorbent-filled porous membrane was found to contribute significantly to the

total mass transfer resistance. Continuous absorption-stripping experiments employing

recycling of the absorbent liquid via regeneration in a hollow fiber stripper were also

accomplished. The overall performance of the combined process appears to be controlled

by stripping due to the low temperature and lower membrane surface area in the stripper.

The difference between only absorption and combined absorption-stripping results was

more pronounced for VOC-absorbent system having higher Henry's law constant and

diffusivity. Simulated results obtained from the mathematical models agree well with the

experimental results for absorption as well as for combined absorption-stripping.
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CHAPTER 1

INTRODUCTION

Volatile organic compounds (VOCs) are any carbon-bearing compound, excluding oxides

of carbon, carbonic acid, metallic carbides or carbonates and ammonium carbonate, which

take part in various photochemical reactions in the atmosphere. Some organic compounds

are not considered VOCs because of their negligible photochemical reactivity. Methane,

ethane, methyl chloroform, 1,1,1-trifluoroethane etc. are typical examples of such

compounds. However, the criterion defining negligible photochemical reactivity is rather

ambiguous. According to the Environmental Protection Agency (EPA), VOCs are organic

chemicals having vapor pressure more than 0.1 mm of Hg at a standard condition of

20°C temperature and 760 mm Hg pressure (Mukhopadhyay and Moretti, 1993). The

name, formula and other pertinent data of various VOCs are available in literature (Shah

and Singh, 1988). VOCs are primarily responsible for smog formation via photochemical

reactions which in turn may cause haze, damage to plants and animal life and a number

of health problems for humans. Exposure to some of the VOCs entails the risk of

developing cancer too.

Large volumes of purge streams (generally nitrogen) and process exhaust air

streams contaminated with numerous VOCs are being discharged into the atmosphere

from various facilities. Petroleum and natural gas production and refinery, mineral

processing, polymers and resins production, pharmaceutical production processes,

agrochemical production units, production facilities for various organic chemicals, waste

treatment disposal units, dry cleaning stores, surface coating process units are a few of

the innumerable sources of emission of VOCs (Moretti and Mukhopadhyay, 1993). As

pointed out earlier, emission of different VOCs from such facilities into the atmosphere

is not only a potential health hazard and a threat to the environment but also a

1
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tremendous financial loss. Clean Air Act Amendments of 1990 require control and

elimination of VOCs from exhaust streams before they are discharged into the

atmosphere.

There are a number of existing and emerging technologies for end-of-pipe VOC

control: thermal oxidation or thermal incineration, catalytic oxidation or catalytic

incineration, flares, condensation, absorption, adsorption, membrane separation or vapor

permeation, biofiltration and UV oxidation. Selection of a technology for a particular

application has to be made after satisfying various constraints that are technological,

process-oriented, operational and economical in nature. Salient features of the different

processes are discussed below.

Incineration is one of the three processes by which almost complete destruction

of VOCs is possible. Flare and catalytic oxidation are the other two processes.

Incineration differs from flaring since no visible flame is present and the combustion

process is more directly controlled and monitored. The most important advantage of

thermal incinerators is their high VOC destruction efficiency and their lack of dependence

on the type of VOC present in the emission streams. Thermal incinerators burn

hydrocarbons vapor and meet part of the system fuel requirement. The process becomes

economically unattractive when VOC concentration is low due to the higher cost of the

required supplemental fuel. Incinerators are also very costly to install because of support

equipments, utilities including high pressure fuel supplies and substantial process control

and monitoring equipment. At a higher level of operating temperature (near 1800°F)

nitrogen oxides may be produced as secondary pollutant which would require further

treatment such as catalytic reduction (Ruddy and Carroll, 1993). Halogenated compounds

in the vent stream are converted to their acidic counterpart. There are also possibilities

of formation of chlorinated compounds like dioxin (Armand et al., 1990).

Catalytic oxidation process destroys VOCs in a manner similar to thermal

oxidation or incineration. The basic difference between the two processes is as follows:
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catalytic oxidation operates at a lower temperatures (700°F - 900°F) compared to that in

thermal oxidation (1300°F - 1800°F). This is possible because the presence of catalyst

reduces the combustion energy requirements. Catalytic incinerators are very effective for

low VOC concentrations (less than 1 percent by volume). Higher VOC concentration may

overheat and deactivate the catalyst. In such cases, dilution air will be required to reduce

the VOC concentration. Catalysts made out of precious metals are vulnerable to

contamination and can easily be poisoned. Lead, zinc, mercury and other heavy metals,

as well as halogenated compounds and hydrogen sulfide, are potential poisons to catalyst.

Heavy hydrocarbons (even in small amounts) have a tendency to be deposited on fixed

catalysts, which causes deactivation or masking. When catalyst becomes less active, the

efficiency of the process cannot be restored just by raising the operating temperature;

replacement of catalyst is essential and it is expensive. Catalytic systems, like thermal

oxidizers, may produce secondary combustion wastes. Halogens and sulfur bearing

compounds are converted to acidic species by catalytic combustion process. These need

to be treated by acid-gas scrubbers. Nonrecyclable spent catalyst materials may require

disposal as hazardous waste. However, unlike thermal oxidation, the lower operating

temperature precludes the formation of nitrogen oxides.

Carbon adsorption is the most widely practiced process for control and recovery

of VOCs from gaseous streams. It can achieve recovery efficiency as high as 99 % or

more. However, achievable recovery efficiency depends on the chemical characteristics

of the VOCs in the emission streams. Generally low molecular weight compounds such

as methane, ethane, propane etc. cannot be removed effectively as they are adsorbed very

weakly on the activated carbon. Carbon adsorption is very effective at low VOC

concentrations. However, the process is quite expensive when organic concentration in

the stream exceeds 0.1 - 0.5 % (Baker et al., 1989).

One of the significant drawbacks of carbon adsorption is its inability to treat

compounds like aldehydes, ketones, etc. Those may result in temperature excursions or



4

development of hot spots in the bed because of the exothermic reaction on the carbon

surface. Persistent operational problems and even fire in the activated charcoal plants have

been reported (Armand et al., 1990). The exothermic adsorption process leads to high

temperatures in carbon beds for higher organic concentrations. Relative humidity should

be lower than 30-50% for carbon adsorption to be effective. For streams with VOC

concentration less than 1 % by volume, a low moisture content is essential because water

molecule competes with VOCs for adsorption sites on the activated carbon. Contamination

of activated carbon and equipment corrosion are endemic. Although dry solvents are not

particularly corrosive, corrosion occurs during steaming to recover the solvent from the

carbon bed. Many solvents hydrolyze in the presence of water or steam at a high

temperature and the activated carbon acts as a catalyst (Kohl and Riesenfeld, 1979).

Therefore, expensive construction materials are often used.

Recovery of VOC by condensation is prevalent in chemical and pharmaceutical

process industries. Condensation of VOC vapors is achieved by lowering the temperature

of the stream; it may also involve raising the pressure of the stream. Condensation is most

effective and efficient for VOCs having boiling points above 100°F at relatively high

concentrations (more than 5000 ppmv). Low boiling VOCs need extreme cooling or

pressurization which increases the operating cost. The primary advantage of refrigeration

is that it produces a high-purity product that can be directly recycled into the product

stream or sold without any further processing. Refrigeration can handle chemicals that

prove troublesome to desorb from carbon or that cause temperature rise on activated

carbon systems. Disadvantages of condensation are the high energy consumption and

associated refrigeration cost required to cool the total gas stream. In order to achieve high

recovery efficiency (90 - 95 %) it is necessary to attain temperatures as low as -100°F

to -200°F. Generally such a low temperature range is achieved by cascade cooling using

more than one coolant. Among various auxiliary equipments often a precooler is used to

remove moisture before the stream enters the condenser. Recovered water from a
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refrigeration unit is generally contaminated with organic solvents and needs further

treatment prior to discharge.

Absorption is the selective transfer of one or more species from a gas mixture to

a suitable liquid solvent. Difference between the actual gas phase concentration of the

species and the gas phase concentration which is in equilibrium with the liquid phase

concentration is the driving force for absorption. Packed tower, spray tower, plate column,

venturi etc. are conventional absorption equipments which provide the necessary gas-

liquid contact area for mass transfer to take place. The recovery efficiency in absorption

is highly dependent on the solvent used (it must have high solubility for the specific

VOC) and the equipment design. For a given system, absorption efficiency can be

increased by increasing the gas-liquid contact area in the equipment, chilling the absorbent

liquid, pressurizing the gas stream and increasing the flow rate of the absorbent. However,

all such improvements add to the cost/or complexities of the process. Absorption system

can be designed to handle a gas capacity of 2000 - 100,000 cfm and VOC concentration

ranges from 500 - 5000 ppmv or higher. The process is more efficient at higher VOC

concentrations. The applicability of absorption is limited by the availability of a suitable

solvent for the VOCs in the gas stream. Moreover a single solvent may not be efficient

for all VOCs present in the stream. The final recovery efficiency of the process is limited

not only by the absorption capacity but also by the subsequent regeneration of VOCs from

the spent solvent. Absorption system also requires various auxiliary units like chiller, heat

exchanger, vacuum units, condenser and several pumps.

Another technique for VOC separation from air involves the use of a permselective

membrane. Nonporous polymeric membranes are highly selective for VOCs (Peinemann

et al., 1986). Gas streams containing 0.05 to 20 percent by volume VOCs can be

effectively treated through membrane separation. Feed stream temperatures up to 140°F

can be tolerated; higher temperature is detrimental for membrane materials. The vapor

laden air at atmospheric or slightly above atmospheric pressure is passed through one side
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of the membrane and vacuum is applied to the other side. Due to the difference in the

partial pressure of VOC across the membrane, the VOC permeates through the latter. The

permeate stream concentrated in the VOC is subjected to condensation for recovery of the

organic solvent.

There are two types of membrane which can be used for VOC separation from

air/nitrogen. One is a VOC-selective membrane which has a high VOC permeability. As

the permeation takes place, the driving force for permeation decreases gradually along the

length of the membrane separator as the feed VOC concentration drops due to permeation.

It is not economically viable to reduce the feed VOC concentration to less than 200-100

ppmv. The second type of membrane, air/nitrogen selective membrane, has other

deficiencies. Air/nitrogen has generally low permeability through most membranes.

Though the driving force for permeation of air/nitrogen is high, the amount of air/nitrogen

to be permeated through the membrane will be enormous. This will increase the

membrane area requirement and capacity of the vacuum pump. Both types of membranes

are considerably permeable to moisture which causes ice crystal formation in the

subsequent condensation stage. However, operating cost of a membrane system is

relatively low because fuel and electricity are required for only the compressor and

vacuum pump. Operation and maintenance requirements are less demanding than in other

technologies. The system is very compact in size and generates no secondary wastes.

One can also use biofilters for VOCs. However, the microorganisms, if available,

cannot handle any arbitrary VOC mixture. Reduction of VOCs to 1-5 ppmv level in air

by bugs, if successful, is going to require an enormous research and development effort.

There is a need for a simple, cheap and reliable technique that can be easily developed

and used at any scale.

In this study, a highly efficient and compact hollow fiber absorber has been

employed to remove VOCs from nitrogen. Volatile solvents have been recovered for

recycle in a hollow-fiber membrane stripper and subsequent condensation to prevent air
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pollution. Hollow fiber membrane contactors can have different configurations. In this

study contactors used are in parallel flow configuration. In general such hollow fiber gas-

liquid contactors have the following merits over conventional contacting equipment.

1. High surface area per unit volume of the contactor.

2. Independent control of gas and liquid flow rates is possible without any

hydrodynamical problems like flooding, loading, weeping etc.

3. Since the gas-liquid contacting is nondispersive in nature, there is no entrainment of

liquids drops with the exiting gas stream. This eliminates the use of any demisting device

which otherwise is essential in case of dispersive contacting devices.

4. Higher volumetric mass transfer coefficient than that in conventional contacting units.

5. Small and compact and can be installed in any angular location.

6. Calculation of gas-liquid interfacial area is straightforward.

7. Modular in nature and easy to scale up or down.

The first application of porous membrane as a gas-liquid contactor was for blood

oxygenation (Esato and Eiseman, 1975): flat hydrophobic Teflon membrane known as

Gore-Tex was used. Subsequently microporous polypropylene hydrophobic hollow fibers

were used for blood oxygenation by Tsuji et al. (1981). There are a number of

applications of hollow fiber contactors for acid gas cleanup. Absorption of different acid

gases in various solvents and aqueous solutions using hydrophobic microporous hollow

fiber devices was studied by Zhang and Cussler (1985a, 1985b). A ten fold increase in

gas separation efficiency in hollow fiber devices over conventional packed columns was

observed by Yang and Cussler (1986). Hollow fiber gas-liquid contactors were also used

for flue gas desulfurization studies (Ogundiran et al., 1988). Karoor and Sirkar (1993)

have studied absorption of pure CO 2, pure SO2 and their individual mixtures in nitrogen

using similar hollow fiber devices. Both physical absorption and absorption with chemical

reactions were carried out. A much lower HTU for hollow fiber devices over

conventional packed columns was reported. Absorption of CO2 with mixtures of glycerol
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and water in various proportions was conducted in microporous hollow fiber modules by

Kreulen et al. (1993). A better performance compared to a bubble column was reported

in terms of kLa values. Hollow fiber devices have also been used to strip volatile species

from water (Zhang and Cussler, 1985a; Semmens et al., 1989).

A schematic diagram of a hollow fiber module is shown in Figure 1.1. A bundle

of hollow fibers made out of hydrophobic polypropylene is inserted inside a metallic shell

and both ends of the fibers are potted with epoxy. These hollow fiber devices resemble

shell-and-tube heat exchangers. In the scheme studied, VOC contaminated nitrogen stream

is passed through the inside (tube side) of the fibers and a nonvolatile, nontoxic, inert

organic solvent is passed countercurrently through the shell side of the module (Figure

1.1). Hollow fibers provide the necessary gas-liquid contact area for mass transfer. VOCs

are effectively removed from air to the desired level and concentrated in the absorbent.

The VOCs are recovered and the absorbent liquid regenerated by applying vacuum (and/or

by heating the spent absorbent). The solutes and the absorbent can be reused since the

latter is nonvolatile. The stripping is carried out in a separate hollow fiber module. For

ultimate destruction of VOCs, the present technique will make it much more efficient than

direct incineration of VOCs in air. First, a much smaller volume of gas is to be

incinerated. Secondly, the recovered VOCs will directly act as fuel requiring no

supplemental fuel-firing.

The VOC absorption studied here employs two novel types of hollow fiber

membrane absorption. In the first type, the fibers are microporous and hydrophobic and

the absorbing organic solvent contacting the nitrogen/air spontaneously wets the pores.

Whether the absorbent liquid will enter the pore or not will depend on the pore size,

pressure differential across the membrane and interaction between membrane material and

the absorbent liquid. The pressure differential at which the liquid breaks through the pores

is described by the well known Laplace equation

= 2(y Ir)cose 	 (1.1)



Figure 1.1 Schematic Diagram of a Parallel Flow Hollow Fiber Module
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Here, Ap is the breakthrough pressure differential, y is the surface tension, r is the pore

radius, and 0 is the contact angle. For a given membrane material - liquid system when

contact angle is more than 90°, pores will not be wetted by the absorbent liquid; as the

contact angle decreases below 90° the tendency of wetting the pores increases. Hence, in

order to achieve nondispersive gas-liquid contacting using a wetting organic absorbent,

the organic absorbent pressure has to be maintained lower than that of the gas stream in

the fiber bore and the gas-liquid contacting interface at the pore mouth is on the gas side

of the fiber.

Figure 1.2 illustrates the partial pressure profile of a VOC being absorbed in such

a configuration. This is unlike conventional hollow fiber gas-liquid contactors where the

pore is usually gas-filled, the absorbent does not wet the hydrophobic fibers, the absorbent

is at a pressure higher than that of the gas and the gas-liquid contacting interface at the

pore mouth is on the liquid side of the fiber (Zhang and Cussler, 1985a and 1985b;

Karoor and Sirkar, 1993). Karoor and Sirkar (1993) also studied nondispersive gas

absorption using an aqueous nonwetting absorbent in the pores of a microporous

hydrophobic fiber and the gas phase at a higher pressure. Since the absorbent was

nonwetting, it had to be introduced by a complicated exchange process (Bhave and Sirkar,

1986, 1987). No such exchange process is used or needed here due to spontaneous

wetting of the pores by the organic absorbent. Jansen et al.(1993) have attempted VOC

recovery from air in microporous membrane contactors using organic solvents which wet

the membrane pores. For such a system, successful stabilization of gas-liquid interface at

the pore mouth at the gas side of the membrane could not be achieved by them because

of a lack of proper pressure differential conditions.

In the second type, the microporous hydrophobic hollow fiber has an ultrathin (-1

,um) but highly VOC-permeable , plasma polymerized nonporous silicone skin on the

outside surface of the hollow fiber. The trace contamination of the feed stream by the

essentially nonvolatile absorbent is, however, reduced here by orders of magnitude since



Figure 1.2 Local Partial Pressure and Concentration Profiles of VOC Being
Absorbed in a Microporous/Porous Hollow Fiber Module
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the thin nonporous skin is a significant barrier to permeation for the higher molecular

weight absorbent molecules. The absorbent may flow through the tube-side or the shell-

side. In this work, absorbent flow takes place primarily in the shell-side to eliminate the

immobilized liquid phase mass transfer resistance in the pores of the microporous support

beneath the nonporous skin. This flow configuration also avoids excessive pressure drop

that the liquid stream may encounter while flowing through the fiber bore. Figure 1.3

illustrates the partial pressure profile of a VOC being absorbed through such a skinned

membrane. The ultrathin plasma-polymerized nonporous silicone skin on the microporous

hydrophobic fibers in the hollow fiber membrane absorber (HFMA) provides additional

resistance to the transport of the desirable gaseous species. These hollow fiber membranes

having an ultrathin skin can provide, however, a new dimension to selective absorption

free of absorbent vapor contamination since direct gas-liquid contact is eliminated under

appropriate phase pressure conditions.

For nondispersive VOC absorption to be effective in such a hollow fiber, the phase

pressure conditions have to be different from that in fibers without a skin. For shell-side

organic absorbent flow and tube-side gas flow, it is preferable to have the liquid and the

gas pressures essentially equal or the liquid pressures should be higher for the skinned

membrane (Figure 1.3). Otherwise, if the gas pressure is higher, gases like oxygen,

nitrogen, etc. will permeate easily through the silicone skin and bubble through the

flowing organic solvent. Such bubbling will increase as the gas pressure increases. This

may or may not be beneficial to the VOC mass transfer process but it will certainly not

be nondispersive. Further, these air or nitrogen bubbles will be saturated with VOCs and

would need to be recycled back to the feed gas stream after disengagement from the

organic solvent at the end of the module. That would reduce the gas scrubbing throughput

substantially.

The skinned fibers being used are intrinsically different from conventional silicone

rubber coating applied onto microporous fibers. The skin developed by plasma



Figure 1.3 Local Partial Pressure and Concentration Profiles of VOC Being Absorbed
in Microporous/Porous Hollow Fibers Having a Nonporous Silicone
Skin on the Outer Surface
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polymerization on the microporous hollow fiber substrate develops an integral bonding

with the substrate which has a much greater resistance to solvent swelling. Conventional

silicone rubber coating will swell in the presence of organic solvents and are likely to

develop leaks and detachment from the substrate leading to performance instability and

deterioration (Kvaerner Engineering, 1993).

A module made out of such fibers is also employed here for the VOC stripping

process. VOC-contaminated absorbent liquid is passed through the shell side of the

module and vacuum is applied on the tube side. Because of the difference in the partial

pressure of VOC, the latter gets desorbed from the liquid phase and permeates through

the highly VOC-permeable silicone skin and gets condensed in the condenser. Figure 1.4

depicts the concentration and partial pressure profile of a VOC being stripped from the

absorbent liquid through the silicone skin.

Selection of the absorbent is a key element in absorption system design. Two

different absorbents are used in this study; both of them are inert, nontoxic, essentially

nonvolatile and water insoluble. One is silicone oil 50 cs and the other one is

Paratherem, a heat transfer oil. Different VOCs were employed in this study: one alcohol

(methanol), one ketone (acetone), one chlorinated VOC (methylene chloride) and one

highly nonpolar aromatic solvent (toluene). Broad classes of VOCs are therefore covered

in this study.

The absorption process is often used for higher VOC concentrations in the gas

stream and is accompanied by other polishing processes such as activated carbon

adsorption or catalytic oxidation located downstream. Here the possibility of using

absorption as a polishing technology for VOC removal has been explored. Studies were

therefore conducted with low feed VOC concentrations (maximum of 1000 ppmv).

This thesis involves both experimental studies as well as development of

mathematical models for the processes employed. Development of theoretical models for

absorption as well as stripping have been presented in Chapter 2. A generalized



Figure 1.4 Local Partial Pressure and Concentration Profiles of VOC Being
Stripped from Absorbent in Hollow Fiber Module
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absorption model was developed from first principles. Solution was obtained in an

analytical form which was ultimately employed in a numerical solution to obtain the

simulated results. Solutions for absorptions in porous fiber and skinned fiber were

obtained as special cases of a generalized solution by applying appropriate conditions. The

overall performane of the combined absorption-stripping process was also simulated by

combining the individual absorption and stripping model. This simulation has the

capability of performance checking with respect to various parameters like stripping

temperature, stripper area, applied vacuum, etc.

Experimental aspects of the work are discussed in detail in Chapter 3. Basic

absorption studies were conducted using four different VOCs and two absorbents

identified earlier for both types of hollow fibers. Closed loop simultaneous absorption and

stripping experiments were also conducted with four different VOCs and two different

absorbents. In such a simultaneous absorption-stripping process, the absorption was

conducted using a module containing porous fibers while stripping was carried out in the

module made out of the skinned fibers. No attempt was made to carry out experiments

and analyses of the stripping process independently. The role of the stripping process in

the overall performance of the combined absorption-stripping has been explored.

Different parameters are needed as input to the mathematical model to obtain

simulated results. Three such important parameters are:

1. Henry's law constant for the different combinations of VOCs and absorbents.

2. Diffusivity of VOCs in the absorbents liquids.

3. Permeability of different VOCs through the nonporous silicone skin of skinned fibers.

None of these quantities are available in open literature. There is no adequate

theoretical means to predict them either. These quantities were determined via

independent experiments. Henry's law constants were measured by the variable volume

headspace technique. Diffusivity of a VOC in the absorbent was measured indirectly by

carrying out sweep gas-driven VOC permeation from nitrogen through an absorbent-filled
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immobilized porous membrane. Permeability values of VOCs through the nonporous

silicone skin were estimated by simple standalone permeation experiments for each

individual VOC with the skinned fiber. Experimental techniques for each such

measurement are discussed in detail in Chapter 3 while the theoretical basis for the

estimation of each quantity is outlined in Chapter 2. The results of all experimental

observations are presented and discussed in Chapter 4. This comprises results on Henry's

law constant, diffusivity of different VOCs in absorbent liquids, permeability of each

VOC through the silicone skin, absorption of different VOCs in two different absorbents

using both types of fibers and combined absorption-stripping of VOCs. Model simulation

results along with experimental results are also presented in this chapter. Experimental

results in tabular form, a few sample calculations and computer programming codes are

given in Appendix.

Finally two exploratory approaches were also investigated briefly. They require

systematic study in future. Absorption/stripping phenomenon for VOC cleanup can be

employed in a cyclic fashion. In such a case the process behavior in each cycle would be

transient in nature. A preliminary unsteady-state absorption experiment was conducted to

demonstrate the nature of the breakthrough curve of the transient absorption process. Few

experiments were also conducted by appending the combined absorption-stripping process

downstream of a membrane permeation (vapor permeation) process using higher VOC

concentrations. The objective in these experiments was to demonstrate the possibility of

using absorption-stripping process as an efficient polishing technology in combination

with other processes for VOC cleanup. These experiments are discussed in detail in the

recommendation part of Chapter 5.



CHAPTER 2

MODEL DEVELOPMENT AND THEORETICAL CONSIDERATIONS

This Chapter deals with the development of mathematical models for VOC absorption and

VOC stripping in a hollow fiber module, numerical solution strategy and other theoretical

considerations needed to interpret the experimental results. As described in Chapter 1, the

hollow fiber module for absorption or stripping consists of a bundle of hollow polymeric

porous fibers inserted in a metallic tube which forms the outer shell of the module (Figure

1.1). This device resembles a 1-1 shell-and-tube heat exchanger as far as the shell-and-

tube configuration is concerned. The only difference is that the fibers are bundled in a

random fashion in a hollow fiber module while tubes are arranged in a defined

geometrical pitch in a shell-and-tube heat exchanger.

Two different types of fibers were used for absorption / stripping experiments. One

type has a symmetric porous wall; the other one is a similar fiber having an ultrathin

nonporous silicone skin on the outer surface. In the present study gas flows through the

tube side (inside the fibers) and absorbent liquid flows through the shell side for both

types of fibers. This flow arrangement is preferable to the other flow configuration,

namely gas in the shell side and absorbent liquid in the tube side to avoid excessive

pressure drop of the viscous absorbent liquid. There are other mass transfer considerations

as well.

The nature of the fluid flow through the tube side is relatively well defined. In

case of hollow fibers, the entry effects on mass transfer and momentum transfer are

negligible due to the large length to diameter ratio and very low value of Schmidt

numbers (Skelland, 1973) for gas a stream flowing through the tube side. Parabolic

velocity distribution in the radial direction is assumed for laminar flow as the Reynolds

number for gas stream through the tube side is below 300.

18
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The nature of the liquid flow through the shell side is rather complicated,

especially for a bundle of fibers not uniformly distributed. In an ideal contactor each and

every fiber inside the module should be wetted and surrounded by the liquid passing

through the shell side. Depending upon the packing density some of the fibers may be

exposed to a lower velocity or higher velocity or almost stagnant liquid because of the

so-called bypassing. However, the chances of poor contacting and bypassing would be

rather low in the present system because the absorbent liquid has a natural tendency to

wet the fiber surfaces and the shell-side flow rate is quite low so that nonuniformity in

flow pattern is quite unlikely.

Shell-side flow situation in cylindrical assemblies has been analyzed by various

authors. In the analysis of heat transfer in a flowing fluid outside a bundle of tubes,

Happel (1959) assumed a coaxial annular flow envelope surrounding each tube. The effect

of shell wall in the analysis had been considered by Schmid (1966). In their three

dimensional analysis of heat transfer around a bundle of tubes arranged in a regular pitch,

Sparrow et al. (1961) had concluded that the interaction between the tubes could be

neglected if the space in between is not small. For a densely packed shell-and-tube heat

exchanger, a maximum difference of 40 % in calculated Nusselt numbers was obtained

by them while analyzing the problem using a 3 D model and a model assuming no

interactions between the tubes.

In the present work, Happel's (1959) free surface model was used to analyze the

flow situation on the shell side. This model has been successfully used in analyzing

reverse osmosis in a hollow fiber module (Gill and Bansal, 1973) and SO 2 absorption

from air into water in hollow fiber contactors (Karoor and Sirkar, 1993).

In Happel's model it was assumed that each and every fiber is surrounded by an

equal volume of liquid envelope in the form of a coaxial annulus. The boundary of the

annulus is known to be the free surface across which no mass, momentum or energy

transfer takes place. The volume of the fluid associated with each fiber can simply be
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obtained by dividing the shell-side void volume by the number of fibers present in the

module. This model assumes no fiber-fiber interaction and is applicable to packing

densities less than 0.5. The fibers are assumed to be distributed in a regular fashion. The

analysis based on a single fiber can be extended to the whole device (Karoor and Sirkar,

1993). The longitudinal cross-section of a single fiber along with the associated fluid

envelope and its free surface is shown in Figure 2.1 (Gill and Bansal, 1973). The outside

radius of the free surface can be obtained from the following expression

One can easily obtain the expression for shell side void volume fraction as

where NE is the number of fibers present in the module, r s is the inside radius of the shell

and r o is the outside radius of the fiber.

2.1 Generalized Absorption Model

Development of a generalized model for predicting numerically the VOC concentration

at the outlet of an absorption module made out of porous fibers as well as porous hollow

fibers having an ultrathin nonporous silicone skin is presented next. The solutions for

individual cases can be obtained by invoking the appropriate conditions.

2.1.1 General Solution Approach

To develop a generalized model it was assumed that the pores of the hollow fiber are

filled with an imaginary fluid (Figure 2.2). At the beginning it could be assumed that this

fluid is different from the gas stream flowing through the tube side and the absorbent



Figure 2.1 Absorbent-Filled Annular Space Associated with a Single Hollow Fiber



Figure 2.2 Cross Section of the Skinned Hollow Fiber Wall with Annular
Space Filled with Absorbent, Pores are Assumed to be Filled
with an Imaginary Fluid
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liquid flowing through the shell side. The distribution coefficient of absorbing species i

between gas phase and fluid phase inside the porous membrane is H u while the same

between absorbent liquid phase and fluid phase inside the porous membrane is H a. For

a direct contact between gas and absorbent liquid , the distribution coefficient of species

i is It. The module is discretized along its length L into n small segments each having

an equal length of Az = (L/n) (Figure 2.3). Conservation equations for the VOC were then

solved to obtain the unknown radial concentration profiles for the first segment for both

tube and shell side from known and assumed boundary conditions at one end of the first

segment (here the gas outlet location). From the concentration profiles thus determined,

expressions of average concentrations were obtained for the other end of the first

segment; the latter became the known conditions for the next segment. This approach was

continued till the last segment of the module was reached (i.e. z--4.). The end condition

(namely, the VOC concentration in N2 at the inlet of the module) thus obtained was

compared with the actual known inlet concentration. If these two did not match, then the

assumed condition (i.e. VOC concentration in N2 at the outlet of the module) was changed

and the procedure was repeated till the two inlet concentrations matched.

