Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

 SIMULATION STUDY OF THE PARTICLE TRACKING SYSTEM

 SIMULATION STUDY OF THE PARTICLE TRACKING SYSTEM}
by
Prashant B. Patel

A particle tracking system is being developed in the Particle Technology Laboratory of the Mechanical Engineering Department, at NJIT. In this thesis, an attempt is made to understand the effect of various parameters on the errors in the computed position and orientation of the sphere being tracked. Simulation results for a single transmitter assembly as well as a three transmitter assembly with 6,9 and 17 antennae are presented. The effects of the level of noise in the voltages on the solution for the single transmitter assembly and three transmitter assembly are discussed. The concept of virtual antenna is introduced and experimental results as well as simulations results using the virtual antennae are presented. Simulation results showing the advantages of techniques such as perturbations and extrapolation in the solution code are discussed. The effects of antenna shape, size and aspect ratio on the voltages are studied. A new calibration technique for reducing the systematic errors in the measured voltages is proposed. The accuracy of the particle tracking system is confirmed by a test in which the sphere containing the transmitter is dropped in a free fall and the gravitational constant is calculated.

SIMULATION STUDY OF PARTICLE TRACKING SYSTEM

by
Prashant B. Patel

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology
in Partial Fulfillment of the Requirement for the Degree of Master of Science in Mechanical Engineering

Department of Mechanical and Industrial Engineering
January 1995

APPROVAL PAGE

SIMULATION STUDY OF PARTICLE TRACKING SYSTEM

Prashant B. Patel

Dr. Rajesh N. Dave, Thesis Advisor
 Date
 Associate Professor of Mechanical Engineering,
 New Jersey Institute of Technology

Dr. Bruce G. Bukiet, Committee Member
Date
Assistant Professor of Mathematics,
New Jersey Institute of Technology

Dr. Anthony D. Rosato, Committee Member Date
Associate Professor of Mechanical Engineering,
New Jersey Institute of Technology

Đr. Ian S. Fischer, Committee Member
Associate Professor of Mechanical Engineering, New Jersey Institute of Technology

BIOGRAPHICAL SKETCH

Author: \quad Prashant B. Patel
Degree: Master of Science in Mechanical Engineering
Date: January 1995

Undergraduate and Graduate Education

Master of Science in Mechanical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 1995
Bachelor of Science in Mechanical Engineering,
Maharaja Sayajirao University, Baroda
India, 1991
Major: Mechanical Engineering

This thesis is dedicated to my parents

ACKNOWLEDGMENT

I am deeply indebted to Dr. Rajesh N. Dave for his guidance and support throughout this research. I would also like to thank Dr. Bruce G. Bukiet, Dr. Anthony D. Rosato and Dr. Ian S. Fischer as committee members and collaborators in this work.

I truly appreciate the work done by Anthony La Rosa, Elliotte Harold, Anthony Troiano, Subramanyam Chamarti, Kurra Bhaswan, Jerry Volcy and Jitesh Agrawal. This thesis would not have been possible without their contributions.

My thanks to Vivek Gupta, Don Rosander and Dave Singh of the Mechanical Engineering Technical Staff for their support during the course of this research.

Finally, I am grateful to the United States Department of Energy for having funded this project.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
1.1 Developments in the Particle Tracking System 1
1.2 Prior Work 2
1.3 Getting Ready for the Actual Experiment 2
2 SIMULATION STUDY 5
2.1 Comparison of One Transmitter vs. Three Transmitter Results 5
2.2 Virtual Antennae 9
2.3 Effect of Level of Noise on Solution. 11
2.4 Improving Global Convergence with Perturbations 14
2.5 Use of Extrapolation in Solution 19
2.6 Effect of epsfcn on Convergence 20
2.7 Multiple Solutions 21
3 ANTENNAE CONFIGURATION STUDY 24
3.1 Aspect Ratio, Size \& Shape Study of Antennae 24
3.2 Antennae Coupling 27
4 STUDY OF SYSTEMATIC ERRORS 30
5 EXPERIMENTAL RESULTS 36
5.1 Progress Towards Actual Experiments: Drop Test Results 36
5.2 Conclusions 38
APPENDIX A: 40
APPENDIX B: 43
APPENDIX C: 66
APPENDIX D: 94
REFERENCES 99

LIST OF TABLES

Table Page
2.1 Uniformly distributed $\pm 5 \%$ of maximum range random noise 6 antennae 6
2.2 Uniformly distributed $\pm 5 \%$ of maximum range random noise 9 antennae 7
2.3 Uniformly distributed $\pm 5 \%$ of maximum range random noise 17 antennae 8
2.4 Experimental Results using Virtual Antennae concept (Three Transmitters) 9
2.5 Simulated Data with $\pm 5 \%$ of maximum range random noise (One Transmitter) 10
2.6 Simulated Data with $\pm 5 \%$ of maximum range random noise (One Transmitter). 10
2.7 Simulated Data with $\pm 5 \%$ of maximum range random noise (One Transmitter). 10
2.8 Uniformly distributed $\pm 5 \%$ of maximum range random noise. 11
2.9 Uniformly distributed $\pm 10 \%$ of maximum range random noise. 12
2.10 Uniformly distributed $\pm 15 \%$ of maximum range random noise. 13
2.11 Trajectory of Run 2.1 16
2.12 Results with no perturbations.(Run2.1) 17
2.13 Results with perturbations. (Run 2.1) 17
2.14 Trajectory of Run 2.2 18
2.15 Results with no perturbations (Run 2.2). 18
2.16 Results with perturbations (Run 2.2) 19
2.17 Run 2.3 showing the effect of extrapolation on solution. 20
2.18 Effect of epsfcn parameter. 21
5.1 Experimental results: Drop Test. 36

LIST OF FIGURES

Figure Page
2.1 Multiple initial guess method for perturbation 15
2.2 Floating initial guess method of perturbation. 16
2.3 Successive rotations about X, Y and Z result in the same position. 21
2.4 (a) Theoretical measured voltages. (b) Actual measured voltages obtained 22
3.1 Plot showing the effect of antenna size on the model voltage. The trajectory is a straight line along the axis of the antenna with one inch increment 24
3.2 Plot showing the effect of antenna size on the model voltage. The trajectory is a straight in the plane of the antenna with one inch increment 25
3.3 Plot showing the effect of antenna aspect ratio on the model voltage. The trajectory is a straight line along the axis of the antenna with one inch increment 25
3.4 Plot showing the effect of antenna size on the model voltage. The trajectory is a straight line in the plane of the antenna with one inch increment 26
3.5 Antennae Coupling. 27
4.1a Model-Reality Plot for 2.2 MHz transmitter as it is moved along and four inch away from the plane of antenna 30
4.1b Model-Reality Plot for 2.2 MHz transmitter as it is moved away from the plane of antenna in a path coincident with the axis of the antenna 32
4.1c Model-Reality Plot for 2.2 MHz transmitter as it is moved away from the plane of antenna in a path coincident with the axis of the antenna 32
4.1d Model-Reality Plot for 2.2 MHz transmitter as it is moved in the plane of antenna 33
4.2 X-Antenna Configuration in actual chute. 34
5.1 Checking the accuracy of tracking system by using gravitational constant 36

CHAPTER 1

INTRODUCTION

1.1 Developments in the Particle Tracking System

This is a study of the some analysis techniques used in the non-intrusive particle tracking system for dry particulate flows. The particle tracking system is based on the principle of magnetic coupling. Three mutually perpendicular transmitters are packed in a one inch diameter sphere. The transmitters emit signals at three different frequencies; 2 MHz ., 3.65 MHz ., and 4.4 MHz . This sphere is then allowed to flow within a mass of similar spheres in a $120^{\prime \prime} \times 15^{\prime \prime} \times 12.5^{\prime \prime}$ chute around which an array of antennae are positioned. Voltages in the antennae are functions of the position and orientation of the transmitters. A theoretical model Ref. [5], predicts the voltage for any position and orientation of the transmitter with respect to the antennae. This model, in conjunction with the Levenberg \& Marquardt algorithm Ref. [8] to solve non-linear least square problems, is used to track the position and orientation of the sphere.

The feasibility of the above technique has already been proven by simulations and experiments during its development (See Ref. [1], [2], [4], [10] and [15]). At first, experiments were conducted with one transmitter. In the experiments with one transmitter it was found that results were not consistent and reliable. Accuracy in position and orientation was not sufficient for practical applications. Moreover, information about the rotation of the transmitter about its own axis was impossible to obtain using only one transmitter. It was concluded that two or preferably three transmitters were required for acceptable results. There were many practical problems in the manufacturing of multiple transmitters. Multiple transmitters must fit in the same one inch sphere used for single transmitter. The other constraint was that two transmitters are not permitted to communicate with each other, Eventually a three transmitter system was designed and
fabricated. The code for signal processing with single as well as multiple transmitters was developed. Various techniques such as a 27-point correction scheme (See Ref. [15]) to reduce systematic errors, and a dynamic switching technique [1], perturbations (See Section 2.4) etc., were implemented. In the experiments conducted so far, accuracy of approximately $0.40^{\prime \prime}$ in position and about 5° in orientation have been obtained.

1.2 Prior Work

Anshumat Parasar [10], a graduate student working for the Particle Technology Laboratory, contributed towards the development of 'forward-model' code i.e. given the position and orientation of a transmitter, this code finds the voltage in the antenna loop. In continuation to that, Ashok Adhavani [2] set up the Imdif non-linear least square fit numerical solution package. Elliotte Harold, a mathematics student, helped to make the code more robust and flexible. Jerry Volcy [15], also a gradate student in Mechanical Engineering, made a major contribution towards the implementation aspects of the particle tracking system. He performed extensive experiments with one transmitter. He also implemented the 27 -point correction scheme for reducing the systematic errors in the voltages. Jitesh Agrawal [1], a graduate student of Manufacturing Department, made modifications in the code for the use with three transmitters. He conducted experiments with three transmitters and implemented dynamic switching and initial guess modifications in the codes.

1.3 Getting Ready for Actual Experiments

In this thesis, the analysis techniques are studied in detail using simulations and experiments to make the computations more accurate, reliable and consistent. Errors, both random and systematic, affect the accuracy of the position and orientation of the transmitter. Therefore, the effect of noise in voltages on the performance of particle tracking system is studied. A comparison of errors in solutions using one transmitter and
using three transmitters is performed. A new approach for calibrating the antennae is proposed for the three transmitter configuration. The effects of the number of antennae and the antennae configuration on the solution is studied using simulations. An attempt is made here to understand the types of multiple solutions occurring in the solution due to orientations and local minimums.

In chapter two we study the influence of the number of transmitters and the number of antennae on the solution. We also study the influence of noise, in addition to studying variations in a step size parameter of the Levenberg \& Marquardt algorithm code. Topics such as convergence, local minimum, and multiple solutions are also studied. Finally, the simulation study of perturbations and extrapolation techniques is presented.

Chapter three discusses the aspect ratio, size and shape study of antennae. The effect of antennae coupling is also studied.

Systematic errors in signal processing are discussed in Chapter four. An alternative schemes to the 27-point correction method are discussed.

In Chapter five, the experimental results for the free fall trajectory are presented and the accuracy of the particle tracking system is confirmed by calculating the value of the gravitational constant.

In simulations, increasing the number of antennae for one transmitter improves the results. The amount of improvement in results depends upon the type of trajectory and orientation of the transmitter. Both for the one transmitter as well as three transmitters, there is a significant improvement in results by using each piece of data twice. It is found that calibrating the model with experimental voltage values by using calibration points in the antenna plane leads to better results than using calibration points away from antenna plane. A calibration scheme where calibration is done only in the region where the model and measured voltage do not match well is proposed. The absolute difference in measured and model voltages seems to affect the results more than the percentage errors. Average errors in X, Y and Z positions of about 0.1 inch or less are obtained in actual experiments.

The results in general are not always predictable and consistent due to the non-linear nature of the problem.

Further work needs to be done on the virtual antennae concept on actual data. The problem with the multiple solutions in orientations results needs to be solved. The suggested modifications in the 27-point correction scheme and the calibration points can be implemented.

CHAPTER 2

SIMULATION STUDY

In this chapter simulation study of the particle tracking system is performed to understand the effect of such parameters as number of transmitters, number of receiving antenna, noise, perturbations, extrapolations, and multiple solutions on the solution.

2.1 Comparison of One Transmitter vs. Three Transmitters Results

In this section a comparison is made between the performance of a single transmitter assembly and a three transmitter assembly. Results using several antennae configurations employing 6,9 and 17 antennae are presented for the single transmitter assembly as well as the three transmitter assembly. The study of one transmitter is important as it has practical applications. The processing time of data with one transmitter is less, but this is of no significance to the study described herein. The hardware requirements are reduced with one transmitter. Due to very limited space, small batteries have to be used to power the transmitters. After 20 minutes of use, the three transmitter assembly lowers the battery power by 10 percent every minute. The one transmitter assembly requires one third the power consumption of the three transmitter assembly. Most importantly the data acquisition rate with one transmitter is much higher. As a result it can be used in very high velocity flows. The disadvantage of one transmitter is that information about one orientation variable (rotation about global X) is lost as rotating the transmitter about this axis does not change the voltage induced in the antenna.

For the purpose of simulation model chute of dimensions $20^{\prime \prime} \times 20^{\prime \prime} \times 20^{\prime \prime}$ is used. Six antennae are positioned on the six faces of the chute. (See Figure A.1). A right hand Cartesian co-ordinate system is used to describe the positions and orientations of the transmitter assembly, as shown in Figure A.1. The antennae perpendicular to the X axis of the co-ordinate system are termed as X -antennae. Similarly, the antennae perpendicular to
the Y and Z axis of the co-ordinate system are termed as Y -antennae and Z -antennae. The rotation about the X -axis of the co-ordinate system will be referred to as X-rotation or α hereafter in further discussion. Similarly, the rotations about Y -axis and Z -axis will be called Y-rotation or β and Z-rotation or γ, respectively. A three- dimensional sinusoidal trajectory with an amplitude of seven inches in the Y direction and five inches in the Z direction with a cycle of twenty inches in X is used for simulations. The trajectory has 21 points in one inch increments starting at $X=0.0, Y=10.0, Z=10.0$ and ending at $X=20.0$, $\mathrm{Y}=10.0, \mathrm{Z}=10.0$. The orientations α, β and γ are incremented by 5.0, 7.5 and 10.0 degrees successively for each point. (See figure A.2). Uniformly distributed 5% of maximum range random noise is added to voltages. Plots for the one transmitter assembly are shown in Figures B.1-6. The maximum errors in positions for single transmitter assembly are 13.41 inches, 18.55 inches and 2.38 inches in X, Y and Z respectively. Using the same trajectory, noise level and antennae configuration, three transmitter results are also obtained. Plots of actual versus predicted positions for three transmitters case are shown in Figures B.7-12 of Appendix B. The maximum errors in positions are $X=0.53$ inch, $Y=0.42$ inch and $Z=$ 0.80 inch. Table 2.1 gives the summary of results for both the one and three transmitter cases. Clearly, results using the three transmitters are better than using only a single transmitter.

Table 2.1: Uniformly distributed $\pm 5 \%$ of maximum range random noise with 6 antenna.

	3-T Configuration				1-T Configuration			
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	0.53	0.42	0.80	0.97	13.41	18.55	2.38	19.28
Average error	0.20	0.14	0.29	0.41	2.68	4.54	0.88	5.94
Std. deviation	0.18	0.09	0.23	0.26	2.96	5.92	0.70	6.13

For the case of one transmitter there are five variables i.e. $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \beta$ and γ (as rotating the transmitter about its axis does not affect the voltage induced in the antennae)
and six equations, while for the three transmitter assembly there are six variables (X, Y, Z, α, β, and γ) and eighteen equations (number of equations = number of variables \mathbf{x} number of transmitters). The number of equations for the one transmitter (six) are about the same as the number of variables (five). This may be one of the major factors contributing to the large errors in the one transmitter results. To investigate if increasing the number of antennae, and thus the number of information elements (voltages), improves the solution for the single transmitter case, additional antennae are incorporated. First three are added and then another eight antennae are added to the original six antennae chute.

Three antennae are added in the X -direction at $\mathrm{X}=5.0,10.0$ and 15.0 inches (See Figure A.1). The results of this study are presented in Table 2.2, tabulating the maximum error, average error and standard deviations in positions and orientations for the previously described sinusoidal trajectory. For the three transmitter assembly, the number of equations is now $9 \times 3=27$. The improvement in the maximum and average errors in X, Y and Z for the three transmitter assembly is about 33% (total distance errors). For the single transmitter assembly there is an improvement of 75% in maximum errors and 66% in average errors in X, Y and Z (total distance errors).

Table 2.2: Uniformly distributed $\pm 5 \%$ of maximum range random noise with 9 antenna.

| | 3-T Configuration | | | | 1-T Configuration | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X
 inches | Y
 inches | Z
 inches | Distance
 inches | X
 inches | Y
 inches | Z
 inches | Distance
 inches |
| Maximum error | 0.43 | 0.63 | 0.37 | 0.66 | 3.14 | 4.09 | 1.97 | 5.16 |
| Average error | 0.11 | 0.13 | 0.14 | 0.26 | 0.94 | 0.98 | 0.58 | 1.81 |
| Std. deviation | 0.12 | 0.13 | 0.09 | 0.16 | 0.92 | 1.21 | 0.56 | 1.24 |

Since improvements in the results were obtained by increasing the number of antennae, eight more antennae are added to the current nine antennae configuration. Three antennae each in the Y and Z directions are added at 5, 10 and 15 inches respectively as shown in

Figure A.1. Table 2.3 shows the maximum error, average error and standard deviations in the predicted positions for this new configuration of 17 antennae. Plots of actual versus predicted positions for one transmitter case are shown in Figures B.13-B.18. For the three transmitters case similar plots are shown in Figures B.19-22 of appendix B. Plots for the X rotation and Y rotation are not known as they do not show any significant change from the 9 antenna case.

Table 2.3: Uniformly distributed $\pm 5 \%$ of maximum range random noise with 17 antenna.

| | 3-T Configuration | | | | 1-T Configuration | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X
 inches | Y
 inches | Z
 inches | Distance
 inches | X
 inches | Y
 inches | Z
 inches | Distance
 inches |
| Maximum error | 0.26 | 0.14 | 0.22 | 0.35 | 2.27 | 0.77 | 0.30 | 2.29 |
| Average error | 0.06 | 0.05 | 0.06 | 0.11 | 0.31 | 0.19 | 0.09 | 0.43 |
| Std. deviation | 0.08 | 0.04 | 0.06 | 0.09 | 0.47 | 0.17 | 0.09 | 0.47 |

For the three-transmitter assembly, the reduction in maximum as well as mean errors in positions is about 50% which is approximately the same as the increase in the number of antennae (The relation between number of antennae and errors in position needs to be studied in detail by taking different types of trajectories and antennae configurations. This study has not been covered in this thesis). The same trend of improvement is observed for the one transmitter case. The ratio of maximum errors in the total distance (column four of table) for the one transmitter simulation to that in the three transmitter simulation is $19.28 / 0.97=19.87$ for the six antennae configuration and $2.29 / 0.35=6.54$ for 17 antennae configuration. The results of three transmitters and six antennae and one transmitter and 17 antennae are comparable although the three transmitter results are better. The following observations can be made from the above results.