The concentration profiles and the expressions for average concentration for the

tube side as well as the shell side for the first segment were developed analytically. Two

special cases were developed from the generalized solution. In case I (absorption in

porous fiber) the imaginary fluid is nothing but the absorbent liquid in the shell side and

there exists no silicone coating. In case II (absorption in skinned fiber) the imaginary fluid

phase inside the porous membrane is same as the gas phase flowing through the tube side.

Absorbent liquid in shell side cannot come in direct contact with gas flowing through the

tube side because of the presence of the silicone skin on the outside surface of the fiber.

The mathematical conditions for these two cases are discussed in section 2.1.5.3 and

2.1.5.4. These analytical solutions were used to develop the final numerical simulation for

the absorption process in the module.



Figure 2.3 Schematic Diagram of Absorption Module for Numerical Simulation
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2.1.2 Tube -Side Velocity Profile

For tube-side gas flow fully developed laminar flow is assumed. The resulting velocity

profile is

2.1.3 Shell-Side Velocity Profile

For fully developed laminar flow through the cylindrical annular space (Figure 2.1), the

velocity profile in the positive z direction is given by (Rappel, 1959)

In deriving the above equation the following boundary conditions were assumed:

at r = re, v. = 0 (no slip condition);

at the free surface, r = re, dvzs/dr = 0 (no momentum transfer).

2.1.4 Assumptions

The following assumptions are made to obtain the governing equations of VOC mass

balance and their solutions.

1. Steady state and isothermal conditions.

2. Constant viscosity of the absorbent liquid.

3. Constant diffusivity of the VOC in the liquid absorbent.

4. Fully developed concentration profiles in both tube side and shell side.
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S. No axial diffusion in both tube side and shell side.

6. No convective transport of VOC in the fluid-filled membrane phase.

7. No pressure drop for the absorbent liquid flowing through the shell side.

8. Negligible solubility of N2 in absorbent.

9. Very low concentration of VOC in the gas phase. Hence, molar flow rate of gas

through the fibers essentially remains constant.

10. Henry's law is applicable.

2.1.5 Model Development

Using assumption 1 the differential equation of mass balance for the VOC species i in the

stagnant fluid inside the pores of the porous membrane phase can be written as

The above equation describes the diffusion of VOC through the fluid filled pores of the

porous membrane. Although diffusion between the bulk fluid and the fluid inside the

pores is generally two dimensional in nature, diffusional process is primarily one

dimensional at high porosity (greater than 10%) (Keller and Stein, 1967). The effective

diffusivity in the membrane phase D, is defined by (Prasad and Sirkar, 1990)

Following boundary conditions are used to solve the membrane phase equation:

A flux continuity at the same boundary can also be assumed
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A set of nondimensional variables are introduced now so that the solutions can be

obtained in a nondimensional form

The nondimensional forms of equation 2.5 and the boundary conditions are then:

The solution of equation 2.10 is

Using assumptions 1 and 5, the differential mass balance equation for VOC species i for

the tube side is written as



28

Different methods of obtaining the solution of the above type of equation (known as the

Graetz problem in heat transfer) have been discussed in literature. Rigorous series

solutions were obtained for constant wall heat flux and constant wall temperature in the

analogous heat transfer problem for a parabolic velocity profile. A complete set of

eigenvalues and eigenfunctions for the Graetz problem were presented and the solution

was extended to arbitrary wall temperature and wall flux variation (Sellars et al., 1956).

Solution was also obtained for assumed polynomial concentration profiles (Skelland,

1973). However, in the present problem, neither constant wall mass flux nor constant wall

concentration could be assumed throughout the length of the module. The equation has

been solved numerically by finite difference technique for constant average velocity

(Karoor and Sirkar, 1993) to interpret the experimental results. Due to the pressure drop

in the gas phase, a constant average gas velocity throughout the module length may not

be a reasonable assumption unless the overall pressure drop across the module is

insignificant compared to the inlet pressure. In the present work, an analytical approach

has been taken via the assumption of similar concentration profiles throughout the length

of the fiber to obtain the solution. As discussed in section 2.2.1, first the equation is

solved for the first segment of length Az using the following boundary conditions:
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Here,	 is unknown. While solving the equations numerically a guess value for Ci g.out

will be assigned for iterative convergence to the concentration at the inlet of the module

(Cig,in). The conservation equation (equation 2.16) and boundary conditions (equations 2.17

through 2.19) can be rewritten in nondimensional form as

The tube-side gas velocity profile is obtained from equation 2.3. Substitution of this with

a negative sign (as the gas flows in the negative z direction) into equation 2.20 leads to

the following equation:

Here 'ref' corresponds to the conditions at which gas flow rates are measured i.e. ambient

temperature and atmospheric pressure at the module exit:
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For a fully developed concentration profile, 04) ig lat) is assumed not to be a function of

(Skelland, 1973). Hence, with the help of boundary conditions (equations 2.21 and

2.22), the solution of equation 2.24 can be obtained as

Boundary condition 2.19 cannot be used directly to find out the integration constant c 2 .

It was obtained from the mass balance of species i for the segment Az as follows (Bird

et al., 1960):

After nondimensionalizing the above equation and making necessary rearrangements, the

expression for c2 is obtained as (where Az=L/n):

Hence the concentration profile of component i in the tube side becomes

Substituting the expression for M from equation 2.28 at 1 =1, the above equation can

be written as
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The species conservation equation for species i on the shell side is similar to that in the

tube side:

The above equation has to be solved for the following boundary conditions:

After substituting the expression for shell-side velocity profile from equation 2.4 into

equation 2.34 and nondimensionalizing it, the following conservation equation and

boundary conditions are obtained:
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The expression for the gradient in boundary condition 2.38 has to be found out from flux

continuity relations at the interfaces. It is possible to write down two flux continuity

equations at two different surfaces:

Here  j is the hypothetical concentration of VOC in the porous membrane phase in

equilibrium with the VOC concentration in the absorbent liquid phase:

With the help of equations 2.41, 2.42, 2.12 and 2.14 the following relations can be

obtained:



where
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Equation 2.37 can be solved in the manner by which the equation 2.24 was solved. The

solution can be written at = as

where
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Equation 2.49 can be further rearranged as follows:

where

Concentrations of species i at three interfaces can be obtained by solving equations 2.32,

2.46 and 2.61:

35
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2.1.5.1 Average Gas Phase Concentration at the Inlet of the First Segment The

average concentration at the inlet of the first segment Az can be easily obtained by simply

equating the convective rate of transfer of i in the z direction with the diffusive rate of

transfer of the same species in the radial direction at the boundaries of the segment

volume:

Substituting the expression of (a4) isia) j„. / from equations 2.22 and 2.28 into equation

2.66 and rearranging it with the help of equations 2.25 and 2.26 the expression for

average gas phase concentration was obtained as

2.1.5.2 Average Liquid Phase Concentration at the Outlet of the First Segment

Average liquid phase concentration at the outlet of the first segment can be obtained in

the way the average gas phase concentration at the inlet of the segment was obtained.

Equating the convective transfer rate with diffusional transfer rate at the specific radial

location over the boundaries of the segment volume the following relation was obtained:
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Substitution of equations 2.45, 2.50 and 2.60 into equation 2.68 and rearrangements yield:

2.1.5.3 Case I - Absorption in Porous Fibers In case of a porous fiber there is no

coating of silicone membrane; therefore, Ix = h o , 6, = 0 and a = oc (equation 2.48).

Absorbent liquid wets the fiber and pores are filled with the same (Figure 2.4). In other

words, the fluid inside the pore is identical to that in the shell side. Hence, Ha = 1. H11

is dimensionless Henry's law constant of species i between the gas phase and the

membrane phase (filled with the absorbent liquid) which in turn is simply H i , the Henry's

law constant between the gas and liquid phase. Further Dif = Da and equation 2.6

becomes

It is also possible to show that the interfacial concentrations at t o and	 are identical.

2.1.5.4 Case II- Absorption in Skinned Fibers In this case absorbent liquid cannot fill

the pores due to the presence of the nonporous skin at the outer surface of the fiber and

hence, the absorbent liquid cannot come in direct contact with the gas phase. Pores are

filled with the gas phase (Figure 2.5). Hence, H 11 = 1. Further H i2 is the dimensionless

Henry's law constant of VOC species between membrane phase (gas phase) and liquid

absorbent phase , which is basically H i . Further, D if will be equal to D ig , and equation

2.6 becomes
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Figure 2.4 Case I, Cross Section of the Porous Hollow Fiber Wall with Absorbent-
Filled Annular Space; Pores are also Filled with Absorbent Liquid
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Figure 2.5 Case II, Cross Section of the Skinned Hollow Fiber Wall with Absorbent-
Filled Annular Space; Pores are Filled with Gas
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where D iu is the diffusivity of gaseous species i inside a straight pore, the expression for

which is given in section 2.3.5.

2.1.5.5 Pressure Drop in the Gas Phase When gas flows through the fibers, it

encounters substantial pressure drop even at lower gas flow rates because of the extremely

small diameter of the fibers. Due to this pressure drop, volumetric flow rate of gas stream

per fiber (<V,.>) through the fiber is reduced along the length of the module. For laminar

flow regime, pressure gradient in the negative z direction is given by Hagen-Poiseuille

equation:

Since the VOC concentration in the gas stream is extremely low, it is reasonable to

assume that the molar flow rate of gas stream remains essentially constant. Applying ideal

gas law (i.e. replacing <V t.> with pout<Vout>/p) and integrating equation 2.72, the pressure

at the upstream of the segment Az (where Az=L/n) can be written as

2.1.5.6 Algorithm For Predicting the Gas Phase VOC Concentration at Module Exit

The following algorithm is employed to calculate the outlet gas phase VOC concentration

in ppmv as well as the ratio of outlet to inlet gas phase VOC concentration (both in

ppmv) from the analytical expressions obtained in the section 2.1.5:

1. From the geometrical information of the module A, B, D, a',b',c',d',e' and S were

calculated. (D ig).f was calculated for atmospheric condition. <V 1> ref was calculated

by dividing measured volumetric gas flow rate by the number of fibers in th

absorption module.
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2. From the known value of pout, p was calculated at the entrance of the module

using equation 2.73 and n=1. Inlet gas phase VOC concentration in ppmv was then

converted into gmol/cc .

3. A value of gas outlet concentration in ppmv was assumed and converted to

gmol/cc.

4. 4igiout was obtained by dividing c iao., (step 3) by cigi„ (step 2). (1)4i„ was also

calculated by dividing cto, (gmol/ml) by cixout (step 3).

5. From known N„, and <11„„,>, p was calculated at the inlet of the first segment of

length Az (Figure 2.3) from equation 2.73. Arithmetic average of p and N ut was

then calculated for the segment.

6. The value of (i) ig.0„,, was modified at the average gas pressure calculated in step 5.

7. Digwas calculated from equation 2.104 for the segment at the average gas pressure

in the tube side. <Vt> value was also estimated at the average pressure of the

segment. Once D ig and <V t> values are known, A. and A ig were calculated from

equations 2.25 and 2.26 respectively.

8. X and Y were estimated from equations 2.33 and 2.62 respectively.

9. Appropriate values of a, P and Q were estimated from known parameters and the

case under consideration (porous or skinned fiber).

10. Depending on the case, nondimensional interfacial concentrations were calculated

from equations 2.63 through 2.65.

11. M and N were calculated for the required case from equations 2.28 and 2.50

respectively.

12. 4> and <C> were estimated for the particular segment from equations 2.67 and

2.69 respectively.

13. Cso„, and 4  were replaced by 4> and <4il> respectively for the next segment

of equal length Az.

14.	 Steps 5 to 13 were repeated till the module entrance was reached.
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15. <Oig> calculated for the last segment was compared with the known value of

If the two values matched within the given tolerance, then step 17 was executed,

otherwise step 16 was executed.

16. Steps 3 through 15 are repeated with a different value of outlet gas phase

concentration in ppmv.

17.	 The assumed value of outlet concentration is the predicted outlet concentration in

ppmv. 4> will be the ratio of the predicted outlet concentration in ppmv to

inlet concentration in ppmv.

2.2 Model For VOC Stripping

The VOC stripping operation was carried out in the skinned fiber module. VOC-

contaminated absorbent liquid flows through the shell side of the module and vacuum was

applied through the tube side of the module (Figure 2.6). A simpler approach has been

taken in analyzing the stripping process. The flow configuration inside the tube under

vacuum is not known for the present system. The VOC concentration in the tube side

would be extremely low because of the extremely low absolute pressure. Hence, a

constant average VOC concentration in the tube side could be reasonably assumed. The

shell-side analysis is done via Happel's free surface model (1959).

2.2.1 Assumptions

The following assumptions are made in obtaining the governing equations of species

balance and boundary conditions:

1. Steady state and isothermal conditions.

2. Constant viscosity of the absorbent liquid.

3. Constant diffusivity of VOC in liquid absorbent.

4. Fully developed concentration profiles in the shell side.

5.	 No axial diffusion in the shell side.



Figure 2.6 Cross Section of the Skinned Hollow Fiber Wall with Absorbent-
Filled Annular Space; Vacuum in the Tube Side for Stripping
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6. No convective transport of VOC in the gas filled membrane phase.

7. Negligible pressure drop for the absorbent liquid flowing through the shell

side.

8.	 N2 solubility in absorbent liquid is negligible.

9	 Constant average concentration of VOC in the tube side for the whole module.

10. An overall qjö. for the composite membrane (porous membrane plus nonporous

skin).

11. Henry's law is applicable.

2.2.2 Model Development

The mass conservation equation for species i in the shell side is identical to that for

generalized absorption (equation 2.34). At the free surface, mass flux is equal to zero:

At the outside surface of the coating, diffusional mass transfer rate is equal to the

permeation rate through the composite membrane of thickness b.
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Equation 2.34 can be solved using the boundary conditions 2.74 through 2.76 in a similar

way discussed in Section 2.1.5. In order to maintain similarity with the absorption model,

equation 2.34 will be solved in nondimensional form. New nondimensional variables are

introduced for liquid phase concentrations in the stripper. Other nondimensional variables

used here are the same as in equation 2.9:

Equation 2.75 can be rearranged in nondimensional form as

The solution of shell side concentration profile is similar to equation 2.49 which can be

written at .----t as

From equations 2.82 and 2.83, the following expression for wall concentration is obtained:
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where Y is exactly the same variable described in equation 2.62.

2.2.2.1 Average Liquid Phase Concentration at the Outlet of the First Segment

Average liquid phase concentration at the outlet of the stripper is obtained by equating

the convective rate of molar transfer of species i across the segment volume of length Az

with the diffusional rate of mole transfer of the same species across the radial boundaries:

Substituting equation 2.84 into equation 2.85, the expression for average liquid phase

concentration at the exit of the control volume can be obtained as

Average constant concentration of VOC in the tube side under vacuum can be related to

the absolute partial pressure p is as

From equations 2.86 and 2.87, the following condition for effective stripping can be

obtained:
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The above equation can be used to approximately calculate the minimum pressure needed

to be maintained in the vacuum side. For the whole stripper module, cO0„ = 1. Assuming

partial pressure of VOC species i in the vacuum side is nothing but the absolute pressure

the following condition can be obtained from equation 2.88 and can be used to calculate

approximate vacuum level to be maintained for stripping:

2.2.2.2 Algorithm for Predicting Liquid Phase VOC Concentration at the Stripper
Exit Following are the steps employed to calculate the liquid phase VOC concentration

at the exit of the stripper module.

1. From the known parametric information of the module, quantities A, B, D,

a',b',c',d',e' S and as for the stripper module were calculated from the relevant

equations.

2. For the small segment of length dz, value of Y was calculated.

3. <Osil > was estimated from the known value of trio,.

4. V. value was replaced by <V il > for the next segment and step 3 was repeated

till the exit of the module was reached.

5. > obtained for the last segment is the outlet concentration of species i at the

exit of the stripper module.

6. Actual outlet concentration can be obtained by multiplying <d)s il > for the last

segment with the actual inlet concentration.

2.3 Theoretical Considerations for Estimating Physicochemical Parameters

As discussed in sections 2.1.5.6 and 2.2.2.2, prediction of outlet concentration of VOC

requires several inputs. Three different quantities, namely, diffusivities of VOCs in
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absorbent liquids, Henry's law constants for different VOC-absorbent systems and

permeability of VOCs through the nonporous silicone skin, needed to be determined by

independent experiments. A theoretical outline for estimating those quantities are

discussed below.

2.3.1 Estimation of VOC Diffusivity in Absorbent Liquid

Knowledge of VOC diffusivities in absorbent liquid and in absorbent liquid-filled

membrane pores (case I) is essential along with other physicochemical properties to obtain

numerical values from the mathematical model. If one of the two quantities is known, the

other can be calculated from equation 2.70.

Diffusivity of a particular species in a liquid phase is generally calculated from

the widely used Wilke-Chang equation (Reid et al., 1977). Diffusivities of different VOCs

in sunflower oil were estimated using Wilke-Chang equation for calculating mass transfer

coefficient (Hutter et al., 1994). Wilke-Chang equation has a few limitations for

application to the present system being studied. This equation is valid for aqueous liquid

phases and does not give good prediction for organic solvents (Reid et al., 1977).

However, there are other equations to predict the diffusivity of organic diffusing species

in nonaqueous systems; those have good agreement with experimental data. Different

equations available in literature have a common feature namely, the inverse

proportionality of liquid phase viscosity with diffusivity of the species (Reid et al., 1977).

For higher liquid phase viscosity (higher than that of water), the inverse proportionality

between viscosity and diffusivity does not hold good. Both silicone oil and Paratherm oil

have higher viscosity (see Table 3.1). Hayduk and Cheng (1971) investigated the effect

of solvent viscosity extensively and proposed that for nonaqueous systems D a = Auq. Here

the constants A and q are particular for a given solute. Several investigators (Hiss and

Cussler, 1973; Davis et al., 1967; Lusis, 1974) have shown that the diffusivity of a solute

in a viscous liquid varies inversely with the viscosity of the liquid raised to the power of
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some exponent the value of which depends on the solute-solvent system.

Since there is no adequate and reliable information on diffusivity of VOCs in

nonaqueous viscous liquids, it was decided to measure diffusion coefficients of various

VOCs indirectly from the system under investigation.

The experimental technique for measuring the diffusivity of a VOC in the

absorbent liquid is discussed in Section 3.9. The system employs essentially

countercurrent permeation of VOC in sweep gas mode through the absorbent liquid

immobilized in the pores of the porous wall of the membrane. Comparison of Case I in

Section 2.1.5.3 with the present mode of countercurrent sweep gas permeation system

reveals that the present system is related to the calculation procedure for the absorption

operation of Case I (absorbent liquid inside the pores) which may be employed here with

N2 gas instead of the absorbent liquid passing through the shell side. Keeping this in

mind, the equations obtained in the VOC absorption analysis under Case I were modified

with appropriate conditions for the sweep gas permeation of VOC through the absorbent

filled ILM.

Since in the shell side there is sweep gas (N 2) instead of any liquid, O il used in

section 2.1.5 is replaced by O isp. According to Figure 2.7 it is clear that = Hi2 = H i

(dimensionless Henry's law constant between the absorbent liquid and N 2). There is no

coating, so and a = cc. At the boundary , = o, and it is possible to write

Hence, the concentration gradient at ij = 1 (equation 2.14) can be modified to

Using equation 2.88 and 2.89 and other conditions mentioned above, one can find out the

interfacial concentrations from equations 2.63 and 2.64 as follows:
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Figure 2.7 Absorbent Liquid is in Immobilized Condition inside the Porous Membrane Wall
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2.3.1.1 Algorithm For Calculation of D o Following are steps of calculation of D il

value.

1. From the geometrical information of the module A, B, D, a',b',c',d',e' and S were

calculated . (D ig) f was calculated for atmospheric condition. <Vt>,, f was calculated

by dividing measured volumetric gas flow rate by the number of fibers in the

absorption module.

2. From the known value of N it , p was calculated at the inlet of the module

employing equation 2.73. Outlet and inlet gas phase VOC concentrations in ppmv

were then converted into gmol/cc.

3. A value of D a was assumed.

4. •tpigout was obtained by dividing c ixout by cis;„ (step 2).	 was also calculated by

dividing cispon (gmol/ml) by c isin (step 2).

5. From known pout and <V.?, p was calculated at the inlet of the first segment

of length Az (Figure 2.1) from equation 2.73. Arithmetic average of p and p.„t

was then calculated for the segment.

6. The value of O itio.t was modified at the average pressure calculated in step 5.

7.	 Dig was calculated from equation 2.106 (given later) for the segment at average

pressure in the tube side. <Vt> value was also estimated at the average pressure

of the segment. Once the values of Dig and <V t> are known, h and A ig were

calculated from equations 2.25 and 2.26 respectively.
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8. X and Y are estimated from equations 2.33 and 2.62 respectively .

9. The values of a, P and Q were estimated from known parameters with

appropriate conditions as discussed in section 2.3.1 .

10. Nondimensional interfacial concentrations were calculated from equations

2.92 and 2.93 with appropriate conditions as discussed in section 2.31.

11. M and N were calculated for the required case from equations 2.28 and 2.50

respectively (with proper conditions).

12. <0 ig> and <0 ;„p> were estimated for the particular segment from modified

equations 2.67 and 2.69 respectively as discussed in section 2.3.1.

13. 04,t and O iso. were replaced by <0 4> and <Ctsp> respectively for the next

segment of equal length Az.

14. Steps 5 to 13 were repeated till the module entrance was reached.

15. <04> calculated for the last segment was compared with the known value of

If two values matched within the given tolerance, then step 17 was executed,

otherwise step 16 was executed.

16. Steps 3 through 15 were repeated with a different value of D a.

17. Assumed value of D a was the required diffusivity of VOC species i through the

liquid absorbent.

2.3.2 Estimation of Henry's Law Constants

Henry's law constant was measured by a static headspace technique described in the next

Chapter (section 3.8). The theoretical basis of this technique is discussed here.

Determination of Henry's law constant by static headspace technique is based on

the principle of establishing thermal and chemical equilibrium within the enclosed

sampling vessel when solute is present at a low concentration. A simple material balance

can be written for the equilibrium of a known volume of sample, V0, having initial

concentration of species i, Co as (Markelov and Biesenberger, 1984):
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Here Vg is the headspace volume in the sample vial. Cu and Cis are equilibrium

concentrations of VOC in the liquid and headspace respectively. It is assumed that there

is no evaporation loss of liquid matrix during the establishment of equilibrium.

Equilibrium concentration of species i in the gas and liquid phase is related by an

equilibrium constant namely, Henry's law constant

Considering Vo is equal to V 1 , substitution of equation 2.95 into equation 2.94 and

rearrangement gives

Headspace concentration Cig is directly proportional to the GC peak area:

where Rf is the response factor. Hence, equation 2.96 can be further written as

Equation 2.98 suggests that a plot of 1/A1, versus (Vg/Vi) will give a straight line with a

slope, Rig. and a y-intercept, H, R 1IC10. If the y-intercept is divided by the slope, a value

of H i can be directly obtained as expressed by equation 2.99:
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Experimental procedures are discussed in section 3.8. Henry's constant is a strong

function of temperature. To minimize the error between simulation and experimental data

it is necessary to find out the value of H ; at the temperature of experiments. At a constant

pressure, the temperature dependence of Henry's law constant can be expressed by

(Robbins et al., 1993; Hutter et al., 1994)

where T is the temperature in K, Au; and BHi are constants depending on the solvent-

solute combination and need to be found out from experimental data.

2.3.3 Theoretical Development for Calculation of VOC Permeance through the
Composite Membrane

The permeation rate of a species i through the composite membrane can be written as:

Here, q0/60 is the averaged permeance of the species through the composite membrane

of thickness 60. A. is the membrane area based on the outside diameter of the porous

substrate and Aq is the overall concentration difference between the feed and permeate

sides along the whole module. In the above equation, the resistances to mass transfer

through the gas films on both sides of the membrane are neglected. Due to lower VOC

concentrations being used, it is further assumed that VOC permeance (qJO.) will be

essentially independent of VOC concentration. Average concentration difference AC ; is

taken as the logarithmic mean concentration difference across the module. For

countercurrent permeation this quantity can be written as
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Here Cifi and C if0 are the inlet and outlet concentrations of species i in the feed stream

while Cipi and C,. are the corresponding ones in the permeate stream.

The experimental procedure is discussed in section 3.6. In the stand-alone mode

of permeation experiment (Guha et al., 1992), one side of the permeate stream

corresponding to the concentration cip; is closed. Hence, three out of four concentrations

in equation 2.102 are known. The mole fraction y ii of species i in the permeate at the

closed end corresponding to molar concentration q v; is expressed as a function of the

selectivity (a) and the feed outlet mole fraction x i. corresponding to the molar

concentration Cilo due to the existence of cross flow at that location:

For the present system of study, the VOC concentration in the gas stream is extremely

low (maximum 0.001 mole fraction). Hence, for all practical purposes 1-x i. and 1-y e can

be replaced by unity. Equation 2.103 can then be simplified to

Here y is the ratio between the permeate pressure and the feed pressure.

2.3.3.1 Steps to Calculate VOC Permeance through the Composite Membrane

Following are the steps of calculation for VOC permeance through the composite (porous

substrate plus nonporous silicone skin).

1. A value of a was assumed.

2. From the experimental information available for the feed side inlet and outlet, w i

was calculated from VOC material balance. N 2 permeation rate was also

calculated.
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3. From the experimentally known value of x i. , y, was calculated from equation

2.103 or 2.104.

4. Cifi, Cif°,	 Ci, were estimated in gmol/cc from ppmv or mole fraction

unit. (ACk was calculated from equation 2.102.

5. q0/60 i.e. averaged VOC permeance was calculated from equation 2.101 using the

value of w i calculated in step 2.

6. Applying the same method, q 0/80 for N2 was also calculated.

7. Selectivity (a) was calculated by dividing q c,/öo for species i by q./6,, for N2.

8. a value calculated in step 7 was compared with the previous value of a.

9.	 If two values matched, then q,,/6 0 in step 5 is the required averaged VOC

permeance value; otherwise, steps 3 to 8 were repeated with a new value of a.

2.3.3.2 Calculation of VOC Permeance through the Silicone Skin Calculation steps

for obtaining VOC permeance through the composite membrane (gas-filled porous

substrate plus silicone skin) is discussed in section 2.3.3.1. Once the overall permeance

of VOC through the composite membrane is known, the permeance through silicone skin

can be calculated from the following relation, obtained from the resistances- in-series

model:

Here (rs)h, is the logarithmic mean radius applicable to the porous substrate.

2.3.4 Estimation of VOC Diffusion Coefficient in Nitrogen

Diffusion coefficient of VOC in a binary gas mixture (VOC-N 2) at low or moderate

pressures was calculated from the following equation (Reid et al., 1977)
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Here p is the absolute pressure in psi unit. The expressions for cr iN2 and QD are given in

the above reference.

2.3.5 Diffusion of Gaseous Species Inside the Pores of Porous Membrane .

Transport of gas molecules through the pores (which can be considered as capillary tubes)

has been studied extensively by means of kinetic theory of gases. Three types of

mechanisms were proposed for gas transport through capillaries: (1) Knudsen flow, (2)

slip flow and (3) viscous flow. Depending on the relative magnitude of the pore radius,

rp and the mean free path, X. of the gas molecule, the gas molecules passes through the

capillary by means of any of the three mechanisms stated above. It has been suggested

that (Liepmann, 1961) when rp/X., <0.05, Knudsen type of flow is predominant. Slip flow

occurs in the range of 0.05<r p/X.<50 (Stahl, 1971; Rangarajan et al.,1984) and for rA n

>50, viscous flow occurs (Present, 1958). For the present study in case II (absorption in

coated fibers) pores are filled with the gas and information on diffusivity of VOC

molecules inside the pores is required to find out the effective diffusivity of VOC in the

gas filled porous membrane (D in, in equation 2.71). For the system under study, the rp/Xm

ratio is near about 0.1; according to various flow regimes discussed earlier, slip flow

situation is most likely to predominate inside the pores. The expression for diffusivity in

the slip flow regime can be obtained from the flow equation given by Rangarajan et al.

(1984). After doing necessary unit conversions the following diffusivity expression is

obtained for the gaseous species i:
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where c i , the mean speed of the molecule, is given by

Here R is the universal gas constant in cc-atm/gmol-k unit.

2.3.6. Densities of Absorbent Liquids

Density values for absorbent liquids are required to estimated the liquid sample volume

from known weight of the sample. Densities for both absorbent liquids were expressed

as a function of temperature, t, (°C) by a regression procedure employing the data

available from the manufacturers (see section 3.1).

For silicone oil 50cs

For ParathermTM heat transfer oil

2.4 Simulation Steps for Combined Absorption and Stripping

Numerical simulation for combined absorption and stripping can be easily carried out with

the help of individual absorption and stripping models discussed in Sections 2.1.5 and 2.2

respectively. The steps are as follows.

1.	 With an assumed value of f ain (at the arbitrary point 0 in the recycle line, Figure

2.8), Oisoui and^aout were estimated for a given 	 and <V i>ref from section

2.1.5.6.



Figure 2.8 Schematic Diagram for Simulation of Simultaneous Absorption-Stripping
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2. Equating (OAout to O ils , 1„, cra ,c,„, was calculated from section 2.2.2.2 for given <V,>

(Figure 2.8).

3. Calculated cb :Lout was compared with the assumed value of Co, at the point 0 (see

Figure 2.8). If the two values matched, then O isout obtained in step 1 would be the

required Oigiout for the combined absorption-stripping process.

4.	 If two values did not match, then steps 1 to 3 were repeated with e Ain= sil,out



CHAPTER 3

EXPERIMENTAL

3.1 Chemicals

Two absorbents were used in this study:

1. Silicone oil (200 fluid, Dow Corning, Midland, MI) of 50 cs kinematic viscosity

and an approximate molecular weight of 300;

2. Paratherm heat transfer fluid (NF m, Paratherm Corporation, Conshohocken,

PA) having a viscosity of 30 cp and an approximate molecular weight of 350.

Additional information and other properties of these two absorbents are given in Table

3.1.

3.2 VOC-Nitrogen Gas Mixtures

A number of VOC-N 2 gas mixtures were used ; details are provided in Table 3.2.

3.3 Hollow Fibers and Modules

Two kinds of hollow fibers were used in the experimental studies; the first one was

microporous hydrophobic Celgard' X-10 made of polypropylene. The second one was

a micropoprous polypropylene hollow fiber having an ultrathin plasma-polymerized

nonporous silicone coating on the outside surface. The detailed properties of these two

types of fibers are given in Table 3.3. Three parallel flow shell-and-tube type modules

were fabricated using such fibers. The geometrical characteristics of the modules are

given in Table 3.4.

3.3.1 Fabrication of Hollow Fiber Modules

Shell-and-tube type parallel flow modules were fabricated using the hollow fibers
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Table 3.1 Properties of Absorbents

Properties Absorbent liquid

Silicone oil Paratherm NF TM

Chemical name Polydimethylsiloxane -

Molecular weight 300(avg) 350(avg)

Density 0.98 @ 77° F 0.87 gm/cc @ 77° F

Viscosity 50 cs @ 77° F 35 cp @ 77° F

Vapor pressure < 5 mm Hg @ 77° F 0.001 mm Hg @ 100° F
0.026 mm Hg @ 200° F

Surface tension - I	 28 dynes/cm @ 77° F

Flash point 605° F -

Pour point -94° F -45° F

Melt point -42° F -

Refractive index 1.402 1.4768

Appearance Colorless, clear liquid Colorless, clear liquid

Other
properties

Nontoxic, nonbioactive,
nonstinging to skin,
high oxidation resistance

Nontoxic, FDA/USDA
approved for use in
food and
pharmaceuticals
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Table 3.2 Specifications of VOC-N2 Gas Mixtures

VOC VOC
concentration

in feed
(ppmv)

Cylinder
Pressure (psig)

Type of
Analysis

Source

Acetone 993 2000 Primary
standard

Matheson Gas
Products

Methylene
chloride

999 2200 Primary
standard

Matheson Gas
Products

Methanol 514 1500 Primary
standard

Matheson Gas
Products

Toluene 236 900 Certified
standard

Matheson Gas
Products
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Table 33 Properties of Different Hollow Fibers Used in Experiments.

Type of
fibers

Trade
name

Fiber ID Fiber OD Mean pore
diameter

Maximum
allowable

temperature

Bubble
point

pressure

Internal
burst

pressure

Celgard'
X-10

porous
fiber

Celgard
X-10R

100 ,um 150 ,um 0.03 ,um 75 - 80 °C 150 psi 220 psi

,
Celgardb

Coated
fiber

Celgard
X-10R

.

240 ,um
-

300 pm
coating membrane

thickness: 1-2A

0.03 ,um 75 -80° C - 220 psi

— 

a Hoechst Celanese Corporation, Charlotte, NC.
b AMT Inc., Minnetonka, MN.



Table 3.4 Geometrical Characteristics of Different Hollow Fiber Modules Used

Module
No.

Type of
fiber

Fiber
ID

(cm)

Fiber
OD
(cm)

Effective
length
(cm)

Shell
ID

(cm)

No. of
fibers

Void
fraction

(%)

Mass transfer area
(cm)

Mass transfer area
per unit volume

(cm2/cm3)

+ ++ + ++

1 Celgard*
X-10

0.01 0.015 35.7 0.60 600 62.5 1009.40 672.93 100.00 66.67

2 Celgard 0.01 0.015
X-10

31.0 0.37 102 83.23 149.00 99.33 44.70 29.80

3 Celgard**
with a

silicone
skin

0.024 0.030 20.5 0.80 300 57.81

____	

579.62 463.7 56.25 45.00

Hoechst Celanese SPD, Charlotte, NC.
** AMT Inc., Minnetonka, MN.

Based on outside diameter
++ 	 Based on inside diameter
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mentioned above. The shell was made from a 1/4" OD stainless steel tube having a male

run tee connected at each end. The epoxy used for potting the fibers was Armstrong C-4

epoxy with D activator (Beacon Chemicals, Mt.Vemon, NY) mixed in the ratio of 4:1 of

epoxy : activator.

A predetermined number of hollow fibers were counted carefully and then

arranged in the form of a bundle on a table. Both ends of the bundle thus made were tied

with a thread. This bundle was carefully inserted inside the shell by pulling the thread

connected to one end of the fiber bundle through the shell. Insertion of the fiber inside

the shell was done by first immersing the shell in water to reduce friction. The fiber

length was selected such that about 2 inch (5 cm) length of fibers remained outside the

end fittings at both ends of the module. The fibers were then dried by applying vacuum

for about 24 hrs.. The ends of the fittings were first sealed with silicone rubber (RTV

118, General Electric, Waterford, N.Y) which was allowed to cure for about two hours.

The epoxy and activator were next mixed well in the right proportions and the mixture

was degassed by applying vacuum for about 4 to 5 minutes. This mixture was poured

through the shell side opening at one end till the lower portion of the male run tee was

full. The epoxy was allowed to cure for about 10 hours by keeping the module vertical.

The other end of the module was potted in a similar manner. When the epoxy was cured

completely, a leak test was performed employing water under 20 psig (239.22 kPa)

pressure in the shell side for one hour.

Modules were also prepared with silicone coated Celgard fibers for absorption and

stripping experiments. A similar procedure was adopted for fabrication of the module.

However, one additional potting layer of silicone rubber, RTV 615 A & B ( GE Silicones,

Waterford, NY) was essential as epoxy does not make a good enough bonding with the

silicone coating of the fiber. This layer was put in between the other two layers of

pottings (Figure 3.1). The modules are shown in a photograph (Figure 3.2).
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Figure 3.1 Three Layers of Pottings in Silicone-coated Fiber Module



Figure 3.2 Photograph of Different Hollow Fiber Modules Used in Experiments
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3.4 Experimental Setup and Procedure for VOC Absorption

The setup for VOC absorption experiments is depicted in Figure 3.3. At the beginning of

the experiment, a newly made module employing porous hollow fibers was soaked in the

absorbent liquid (silicone oil or Paratherm heat transfer fluid) by pouring the liquid in the

shell side to wet the fibers. A specific VOC-containing N2 gas was passed through the

tube side of the module at a predetermined controlled rate. The gas flow rate was

controlled and monitored by means of an electronic mass flow transducer (model 8141,

Matheson, E. Rutherford, NJ) and a flow controller (model 8209, Matheson, E.Rutherford,

NJ). However, the actual gas flow rates were measured manually by means of a bubble

flow meter connected to the stream exiting from the process. A pressure of about 3 psig

(122.01 kPa) was maintained at the tube side outlet by adjusting the back pressure

regulator. Higher pressure in the gas phase than that in the liquid phase was essential for

immobilizing the gas-liquid interface at the pore mouth of the inner tube wall.

In the case of a coated fiber-based module, absorption experiments were initiated

by pumping the absorbent liquid directly through the shell side of the module. Because

of the presence of the ultrathin nonporous silicone skin on the outer surface of the fiber,

liquid absorbent in the shell side can not come in direct contact with the gas stream

flowing through the fiber bore. Gas side pressure was kept at atmospheric level in order

to maintain the condition for nondispersive gas liquid contact.

Experiments were started by pumping the fresh absorbent liquid from a glass

container through the shell side of the module by means of an electronic metering pump

(10313M, LMI, Milton Roy, Acton, MA). A pulse dampener was used at the discharge

side of the pump to eliminate flow pulsations. Liquid flow rates were controlled by

adjusting the stroke-length and the stroke-frequency of the pump. Once the liquid flow

rate was adjusted, concentration measurement of the exit gas stream from the absorber

module was started via the gas chromatograph (GC) (3400 STAR, Varian, Sugarland, TX)

having a flame ionization detector. Exit gas from the GC was vented out through a

laboratory exhaust hood. A specific experimental run was continued until the gas outlet



Figure 3.3 Schematic Diagram of Experimental Setup for VOC Absorption
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composition was essentially constant as detected by the GC. Most of the measurements

were carried out at 23° C ± 2° C.

The effects of three parameters, namely, the gas flow rate, the liquid flow rate and

the feed composition on VOC absorption performance were studied. In a set of

experiments one of the parameters was varied by maintaining the other two parameters

constant.

3.4.1 Complete Regeneration of Absorbent Liquids for Further Use

Regeneration of spent absorbents were essential for subsequent absorption experiments

with fresh absorbent liquids. Once a set of absorption run was complete, the spent

absorbent liquid was stored in a container. A batch of spent absorbent liquid was then

taken in a closed stainless steel vessel leaving sufficient vapor space over the liquid

surface. A vacuum connection was provided at the top of the vessel and a slight air was

allowed to leak through a crack-open dip-pipe so that the air could bubble through the

liquid hold-up under the action of vacuum. The combination of vacuum and air bubbling

helped VOC to get stripped out from the liquid. The system was generally run for 20 to

24 hours to ensure complete stripping. To make sure the VOC was completely stripped,

a sample of the liquid was analyzed through GC-Headspace arrangement (see Section

3.8). No peak in the GC output ensured the complete regeneration of absorbent liquid.

The analyses were also carried out by bubbling nitrogen zero gas at a very low flow rate

(2-5 cc/min) through the sample and injecting the gas to GC.

3.5 Apparatus and Procedure for Combined Absorption-Stripping of VOC

The schematic diagram of the experimental setup for combined absorption-stripping is

shown in Figure 3.4; a photograph of the actual experimental setup is shown in Figure

3.5. Regenerated absorbent liquid was pumped (MP) from a small glass container (ASV)

to the shell side of the absorber module (HFM) for absorbing the VOC from VOC-N2



Figure 3.4 Schematic Diagram of Experimental Setup for Combined Absorption and Stripping



Figure 3.5 Photograph of Experimental Setup for Combined Absorption-stripping of VOCs
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feed gas mixture flowing through the tube side of the module countercurrently with

respect to the absorbent flow. The absorbent exiting the absorber was connected to the

shell side of the stripper hollow fiber module. A vacuum pump (VP) was connected to

the tube side of the stripping module via a condenser. The purified absorbent liquid from

the stripper was recycled back to the absorbent circulation vessel (ASV). This vessel was

closed tightly to avoid any VOC escape from the holdup liquid. The gas outlet from the

absorber was connected to the GC via a back pressure regulator. The GC outlet was

connected to a bubble flow meter for manual measurement of gas flow rate. Finally the

exit gas was vented out through a laboratory fume hood.

Before starting an experiment, the shell side of the absorber module was first filled

with the absorbent to wet the membrane in the case of porous membranes without a

nonporous coating (for a membrane having a nonporous coating, there is no need to fill

the shell side with absorbent liquid before hand). Then the VOC-N2 gas mixture flow was

switched on at a predetermined flow rate through the tube side of the absorber module.

The constant gas flow rate was maintained and monitored by means of an electronic mass

flow transducer and controller. The tube side gas pressure at the outlet of the absorber

was maintained at 3 psig (122.01 kPa) above the liquid phase pressure for porous

membranes by adjusting the back pressure regulator. Liquid phase pressure was essentially

atmospheric. Absorbent circulation pump was then started. First the liquid flow rate was

measured manually by collecting the liquid in a measuring cylinder over a definite period

of time from the outlet of the stripper module. Once the liquid flow rate was set, the

stripper outlet liquid line was connected to the absorbent circulation vessel. The volume

of liquid inside this vessel was in excess over the amount required to fill the pump

suction line and the hold-up volume of the setup. The volume of the circulation liquid

was kept at the lowest possible level in order to reduce the time required to achieve a

steady state. After some time, the absorbent storage vessel may be bypassed. The VOC

concentration of exit gas was monitored in the GC every hour. Time taken to attain a
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steady state composition of VOC at the absorber outlet was found to be approximately

7 to 8 hrs. The experiments were repeated for different gas flow rates as well as liquid

flow rates. After the end of a single run liquid sample was collected from the circulation

vessel in a cold trap (sample bottle kept in dry ice) for analysis purposes and was kept

in refrigerator. Fresh run was started after making up the absorbent liquid volume in the

circulation vessel. Continuous runs as long as 120 hours were carried out without any

problem.

3.6 VOC Composition Measurement in the Gas Phase

VOC concentrations in the gas phase were measured in a Varian 3400-STAR gas

chromatograph (Varian, Sugarland, TX) using a flame ionization detector (FID). The

response from FID was recorded in a built-in integrator in the GC. Certified standard

(toluene-N 2) and primary standard (acetone-N 2, methylene-chloride-N 2, and methanol-N 2)

gas mixtures from Matheson (E. Rutherford, NJ) were used for calibration. The gas

mixture was injected into the GC column through a 6-port gas sampling valve (Valco,

Houston, TX). Figure 3.6 shows the positions of the valve in its load and injection mode.

Dry air at 80 psig pressure was used to drive the solenoid valve in the actuator of the 6-

port valve in the GC. A 6'x 1/8" column (Varian Analytical Instruments, Sunnyvale, CA)

having 0.3 % carbowax 20 M on Carbopack c support was used for analysis. Operating

parameters used for various VOC-N 2 mixtures are listed in Tables 3.5 and 3.6. Calibration

of different VOC composition levels was done by mixing the VOC-N 2 mixture and

nitrogen-zero gas (99.99 % pure) in predetermined ratios by means of two electronic mass

flow transducers (Figure 3.7). The calibration curves for different VOCs are shown in

Figures 3.8 through 3.11. In the calibration gas concentrations used had the units of ppmv

(cc of VOC in 106 cc of gas at 23±2° C).

3.7 Experimental Setup and Procedure for Determination of VOC Per-
meance through the Nonporous Silicone Skin of Skinned Hollow Fiber

The experimental setup for determination of permeance of the coating in the coated fiber

is illustrated in Figure 3.12. The VOC-N 2 gas mixture was passed through the shell side



Figure 3.6 Schematic Diagrams of The Six Port Valve in Its (a) Load and (b)
Injection Position.
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Table 3.5 Operating Parameters of GC for Detecting Various VOCs

VOC
Column

Temperature(°C)
Injector

Temperature(°C)
Detector

Temperature(°C)

Acetone 150 220 250

Methylene chloride 100 150 200

Methanol 150 160 220

Toluene 150 220 250

Table 3.6 Operating Parameters for Analytical Gases Used in GC

Gas Flow rate (cc/min) Pressure (psig)

Gas 1 for FID Air - zero 300 60

Gas 2 for FID Hydrogen - zero 30 40

Carrier gas Nitrogen - zero 30 80

Table 3.7 Operating Parameters of Headspace Autosampler

Parameters time

Platten equilibration time 0.5 min

Sample equilibration time 35-40 min

Mixing time 0.1 min

Mixing power 1

Stabilization time 0.5 min

Sample vial pressure 3.5 psig

Pressurization time 0.15 min

Pressure equilibrium time 0.15 min

Loop fill time 0.12 min

Loop equlibration time 0.15 min

Injection time 3-6 min



Figure 33 Schematic Diagram of Experimental Setup for Calibration
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Figure 3.8 Calibration of Acetone-Nitrogen Gas Mixture (Concentration in ppmv vs.
GC Peak Area)
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Figure 3.9 Calibration of Methanol-Nitrogen gas Mixture (Concentration in ppmv vs.
GC Peak Area)
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Figure 3.10 Calibration of Methylene Chloride-Nitrogen Gas Mixture (Concentration
in ppmv vs. GC Peak Area)
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Figure 3.11 Calibration of Toluene-Nitrogen Gas Mixture (Concentration in ppmv vs.
GC Peak Area)



Figure 3.12 Schematic Diagram of Experimental Setup for Determination of Permeability of VOC through the Silicone Skin
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of the hollow fiber module from a gas mixture cylinder. The gas flow rate was controlled

and monitored by means of a mass flow transducer and a controller (MFC). The gas

pressure in the shell side of the module was maintained by a back pressure regulator

(BPR) connected to the shell side outlet of the module. The exit gas from the back

pressure regulator was injected into the GC. The outlet gas from the GC was vented

through the laboratory hood via a bubble flow meter. One end of the tube side of the

module was connected to a pressure gauge and the other end was connected to the GC

and a bubble flow meter in series before it was vented into the exhaust hood.

For a specific VOC-N2 gas mixture and a fixed shell side pressure, the feed gas

flow rate and the pressure were adjusted such that an appreciable flow of gas was

available at both feed outlet and permeate outlet i.e., at the shell side outlet and the tube

side outlet respectively. The feed outlet and the permeate flow rates were then measured

by means of bubble flow meters connected to the respective gas streams. The permeate

VOC-enriched gas composition was measured in the GC at frequent intervals. Once a

steady composition of VOC in the permeate gas was monitored in the GC, the feed outlet

composition was measured by injecting the feed outlet gas into the GC. Typical time

required for obtaining steady state varied between 3 to 4 hrs.

3.8 Determination of Henry's Law Constant

Dimensionless Henry's law constants for acetone, methylene chloride, methanol and

toluene were determined independently in two different absorbent liquids (silicone oil and

Parathermmi heat transfer fluid). Various experimental steps are described below.

3.8.1 Stock Solution Preparation

A fixed volume of absorbent liquid was first chilled in a refrigerator. A particular liquid

VOC (HPLC grade) was also chilled in a similar way and then a known volume of it was

added to the absorbent liquid to make a solution of the VOC of known concentration in
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the liquid absorbent. This solution was kept stirred for about 10 minutes. The solution

thus prepared was stored in the freezer as a stock solution. All solutions and samples were

prepared and handled under low temperature to minimize error from VOC losses through

volatilization.

3.8.2 Sample Preparation

Sample vials of 22 ml size (Tekmar, Cincinnati, OH) were used for all experiments

needed for determination of Henry's law constant. The exact volume of any vial was

measured by obtaining the difference in weight of an empty vial and that of the same vial

filled with water and then dividing the weight difference by the density of water. The

volumes of the sample vials were found to be essentially constant, 22 ml ± 0.1 ml. A

sample vial was prepared in the following way. The stock solution bottle was taken out

of the refrigerator and kept inside an open container filled with ice. An empty sample vial

was also kept in an open container filled with ice in such a way that most of the surface

area of the vial was in contact with ice. A small volume of the stock solution of known

concentration was next transferred quickly from the stock solution bottle to the chilled

sample vial. The vial was then sealed immediately. The exact volume of the sample

transferred was measured by taking the difference in weight of the empty vial and that

of the vial along with sample and then dividing the weight difference by the density of

the sample. The sealed vial was kept at room temperature for a prolonged period of time

so that the sample could eventually attain the room temperature before it was allowed to

equilibrate at a relatively higher temperature (w.r.t room temperature) within the

headspace autosampler.

3.8.3 Determination of Optimum Equilibration Time

The vapor space available above the liquid in a particular sample vial is referred to as the

`headspace'. The concentration of analytes increases in the headspace with time. In most
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cases at a specific temperature after sufficient time the concentration of analytes (here

VOCs) reach a steady state condition known as equilibrium. When a sample is in an

equilibrium state, analyte concentration within the headspace is at its maximum and does

not fluctuate much with heating time. In order to find out the equilibrium time for two

different sample matrices (silicone oil and Paratherm) sample vials having the same

amount of sample were exposed to different heating times at the same temperature. Figure

3.13a shows a typical time vs. area count plot of acetone in silicone oil and in Paratherm.

Similar studies were carried out for other VOCs as well. Plots for toluene and methanol

are shown in Figure 3.13b. About 40 to 50 minutes of equilibration time was found to be

good enough for analysis with maximum sensitivity and highest precision.

3.8.4 Experimental Technique for Henry's Law Constant Measurement

Various sample vials were prepared (as discussed in Section 3.8.3) by adding different

known volumes of samples having a constant concentration of a particular VOC into

different vials. The samples were then kept exposed to room temperature for sufficient

time so that samples could attain the room temperature. A particular sample vial was then

loaded into the headspace autosampler (model 7000, Tekmar, Cincinnati 3 OH). The

headspace autosampler was interfaced with a gas chromatograph (3400-STAR, Varian,

Sugarland, TX) by means of an interfacing cable. The operating conditions of the

autosampler are listed in Table 3.7.

Operational sequence of the headspace autosampler is shown in Figure 3.14. An

incoming supply of carrier gas (N 2) is split into two paths. The upper path provides a

constant source of flow-controlled carrier gas (CG1) to the GC column via a six port

valve (6PV) in the autosampler. The pressure gauge PG1 reads the column back pressure

of GC. The lower path of carrier gas (CG2) provides pressurization gas for the sample

vials. This supply is both pressure regulated and flow controlled. In the standby mode (a),

the pressurization valve (PV) is open allowing a continuous stream of clean N2 gas (CG2)



Figure 3.13a Time vs. Headspace VOC Concentration (In Terms of Area Count)
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Figure 3.13b Time vs. Headspace VOC Concentration (In Terms of Area Count) for
Different VOCs



Figure 3.14 Various Operating Sequences of Headspace Autosampler
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to sweep the sample loop and exit through the sample needle. This constant flow of N2

gas prevents any airborne contaminants from entering the system through the needle as

well as provides a cleaning flush of the sample loop to minimize carry over. The sample

attains equilibrium at the platen temperature in this mode of operation.

In the vial pressurization mode (b) the sample vial is elevated onto the sample

needle, piercing the septum top cap. The incoming flow of carrier N2 gas (CG2)

pressurizes the vial to the pressure selected by the regulator (in this case 3.5 psig (125.45

kPa)). This pressure can be read in pressure gauge, PG2. The pressurization is turned off

by closing the pressurization valve (PV). In the loop fill mode of the operation (c) the vial

is allowed to equilibrate and then the vent valve (VV) is opened. The pressure in the vial

vents through the sample loop, filling it with sample vapor. Finally in the injection mode

(d) the six port valve is rotated, allowing the carrier gas to backflush the sample out of

the loop and goes to the injector of the GC through the insulated transfer line (TR).

Built-in integrator of the GC gives the output in terms of area count proportional to the

vapor phase concentration in the head space of sample vial. The experiments were

repeated for various sample liquid volume at the same temperatures.

Once a set of area count versus gas to liquid volume ratio data were obtained,

dimensionless Henry's law constant were calculated by the method as described in the

following Section. Experiments were also conducted to determine Henry's law constant

at different temperature for a particular VOC-absorbent system.

3.9 Experimental Setup and Procedure for Determination of VOC Diffusivi-
ties through the Absorbent Liquids and Absorbent Liquid Filled Membrane

Information of VOC diffusivities through the liquid absorbents is required as an input to

the theoretical models for obtaining simulated results. Schematic diagram of experimental

setup is shown in Figure 3.15. Experimental setup and procedures were very similar to

those for the VOC permeability determination through nonporous silicone skin of skinned



Figure 3.15 Schematic Diagram of Experimental Setup for Determination of Effective VOC Diffusivity through the Absorbent
Filled ILM
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hollow fiber discussed in Section 3.7. The only major difference was the introduction of

pure N2 as sweep gas through the shell side of the module to facilitate VOC permeation

through the immobilized absorbent liquid inside the pores.

Fresh absorbent liquid was poured in the shell side of the module (module # 2)

and after 1 to 2 minutes the liquid was drained to the best possible extent. VOC-

contaminated N2 gas mixture was then passed through the tube side at a fixed flow rate.

The gas pressure was maintained at 5 psig (135.8 kPa) at the outlet of the gas stream by

means of a back pressure regulator (BPR). Pure N2 was passed at a definite flow rate

through the shell side, countercurrently with respect to the tube side gas flow direction.

The exact flow rate of the feed gas (VOC-N 2 gas mixture through the tube side) and

sweep gas were measured by means of bubble flow meters connected at the exit of the

respective gas streams. The outlet VOC composition of the feed gas was monitored

continuously in the GC. A particular run was continued till the steady state was reached.

For a specific VOC-N2 gas mixture experiments were done for two different feed gas flow

rates with same sweep gas flow rate or vice versa. Experiments were performed for

different VOC-N2 gas mixtures and different absorbent liquids.



CHAPTER 4

RESULTS AND DISCUSSION

For the steady state VOC absorption and VOC absorption-stripping studies conducted, this

chapter describes different experimental results, observations and comparison of

experimental results with the predictions obtained from mathematical models. Absorption

results for four VOCs using two different types of membranes in silicone oil and

Paratherm are discussed in detail. Results of estimation of physicochemical parameters

e.g. Henry's constant, diffusivity of VOCs in absorbent liquids, and permeabilities of

VOCs through the silicone skin are presented first. Absorption results for all or some of

the VOCs, e.g., acetone, methanol, methylene chloride, and toluene are provided for both

kinds of membranes in terms of exit gas concentration in ppmv of an individual VOC as

a function of the feed N 2-VOC gas flow rate. Similar VOC removal results have been

shown also as a function of the absorbent flow rate. Estimates of the VOC mass transfer

coefficients have been obtained from experimental data as a function of the gas and the

liquid flow rates. A comprehensive characterization of the different resistances making

up the overall resistance in VOC absorption has been carried out to develop a predictive

capability and compare the two kinds of absorbers having two different kinds of

membranes.

Results for simultaneous absorption-stripping experiments in terms of the cleaned gas

composition as a function of the feed gas flow rate for a given absorbent recirculation rate

are provided next. The results of numerical simulations for both absorption as well as

absorption-stripping have been compared with the corresponding experimental data. The

characteristics of the transport processes are explored in these comparisons to develop a

perspective. This will provide a comprehensive basis for adopting such a process for VOC

emission control in various large or small processes and operations.
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4.1 Estimation of Physicochemical Parameters

Three relevant physicochemical parameters were determined through independent

experiments. The experimental procedures are explained in Chapter 3. The results are

presented and discussed below.

4.1.1 Henry's Law Constant

Dimensionless Henry's law constants were determined experimentally by the variable

volume headspace technique discussed in detail in Section 3.8. Experimental data and

calculated results of a particular set of experiments are given in Table 4.1. A sample

calculation is shown in Appendix B. In the variable volume technique, dimensionless

Henry's constant is determined by dividing the y-intercept by slope of the linear

regression of V g/V1 and the reciprocal of the headspace peak area data. Plots of linear

regression of such data for four VOCs in two different absorbents at various temperatures

are shown in Figures 4.1 through 4.8. The temperature dependency of Henry's constant

is given by equation 2.100. The constants AH and BH for each VOC-absorbent

combination was determined by linear regression of 1/T and ln(H) data. The plots of 1/T

vs. ln(H) for all four VOCs with silicone oil and Paratherm are shown in Figure 4.9 and

4.10 respectively. Data are also given in tabular form in Appendix A. The values of AH

and BH obtained from such regression are provided in Table 4.2.

The values of Henry's constant for methanol in Paratherm are almost identical at

different temperatures (Figure 4.8). For any practical application this can be taken as a

constant (independent of temperature). The values of Henry's constant reflect the relative

absorption performance of the different VOCs with respect to the specific absorbent. For

a given absorbent, toluene shows the maximum Henry's constant value followed by

methylene chloride, acetone and methanol; for a particular VOC, silicone oil exhibits

higher H i than Paratherm. These provide a qualitative indication about the likely

absorption performance of a VOC in an absorbent in a given module under given flow

conditions.



Table 4.1 Experimental Data for Calculation of Henry's Law Constant

VN WE WC WS V/ Vg Vg/Vi 1/PA

163 16.801 17.8034 1.0015 1.04452 20.9555 20.0622 6.49287* 106

164 16.6900 18.6743 1.9843 2.06954 19.9304 9.63035 5.52346* 10-6

165 16.6608 19.5814 2.9206 3.04607 18.9539 6.22242 5.28910* 10-6

166 16.8008 20.6994 3.89860 4.06608 17.9339 4.41060 5.07189* 10 -6

167 16.7308 21.5063 4.7755 4.98066 17.0193 3.41709 4.98298* 10-6

VOC:
Absorbent:
Temperature:

VN:
WE:
WC:
WS:

Vg:
PA:

acetone
silicone oil (50 cs)
25.6° C

Vial number
Weight of the empty vial (gm)
Weight of the vial with sample (gm)
Weight of the sample (gm)
Volume of the sample (ml)
Volume of the headspace (cc)
Peak area
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Figure 4.1 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Acetone in
Silicone Oil at Different Temperatures
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Figure 4.2 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Methanol in
Silicone Oil at Different Temperatures



Figure 4.3 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Methylene
Chloride in Silicone Oil at Different Temperatures
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Figure 4.4 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Toluene in
Silicone Oil at Different Temperatures



Figure 4.5 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Acetone in
Paratherm at Different Temperatures
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Figure 4.6 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Methanol in
Paratherm at Different Temperatures
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Figure 4.7 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Methylene
Chloride in Paratherm at Different Temperatures
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Figure 4.8 Plots of Reciprocal of Peak Area vs. Ratio of Headspace Volume to Liquid
Sample Volume for Determination of Henry's Law Constant of Toluene in
Paratherm at Different Temperatures



Figure 4.9 Variation of Natural Logarithm of Henry's Law Constant with the
Reciprocal of Absolute Temperature for Various VOCs in
Silicone Oil
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Figure 4.10 Variation of Natural Logarithm of Henry's Law Constant with the
Reciprocal of Absolute Temperature for Various VOCs in
Paratherm
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Table 4.2 Parameters of Temperature Dependent Henry's Law Constant *

VOC Silicone oil Paratherm oil

Am Bili Am Brij

acetone 5.87853 2948.800 0.016130 1119.434

methanol 3.23630 1802.340 -0.5252 449.6640

methylene chloride 3.98168 2504.381 0.5513 1444.640

toluene 2.08000 2375.005 5.42440 3203.364

* Equation 2.100

4.1.2 Permeance of VOCs through the Silicone Skin

The silicone skin on the outer surface of the hollow fiber acts as a homogeneous

membrane. Such a membrane was first characterized via permeation of permanent gases

like nitrogen and carbon dioxide. Figures 4.11 and 4.12 show the permeation rates of pure

nitrogen and pure carbon dioxide respectively as a function of the pressure differential

across the membrane. A selectivity value of 10 - 12 for carbon dioxide over nitrogen was

obtained which is comparable to the literature value for silicone rubber (Robb, 1965).