1. There is improvement in results with the increase in the number of antennae for the single transmitter and three transmitter cases.
2. Around 15 to 20 antennae are required to obtain a solution with errors less than 1 " in X, Y and Z positions for the single transmitter case. For the three transmitter assembly, only six antennae are required.
3. Three transmitters always give better results than a single transmitter (with same number of antennae).

2.2 Virtual Antennae

For one transmitter as well as for three transmitters, it is observed that increasing the number of antennae improves the solution for most cases. Therefore a new approach of "doubling the data" is implemented. Essentially, doubling means using the same voltage data twice. We call this "using virtual antennae" as the data from each antenna is used twice. For a linear least squares problem, using the same data twice will give the same solution. The effect on our non-linear problem investigated. In the present study, both simulated as well as experimental data is used. The experimental run uses a straight line, constant orientation trajectory. The summary of experimental results with and without virtual antennae are presented in Table 2.4 and the plots can be seen in Figures B.23-34. There is an improvement of 0.3 inches in the maximum distances by adding virtual antennae. It is observed that rotation about X is consistently off by -4 degrees and rotation about Z by 9 degrees. (The mounted three transmitter assembly does not have perfectly orthogonal transmitters. See Ref. [1] for further details about transmitter corrections. The error in our actual assembly is -4 degrees in X rotation and 9 degrees in Z rotation. This is

Table 2.4: Experimental Results using Virtual Antennae Concept. (3-T \& 7 antennae)

| | With Virtual Antennae | | | | Without Virtual Antennae | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X
 inches | Y
 inches | Z
 inches | Distance
 inches | X
 inches | Y
 inches | Z
 inches | Distance
 inches |
| Maximum error | 0.40 | 0.18 | 0.10 | 0.42 | 0.67 | 0.31 | 0.14 | 0.72 |
| Average error | 0.20 | 0.06 | 0.05 | 0.23 | 0.22 | 0.20 | 0.09 | 0.32 |
| Std. deviation | 0.13 | 0.05 | 0.03 | 0.13 | 0.19 | 0.06 | 0.04 | 0.17 |

the source of these errors).
Tables 2.5, 2.6 and 2.7 show simulation results with 6,17 and 34 antennae, respectively for the one transmitter system with a 5% of maximum range random noise. The same antennae configuration described in Section 2.1 is used for 6 and 17 antennae (See figure A.1). For the 34 antennae case, the same 17 antennae positions are used twice. The trajectory selected is a straight line from $X=0.0$ to $X=20.0$ with $Y=10.0, Z=10.0$ with an increment of one inch and zero rotations in X, Y and Z .

Table 2.5: Simulated Data with $\pm 5 \%$ maximum range random noise. (One Transmitter)

	6 Antennae			
	X inches	Y inches	Z inches	Distance inches
Maximum error	1.08	5.64	8.66	10.16
Average error	0.39	3.15	3.87	5.22
Std. deviation	0.32	1.69	2.75	2.89

Since only one transmitter is used, there are no signals in the Y and Z antennae. Only the X and the diagonal antennae are useful for finding the solution. The improvements in maximum and mean errors in positions with 17 antennae is more than 50% compared to 6 antennae. By using the virtual antennae there is a further reduction in errors by 60%. Although this approach of increasing the number of antennae improves the solution, the factors contributing to the improvement are not understood.

Table 2.6: Simulated Data with $\pm 5 \%$ maximum range random noise.(One Transmitter)

	17 Antennae			
	X inches	Y inches	Z inches	Distance inches
Maximum error	0.38	1.53	3.47	3.55
Average error	0.09	0.52	0.39	0.8
Std. deviation	0.08	0.81	0.79	1.03

Table 2.7: Simulated Data with $\pm 5 \%$ maximum range random noise.(One Transmitter)

	34 Antennae			
	X inches	Y inches	Z inches	Distance inches
Maximum error	0.12	1.00	0.41	1.02
Average error	0.05	0.25	0.16	0.34
Std. deviation	0.04	0.23	0.12	0.22

2.3 Effect of Level of Noise on Solution

In actual experiments, there are small differences between measured and predicted voltages. This could be due to model inaccuracies and instrumentation errors, external noise from other devices, etc. Such effects can be simulated by corrupting the exact predicted voltages at random by a small amount .

A three dimensional sinusoidal trajectory is used. (See figure A.2). As the transmitter is rotated about the Y and Z axes all the antennae get almost equal signals. A uniformly distributed noise equivalent to $\pm 5 \%, \pm 10 \%$, and $\pm 15 \%$ of the maximum range of voltage is added. The added noise is a certain percentage of the maximum range, and not of the actual voltage reading. Thus the added voltage may be a larger percentage of the actual reading when the voltage reading is small. Both the one transmitter assembly as well as the three transmitter configurations are considered. It is observed that the effect of noise is more pronounced for the one transmitter configuration, and as the noise increases, the errors in position and orientations also increase. The predicted errors for 5% noise are summarized in Table 2.8

Table 2.8: Uniformly distributed $\pm 5 \%$ of maximum range random noise.
Single transmitter results are with a 15 antennae configuration.

	Three transmitters				One transmitter			
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	0.75	0.64	0.98	1.18	2.03	0.99	1.40	2.23
Average error	0.21	0.27	0.32	0.56	0.57	0.28	0.35	0.87
Std. deviation	0.19	0.18	0.25	0.21	0.55	0.27	0.41	0.56

For the three transmitter configuration, $\pm 5 \%$ error in the voltage reading results in an average position error of 0.32 inch or less in any single coordinate direction. This is equivalent to about 1.6% of the position range of 20 inches. The maximum position error is 0.98 inch or less, which is equivalent to about 4.9%. The diameter of the sphere containing the transmitter assembly used for the particle tracking system is one inch. Therefore maximum errors in positions of less than or equal to one inch are considered to be good.

As shown in Table 2.8, the results for a single transmitter are not as good as those for three transmitters, as a single transmitter provides much less information than three orthogonal transmitters. The accuracy of predicting translation in X, Y and Z are similar. For the one transmitter case the maximum error in X , a translation of 2.03 inches, is equivalent to about 10.15% of the range of 20 inches in X direction. The maximum errors in Y and Z translations of 0.99 inch and 1.40 inches are equivalent to 5.0% and 7.0% of the range of 20 inches in the Y and Z directions respectively.

Table 2.9: Uniformly distributed $\pm 10 \%$ of maximum range random noise. Single transmitter results using 15 antennae.

	Three transmitters				One transmitter			
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	1.65	1.16	2.04	2.04	3.05	1.70	8.80	9.18
Average error	0.45	0.55	0.57	1.08	1.04	0.56	1.40	2.22
Std deviation	0.40	0.36	0.50	0.45	0.84	0.44	2.46	2.30

The effect of added noise for the one transmitter assembly as well as the three transmitter assembly can be understood at least in part through the above examples of \pm 5% added noise. In principle, one can theoretically analyze the effect of noise or errors in the voltage readings on the computed position and orientation through analyzing the derivatives of the position and orientation with respect to voltages, but that would require
inverting the functional relationship given by the voltage model. This is not a trivial task. Further understanding of the influence of noise on the solution can be gained by examining the effect of a higher percentage of simulated noise errors. Therefore, $\pm 10 \%$ and $\pm 15 \%$ uniformly distributed random noise was added to the voltage data, and both the single transmitter and three transmitter configurations were analyzed. The results obtained for the prediction of position are presented in Table 2.9 and Table 2.10. For the three transmitter configuration, both noise levels result in an increase in the errors as compared to the $\pm 5 \%$ noise case. The largest average translation error for the $\pm 10 \%$ noise is 2.85%, and for $\pm 15 \%$ noise is 4.45%. For the one transmitter configuration, the largest average translation error for the $\pm 10 \%$ noise is 7.0% and for $\pm 15 \%$ noise is 8.05%.

Table 2.10: Uniformly distributed $\pm 15 \%$ of maximum range random noise. Single transmitter results are using 15 antennae.

	Three transmitters				One transmitter			
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	2.57	2.72	2.93	3.31	4.61	3.79	9.32	9.70
Average error	0.73	0.89	0.89	1.68	1.46	0.88	1.61	2.80
Std. deviation	0.58	0.57	0.75	0.73	1.15	0.84	2.45	2.36

The maximum errors in X, Y and Z positions for the 5% noise case using three transmitter assembly are less than one inch. These errors are comparable to the errors obtained in actual experiments. Because they are within one particle diameter of exact we consider them to be acceptable. For the 10% and 15% noise cases using the three transmitter assembly, the maximum as well as mean errors in positions are approximately double and three times that of 5% noise case. Maximum errors in X, Y and Z positions for the 5% noise case using the single transmitter assembly are between one and two inches (see Table 2.8) which are not acceptable as "good" solutions. The three transmitter assembly
always gives better results compared to the single transmitter assembly for all levels of noise.

2.4 Improving Global Convergence with Perturbations

Due to the highly non-linear nature of the problem, many local minima may exist near the global minimum. As six variables are involved, it is very difficult to visualize the effect of all the variables at the same time. The solution also depends on the number of information elements (voltages) available. As observed previously, approximately 18 elements are required for good convergence. For three transmitters, this is achieved by providing six antennae. For the one transmitter configuration, approximately 18 antennae must be used to achieve similar results. Another method to improve the solutions is to take more one initial guess. The Levenberg-Marquart method is applied using each one of " k " initial guesses. The method then converges to as many as " k " solutions. The convergent solution with the lowest residual is then selected. This is called the perturbation technique. There are two ways in which perturbations have been used. In the first technique, the initial guess is randomly incremented within a fixed radius which is called the radius of perturbation (See Figure 2.1). This method is called the multiple-initial-guess method. The term initial guess in the figure means the solution of the previous solved data point. In the figure, three perturbations are shown. Perturbation number one gives "Guess 1" which is the initial guess for that perturbation. The solution obtained with this initial guess is called "solution 1". Similarly, the other two perturbations can be explained. It should be noted that although initial guesses for each perturbation are always within the radius of perturbation, the solution is not restricted by the radius of perturbation. In our computation we take one initial guess with a zero radius of perturbation.

In the second method, the successive perturbations are performed at the previously obtained minimum (See Figure 2.2). This is called the floating initial guess method. Here the initial guess for the first perturbation is obtained from the previously solved data point
similar to the multiple initial guess method. The initial guesses for the successive perturbations are the solutions of the previous perturbations. As shown in the figure "Initial guess 2 " is obtained from the "Solution 1 " of perturbation one. Similarly, "Initial guess 3 " is obtained from "Solution 2" of perturbation number two and so on.

Figure 2.1: Multiple initial guess method for perturbations

In the multiple initial guess method, if the radius of perturbation is small then a global minimum may not be obtained. Also, if the solution is outside the radius of perturbation then it can be difficult to reach a global minimum. A large radius of perturbation may lead to convergence to a local minimum. Also, greater number of perturbations are required as the radius of perturbation is increased. In the floating initial guess method, if the radius of perturbation is small, the solution can get stuck at a prominent local minimum. The radius of perturbation should be made dependent on the velocity of the flow and the speed of the data acquisition system. In these study, six perturbations are used.

Initial guess 2 (Solution 1)

Figure 2.2: Floating initial guess method of perturbations

Table 2.11: Trajectory of Runs 2.1.

	X [inches]	Y [inches]	Z [inches]	Alpha	Beta	Gamma
1	2	5	4	0	0	0
2	3	5.75	4.75	10	15	8
3	4	6.5	5.5	20	30	16
4	5	7.25	6.25	30	45	24
5	6	8	7	40	60	32
6	7	8.75	7.75	50	75	40
7	8	9.5	8.5	60	90	48
8	9	10.25	9.25	70	105	56
9	10	11	10	80	120	64
10	11	11.75	10.75	90	135	72
11	12	12.5	11.5	100	150	80
12	13	13.25	12.25	110	165	88
13	14	14	13	120	180	96
14	15	14.75	13.75	130	195	104
15	16	15.5	14.5	140	210	112
16	17	16.25	15.25	150	225	120
17	18	17	16	160	240	128

Two simulation runs (Run $2.1 \&$ Run 2.2) comparing the results of no perturbation, multiple initial guess method of perturbation, and floating point initial guess method are
presented. The $20^{\prime \prime} \times 20^{\prime \prime} \times 20^{\prime \prime}$ model chute with six antennae (explained in Section 2.1) is used. All results are using the three transmitter assembly. The radius of perturbation used for all the results presented below is one inch. Table 2.11 shows the trajectory used in the Run 2,1. This is a straight line trajectory with all the three rotations (α, β, and γ) varying. Table 2.12 summarizes the results obtained without using perturbations. Table C. 1 gives the solution for the no perturbation case. Table 2.13 compares the results of multiple initial guess method of perturbation and floating point initial guess method of perturbation. Tables C. 2 and C. 3 show the solutions of the multiple initial guess method of perturbation and floating initial guess method of perturbation. The average errors in positions for the results with no perturbations are $\mathrm{X}=079, \mathrm{Y}=057$ and $\mathrm{Z}=0.73$. The average errors in positions for the results with the multiple initial guess method of perturbation are $\mathrm{X}=0.30$, $\mathrm{Y}=0.24$ and $\mathrm{Z}=0.25$ and with the floating point initial guess method of perturbation these are $\mathrm{X}=0.27, \mathrm{Y}=0.25$ and $\mathrm{Z}=0.25$. There is a significant improvement in results by using perturbations. However, both the multiple initial guess method and floating point initial guess method of perturbation give similar results.

Table 2.12: Results with no perturbations. 5\% maximum range random noise, three transmitter configuration. (Run 2.1)

	X inches	Y inches	Z inches	Distance inches
Maximum error	2.48	2.15	3.43	4.44
Average error	0.79	0.57	0.73	1.33
Std. deviation	0.78	0.59	1.01	1.31

Table 2.13: Results with perturbations. 5\% maximum range random noise, three transmitter configuration. $1^{\prime \prime}$ radius of perturbation (Run 2.1)

	Multiple Initial Guess Method			Floating Point Initial Guess Method				
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	0.62	0.47	0.66	0.85	0.62	0.47	0.68	0.81
Average error	0.30	0.24	0.25	0.52	0.27	0.25	0.25	0.50
Std. deviation	0.21	0.12	0.20	0.19	0.20	0.11	0.20	0.18

Table 2.14 shows the trajectory for Run 2.2. This is a sinusoidal trajectory with simultaneous rotations in α, β and γ. Table 2.15 and Table 2.16 tabulate the results obtained with no perturbations, multiple initial guess method of perturbation and floating point initial guess method of perturbation. There is a reduction of 0.54 inch in the maximum error in X position by using perturbation. The Y and Z position errors show no improvements in results by using perturbation.

Table 2.14: Trajectory of Runs 2.2.

	X [inches]	Y [inches]	Z [inches]	alpha	beta	gamma
1	0	8.50	11.00	0	0	0
2	1	10.66	12.55	5	7.5	10
3	2	12.61	13.94	10	15	20
4	3	14.16	15.05	15	22.5	30
5	4	15.16	15.76	20	30	40
6	5	15.50	16.00	25	37.5	50
7	6	15.16	15.76	30	45	60
8	7	14.16	15.05	35	52.5	70
9	8	12.61	13.94	40	60	80
10	9	10.66	12.55	45	67.5	90
11	10	8.50	11.00	50	75	100
12	11	6.34	9.45	55	82.5	110
13	12	4.39	8.06	60	90	120
14	13	2.84	6.95	65	97.5	130
15	14	1.84	6.24	70	105	140
16	15	1.50	6.00	75	112.5	150
17	16	1.84	6.24	80	120	160
18	17	2.84	6.95	85	127.5	170
19	18	4.39	8.06	90	135	180
20	19	6.34	9.45	95	142.5	190
21	20	8.50	11.00	100	150	200

Table 2.15: Results with no perturbations. 5\% maximum range random noise, three transmitter configuration. (Run 2.2)

	X inches	Y inches	Z inches	Distance inches
Maximum error	1.25	0.50	1.00	1.68
Average error	0.28	0.19	0.36	0.54
Std. deviation	0.31	0.15	0.25	0.37

Table 2.16: Results with perturbations. 5\% maximum range random noise, three transmitter configuration. $1^{\prime \prime}$ radius of perturbation. (Run 2.2)

	Multiple Initial Guess Method				Floating Point Initial Guess Method			
	$\begin{gathered} \mathrm{X} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { inches } \end{gathered}$	Distance inches	$\begin{gathered} X \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { inches } \\ \hline \end{gathered}$	Distance inches
Maximum error	0.71	0.49	1.09	1.31	0.71	0.50	1.09	1.32
Average error	0.25	0.18	0.36	0.53	0.25	0.19	0.36	0.52
Std deviation	0.21	0.12	0.29	0.33	0.24	0.12	0.27	0.32

It can be concluded that applying a perturbation method is useful for the solution code to reach acceptable minima. Two reasonable methods were described for perturbation i.e. floating point initial guess method and multiple initial guess method. It is inconclusive whether one method is better as both the methods give similar results.

2.5 Use of Extrapolation in Solution

To reduce the dependency of the initial guesses on the speed of the data acquisition system, a technique of extrapolation is used to make initial guesses. Here, the last two points in the tracking sphere's history are examined and extrapolated to arrive at a new location where the sphere would be if its path were not disturbed (See Ref. [15]). If the speed of the data acquisition system is such that the particle travels only a small distance (0.05 to 0.5 inch) between two samplings, then extrapolation may not help as Imdif can easily converge up to a radius of half an inch (This has been noticed in solutions for various trajectories). But in actual flows, the velocity of the flow is not constant. If in
some part of flow, the velocity is so high that the increment between two samplings is around one inch, then Imdif may require extrapolation to get to the best solution. The difficulty with the use of the extrapolation technique is that actual flows are not systematic in behavior. Using extrapolation in such cases may result in a poor initial guess for some points and hence poor convergence. In Run 2.3 a trajectory is studied in which the distances between sampling of the particle voltages changes in the X, Y and Z directions. The summary of results for the run with and without extrapolation are shown in Table 2.17. Corresponding plots appear in Figures B.35-46. An analysis of the results in Table 2.16 shows that there is 75% improvement in the maximum error in X position, 50% in Y position, and 33% in Z position with extrapolation. This shows that results are improved using the extrapolation technique.