Calculation techniques to determine permeance and hence the permeability values

from experimental data are discussed in Section 2.3.3. Permeance through the composite

membrane, go/8o (porous substrate plus the silicone skin) and through the silicone skin,

, were calculated for all four VOCs and tabulated in Table 4.3. Once the permeance

is known, the permeability was calculated by multiplying the former with the proper

thickness, 8. Experimental data are given in tabular form in Appendix A. Cha (1994) had

observed a very strong dependence of the VOC permeance on its concentration. For the

present study, concentrations of VOCs are very low, hence, no attempt was made to

investigate the concentration-dependence of permeance. A constant value of permeance



107

Figure 4.11 Plot of Pure Nitrogen Permeation Rate through the Silicone Coated Fiber as a
Function of Pressure Difference Across the Composite Membrane
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Figure 4.12 Plot of Pure Carbon dioxide Permeation Rate through the Silicone Coated Fiber
as a Function of Pressure Difference Across the Composite Membrane
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for a particular VOC was used for all calculations. The computer code for calculating the

permeance from experimental data is available in Appendix C.

Table 4.3 Diffusivity and Permeance Data for Various VOCs

VOC Diffusivity (cm2/sec) Permeance (cm/sec)

silicone oil

(50 cs)

Paratherm Composite

membrane

(q c,/60)

silicone skin

(q A)

acetone 2.806 x 10 -6 3.600 x 10 -7 3.198 x 10 -3 3.22 x 10 -3

methanol 4.709 x 10-6 1.86 x 10 -7 2.895 x 10 -3 2.911 x 10 -3

methylene

chloride

4.300 x 10 .6 8.504 x 10 -7 5.014 x 10 -3 5.065 x 10 -3

toluene 7.625 x 10-6 4.802 x 10 -6 11.477 x 10 -3 11.754 x 10-3

4.1.3 Diffusivity of VOCs in the Absorbent Liquid

Diffusivities of VOCs in the absorbent liquids were measured indirectly via VOC

permeation experiments through the absorbent-filled porous membranes. Theoretical basis

for calculating the diffusivity value from such experiments is discussed in Section 2.3.1.

Results obtained are given in Table 4.3 along with the permeance data. The diffusivity

values for VOCs in silicone oil are found to be about an order of magnitude larger than

those calculated using Wilke-Chang equation, while data obtained for Paratherm are of

the same order of magnitude with the diffusivity values obtained from Wilke-Chang

equation. However, the comparison is not shown here. A quick comparison of the

diffusivity and Henry's constant data for a particular absorbent (Tables 4.3 and 4.2
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respectively) reveals that higher solubility does not necessarily mean higher diffusivity.

Further, the relative order of diffusivity data for VOCs in silicone oil does not follow that

in Paratherm. However, these data need to be checked with data obtained from other

experimental measurements or with calculated values from theoretical models, if possible.

4.2 VOC Absorption Results

4.2.1 VOC Absorption Using Porous Hollow Fibers

As discussed earlier on several occasions, all experiments in this study were carried out

with gas flowing in the tube side and absorbent oil flowing in the shell side. Figure 4.13-

a illustrates how the composition of different VOCs (acetone (feed concentration 993

ppmv), methylene chloride (999 ppmv), and methanol (514 ppmv)) in the treated feed

gas mixtures changes as a function of the feed gas flow rate through the fiber bores in

module # 2. It can be observed that a feed gas mixture containing 999 ppmv of acetone

in N2 can be reduced to as low as 2 ppmv in the treated gas stream exiting the module

at low gas flow rates. Thus, 99.5%+ removal of the polar VOC, acetone, is possible in

a microporous hollow fiber gas-liquid contactor using fresh silicone fluid as the organic

absorbent flowing countercurrent to the gas.

At the lowest gas flow rates achieving the highest VOC absorption, the gas flow

rate per fiber was in the range of 0.1 cc/min/fiber. If the module were longer providing

more gas-liquid (and, therefore, membrane) contact area, then higher gas flow rates may

be used for equivalent VOC reduction. For lower fractional VOC absorption, say, 90%,

a much higher gas flow rate of 0.4 cc/min/fiber can be maintained continuously. These

numbers are very convenient for scaling up the VOC scrubber unless the liquid flow

pattern on the shell side changes very substantially in a scaled-up module due to

bypassing. Figure 4.13b illustrates similar results for toluene (feed concentration 236

ppmv) and methylene chloride (999 ppmv) for a higher gas flow rate range.

It appears that toluene is much more easily removed allowing a much higher gas
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Figure 4.13a Variation of Gas Phase VOC Outlet Concentration with Gas Flow Rate for
Absorption of VOCs Using Porous Fibers
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Figure 4.13b Variation of Gas Phase VOC Outlet Concentration with Gas Flow Rate for
Absorption of VOCs Using Porous Fibers at Higher Gas Flow Rates
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flow rate per fiber in the range of 1 cc/min/fiber for the highest fractional toluene

removal. This value of lcc/min/fiber is reinforced by the results of toluene removal

shown in Figure 4.13b where the larger module # 1 was utilized and virtually all of the

toluene present in the feed gas was removed for much higher gas flow rates. Figure 4.13

b also shows the results of methylene chloride absorption in module # 1 in the higher

range of gas flow rates. The available mass transfer area in module # 1 is about six times

larger than that in module # 2. Hence, it required a much higher gas flow rate for a given

feed VOC concentration in order to have partial removal from the feed gas stream.

Therefore, to avoid excess consumption of limited VOC mixture, very few experiments

were carried in module # 1.

Figure 4.14 explores acetone removal in module # 2 as a function of feed gas

composition for a given gas flow rate and a given silicone absorbent flow rate. It had

been observed that the percent removal of acetone remained independent of the feed

composition; however, the outlet concentration of acetone in the treated gas increases with

increasing acetone level in the feed gas for the given module and the absorbent liquid

flow rate.

The effect of the absorbent flow rate on the exiting VOC composition of the

cleaned gas is illustrated by Figures 4.15 and 4.16. As the absorbent liquid flow rate

increases, the VOC concentration at the exiting gas stream decreases slowly and

essentially becomes independent of the liquid flow rate after approximately 5 ml/min of

liquid flow rate.

4.2.2 VOC Absorption Using Fibers Having a Nonporous Skin

The previous experiments employed absorption modules # 1 and # 2 made out of

microporous Celgard® X-10 hollow fibers; further, the gas and the liquid contacted

directly at each pore mouth on the fiber I.D. under conditions of the gas side having a

slightly higher pressure than that of the liquid absorbent to maintain nondispersive



Figure 4.14 Variation of Gas Phase VOC Outlet Concentration with Feed Gas VOC
Composition for Acetone Absorption in Silicone Oil
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Figure 4.15 Variation of Gas Phase Outlet Concentration of Different VOCs with
Absorbent Liquid Flow Rate
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Figure 4.16 Variation of Gas Phase Outlet Concentration of Acetone with Absorbent
Liquid Flow Rate
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contacting. Absorption experiments were conducted using module # 3 where the

microporous polypropylene hollow fibers had an ultrathin plasma polymerized nonporous

skin of silicone on the fiber outside diameter which prevented direct gas-liquid contact.

There is an explicit criterion of phase pressures in such a case, namely, the gas and liquid

pressures should be essentially equal or the liquid pressure should be higher.

Figure 4.17 reports results of methylene chloride and acetone removal by two

different absorbents, Paratherm® oil and silicone oil in module # 3 built out of such

fibers having a nonporous silicone skin. For both absorbents, the gas flowed on the tube

side and the absorbent was on the shell side. One may notice that the outlet concentration

of the VOC, methylene chloride, decreased strongly as the gas flow rate was decreased.

The behavior shown in this countercurrent membrane absorber is quite similar to those

observed earlier in Figures 4.13a and 4.13b. As observed earlier in the case of absorption

using a porous fiber (Figure 4.13a), better performance was achieved for methylene

chloride compared to that for acetone for a given absorbent (here Paratherm). Removal

performance of methylene chloride with two absorbents was very similar, which

apparently indicates that the difference in the diffusivities of methylene chloride in two

different absorbents has no effect on their absorption performances. This issue will be

further discussed later in sections 4.2.3 and 4.5.

As proposed earlier in the introduction chapter, nondispersive gas absorption will

not be achieved if the gas pressure is significantly higher than that of the liquid when the

fiber has a nonporous skin or coating. Experimental evidence is provided in Figures

4.18a and 4.18b. Experiments were conducted by passing N2 gas through the tube side

and Paratherm through the shell side. Initially both gas and liquid were kept at essentially

atmospheric pressure. Under such conditions gas flow rate rates were measured at the

inlet and outlet of the module. No measurable difference in flow rates between the inlet

and the outlet was observed. The same experiment was repeated at different higher gas

pressures by adjusting the back pressure regulator. As shown in Figures 4.18a and 4.18b



Figure 4.17 Variation of Gas Phase VOC Outlet Concentration with Gas Flow Rate for
Absorption of VOCs Using Skinned Fibers
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Figure 4.18a Nitrogen Dispersion into Absorbent Liquid Under Adverse Pressure
Condition in a Fiber Having Nonporous Silicone Skin at Higher Gas
Pressure
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Figure 4.18b Nitrogen Dispersion into Absorbent Liquid Under Adverse Pressure
Condition in a Fiber Having Nonporous Silicone Skin at a Higher
Gas Flow Rate
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outlet gas flow rates decreased as the gas pressure was increased. The difference in gas

flow rates (though limited in amount) is the rate at which nitrogen gas essentially

permeated through the silicone skin and bubbled through the absorbent in the shell side.

The bubbling of N2 through the translucent absorbent-filled outlet pipe was observed. This

phenomenon surely made the process dispersive in nature. On the other hand no bubbling

was observed when both gas and liquid were at atmospheric pressure.

N2 has considerable permeability through the silicone skin (Figure 4,11) but has

negligible solubility in absorbent liquids like silicone oil or Paratherm. When both gas and

liquid pressures are atmospheric, permeation of N2 stops soon because of zero driving

force for permeation and the absence of excess pressure needed for bubble formation. But,

when the gas pressure is higher than the liquid side pressure, the permeation of N2 will

continue because of the persistent driving force. Since N2 has negligible solubility in

Paratherm, it bubbles out through the liquid in the shell side. To stop this bubbling

phenomenon, it is essential to elevate the liquid side pressure to the level of gas side

pressure or more. One may now wrongly conclude that there may not be any operational

advantage to having a nonporous skin or coating since in either case (with or without

coating) one of the phases has to be at a higher pressure unless both phases have the

same pressure. For many VOC removal applications, the gas (N 2 or air) is at atmospheric

pressure. However, the viscous absorbent encounters pressure drop during its flow which

suggests that the VOC-containing gas pressure should be raised from atmospheric if a

microporous fiber without a nonporous coating or skin is used. This requirement is

eliminated when a nonporous skin or coating is employed. This will result in considerable

energy saving since the gas pressure does not have to be raised much. The skinned fiber

also allows absorption under conditions of arbitrarily high liquid pressure levels for the

absorbent (within certain limits so as not to damage the skin or the fibers). This

condition is not allowed in a microporous fiber without nonporous skin since

breakthrough pressures are usually much lower.
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4.2.3 Mass Transfer Characteristics of VOC Absorption in Hollow Fiber Devices

The overall gas-phase based mass transfer coefficient, K oG, for any VOC absorption was

calculated from the exit gas phase VOC concentration data by means of following

equations:

where ppmv 	 is the VOC concentration in gas in ppmv at module inlet

ppmvout	 in the VOC concentration in gas in ppmv at module outlet

Am 	is the membrane surface area at the gas-liquid interface, cm'

Pref 	 is the pressure of the gas at which the volume of gas is measured

(psia)(atmospheric pressure)

Vie 	is the volumetric flow rate of gas in cm 3/min at atmospheric

pressure

R	 is the universal gas constant, 0.082 liter-atm/gmol-K

T 	 is the absolute temperature, K

and (AC) lo 	is the logarithmic mean driving force based on gas phase

concentration defined by equation (4.2),

Here Cigin is the molar concentration (gmol/cc) of VOC in the gas at module inlet and

;mit is that at the module outlet; C i1: 0„ t and are the hypothetical gas phase

concentrations in equilibrium with the absorbent concentrations at the liquid outlet and

the liquid inlet respectively. The values of and C i;: in are obtained from the
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corresponding liquid phase concentrations of the VOC and the Henry's law constant H i

for the VOC. Liquid phase outlet concentration of VOC can be obtained from material

balance

Once the liquid phase concentration is known, the corresponding equilibrium gas phase

concentration can be calculated from the simple equation:

KoG. values obtained from the above equations were plotted against gas flow rate/fiber for

individual VOCs for a given liquid flow rate. Figure 4.19 shows the variation of K. with

gas flow rate per fiber for acetone, methanol and methylene chloride absorption using

porous fiber modules (module #1 and module # 2). Figure 4.20 shows a similar plot for

toluene. Mass transfer coefficients calculated from the experimental data for toluene

absorption in silicone oil using porous fibers are given in Table 4.4. At a relatively higher

gas flow rate (approximately 0.5 cc/ min/ fiber), K., became independent of gas flow rate

as shown in Figures 4.19 and 4.20. This plateau value is determined by the resistance of

VOC diffusion through the stagnant absorbent in the membrane pores and in the flowing

absorbent liquid. As expected from Figures 4.13a and 4.13b for VOC concentration in the

exiting gas stream, toluene shows the highest IC G values followed by methylene chloride,

acetone and methanol. Higher Henry's law constant and higher diffusivity value are

responsible for the superior mass transfer characteristics of toluene. Figure 4.21 shows the

variation of gas-phase-based overall mass transfer coefficient with absorbent-liquid flow

rate for methylene chloride and toluene. Koe values became virtually constant after 5

ml/min of liquid flow rate for both VOCs. No such plot is shown here for acetone;



Figure 4.19 Variation of Gas Phase-Based Overall Mass Transfer Coefficient with
Gas Flow Rate Per Fiber for Different VOC Absorption in Silicone Oil
Using Porous Fibers
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Figure 4.20 Variation of Gas Phase-Based Overall Mass Transfer Coefficient with
Gas Flow Rate Per Fiber for Toluene Absorption in Silicone Oil Using
Porous Fibers

125



Table 4.4 Variation of Mass Transfer Coefficient with Gas Flow Rates for Toluene Absorption*
in Silicone Oil Using Module #2

pinlet (psia) Nutlet (psia) \Cf. (cc/min) ppmvout  K 	 (cm/sec)

23.40 17.696 147.93 0.826 0.106

24.93 17.696 195.17 1.335 0.126

26.54 17.696 247.23 5.355 0.116

28.03 17.696 298.51 8.467 0.122

29.69 17.696 359.28 13.43 0.125

30.90 17.696 405.71 18.19 0.125

31.95 17.696 447.46 22.2 0.126

* Liquid absorbent flow rate : 1.75 ml/min, Temperature: 27 °C,
Feed gas concentration of toluene : 236 ppmv.
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Figure 4.21 Variation of Gas Phase Based Overall Mass Transfer Coefficient with
Absorbent Liquid Flow Rate Per Fiber for VOC Absorption in Silicone Oil
Using Porous Fibers
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however, from Figure 4.16, a similar result can be clearly anticipated.

A comparison of mass transfer characteristics of methylene chloride absorption

between two different fibers and two different absorbent liquids is shown in Figure 4.22.

Experiments were carried out under essentially identical conditions. In the case of

absorption using porous fibers (module #1 and # 2) silicone oil shows a superior mass

transfer characteristics than Paratherm oil while there is not much difference in mass

transfer characteristics between the two absorbent oils when absorption was carried out

in the skinned fiber module (module # 3).

In case of absorption with porous fibers, the pores of the membrane are filled with

absorbent oil. Resistance of VOC transfer through this stagnant immobilized absorbent

oil was found to control the overall mass transfer coefficient (discussed latter). For a

given system membrane mass transfer coefficient is directly proportional to the diffusivity

of the VOC through the absorbent liquid inside the pore. Hence, the diffusivity of VOC

in the absorbent liquid has significant effect on the overall mass transfer performance.

Since methylene chloride has a much lower diffusivity in Paratherm oil than in silicone

oil (Table 4.2) the overall mass transfer coefficient of methylene chloride absorption in

silicone oil is higher than that in Paratherm. In case of absorption using skinned fiber

(module # 3) there is no direct contact between the gas and the absorbent liquid because

of the presence of silicone skin on the outer surface of the porous fiber and the pores of

the substrate are filled with gas. Mass transfer characteristics of VOC absorption in such

type of fibers is generally controlled by the resistance of VOC permeation through the

silicone skin. That is why the overall mass transfer coefficient for methylene chloride

absorption is apparently independent of nature of absorbent used for a given skinned fiber.

However, this can not be generalized for any VOC-absorbent system.

The overall mass transfer coefficient can be related to the individual mass transfer

coefficient by the resistances-in-series model.

For the porous fiber
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Figure 4.22 Comparison of Mass Transfer Characteristics of Methylene Chloride
Absorption between Two Different Absorbents and Two Different Fibers
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Here, km  is the mass transfer coefficient through the absorbent-filled porous membrane

which can be expressed as (Prasad and Sirkar, 1988)

For the skinned fiber

Here, km is the gas-filled substrate mass transfer coefficient

The mass transfer coefficient through the silicone skin is nothing but the permeance of

the VOC through the skin:

Here D igp is the diffusivity of gaseous molecules through the porous substrate having

straight pores (Section 2.3.5). Each additive term on the right hand side of equations 4.5

and 4.7 is the resistance of the corresponding phase.

Table 4.5 shows the overall mass transfer resistance and the absorbent-filled

membrane resistance for different VOC absorptions in silicone oil and Paratherm using

the porous fiber module. Total resistance was calculated based on the average maximum

values of KG. , obtained as averaged plateau values (from Figures 4.19 and 4.20). It is



Table 4.5 Membrane Resistances for Absorption of Different VOCs Using Porous Fiber

VOC Absorbent t (°C) Du *106

(cm2/sec)
Hi km (cm/sec)

104
R. (sec/cm) RoG (sec/cm) R./R,,G

acetone silicone oil 22.0 2.806 61.491 1.374 98.050 100.00 0.980

methanol silicone oil 22.2 6.110 17.623 2.260 203.608 213.74 0.953

methylene
chloride

silicone oil 22.0 4.300 90.717 2.064 43.309 47.62 0.910

toluene silicone oil 27.0 7.625 342.641 3.660 6.466 7.94 0.814

methylene
chloride

Paratherm 22.5 0.850 76.5120 0.408 259.773 281.69 0.922

toluene Paratherm 22.0 4.800  229.178 2.304 15.357 18.52 0.829
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very interesting to note that the contribution of the absorbent-filled membrane resistance

to the total resistance of mass transfer is quite large. The ratio of membrane resistance

to total resistance could be as high as 98% (in case of acetone) to 80% (in case of

toluene). Similar results for skinned fiber are shown in Table 4.6. Only two VOCs

(acetone and methylene chloride) were investigated using the skinned-fiber module. The

resistance of the silicone skin is inversely proportional to the VOC permeance through

the skin. Despite having a lower diffusion coefficient, Paratherm appears to provide a

slightly higher mass transfer coefficient than that does silicone oil for methylene chloride

absorption because of higher Paratherm flow rate (silicone oil flow rate was 4.0 ml/min

as against Paratherm flow rate 5.4 ml/min). It was observed that the mass transfer

coefficient attained the plateau at a liquid flow rate 5 ml/min or higher in module # 2.

It is clear from Figure 4.22 that the skin resistance controlled the mass transfer

characteristics for methylene chloride absorption i.e. skin resistance to overall resistance

would be very high (close to unity) However, From Table 4.6, ratios slightly higher than

unity was observed. This is apparently contrary to reality. Skin resistance for a particular

VOC was calculated based on the permeance value obtained from experiments using dry

skinned hollow fiber. In the absorption experiments, organic liquid (silicone oil or

Paratherm) was flowing through shell side which caused a possible swelling of the

silicone skin and thus decreased the skin resistance for mass transfer. Data for methylene

chloride in Table 4.6 can be explained by this swelling phenomenon of the silicone skin.

Contribution of skin resistance is much less in the case of acetone absorption, only 0.64.

This clearly indicates that skin resistance controlling phenomenon can not be taken as

granted for any VOC-absorbent combination using skinned fiber.This will highly depend

on the relative performance of the permeation phenomena through the skin and diffusional

phenomena in the liquid absorbent in the shell side for a given VOC-absorbent system.

Comparison of VOC absorption characteristics between porous and skinned fibers

reveals that, for methylene chloride-silicone oil system, porous fiber offers much lower
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Table 4.6 Skin Resistances for Absorption of VOCs Using Skinned Hollow Fiber

VOC Absorbent kc

(cm/sec)

Re

(sec/cm)

ICG

(cm/sec)

R,,G.

(sec/cm)

RIR,,G

acetone Paratherm 0.00322 309.53 2.07x10 -3 482.59 0.6414

methylene

chloride

Silicone

oil

0.00506 196.97 5.40x10 -3 185.94 1.058

methylene

chloride

Paratherm 0.00506 196.97 5.58x10' 179.20 1.098

resistance than does skinned fiber (Tables 4.5 and 4.6). However, the reverse is true for

methylene chloride-Paratherm system. The contribution of VOC diffusional resistance in

the pore absorbent liquid to the overall resistance is more pronounced in the case of

porous fiber than that in the case of skinned fiber (there is no such absorbent-filled

membrane). Because of the lower diffusivities of VOCs in Paratherm than that in silicone

oil, porous fiber exhibits higher resistance than does skinned fiber for Paratherm.

Correspondingly, porous fiber exhibits lower resistance than skinned fiber for silicone oil.

Hence, porous fiber will have better mass transfer characteristics than skinned fiber with

absorbents having high diffusion coefficient for VOC; whereas, reverse will be true with

absorbents having low diffusion coefficient for VOC.

The information obtained from the above analysis will be quite important for

porous hollow fiber module design for VOC absorption in organic absorbent liquids which

wet the fiber. From the results given in Table 4.5 it is possible to conclude conservatively

that about 80% of the total resistance to mass transfer for VOC absorption in porous fiber

module is due to the membrane. These figures are obtained at gas and liquid flow rates

where the overall mass transfer coefficient becomes almost independent of the gas and

liquid flow rates. Therefore in order to develop a preliminary design for a module for
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VOC absorption from gas phase there is no need to have highly reliable gas phase (tube

side) or liquid phase (shell side) mass transfer coefficient correlations. The membrane

resistance/mass transfer coefficient can readily be calculated from equation 4.8 using

known parameters. For all practical purposes, this resistance can be assumed as

approximately 80% (a conservative value) of the total resistance to calculate the area

required for a given VOC absorption system design. The gas flow rate should be more

than 0.5 cc/min/fiber and a liquid rate of 0.05 ml/min/fiber or more is recommended with

appropriate allowance for membrane length. Note, however, these values are highly VOC-

dependent especially the gas flow rate for VOCs having higher H i , e.g. toluene.

However, the above approach cannot be a generalized one for all hollow fiber

based gas absorption design. In case of gas absorption in aqueous medium using non-

wetted hydrophobic membranes (for example, SO 2 absorption in water) the overall mass

transfer characteristics would be controlled either by the gas or the liquid resistance; the

resistance of gas- filled porous membrane will no longer control the mass transfer. In such

cases it is very necessary to have reliable gas film and liquid film mass transfer

coefficient correlations.

4.2.4 Simultaneous Removal of Multiple VOCs

Absorption experiments have been carried out to a limited extent where the N2 gas stream

contained multiple VOCs. Table 4.7 shows the Paratherm®-based absorption data for two

flow rates of a N2 stream containing acetone (226 ppmv), methylene chloride (201 ppmv),

toluene (204 ppmv) and methanol (163 ppmv). These experiments were carried out in

module # 3. High rates of removal of all VOCs except the highly polar methanol was

observed. The removal performance of a particular VOC from a mixture appears to be

somewhat inferior to that from a single VOC -N 2 mixture.



Table 4.7 Absorption Data * for a Mixed VOC-N2 Gas Mixture

VOC composition
in inlet N2 gas

stream
(ppmv)

Gas flow rate (cc/min)

11.65 34.08

Outlet
composition

(ppmv)

Removal
(%)

Outlet
composition

(ppmv)

Removal
(%)

acetone 226 13.42 94.06 86.97 61.52

methylene
chloride

201 9.17 95.43 1735 91.34

toluene 204 0.00 100.00 0.00 100.00

methanol 163 77.23 52.62 128.35 21.26

Total 794 99.82 87.43 232.67 70.70

* module # 3
absorbent : Paratherm Nrm
liquid flow rate : 5.6 ml/min
temperature: 22° C
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43 Simultaneous Absorption-Stripping of VOCs

A continuous process for VOC absorption from N 2/air into an absorbent via either of two

different kinds of hollow fibers requires simultaneous regeneration of the spent absorbent

in a VOC stripper. In this work, membrane module # 2 containing microporous

hydrophobic hollow fibers was used as the VOC absorber where the gas flowed at a

pressure slightly higher than that of the absorbent along with the membrane module # 3

as the VOC stripper (and, therefore, an absorbent regenerator).

The results for simultaneous VOC absorption and stripping using silicone oil are

shown in Figure 4.23. Full vacuum was applied to the bore of the fibers in module # 3

to remove the VOC from the absorbent flowing on the shell side of module # 3 on a

continuous basis. The actual level of pressure could not be monitored due to the

sensitivity limitations of the vacuum gauge. In module # 2, the absorber, the flow

arrangement was similar to simple absorption experiments, namely, gas through the fiber

bore and the absorbent on the shell side (and in the pores) flowing countercurrent to the

gas flow direction. It was observed that the feed gas containing 999 ppmv of methylene

chloride was brought down to around 20 ppmv on a continuous basis when the feed gas

flow rate was low. Results of simultaneous absorption / stripping experiments for different

VOCs (methylene chloride, methanol and acetone) in terms of the outlet gas phase

concentration as a function of gas flow rate are shown in Figure 4.23. Results of

methylene chloride removal by Paratherm oil are also shown in this figure. The relative

removal performance of different VOCs are similar to that observed in simple absorption

experiments. Figure 4.24 shows the variation of the gas phase outlet concentration with

the absorbent liquid flow rate for acetone removal by simultaneous absorption-stripping

for a fixed gas flow rate. At a slightly higher liquid circulation rate the exit gas phase

concentration of VOC is virtually independent of liquid circulation rate. A comparison of

the removal performance of methylene chloride and methanol between only absorption

and closed loop absorption-stripping experiments are shown in Figures 4.25a and 4.25b.



Figure 4.23 Steady State Outlet Concentration vs. Gas Flow Rate for Simultaneous
Absorption and Stripping of Different VOCs
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Figure 4.24 Steady State Outlet Concentration vs. Liquid Flow Rate for Simultaneous
Absorption and Stripping of Acetone



Figure 4.25a Comparison of Methylene Chloride Removal Results by
Only Absorption and Combined Absorption-Stripping
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Figure 4.25b Comparison of Methanol Removal Results by Only
Absorption and Combined Absorption-Stripping
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For methylene chloride simultaneous absorption-stripping experiments exhibits poorer

performance than absorption alone (Figure 25a). This discrepancy is due to a lack of

perfect regeneration of the circulating absorbent in the stripper. On the other hand, in case

of methanol, the performances in terms of outlet gas phase concentration in the two

processes are almost identical (Figure 25b). It was easy to strip methanol from the

absorbent oil because of the much lower H value. This indicates that the higher the H

value of a VOC-absorbent system, the higher will be the difference between results in

absorption and combined absorption-stripping process under similar process conditions.

4.4 Additional Results and Considerations

During various experiments with Paratherm® or silicone oil, no peaks of the vapors of

these absorbents in the GC were observed. This indicated that their very low vapor

pressures at ambient temperatures and the silicone skin barrier on the membrane in the

case of coated fibers have reduced their partial pressure (if any) in the gas stream to be

scrubbed to sub-ppmv level.

Paratherm® absorbent is known to be stable over long lengths of time. Silicone

oil, having a higher vapor pressure (reported), however, slowly starts deteriorating after

about one and a half year. Such a degraded silicone oil was used and small peaks were

observed in GC from such a deteriorated silicone oil flowing as an absorbent in the

microporous hollow fiber.

4.5 Comparison of Experimental Results and Model Simulations

In the model development for absorption (section 2.1) a quantity appears in the

denominator in the dimensionless expression of average VOC concentration as

(<V,>/D igLL. This quantity is a dimensionless number, known as Graetz number and is

generally expressed as (Perry and Green, 1984)
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For a particular run, (N Gz),,f remains constant and varies only with gas flow rates for

different runs. As described in Section 2.1.5, the dimensionless gas phase VOC

concentration at the module exit (0) was calculated for different gas flow rates from the

simulation. From the independent variable, gas flow rate per fiber (<V>j, (N07),, 1 was

then calculated using the calculated value of (D ts) ref (D ig) ref was calculated from equation

2.106 using thermodynamic parameters given in Appendix (Table Al). The corresponding

(I) was calculated from experimental data. A tortuosity value of 2.5 (Prasad and Sirkar,

1990; Karoor and Sirkar, 1993) and surface porosity 0.3 (Karoor and Sirkar, 1993) were

used for simulation.

Figure 4.26 shows plots of 1 as a function of the inverse of Graetz number

comparing model simulations and experimental data for acetone, methanol, and methylene

chloride absorption in silicone oil using module # 1 and 2. For methylene chloride,

experimental results from module # 1 at higher gas flow rates as well from module # 2

at lower gas flow rates show very good agreement with model simulations. One may

notice that the simulation results for module # 1 and module # 2 differs slightly. This is

because of the fact that Graetz number is not a completely module independent parameter;

even for identical fibers two module could be having two different packing factors (37.5%

and 16.75% for module #1 and #2 respectively). For acetone, experimental results for two

different feed concentrations follow the predictions of the model. Figure 4.27 shows

similar plots for toluene absorption in silicone oil as well as in Paratherm using module

# 2. Both plots show very good agreement with the model simulation.

Variation of 43 as a function of absorbent liquid flow rate has also been predicted

by the mathematical model. Comparison of such variation between model simulations and

experimental results are shown in Figure 4.28. Experimental results follow the predictions

from model quite well.



Figure 4.26 Ratio of Outlet to Inlet Gas Phase Concentration of Different
VOCs as a Function of Inverse of Graetz Number
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Figure 4.27 Ratio of Outlet to Inlet Gas Phase Concentration of Toluene as a
Function of Inverse of Graetz Number
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Figure 4.28 Ratio of Outlet to Inlet Gas Phase Concentration of VOCs as a
Function of Liquid Flow Rate
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Figure 4.29 illustrates the variation of vs. inverse of Graetz numbers from model

simulations and experimental data for methylene chloride absorption in silicone oil and

Paratherm using skinned fiber module (module # 3). Both model simulations and

experimental data show almost identical performance between absorption in Paratherm

and silicone oil. This indicates that the difference in the diffusivities in the two absorbents

does not control the absorption performance of methylene chloride. It is the skin

resistance which controls the performance. However, this cannot be generalized for any

VOC absorption using skinned fiber module. Simulation plots of vs. inverse of Graetz

numbers for acetone absorption using skinned fibers show that there is an effect of

characteristics of absorbent flowing through the shell side (Figure 4.29).

Figure 4.30 shows the simulation plots for absorption of methylene chloride in two

different absorbents using porous fibers. The effects of absorbent diffusivity and Henry's

law constant on the performance of absorption are well predicted by the mathematical

model.

Almost all plots for various absorption experiments show good agreements with

model simulation results. At higher gas flow rates, maximum deviation of 10 to 15 % was

observed between experimental and simulation results for T. However, the deviation

between the two results are much more when the gas flow rates were very low (0.1

cc/min/fiber or less). Deviations as high as 50 to 60 % were obtained at such lower gas

rates. Experimental as well as simulated gas phase VOC concentrations are very low at

lower gas flow rates hence, their deviations are not clear in the plots. However, their

relative magnitude is high. One should look at such deviations from a different

perspective. It is necessary to compare the total amount or percent of VOC removed from

feed gas at low gas flow rates. For example, if a feed VOC mixture of 999 ppmv is

brought down to 6 ppmv and the model predicts 2 ppmv, the theory is quite successful,

yet direct comparison of will indicate strong deviation. Further, operation of VOC

absorption at lower gas flow rate per fiber will not be economical any way because



Figure 4.29 Ratio of Outlet to Inlet Gas Phase Concentration of Methylene Chloride
and Acetone as a Function of Inverse of Graetz Number for Absorption
Using Skinned Fiber with Two Different Absorbents
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Figure 4.30 Ratio of Outlet to Inlet Gas Phase Concentration of Methylene Chloride
as a Function of Inverse of Graetz Number for Absorption Using
Porous Fiber with Two Different Absorbents
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overall mass transfer coefficient will be lower. It would be economical to design the

absorber module at higher gas flow rate per fiber to take advantage of higher value of

mass transfer coefficients. At higher gas flow rates, concentration of VOC can be brought

to a low level by increasing the effective length of the module.

Simulation results were also obtained for VOC removal by combined absorption-

stripping process. The steps for such simulations are discussed in Section 2.4.

Dimensionless gas phase VOC concentrations at the absorber outlet (43) were plotted as

a function of inverse of gas phase Graetz numbers for different VOC removals (Figure

4.31) by the absorption-stripping process. Experimental results were compared with

simulation results; all VOCs except methanol show a very good fit between the two

results.

Finally the effects of stripping temperature and stripper area performance on the

overall absorption-stripping process were also simulated. Figure 4.32 shows the plots of

(I) vs. stripping temperatures at different Graetz numbers (gas flow rates). At a lower gas

flow rate (0.25 cc/min/fiber), the drop in outlet VOC concentration is about 46.7 % for

a rise in stripping temperature from 20°C to 60°C. For a higher gas flow rate (1

cc/min/fiber), the corresponding drop is 22.7%. Figure 4.33 shows the plots of (ID vs.

stripper area at different gas phase Graetz numbers. A 78.5% drop in outlet VOC

concentration was observed for a 5 fold increase in stripper area, at a gas flow rate of

0.25 cc/min/fiber.

4.6 Comparison of Overall Volumetric Mass Transfer Coefficient for
VOC Absorption between Hollow Fiber Contactor and Packed Tower

Overall gas phase based mass transfer coefficient (K.,,G) and the volumetric mass transfer

coefficient (ICGa) were calculated (Treybal, 1980) for methylene chloride absorption with

silicone oil in a conventional packed bed. Results of calculations for different liquid to

gas flow rate ratios are shown in Table 4.8. Higher K.,, Ga values were obtained for higher

liquid to gas flow rate ratios. For high levels of purification, it is not possible to design



Figure 4.31 Ratio of Steady State Outlet to Inlet Gas Phase Concentration
of VOCs as a Function of Inverse of Graetz Number for
Continuous Absorption-Stripping Process
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Figure 4.32 Simulation Plots of Dimensionless Outlet Gas Phase Concentration vs.
Stripping Temperature at Different Graetz Numbers
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Figure 4.33 Simulation Plots of Dimensionless Outlet Gas Phase Concentration vs.
Stripper Area at Different Graetz Numbers
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a packed tower with a very high liquid to gas flow rate ratio due to the flooding problem.

There are no correlations in literature for higher liquid to gas flow rate ratios. This

problem does not arise in the case of hollow fiber module design. One may note that even

for the low packing density (a = 29.8 cm 2/cm3) in module # 2, ratios for K ooa values

between module # 2 and the packed tower are quite large. Further improvement of the

membrane module performance is possible by having transverse liquid flow with baffles

in the shell side and by introducing fibers having higher porosity (e.g. Celgard X-20),

lower tortuosity and thinner membrane wall .

Table 4.8 Comparisons of Volumetric Mass Transfer Coefficients between Hollow Fiber

Modules and Packed Bed for Methylene Chloride Absorption in Silicone Oil

G L/G DT kg k I *103 (K G)Fr (a)Fr (Koo )p-r. (K.Ga)HFs4/(1C,Ga)pT

1 2

32.94 5 30 1.20 3.93 0.257 0.53 0.137 10.5 4.8

65.88 10 42 1.30 5.49 0.338 0.68 0.231 6.3 2.8

16.47 20 27 1.42 5.98 0.368 0.71 0.262 5.6 2.5

Temperature : 25°C, H i : 83.3, Packing : 13 mm Berl saddles, Pressure drop 400 N/m 2

PT : Packed tower, HFM : Hollow fiber module
1: module #1; a = 66.67 cm2/cm3

2: module #2; a = 29.8 cm 2/cm 3



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The present work was initiated to explore VOC removal from exhaust air by novel

absorption/stripping technology employing efficient and compact hollow fiber devices

made out of different types of hollow fiber membranes. The absorbents used are inert,

essentially nonvolatile and high-boiling liquids such as silicone oil and Paratherm. In the

separation scheme studied, contaminated air flows inside (tube side) the hollow fiber and

the absorbent liquid is pumped countercurrently through the shell side. VOCs were

efficiently removed from the nitrogen stream to a potentially very low level. Spent

absorbent liquid was regenerated in a separate hollow fiber stripper by applying vacuum

through the tube side and recycled back to the absorber. Mathematical models were also

developed to simulate the absorption process for two different types of fibers and the

combined absorption-stripping process. The following brief concluding remarks can be

made from the results of this study.

• Hollow fiber contactor based removal of VOCs from nitrogen by absorption in a

nonvolatile nontoxic absorbent liquid like silicone oil or Paratherm is a very effective

process.

• For a given absorbent and process conditions, absorption efficiency varies with different

VOCs. In this present study, toluene showed the best result among all four VOCs,

followed by methylene chloride, acetone and methanol in that order.

• For a given VOC and process conditions, silicone oil showed better removal efficiency

than Paratherm. This is because of the higher VOC diffusivity and Henry's constant

values in the silicone oil. However, Paratherm appeared to be better from stability and

vapor pressure point of view.
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• For absorption using porous hydrophobic hollow fibers, a stable gas-liquid interface can

be created at the pore mouth on the gas-side of the fiber by maintaining gas-side pressure

higher than the liquid-side pressure.

• For absorption using skinned fibers, it is essential to maintain the liquid-side pressure

equal to or higher than the gas side pressure.

• It was observed that the absorbent-filled porous membrane wall contributed about 80-

95 % of the total resistance to mass transfer at relatively higher gas and liquid flow rates.

• For absorption using skinned fibers, mass transfer characteristics appeared to be

controlled by the silicone skin resistance and the resistance of the absorbent liquid film

outside the fiber.

• Comparison of VOC absorption characteristics between porous and skinned fiber reveals

that the relative performance of the two types of fiber for a given VOC absorption

depends on the diffusivity of the VOC in the absorbent liquid used.

• For a given VOC, combined absorption-stripping yielded results slightly inferior to that

for absorption only because of the partial regeneration of the absorbent liquid in the

stripper. The deviation between the absorption only results and combined absorption-

stripping results is significant for toluene and negligible for methanol.

• Experimental results plotted as dimensionless concentration against the inverse of Graetz

number demonstrated a good agreement with predictions from the mathematical model.

• Simulation results for combined absorption-stripping process show that higher stripping

temperature and larger stripper area improves the VOC removal results significantly.

5.2 Recommendations for Future Work

The performance of a VOC absorption process in a given contacting unit primarily

depends on the absorbent selected. Two key factors found to be important in this respect

are Henry's constant and diffusivity. An absorbent which is very good for one VOC may

not be good for another VOC. It would be quite useful to develop a data base for various
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absorbent-VOC systems by carrying out experiments systematically. Determination of

Henry's constant and diffusivity would involve time and complexities. Another way of

selecting a good absorbent for given VOCs would be to search for them by carrying out

absorption experiments with various VOC-absorbent systems under identical experimental

conditions.

It has been discussed earlier that the performance of the membrane-based overall

absorption-stripping process is ultimately controlled by the limitations of the stripping

process. Efficient regeneration of a good absorbent liquid for a given VOC will always

be a difficult task unless considerable amount of energy is spent. To increase stripping

efficiency it is required to operate the stripper at a higher temperature (within the

tolerance of the materials of construction). Simulation results of combined absorption-

stripping process with higher stripping temperatures do show an appreciable improvement

in overall performance. However, necessary experiments should be carried out with a

heating and cooling arrangement of absorbent liquid in a closed loop. A schematic

diagram of this process is shown in Figure 5.1

Another effective way to strip VOCs from the absorbent oil would be to use low

temperature steam stripping in a silicone skinned fiber module. This could be achieved

by generating steam at low temperatures (maximum 60°C) under moderate vacuum. The

process will generate water mixed with VOCs in the condenser; it has to be separated first

by gravity separator if possible, and then the water should be sent to a treatment plant.

It has been demonstrated earlier that absorption of a VOC in a good absorbent in

hollow fiber devices is extremely efficient. In order to take full advantage of the

absorption process alone, the following two alternatives for stripping could be thought of.

1. Stripping could be performed effectively in a conventional way by simple

distillation technique instead of vacuum stripping in a skinned hollow fiber module.

2. Low concentration of VOCs in the emission streams can be treated by

absorption in fuel oil using a hollow fiber device. The fuel oil will be ultimately burnt



Figure 5.1 Schematic Diagram of VOC Removal by Hollow Fiber-Based Absorption-stripping with Cooling and Heating
Arrangement of Circulating Absorbent Liquid
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any way in the furnace or in the boiler. This will provide complete destruction of VOCs

without any additional expense of energy or material. Of course the unit should have the

facilities and requirements for fuel oil firing. Absorption experiments with VOCs and fuel

oil could be conducted to check its technical feasibility. The two key issues here are the

fuel oil vapor pressure and the possibility of other contaminants being produced in the

combustion process and any subsequent scrubbing requirement.

Information about the behavior of unsteady state absorption would be useful for

developing an absorption-stripping scheme for VOC cleanup in a cyclic fashion. A

preliminary absorption experiment was carried out in a transient fashion to demonstrate

the nature of the breakthrough curve. Initially the experiment was started with pure N2

flowing through the tube side and absorbent oil (Paratherm) stationary on the shell side.

When the gas flow rate was stabilized, VOC-N 2 gas mixture flow was switched on

through the tube side while pure N2 flow was switched off at the same time. This

switching of two gas streams was done instantaneously at the same time by means of a

three way valve connected at the gas inlet lines. At this moment, the exiting gas from the

module was injected into the GC and the concentration of VOC was monitored at frequent

time intervals. Initially no peak of VOC was observed in the GC-output; but, as time

passed, the VOC showed up in the exiting gas stream and its concentration started

increasing. The result of this transient absorption experiment is shown in Figure 5.2. This

experiment allows the possibility of using the absorption oil like an activated carbon bed.

Sometimes it is difficult to meet the conditions and requirements imposed on the

design of VOC control system by a single process. Combination of two or more

technologies discussed earlier in the Introduction chapter may result in a much better level

of VOC emission control than what the individual technology may offer, yet it would be

quite cost effective. Such processes are commonly known as hybrid processes (API

Publication, 1993). Though addition of two or more technologies for a single application

may appear complicated and costly, some of these technologies may complement each



Figure 5.2 Breakthrough Curve for Unsteady State Absorption of Methylene
Chloride from Nitrogen in Paratherm Using Skinned Hollow Fibers
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other and the combination may be more economical than a single process.

A hybrid experiment was conducted by combining membrane permeation (vapor

permeation) and absorption-stripping experiment for cleaning up the VOC from nitrogen.

The process is depicted in the schematic diagram, Figure 5.3. VOC-contaminated N2

stream was fed to a membrane permeation unit at an optimum flow rate to get maximum

removal and selectivity. The exiting stream from the permeation unit was then fed to the

closed-loop absorption-stripping process for further reduction of VOC concentration. As

shown in Figure 5.3, the same vacuum pump and condensation facility could be used for

membrane permeation as well as the absorption-stripping process.

A few experiments were conducted in a hybrid system as described above using

a N2 stream containing 6000 ppmv methylene chloride as feed gas. Gas was passed

through the permeation unit at a definite flow rate and the concentration of methylene

chloride in the exiting gas stream was monitored by the GC. When a steady state

concentration was achieved, the exiting gas was directed to the absorption-stripping setup.

The same vacuum pump was used for the permeation and the stripping unit. Full vacuum

(measurement of actual pressure was limited by the sensitivity of the vacuum gauge) was

applied to both units. Results of this experiment are shown in Table 5.1. Using this

combined system it was possible to reduce the methylene chloride concentration from

6000 ppmv to as low as 2 ppmv at the low gas flow rate of about 60 cc/min. Results are

also shown in Figure 5.4.

The same result could be obtained in the permeation process itself by increasing

the membrane area for a given gas flow rate. But, higher membrane area will enhance N2

permeation resulting in a decrease in selectivity. This excess permeating N2 will increase

the load in the condenser and vacuum pump. On the other hand, in order to achieve the

VOC reduction in a absorption stripping unit at the same level as that of the hybrid

process, large absorber and stripper area would be required for a given gas flow rate,

which certainly would not be economical. To develop a perspective compare this result



Figure 5,3 Schematic Diagram of VOC Removal by a Hybrid Process of Vapor Permeation and Membrane Based
Absorption-stripping



Table 5.1 Experimental Results of VOC Removal by a Hybrid Process of Vapor Permeation and
Hollow Fiber-Based Absorption-stripping

Gas flow rate
(cc/min)

Exit conc. after
Permeator (ppmv)

Removal
(%)

Exit conc. after
absorption-stripping

(ppmv)

Removal
(%)

Overall
removal

(%)

58.8 63 98.95  2 96.82 99.97

78.0 275 95.42 28 89.82 99.53

100.4 374 93.76 88 76.47 98.53

* Feed concentration : 6000 ppmv; absorbent : Paratherm; absorbent circulation rate : 5.2 flit/min;
Temperature: 22.5°C
Permeator specification:
Type of fiber : skinned, # of fiber =50, effective length =25 cm, fiber ID =240 ,um, fiber OD =300 ,um



Figure 5.4 Results of Methylene Chloride Removal by a Hybrid Process of
Vapor Permeation and Membrane-Based Absorption-stripping
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with that for simple membrane absorption-stripping (Figure 4.13a) where 2 ppmv level

of methylene chloride absorption could be achieved only for a gas flow rate 0.05

cc/min/fiber or less for a feed concentration of 999 ppmv. Yet the additional membrane

area required in the permeator is only 40% of that of the absorber. More experiments,

preferably at pilot scale should be carried out to ascertain the technical and economic

feasibility of this hybrid process. The final aim would be the optimal design of the

permeation unit by trading off between exit VOC concentration and selectivity. A good

piece of simulation / design work would be possible by combining the individual models

for permeation and absorption-stripping together.

In the models developed for VOC absorption, it was assumed that the molar flow

rate of the VOC-N 2 gas mixture remains constant throughout the module length. This

assumption is reasonably correct for low concentrations of the VOC stream (in this case

maximum of 1000 ppmv). However, for higher feed-VOC concentrations, this assumption

will lead to an erroneous prediction. Variable molar flow rate along the length of the

module can be incorporated easily in the algorithm of the numerical simulation. The basic

analytical solutions applicable to each small segment will remain unchanged because it

is necessary to assume that, in the small segment the molar flow rate is constant in order

to solve the governing mass balance differential equations without inviting further

complications. The molar flow rate in a particular segment should be calculated by

subtracting the molar transfer rate of VOC through the area of the previous segment. In

this fashion, the volumetric gas flow rate will be reduced along the length of the module

because of two factors: pressure drop and the reduction of total number of moles of gas

flowing through the fiber per unit time.

There are a number of other aspects that need to be explored. Studies where the

vacuum level is not as high as used here are necessary to simulate what can be achieved

industrially. Using silicone skin thickness that are much smaller will increase the mass

transfer performance of the skinned absorption unit as well as the membrane stripper
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significantly. Correspondingly, transverse flow of the liquid on the shell side with or

without baffles will substantially increase the liquid phase mass transfer coefficient.

Similarly, for the porous fibers, transverse flow will reduce the liquid film resistance.

Additionally, it will be helpful to have fibers having higher porosity with lowered

tortuosity and thickness.

The absorption scheme and the operational conditions vis-a-vis the different phase

pressures are equally useful and applicable to general gas scrubbing and regeneration of

absorbents. The gas species to be selectively removed could be CO 2, H2S, SO2, 02, etc.

The absorbents may be aqueous solutions of alkanolamines, hindered amines and pure

polar hydrocarbons like n-methylpyrollidone, dimethylsulfoxide, sulfolane, etc.

This thesis has explored hollow fibers having an ultrathin nonporous skin of plasma

polymerized silicone (poly (diemtheylsiloxane)) on the hollow fiber outer surface. This

skin material must be highly permeable to the gas species or VOCs to be absorbed. Other

materials of considerable use for VOC removal are copolymers of silicone-polycarbonate,

neoprene and different rubbers, poly (1-trimethyl silyl-1-propyne) etc.

Microporous hollow fibers that are hydrophobic were used in this study. It is

equally useful to use microporous hollow fibers that are hydrophilic. However, when used

in that contacting mode without a nonporous skin, it is important to have the nonpolar

organic absorbent in the pore and not water since that would increase the resistance to

VOC mass transfer considerably. One can also employ a hollow fiber membrane whose

wall is essentially a gel membrane. It is preferable that the gel is due to the organic

absorbent being used; otherwise, the resistance to VOC transfer will be significantly

increased.
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Table Al. Thermodynamic Properties of Nitrogen and VOCs

VOC/N2 MoI. Wt BP(K) FP(K) Tc (K) Pc (atm) Vc (cc/mole) OK (K) Q(A) 6.(Debyes)

Acetone 58.08  329.4 178.2 509.1 47.0 211.0 560.2 4.600  2.9

Methanol 32.042 337.8 175.5 512.6 79.9 118.0  481.8 3.626 1.7

Methylene
Chloride

84.922 313.0 178.1 510.0 60.0 193.0 356.3 4.898 1.8

Toluene 92.141 383.8 178.0 592.0 41.6 316.0 452.91 5.375 0.4

Nitrogen 28.013  77.4 63.3 126.2 33.5 90.1 71.4 3.798 0.0

For toluene, cr and Elk values are calculated from the following equations (Reid et al., 1977).
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Table A2. Henry's Law Constant As a Function of Temperature ; Acetone-Silicone Oil

Experiment # t (°C)  1ff (K)' H ln(H)

1 25.60 0.0033489 52.1125 3.95341

2 31.85 0.0032803 47.7197 3.86534

3 37.85 0.0032169 36.4201 3.59512

4 45.90 0.0031357 28.5920 3.35300

Table A3. Henry's Law Constant As a Function of Temperature ; Methanol-Silicone Oil

Experiment # t (°C) la (K)'  H ln(H)

1 25.65 0.0033484 15.9470 2.76927

2 31.90 0.0032797 14.4590 2.67132

3 37.95 0.0032159 14.0707 2.64409

4 45.90 0.0031357 10.6329 2.36395

Table A4. Henry's Law Constant As a Function of Temperature; Methylene Chloride-
Silicone Oil

Experiment # t (°C) lir (K1' H ln(H)

1 25.65 0.0033489 15.9470 4.41345

2 31.90 0.0032803 14.4590 4.23804

3 37.95 0.0032164 14.0707 4.04343

4 45.90 0.0031357 10.6329 3.88844

Table AS. Henry's Law Constant As a Function of Temperature; Toluene-Silicone Oil

Experiment # t (.c) 1ff (K)' H ln(H)

1 25.7 0.0033478 349.7600 5.85725

2 31.80 0.0032808 300.5476 5.70560

3 37.95 0.0032159 277.788 5.62686

4
. 	

45.85 0.00313627 207.2364 5.33386
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Table A6. Henry's Law Constant As a Function of Temperature ; Acetone-Paratherm

Experiment # t (°C) 1/1' (Ky H ln(H)

1 30.05 0.0032998 40.2153 3.69425

2 44.85 0.0031461 32.1766 3.47124

3 - - - -

4 59.90 0.0030039 28.91756  3.36445

Table A7. Henry's Law Constant As a Function of Temperature ; Methanol-Paratherm

Experiment # t (°C) lir (K) -1 H ln(H)

1 30.00 0.0033033 7.5504 2.02160

2 40.00 0.0031948 6.9339 1.936435

3 - - - -

4
,

4

49.85 0.0030974 6.8931 1.930526

Table A8. Henry's Law Constant As a Function of Temperature; Methylene Chloride-
Paratherm

Experiment # t (°C) fir ocp H ln(H)

1 30.00 0.0033003 67.3367 4.20971

2 44.85 0.00314614 55.0151 4.00761

3 - - - -

4 59.85 0.003004356 43.8821 3.78151

Table A9. Henry's Law Constant As a Function of Temperature; Toluene-Paratherm

Experiment # t (°C)
T

lir (Icy' H In(H)

1 30.00 0.0033003 176.1786 5.17149

2 40.00 0.0031948 117.1236 4.76323

3 49.80?? 0.0032159 94.02971 4.54361

4 59.90 0.0030039 65.7447 4.18578



Table A10. Experimental Results for Estimation of VOC Permeance through the Silicone Skin

Expt. # VOC t
°C

Fin

cc/min
Font

cc/min
Fppnkin
ppmv

Fppm,out

ppmv
P

cc/min
(q0/450 )103

cm/sec
Av.(qA)103

cm/sec

1 acetone 20.4 42.39 30.43 993 866.2 11.96 3.198 3.198

2 - - - - - - -

3 methanol 19.5 24.27 12.49 514 427.0 11.78 2.895 2.895

4 - - - - - -

5 methylene
chloride

22.4 24.78 12.40 999 791.4 12.38 4.124 5.014

6 22.4 43.74 30.91 999 893.6 12.83  5.905

7 toluene 21.0 22.0 9.86 205 145.0 12.14 11.353 11.477

8 21.0 44.62 32.39 205 186.0 12.23 11.601

Feed gas inlet flow rate

Feed gas outlet flow rate

VOC concentration in feed gas inlet

VOC concentration in feed gas outlet

Permeate gas flow rate

VOC permeance through the composite membrane

Temperature

Arithmetic average

Fin

Foist
Fpmin

Fppin,ont

P

(IA
t

Av.



Table All. Experimental Results for Estimation of Diffusivity of VOCs in Silicone Oil

Expt. # VOC Fin
cc/min

F„„,
cc/min

S
cc/min

F	 in

ppmv
Fppni,out
ppmv

t
°C

Hi Dii 106

cm2/sec
Av. Di, 106

cm /sec

1 acetone 17.5 17.5 76.15 993 21.0 24 51.40 2.796 2.806

2 28.8 28.8 76.15 993 102.75 24 57.40 2.817

3 methanol 18.02 18.02 34.6 514 02.05 26 16.31 4.696 4.709

4 33.5 33.5 34.6 514 9.43 26 6.31 4.722

CH2Cl2 38.0 38.0 39.1 999 89.83 25 83.28 4.293 4.300

25 83.28 4.308

toluene

 	 ..,.	

26 7.58

8 34.4 34.4 14.6 210 92.85 26 351.83 7.67

• Feed gas inlet flow rate

Feed gas outlet flow rate

• VOC concentration in feed gas inlet

VOC concentration in feed gas outlet

Henry's law constant

Sweep gas flow rate

• Temperature

Arithmetic average
.11

Fin

Font

Fpron

Fppin,out

Hi

S

t

Av.
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Table Al2. Experimental Results for Acetone Absorption in Silicone Oil; Gas Flow Rate
Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

clo. Percent
removal

1 5.800 4.44 0.0045 99.52

2 10.77 9.65 0.0097 99.03

3 21.26 34.75 0.0350 96.50

4 52.71 138.03 0.1390 86.10

5 75.04 271.85  0.2738 72.62

6 102.45 379.19 0.3819 61.81

Module # 2, Liquid flow rate: 4.4 ml/min, Feed concentration: 993 ppmv, Temperature:
22.0°C, Outlet pressure: 9.00 psig

Table A13. Experimental Results for Methanol Absorption in Silicone Oil; Gas Flow Rate
Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

(I) Percent
removal

1 10.31 22.47 0.0437 95.63

2 21.78 126.91 0.2469 75.31

3 36.77 229.87 0.4472 55.28

4 62.53 : 321.02 0.6245 37.55 

5 102.74  408.83  0.7953 20.47

Module # 2, Liquid flow rate: 3.73 ml/min, Feed concentration: 514 ppmv, Temperature:
22.2°C, Outlet pressure: 3.00 psig
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Table A14. Experimental Results for Methylene Chloride Absorption in Silicone Oil; Gas
Flow Rate Variation.

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

4) Percent
removal

1 11.10 0.75 0.00075 99.92

2 20.47 1.51 0.0015 99.85

3 30.11 9.88 0.0099 99.01

4 52.76 52.23 0.0523 94.77

5 72.99 128.06 0.1282 87.18

6 95.97 208.22 0.2084 79.16

7 246.71 544.33 0.5449 45.51

Module # 2, Liquid flow rate 3.71 ml/min, Temperature 22°C, Outlet pressure 3.00
psig, Feed concentration 999 ppmv

Table A15. Experimental Results for Toluene Absorption in Silicone Oil; Gas flow rate
Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
concn.
(ppmv)

(1) Percent
removal

1 100.00 00.00 0.00 100.00

2 147.93 0.826 0.0035 0.9965

3 195.17 1.335 0.0057  0.9943

4 247.23 5.355  0.0227 0.9923

5 298.51 8.467 0.0358 0.9642

6 359.28 13.433 0.0569 0.9431

7 405.71 18.194 0.0771 0.9229

8 447.46 22.196 0.0940 0.9059

Module # 2, Liquid flow rate: 1.75 ml/min, Feed concentration: 236 ppmv, Temperature:
27°C , Outlet pressure of the gas stream: 3.00 psig
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Table A16. Experimental Results for Acetone Absorption in Silicone Oil-Gas at Lower
Feed Concentration; Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

(I) Percent
removal

1 9.6 1.2 0.006 99.4

2 19.6 2.4 0.012 98.8

3 52.8 29.0 0.142 85.8

4 66.6 47.35 0.232 76.8

5 97.5 752 0.368 63.2

6 - - - -

Module # 2, Liquid flow rate: 4.4 ml/min, Feed concentration: 204 ppmv, Temperature:
22.0°C, Outlet pressure: 9.00 psig

Table A17. Experimental Results for Acetone Absorption in Silicone Oil; Liquid Flow
Rate Variation

Experiment # Liquid flow
rate

(cc/min)

Outlet gas
conc. (ppmv)

cl) Percent
removal

1 6.8 65.5 0.1311 86.89

2 9.8 66.1 0.1323 86.77

3 31.2 65.7 0.1315 86.85

4 47.3 65.9 0.1318 86.82

5 - - - -

Module # 2, Gas flow rate: 53.0 cc/min, Feed concentration: 499.7 ppmv, Temperature:
25°C, Outlet gas pressure: 3.00 psig
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Table A18. Experimental Results for Methylene Chloride Absorption in Silicone Oil;
Liquid Flow Rate Variation

Experiment # Liquid flow
rate

(ml/min)

Outlet gas
conc. (ppmv)

(I) Percent
removal

1 0.6 493.88 0.4980 50.20

2 1.8 287.24 0.2870 71.30

3 4,1 171.96 0.1720 82.80

4 6.1 135.00 0.1351 86.49

5 8.9 111.68 0.1118 88.82

6 14.5 104.22 0.1043 89.57

Module # 2, Gas flow rate: 70.6 cc/min, Feed concentration: 999 ppmv, Temperature:
25.6°C, Outlet pressure: 3.00 psig

Table A19. Experimental Results for Toluene Absorption in Silicone Oil; Liquid Flow
Rate Variation

Experiment # Liquid flow
rate

(ml/min)

Outlet gas
conc. (ppmv)

cl) Percent
removal

1  1.68 18.43 0.0781 92.19

2 3.28 11.69 0.0495 95.05

3 5.50 9.4.1 0.0398 96.02

4 8.85 9.23 0.0391 96.09

5 13.85 8.45 0.0358 96,42

Module # 2, Gas flow rate: 405.7 cc/min, Feed concentration: 236 ppmv, Temperature:
25°C, Outlet pressure: 3.00 psig
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Table A20. Experimental Results for Methylene Chloride Absorption in Paratherm; Gas
Flow Rate Variation .