Table 2.17: Run 2.3 showing the effect of extrapolation on solution.

	Without extrapolation				With extrapolation			
	X inches	Y inches	Z inches	Distance inches	X inches	Y inches	Z inches	Distance inches
Maximum error	2.8	2.12	1.09	3.56	0.70	1.0	0.73	1.00
Average error	0.53	0.48	0.33	0.87	0.14	0.21	0.25	0.42
Std. deviation	0.80	0.55	0.33	0.96	0.16	0.22	0.21	0.27

2.6 Effect of epsfch on Convergence

The parameter epsfcn is an input variable used in determining a suitable step length for the forward difference approximation used in the Levenberg-Marquart method code. This approximation assumes that the relative errors in the functions are of the order of epsfcn. If epsfcn is less than machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision, (see Ref. [9]). Table 2.18 shows the results of a simulation with different epsfcn values. In the present simulation, perturbations
are not used. Although not presented here, it is found that by using perturbations, all the above cases give the exact solution.

For small values of epsfcn it may be difficult for the Imdif algorithm to avoid a local minimum. Therefore the solution has larger errors as epsfcn is reduced from $1.0^{*} \mathrm{e}-$ 06 to 1.0 * e-09. When a large value of epsfon such as 0.1 is used, maximum errors in total distance of about 1 inch are observed. With large step lengths, it is possible that lmdif goes past the exact solution. A value of epsfcn $=0.001$ number produces the exact results in this case.

Table 2.18: Effect of epsfcn, Results shown are with extrapolation, without perturbations and with zero noise.

	epsfcn $=0.1$				epsfcn $=0.001$			
	$\begin{gathered} \mathrm{X} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { inches } \end{gathered}$	Distance inches	$\begin{gathered} \mathrm{X} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { inches } \end{gathered}$	Distance inches
Maximum error	0.77	0.19	0.58	0.97	0.00	0.00	0.00	0.00
Average error	0.08	0.04	0.07	0.12	0.00	0.00	0.00	0.00
Std. deviation	0.19	0.07	0.14	0.24	0.00	0.00	0.00	0.00
	epsfcn $=1.0{ }^{\text {* e - } 06}$				epsfen $=1.0$ * e-09			
Maximum error	1.43	1.24	3.60	3.78	4.50	2.13	0.00	4.82
Average error	0.21	0.29	0.69	0.86	0.97	0.48	1.20	1.68
Std. deviation	0.35	0.42	1.12	1.19	1.28	0.53	1.10	1.47

2.7 Multiple Solutions

Multiple solutions can arise due to two situations:

1. Multiple solutions due to the antennae configuration.
2. Multiple solutions due to rotations.

Figure A. 3 of Appendix A shows the experimental test chute. Consider two points at $X=19.0$ inches and $X=21.0$ inches with other positions and orientations the same. The voltages in antennae $2,4,5,6,7$ will be the same for both the positions. The voltages in antennae 1 and 3 will be different but they are weaker than in $2,4,5,6$, and 7. Also the
number of elements with same voltage are $5 \times 3=15$ compared to $2 \times 3=6$ with different voltages. Due to this and considering that there is usually some noise in the data, going from $X=20.0$ inches to $X=21.0$ inches, there is a chance that the solution will converge at $X=19.0$ inches.

Figure 2.3: Successive rotation about X, Y and Z result in the same position.
As shown in Figure 2.3 rotating the X, Y and Z axes by 180° gets one to the original orientation. The model voltages can be obtained in the form as shown in Figure 2.4a with a symmetry of 180°. Due to the limitation of the data acquisition system, sign changes in the measured voltages cannot be obtained. The measured voltages are of the form shown in the figure 2.4 b , and have a symmetry of 90°. The word symmetry here means that voltages between $0-90^{\circ}$ and $90-180^{\circ}$ have the same magnitude and sign. Therefore, rotating the transmitter 90° results in the exact same value of voltage. This could result in multiple solutions in orientation for the one transmitter assembly.

Figure 2.4: (a) Theoretical voltages. (b) Actual measured voltages obtained.

Surprisingly such kinds of multiple solutions rarely occur. More common multiple solutions are those in which the X, Y and Z axes are rotated by 180°. There are many combinations in which these multiple solutions can occur. Unfortunately although these solutions are physically the same, the computer code responds differently when two such solutions are given as initial guesses. However these multiple solutions are easy to detect and correct manually during post processing.

CHAPTER 3

ANTENNAE CONFIGURATION

In this chapter, the effect of aspect ratio, size and shape of the antenna on the model voltages is studied. The errors due to antennae coupling in the measured voltages are studied. It is found that antenna coupling introduces negligible errors if the closest distance between two antennae at least one inch.

3.1 Aspect Ratio, Size \& Shape Study of Antennae

3.1.1 Effect of Antennae Shape on Voltage

Determining the position and orientation of the tracking sphere involves solving for six unknowns i.e. $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \alpha, \beta$ and γ. If three transmitters are used for tracking, theoretically only two antennae are required for solution. Generally it is observed that 6 to 7 antennae are required for a good solution. The configuration of these antennae, i.e. their location, size, shape and number are very much related to the type of results obtained. Two type of antennae shapes are of interest.

1. Rectangular, and
2. Circular

Circular antennae are more symmetric than square antennae, and could be used in places where the flow area is circular e.g. pipes. In the present study, rectangular antennae are used. As the code has been set up for using rectangular antennae, simulated data for circular antennae is not presented

3.1.2 Antennae Size $\mathcal{\&}$ Aspect Ratio Study

Empirically, it is found that smaller antennae with aspect ratios close to 1 work reasonably well experimentally. Two things are to be considered while deciding the antennae size and aspect ratio.

1. The signal levels in the antennae: Figures 3.1 shows the effect of antennae size on the model induced voltage with aspect ratio of one. The voltage induced by a transmitter in the plane of the antenna of dimension 10x10 inches antenna (~ 0.0046) is approximately double that for 20×20 inches antenna (~ 0.0023) and about three times that of 30×30 inches antenna (~ 0.0015). But a 10×10 inch antenna receives lower voltages away from the plane of antenna. A similar trend can be observed in Figure 3.3 in which the trajectory is going away from the antenna plane. Figure 3.2 and Figure 3.4 show plots for trajectories in the antenna plane. It is seen that smaller size antenna have higher voltages in the plane
2. The sensitivity of voltages with respect to changes in position or orientation of the transmitter: Figure 3.1 shows that a 10×10 inch antenna has a larger change in voltage than bigger antennae sizes. The large variations in voltages for the smaller antennae are advantageous to the backward solver. In Figure 3.3, although the 10×20 inches antenna and the 20×40 inches antenna have the same aspect ratio, the voltages in the 10×20 antenna are much higher because of its smaller size.

Figure 3.1 Effect of antenna size on the model voltage. The trajectory is a straight line along the axis of the antenna with one inch increment.

Figure 3.2 Effect of antenna size on the model voltage. The trajectory is a straight line in the plane of the antenna with an increment of one inch.

Figure 3.3 Effect of antenna aspect ratio on the model voltage. The trajectory is a straight line along the axis of the antenna with an increment of one inch.

Larger antennae tend to give low signals and thus a small signal to noise ratios. Experimental work has shown that antennae with larger aspect ratios tend to deviate more from the model predicted voltages, resulting in large systematic errors in the final results. Thus the smaller or more square the antennae, the better the results. However, small antennae have high reading in only a small region. Therefore more small antennae are needed to cover the length of the chute.

Figure 3.4: Effect of antenna aspect ratio on the model voltage. The trajectory is a straight line in the plane of the antenna with an increment of one inch.

3.2 Antennae Coupling

When a signal is induced in any one antenna, that antenna behaves as a transmitter and induces signals in adjacent antennae. These antennae in turn induce signals in other antennae. In practice, the propagating signal strength drops quickly from antenna to antenna so that only the first transmission is of significance. A detailed description of antennae coupling can be found in Ref. [15]

Antennae coupling depends on two things:

1. Distance between the antennae: Experimental work suggests [Troiano] that coupling signals between adjacent antennae can be neglected if the distance between the antennae is one inch or more.
2. Signal levels in the antennae: As discussed in Ref. [15], the coupling is dependent positively on the signal levels of adjacent antennae and negatively on the signal level in the antenna itself. In other words, when the signals in an antenna are low, it is highly susceptible to coupling from adjacent antennae.

Figure 3.5: Antennae coupling

Consider the worst case scenario for antennae coupling (See Figure 3.5). Antennae j and k have dimensions 40×20 inches and antenna i has dimensions 20×20 inches. The edges of antenna i are one inch away from the edges of antennae j and k at their closest point. The transmitter is located near the wires and the planes of antennae j and k . It is also approximately 40 inches away from antenna i. The voltage induced in antenna i is found to be about 15 counts which is less than 1.0% of the maximum voltage induced in the i antenna. In most cases this voltage is much less. Also as antenna i has a very low signal, it has a minor contribution towards the solution. This example demonstrates that errors due to antenna coupling are negligible. To get the exact amount of coupling voltage, antennae j and k have to be turned off first while voltage reading in antenna i is taken. This work
has already been done in Ref. [15]. The principal interest in the present study was to look for a significant error in the voltages which may affect the results. The errors due to antenna coupling are not significant. We conclude, therefore, that if the antennae are at least one inch apart then antenna coupling is not significant.

CHAPTER 4

STUDY OF SYSTEMATIC ERRORS

In this chapter the systematic errors in the particle tracking system are studied. That is, we study the difference between model voltages and measured voltages. The errors can result from assumptions made in the model or in the measurements of voltages. Here the errors in the measurement of voltages are discussed.

4.1 Model-Reality Plots

Two types of errors appear in the measurement of any physical entity: random errors and systematic errors. Random errors refer to the unpredictable fluctuations that creep into any measurement. Systematic errors, unlike random errors, are introduced into a system by human biases or imperfections in the equipment used for measuring. Such errors must be corrected (Ref. [15]).

The systematic errors can be attributed to any of the factors given below (Ref [15]).

- The field of the transmitter is not perfectly symmetric.
- The amplifier boards are not perfectly linear.
- The data acquisition boards are not perfectly linear.
- Magnetic coupling may exist between antennae.
- Incorrect transmitter correction matrix.
- Higher order terms neglected in the derivation of the model may produce systematic errors.

The study of systematic errors in the measured voltage can be found in Ref. [15]. Errors between measured and model voltages as large as 70\% (at low signal levels) were found using the one transmitter assembly. The present study is done along the same line with three transmitters. Typical model-reality plots are shown in Figure 4.1a-d. In Figure
4.1a, the transmitter is initially four inches away from the plane of antenna number four i.e. Y antenna at $\mathrm{X}=0.0$ inches (See Figure A.3) and one inch (perpendicular distance) from the edge. It is then moved towards the center of the antenna. As shown in the figure the errors are largest around $\mathrm{X}=-18$ inches. This is the region where the voltages are highest. For the other regions the errors are almost constants.

In Figure 4.1 b , the axis of the transmitter is collinear with the axis of the antenna number 2 i.e. X antenna at $\mathrm{X}=20$ inches. The transmitter travels from within the plane and center of the antenna to a point 20 inches from this plane in a straight line with an increment of one inch. This plot also show maximum deviations near the high voltage regions. As the calibration is done in the plane of antenna, initially the model and reality match well.

In Figure 4.1c, the axis of the transmitter is collinear with the axis of the antenna number 2. The transmitter travels from within the plane and five inches away from the center of the antenna to a point 20 inches from this plane in a straight line with an increment of one inch. In this plot, the errors are the least at $Z=10.0$ inches. The errors increase as we move towards and away from that point in both directions along the Z axis.

In Figure 4.1d, the transmitter is initially one inch from the edge of and in the plane of antenna number two. The transmitter is then moved towards the center of the antenna, and within its plane. This plot shows large errors when the transmitter is near the antenna wire. As we move away from the antenna wire the errors decrease exponentially.

The calibration point for all four plots is taken at the center of antenna number two. In Figures D.1-D. 4 the same four plots with calibration points at a distance fifteen inches away from the antenna plane are shown.

Scaled Measured vs. Model Voltages Antenna No. 4; 40×20 inches; Scale $=520860$

Figure 4.1a: Model-Reality Plot for 2.2 MHz transmitter it is moved along and 4 inch away from the plane of antenna.

The maximum error in Figure 4.1 a is 1.5% with the scale as 520860 and 1.9% with the scale of 525353 . Figure 4.1 b has a maximum error of 1.6% at higher voltages with the scaling factor of 520860 and 2.4% with factor of 525353 . In Figure 4.1c the maximum errors are at low voltage readings. The errors are 3.8% for the scaling factor of 520860 and 3.0% with the scaling factor of 525353 respectively. Figure 4.1 d shows large deviations in measured voltages near the antenna wire. Errors as high as 13% are found when the transmitter is three inches from the wire and in the plane of antenna with the scale of 520860 . The error is only about 2% when the transmitter is located 5 inches from the antenna wire. The maximum error with the scaling factor of 525353 for Figure 4 .1d is 13.6%.

Four conclusions can be derived from the above observations:

1. There is a reduction in errors by taking the calibration point at the center of the antenna (since results of Figures 4.1a-d are better than Figures D.1-4).
2. There is no effect of aspect ratio on the calibration (Figure 4.1a vs. Figure 4.1b).
3. In the region less then $5^{\prime \prime}$ from the antenna wire the discrepancy between model and reality is high (Figure 4.1d).
4. In other regions, model and measured voltages match well with maximum error of about $\pm 2 \%$ at high signals and $\pm 4 \%$ at low signal levels.

Figure 4.1b: Model-Reality Plot for 2.2 MHz transmitter as it is moved away from the plane of antenna in a path coincident with the axis of the antenna.

The accuracy of the measured voltages is about 2%. Therefore the solution may not improve by adjusting the model voltages (i.e. making corrections to the model) in the region where the model-reality match is good. Corrections are required in region less then $5^{\prime \prime}$ inches from the antenna wire. These measurements were done for the 20×20 in

Scaled Measured vs. Model Voltages Antenna No. 2; 20×20 inches; Scale $=\mathbf{5 2 0 8 6 0}$

Figure 4.1c: Model-Reality Plot for 2.2 MHz transmitter as the transmitter is moved from the plane of antenna in a path coincident with the axis of the antenna.
ches antenna. Other antenna sizes or aspect ratios may behave differently. The antenna size that will be used in the chute being developed at NJT for actual experiments is about 18×18 inches. The approximate placement of the 18×18 inch antenna in the chute is shown in the Figure 4.2. Only 2 inches in the Z and 3.5 inches in the Y direction need to be calibrated in the plane of the antenna. Another option is that the measured voltage for a particular antenna lying in the above described region should not be taken into account for the solution, i.e., that antenna is shut-off while the transmitter is in the restricted region (along the lines of the quality information selection scheme suggested by Ref. [1]).

Figure 4.1d: Model-Reality Plot for 2.2 MHz transmitter as the transmitter is moved in the plane of antenna.

Figure 4.2: X -Antenna configuration in actual chute.

CHAPTER 5

EXPERIMENTAL RESULTS

In this Chapter, the gravitational constant is calculated by dropping the three transmitter assembly in a free fall and solving for the X, Y and Z positions. This type of trajectory is selected to check the speed and accuracy of the fast data acquisition system. The chapter ends with conclusions and suggestions for future work.

5.1 Progress Towards Actual Experiments: Free Fall Test Results

In the experimental results presented so far, the transmitter was kept stationary while taking the measurements. This was done so that the position and the orientation are known and can be compared with the measurements obtained.

However, in actual flow experiments, the sphere containing the transmitter will be moving at high velocity. The purpose of the particle tracking system is to trace the position and orientation of the particle in a continuous flow. It was necessary to test the performance of the tracking system with a fast data acquisition rate. A fast controlled trajectory had to be developed. One option was to pack the transmitter in a cylinder which is then rolled down an inclined surface. Here it was difficult to measure the velocity of the rolling cylinder. Also, obtaining a working test setup was expensive and time consuming. This idea therefore was abandoned. The other option was to drop the sphere containing the transmitter vertically keeping the chute vertical. The rate at which the sphere falls in free fall is known and thereby it was possible to calculate the gravitational constant. The problem with this method was that once the sphere was in free fall there was no restriction on its rotation.

The results of the drop test are presented in Table 5.1. Figure 5.1 shows the plot of measured versus actual position in X . Plots of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ positions and the rotation are
shown in Figures D.5-D.10. The exact actual rotations are not known and therefore actual rotations are not presented in the plots. The gravitational constant was found to be 383.97 inch $/ \mathrm{s}^{2}$. The error is 0.63%. The maximum error in X is 0.441 inch, in Y it is 0.58 inch and in Z is 0.48 inch. The errors are similar to those obtained with the slow data acquisition rate. The mean errors in X, Y and Z are less than 0.1 inch. These are slightly better than those obtained with the slow data acquisition rate. The reason for improvement in the results could be because of very low measurement error, more data, and very small increments between each pair of data points.

Table 5.1: Experimental results: Drop Test

	Drop Test Results		
	X inches	Y inches	Z inches
Maximum error	0.44	0.58	0.48
Average error	0.11	0.15	0.10
Std. deviation	0.10	0.13	0.10

Figure 5.1: Checking the accuracy of the tracking system by calculating the gravitational constant

5.2 Conclusions

We have studied some of the analysis techniques used in the particle tracking system for dry particulate flows. In the one transmitter assembly vs. three transmitter assembly comparison we found that there is an improvement in results with the increase in the number of antennae. Between 15 to 20 antennae are requires to obtain a solution with average errors less than one inch for the single transmitter assembly while the three transmitter assembly require only six antennae for similar results. It was also observed that a three transmitter assembly always gives better results than a single transmitter assembly with the same number of antennae.

It is observed in both simulations as well as actual experiments that doubling the data in the fivec (Refer to Section 2.2) results in improvement in the results for a single transmitter assembly as well as for a three transmitter assembly.

Increasing in the level of noise has similar effects on a one transmitter assembly and a three transmitter assembly. Increasing the noise from 5% to 10% (Refer Section 2.3) doubles the maximum and average errors in positions for both the one transmitter assembly and the three transmitter assembly. Comparing the errors obtained with different noise levels in simulations and errors obtained in actual experiments we can conclude that there are less than 5\% random and systematic errors in the measured voltages.

Perturbations help the solution code to reach a global minimum. The floating point initial guess method and multiple initial guess method of perturbations (Refer to Section 2.4) give similar results. A large radius of perturbation can lead to an incorrect solution. A radius of perturbation of one inch is recommended.

In the flows where the velocities are not constant, using an extrapolation technique improves the results.