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

cl) Percent
removal

1 13.30 171.3 0.171 82.90

2 23.30 363.1 0.363 63.70

3 46.28 582.7 0.583 41.70

4 85.40 731.7 0.732 26.80

5  122.74 796.0 0.797 20.30

6 - - - -

Module # 2, Absorbent flow rate 5.1 ml/min, Feed concentration 999 ppmv,
Temperature 23°C, Outlet pressure 3.00 psig.

Table A21. Experimental Results for Toluene Absorption in Paratherm; Gas Flow Rate
Variation.

Experiment # Gas flow rate
(cc/min)

Outlet	 gas
conc. (ppmv)

CI Percent
removal

1 112.72 4.1 0.0195 98.05

2 149.50 12.5 0.0595 94.05

3 249.50 35.9 0.1710 82.90

4 366.90 53.1 0.2530 74.70

5 451.80 66.5 0.03170 68.30

Module # 2, Absorbent flow rate: 5.1 ml/min, Feed concentration: 210 ppmv,
Temperature: 22°C, Outlet pressure: 3.00 psig.
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Table A22 Experimental Results for Methylene Chloride Absorption in Silicone Oil Using
Skinned Fiber; Gas Flow Rate Variation .

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

(13 Percent
removal

1 15.00 1.8 0.00184 99.82

2 29.15 5.4 0.00540 99.46

3 45.10 56.1 0.05615 94.38

4 69.50 106.3 0.10640 89.36

5 90.30 164.1 0.1643 83.57

6 113.57 220.8 0.2210 77.90

Module # 3, Absorbent flow rate: 4.0 ml/min, Feed concentration: 999 ppmv,
Temperature: 22°C, Outlet pressure: 0.00 psig.

Table A23. Experimental Results for Methylene Chloride Absorption in Paratherm Using
Skinned Fiber; Gas Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

r
(I) Percent

removal

1 11.52 17.7 0.0177 98.23

2 23.42 10.6 0.0106 98.94

3  44.61 30.6 0.0306 96.94

4 67.84 86.7 0.0868 91.32

5 90.85 151.7 0.1518 84.82

6 116.37 219.5 0.2197 78.03

Module # 3, Gas flow rate: 5.4 ml/min, Feed concentration: 999 ppmv, Temperature:
20.5°C, Outlet pressure: 0.00 psig.



178

Table A24. Experimental Results for Acetone Absorption in Paratherm Using Skinned
Fiber; Gas Flow rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

(1c. Percent
removal

1 11.60 15.5 0.0156 98.44

2 23.75 80.1 0.081 91.90

3 46.51 249.9 0.2517 74.83

4 70.07 388.5 0.3912 60.88

5 92.09 500.6 0.5041 49.59

6 116.35 583.9 0.5880 41.20

Module # 3, Absorbent flow rate: 5.4 ml/min, Feed concentration 993 ppmv,
Temperature 23°C, Outlet pressure: 0.00 psig.

Table A25. Experimental Results for Methylene Chloride Absorption in Silicone Oil at
Higher Gas Flow Rate; Gas Flow Rate Variation .

Experiment # Gas flow rate
(cc/min)

'
Outlet gas

conc. (ppmv)
(I) Percent

removal

1 72.97 2.0 0.0020 99.8

2 119.81 6.4 0.0064 99.36

3 201.92 23.8 0.0238 97.62

4 294.25 82.2 0.0823 91.77

5 . 360.8 140.0 0.140
1

86.00

6 441.89 190.4 0.190 81.00

Module # 1, Absorbent flow rate: 5.2 ml/min, Feed concentration: 999 ppmv,
Temperature: 22.5°C, Outlet pressure: 3.00 psig.
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Table A26. Experimental Results for Acetone Removal by Combined Absorption-
Stripping; Liquid Flow Rate Variation

Experiment # Liquid flow
rate

(ml/min)

Outlet gas
conc. (ppmv)

0:11 Percent
removal

1 2.80 183.6 0.1850 81.50

2 4.00 171.1 0.1723 82.27

3 8.10 154.7 0.1558 84.42

4 15.50 139.1  0.1400 86.00

5 - - - -

6 - - - -

Module # 1, Gas flow rate: 13.7 cc/min, Feed concentration: 993 ppmv, Temperature:
24.5°C, Outlet pressure: 3.00 psig.

Table A27. Experimental Results for Methanol Removal by Combined Absorption-
Stripping; Gas Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

4 Percent
removal

1 11.12 71.7 0.1395 86.05

2 23.00 179.4 0.3840  61.60

3 44.24 332.2 0.6463 35.37

4 72.64 363.8 0.7078 29.22

5 119.5 420.3 0.8177 18.23	 ,_

Module # 2 & 3, Absorbent: silicone oil, Absorbent circulation rate: 4.5 mi./min, Feed
concentration: 514 ppmv, Temperature: 25°C, Outlet pressure: 3.00 psig
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Table A28, Experimental Results for Methylene Chloride Removal by Combined
Absorption-Stripping; Gas Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

4) Percent
removal

1 5.00 33.0 0.0330 96.70

2 13.90 58.5 0.0585 94.15

3 21.40 107.3 0.1074 89.26

4 39.60 219.2 0.2194 78.06

5 80.15 379.8 0.3802 61.98

6 - - - -

Module # 1, Absorbent: Silicone Oil, Absorbent circulation Rate: 5.2 ml/min, Feed
concentration: 999 ppmv, Temperature: 22.5°C, Outlet pressure: 3.00 psig,

Table A29. Experimental Results for Methylene Chloride Removal by Combined
Absorption-Stripping; Gas Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

43 Percent
removal

1 10.31 232.9 0.2331 76.69

2 470.2 0.4707 52.93

3  46.70 683.35 0.6840 31.60

4 84.50  815.1 0.8160 18.40

5  12.95 862.4 0.8632 13.68

Module # 2 & 3, Absorbent: Paratherm, Absorbent circulation rate: 5.7 ml/min, Feed
concentration: 999 ppmv, Temperature: 23°C, Outlet pressure : 3.00 psig
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Table A30. Experimental Results for Toluene Removal by Combined Absorption-
stripping ; Gas Flow Rate Variation

Experiment # Gas flow rate
(cc/min)

Outlet gas
conc. (ppmv)

(I) Percent
removal

1 13.75 33.0 0.1570 84.30

2 25.50 35.8 0.1705 82.95

3 49.15 48.4 0.2305 76.95

4 74.26 57.8  0.2750 72.50

5 - - - -

Module # 2 & 3, Absorbent: silicone oil, Absorbent circulation rate: 2.8 ml/min, Feed
concentration: 210 ppmv, Temperature: 25°C, Outlet pressure: 3.00 psig



APPENDIX B

SAMPLE CALCULATIONS

B1 Calculation of Dimensionless Henry's Law Constant

From the set of experimental data shown in Table 4.1, data corresponding to vial number,

164, were taken for the following sample calculation:

WE = 16.6900 gm.

WC = 18.6743 gm.

V, = 22.0 ml

t = 25.6 °C

WS = WC - WE = 18.6743 - 16.6900 = 1.9843 gm

Density of silicone oil at 25.6 °C is calculated from equation 2.109:

p i = 0.9802 - 8.356*10 4*25.6 = 0.9588 gm/m1

Vi = 1.9843/0.9588 = 2.0695 ml

Vg = 22.0 - 2.0695 = 19.9305 ml

Vg/Vi = 9.96303

From the plot of 1/PA vs. Vg/V i (Figure 4.1) the following slope and intercept are

obtained.

Intercept = 4.68546*10'

Slope = 0.08991*10 -6

Hence, H i = 4.68546/0.08991 = 52.113

B2 Calculation of Overall Mass Transfer Coefficient

The following sample calculation of mass transfer coefficient is for toluene absorption

with silicone oil carried out in module # 2.

Reference : Second row of Table 4.4
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Temperature, T = 27+273 =300 K

Liquid flow rate = 1.75 ml/min

Henry's law constant, H = exp(2375.005/300 2.08)= 342.641 (Ref: Table 4.2)

Fiber inside diameter = 0.01 cm

Fiber outside diameter = 0.015 cm

Effective length = 31 cm

Mass transfer area, An, = n*0.01*31*102 = 99.34 cm2

From equation 4.3 liquid phase outlet concentration C ito„, can be calculated as

Ghent = 1*195.17*(236-1.33)*10 -9 /0.08206*300*1.75 =1.063*104 gmol/ml

The corresponding gas phase equilibrium concentration, C; 0u, = Citout H

= 1.063*10/342.641

= 3.1024* 10 -9 gmol/cc

Gas phase inlet concentration, Cis. = 236*104*24.9/14.696*82.06*300

= 16.243*10 -9 gmol/cc

Gas phase outlet concentration, C imut = 1.33*10 -6*17.696/14.696*82.06*300

= 6.5054* 10 -h1 gmol/cc

For fresh absorbent liquid, inlet liquid phase concentration, Co, = 0.0

Hence, the corresponding gas phase equilibrium concentration, 	 = 0.0

Substituting the values of C isift, ;mut, 	 and C 1/2: 0 ,it into equation 4.2

( AC)b  = 2.463*10 -9 gmol/cc

The overall mass transfer coefficient from equation 4.1 then

K. = (236-1.33)*1*195.17*10 -6/(82.06*300*60*99.34*2.463*10 -9)

= 0.1265 cm/sec
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APPENDIX C

COMPUTER PROGRAMS

Computer codes for the following simulations and calculations are provided here

1. Simulation for VOC absorption using porous fiber

2. Simulation for VOC absorption using skinned fiber

3. Simulation for VOC removal by combined absorption-stripping

4. Calculation of diffusivity of VOC via permeation through absorbent ILM

5. Calculation of VOC permeance through the silicone skin

6. Calculation of gas-phase-based overall mass transfer coefficient

7.	 Calculation of Henry's law constant from experimental data
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C 	
C SIMULATION FOR ABSORPTION IN COUNTER CURRENT HOLLOW FIBER CONTACTOR
C CASE I: POROUS FIBER
C 	 —
C ALF	 EFFECTIVE LENGTH OF FIBER (cm)
C AS	 AREA OF ANNULUS ASSOCIATED WITH A SINGLE FIBER (an' )
C CILIN	 VOC CONCENTRATION IN INLET LIQUID STREAM (mole/ml)
C CIGIN	 VOC CONCENTRATION IN INLET GAS STREAM (mole/cc)
C CIGOT	 VOC CONCENTRATION IN OUTLET GAS STREAM (GUESSED) (mole/cc)
C CGO	 VOC CONCENTRATION IN OUTLET GAS STREAM (CALCULATED) (mole/cc)
C CLO	 VOC CONCENTRATION IN OUTLET LIQUID STREAM (CALCULATED)

(mole/ml)
C CIGAV	 AVERAGE CONCENTRATION IN GAS PHASE (mole/cc)
C CILAV	 AVERAGE CONCENTRATION IN LIQUID PHASE (mole/cc)
C DELZ	 DIFFERENTIAL LENGTH (cm)
C DIL	 DIFFUSIVITY OF VOC IN LIQUID (cen t/sec)
C DIG	 DIFFUSIVITY OF VOC IN NITROGEN (cm 2/sec)
C	 HENRYS CONSTANT
C NF	 NUMBER OF FIBERS
C N	 NUMBER OF INCREMENT IN Z DIRECTION
C MUG	 VISCOSITY OF GAS (cp)
C MUL	 VISCOSITY OF LIQUID (cp)
C MWI	 MOLECULAR WEIGHT OF VOC (gm mwt)
C MWL	 MOLECULAR WEIGHT OF LIQUID (gin mwt)
C PIC	 CRITICAL PRESSURE OF VOC
C POT	 GAUGE PRESSURE AT OUTLET OF THE FIBER (psig)
C POUT	 ABSOLUTE PRESSURE AT THE FIBER OUTLET (psia)
C PPMIT	 VOC CONCENTRATION AT INLET GAS STREAM (ppmv)
C PPMOT	 VOC CONCENTRATION AT OUTLET GAS STREAM (pinny)
C RI	 INSIDE RADIUS OF FIBER (cm)
C RO	 OUTSIDE RADIUS OF FIBER (cm)
C RE	 INSIDE RADIUS OF ANNULAR SPACE ASSOCIATED WITH EACH FIBER (cm)
C RS	 INSIDE RADIUS OF SHELL (cm)
C TEMP	 TEMPERATURE C)
C VAT	 AVERAGE VELOCITY OF GAS STREAM THROUGH FIBER (cm/sec)
C VMT	 MAXIMUM VELOCITY OF GAS THROUGH FIBER (cm/sec)
C VAS	 AVERAGE LIQUID VELOCITY THROUGH SHELL (cm/sec)
C VOW	 MEASURED VOLUMETRIC GAS FLOW RATE AT ATMS.(cc,(min)
C VOLL	 MEASURED VOLUMETRIC LIQUID FLOW RATE (cc/min)
C

IMPLICIT REAL*8(A-H,M-Z)
DIMENSION CIGOT(3), OGOUT(3 ),PPIvIOT(3),GI1 (3), CILRO(3),CIGRI (3),AM(3)
1 ,AN (3) ,CIGAV(3),CILAV(3) ,FUN(3), -F PlyiAV (3),AINC(3), Al NC1(3),AINCL(3)
1 ,AINCL1(3),a inc12(3),DIFF(3), CIGAV1(3),GA(5),S UM(6),CN(5),de n(5)
1 ,PI(3),PP(3),PPI(3), PPP(3),PFN(3)
OPEN(10,FILE='ABS.DAT,STATUS='OLD')
OPEN(20,FILE--'ABS.OUT',STATUS='NEW')
READ(10,*)RI,RO,NF,ALF,RS,POR,TOR
READ(10,*)CILIN,POT,PPMIT,VOLL
READ(10,*)MUG,MIJL,TEMP,MWL,MWI,MN
READ(10, *)PIC,VIC,TIC
READ(10,*)SIGN,S IGI,EPSN,EPSI,PHI
RE.AD(10,*)Ali,BH,DIL,N,SV,INC,NV
A1=1.06036
B1=0.15610
C1=0.19300
D1=0.47635
El=1.03587
F1=1.52996
G1=1.76474
H1=3.89411
R=0.08206
TEMP=TEMP+273.0
H=EXP((BH/TEMP)-AH)
DI=2.0*RI
DELZ=ALF/N



RE=RS/(NF**0.5)
A=((RE14.0)-(((RO/RE)**2.0)*(RE/2))+(RE*DLOG(RO/RE))+(REJ2.0))
B=((R0/2.0)-((R0"3.0)/(4.0*(RE**2.0))))
D=1.0+DLOG(R0)-(((RO/RE)**2.0)/2.0)
AS=(3.14159*(RE**2.0))-(3.14159*(R0**2.0))
VAS=VOLL/(AS*NF*60.0)
AK11=2.0•VAS*(1.04(RO/RE)**2.0))
AK2243.0+((RO/RE)**4.0)-(4.0*((RO/RE)**2.0))+(4.0*DLOG(RO/RE))
AK1=AK11/AK22

C	 ********************** ***** *** ***** *****************************

AA14(RE**8.0)-(R0**8.0))/(8.0*16.0*(RE**4.0))
AA21(DLOG(R0)/(48.0*(RE**2.0)))-((R0**2.0)/(96.0*(RE**4.0))))
AA2=AA21*((RE**6.0)-(R0**6.0))
AA3=((RE " 6.0) * (DLOG(RE) -(1.0/6.0)))/6.0
AA44(RO**6.0)*(DLOG(R0)-(1.0/6.0)))/6.0
AA54AA3-AA4)/(8.0*(RE**2.0))
AA=(AA1+AA2-AA5)

c **wig* ************** **Ai** ************** ************** ***** ****

BB1=((RE*•6.0)-(R0"6.0))/(12.0*(RE**2.0))
BB2=((DLOG(R0)/4.0)-((RO/RE)**2.0)/8.0)*((RE**4.0)-(R0**4.0))
BB34(RE**4.0)*(DLOG(RE)-(1.0/4.0)))/4.0
BB44(R0**4.0)*(DLOG(R0)-(1.0/4.0)))/4.0
BB54BB3-BB4)
BB.---(BB1+BB2-BB5)*D

C	 ******** ********** ******* **IR* ***** **** ***** *******************

CC114(R0**6.0)*(DLOG(R0)-(1.0/6.0)))/6.0
CC22=((RE**6.0)*(DLOG(RE)-(1.016.0)))/6.0
CC1=(CC11-CC22)/(2*(RE**2))
CC24((RO/RE)**2.0)/2.0-DLOG(R0)-0.5
CC3=((RE**4.0)*(DLOG(RE)-(1.0/4.0)))/4.0
CC4=((RO• *4.0)*(DLOG(R0)-(1.0/4.0)))/4.0
CC5=CC2*(CC3-CC4)
CC64(DLOG(RE))**2.0)*((RE**4.0/4.0)-((DLOG(R0))**2.0)*((R0**4)/4.0)
CC=(CC1+CC5+CO5)

DD1=((RE**4.0)*(DLOG(RE)-(1.014.0)))/4.0
DD2=((R0**4.0)*(DLOG(R0)-(1.0/4.0)))/4.0
DD3=(DD1-DD2)*(-A/RE)
DD4=((A*(R0**2.0))/RE)-(2.0*A*RE*DLOG(R0))-(2.0*A*RE)
DD5=((RE**2.0)*(DLOG(RE)-(1.0/2.0)))/2.0
DD6=((RO**2.0)*(DLOG(R0)-(1.012.0)))/2.0
DD7=DD4*(DD5-DD6)
DD8=A*RE*((RE**2.0)*((DLOG(RE))**2.0)-(R0**2.0)*((DLOG(R0))**2.0))
DD=(DD3+DD7+DD8)

C	 *•************** ********** *** ******** **************************

E=((3.0/4.0)*(RE**2.0))+((R0**4.0)/(4.0*(RE"2.0)))-
1 (R0**2.0)+(RE**2.0)*(DLOG(RO/RE))
T=E

C	 ** *************** ******************* ********** ***************** *****

S=(AA+BB+CC+DD)
c ******* ********** ******* ***** **** ****** ********** ***** ******* ******

VII3=0.285*(VIC*•1.048)
SIGIN4SIGI+SIGN)/2.0
EPSINEPSI*EPSN)**0.5
TSTAR=TEMP/EPSIN
OMEGAI.=(A1/(TSTAR**B1))+(C1/(EXF(D1*TSTAR)))+(E1/(EXP(Fl*TSTAR)))
OMEGA=OMEGA1+(G1/(E,XP(H1*TSTAR)))
MAV=((MWI+MN)/(MWIsIvIN))"0.5
DIM4DIL*POR)1TOR

C oi****** ****** •** ****** ** ***** *** ************** **** ******* *********

WRTTE(20,11)
11 FORMAT(1X,75('=')/1X,'GAS FLOWRATE',5X,' GAS OUTLET CONC.',5X,'

1 LIQ. OUTLET CONC.',5X,'GZREF',5X,'FIII'/
1 5X,*(cr./min)',5x,'(ppnw)' ,18x,'(gmo1einal)'/1x,75C.1)
M=1
VOLG=SV
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DO WHILE ( M .LE.NV)
VOLG=VOLG+INC
PPMOT(1)=0.0
PPMOT(2)=PPMIT

100 PPMOT(3)=(PPMOT(1)+PFMOT(2))/2.0
DO 400 L=1,3
POUT=P0T+14.696
CIGOT(L)=(PPMOT(L)*POUT)/(R*TEMP*1000000.0*1000.0*14.696)
I=1
CILIN1=CILIN
CIGOUT(L)=CIGOT(L)
ALC=0.0

200 ALC=ALC+DELZ
VOLGA=(VOLG*14.696)/POUT
VOLGOT= VOLGA
DELP1 0•32.0 *MUG *DELZ* VOLGOT* POUT* (2.54* • 2.0))
DELP =DELP1J(NF* 3.14159" 6000 * (DI* *4) *981 * 453,6)
PIN=((DELP+(POUT**2.0))**0.5)
PAV=(PIN+POUT)/2.0
IF(I.EQ.1) THEN
CIGOUT(L)CIGOUT(L)*PAV)/POUT
ELSE
CIGOUT(L)=CIGOUT(L)*PAV
ENDIF
VOLGAV=(VOLGOT*POUTYPAV
VOLGIN=(VOLGOT*POUT)/PIN
VAT=VOLGAV/(3.14159*NF*60*(RI**2.0))
VMT=2.0*VAT

=(VOLG)/(NF*60)
C   	 **•************ ***** ** 	

C CALCULATION OF DIFFUSIVITY IN NITROGEN

DIG141.858*(10.0**(-3.0))*(TEMP**1.5)*MAV)/(POUT*(SIGIN• *2.0))
DIG=(DIG1*14.696)/OMEGA
DIGRE=(1.858*(10.0**(-3.0))*(TEMP**1.5)*MAV)/(14.6 96)
D IGREF=-(DIGRE* 14.696)/((SIGIN* • 2.0) *OMEGA)
P=(DIM/DIG)*(1/(RI•DLOG(RO/RD))
0 =-(DIM/DIL) * (1/(RO *DLOG(RO/RI)))
X=((11.0*R1)/96.0)-((DIG*DELZ)/(VMT*R0)
YY14(RO • *4.0)06.0' (RE* • 2.0)))+(((RO * • 2.0) *D)/2.0)
YY2((RO • *2.0)*DLOG(R0))/2.0)
YY3=A*RE*DLOG(RO)
YY4=(S/T)
YY5=((DIL*DELZ)/AK1)
YY =YY 1 -YY2-YY3 -YY4+YY5

C
FF-,(A*(RE/R0))-B
Y=(YY/FF)

C 	
C INTERFACIAL CONCENTRATIONS
C

GI1(L).(CIGOLTT(L))/(1.0+(4 .0* P *X • H))
G12=(4.0•P*X)/(1.0+(4.0*P•X•H))
G13(1.0+(Q*Y))/(CrY•H)
G14=CILIN1/(0*Y*H)
CILRO(L)(GI1(L)+G14)/(G13 -GI2))
CIGRI(L)=GI1(L)+(GI2•CILRO(L))
DIFF(L)=CILRO(L)-(H•CIGRI(L))

C
C CALCULATION OF AVARAGE CONCENTRATIONS
C

AM(L)=0.0-(4*P*(CILRO(L)-(H•C/GRI(L))))/R1
AN(L)=0.04Q*(CILRO(L)-(H•CIGRI(L))))/((A*(RE/R0))-13)
AINC1(L).(2.0 • 3.14159*(RI • • 2 .0) • DELZ*DIG * AM(L))/(4 *VOLGAV)
AINC(L)=AINC1(L)*60*NF
CIGAV(L)=AINC(L)+CIGOUT(L)
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CIGAV1(L)=AINC(L)+CIGOUT(L)
AINCL1(L)=((2.0*3.14159*DELZ*DIL*AN(L)*E*60*NF)/VOLL)
CILAV(L)=AINCL1(L)+CILIN1
IF(I.GEN)THEN
GO TO 300
ELSE
1=1+1
CIGOUT(L)=CIGAV(L)/PAV
CILIN1=CILAV(L)
POUT=PIN
GO TO 200

300 END IF
PPMAV(L)4CIGAV(L)*R*TEMP*1000.0*1000000.0*14.696)/PAV
CIGIN4PPMIT* PIN)/(R*TEMP *1000000.0* 1000.0'14.696)
FUN(L)4PPMIT-PPMAV(L))

400 CONTINUE
IF(ABS(FUN(3)).LE.0.001)GO TO 600
AKP=FUN(1)*FUN(3)
LF(AXT.GT.0.0)G0 TO 500
PPMOT(2)=PPMOT(3)
GO TO 100

500 PPMOT(1)=PPMOT(3)
GO TO 100

600 PPMIO=PPMOT(3)
CLO=CLLAV(3)
PHIO=PPMIO/PPMIT
GZREF=(D1GREFIALF)/VREF
WRITE(20,33)VOLG,PPMIO,CLO,GZREF,PHIO

33 FORMAT(5X,F8.3,5X,F8.3,15X,F12.10,8X,F7.2,2X,F6.4)
M=M+1
END DO
WRITE(*,*)D1GREF
WRITE(20,55)

55 FORMAT(1X,75('='))
STOP
END
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C
C	 SIMULATION FOR ABSORPTION IN COUNTER CURRENT HOLLOW FIBER CONTACTOR
C	 CASE II SKINNED FIBER
C
C
C ALF EFFECTIVE LENGTH OF FIBER (cm)
C	 AS	 :	 AREA OF ANNULUS ASSOCIATED WITH A SINGLE FIBER (cm')
C	 CIGIN :	 VOC CONCENTRATION AT INLET LIQUID STREAM (mole/nil)
C	 CIGIN :	 VOC CONCENTRATION AT INLET GAS STREAM (mole/cc)
C	 CIGOT :	 VOC CONCENTRATION AT OUTLET GAS STREAM (GUESSED) (mole/cc)
C	 CGO	 :	 VOC CONCENTRATION IN OUTLET GAS STREAM (mole/cc)
C	 CUD	 VOC CONCENTRATION IN OUTLET LIQUID STREAM (CALCULATED)

(mole/ml)
C	 CIGAV :	 AVERAGE CONCENTRATION IN GAS PHASE (mole/cc)
C	 CILAV :	 AVERAGE CONCENTRATION IN LIQUID PHASE (mole/cc)
C	 DELZ :	 DIFFERENTIAL LENGTH (cm)
C	 DIL	 DIFFUSIVITY OF VOC IN LIQUID (cm 2/sec)
C	 DIG	 DIFFUSIVITY OF VOC IN NITROGEN (cresec)
C	 H	 HENRY'S CONSTANT
C	 NF	 NUMBER OF FIBERS
C	 N	 NUMBER OF INCREMENT IN Z DIRECTION
C	 MUG	 VISCOSITY OF GAS (cp)
C	 MUL	 VISCOSITY OF LIQUID (cp)
C	 MWI	 MOLECULAR WEIGHT OF VOC (gm mwt)
C	 MWL	 MOLECULAR WEIGHT OF LIQUID (gm mwt)
C	 PIC	 CRITICAL PRESSURE OF VOC
C	 POT	 GAUGE PRESSURE AT OUTLET OF THE FIBER (psig)
C	 POUT	 ABSOLUTE PRESSURE AT THE FIBER OUTLET (psis)
C	 PPMIT	 VOC CONC. AT INLET GAS STREAM (ppmv)
C	 PPMOT :	 VOC CONC. AT OUTLET GAS STREAM (ppmv)
C	 RI	 INSIDE RADIUS OF FIBER (cm)
C	 RO	 OUTSIDE RADIUS OF FIBER (cm)
C	 RE	 INSIDE RADIUS OF ANNULAR SPACE ASSOCIATED WITH EACH FIBER (cm)
C	 RS	 INSIDE RADIUS OF SHELL (cm)
C	 TEMP	 TEMPERATURE (° C)
C	 VAT	 AVERAGE VELOCITY OF GAS STREAM THROUGH FIBER (cm/sec)
C	 VMT	 MAXIMUM VELOCITY OF GAS THROUGH FIBER (cm/sec)
C	 VAS	 ..	 AVERAGE LIQUID VELOCITY THROUGH SHELL (cm/sec)

VOWC	 •.	 MEASURED VOLUMETRIC GAS FLOW RATE AT ATMS. (cc/min)
C	 VOLL 	 MEASURED VOLUMETRIC LIQUID FLOW RATE (cc/min)
C

IMPLICIT REAL*8(A-H,M-Z)
DIMENSION CIGOT(3),CIGOUT(3),PPMOT(3),GI1(3),CEMZ0(3),CIGZI(3),AM(3)
1,AN(3),CIGAV(3),CILAV(3),FUN(3),PPMAV(3),AINC(3),AINC1(3),AINCL(3)
1,AINCL1(3),aincl2(3),DIFF(3)
OPEN(99,FILE='ABSC.DAT',STATUS='OLD')
OPEN(20,FILE=IABS.OUT',STATUS='NEW 1 )
READ(99,*)RI,RO,RC,NF,ALF,RS,POR,TOR,RP
READ(99, *)CILIN,POT,PPMIT,VOLL
READ(99, *)MUG,MUL,TEMP,MWL,MWLMN
READ(99,*)PIC,VIC,TIC
READ(99,*)ANTA,ANTB,ANTC
READ(99,*)SIGN,SIGLEPSN,EPSLPHI
READ(99, 41)AH,BH,DIL,QC
READ(99,*)N,SV,INC,NV
A1=1.06036
B1=0.15610
C1=0.19300
D1=0.47635
E1=1.03587
F1=1.52996
G1=1.76474
H1=3.89411
R=0.08206
TEMP=TEMP+273.0
H=EXP((BH/TEMP)-AH)
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A.---((ZE/4.0)-(((ZC/ZE)* *2.0)* (ZE/2))+(ZE* DLOG(2C/ZE)) +(ZE,12.0))
B=((ZC/2.0)-((ZC"3.0)/(4. 0* (ZE" *2.0))))
D=1.0+DLOG(ZC)-(((ZC/ZE)* *2.0)/2.0)
AS = (3 .14159 *(RE* * 2.0))-(3.14159 * (RC * *2.0))
VAS=VOLL/(AS *NF* 60.0)
AK11=2.0 *VAS * (1.0-((RC/RE) * *2.0))
AK22=(3 .0+((RC/RE)* • 4.0))-(4.0 * ((RC/RE)* *2.0)) +(4.0 *D LOG(RC/RE))
AK1=AK11/AK22
	 * ********* ****** •********************************** *********

AA14(LE* *8.0)-(ZC* • 8.0))/(8.0* 16.0*(ZE* *4.0))
AA21=((DIDG(ZC)/(48.0*(ZE**2.0)))-((ZC**2.0)/(96.0*(ZE** 4.0))))
AA2=AA21*((7/"6.0)-(ZC* *6.0))
AA34(ZE* *6.0) "(DLOG(ZE)-(1.0/6.0)))/6.0
AA44(ZC• 4 6.0)* (DLOG(ZC)-(1.0/6.0)))f6 .0
AA5=.-(AA3-AA4)/(8 .0 * (ZE* *2.0))
AA-,(AA.1+AA2-AA5)
	  * ** ****** **

BB 1 =((ZE* * 6.0) -(ZC* * 6.0))/(12.0 * (ZE* *2.0))
BB2 =((D LOG(ZC)/4.0)-((ZCIZE)* *2.0)/8.0)* ((ZE* *4.0)4ZZ * 4 4 .0))
BB3=((ZE**4.0)*(DLOG(ZE)-(1.0/4.0)))/4.0
BB4 =((ZC * * 4.0)* (DLOG(ZC) -(1.0/4.0)))/4.0
BB5=(BB3-BB4)
BB 4BB 1 +BB2-BB5)*D

CC11=((ZC " 6.0)* (DLOG(ZC)-(1.0/6.0)))/6.0
CC22=((ZE* *6.0)*(DLOG(ZE)-(1.0/6.0)))/6.0
CC 1=(CC11-CC22)/(2 * (ZE • *2))
CC2=(((ZC/7E)"2.0)/2.0)-DLOG(ZC)-0.5
CC3=((ZE* *4.0) *(DLOG(ZE)-(1.0/4.0)))/4.0
CC4-4(7E**4.0)*(DLOG(ZC)-(1.0/4.0)))/4.0
CC5=CC2*(CC3-CC4)
CC6=((D LOG(ZE))* *2.0) *((ZE* *4.0)/4 .0)-((DLOG(ZC))* * 2.0)*((ZC * * 4)/4. 0)
CC=(CC1+CCS+CC6)

DD1=((ZE • *4.0) * (DLOG(ZE)-(1.0/4.0)))/4.0
DD2=((ZC* • 4.0)* (DLOG(ZC)-( 1.0/4.0)))/4.0
DD3 =(DD1-DD2) (-A/ZE)
DD44(A* (Ze* *2.0))/ZE)-(2.0 *A* ZE*DLOG(ZC))-(2 0•A * ZE)
DD5=((ZE * 2.0)* (DLOG(ZE) -(1.0/2.0)))/2.0
DD6=-RZC* * 2.0)* (D LOG(ZC)-(1.0/2.0)))/2.0
DD 7=DD4 • (DD5-DD6)
DD 8=A * ZE* ((ZE * * 2.0)*((DLO G(ZE))* • 2.0) -(ZC • * 2. 0)* ((DLOG(ZC)) " 2 .0))
DD =(DD 3+DD7+DD8)
•**** ******** *

E=--((3.0/4.0)*(ZE**2.0))+((ZC* •4.0)/(4.0* (ZE* • 2.0))) -
1 (ZC * • 2.0) +(ZE* *2.0)* (DLOG(ZCTLE))
T=E
*** ************* ************** ********** * ************ ***************

S AA+BB+CC+DD)
*.********************* ******************

VIB=0.285 *(VIC" 1.048)
SIGIN=(SIGI+SIGN)/2.0
EPSIN4EPSPEPSN)* *0.5
TSTAR=TEMP/EPSIN
OMEGA1 =-.(A1/(TSTAR* *B1)) +(C1/(EXP(D 1 *TSTAR)))+ (E1/(EXP(F1 * TSTAR)))
OMP,GA=OMEGAI+(G1/(EXP(H1* TSTAR)))
MAV (MNVI+MN)/(1kINVI* MN)) • *0.5
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1 LIQ. OUTLET CONC.'/
1 5XAccimin)',5x,'(ppmv)',18x,'(gmale/ml)'/1x,60('='))
M=1
VOLG--SV
DO WHILE ( M .LE.NV)
VOLG=VOLG+INC
PPMOT(1)=0.000
PPMOT(2)=PPMIT

100	 PPMOT(3)=(PPMOT(1)+PPMOT(2))/2.0
VOLGO=(VOLG*14.696)/(POT+14.696)
POUT=P0T+14.696
DELP1=(8.0*32.0*MUG*ALF*VOLGO*POUT*(2.54**2.0))
DELP=DELP1/(NF*3.14159*6000*(DI**4)*981*453.6)
PINLET4(DELP+(POUT**2.0))**0.5)
DO 400 L=1,3
POUT=POT+14.696
C1GOT(L)4PPMOT(L)*POUT)/(PPMIT*PINLET)
I=1
CILIN1=CILIN
CIGOUT(L)IGOT(L)
ALC=0.0

200	 ALC=ALC+DELZ
VOLGA:=(VOLG*14.696)/POUT
VOLGOT=VOLGA
DELP1=(8.0*32.0*MUG*DELZ*VOLGOT*POUT*(2.54**2.0))
DELP=DELP1/(NF*3.14159*6000*(DI**4)*981*453.6)
PIN=((DELP +(P OUT* *2.0)) " 0.5)
PAV=(PIN+POLIT)/2.0
IF(I.EQ.1)THEN
CIGOUT(L)=(CIGOUT(L)*PAV)/POUT
ELSE
aGouTp=cmourp.pAv
END IF
VOLGAV=(VOLGOT*POUT)/PAV
VAT=VOLGAV/(3.14159*NF*60.0*(RI**2.0))
VMT=2.0*VAT
VREF=VOLG/(NF*60)
NUE=VOLGAVANF*60*VREF)

C 	 ********** ***************** ******* ****

C 	 CALCULATION OF DIFFUSIVITY IN NITROGEN
• ***** * ***** ************* ***** ********************************** ********

DIG1=(1.858*(10.0**(-3.0))*(TEMP**1.5)*MAV)/(PAV*(SIGIN**2.0))
DIG4DIG1*14.696)/OMEGA
DIGRE=(1.858*(10.0**(-3.0))*(TEMP**1.5)*MA'V)/((0.0+14.696))
DIGREF=(DIGRE*14.696)/((SIGIN•"2.0)*OMEGA)
DELIG=DIG/DIGREF

• **** ************ **** ************ ************************** **********

C 	 REYNOLDS NUMBER AT REFERENCE CONDITION
GZREF=VREF/(DIGREF*ALF)

• *•*********** ***** ************ ***** *** ***** ****************************

CI3AR=08.1064*(10.0**6.0)*82.06*TEMP)/(3.14159*MWI))**0.5
DIGN(1.0133*(10.0**6.0)*RP*82.06*TEMP)/(CBAR*MWI)
DIM4DIGP*POR)/TOR
P4DIM/DIG)*(1/(DLOG(Z0)))
Q=(DIM/DIL)*(1/(ZCIDLOG(Z0)))
DELTA=RC-RO
RCLN=(RC-RO)/(DLOG(RC/RO))
AC4QC*RCLN)/(DELTA*Diq
X=((11.0)/96.0)-((3.14159*DELIG)/(2*N*NUE*GZREF))
YY1(ZC**4.0)/(16.0*(ZE**2.0)))+(((ZC**2.0)*D)/2.0)
YY2=(((ZC**2.0)*DLOG(ZC))/2.0)
YY3=A*ZE*DLOG(ZC)
YY4S/T)
YY5(DIL*DELZ)/(AK1*(R1**2.0)))
YY=YY1-YY2-YY3-YY4+YY5

********* *..**.• ***** *..*........*.**.•.....******* *******
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FF'=(A*(ZEIZC))-B
Y=YY/FF

• sip ***** ** ****** *************** ************ ***Mt ********* ********

C	 INTERFACIAL CONCENTRATIONS
• *•******************************•***************************•*****

GI1(L)=CIGOUT(L)/(1.0+(4.0*P*X))
GI2=(4.0*P*X)/(1.0+(4.0*P*X))
GI3=(((1.0+(P/AC))*H)+(Q*Y))/((0*Y)+((li*P)/AC))
GI4=CILIN1/((Q*Y)+((H*P)/AC))
CIMZO(L)=((GI1(L)+GI4)/(GI3-GI2))
CIGZI(L)=G11(L)+(GI2*CIMZO(L))
DIFF(L)=CIMZO(L)-(H*CIGZI(L))

C 	 ********** *IP ******* **It ******** ************0*** *********** *********

C	 CALCULATION OF AVARAGE CONCENTRATIONS
• ******* ***** *************•*********** ***** ************************

Alvf(L)=0.0-(4.0*P*(CIMZO(L)-CIGZI(L)))
AN(L)=0.0-(Q*(CIIVIZO(L)-CIGZI(L)))/((A*(ZE/ZC))-B)
AINC1(L)3.14159*DELIG*AM(L))/(2.0*N*NUE*GZREF)
AINC(L)=AINC1(L)
CIGAV(L)=AINC(L)+CIGOUT(L)
A1NCL(L)=(((CIGAV(L)-CIGOUT(L))*VOLGA)/VOLL)
AINCL1(L)=((2.0*3.14159*DELZ*DIL*AN(L)*E*60*NF)NOLL)
CILAV(L)=AINCL1(L)+CILIN1
IF(I.GE.N)THEN
GO TO 300
ELSE
I=I+1
CIGOUT(L)=CIGAV(L)/PAV
CILIN1=CIL4V(L)
POUT=PIN
GO TO 200

300	 END IF
CIGIN=1.00
FUN(L)=(CIGIN-CIGAV(L))

400	 CONTINUE
22	 FORMAT(1X,'PPMAV(3)=',F8.2,1X,'CILAV(3)=',F20.10,1X,

1 'FUN(3)=',F20.10)
IF(ABS(FUN(3)).LE.0.001)G0 TO 600
AKP=FUN(1)*FUN(3)
IF(AKP.GT.0.0)G0 TO 500
PPMOT(2)=PPMOT(3)
GO TO 100

500	 PPMOT(1)=PPMOT(3)
GO TO 100

600	 PPMIO=PPMOT(3)
CLO=CILAV(3)
WRITE(*,*)DIGREF
GZREF=(DIGREF*ALF)/VREF
WRITE(20,33)VOLG,PPM10,CLO,GZREF,PPMIO/PPMIT

33	 FORMAT(5X,F8.3,5X,F8.3,15X,F12.10)
M=M+1
END DO

55	 FORMAT(1X,60('='))
STOP
END
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C 	
C 	 ESTIMATION OF VOC DIFFUSIVITY IN ABSORBENT VIA SWEEP GAS PERMEATION THROUGH THE
C	 ABSORBENT LIQUID ILM
C 	
C 	 ALF 	 EFFECTIVE LENGTH OF FIBER (cm)
C 	 AS 	 AREA OF ANNULUS ASSOCIATED WITH A SINGLE FIBER (cm 2)
C 	 CILIN 	 • VOC CONCENTRATION AT LIQUID STREAM INLET (mole/m1)
C	 CIGIN 	 VOC CONCENTRATION AT GAS STREAM INLET (male/cc)
C 	 CIGOT 	 VOC CONCENTRATION AT GAS STREAM OUTLET(GUESSED) (mole/cc)
C 	 COO VOC CONCENTRATION AT GAS STREAM OUTLET (CALCULATED) (mole/cc)
C 	 CLO 	 VOC CONCENTRATION AT LIQUID STREAM OUTLET (mole/rill)
C 	 CIGAV 	 AVERAGE CONCENTRATION IN GAS PHASE (mole/cc)
C 	 CILAV 	 AVERAGE CONCENTRATION IN LIQUID PHASE (mole/cc)
C	 DELZ 	 DIFFERENTIAL LENGTH (cm)
C 	 DIL 	 DIFFUSIVITY OF VOC TN LIQUID (cm 2/sec)
C 	 DIG 	 DIFFUSIVITY OF VOC IN NITROGEN (cm2/sec)
C 	 1-1 	 HENRY'S CONSTANT
C 	 NF 	 NUMBER OF FIBERS
C 	 N 	 NUMBER OF INCREMENT IN Z DIRECTION
C 	 MUG 	 VISCOSITY OF GAS (cp)
C 	 MUL 	 VISCOSITY OF LIQUID (cp)
C 	 MWI 	 MOLECULAR WEIGHT OF VOC (gm mwt)
C	 MWL 	 MOLECULAR WEIGHT OF LIQUID (gm mwt)

PIC 	 CRITICAL PRESSURE OF VOC
C 	 POT 	 GAUGE PRESSURE AT OUTLET OF THE FIBER (psig)
C 	 POUT 	 ABSOLUTE PRESSURE AT THE FIBER OUTLET (psia)
C	 PPMOT 	 VOC CONC. AT INLET GAS STREAM (ppmv)
C 	 PPMOT : 	 VOC CONC. AT OUTLET GAS STREAM (ppmv)
C 	 RI 	 INSIDE RADIUS OF FIBER (cm)
C 	 RO 	 OUTSIDE RADIUS OF FIBER (cm)
C 	 RE 	 INSIDE RADIUS OF ANNULAR SPACE WITH EACH FIBER ASSOCIATED (cm)
C 	 RS 	 INSIDE RADIUS OF SHELL (cm)
C	 TEMP •▪ TEMPERATURE (°C)
C	 VAT ▪ AVERAGE VELOCITY OF GAS STREM THROUGH FIBER (cm/sec)
C 	 VMT 	 MAXIMUM VELOCITY OF GAS THROUGH FIBER (cm/sec)
C 	 VAS 	 AVERAGE LIQUID VELOCITY THROUGH SHELL (cm/sec)
C 	 VOLG 	 MEASURED VOLUMETRIC GAS FLOW RATE AT ATMS. (cc/min)
C 	 VOLL 	 MEASURED VOLUMETRIC LIQUID FLOW RATE (cc/min)
C 	 ===,=============.=========.__......... 	

IMPLICIT REAL•8(A-H,M-Z)
DIMENSION GI1(3),CILRO(3),CIGR1(3),AM(3),DIL(3),DIM(3)
1,AN(3),CIGAV(3),CILAV(3),FUN(3),PPMAV(3),AINC(3),AINC1(3),AINCL(3)
1,AINCL1(3),ainc12(3),DIFF(3),P(3),Q(3),G12(3),GI3(3),GI4(3)
OPEN(44,FILE.'ILM.DAT,STATUS='OLD')
OPEN(55,FILE=' ILM. OUT' ,STATUS =IN EW' )
READ(44,*)RI,RO,NF,ALF,RS,POR,TOR
READ(44,*)CILIN,POT,PPMIT,PPMOT,VOLG,VOLL
READ(44, 1 )MUG,MUL,TEMP,MWL,MWLMN
READ(44,")PIC,VIC,TIC
READ(44,*)SIGN,SIGLEPSN,EPSLPH1
READ(44,*)N,AH,BH
A1=1.06036
B1=0.15610
C14.19300
D1=0.47635
El=1.03587
F1=132996
G1=1.76474
H1=3.89411
R=0.08206
TEMP=TEMP+273.0
H=EXP((BHTTEMP)-AH)
D1=2.0•RI
DELZ=ALF/N
RE=RS/(NP*0.5)
A=ORE/4.0)-(((RO/RE)*"2.0)*(RE/2))4(RE*DLOG(RO/RE))4-(RE,/2.0))



B=((R0/2.0)-((R0**3.0)/(4.0*(RE**2.0))))
D=1.0+DLOG(R0)-(((RO/RE)**2.0)/2.0)
AS=(3.14159*(RE**2.0))-(3.14159*(R0**2.0))
VAS=VOLLKAS*NF*60.0)
AK11=2.0*VAS*(1.0-((RO/RE)**2.0))
AK22=(3.0+((RO/RE)•*4.0))-(4.0*((RO/RE)**2.0))+(4.0*DLOG(RO/RE))
AK1=AK11/AK22

• ** ***** ********************************************•* ***** * *****

AA1(RE* *8.0)-(R0* * 8.0))/(8.0* 16.0 * (RE"4.0))
AA21=((DLOG(R0)/(48.0*(RE**2.0)))-((R0**2.0)/(96.0*(RE**4.0))))
AA2=AA21*((RE**6.0)-(R0**6.0))
AA34(RE**6.0)*(DLOG(RE)-(1.0/6.0)))/6.0
AA4=0R0**6.0)*(DLOG(R0)-(1.0/6.0)))/6.0
AA54AA3-AA4)/(8.0*(RE**2.0))
AA=(AA1+AA2-AA5)

• **********************•************************ ***** ***********

BB1=((RE**6.0)-(R0**6.0))/(12.0*(RE**2.0))
BB2=((DLOG(R0)/4.0)-((RO/RE)**2.0)/8.0)*((RE**4.0)-(R0**4.0))
BB3=((RE**4.0)*(DLOG(RE)-(1.0/4.0)))/4.0
BB4=0R0**4.0)*(DLOG(R0)-(1.0/4.0)))/4.0
BB5=(BB3-BB4)
BB.(BB 1+BB2-BB5)*D
	 ******* ******* **********

CC114(R0 **6.0) * (DLOG(R0)-(1.0/6.0)))/6.0
CC224(RE**6.0)*(DLOG(RE)-(1.0/6.0)))/6.0
CC1=(CC11-CC22)/(2*(RE**2))
CC2=(((RO/RE)**2.0)/2.0)-DLOG(R0)-0.5
CC3=((RE•*4.0)*(DLOG(RE)-(1.0/4.0)))/4.0
CC4=((R0**4.0)*CDLOG(R0)-(1.0/4.0)))/4.0
CC5=CC2*(CC3-CC4)
CC6=((DLOG(RE))**2.0)*((RE**4.0)/4.0)-((DLOG(R0))**2.0)*((RO• *4)/4.0)
CC=(CC1+CC5+CC6)

• *** ***** ********* * ********** *************************** *******

DD1=((RE"4.0)*(DLOG(RE)-(1.014.0)))/4.0
DD2=((R0"4.0)*(DLOG(R0)-(1.0/4.0)))/4.0
DD3DD1-DD2)*(-A/RE)
DD4=((A*(R0"2.0))/RE)-(2.0*A•RE*DLOG(R0))-(2.0•A*RE)
DD5=((RE**2.0)*(DLOG(RE)-(1.0/2.0)))/2.0
DD6=((R0**2.0)*(DLOG(R0)-(1.0/2.0)))/2.0
DD7=DD4*(DD5-DD6)
DD8=A*RE*((RE**2.0)*((DLOG(RE))**2.0)-(R0**2.0)*((DLOG(R0))**2.0))
DD=(DD3+DD7+DD8)

C 	 ************** ****** sir**

E(3.0/4.0)*(RE**2.0))+((R0** 4.0)/(4.0*(RE**2.0)))-
1 (R0**2.0)+(RE**2.0)*(DLOG(RO/RE))
T=E

• **•***************** **** * ******* ******************* ***** **SS* ***** *IP

S=(AA+BB+CC+DD)
C 	 ****** *** ****** ************* ****** *******•****** ****** ***** ***** ***

C 	 CALCULATION OF DIFFUSIVITY IN LIQUID ABSORBENT PHASE
C	 ***** ******* *****************•******************** ****** ***********

VIB4.285*(VIC**1.048)
SIGIN=(SIGI+SIGN)/2.0
EPSIN4EPSI*EPSN)**0.5
TSTAR=TEMP/EPSIN
OMEGA1=(A1/(TSTAR**B1))+(C1/(EXP(D1 *TSTAR)))+(E1/(EXP(F1*TSTAR)))
OMEGA=OMEGA1+(G1/(EXP(H1*TSTAR)))
MAV4(MWI+MN)/(MWI*MN))**0.5

C 	 ******************************************************************

DIL(1)=0.0000001
DIL(2)=0.00001

100	 DIL(3)4DIL(1)+DIL(2))/2.0
DO 400 L=1,3
POUNPOT+14.696
CIGOT4PPMOT•POUT)/(R*TEMP*1000000.0*1000.0•14.696)
I=1
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CILIN1=CILIN
CIGOUT=CIGOT
ALC

200	 ALC=ALC+DELZ
VOLGA=(VOLG * 14 .696)/POUT
VOLGOT=VOLGA
VAT=VOLGA/(3 .14159* (RI • *2. 0) * NF* 60.0)
DELP148.0•32.0" MUG •DELZ*VOLGOT* POUT' (2.54* *2.0))
DELP=DELP1/(NF• 3 .14159'6000 " (DI* *4)* 981* 453.6)
PIN4DELP +(POUT* • 2.0)) • "0.5
PAV PIN+POLTT)/2.0
IF(I. E,Q .1) THEN
CIGOUT4CIGOUT* PAVYPOUT
ELSE
CIGOUT=CIGOUT•PAV
END IF
VOLGAV VOL,GA *PO UT)/PAV
VOLGIN.(VOLGA• POUT//PIN
VAT=VOLGAV/(3.14159 • (RI * " 10) • NF* 60.0)
VM T=2.0* VAT
VREF4VOLG)/(NF• 60)

C 	 CALCULATION OF DIFFUSIVITY IN NITROGEN
C

DIG 1=(1.858* (10 .0 • • (-3.0))* (TEMP* * 1.5) • MAV)/(PAV*(S IGIN " 2.0))
DIG =(DIG1 * 14.696)/0 MEGA
DIGRE=(1.858* (10.0* *(-3.0)) *(TEMP* 1.5)*MAV)/(14.696)
DIGREF.(DIGRE* 14.696)/((SIGIN • • 2.0) • OMEGA)

DIM(L) =(DIL(L) • POR)/TOR
P(L).(DIM(L)/DIG)*(1/(RI*DLOG(RO/R1)))
0( L)=(DIM(L)/DIGREF) • (1/(RO • D LOG(RO/RI)))
X=((11.0 • RI)/96.0)-((DIG *DELZ)/(VMT*RI))
YY14(RO " 4.0)/(16.0 • (RE* *2.0))) +(((RO * *2 .0) * D)/2 .0)
YY2=(((RO • '2.0)* DLOG(R0))/2.0)
YY3=A*RE'DLOG(RO)
YY4=(S/T)
YY5=((D1GREF• DEL Z)JAK1)
YY.YY1-YY2-YY3 -YY 4 +YY5

Y=YY/FF

C 	 INTERFACIAL CONCENTRATIONS
C

GI 1(L) =CIGO LTT/(1.0+(4 .0*P(L)*X *H))
GI2(L)(4.0 • P(L) *X *11)/(1.04-(4 .0* P(L) *X • H))
GI3(L) (1.0+(Q(L)*Y*H))/(H'Q(L)* Y)*
GI4(L)=CILIN1/(H• Q(L)*Y)
CILRO(L)=((G11(L)+GI4(L))/(G13(L)-GI2(L)))
CIGRI(L)=GI1 (L) +(GI2(L) • CILRO(L))
DIFF(L) 4CELRO(L) -CIGRI(L)) • H

C 	 ***********•****•************** ****** *worn* ***** **** ***** ******

C 	 CALCULATION OF AVARAGE CONCENTRATIONS
*************************** ** *********** ******* ***** **************

AM(L) =0.044.0 '1P(L)* ((CILRO(L)-CIGRI(L)) * H))/RI
AN(L)=0.0-(Q(L) • ((CILRO(L)-CIGRI(L)) H))/((A*(RE/R0))-B)
AINC1(L).(2.0 *3.14159 *(RI "2.0) *DELI* DIG* AM (L))/(4.0* V OLGAV)
A1NC(L) =AINC1 (L) *60 NF
CIGAV(L)=AINC(L)+CIG OUT
AINCL(1)=(((CIGAV(L)-CIGOUT)*VOLGA)/VOLL)
AINCL1(L) (2.0'' 3 .14159 • DELZ* D IGREF" AN(L) *E*60* NF)NOLL)
CILAV(L) =AINCL1(L)+CI LIN 1
IF(I.GE.N)THEN
GO TO 300
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I=I+1
CIGOUT=CIGAV(L)/PAV
crum.crukv(L)
POUT=PIN
GO TO 200

300	 END IF
PPMAV(L)=(CIGAV(L)*R*TEMP*1000.0*1000000.0*14.696)/PAV
CIGINPPMIT*PIN)/(R*TEMP*1000000.0*1000.0*14.696)
FUN(L)=(PPMIT-PPMAV(L))

400	 CONTINUE
22	 FORMAT(1X,'PPMAV(3)=',F8.2,1X, 'CIL.A.V(3)= ',F20.10,1X,

1 'FUN(3)=',F20.10)
IF(ABS(FUN(3)).LE.0.01)GO TO 600
AKP=FUN(1)*FUN(3)
IF(AKP.GT.0.0)G0 TO 500
DIL(2)=DIL(3)
GO TO 100

500	 DIL(1)=DIL(3)
GO TO 100

600	 DEM=DIL(3)
CLO=CILAV(3)
WRITE(*,*)DEM,CLO,H
STOP
END
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C
C	 SIMULATION FOR COMBINED ABSORPTION AND STRIPPING IN HOLLOW FIBER
C	 CONTACTORS TO REMOVE VOC (VERY LOW CONCENTRATION) FROM EXHAUST AIR
C	 BY : TARUN K. PODDAR
C
C	 VARIABLES FOR ABSORBER SIMULATION
C
C	 ALF	 EFFECTIVE LENGTH OF FIBER (cm)
C	 AS	 AREA OF ANNULUS ASSOCIATED WITH A SINGLE FIBER (cm 2)
C	 CILIN	 VOC CONCENTRATION AT LIQUID INLET STREAM (mole/ml)
C	 CIGIN	 VOC CONCENTRATION AT GAS INLET STREAM (mole/cc)
C	 CIGOT	 VOC CONCENTRATION AT OUTLET GAS STREAM (GUESSED) (mole/cc)
C	 CGO	 VOC CONCENTRATION AT GAS OUTLET STREAM (mole/cc)
C	 CLO	 •.	 VOC CONCENTRATION AT LIQUID OUTLET STREAM (CALCULATED) (mole/ml)
C	 CIGAV •.	 AVERAGE CONCENTRATION IN GAS PHASE (mole/cc)
C	 CILAV -.	 AVERAGE CONCENTRATION IN LIQUID PHASE (mole/cc)
C	 DELZ :	 DIH-hRENTLAL LENGTH (cm)
C	 DIL	 :	 DIFFUSIVITY OF VOC IN LIQUID (cm2/sec)
C	 DIG	 DIFFUSIVITY OF VOC IN NITROGEN (cm2/sec)
C	 H	 HENRY'S LAW CONSTANT
C	 NF	 NUMBER OF FIBERS
C 	 N 	 NUMBER OF INCREMENT IN Z DIRECTION
C	 MUG	 VISCOSITY OF GAS (cp)
C	 MUL	 VISCOSITY OF LIQUID (cp)
C	 MWI	 MOLECULAR WEIGHT OF VOC (gm mwt)
C	 MWL	 MOLECULAR WEIGHT OF LIQUID (gm mwt)
C	 PIC	 CRITICAL PRESSURE OF VOC
C	 POT	 GAUGE PRESSURE AT OUTLET OF THE FIBER (psig)
C	 POUT	 ABSOLUTE PRESSURE AT THE FIBER OUTLET (psis)
C	 PPMIT	 VOC CONC. AT INLET GAS STREAM (ppmv)
C	 PPMOT :	 VOC CONC. AT OUTLET GAS STREAM (ppmv)
C	 RI	 INSIDE RADIUS OF FIBER (cm)
C	 RO	 OUTSIDE RADIUS OF FIBER (cm)
C	 RE	 INSIDE RADIUS OF ANNULAR SPACE ASSOCIATED WITH EACH FIBER (cm)
C	 RS	 INSIDE RADIUS OF SHELL (cm)
C	 TEMP	 TEMPERATURE (°C)
C	 VAT	 AVERAGE VELOCITY OF GAS STREM THROUGH FIBER (cm/sec)
C	 VMT	 MAXIMUM VELOCITY OF GAS THROUGH FIBER (cm/sec)
C	 VAS	 AVERAGE LIQUID VELOCITY THROUGH SHELL (cm/sec)
C	 VOLG •.	 MEASURED VOLUMETRIC GAS FLOW RATE AT ATMS. (cc/min)
C	 POLL :	 MEASURED VOLUMETRIC LIQUID FLOW RATE (cc/min)

C	 VARIABLES FOR STRIPPER SIMULATION
C ............______________________________________________
C	 ALS	 EFFECTIVE LENGTH OF THE FIBER (cm)
C	 AST	 SHELL SIDE CROSS SECTION (cm2)
C	 RIS	 INSIDE RADIUS OF FIBER (cm)
C	 ROS	 OUTSIDE RADIUS OF FIBER (cm)
C	 RCS	 OUTSIDE RADIUS OF COATING (cm)
C	 RSS	 INSIDE DIAMETER OF SHELL (cm)

	

C	 = 	 ==== 	 == 
IMPLICIT REAL* 8(A-11,M-Z)
DIMENSION CIGOT(3),CIGOUT(3),PPMOT(3),GI1(3),CILRO(3),CIGRI(3),AM(3)

1,AN(3),CIGAV(3),aLAV(3),FUN(3),PPMAV(3),AINC(3),AINC1(3),AINCL(3)
1,AINCL1(3),a inc12(3),DIFF(3),CIGAV1(3 ),GA(5),SUM(6),CN(5),den(5)
1,PI(3),PP(3),PPI(3),PPP(3),PFN(3)