The value 0.001 of the step length parameter epsfen of lmdif is observed to be optimal for the three transmitter assembly in simulation.

Small antennae give larger voltage signals compared to larger antennae. Signal levels in a $10^{\prime \prime} \times 10^{\prime \prime}$ antenna are found to be double those in a $20^{\prime \prime} \times 20^{\prime \prime}$ antenna. Smaller antennae also have the benefit of having larger variations in the voltages. This can improve computational results. The limitation of smaller antennae is that the signal gets weaker as we move away from the plane of antenna. Therefore more such antennae are required.

We can conclude that errors due to antenna coupling are negligible if the closest distance between two antennae is at least one inch.

It is found that there is a reduction in errors by taking the calibration point at the center of the antenna. There is no effect of aspect ratio on the calibration. It is observed that in the regions less then $5^{\prime \prime}$ (in the plane of antenn) from the antenna wire the discrepancy between the model and reality is high.

In the experimental results of the drop test, maximum error in total distance of less than $0.5 "$ and average error in total distance of less than $0.3^{\prime \prime}$ are obtained.

Further work need to be done on the virtual antennae concept using experimental data. The suggested modifications in the 27-point correction scheme and the calibration points can be implemented. Modifications in the code are required to take care of the multiple solutions in orientations.

APPENDIX A

Figure A.1: $20^{\prime \prime} \times 20^{\prime \prime} \times 20^{\prime \prime}$ simulation chute with 15 antennae.

Figure A.2: Three Dimensional Sine Curve Trajectory.

Figure A.3: Experimental Chute

APPENDIX B

Figure B.1: 1-T \& Six antennae. 5% Noise.

Figure B.2: 1-T \& Six antennae. 5% Noise.

Figure B.3: 1-T \& Six antennae. 5\% Noise.

Figure B.4: 1-T \& Six antennae. 5\% Noise.

Figure B.5: 1-T \& Six antennae. 5\% Noise.

Figure B.6: 1-T \& Six antennae. 5% Noise.

Figure B.7: 3-T \& Six antennae. 5\% Noise.

Figure B.8: 3-T \& Six antennae. 5% Noise.

Three Transmitter, Six Antennae Results

Figure B.9: 3-T \& Six antennae. 5\% Noise.

Three Transmitter, Six Antennae Results

Figure B.10: 3-T \& Six antennae. 5\% Noise.

Three Transmitter, Six Antennae Results

Figure B.11: 3-T \& Six antennae. 5\% Noise.

Three Transmitter, Six Antennae Results

Figure B.12: 3-T \& Six antennae. 5\% Noise.

Figure B.13: 1-T \& 17 antennae. 5% Noise.

One Transmitter, 17 Antennae Results

Figure B.14: 1-T \& 17 antennae. 5% Noise.

Figure B.15: 1-T \& 17 antennae. 5% Noise.

Figure B.16: 1-T \& 17 antennae. 5% Noise.

Figure B.17: 1-T \& 17 antennae. 5% Noise.

Figure B.18: 1-T \& 17 antennae. 5\% Noise.

Three Transmitter, 17 Antennae Results

Figure B.19: 3-T \& 17 antennae. 5\% Noise.

Figure B.20: 3-T \& 17 antennae. 5% Noise.

Three Transmitter, 17 Antennae Results

Figure B.21: 3-T \& 17 antennae. 5\% Noise.

Figure B.22: 3-T \& 17 antennae. 5% Noise.

Figure B.23: Experimental Results testing virtual antennae concept.

Figure B.24: Experimental Results testing virtual antennae concept.

Figure B.25: Experimental Results testing virtual antennae concept.

Figure B.26: Experimental Results testing virtual antennae concept.

Figure B.27: Experimental Results testing virtual antennae concept.

Figure B.28: Experimental Results testing virtual antennae concept.

Without Virtual Antennae

Figure B.29: Experimental Results testing virtual antenna concept.

Figure B.30: Experimental Results testing virtual antenna concept.

Figure B.31: Experimental Results testing virtual antenna concept.

Figure B.32: Experimental Results testing virtual antenna concept.

Figure B.33: Experimental Results testing virtual antenna concept.

Figure B.34: Experimental Results testing virtual antenna concept.

Figure B.35: Simulation plots without extrapolation.

Figure B.36: Simulation plots without extrapolation.

Figure B.37: Simulation plots without extrapolation.

Figure B.38: Simulation plots without extrapolation.

Figure B.39: Simulation plots without extrapolation.

Figure B.40: Simulation plots without extrapolation.

Figure B.41: Simulation plots with extrapolation.

Figure B.42: Simulation plots with extrapolation.

Figure B.43: Simulation plots with extrapolation.

Figure B.44: Simulation plots with extrapolation.

Figure B.45: Simulation plots with extrapolation.

Figure B.46: Simulation plots with extrapolation.

APPENDIX C

Table C.1: Solution of Run 2.1, with no perturbations, 5\% of maximum range random noise
Data Point 1
Initial guess: 2.0000005 .0000004 .0000000 .0000000 .0000000 .000000
Perturbation 1
Initial start : X $=2.000000 \quad \mathrm{Y}=5.000000 \quad \mathrm{Z}=4.000000 \quad \mathrm{~A}=0.000000 \quad \mathrm{~B}=0.000000 \quad \mathrm{G}=0.000000$
Initial residual: 0.000348
Converged Position : $\mathrm{X}=1.908083 \quad \mathrm{Y}=5.262133 \mathrm{Z}=4.051388 \quad \mathrm{~A}=357.834251 \quad \mathrm{~B}=1.057518 \quad \mathrm{G}=3.910182$
Residual for this perturbation : 0.000234
Using perturbation \#: 1
Solution to improve: $X=1.908083 \quad Y=5.262133 \mathrm{Z}=4.051388 \mathrm{~A}=357.834251 \mathrm{~B}=1.057518 \mathrm{G}=3.910182$
Initial residual: 0.000234
Final solution : $\mathrm{X}=1.908 \mathrm{Y}=5.262 \mathrm{Z}=4.051 \mathrm{~A}=357.834 \mathrm{~B}=1.058 \mathrm{G}=3.910$
Final residual: 0.000234
Data point \#: 2
Initial guess: 1.9080835 .2621334 .051388357 .8342511 .0575183 .910182
Perturbation 1
Initial start : $X=1.908083 \quad Y=5.262133 \quad Z=4.051388 \quad A=357.834251 \quad B=1.057518 \quad G=3.910182$
Initial residual: 0.001212
Converged Position : $X=3.306877 \quad \mathrm{Y}=5.389136 \quad \mathrm{Z}=4.669258 \quad \mathrm{~A}=13.561798 \quad \mathrm{~B}=14.460684 \quad \mathrm{G}=6.444733$
Residual for this perturbation : 0.000290
Using perturbation \#: 1
Solution to improve: $X=3.306877 \quad Y=5.389136 \quad Z=4.669258 \quad A=13.561798 \quad B=14.460684 \quad G=6.444733$
Initial residual: 0.000290
Final solution : $X=3.307 \mathrm{Y}=5.389 \mathrm{Z}=4.669 \mathrm{~A}=13.562 \mathrm{~B}=14.461 \mathrm{G}=6.445$
Final residual: 0.000290
Data point \#: 3

Initial guess: $3.306872 \quad 5.3891384 .66926513 .56175714 .4607796 .444720$
Perturbation 1
Initial start: $X=3.306872 \quad Y=5.389138 \quad Z=4.669265 \quad A=13.561757 \quad B=14.460779 \quad G=6.444720$
Initial residual: 0.001155
Converged Position : $X=3.882117 \quad Y=6.708703 \quad Z=5.610813 \quad A=20.696186 \quad B=27.730686 \quad G=17.681493$
Residual for this perturbation : 0.000285
Using perturbation \#: 1
Solution to improve: $X=3.882117 \quad Y=6.708703 \mathrm{Z}=5.610813 \mathrm{~A}=20.696186 \mathrm{~B}=27.730686 \mathrm{G}=17.681493$
Initial residual: 0.000285
Final solution : $\mathrm{X}=3.882 \mathrm{Y}=6.709 \mathrm{Z}=5.611 \mathrm{~A}=20.696 \mathrm{~B}=27.731 \mathrm{G}=17.681$
Final residual: 0.000285

Data point \#: 4
Initial guess: $3.882117 \quad 6.708703 \quad 5.610813 \quad 20.696186 \quad 27.730686 \quad 17.681493$
Perturbation 1
Initial start : $X=3.882117 \quad Y=6.708703 \quad Z=5.610813 \quad A=20.696186 \quad B=27.730686 \quad G=17.681493$
Initial residual: 0.001070

Converged Position ：$X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$
Residual for this perturbation ： 0,000310
Using perturbation \＃： 1
Solution to improve：$X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$
Initial residual： 0.000310
Final solution ： $\mathrm{X}=5.624 \mathrm{Y}=7.639 \mathrm{Z}=5.906 \mathrm{~A}=28.950 \mathrm{~B}=48.094 \mathrm{G}=24.237$
Final residual： 0.000310

Data point \＃： 5
Initial guess： $5.623642 \quad 7.638746 \quad 5.905741 \quad 28.950388 \quad 48.094163 \quad 24.236594$
Perturbation 1
Initial start ：$X=5.6236 .42 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$ Initial residual： 0.000705
Converged Position ：$X=5.942331 \quad Y=8.469713 \quad Z=7.016146 \quad A=39.142684 \quad B=57.571305 \quad G=32.047738$
Residual for this perturbation ： 0.000312
Using perturbation \＃： 1
Solution to improve：$X=5.942331 \quad Y=8.469713 \quad Z=7.016146 \quad A=39.142684 \quad B=57.571305 \quad G=32.047738$
Initial residual： 0.000312
Final solution ： $\mathrm{X}=5.943 \mathrm{Y}=8.470 \mathrm{Z}=7.016 \mathrm{~A}=39.142 \mathrm{~B}=57.571 \mathrm{G}=32.048$
Final residual： 0.000312
Data point \＃： 6
ニーニニニニーニーニーニー＝
Initial guess： $5.9425598 .4699337 .01610139 .142208 \quad 57.571088 \quad 32.048022$
Perturbation 1
Initial start ：$X=5.942559 \quad Y=8.469933 \quad Z=7.016101 \quad A=39.142208 \quad B=57.571088 \quad G=32.048022$
Initial residual： 0.000674
Converged Position ：$X=7.000094 \quad \mathrm{Y}=8.418107 \quad \mathrm{Z}=7.603394 \quad \mathrm{~A}=29.284243 \quad \mathrm{~B}=71.360718 \quad \mathrm{G}=22.355054$
Residual for this perturbation ： 0.000350
Using perturbation \＃： 1
Solution to improve：$X=7.000094 \quad \mathrm{Y}=8.418107 \mathrm{Z}=7.603394 \quad \mathrm{~A}=29.284243 \quad \mathrm{~B}=71.360718 \quad \mathrm{G}=22.355054$
Initial residual： 0.000350
Final solution ： $\mathrm{X}=7.000 \mathrm{Y}=8.418 \mathrm{Z}=7.603 \mathrm{~A}=29.284 \mathrm{~B}=71.361 \mathrm{G}=22.355$
Final residual： 0.000350
Data point \＃： 7
Initial guess： $7.000094 \quad 8.418107 \quad 7.603394 \quad 29.284243 \quad 71.360718 \quad 22.355054$
Perturbation 1
Initial start ： $\mathrm{X}=7.000004 \quad \mathrm{Y}=8.418107 \quad \mathrm{Z}=7.603394 \quad \mathrm{~A}=29.284243 \quad \mathrm{~B}=71.360718 \quad \mathrm{G}=22.355054$
Initial residual： 0.000725
Converged Position ：$X=7.885757 \quad \mathrm{Y}=9.157865 \quad \mathrm{Z}=8.573621 \quad \mathrm{~A}=40.977452 \quad \mathrm{~B}=84.271073 \quad \mathrm{G}=40.581319$
Residual for this perturbation ： 0.000468
Using perturbation \＃： 1
Solution to improve： $\mathrm{X}=7.885757 \quad \mathrm{Y}=9.157865 \mathrm{Z}=8.573621 \quad \mathrm{~A}=40.977452 \quad \mathrm{~B}=84.271073 \quad \mathrm{G}=40.581319$
Initial residual： 0.000468
Final solution ： $\mathrm{X}=7.886 \mathrm{Y}=9.158 \mathrm{Z}=8.574 \mathrm{~A}=40.977 \mathrm{~B}=84.271 \mathrm{G}=40.581$
Final residual： 0.000468
Data point \＃： 8
Initial guess： $7.8857579 .157865 \quad 8.573621 \quad 40.977452 \quad 84.271073 \quad 40.581319$

Perturbation 1
Initial start : $X=7.885757 \quad Y=9.157865 \quad Z=8.573621 \quad A=40.977452 \quad B=84.271073 \quad G=40.581319$ Initial residual: 0.000787
Converged Position : $X=9.762012 \quad Y=9.97395 \quad Z=9.52436 \quad A=121.554793 B=111.497284 \quad G=132.386196$
Residual for this perturbation : 0.000390
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=9.762012 \mathrm{Y}=9.973952 \mathrm{Z}=9.524365 \mathrm{~A}=121.554793 \mathrm{~B}=111.497284 \mathrm{G}=132.386196$
Initial residual: 0.000390
Final solution : $\mathrm{X}=9.762 \mathrm{Y}=9.974 \mathrm{Z}=9.524 \mathrm{~A}=121.555 \mathrm{~B}=111.497 \mathrm{G}=132.386$
Final residual: 0.000390
Data point \#: 9
Initial guess: 9.7620129 .9739529 .524365121 .554793111 .497284132 .386196
Perturbation 1
Initial start : $X=9.762012 \quad \mathrm{Y}=9.973952 \quad \mathrm{Z}=9.524365 \quad \mathrm{~A}=121.554793 \quad \mathrm{~B}=111.497284 \quad \mathrm{G}=132.386196$
Initial residual: 0.000556
Converged Position : $X=10.188115 \quad \mathrm{Y}=10.506131 \quad \mathrm{Z}=9.871031 \mathrm{~A}=102.23009 \mathrm{~B}=118.842 \quad \mathrm{G}=121.871866$
Residual for this perturbation : 0.000323
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=10.188115 \mathrm{Y}=10.506131 \mathrm{Z}=9.871031 \quad \mathrm{~A}=102.230093 \mathrm{~B}=118.842532 \quad \mathrm{G}=121.871866$ Initial residual: 0,000323
Final solution : $\mathrm{X}=10.188 \mathrm{Y}=10.506 \mathrm{Z}=9.871 \mathrm{~A}=102.230 \mathrm{~B}=118.843 \mathrm{G}=121.872$
Final residual: 0.000323
Data point \#: 10
Initial guess: $10.18811510 .506131 \quad 9.871031102 .230093118 .842532121 .871866$
Perturbation 1
Initial start: $X=10.188115 \quad Y=10.506131 \quad Z=9.871031 \quad A=102.230093 \quad B=118.842532 \quad G=121.871866$
Initial residual: 0.000787
Converged Position : $\mathrm{X}=10.051780 \mathrm{Y}=11.201101 \mathrm{Z}=10.289061 \mathrm{~A}=94.288236 \mathrm{~B}=134.9405 \mathrm{G}=107.709345$
Residual for this perturbation : 0.000482
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=10.051780 \quad \mathrm{Y}=11.201101 \quad \mathrm{Z}=10.289061 \quad \mathrm{~A}=94.288236 \quad \mathrm{~B}=134.940587 \mathrm{G}=107.709345$ Initial residual: 0.000482
Final solution : $X=10.052 Y=11.201 \mathrm{Z}=10.289 \mathrm{~A}=94.288 \mathrm{~B}=134.941 \mathrm{G}=107.709$
Final residual: 0.000482
Data point \#: 11
Initial guess: $10.051780 \quad 11.201101 \quad 10.289061 \quad 94.288236134 .940587107 .709345$
Perturbation 1
Initial start : $X=10.051780 \quad Y=11.201101 \quad Z=10.289061 \quad A=94.288236 \quad B=134.940587 \quad G=107.709345$
Initial residual: 0.001063
Converged Position : $\mathrm{X}=11.402946 \quad \mathrm{Y}=12.09168 \mathrm{Z}=11.36847 \mathrm{~A}=82.90717 \mathrm{~B}=150.30188 \mathrm{G}=105.887226$
Residual for this perturbation : 0.000754
Using perturbation \#: 1
Solution to improve: $X=11.402946 \quad Y=12.091683 \quad Z=11.368475 \quad \mathrm{~A}=82.907172 \quad \mathrm{~B}=150.301882 \quad \mathrm{G}=105.887226$
Initial residual: 0.000754
Final solution : $\mathrm{X}=11.403 \mathrm{Y}=12.092 \mathrm{Z}=11.368 \mathrm{~A}=82.907 \mathrm{~B}=150.302 \mathrm{G}=105.887$
Final residual: 0.000754

Data point \#: 12
Initial guess: 11.40294612 .09168311 .36847582 .907172150 .301882105 .887226
Perturbation 1
Initial start : $\mathrm{X}=11.402946 \quad \mathrm{Y}=12.091683 \quad \mathrm{Z}=11.368475 \quad \mathrm{~A}=82.907172 \quad \mathrm{~B}=150.301882 \quad \mathrm{G}=105.887226$
Initial residual: 0.001122
Converged Position : $\mathrm{X}=11.225386 \mathrm{Y}=13.223554 \mathrm{Z}=11.531737 \mathrm{~A}=70.104376 \mathrm{~B}=163.714884 \mathrm{G}=92.342676$
Residual for this perturbation : 0.000897
Using perturbation \#: 1
Solution to improve: $X=11.225386 \quad Y=13.223554 \quad Z=11.531737 \quad A=70.104376 \quad B=163.714884 \quad G=92.342676$
Initial residual: 0.000897
Final solution : $\mathrm{X}=11.225 \mathrm{Y}=13.224 \mathrm{Z}=11.532 \mathrm{~A}=70.104 \mathrm{~B}=163.715 \mathrm{G}=92.343$
Final residual: 0.000897

Data point \#: 13
Initial guess: $11.225386 \quad 13.22355411 .531737 \quad 70.104376163 .714884 \quad 92.342676$
Perturbation 1
Initial start : $X=11.225386 \quad \mathrm{Y}=13.223554 \quad \mathrm{Z}=11.531737 \quad \mathrm{~A}=70.104376 \quad \mathrm{~B}=163.714884 \quad \mathrm{G}=92.342676$
Initial residual: 0.001095
Converged Position : $\mathrm{X}=11.520318 \mathrm{Y}=14.16775 \mathrm{Z}=11.031964 \mathrm{~A}=61.077838 \mathrm{~B}=176.983353 \quad \mathrm{G}=97.166786$
Residual for this perturbation : 0.000889
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=11.520318 \quad \mathrm{Y}=14.167756 \mathrm{Z}=11.031964 \mathrm{~A}=61.077838 \mathrm{~B}=176.983353 \mathrm{G}=97.166786$
Initial residual: 0.000889
Final solution : $\mathrm{X}=11.520 \mathrm{Y}=14.168 \mathrm{Z}=11.032 \mathrm{~A}=61.078 \mathrm{~B}=176.983 \mathrm{G}=97.167$
Final residual: 0.000889

Data point \#: 14
Initial guess: $11.520318 \quad 14.167756 \quad 11.031964 \quad 61.077838176 .98335397 .166786$
Perturbation 1
Initial start : $X=11.520318 \quad Y=14.167756 \quad Z=11.031964 \quad A=61.077838 \quad B=176.983353 \quad G=97.166786$ Initial residual: 0.001594
Converged Position : $\mathrm{X}=13.007415 \mathrm{Y}=15.791440 \mathrm{Z}=12.097249 \mathrm{~A}=51.802306 \mathrm{~B}=180.579676 \mathrm{G}=88.549584$
Residual for this perturbation : 0.001470
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=13.007415 \mathrm{Y}=15.791440 \mathrm{Z}=12.097249 \quad \mathrm{~A}=51.802306 \quad \mathrm{~B}=180.579676 \quad \mathrm{G}=88.549584$
Initial residual: 0.001470
Final solution : $\mathrm{X}=13.007 \mathrm{Y}=15.791 \mathrm{Z}=12.097 \mathrm{~A}=51.802 \mathrm{~B}=180.580 \mathrm{G}=88.550$
Final residual: 0.001470

Data point \#: 15
Initial guess: $13.007415 \quad 15.791440 \quad 12.097249 \quad 51.802306 \quad 180.57967688 .549584$
Perturbation 1
Initial start : $X=13.007415 \quad \mathrm{Y}=15.791440 \quad \mathrm{Z}=12.097249 \quad \mathrm{~A}=51.802306 \quad \mathrm{~B}=180.579676 \quad \mathrm{G}=88.549584$
Initial residual: 0.002033
Converged Position : $X=14.175482 Y=17.653630 Z=11.073954 \mathrm{~A}=24.156717 \mathrm{~B}=185.198436 \mathrm{G}=76.559197$
Residual for this perturbation : 0.001805
Using perturbation \#: 1
Solution to improve: $X=14.175482 \quad \mathrm{Y}=17.653630 \quad \mathrm{Z}=11.073954 \quad \mathrm{~A}=24.156717 \quad \mathrm{~B}=185.198436 \quad \mathrm{G}=76.559197$

Initial residual: 0.001805
Final solution : $\mathrm{X}=14.175 \mathrm{Y}=17.654 \mathrm{Z}=11.074 \mathrm{~A}=24.157 \mathrm{~B}=185.198 \mathrm{G}=76.559$
Final residual: 0.001805

Data point \#: 16

Initial guess: $14.175482 \quad 17.65363011 .07395424 .156717185 .19843676 .559197$
Perturbation !
Initial start: $X=14.175482 \quad Y=17.653630 \quad Z=11.073954 \quad A=24.156717 \quad B=185.198436 \quad G=76.559197$
Initial residual: 0.001955
Converged Position : $\mathrm{X}=15.567777 \mathrm{Y}=18.237650 \mathrm{Z}=12.558322 \mathrm{~A}=23.002636 \mathrm{~B}=199.671365 \mathrm{G}=6 \mathrm{~B} .636001$
Residual for this perturbation: 0.001646
Using perturbation \#: 1
Solution to improve: $X=15.567777 \quad Y=18.237650 \quad Z=12.558322 \quad A=23.002636 \quad B=199.671365 \quad G=68.636001$
Initial residual: 0.001646
Final solution : $\mathrm{X}=15.568 \mathrm{Y}=18.238 \mathrm{Z}=12.558 \mathrm{~A}=23.003 \mathrm{~B}=199.671 \mathrm{G}=68.636$
Final residual: 0.001646
Data point \#: 17
Initial guess: $15.567777 \quad 18.237650 \quad 12.558322 \quad 23.002636 \quad 199.671365 \quad 68.536001$
Perrurbation 1
Initial start : $X=15.567777 \quad Y=18.237650 \quad Z=12.558322 \quad A=23.002636 \quad B=199.671365 \quad G=68.636001$
Initial residual: 0.002522
Converged Position : $\mathrm{X}=17.884871 \mathrm{Y}=17.140826 \mathrm{Z}=15.82861 \mathrm{~A}=339.27933 \mathrm{~B}=240.139385 \mathrm{G}=127.315208$
Residual for this perturbation : 0.000312
Using perturbation \#: 1
Solution to improve: $X=17.884871 \quad Y=17.140826 \quad Z=15.828614 \quad A=339.279333 \quad B=240.139385 \quad G=127.315208$ Initial residual: 0.000312
Final solution : $\mathrm{X}=17.885 \mathrm{Y}=17.141 \mathrm{Z}=15.829 \mathrm{~A}=339.279 \mathrm{~B}=240.139 \mathrm{G}=127.315$
Final residnal: 0.000312

Table C.2: Solution for Run 2.1, using the multiple initial guess method of perturbation and 5% of maximum range random noise.
Data point \#: 1
$===$
Initial guess: $2.0000005 .000000 \quad 4.000000 \quad 0.000000 \quad 0.000000 \quad 0.000000$
Perturbation 1
Initial start : $X=2.000000 \quad Y=5.000000 \quad Z=4.000000 \quad A=0.000000 \quad B=0.000000 \quad G=0.000000$ Initial residual: 0.000348
Converged Position : $\mathrm{X}=1.9080 \quad \mathrm{Y}=5.262133 \quad \mathrm{Z}=4.051388 \quad \mathrm{~A}=357.834251 \quad \mathrm{~B}=1.057518 \quad \mathrm{G}=3.910182$
Residual for this perturbation : 0.000234
Perturbation 2
Initial start : $X=2.076735 \quad Y=4.091409 \quad Z=3.239555 \quad A=-13.191058 \quad B=-10.763649 \quad G=13.565972$ Initial residual: 0.001712
Converged Position : $X=1.9080 \quad \mathrm{Y}=5.262129 \quad \mathrm{Z}=4.051385 \quad \mathrm{~A}=357.834268 \quad \mathrm{~B}=1.057532 \quad \mathrm{G}=3.910174$
Residual for this perturbation : 0.000234
Perturbation 3
Initial start : $X=1.677185 \quad Y=5.219440 \quad Z=4.353550 \quad A=-0.923207 \quad B=29.127355 \quad G=1.845163$
Initial residual: 0.001308
Converged Position : $X=2.131078 \quad \mathrm{Y}=4.992070 \quad \mathrm{Z}=4.523408 \quad \mathrm{~A}=2.113386 \quad \mathrm{~B}=15.023031 \quad \mathrm{G}=1.140154$
Residual for this perturbation : 0.000713
Perturbation 4

```
Initial start : \(\mathrm{X}=2.860660 \quad \mathrm{Y}=4.057370 \quad \mathrm{Z}=4.646261 \quad \mathrm{~A}=0.970073 \quad \mathrm{~B}=-9.755218 \quad \mathrm{G}=2.364431\)
Initial residual: 0.001299
Converged Position : \(X=1.908131 \quad \mathrm{Y}=5.2620 \quad \mathrm{Z}=4.051328 \quad \mathrm{~A}=357.834964 \quad \mathrm{~B}=1.057378 \quad \mathrm{G}=3.909931\)
Residual for this perturbation : 0.000234
Perturbation 5
Initial start : \(X=1.326699 \quad Y=4.613243 \quad Z=3.643394 \quad A=15.070934 \quad B=-4.283269 \quad G=-25.207512\)
Initial residual: 0.001529
Converged Position : \(X=1.9081 \quad \mathrm{Y}=5.261850 \quad \mathrm{Z}=4.051260 \quad \mathrm{~A}=357.836077 \quad \mathrm{~B}=1.057103 \quad \mathrm{G}=3.909590\)
Residual for this perturbation : 0.000234
Perturbation 6
Initial start : \(X=1.340915 \quad Y=5.865431 \quad Z=4.044569 \quad A=-23.366262 \quad B=-11.124931 \quad G=14.628084\)
Initial residual: 0.000986
Converged Position : \(\mathrm{X}=1.9081 \quad \mathrm{Y}=5.261800 \quad \mathrm{Z}=4.051252 \quad \mathrm{~A}=357.837233 \quad \mathrm{~B}=1.056340 \quad \mathrm{G}=3.909157\)
Residual for this perturbation: 0.000234
Using perturbation \#: 6
Solution to improve: \(X=1.908136 \quad Y=5.261800 \quad Z=4.051252 \quad A=357.837233 \quad B=1.056340 \quad G=3.909157\)
Initial residual: 0.000234
Final solution \(: X=1.908 \mathrm{Y}=5.262 \mathrm{Z}=4.051 \mathrm{~A}=357.837 \mathrm{~B}=1.056 \mathrm{G}=3.909\)
Final residual: 0.000234
Data point \#: 2
Initial guess: \(1.908136 \quad 5.2618004 .051252357 .8372331 .056340 \quad 3.909157\)
Perturbation 1
Initial start: \(X=1.908136 \quad \mathrm{Y}=5.261800 \quad \mathrm{Z}=4.051252 \quad \mathrm{~A}=357.837233 \quad \mathrm{~B}=1.056340 \quad \mathrm{G}=3.909157\)
Initial residual: 0.001212
Converged Position : \(\mathrm{X}=3.306876 \quad \mathrm{Y}=5.389135 \quad \mathrm{Z}=4.669257 \quad \mathrm{~A}=13.5618 \quad \mathrm{~B}=14.460682 \quad \mathrm{G}=6.444742\)
Residual for this perturbation : 0.000290
Perturbation 2
Initial start : \(X=1.213861 \quad Y=5.296268 \quad Z=4.033044 \quad A=332.736646 \quad B=-6.933900 \quad G=28.171278\)
Initial residual: 0.001840
Converged Position : \(X=2.355221 \quad Y=6.68962 \quad Z=5.63338 \quad A=333.835780 \quad B=10.083009 \quad G=17.227520\)
Residual for this perturbation : 0.001186
Perturbation 3
Initial start : \(X=2.545173 \quad \mathrm{Y}=5.486262 \quad \mathrm{Z}=4.536041 \quad \mathrm{~A}=363.501667 \quad \mathrm{~B}=14.054051 \quad \mathrm{G}=-23.463114\)
Initial residual: 0.001298
Converged Position : \(X=3.306867 \quad Y=5.389187 \quad Z=4.669291 \quad A=13.560974 \quad B=14.4617 \quad G=6.444619\)
Residual for this perturbation : 0.000290
Perturbation 4
Initial start: \(X=2.492935 \quad Y=4.339318 \quad Z=4.976930 \quad A=353.970287 \quad B=-11.657783 \quad G=8.307276\)
Initial residual: 0.001805
Converged Position : \(X=3.306869 \quad Y=5.389186 \quad Z=4.669288 \quad A=13.560977 \quad B=14.4617 \quad G=6.444603\)
Residual for this perturbation : 0.000290
Perturbation 5
Initial start : \(\mathrm{X}=2.626086 \quad \mathrm{Y}=4.917189 \quad \mathrm{Z}=3.451609 \quad \mathrm{~A}=367.014062 \quad \mathrm{~B}=22.749365 \quad \mathrm{G}=-11.850739\)
Initial residual: 0.001294
Converged Position : \(X=3.3068 \quad \mathrm{Y}=5.389174 \quad \mathrm{Z}=4.669275 \quad \mathrm{~A}=13.560819 \quad \mathrm{~B}=14.461921 \quad \mathrm{G}=6.444681\)
Residual for this perturbation : 0.000290
Perturbation 6
Initial start : \(X=2.316222 \quad Y=6.136906 \quad Z=3.743316 \quad A=330.493453 \quad B=10.250081 \quad G=10.801632\)
Initial residual: 0.001586
Converged Position : \(X=3.306868 \quad Y=5.389186 \quad Z=4.669289 \quad A=13.5609 \quad B=14.461768 \quad G=6.444613\)
Residual for this perturbation : 0.000290
Using perturbation \#: 1
Solution to improve: \(X=3.306876 \quad Y=5.389135 \quad Z=4.669257 \quad A=13.561801 \quad B=14.460682 \quad G=6.444742\)
Initial residual: 0.000290
Final solution : \(\mathrm{X}=3.307 \mathrm{Y}=5.389 \mathrm{Z}=4.669 \mathrm{~A}=13.562 \mathrm{~B}=14.461 \mathrm{G}=6.445\)
Final residual: 0.000290
```


Data point \#: 3

Initial guess: $3.3068725 .3891384 .66926413 .56176014 .460777 \quad 6.444728$
Perturbation 1
Initial start: $X=3.306872 \quad Y=5.389138 \quad Z=4.669264 \quad A=13.561760 \quad B=14.460777 \quad G=6.444728$ Initial residual: 0.001155
Converged Position : $\mathrm{X}=3.8821 \quad \mathrm{Y}=6.708703 \quad \mathrm{Z}=5.610813 \quad \mathrm{~A}=20.696186 \quad \mathrm{~B}=27.730683 \quad \mathrm{G}=17.681493$
Residual for this perturbation : 0.000285

Perturbation 2

Initial start : $X=3.966036 \quad Y=5.891211 \quad Z=4.317019 \quad A=30.327138 \quad B=9.929665 \quad G=-21.648083$ Initial residual: 0.001807
Converged Position : $X=3.787934 \quad Y=7.3700 \quad Z=4.936479 \quad A=10.112886 \quad B=10.650022 \quad G=15.557759$
Residual for this perturbation : 0.001001
Perturbation 3
Initial start : $X=3.152541 \quad Y=5.093602 \quad Z=4.148435 \quad A=9.121504 \quad B=44.208233 \quad G=-6.468717$ Initial residual: 0.001315
$\begin{array}{llllll}\text { Converged Position : } X=4.124313 & Y=6.241335 & Z=5.5058 & \mathrm{~A}=10.990509 & \mathrm{~B}=32.524125 & \mathrm{G}=10.453263\end{array}$
Residual for this perturbation : 0.000480
Perturbation 4
$\begin{array}{llllll}\text { Initial start : } X=2.478195 & \mathrm{Y}=5.564818 & \mathrm{Z}=4.790913 & \mathrm{~A}=15.568672 & \mathrm{~B}=-1.096089 \quad \mathrm{G}=8.718151\end{array}$ Initial residual: 0.001362
Converged Position : $X=3.9137 \quad Y=6.720625 \quad Z=5.585648 \quad A=20.439302 \quad B=28.164270 \quad G=17.384468$
Residual for this perturbation : 0.000284
Perturbation 5
Initial start: $X=2.694218 \quad Y=5.707652 \quad Z=4.074918 \quad A=-15.280082 \quad B=-0.425397 \quad G=-2.693205$ Initial residual: 0.001901
Converged Position : $X=4.0157 \quad Y=6.8086 \quad Z=4.803008 \quad A=359.518764 \quad B=14.195867 \quad G=13.092759$
Residual for this perturbation : 0.001046
Perturbation 6
Initial start : $X=2.911640 \quad \mathrm{Y}=5.36752 \mathrm{l} \quad \mathrm{Z}=3.865442 \quad \mathrm{~A}=-14.785606 \quad \mathrm{~B}=39.005354 \quad \mathrm{G}=24.037694$ Initial residual: 0.001685
Converged Position : $X=3.905008 \quad Y=6.717930 \quad Z=5.566202 \quad A=20.4011 \quad B=28.277214 \quad G=17.401783$
Residual for this perturbation : 0,000284
Using perturbation \#: 4
Solution to improve: $X=3.913771 \quad Y=6.720625 \quad Z=5.586648 \quad A=20.439302 \quad B=28.164270 \quad G=17.384468$
Initial residual: 0.000284
Final solution : $\mathrm{X}=3.914 \mathrm{Y}=6.721 \mathrm{Z}=5.587 \mathrm{~A}=20.439 \mathrm{~B}=28.164 \mathrm{G}=17.384$
Final residual: 0.000284
Data point \#: 4
Initial guess: $3.9137716 .7206255 .58664820 .439302 \quad 28.164270 \quad 17.384468$
Perturbation 1
Initial start : $X=3.913771 \quad Y=6.720625 \quad Z=5.586648 \quad A=20.439302 \quad B=28.164270 \quad G=17.384468$
Initial residual: 0,001062
Converged Position : $X=5.6236 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$
Residual for this perturbation: 0.000310
Perturbation 2
Initial start: $X=3.380363 \quad \mathrm{Y}=6.240027 \quad \mathrm{Z}=6.372612 \quad \mathrm{~A}=24.491982 \quad \mathrm{~B}=52.337023 \quad \mathrm{G}=-11.859724$
Initial residual: 0.001007
Converged Position : $X=5.268275 \quad \mathrm{Y}=8.152554 \quad \mathrm{Z}=6.4787 \quad \mathrm{~A}=0.458213 \quad \mathrm{~B}=51.191748 \quad \mathrm{G}=340.219311$
Residual for this perturbation : 0.000349
Perturbation 3
Initial start : $X=3.905763 \quad Y=5.789760 \quad Z=5.247628 \quad A=-0.921723 \quad B=37.538454 \quad G=-3.053789$ Initial residual: 0.001086
Converged Position : $X=5.002979 \quad Y=7.312470 \quad Z=6.679734 \quad \mathrm{~A}=6.542554 \quad \mathrm{~B}=48.096547 \quad \mathrm{G}=1.128846$
Residual for this perturbation : 0.000620
Perturbation 4
Initial start : $X=3.726542 \quad Y=6.107992 \quad Z=5.338826 \quad A=12.566733 \quad B=16.205973 \quad G=32.651469$