OPEN(25,FILE='ABST.DAT',STATUS='OLD')
OPEN(26,FILE='.AEtST.OUT",STATUS='NEW')
READ(25,*)RI,RO,NF,ALF,RS,POR,TOR
READ(25,*)RIS,ROS,RCS,NFS,ALS,RSS,PS,PERO
READ(25,*)CILIN,POT,PPMIT,VOLL
READ(25,*)MUG,MUL,TEMPA,TEMPS,MWL,MWT,MN
READ(25,*)SIGN,SIGLEPSN,EPSI,PHI
READ(25,*)AH,BH,DIL,DILS
READ(25,*)N,SV,ANC,NV
Al=1.06036
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B1=0.15610
C1=0.19300
D1=0.47635
El=1.03587
F1=1.52996
G1=1.76474
H1=3.89411
R=0.08206
TEMTA=TEMPA+273.0
TEMPS=TEMPS+273 .0
HA=EXF((BH/TEMTA)-AH)
HS=EXP((BH/TEMPS)-AH)
WRITE(*,*)HA,HS
D1=2.0*RI
DELZ=ALF/N
RE=RS/(NF**0.5)
A=ORE/4.0)-(((RO/RE) ** 2.0)*(RE/2))+(RE*DLOG(RO/RE)) +(RE/2.0))
B=((R0/2.0)-((RO * *3.0)/(4.0 *(RE* * 2. 0))))
D=1.0+DLOG(R0)-(((RO/RE)* *2.t0)/2.0)
AS =(3.14159* (RE* *2.0))-(3.14159 * (RO "2.0))
VAS =VOLL/(AS *NF*60.0)
AK11=2.0*VAS*(1.04(RO/RE)* *2.0))
AK22=(3.04-((ROTRE)* *4.0))-(4.0 * ((RO /RE) " 2.0))4-(4.0* DLOG(RO/RE))
AK1=AK11/AK22

AA 1=((RE* 8.0)-(R0* * 8.0))/(8.0 * 16.0 *(RE* * 4.0))
AA21=((DLOG(R0)/(48 .0* (RE* * 2.0)))-( (RO *2.0)/(96.0* (RE* * 4.0))))
AA2=AA21 *((RE* * 6.0)-(RO * *6.0))
AA3=((RE* *6.0)* (DLOG(RE)-(1.0/6.0)))/6.0
AA44(R0* * 6.0)* (DLOG(RO) -(1.0/6.0)))/6.0
AA5=(A_A3-AA4)/(8.0 *(RE* *2.0))
AA.(AA1+AA2-AA.5)

C 	 *aim* aa aa	 ****** ************ ** **** *IR*** ******* ***** ******

BB1=((RE* *6.0)-(RO *6.0))/(12.0*(RE* *2.0))
BB 2=((DLOG(R0)/4 .0)-((RO/RE)* *2.0)18.0)* ((RE* *4.0)-(R0* *4.0))
BB3=((REI *4.0)* (D LOG(RE) -(1.0/4.0)))14.0
BB4=((RO * *4.0)* (DLOG(R0)-(1.0/4.0)))/4.0
BB5=(BB3-BB4)
BB=(BB1+BB2-BE5)*D

C	 a a a* aaa ******** • sta «a a• aa aaaaaaaa a• 	 ***** aaa saaaa aa

CC11=((R0* *6.0)*(DLOG(RO) -(1.0/6.0)))/6.0
CC22=ORE**6.0)*(DLOG(RE)-(1.0/6.0)))/6.0
CC1=(CC11-CC22)/(2*(RE* *2))
CC2=(((RO/RE)**2.0)/2.0)-DLOG(R0)-0.5
CC3=((RE* *4.0)* (DLO G(RE) -(1.0/4.0)))/4.0
CC4=((R0* * 4.0)* (DLOG (RO) -(1.0/4.0)))/4,0
CC5=CC2*(CC3-CC4)
CC6=((DLOG (RE))* *2.0)* ((RE**4 .0)/4.0)-((DLOG(R0)) * *2.0) * ((RO *4)/4.0)
CC=(CC1+CC5+CC6)
«•aaaaaa *****	 aa • aa aaaa ********** a ***** ara al, «a as*

DD1=((RE* *4.0)* (DLOG(RE)-(1.0/4.0)))/4 .0
DD2=((RO" 4.0) *(D LOG(R0)-(1.014, 0)))/4.0
DD3=(DD1-DD2) * (-A/RE)
DD44(A* (RO "2.0))/RE)-(2.0*A*RE* DLOG(R0)) -(2.0*A*RE)
DD5=((RE* *2.0)* (T) LOG(RE)-(1.0/2.0)))/2.0
DD6=((R0* 2.0)*(DLOG(R0)-(1.0/2 .0)))/2.0
DD7=DD4*(DD5-DD6)
DD8=A*RE*((RE**2.0)*((DLOG(RE))* * 2.0)-(RO * *2 .0)* aDLOG(R0))* * 2.0))
DD.=(DD3+DD7+DD8)

C 	...ea* * 	 * *****	 aa	 aa a. a«aa aa **saga*** aa aaaa aa

E-(3.0/4.0) *(RE* *2.0)) +((RO * *4.0)/(4.0 *(RE* * 2.0))) -
1 (RO* *2.0)+(RE**2.0)*(DLOG(RO/RE))

T=E
41,0 * * « * aia« aa a« ass« aa ia« aaa aaa asaaaa a« aiaa *****

SAA.+BB+CC+DD)
***** ***** ********** ******************************** ***** *****
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C

C	 CALCULATION OF DIFFUSIVITY IN LIQUID ABSORBENT PHASE
11141111******** ***** ************** ***IP ****** ************* 	 *******

SIGIN4SIGI+SIGN)/2.0
EPSIN4EPSI*EPSN)**0.5
TSTAR=TEMPA/EPSIN
OMEGA14A1/(TSTAR* *B 1)) +(C1/(EXP(D1*TSTAR)))+(E1 /(EXP(Fl*TSTAR)))
OMEGA=OMEGA1+(G1/(EXP(Hl*TSTAR)))
MAV(MWI+MN)/(MWI*MN))**0.5

C 	 •••••••••••••••••• ************** ••••••••••••••••••••••••••••• *****
c 	 WRITE(20,11)
11	 FOR.MAT(1X,60('=')/1X,'GAS FLOWRATE',5X,'GAS OUTLET CONC.',5X,'

1 LIQ. OUTLET CONC.*/
1 5X,'(cc/min)',5x,'(ppmv)',18x,'(gmole/m1)'/Ix,60('='))

M=1
VOLG=SV
DO WHILE ( M .LE.NV)
CILLN=0.0
VOLG=VOLG+ANC

75	 PPMOT(1)=OD
PPMOT(2)=PPMrr

100	 PPMOT(3)=(PFMOT(1)+PPMOT(2))/2.0
DO 400 L=1,3
POUT=POT+14.696
CIGOT(L)=(PP M OT(L)*POITI)/(R *TEMPA* 1000000.0*1000.0 *14.696)
I=1
CILIN/ =CILIN
CIGOUT(L)=CIGOT(L)
ALC=0.0

200	 ALC=ALC+DELZ
VOLGA=(VOLG*14.696)/POUT
VOLGOT= VOLGA
DELP1=(8.0*32.0*MUG*DELZ*VOLGOT*POUT*(2.54**2.0))
DELP=DELP1/(NF*3.14159*6000*(DI**4)*981•453.6)
PIN=((DELP+(POUT**2.0))**0.5)
PAV4PIN+POUT)/2.0
IF(I.EQ.1) THEN
CIGOUT(L)=(CIGOUT(L)*PAV)/POUT
ELSE
CIGOUT(L)=CIGOUT(L)*PAV
ENDIF
VOLGAV4VOLGOT*POUrf)/PAV
VOLGIN.(VOLGOT'POUI)/PIN
VAT=VOLGAV/(3.14159*NF*60*(RI**2.0))
VMT=2.0*VAT
vatin=volgin/(3.14159*nr60*(ri**2))
vatot=volgot/(3.14159*nf*60*(ri* *2))
VREF=(VOLG)/(NF*60)

C
C 	 CALCULATION OF DIFFUSIVITY IN NITROGEN
C • ****** •••••••••••••• **************** • ****** ••••••••• ****** ••• *********

DIG141.858*(10.0* *(-3.0))* (TEMPA" 1.5)*MAV)/(P0 UT*(SIG1N* *2.0))
DIG4DIG1*14.696)/OMEGA
DIGRE=(1.858" (10.0* *(-3.0))*(TEMPA**1.5)*MA.VX14.696)
DIGREFDIGREsIA.696)/((SIGIN**2.0)*OMEGA)
••••••• ********* • ***** •••••••••••• ************ •••• ************ • ******* •

DIM=(DIL*POR)/TOR
P.(DIM/DIG)*(1/(RI*DLOG(RO/RI)))
Q=(DIM/DIL)*(1/(RO*DLOG(RO/RI)))
X=((11.0*RI)/96.0)+ODIG*DELZ)/(VMT*R1))
YY1(R0"4.0)/(16.0*(RE**2.0)))+0(R0**2.0)*D)/2.0)
YY2=(((R0**2.0)*DLOG(R0))/2.0)
YY3=A*RE*DLOG(RO)
YY4S/T)
YY5=((DIL*DELZ)/AKL)
YY=YY1-YY2-YY3-YY4+YY5

C 	 ••••••••••••••••• ***** • ****** ••••••••••••• ***** •••••



FF4A*(RE/RO))-B
Y=(YY/FF)

• •• ****** **************** ***** ********************** ************** *
C 	 INTERFACIAL CONCENTRATIONS
• • ***** * ****** *•****** ********** ***It ***** ************** ********** **

G11(L)4CIGOUT(L))/(1.0+(4.0*P*X*11A))
GI2=(4.0*P*X)/(1.0+(4.0*P*X*HA))
GI3=--(1.0+(Q*Y))/(Q*Y*HA)
GI4=CILIN1/(Q*Y*HA)
autop4(GI1(L)-4-G14)/(GI3-GI2))
CIGRI(L)=GI1(L)+(GI2*CILRO(L))
DIFF(L)=CILRO(L)-(HA*CIGRI(L))

C 	 *•• **************************** ************************ ***********

C 	 CALCULATION OF AVARAGE CONCENTRATIONS
• *•••• ***** **** ************** • ***** ******** *********** *************

AM(L)=0.0-(4*P*(CILRO(L)-(HA*CIGRI(L))))/R1
AN(L)=0.0-(Ce(CILRO(L)-(HA*CIGRI(L))))/((A*(RE/RO))-B)
AINC1(L)=(2.0*3.14159*(R1**2.0)*DELZ*DIG*AM(L))/(4*VOLGAV)
AINC(L)=AINC1(L)*60*NF
CIGAV(L)=AINC(L)+CIGOUT(L)
AINCL1(L)=((2.0*3.14159*DELZ*DIL*AN(L)*E*60*NF)/VOLL)
CILAV(L)=AINCL1(L)+CILINI
IF(I.GE.N)THEN
GO TO 300
ELSE
I=I+1
CIGOUT(L)=CIGAV(L)IPAV
CILINI=CILAV(L)
POUT=PIN
GO TO 200

300	 END IF
PPMAV(L)=(CIGAV(L)*R*TEMPA*1000.0*1000000.0*14.696)/PAV
CIGIN=(PPMIT*PIN)/(R* TEMPA* 1000000 .0 *1000.0'14.696)
IF(ABS(PPMA.V(L)).NE.0.0) THEN
FUN(L)=(PPMIT-PPMAV(L))/ABS(PPMAV(L))
ELSE
FUN(L)=(PPMIT-PPMAV(L))
ENDIF

400	 CONTINUE
IF(PPMOT(3).LE.1.00E-8)THEN
GO TO 600
ELSE
ENDIF
IF(ABS(FUN(3)).LE.0.001)GO TO 600
AKP=FUN(1)*FUN(3)
IF(A1CP.GT.0.0)G0 TO 500
PPMOT(2)=PPMOT(3)
GO TO 100

500	 PPMOT(1)=PPMOT(3)
GO TO 100

600	 PPM10=PPMOT(3)
CLO=CILAV(3)

33	 FORMAT(5X,F8.3,5X,F8.3,15X,F12.10)
PHIO=PPMIO/PPMIT
GZREF=(DIGREF*ALF)/(VREF)

C 	 WRITE(20,*)GTREF/100.0,PHIO
c 	 WRITE(20,55)
55	 FORMAT(1X,60('='))
C 	 WRITE(*,*)CLO

DIS=2.0*RIS
DELZS=ALS
RES=RSS/(NFS**0.5)
As*1RES/4.0)-(((RCS/RES)"2.0)*(RES/2))+

1 (RES*DLOG(RCS/RES))+(RES/2.0))
13S=((RCS/2.0)-((RCS**3.0)/(4.0*(RES**2.0))))
DS=1.0+DLOG(RCS)-(((RCS/RES)**2.0)/2.0)

200



AST43 .14159* (RES * * 2.0))-(3.14159 *(RCS * *2.0))
VAST=VO LL(AST*NFS *60.0)
AKS11=2.0*VAST* (1.04RCS/RES )* *2.0))
AKS 22=0 .0 +((RCS/RES)* * 4.0)) -(4 .0* ((RCS/RES)* '"2.0))+

1 (4.0*DLOG(RCS/RES))
AKS1=AKS11/AK.S22
***** ********* *** ***** **** ***** ******* *** ****** ** ******* *******

AAS 1 (RES *8.0)-(RCS **8. 0))/(8.0* 16 .0 * (RES * *4.0))
AAS21=((D LOG(RCS)/(48.0* (RES * *2 .0)))-ORCS * *2.0)/

1 (96.0 *(RES " 4 0))))
AAS 2=AAS21* ((RES * *6.0)-(RCS * *6.0))
AAS 3 (RES " 6.0) * (DLOG(RES) -(1.0/6.0)))/6.0
AAS4(RCS* *6.0)* (DLOG(RCS)-(1.0/6.0)))/6.0
AAS5AAS3-AAS4)/(8.0*(RES *2.0))
AAS4AAS 1 +AAS2-AA.S 5)
****** ***** ******************** ******** ** ***** * ***** **********

BBS1=aRES**6.0)-(RCS** 6 .0))/(12.0 *(RES * 2.0))
BBS2=PLOG(RCS)/4 .0)-((RCS/RES) " 2.0)/8.0) *ORES * *4.0)-

1 (RCS * *4.0))
BBS 3=((RES * *4.0)* (DLOG(RFS)-(1.0/4.0)))/4.0
BBS4=((RCS**4 .0) * (DLOG(RCS)-(1.0/4.0)))/4.0
BBS 5= (BB S 3 -BBS 4)
BBS = (BB S 1+BBS2-BBS5)* DS

CCS11=PCS**6.0)*PLOG(RCS)-(1.0/6.0)))/6.0
CCS22-4(RES* *6.0)* (DLOG(RES) 41.0/6 .0)))/6. 0
CCS1=(CCS11-CCS22)/(2*(RES * *2))
CCS 2= a(RCS/RES)* * 2.0)/2. 0)-DLOG (RCS)-0.5
CCS3 =ORES * 4.0)* (DLO G(RES)-(1. 0/4.0)))/4 .0
CCS4= ((RCS * * 4.0)*(DLOG(RCS) 1.0/4.0)))/4 .0
CCS 5=CCS 2* (CCS3-CCS4)
CCS 6=PLOG (RES)) * * 2.0) *((RES * 4.0)/4. 0)-((DLOG(RCS)) a *2.0)*

1 ((RCS "4)/4.0)
CCS=(CCS1+CCS5+CCS6)
********************* *** ***** ** ******** ************************

DDS1=((RES * *4.0)* (D LOG(RES) -(1. 0/4 .0)))/4.0
DDS 2=4RCS * *4 .0)* (DLOG(RCS) -(1.0/4.0)))/4. 0
DDS3 =(DDS1-D DS2)* (-AS/RES)
DDS 4=((AS * (RCS * * 2.0))/RES)-(2.0 *AS * RES *DLOG(RCS))-(2. 0 *AS *RES)
DD S 5 =ORES " 2.0) *(DLOG (RES) 41.0/2 .0)))/2.0
DDS6=((RCS* *2.0)* (DLOG (RCS) -(1.0/2.0)))/2. 0
DDS7=DDS4*(DDS5-DDS6)
DD S 8=AS *RES *((RES " 2.0) * ((DLO G(RES)) " 2.0)-(RCS * *2. 0)* PLOG(RCS))

I "2.0))
DDS=(DDS3+DDS7+DDS8)

ES =-((3.0/4.0) * (RES * * 2.0)) +((RCS * * 4.0)/(4 .0 *(RES * *2.0)))-
1 (RCS* * 2. + (RES * *2.0)* (DLOG(RCS/RES))

TS =ES

ST:--(AAS +BB S +CCS +DDS)

DELTA=RCS-RIS
RO LN=(R CS -RIS)/(DLO G(RCS/RI S))
ACCS=(PERO *ROLN)/(DILS *RCS)
YYS1=((RCS* * 4.4(16 .0 * (RES * *2 .0)))+MRCS * *2.0) *D)/2. 0)
YYS2=QRCS * * 2.0) * DLOG(R CS))/2.0)
YYS3=AS* RES *DLOG(RCS)
YYS4=(ST/TS)
YYS5-4(D ILS *AIS)/(AKS 1 *
YYS=YYS 1-YYS 2-YYS 3 -YYS4 +YY S5
******* ****** *op* ***** **** ******** * ***** ** **************** ***********

FFS=(AS*(RES/RCS))-BS
YS=YYSIFFS
** ********************** ***********.******************************

CALCULATION FOR STRIPPER OUTLET CONCENTRATION
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C
CIGBAR4PS)/(R*TEMPS *1000.0 *760.00)
J=1

650	 CONDIF=(CLO-(11S*CIGBAR))/(HS+(ACCS *YS))
MT=((2 *3.14159 *ACCS*DILS *ALS *RCS *CONDIF*60*NFS)/(VOLL*N))
CILINN=CLO-MT
IF(J.GE.N) THEN
GO TO 700
ELSE
CLO=CILINN
J=J+ 1
GO TO 650
END IF

700	 ERROR4CILINN-CILIN)/CILINN
IF(ABS(ERROR).LE.0.001) THEN
GO TO 800
ELSE
CILIN=CILINN
GO TO 75
END IF

800	 CLINA=CILIN
CLOA=CLO
CLINS=CLO
CLOS=CILIN
WRITE(*,*)VOLG,PPMIO
WRITE(26, *) G TREF/100,PHIO
M=M+1
END DO
WRITE(*,*)DIGREF
STOP
END

202
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C
THIS PROGRAM CALCULATES THE PERMEABILITY AND PERMEANCE OF A COMPOSITE MEMBRANE (POROUS

C 	 SUBSTRATE AND HOMOGENEOUS SKIN) AS WELL AS OF THE SKIN, APPLICABLE TO BINARY SYSTEM. IT
C 	 ALSO PROVIDES SELECTIVITY
C
C 	 INPUT PARAMETERS

**wit:4.m* ***** ***
C 	 ALF 	 EFFECTIVE LENGTH OF THE MODULE (cm)
C 	 ALFA 	 GUESSED VALUE OF SELECTIVITY OF VOC OVER NITROGEN
C 	 MI 	 MOLECULAR WEIGHT OF PERMEATING SPECIES (gmol wt)
C 	 NF 	 NUMBER OF FIBERS INSIDE A MODULE
C 	 PF 	 FEED GAS PRESSURE (psig)
C 	 PP 	 PERMEATE GAS PRESSURE (psig)
C 	 PPFIN 	 FEED INLET CONCENTRATION (ppmv)
C 	 PPFOUT : 	 FEED OUTLET CONCENTRATION (ppmv)
C 	 POR 	 POROSITY OF SUBSTRATE
C 	 RI 	 INSIDE RADIUS OF FIBER (cm)
C 	 RC 	 OUTSIDE RADIUS OF THE COATING (cm)
C 	 RO 	 OUTSIDE RADIUS OF FIBER (cm)
C 	 RP 	 MEAN PORE RADIUS (cm)
C 	 T 	 TEMPERATURE caq
C 	 TOR 	 TORTUOSITY OF THE POROUS SUBSTRATE
C 	 VFIN 	 VOLUMETRIC FLOW RATE OF FEED GAS AT INLET (cc/min)
C 	 VFOUT : 	 VOLUMETRIC FLOW RATE OF FEED GAS AT OUTLET (cc/min)

	44******** ***** *******11* ***** * ******************** **

C

IMPLICIT REAL*8(A-H,M-Z)
DIMENSION Y(3),A(3),B(3),FUN(3)
OPEN(1, FILE=1 Q.DAT, STATUS.'OLD')
READ(1,*)RI,RO,RC,VFIN,VFOUT,PF,PP,POR,TOR,RP
READ(1,*)ALF,NF,PPFIN,PPFOUT,T,ALFA,MI
TEMP=T+273.0
R=82.06
CBAR=((8.0*8.039*(10.0** 7.0)*TEMP)/(3.14159*MI))* *0.5
INSSLP=(1.0133*(10.0**6)*POR*RP*R*TEMP)/(MI*CBAR*TOR)
WRITE(*,*)DISSLP
PF=(PF+14.696)/14.696
PP4PP+14.696)/14.696
ROLN=(RC-RI)/(DLOG(RCIRI))
AREA=2 13.14159*RC*ALF*NF
MFIN.(VFIN)/(82.06*TEMP*60)
MFOUT=(VFOUT)/(82.06*TEMP*60)
XFOUT=PPFOUT* (10.0* *-6.0)
XFIN=PPFIN*(10.0**-6.0)
MVT.((MFIN*XFIN)-(MFOUT*XFOUT))
XPOUT=MVT/(MFIN-MFOUT)
XNFIN=1 -X FIN
XNFOUT=1-XFOUT
XNPOUT=1-XPOUT
GAMA=PP/PF

C 	 CALCULATION OF PERMEATE COMPOSITION AT THE CLOSED END
C ----------------------------------------------------
100 	 Y(1)=0.0

Y(2)=0.9
10 	 Y(3)=(Y(1) +Y(2))/2.0

DO 20 L=1,3
A(L)=Y(L)/(1.0-Y(L))
B(L)=-(ALFA*(XFOUT-(GAMA*Y(L))))/((1.0-XFOUT)-GAMA*(1.0-Y(L)))
FUN(L)=(A(L)-B(L))

20 	 CONTINUE
IF(ABS(FUN(3)/B(3)).LE.0.0001)GO TO 50
AKP=FUN(1)*FUN(3)
IF(AKP.GT.0.0)GO TO 30
Y(2)=Y(3)



GO TO 10
30 	 Y(1)=Y(3)

GO TO 10
50 	 XPIN=Y(3)

XNPIN=1-XPIN
CFIN=(XFIN*PF)/(82.06*TEMP)
CFOUT=(XFOUT*PF)/(82.06*TEMP)
CPIN=(XPIN*PP)/(82.06*TEMP)
CPOUT.(XPOUT*PP)/(82.06*TEMP)
CNFIN=(XNFIN*PF)/(82.06*TEMP)
CNFOUT=(XNFOUT*PF)/(82.06*TEMP)
CNPIN=(XNPIN*PP)/(82.06*TEMP)
CNPOUT4XNPOUT*PP)/(82.06 *TEMP)
DELCFP4(CFIN-CPOLTI)-(CFOUT-CPIN))/

1 DLOG((CFIN-CPOUT)/(CFOUT-CPIN))
DELCN=OCNFIN-CNPOUT)-(CNFOUT-CNPIN))/

1 DLOG((CNFIN-CNPOUT)/(CNFOUT-CNPIN))
PERV=MVT/(DELZFP*AREA)
MNT=(MFIN* (1 -XFIN))-(MFOUT* (1 -XFO UT))
PERN=MNT/(DELCN*AREA)
ALFANW=PERV/PERN
ERR=(ALFA-ALFANW)/ALFA
IF(ABS(ERR).LE0.001)THEN
GO TO 200
ELSE
ALFA=ALFANW
GO TO 100
END IF

200 	 WRITE(*,*)PERN, PERV
()VO=PERV"(RC-RI)
DELTAO=RC-RI
DELTAS =RO -RI
DELTAC=RC-RO
RSLN=(RO-RI)/DLOG(RO/R1)
RCLN=(RC-RO)IDLOG(RC/R0)
RESSUB=1.0/((DISSLP*RSLN)/(DELTAS*RC))
RES OVR=1 .0/((QV 0)/DELTA0)
RESCOT=RESOVR-RF_SSUB

C 	 WR1TE(* , * )RES OVR ,RES S UB ,RF_S COT
QVC=(DELTAC"RC)/(RESCOT*RCLN)
PERVO-QVC/DELTAC
%VRITE(*,*)QV0,0VC,PERV,PERVC,ALFA
STOP
END

204



205

C
C 	 CALCULATION OF GAS PHASE BASED-OVERALL MASS TRANSFER COEFFICIENT FOR VOC ABSORPTION
C
C 	 INPUT PARAMETERS
C 	 ******* ***** *******.

C 	 AH 	 CONSTANT OF TEMPERATURE DEPENDENT HENRY'S LAW CONSTANT EQN.
C 	 EH 	 CONSTANT OF TEMPERATURE DEPENDENT HENRY'S LAW CONSTANT EQN.
C 	 DI 	 INSIDE DIAMETER OF THE FIBER (cm)
C 	 DO	 OUTSIDE DIAMETER OF THE FIBER (cm)
C 	 LM 	 EFFECTIVE LENGTH OF THE MODULE (cm)
C 	 MUG 	 VISCOSITY OF GAS (op)
C 	 NF 	 NUMBER OF FIBERS INSIDE THE MODULE
C 	 PI 	 INLET GAS PRESSURE (psig)
C 	 FT 	 • = 0 FOR POROUS FIBER; = NONO FOR COATED FIBER
C 	 PPMIN : 	 VOC CONCENTRATION AT INLET GAS STREAM (ppmv)
C 	 PPMOUT : 	 VOC CONCENTRATION AT OUTLET GAS STREAM (ppniv)
C 	 TEMP : 	 TEMPERATURE (°C)
C 	 VG 	 VOLUMETRIC GAS FLOW RATE AT AMTS. PRESSURE (cc/min)
C 	 VL 	 VOLUMETRIC LIQUID FLOW RATE (ml/min)
C 	 Y1 	 VOC CONCENTRATION OF LIQUID INLET STREAM (gmol/ml)
C

REAL Kl,L,LM,KGO,MUG,MG,MGV
OPEN(10,FILE=*MASS.DAT',STATUS=' OLD')
READ(10, *)PI,VG,VL,Y 1 ,PPMIN,PPM OUT, NF, D 0 ,D I, TEMP,MUG,LM
READ(10,*)AH,BH,FT
T=TEMP+273
H=EXP((BH!T)-AH)
K1=1/H
ROLr=0.9802-(0.0008356*TEMP)
PI=PI+14.7
R=0.08206
L=0.1
PIN=PI

10 	 VAC=(VG*14.7)/PIN
DELP=(8* 16*MUG*0.1*VAC* (2.54* *2))/(NF*3.14159 *6000* (DI* * 4)* 981 *453.6)
POUT=PIN-DELP
IF(L.GT.LM)THEN
GO TO 20
FTSE
PIN=POUT
L=L+0.1
GO TO 10
ENDIF

20 	 WRITE(*,*)PI,POUT
IRFT.EQ.OyFHEN
D=DI
ELS E
D=DO
END IF
A=3.14159*D*LM*NF
C1 =(PPMI N *PI)/(R*T* 14 .7*1000000*1000)
C2 4PPM OUT* P OUT)/(R* T* 14.7* 1000000* 1000)
VAC1=(VG *1 * 14.7)/PI
VAC2=(VG*1*14.7)/POUT
X2.(VAC1*C1)-(C2*VAC2)))/(VL)
Y2=K1*X2
DELC=((C1-Y2) -(C2-Y1))/ALOG((C1 -Y2)/(C2 -Y1))
KG0.(VG* (p n-pp mout) * 1) /(A* (D ELC) * 60 * R* T* 1000000 *1000)
ROG=(14.7*28)/(R*T*14.7•1000)
MG=VG*ROG
MGV=(MG*4)/(3.14159*(DI**2)*NF)
REG=(MGV*DI)/MUG
WRITE(*,*)VG,KG0
STOP
END



206

C
C 	 THIS PROGRAM CALCULATES THE VOLUME RATIO AND INVERSE OF HEADSPACE PEAK AREA FROM THE
C 	 EXPERIMENTAL DATA OF VIAL WEIGHTS AND HEADSPACE PEAK AREA FOR CALCULATION OF HENRY'S
C 	 LAW CONSTANT BY VARIABLE VOLUME HEADSPACE TECHNIQUE.
C
C 	 INPUT PARAMETERS
C 	 ******** ********* **

C 	 AREA :	 AREA COUNT OF GC OUTPUT
C 	 N 	 NUMBER OF DATA
C 	 N1	 VIAL SERIAL NUMBERS
C 	 T 	 TEMPERATURE (°C)
C 	 VG •	 VOLUME OF HEADSPACE IN THE SAMPLE VIAL (cc)
C 	 VL	 VOLUME OF LIQUID SAMPLE IN THE SAMPLE VIAL (ml)
C 	 VT	 TOTAL VOLUME OF SAMPLE VIAL (ml)
C 	 WVIC :	 WEIGHT OF THE VIAL WITH LIQUID SAMPLE (gm)
C 	 WVIE :	 WEIGHT OF THE EMPTY VIAL (gin)
C

DIMENSION WVIE(10) ,WVIC(10),AREA(10),WL(10),VL(10),VG(10),X(10)
,Y(10),VGPRM(10),N0(10)

OPEN(5,FILE= 'HENRY. DAT ,STATUS='OLD')
READ (5,1N,PEC),N1
READ(5,*)(WVIE(1),I=1,N)
READ(5,*)(WVIC(I),I=1,N)
READ(5,*XAREA(I),I=1,N)
READ(5,*)T,VT
WRITE (*,*) T
DIF4.0004206*T
WRITE(*,*)DIF
ROL=0.8789985-DIF

C 	 ROL=0.99793-(8.9*(10"(-4.0))*T)
WRITE(*,*)ROL
DO 10 I=1,N
NO(I)=N1-1+1
WL(I)=WVIC(I)-WVIE(I)
VL(I)=WL(I)/ROL
VG(1)=VT-VL(I)
X(I)=VG(r)/vur)
Y(I)=1/AREA(I)
WRITE(*,*)NO(I),WL(I),VL(I),VG(1),X(I),Y(I)

10 	 CONTINUE
STOP
END
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