Initial residual: 0.001685
Converged Position : $X=5.623642 \quad X=7.638746 \quad Z=5.905741 \quad A=28.9503 \quad B=48.094163 \quad G=24.236594$
Residual for this perturbation : 0.000310
Perturbation 5
Initial start : $X=3.810472 \quad Y=7.448794 \quad Z=4.782061 \quad A=24.381064 \quad B=31.323459 \quad G=40.288663$
Initial residual: 0.001242
Converged Position : $\mathrm{X}=5.623642 \quad \mathrm{Y}=7.638746 \quad \mathrm{Z}=5.9057 \quad \mathrm{~A}=28.950389 \quad \mathrm{~B}=48.094163 \quad \mathrm{G}=24.236596$
Residual for this perturbation : 0.000310
Perturbation 6
Initial start : $X=3.654541 \quad \mathrm{Y}=7.170784 \quad \mathrm{Z}=5.734016 \quad \mathrm{~A}=36.897829 \quad \mathrm{~B}=7.884653 \quad \mathrm{G}=22.577102$
Initial residual: 0.001556
Converged Position : $\mathrm{X}=5.6236 \quad \mathrm{Y}=7.6387 \quad \mathrm{Z}=5.905741 \quad \mathrm{~A}=28.950388 \quad \mathrm{~B}=48.094163 \quad \mathrm{G}=24.236594$
Residual for this perturbation : 0.000310
Using perturbation \#: 1
Solution to improve: $X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad \mathrm{~A}=28.950388 \quad \mathrm{~B}=48.094163 \quad \mathrm{G}=24.236594$ Initial residual: 0.000310
Final solution : $\mathrm{X}=5.624 \mathrm{Y}=7.639 \mathrm{Z}=5.906 \mathrm{~A}=28.950 \mathrm{~B}=48.094 \mathrm{G}=24.237$
Final residual: 0.000310

Data point \#: 5
Initial guess: $5.6236427 .6387465 .90574128 .950388 \quad 48.094163 \quad 24.236594$
Perturbation 1
Initial start : $X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$
Initial residual: 0.000705
Converged Position : $X=5.942331 \quad \mathrm{Y}=8.469713 \quad \mathrm{Z}=7.016146 \quad \mathrm{~A}=39.1426 \quad \mathrm{~B}=57.57130 \quad \mathrm{G}=32.047738$
Residual for this perturbation : 0.000312
Perturbation 2
Initial start : $X=4.937593 \quad Y=6.859446 \quad Z=5.999124 \quad A=47.096756 \quad B=69.575764 \quad G=-1.596036$
Initial residual: 0.001430
Converged Position : $X=6.002048 \quad \mathrm{Y}=7.84825 \quad \mathrm{Z}=6.68145 \quad \mathrm{~A}=9.024906 \quad \mathrm{~B}=67.668495 \quad \mathrm{G}=357.893619$
Residual for this perturbation : 0.000512
Perturbation 3
Initial start: $X=4.626252 \quad Y=6.682269 \quad Z=6.290396 \quad A=2.087540 \quad B=37.157969 \quad G=13.906191$
Initial residual: 0.001434
Converged Position : $X=6.003698 \quad Y=7.58037 \quad Z=6.689358 \quad A=10.732582 \quad B=66.437186 \quad G=3.522338$
Residual for this perturbation : 0.000514
Perturbation 4
Initial start : $\mathrm{X}=6.441978 \quad \mathrm{Y}=7.439164 \quad \mathrm{Z}=6.689703 \quad \mathrm{~A}=13.523015 \quad \mathrm{~B}=66.659791 \quad \mathrm{G}=6.694940$
Initial residual: 0.000532
Converged Position: $X=6.0043 \quad Y=7.579700 \quad Z=6.689894 \quad A=10.765574 \quad B=66.434461 \quad G=3.552401$
Residual for this perturbation : 0.000514
Perturbation 5
Initial start : $X=5.290714 \quad \mathrm{Y}=8.519918 \quad \mathrm{Z}=5.625869 \quad \mathrm{~A}=36.659351 \quad \mathrm{~B}=77.311963 \quad \mathrm{G}=23.097343$
Initial residual: 0.000755
Converged Position : $X=6.003170 \quad Y=7.821065 \quad Z=6.66516 \quad A=9.29016 \quad B=67.190280 \quad G=359.714202$
Residual for this perturbation : 0.000517
Perturbation 6
Initial start: $X=6.591715 \quad Y=6.928599 \quad Z=5.679725 \quad A=5.955805 \quad B=28.848514 \quad G=17.382729$ Initial residual: 0.001704
Converged Position : $X=6.0038 \quad \mathrm{Y}=7.580236 \quad \mathrm{Z}=6.689603 \quad \mathrm{~A}=10.733378 \quad \mathrm{~B}=66.436936 \quad \mathrm{G}=3.522753$
Residual for this perturbation : 0.000514
Using perturbation \#: 1
Solution to improve: $X=5.942331 \quad \mathrm{Y}=8.469713 \mathrm{Z}=7.016146 \quad \mathrm{~A}=39.142684 \quad \mathrm{~B}=57.571305 \quad \mathrm{G}=32.047738$
Initial residual: 0.000312
Final solution : $\mathrm{X}=5.943 \mathrm{Y}=8.470 \mathrm{Z}=7.016 \mathrm{~A}=39.142 \mathrm{~B}=57.571 \mathrm{G}=32.048$
Final residual: 0.000312
Data point \#: 6

Initial guess: $5.9425598 .4699337 .01610139 .142208 \quad 57.571088 \quad 32.048022$
Perturbation 1
Initial start : $\mathrm{X}=5.942559 \quad \mathrm{Y}=8.469933 \quad \mathrm{Z}=7.016101 \quad \mathrm{~A}=39.142208 \quad \mathrm{~B}=57.571088 \quad \mathrm{G}=32.048022$ Initial residual: 0.000674
Converged Position : $X=7.000094 \quad X=8.4181 \quad Z=7.603394 \quad A=29.284243 \quad B=71.360718 \quad G=22.355054$ Residual for this perturbation : 0.000350
Perturbation 2
Initial start : $X=6.298052 \quad Y=8.122888 \quad Z=6.030008 \quad A=35.647229 \quad B=67.516248 \quad G=10.381190$ Initial residual: 0.000755
Converged Position : $X=7.1315 \quad \mathrm{Y}=8.913380 \quad \mathrm{Z}=7.303326 \quad \mathrm{~A}=21.298973 \quad \mathrm{~B}=74.398589 \quad \mathrm{G}=8.783805$
Residual for this perturbation: 0.000255
Perturbation 3
Initial start: $X=5.380883 \quad Y=9.008115 \quad Z=7.917767 \quad A=25.136210 \quad B=84.084289 \quad G=2.780375$
Initial residual: 0.000764
Converged Position : $X=6.950847 \quad \mathrm{Y}=9.0609 \quad \mathrm{Z}=7.010336 \quad \mathrm{~A}=28.082047 \quad \mathrm{~B}=79.531802 \quad \mathrm{G}=16.076979$
Residual for this perturbation: 0.000305
Perturbation 4
Initial start : $X=6.816992 \quad Y=8.485373 \quad Z=7.910529 \quad A=17.823709 \quad B=29.871828 \quad G=18.120626$ Initial residual: 0.001519
Converged Position : $X=7.000173 \quad \mathrm{Y}=8.4177 \quad \mathrm{Z}=7.603585 \quad \mathrm{~A}=29.287757 \quad \mathrm{~B}=71.360670 \quad \mathrm{G}=22.356776$
Residual for this perturbation : 0.000350
Perturbation 5
Initial start : $\mathrm{X}=5.067729 \quad \mathrm{Y}=8.179993 \quad \mathrm{Z}=7.448733 \quad \mathrm{~A}=31.541763 \quad \mathrm{~B}=56.254893 \quad \mathrm{G}=47.768848$ Initial residual: 0.001073
Converged Position : $\mathrm{X}=6.9994 \quad \mathrm{Y}=8.419323 \quad \mathrm{Z}=7.603238 \quad \mathrm{~A}=29.253484 \quad \mathrm{~B}=71.357288 \quad \mathrm{G}=22.335000$
Residual for this perturbation : 0.000350
Perturbation 6
Initial start: $X=5.130055 \quad Y=8.114810 \quad Z=7.789589 \quad A=13.356587 \quad B=28.194909 \quad G=61.602197$ Initial residual: 0.002253
Converged Position : $X=7.0188 \quad \mathrm{Y}=8.463049 \quad \mathrm{Z}=7.607702 \quad \mathrm{~A}=29.192172 \quad \mathrm{~B}=71.792164 \quad \mathrm{G}=21.801111$
Residual for this perturbation : 0.000351
Using perturbation \#: 2
Solution to improve: $\mathrm{X}=7.131569 \quad \mathrm{Y}=8.913380 \quad \mathrm{Z}=7.303326 \quad \mathrm{~A}=21.298973 \quad \mathrm{~B}=74.398589 \quad \mathrm{G}=8.783805$
Initial residual: 0.000255
Final solution : $\mathrm{X}=7.132 \mathrm{Y}=8.913 \mathrm{Z}=7.303 \mathrm{~A}=21.299 \mathrm{~B}=74.399 \mathrm{G}=8.784$
Final residual: 0.000255
Data point \#: 7
Initial guess: $7.1315698 .9133807 .303326 \quad 21.298973 \quad 74.398589 \quad 8.783805$
Perturbation 1
Initial start : $\mathrm{X}=7.131569 \quad \mathrm{Y}=8.913380 \quad \mathrm{Z}=7.303326 \quad \mathrm{~A}=21.298973 \mathrm{~B}=74.398589 \quad \mathrm{G}=8.783805$
Initial residual: 0.000648
Converged Position : $\mathrm{X}=7.8582 \quad \mathrm{Y}=9.5258 \quad \mathrm{Z}=8.677915 \quad \mathrm{~A}=350.616993 \quad \mathrm{~B}=85.502105 \quad \mathrm{G}=338.056655$
Residual for this perturbation: 0.000326
Perturbation 2
Initial start: $\mathrm{X}=7.280106 \quad \mathrm{Y}=8.629349 \quad \mathrm{Z}=6.392544 \quad \mathrm{~A}=37.277793 \quad \mathrm{~B}=74.445977 \quad \mathrm{G}=-11.985411$ Initial residual: 0.001418
Converged Position : $X=7.9917 \quad Y=9.818094 \quad Z=8.631749 \quad A=32.023683 \quad B=85.522404 \quad G=20.309814$
Residual for this perturbation : 0.000351
Perturbation 3
Initial start : $X=6.775210 \quad \mathrm{Y}=8.513150 \quad \mathrm{Z}=7.079672 \quad \mathrm{~A}=26.190085 \quad \mathrm{~B}=50.569586 \quad \mathrm{G}=10.346900$
Initial residual: 0.001332
Converged Position : $X=7.8986 \quad \mathrm{Y}=9.86446 \quad \mathrm{Z}=8.6752 \quad \mathrm{~A}=40.1932 \quad \mathrm{~B}=85.245420 \quad \mathrm{G}=28.714550$
Residual for this perturbation : 0.000348
Perturbation 4
Initial start : $\mathrm{X}=7.660983 \quad \mathrm{Y}=9.002788 \quad \mathrm{Z}=6.398990 \quad \mathrm{~A}=33.410121 \quad \mathrm{~B}=75.003877 \quad \mathrm{G}=0.619472$
Initial residual: 0,000999

Converged Position : $\mathrm{X}=7.9101 \quad \mathrm{Y}=9.878117 \mathrm{Z}=8.698239 \quad \mathrm{~A}=46.735462 \quad \mathrm{~B}=84.445077 \quad \mathrm{G}=35.269872$ Residual for this perturbation : 0.000348

Perturbation 5

Initial start : $X=7.988395 \quad Y=9.769779 \quad Z=6.360356 \quad A=38.280627 \quad B=82.885488 \quad \mathrm{G}=-11.382421$ Initial residual: 0.001358
Converged Position : $X=7.862798 \quad Y=9.544222 \quad Z=8.6839 \quad A=345.6814 \quad B=85.8021 \quad G=333.485237$
Residual for this perturbation : 0.000326
Perturbation 6
Initial start : $X=7.692616 \quad Y=8.86804 \mathrm{I} \quad \mathrm{Z}=7.953686 \quad \mathrm{~A}=19.436412 \quad \mathrm{~B}=54.988849 \quad \mathrm{G}=-21.050685$ Initial residual: 0.001414
Converged Position: $X=7.875342 \quad Y=9.528707 \quad \mathrm{Z}=8.6831 \quad \mathrm{~A}=359.7603 \quad \mathrm{~B}=85.6691 \quad \mathrm{G}=347.307090$
Residual for this perturbation: 0.000328
Using perturbation \#: 5
Solution to improve: $\mathrm{X}=7.862798 \quad \mathrm{Y}=9.544222 \mathrm{Z}=8.683978 \mathrm{~A}=345.681446 \quad \mathrm{~B}=85.802172 \mathrm{G}=333.485237$
Initial residual: 0.000326
Final solution : $\mathrm{X}=7.863 \mathrm{Y}=9.544 \mathrm{Z}=8.684 \mathrm{~A}=345.681 \mathrm{~B}=85.802 \mathrm{G}=333.485$
Final residual: 0.000326
Data point \#: 8
Initial guess: $7.862798 \quad 9.5442228 .683978 \quad 345.681446 \quad 85.802172 \quad 333.485237$
Perturbation 1
Initial start : $X=7.862798 \quad Y=9.544222 \quad Z=8.683978 \quad A=345.681446 \quad B=85.802172 \quad G=333.485237$ Initial residual: 0.000741
Converged Position : $X=8.731791 \quad Y=9.7035 \quad Z=9.0201 \quad A=54.380879 \quad \mathrm{~B}=111.890493 \quad \mathrm{G}=59.089621$
Residual for this perturbation: 0.000335
Perturbation 2
Initial start : $X=8.154820 \quad Y=9.523823 \quad Z=9.658995 \quad A=373.741423 \quad B=80.445411 \quad G=315.498602$ Initial residual: 0.001590
Converged Position : $X=9.6576 \quad Y=9.87081 \quad Z=10.4072 \quad A=61.441834 \quad B=68.614443 \quad G=50.632676$
Residual for this perturbation : 0.000389
Perturbation 3
Initial start : $\mathrm{X}=8.844473 \quad \mathrm{Y}=8.623506 \quad \mathrm{Z}=7.935148 \quad \mathrm{~A}=344.394125 \quad \mathrm{~B}=109.302088 \quad \mathrm{G}=322.061302$
Initial residual: 0.000826
Converged Position : $X=9.1625 \quad Y=9.8788 \quad Z=8.8621 \quad A=60.248699 \quad B=111.761760 \quad G=49.607484$
Residual for this perturbation : 0.000266
Perturbation 4
Initial start: $X=7.696074 \quad Y=9.793607 \quad Z=8.484663 \quad A=343.781225 \quad B=67.548694 \quad G=343.996029$ Initial residual: 0.000817
Converged Position : $X=9.7742 \quad Y=9.9475 \quad Z=9.521867 \quad A=305.707206 \quad B=68.720438 \quad G=316.553113$
Residual for this perturbation : 0.000396
Perturbation 5
Initial start : $X=7.248802 \quad \mathrm{Y}=9.337569 \quad \mathrm{Z}=8.289234 \quad \mathrm{~A}=339.361064 \quad \mathrm{~B}=58.547783 \quad \mathrm{G}=303.894230$ Initial residual: 0.001206
Converged Position : $X=9.8130 \quad Y=9.88988 \quad Z=9.49972 \quad A=314.692461 \quad B=69.184009 \quad G=305.137790$
Residual for this perturbation : 0.000425
Perturbation 6
Initial start : $\mathrm{X}=8.590961 \quad \mathrm{Y}=8.955460 \quad \mathrm{Z}=9.253393 \quad \mathrm{~A}=332.697453 \quad \mathrm{~B}=109.352845 \quad \mathrm{G}=320.984796$
Initial residual: 0.000592
Converged Position : $X=9.39541 \quad Y=10.095327 \quad Z=9.70512 \quad A=323.58958 \quad B=110.0735 \quad G=314.646362$
Residual for this perturbation : 0.000448
Using perturbation \#: 3
Solution to improve: $X=9.162514 \quad Y=9.878893 \quad Z=8.862137 \quad A=60.248699 \quad B=111.761760 \quad G=49.607484$
Initial residual: 0.000266
Final solution : $\mathrm{X}=9.163 \mathrm{Y}=9.879 \mathrm{Z}=8.862 \mathrm{~A}=60.249 \mathrm{~B}=111.762 \mathrm{G}=49.607$
Final residual: 0.000266
Data point \#: 9

Initial guess: 9.1625149 .878893Perturbation 1			
Initial start : $\mathrm{X}=9.162514$	$\mathrm{Y}=9.878893 \mathrm{Z}=8.862137 \quad \mathrm{~A}=60.248699 \quad \mathrm{~B}$	$\mathrm{B}=111.761760 \quad \mathrm{G}$	$\mathrm{G}=49.607484$
Initial residual: 0.000664			
Converged Position : $\mathrm{X}=10.530633 \mathrm{Y}=10.818143 \mathrm{Z}=9.966880 \mathrm{~A}=77.807547 \mathrm{~B}=118.9673 \quad \mathrm{G}=57.927295$			
Residual for this perturbation : 0,000273			
Perturbation 2			
$\begin{array}{llllll}\text { Initial start : } X=9.372677 & \mathrm{Y}=9.349186 & \mathrm{Z}=8.289058 & \mathrm{~A}=44.340149 & \mathrm{~B}=116.851873 & \mathrm{G}=74.334265\end{array}$			
Converged Position : $X=10.1437 \quad Y=10.8624 \quad \mathrm{Z}=10.7308 \quad \mathrm{~A}=76.440906 \quad \mathrm{~B}=116.190274 \quad \mathrm{G}=94.908518$			
Residual for this perturbation : 0.000509			
Perturbation 3			
Initial start : $X=9.402053 \quad \mathrm{Y}=10.461027 \quad \mathrm{Z}=8.714594 \quad \mathrm{~A}=55.850034 \quad \mathrm{~B}=134.570202 \quad \mathrm{G}=35.754086$			
Initial residual: 0.000842			
Converged Position : $X=10.5304 \quad Y=10.8179 \quad Z=9.9660 \quad A=77.801074 \quad \mathrm{~B}=118.967064 \quad \mathrm{G}=57.912989$			
Residual for this perturbation : 0.000273			
Perturbation 4			
Initial start: $\mathrm{X}=9.652421 \quad \mathrm{Y}=9.923209 \mathrm{Z}=8.082506 \quad \mathrm{~A}=38.283634 \mathrm{~B}=133.274619 \quad \mathrm{G}=73.416632$			
Initial residual: 0.001144			
Converged Fosition : $\mathrm{X}=10$.063899 $\quad \mathrm{Y}=10.5320 \quad \mathrm{Z}=10.0764 \quad \mathrm{~A}=57.692$	$24 \quad B=115.854666$	$66 \mathrm{G}=74.514024$
Residual for this perturbation : 0.000515			
Perturbation 5			
Initial start : $\mathrm{X}=8.549810 \quad \mathrm{Y}=9.632830 \quad \mathrm{Z}=8.915007 \quad \mathrm{~A}=36.301175 \quad \mathrm{~B}=129.597830 \quad \mathrm{G}=59.580329$			
Initial residual: 0.000947			
Converged Position : $\mathrm{X}=10.0642 \quad \mathrm{Y}=10.53209 \quad \mathrm{Z}=10.0767 \quad \mathrm{~A}=57.6971 \quad \mathrm{~B}=115.852504 \quad \mathrm{G}=74.514173$			
Residual for this perturbation : 0.000515			
Perturbation 6			
Initial start : $\mathrm{X}=9.320601 \quad \mathrm{Y}=10.404081 \quad \mathrm{Z}=9.174083 \quad \mathrm{~A}=49.203409 \quad \mathrm{~B}=129.612957 \quad \mathrm{G}=64.874455$			
Initial residual: 0.000776			
Converged Position : $\mathrm{X}=10.063 \quad \mathrm{Y}=10.5318 \quad \mathrm{Z}=10.07613 \quad \mathrm{~A}=57.693334 \quad \mathrm{~B}=115.85567$			
Residual for this perturbation : 0.000515			
Using perturbation \#: 1			
Solution to improve: $\mathrm{X}=10.530633 \mathrm{Y}=10.818143 \mathrm{Z}=9.966880 \quad \mathrm{~A}=77.807547 \mathrm{~B}=118.967347 \mathrm{G}=57.927295$			
Initial residual: 0.000273			
Final solution : $\mathrm{X}=10.531 \mathrm{Y}=10.818 \mathrm{Z}=9.967 \mathrm{~A}=77.808 \mathrm{~B}=118.967 \mathrm{G}=57.927$			
Final residual: 0.000273			
Data point \#: 10			
$===0=0=0=0=0$			
Initial guess: $10.53063310 .81814319 .966880 \quad 77.807547118 .96734757 .927295$			
Perturbation 1			
Initial start : $X=10.530633$	$Y=10.818143 \quad Z=9.966880 \quad A=77.807547$	$\mathrm{B}=118.967347$	$G=57.927295$
Initial residual: 0.000764			
Converged Position : $\mathrm{X}=10$.7498 $\mathrm{Y}=11.44817 \quad \mathrm{Z}=11.2126 \quad \mathrm{~A}=94.7490$	$B=136.104748$	$G=78.801223$
Residual for this perturbation : 0.000310			
Perturbation 2			
Initial start : $\mathrm{X}=9.990402$	$Y=11.500293 \quad Z=9.636205 \quad A=62.225015$	$B=110.083009$	$\mathrm{G}=38.643753$
Initial residual: 0.001089			
Converged Position : $\mathrm{X}=10$.7633 $\mathrm{Y}=11.4466 \quad \mathrm{Z}=11.20545 \mathrm{~A}=94.9606$	$\mathrm{B}=136.050837$	$\mathrm{G}=79.099070$
Residual for this perturbation : 0.000310			
Perturbation 3			
Initial start : $\mathrm{X}=9.715993$	$Y=11.273780 \quad \mathrm{Z}=10.242521 \quad \mathrm{~A}=58.931450$	$B=145.807931$	$G=64.009482$
Initial residual: 0.000682			
Converged Position : $\mathrm{X}=10$.4529 $\mathrm{Y}=11.9724 \quad \mathrm{Z}=10.7051 \quad \mathrm{~A}=78.102082$	$82 \quad B=137.011694$	$94 \mathrm{G}=72.028188$
Residual for this perturbation : 0.000394			
Perturbation 4			
Initial start : $X=10.313760$	$Y=9.904602 \quad Z=10.578689 \quad A=75.480691$	$B=94.360060$	$\mathrm{G}=84.258081$
Initial residual: 0.001432			
Converged Position : $\mathrm{X}=10$.0479 $Y=11.2007 \quad Z=10.2889 \quad A=94.31381$	$1 B=134.948903$	G $\mathrm{G}=107.734021$

Residual for this perturbation : 0.000482
Perturbation 5
Initial start : $\mathrm{X}=10.972997 \quad \mathrm{Y}=10.548490 \quad \mathrm{Z}=10.923733 \quad \mathrm{~A}=89.064749 \quad \mathrm{~B}=129.750523 \quad \mathrm{G}=40.513270$ Initial residual: 0.001223
Converged Position : $X=10.756074 \quad Y=11.451103 \quad Z=11.2208 \quad A=94.8475 \quad B=136.2100 \quad G=78.949818$
Residual for this perturbation : 0.000310
Perturbation 6
Initial start : $X=11.295251 \quad \mathrm{Y}=10.800111 \quad \mathrm{Z}=9.901207 \quad \mathrm{~A}=78.589058 \quad \mathrm{~B}=148.846973 \quad \mathrm{G}=64.700812$
Initial residual: 0.000714
Converged Position : $X=10.4595 \quad \mathrm{Y}=11.5213 \quad \mathrm{Z}=11.2216 \quad \mathrm{~A}=86.844355 \quad \mathrm{~B}=136.321374 \quad \mathrm{G}=72.943522$
Residual for this perturbation : 0.000328
Using perturbation \#: 2
Solution to improve: $\mathrm{X}=10.763308 \mathrm{Y}=11.446670 \mathrm{Z}=11.205457 \mathrm{~A}=94.960654 \mathrm{~B}=136.050837 \quad \mathrm{G}=79.099070$ Initial residual: 0.000310
Final solution : $\mathrm{X}=10.763 \mathrm{Y}=11.447 \mathrm{Z}=11.205 \mathrm{~A}=94.961 \mathrm{~B}=136.051 \mathrm{G}=79.099$
Final residual: 0.000310
Data point \#: 11
$== \pm===$
Initial guess: $10.763308 \quad 11.44667011 .20545794 .960654136 .05083779 .099070$
Perturbation 1
Initial start : $X=10.763308 \quad Y=11.446670 \quad Z=11.205457 \quad A=94.960654 \quad B=136.050837 \quad G=79.099070$
Initial residual: 0.000859
Converged Position : $X=12.6091 \quad Y=12.8233 \quad Z=11.7881 \quad A=103.0188 \quad B=150.065519 \quad G=78.730218$
Residual for this perturbation : 0.000289
Perturbation 2
Initial start: $\mathrm{X}=10.623735 \quad \mathrm{Y}=12.004937 \quad \mathrm{Z}=10.814247 \quad \mathrm{~A}=105.944633 \quad \mathrm{~B}=159.203031 \quad \mathrm{G}=61.343822$
Initial residual: 0.000858
Converged Position : $X=12.58243 \quad Y=12.5830 \quad Z=11.6578 \quad \mathrm{~A}=101.4980 \quad \mathrm{~B}=150.689429 \quad \mathrm{G}=75.730984$
Residual for this perturbation : 0.000295
Perturbation 3
Initial start : $X=10.955573 \quad Y=11.066923 \quad Z=10.730950 \quad A=88.327619 \quad B=121.424191 \quad G=69.624475$
Initial residual: 0.001220
Converged Position : $X=12.6080 \quad Y=12.8236 \quad Z=11.7865 \quad A=103.0249 \quad B=150.059171 \quad G=78.737300$
Residual for this perturbation : 0.000289
Perturbation 4
Initial start: $X=10.483527 \quad \mathrm{Y}=12.293411 \quad \mathrm{Z}=10.300275 \quad \mathrm{~A}=104.514230 \quad \mathrm{~B}=142.787355 \quad \mathrm{G}=86.981601$
Initial residual: 0.000750
Converged Position : $X=12.6103 \quad Y=12.8221 \quad Z=11.7898 \quad A=103.0112 \quad B=150.061705 \quad G=78.736059$
Residual for this perturbation : 0.000289
Perturbation 5
Initial start: $X=10.643346 \quad Y=11.660604 \quad Z=10.927038 \quad A=91.695931 \quad B=153,326061 \quad G=84.941641$
Initial residual: 0.000845
Converged Position : $X=12.6108 \quad \mathrm{Y}=12.8220 \quad \mathrm{Z}=11.7913 \quad \mathrm{~A}=103.0001 \quad \mathrm{~B}=150,066664 \quad \mathrm{G}=78.729613$
Residual for this perturbation : 0.000289
Perturbation 6
Initial start: $X=10.141894 \quad Y=12.321534 \quad Z=11.428712 \quad A=73.376744 \quad B=133.743752 \quad G=78.816593$
Initial residual: 0.001126
Converged Position : $X=10.8821 \quad Y=12.31411 \quad Z=11.73209 \quad A=73.3338 \quad B=150.652794 \quad G=96.249964$
Residual for this perturbation : 0,000719
Using perturbation \#: 3
Solution to improve: $\mathrm{X}=12.608017 \quad \mathrm{Y}=12.823659 \mathrm{Z}=11.786575 \mathrm{~A}=103.024976 \quad \mathrm{~B}=150.059171 \quad \mathrm{G}=78.737300$
Initial residual: 0.000289
Final solution : $\mathrm{X}=12.608 \mathrm{Y}=12.824 \mathrm{Z}=11.787 \mathrm{~A}=103.025 \mathrm{~B}=150.059 \mathrm{G}=78.737$
Final residual: 0.000289

Data point \#: 12

Initial guess: $12.608017 \quad 12.823659 \quad 11.786575103 .024976150 .05917178 .737300$
Perturbation 1
Initial start : $X=12.608017 \quad Y=12.823659 \quad Z=11.786575 \quad A=103.024976 \quad B=150.059171 \quad G=78.737300$
Initial residual: 0.000768
Converged Position : $\mathrm{X}=13.4606 \quad \mathrm{Y}=13.445 \quad \mathrm{Z}=12.4244 \quad \mathrm{~A}=110.262036 \quad \mathrm{~B}=168.279122 \quad \mathrm{G}=85.912766$
Residual for this perturbation : 0.000339
Perturbation 2
Initial start: $X=13.592379 \quad Y=13.213896 \quad Z=11.648257 \quad A=126.257323 \quad B=121.062592 \quad G=97.968359$
Initial residual: 0.001588
Converged Position : $X=13.460614 \quad Y=13.445490 \quad Z=12.4245 \quad A=110.2620 \quad B=168.2788 \quad G=85.915193$
Residual for this perturbation : 0.000339
Perturbation 3
Initial start: $X=11.667795 \quad Y=12.764968 \quad Z=10.894567 \quad A=96.647180 \quad B=156.004829 \quad G=56.736661$ Initial residual: 0.001056
Converged Position : $\mathrm{X}=13.4606 \quad \mathrm{Y}=13.44548 \quad \mathrm{Z}=12.4245 \quad \mathrm{~A}=110.2620 \quad \mathrm{~B}=168.278859 \quad \mathrm{G}=85.915220$
Residual for this perturbation : 0.000339
Perturbation 4
Intial start : $X=12.395272 \quad Y=13.602720 \quad Z=11.581524 \quad A=96.135803 \quad B=146.329288 \quad G=60.161485$ Initial residual: 0.001083
Converged Position : $X=13.4606 \quad Y=13.4454 \quad Z=12.4245 \quad A=110.2620 \quad B=168.278902 \quad G=85.915259$
Residual for this perturbation : 0.000339
Perturbation 5
Initial start: $X=12.624604 \quad \mathrm{Y}=11.862517 \quad \mathrm{Z}=12.578127 \quad \mathrm{~A}=112.289758 \quad \mathrm{~B}=123.472480 \quad \mathrm{G}=66.017961$ Initial residual: 0.001714
Converged Position : $X=13.460620 \quad Y=13.4454 \quad Z=12.4245 \quad A=110.2620 \quad B=168.2789 \quad G=85.915287$
Residual for this perturbation: 0.000339
Perturbation 6
Initial start: $X=13.298244 \quad \mathrm{Y}=13.732392 \quad \mathrm{Z}=11.680367 \quad \mathrm{~A}=104.908423 \quad \mathrm{~B}=130.318619 \quad \mathrm{G}=51.386554$
Initial residual: 0.001616
Converged Position : $X=13.460621 \quad Y=13.445473 \quad Z=12.4245 \quad A=110.2620 \quad B=168.27891 \quad G=85.915280$
Residual for this perturbation : 0.000339
Using perturbation \#: 1
Solution to improve: $X=13.460653 \quad Y=13.445697 \quad Z=12.424479 \quad A=110.262036 \quad B=168.279122 \quad G=85.912766$
Initial residual: 0.000339
Final solution : $\mathrm{X}=13.461 \mathrm{Y}=13.446 \mathrm{Z}=12.424 \mathrm{~A}=110.262 \mathrm{~B}=168.279 \mathrm{G}=85.913$
Final residual: 0.000339

Data point \#: 13

$\begin{array}{lllllll}\text { Initial guess: } & 13.460653 & 13.445697 & 12.424479 & 110.262036 & 168.279122 & 85.912766\end{array}$
Perturbation 1
Initial start : $\mathrm{X}=13.460653 \quad \mathrm{Y}=13.445697 \quad \mathrm{Z}=12.424479 \quad \mathrm{~A}=110.262036 \quad \mathrm{~B}=168.279122 \quad \mathrm{G}=85.912766$ Initial residual: 0.000846
Converged Position : $X=13.481663 \quad \mathrm{Y}=14.2290 \quad \mathrm{Z}=12.4072 \quad \mathrm{~A}=120.0568 \quad \mathrm{~B}=181.649270 \quad \mathrm{G}=95.061055$
Residual for this perturbation : 0.000314
Perturbation 2
Initial start : $X=12.986191 \quad Y=12.727929 \quad Z=12.789175 \quad A=130.002107 \quad B=151.222997 \quad G=64.576504$
Initial residual: 0.001450
Converged Position : $X=13.463126 \quad Y=14.227632 \quad Z=12.437610 \quad A=119.805681 \quad B=181.625301 \quad G=$ 95.081117

Residual for this perturbation : 0.000314
Perturbation 3
Initial start : $\mathrm{X}=13.492917 \quad \mathrm{Y}=14.250377 \quad \mathrm{Z}=11.571036 \quad \mathrm{~A}=130.759181 \quad \mathrm{~B}=165.614448 \quad \mathrm{G}=71.766347$
Initial residual: 0.001173
Converged Position : $X=13.4833 \quad Y=14.21723 \quad Z=12.3642 \quad A=120.2503 \quad B=181.754461 \quad G=95.224307$
Residual for this perturbation : 0.000314

Perturbation 4

Initial start : $\mathrm{X}=12.763290 \quad \mathrm{Y}=14.143648 \quad \mathrm{Z}=11.600769 \quad \mathrm{~A}=95.212321 \quad \mathrm{~B}=154.370189 \quad \mathrm{G}=61.953985$
Initial residual: 0.001521

Table C.3: Solution of Run2.1, using floating point initial guess method of perturbation and 5% of maximum range random noise
Data point \#: 1
Initial guess: 2.0000005 .0000004 .0000000 .0000000 .0000000 .000000
Perturbation 1
Initial start: $X=2.0000 \quad Y=5.000000 \quad Z=4.000000 \quad A=0.000000 \quad B=0.000000 \quad G=0.000000$ Initial residual: 0.000348
Converged Position : $X=1.9080 \quad Y=5.2621 \quad Z=4.0513 \quad A=357.8342 \quad B=1.0575 \quad G=3.910182$
Residual for this perturbation : 0.000234
Perturbation 2
Initial start: $X=1.984819 \quad Y=4.353542 \quad Z=3.290943 \quad A=344.643183 \quad B=-9.706131 \quad G=17.476154$ Initial residual: 0.001648
Converged Position : $X=1.90809 \quad Y=5.262086 \quad Z=4.051380 \quad A=357.834561 \quad B=1.057576 \quad G=3.910046$
Residual for this perturbation: 0.000234
Perturbation 3
Initial start : $\mathrm{X}=1.790725 \quad \mathrm{Y}=6.237622 \quad \mathrm{Z}=3.985877 \quad \mathrm{~A}=354.983207 \quad \mathrm{~B}=29.925837 \quad \mathrm{G}=-22.514466$ Intial residuat: 0.001540
Converged Position: $X=2.131044 \quad Y=4.992253 \quad Z=4.523149 \quad A=2.107794 \quad B=15.024540 \quad G=1.140616$
Residual for this perturbation : 0.000713
Perturbation 4
Initial start : $X=1.857477 \quad Y=4.352205 \quad Z=4.647368 \quad A=27.331646 \quad B=-9.303924 \quad G=-25.614725$
Initial residual: 0.001661
Converged Position : $X=1.5924 \quad Y=5.628037 \quad Z=4.138003 \quad A=9.018907 \quad B=356.807426 \quad G=6.045661$
Residual for this perturbation : 0.000495
Perturbation 5
Initial start : $X=1.613611 \quad Y=4.973958 \quad Z=4.921749 \quad A=5.178057 \quad B=361.303701 \quad G=6.803992$
Initial residual: 0.000694
Converged Position : $X=1.90808 \quad Y=5.26213 \quad Z=4.051390 \quad A=357.834298 \quad B=1.057499 \quad G=3.910166$
Residual for this perturbation : 0.000234
Perturbation 6
Initial start : $X=1.825974 \quad Y=5.612551 \quad Z=4.032180 \quad A=381.070243 \quad B=6.180684 \quad G=-25.248185$
Initial residual: 0.001247
Converged Position : $X=1.9081 \quad Y=5.26187 \quad Z=4.051269 \quad A=357.835866 \quad B=1.057147 \quad G=3.909654$
Residual for this perturbation : 0.000234
Using perturbation \#: 6
Solution to improve: $\mathrm{X}=1.908170 \quad \mathrm{Y}=5.261876 \quad \mathrm{Z}=4.051269 \quad \mathrm{~A}=357.835866 \quad \mathrm{~B}=1.057147 \mathrm{G}=3.909654$
Initial residual: 0.000234
Final solution : $X=1.908 \mathrm{Y}=5.262 \mathrm{Z}=4.051 \mathrm{~A}=357.836 \mathrm{~B}=1.057 \mathrm{G}=3.910$
Final residual: 0.000234
Data point \#: 2
-
Luitial guess: $1.908170 \quad 5.2618764 .051269357 .8358661 .0571473 .909654$
Perturbation 1
Initial start : $X=1.908170 \quad \mathrm{Y}=5.261876 \quad \mathrm{Z}=4.051269 \quad \mathrm{~A}=357.835866 \quad \mathrm{~B}=1.057147 \quad \mathrm{G}=3.909654$
Initial residual: 0.001212
Converged Position : $\mathrm{X}=3.30687 \quad \mathrm{Y}=5.38913 \quad \mathrm{Z}=4.669257 \quad \mathrm{~A}=13.561800 \quad \mathrm{~B}=14.460683 \quad \mathrm{G}=6.444740$
Residual for this perturbation : 0.000290
Perturbation 2
Initial start : $X=2.867500 \quad Y=5.451090 \quad Z=5.530814 \quad A=2.192510 \quad B=8.474871 \quad G=29.247386$ Initial residual: 0.001342
Converged Position : $X=3.30685 \quad \mathrm{Y}=5.38915 \quad \mathrm{Z}=4.669305 \quad \mathrm{~A}=13.561950 \quad \mathrm{~B}=14.460896 \quad \mathrm{G}=6.444789$
Residual for this perturbation : 0.000290
Perturbation 3
Initial start: $X=3.966660 \quad Y=5.005500 \quad Z=4.365122 \quad A=-11.111774 \quad B=6.107380 \quad G=5.384673$
Initial residual: 0,001372
Converged Position : $X=3.30684 \quad Y=5.38916 \quad Z=4.669309 \quad A=13.560530 \quad B=14.462172 \quad G=6.444541$
Residual for this perturbation : 0.000290

Perturbation 4

Initial start : $X=2.548192 \quad Y=5.099515 \quad Z=5.425079 \quad A=25.333583 \quad B=27.784883 \quad G=16.938046$ Initial residual: 0.001392
Converged Position : $X=3.30683 \quad \mathrm{Y}=5.38917 \quad \mathrm{Z}=4.669283 \quad \mathrm{~A}=13.561051 \quad \mathrm{~B}=14.461697 \quad \mathrm{G}=6.444954$
Residual for this perturbation : 0.000290
Perturbation 5
Initial start : $X=2.734629 \quad Y=4.420624 \quad Z=5.567673 \quad A=7.964254 \quad B=19.137580 \quad G=9.737587$
Initial residual: 0.000954
Converged Position : $X=3.30700 \quad \mathrm{Y}=5.38903 \quad \mathrm{Z}=4.669406 \quad \mathrm{~A}=13.564847 \quad \mathrm{~B}=14.460180 \quad \mathrm{G}=6.444464$
Residual for this perturbation : 0.000290
Perturbation 6
Initial start : $X=4.115293 \quad Y=6.202733 \quad Z=3.901016 \quad A=32.557261 \quad B=42.753823 \quad G=14.639628$
Initial residual: 0.001591
Converged Position : $X=3.3068 \quad Y=5.389179 \quad Z=4.669293 \quad A=13.561320 \quad B=14.461553 \quad G=6.444619$
Residual for this perturbation : 0.000290
Using perturbation \#: 5
Solution to improve: $\mathrm{X}=3.307003 \quad \mathrm{Y}=5.389036 \quad \mathrm{Z}=4.669406 \quad \mathrm{~A}=13.564847 \quad \mathrm{~B}=14.460180 \quad \mathrm{G}=6.444464$
Initial residual: 0.000290
Final solution : $\mathrm{X}=3.307 \mathrm{Y}=5.389 \mathrm{Z}=4.669 \mathrm{~A}=13.565 \mathrm{~B}=14.460 \mathrm{G}=6.444$
Final residual: 0.000290
Data point \#: 3
Initial guess: 3.3070035 .3890364 .66940613 .56484714 .4601806 .444464
Perturbation 1
Initial start : $X=3.307003 \quad Y=5.389036 \quad Z=4.669406 \quad A=13.564847 \quad B=14.460180 \quad G=6.444464$
Initial residual: 0.001155
Converged Position : $X=3.8819 \quad \mathrm{Y}=6.70869 \quad \mathrm{Z}=5.610868 \quad \mathrm{~A}=20.696493 \quad \mathrm{~B}=27.729385 \quad \mathrm{G}=17.681538$
Residual for this perturbation : 0.000285
Perturbation 2
Initial start: $X=3.869137 \quad Y=5.715853 \quad Z=6.368484 \quad A=22.954650 \quad B=29.013982 \quad G=-1.498488$ Initial residual: 0.001001
Converged Position : $X=3.89711 \quad Y=6.7160 \quad Z=5.569283 \quad A=20.344760 \quad B=28.243535 \quad G=17.281133$
Residual for this perturbation : 0.000285
Perturbation 3
Initial start : $X=3.222521 \quad Y=7.408816 \quad Z=5.800416 \quad A=26.975603 \quad B=24.129022 \quad G=-10.926989$
Initial residual: 0.001120
Converged Position : $X=3.9122 \quad Y=6.721268 \quad Z=5.588800 \quad A=20.449883 \quad B=28.183604 \quad G=17.172662$
Residual for this perturbation : 0.000285
Perturbation 4
Initial start : $X=3.378341 \quad Y=5.911019 \quad Z=4.757320 \quad A=8.191154 \quad B=47.872415 \quad G=4.353492$
Initial residual: 0.001183
Converged Position : $X=4.1243 \quad Y=6.241335 \quad Z=5.505839 \quad A=10.990512 \quad B=32.524127 \quad G=10.453263$
Residual for this perturbation : 0,000480
Perturbation 5
Initial start : X=4.955422 $\quad \mathrm{Y}=7.206458 \quad \mathrm{Z}=4.855944 \quad \mathrm{~A}=5.213016 \quad \mathrm{~B}=5.938153 \quad \mathrm{G}=-12.383134$
Initial residual: 0.001526
Converged Position : $X=3.78873 \quad \mathrm{Y}=7.36984 \quad \mathrm{Z}=4.935159 \quad \mathrm{~A}=10.082268 \quad \mathrm{~B}=10.668306 \quad \mathrm{G}=15.576612$
Residual for this perturbation: 0,001001
Perturbation 6
Initial start : $\mathrm{X}=2.968290 \quad \mathrm{Y}=8.180579 \quad \mathrm{Z}=4.232298 \quad \mathrm{~A}=27.911704 \quad \mathrm{~B}=6.243949 \quad \mathrm{G}=-11.017664$ Initial residual: 0.001561
Converged Position : $X=3.7884 \quad Y=7.370333 \quad Z=4.935831 \quad A=10.106778 \quad B=10.658932 \quad G=15.560882$
Residual for this perturbation : 0.001001
Using perturbation \#: 2
Solution to improve: $X=3.897119 \quad Y=6.716007 \quad Z=5.569283 \quad A=20.344760 \quad B=28.243535 \quad G=17.281133$
Initial residual: 0.000285
Final solution : $\mathrm{X}=3.897 \mathrm{Y}=6.716 \mathrm{Z}=5.569 \mathrm{~A}=20.345 \mathrm{~B}=28.244 \mathrm{G}=17.281$
Final residual: 0.000285

Data point \#: 4

Initial guess: $3.8971196 .716007 \quad 5.56928320 .34476028 .24353517 .281133$
Perturbation 1
Initial start : $X=3.897119 \quad Y=6.716007 \quad Z=5.569283 \quad A=20.344760 \quad B=28.243535 \quad G=17.281133$
Initial residual: 0.001063
Converged Position : $X=5.6236 \quad \mathrm{Y}=7.638746 \quad \mathrm{Z}=5.905741 \quad \mathrm{~A}=28.950388 \quad \mathrm{~B}=48.094163 \quad \mathrm{G}=24.236594$
Residual for this perturbation : 0.000310
Perturbation 2
Initial start : $X=5.840245 \quad Y=6.815086 \quad Z=4.989030 \quad A=44.512184 \quad B=46.170884 \quad G=5.731213$
Initial residual: 0.000964
Converged Position : $X=6.0141 \quad \mathrm{Y}=8.4835 \quad \mathrm{Z}=6.182355 \quad \mathrm{~A}=31.701456 \quad \mathrm{~B}=54.074718 \quad \mathrm{G}=8.733205$
Residual for this perturbation : 0.000511
Perturbation 3
Initial start : $X=6.212611 \quad Y=9.242466 \quad Z=6.712030 \quad A=5.988261 \quad B=89.105797 \quad G=-10.857457$ Initial residual: 0.001107
Converged Position : $X=4.7621 \quad Y=8.6967 \quad Z=5.413756 \quad \mathrm{~A}=24.295475 \quad \mathrm{~B}=76.132527 \quad \mathrm{G}=5.308829$
Residual for this perturbation : 0.000900
Perturbation 4
Initial start : $X=4.349899 \quad \mathrm{Y}=9.154615 \quad \mathrm{Z}=4.507056 \quad \mathrm{~A}=15.600802 \quad \mathrm{~B}=102.378166 \quad \mathrm{G}=-20.210081$ Initial residual: 0,001535
Converged Position : $\mathrm{X}=4.7621 \quad \mathrm{Y}=8.6967 \quad \mathrm{Z}=5.413756 \quad \mathrm{~A}=24.295475 \quad \mathrm{~B}=76.132527 \quad \mathrm{G}=5.308829$
Residual for this perturbation : 0.000900
Perturbation 5
Initial start : $\mathrm{X}=3.905435 \quad \mathrm{Y}=7.987881 \quad \mathrm{Z}=4.982026 \quad \mathrm{~A}=35.269812 \quad \mathrm{~B}=63.010327 \quad \mathrm{G}=-15.588809$ Initial residual: 0.001373
Converged Position: $X=5.26843 \quad Y=8.1529 \quad Z=6.478881 \quad A=0.448681 \quad B=51.188160 \quad \mathrm{G}=340.212571$
Residual for this perturbation : 0.000349
Perturbation 6
Initial start : $X=5.288591 \quad Y=8.565356 \quad \mathrm{Z}=6.817020 \quad \mathrm{~A}=-23.500802 \quad \mathrm{~B}=33.534556 \quad \mathrm{G}=364.062470$
Initial residual: 0.001178
Converged Position : $X=5.003353 \quad \mathrm{Y}=7.311928 \quad \mathrm{Z}=6.679893 \quad \mathrm{~A}=6.542898 \quad \mathrm{~B}=48.096928 \quad \mathrm{G}=1.124168$
Residual for this perturbation : 0.000620
Using perturbation \#: 1
Solution to improve: $X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$
Initial residual: 0.000310
Final solution : $\mathrm{X}=5.624 \mathrm{Y}=7.639 \mathrm{Z}=5.906 \mathrm{~A}=28.950 \mathrm{~B}=48.094 \mathrm{G}=24.237$
Final residual: 0.000310
Data point \#: 5
-
Initial guess: $5.623642 \quad 7.638746 \quad 5.90574128 .95038848 .09416324 .236594$
Perturbation 1
Initial start : $X=5.623642 \quad Y=7.638746 \quad Z=5.905741 \quad A=28.950388 \quad B=48.094163 \quad G=24.236594$ Initial residual: 0.000705
Converged Position : $X=5.9423 \quad Y=8.469713 \quad Z=7.016146 \quad A=39.142684 \quad B=57.571305 \quad G=32.047738$
Residual for this perturbation : 0.000312
Perturbation 2
Initial start : $X=6.330003 \quad Y=9.191268 \quad Z=6.968991 \quad A=10.499841 \quad B=72.349733 \quad G=57.304039$
Tritial residual: 0.001455
Converged Position : $X=5.9455 \quad Y=8.473672 \quad Z=7.015669 \quad A=39.129915 \quad B=57.575993 \quad G=32.043896$
Residual for this perturbation : 0.000312
Perturbation 3
Initial start : $\mathrm{X}=6.230257 \quad \mathrm{Y}=8.689134 \quad \mathrm{Z}=7.601086 \quad \mathrm{~A}=67.908272 \quad \mathrm{~B}=35.424892 \quad \mathrm{G}=37.194708$ Initial residual: 0.001031
Converged Position : $\mathrm{X}=5.9461 \quad \mathrm{Y}=8.470439 \quad \mathrm{Z}=7.015630 \quad \mathrm{~A}=39.194410 \quad \mathrm{~B}=57.557384 \quad \mathrm{G}=32.087541$
Residual for this perturbation : 0.000312
Perturbation 4

Initial start : $X=5.805261 \quad Y=8.364381 \quad Z=6.438469 \quad A=48.866612 \quad B=34.017162 \quad G=40.977411$ Initial residual: 0.000968
Converged Position : $\mathrm{X}=5.9458 \quad \mathrm{Y}=8.473144 \quad \mathrm{Z}=7.017364 \quad \mathrm{~A}=39.137978 \quad \mathrm{~B}=57.572122 \quad \mathrm{G}=32.049375$
Residual for this perturbation : 0.000312
Perturbation 5
Initial start : $\mathrm{X}=6.535147 \quad \mathrm{Y}=8.097973 \quad \mathrm{Z}=6.512708 \quad \mathrm{~A}=22.049773 \quad \mathrm{~B}=79.232797 \quad \mathrm{G}=52.259074$ Initial residual: 0.001184
Converged Position : $\mathrm{X}=5.9455 \quad \mathrm{Y}=8.473672 \quad \mathrm{Z}=7.015669 \quad \mathrm{~A}=39.129915 \quad \mathrm{~B}=57.575993 \quad \mathrm{G}=32.043896$
Residual for this perturbation : 0.000312
Perturbation 6
Initial start : $\mathrm{X}=5.628516 \quad \mathrm{Y}=9.446430 \quad \mathrm{Z}=7.172737 \quad \mathrm{~A}=48.736157 \quad \mathrm{~B}=50.195637 \quad \mathrm{G}=48.212524$ Initial residual: 0.000604
Converged Position : $X=5.9456 \quad \mathrm{Y}=8.473535 \quad \mathrm{Z}=7.016336 \quad \mathrm{~A}=39.136653 \quad \mathrm{~B}=57.573989 \quad \mathrm{G}=32.048169$
Residual for this perturbation: 0.000312
Using perturbation $\#: 3$
Solution to improve: $\mathrm{X}=5.946142 \quad \mathrm{Y}=8.470439 \mathrm{Z}=7.015630 \mathrm{~A}=39.194410 \quad \mathrm{~B}=57.557384 \mathrm{G}=32.087541$
Initial residual: 0.000312
Final solution : $\mathrm{X}=5.946 \mathrm{Y}=8.470 \mathrm{Z}=7.016 \mathrm{~A}=39.194 \mathrm{~B}=57.557 \mathrm{G}=32.088$
Final residual: 0.000312
Data point \#: 6

Lnitial guess: $5.9461428 .4704397 .01563039 .194410 \quad 57.55738432 .087541$
Perturbation 1
Initial start : $X=5.946142 \quad Y=8.470439 \quad Z=7.015630 \quad A=39.194410 \quad B=57.557384 \quad G=32.087541$
Initial residual: 0.000674
Converged Position : $X=7.0000 \quad \mathrm{Y}=8.4181 \quad \mathrm{Z}=7.6033 \quad \mathrm{~A}=29.284331 \quad \mathrm{~B}=71.360746 \quad \mathrm{G}=22.355096$
Residual for this perturbation : 0,000350
Perturbation 2
Initial start : $X=6.451140 \quad Y=7.477227 \quad Z=7.759531 \quad A=30.586329 \quad B=96.872730 \quad G=45.900931$ Initial residual: 0.001098
Converged Position: $X=6.9532 \quad X=9.033757 \quad Z=7.000015 \quad A=28.539329 \quad B=79.523542 \quad G=16.454232$
Residual for this perturbation : 0.000306
Perturbation 3
Initial start : $X=7.331387 \quad Y=8.596911 \quad Z=6.049776 \quad A=39.104152 \quad B=89.422493 \quad G=1.067268$
Initial residual: 0.001073
Converged Position : $X=7.1188 \quad Y=9.4616 \quad Z=6.848038 \quad A=321.066278 \quad \mathrm{~B}=83.606383 \quad \mathrm{G}=311.577731$
Residual for this perturbation : 0.000460
Perturbation 4
Initial start : $X=6.649665 \quad Y=9.091640 \quad Z=6.552971 \quad \mathrm{~A}=312.852406 \quad \mathrm{~B}=57.141441 \quad \mathrm{G}=311.605507$
Initial residual: 0.000954
Converged Position : $X=7.23914 \quad Y=9.5840 \quad Z=7.6511 \quad A=330.505064 \quad B=73.021586 \quad G=321.265913$
Residual for this perturbation : 0.000464
Perturbation 5
Initial start : $X=6.825264 \quad Y=9.303881 \quad Z=7.377274 \quad A=339.608244 \quad B=81.089909 \quad G=292.135954$
Initial residual: 0.001418
Converged Position : $X=6.9515 \quad Y=9.059062 \quad Z=7.003439 \quad A=27.945508 \quad \mathrm{~B}=79.547283 \quad \mathrm{G}=15.923920$
Residual for this perturbation : 0.000305
Perturbation 6
Initial start : $X=7.504240 \quad \mathrm{Y}=8.622339 \quad \mathrm{Z}=7.742949 \quad \mathrm{~A}=52.913044 \quad \mathrm{~B}=53.764670 \quad \mathrm{G}=31.963367$
Initial residual: 0.000877
Converged Position : $X=7.167614 \quad \mathrm{Y}=8.9043 \quad \mathrm{Z}=7.297709 \quad \mathrm{~A}=21.813123 \quad \mathrm{~B}=74.424148 \quad \mathrm{G}=9.300653$
Residual for this perturbation : 0.000255
Using perturbation \#: 6
Solution to improve: $\mathrm{X}=7.167614 \quad \mathrm{Y}=8.904380 \quad \mathrm{Z}=7.297709 \quad \mathrm{~A}=21.813123 \quad \mathrm{~B}=74.424148 \quad \mathrm{G}=9.300653$
Initial residual: 0.000255
Final solution : $\mathrm{X}=7.168 \mathrm{Y}=8.904 \mathrm{Z}=7.298 \mathrm{~A}=21.813 \mathrm{~B}=74.424 \mathrm{G}=9.301$
Final residual: 0.000255

Data point \#: 7

Initial guess: $7.1676148 .904380 \quad 7.297709 \quad 21.813123 \quad 74.424148 \quad 9.300653$
Perturbation 1
Initial start : $X=7.167614 \quad Y=8.904380 \quad Z=7.297709 \quad A=21.813123 \quad B=74.424148 \quad G=9.300653$
Initial residual: 0.000647
Converged Position : $X=7.8581 \quad \mathrm{Y}=9.5254 \quad \mathrm{Z}=8.6779 \quad \mathrm{~A}=351.675692 \quad \mathrm{~B}=85.513413 \quad \mathrm{G}=339.106830$
Residual for this perturbation : 0.000326
Perturbation 2
Initial start: $X=8.709958 \quad Y=10.143006 \quad Z=9.372653 \quad A=380.575362 \quad B=89.323648 \quad G=348.348943$
Initial residual: 0.000799
Converged Position: $X=7.9215 \quad Y=9.520937 \quad Z=8.643052 \quad A=66.468688 \quad B=88.895488 \quad G=54.189786$
Residual for this perturbation : 0.000359

Perturbation 3

Initial start: $X=7.538433 \quad Y=9.004928 \quad Z=8.516784 \quad A=73.914772 \quad B=108.676465 \quad G=57.508509$ Initial residual: 0.000720
Converged Position : $\mathrm{X}=7.8602 \quad \mathrm{Y}=9.5337 \quad \mathrm{Z}=8.675447 \quad \mathrm{~A}=163.562552 \quad \mathrm{~B}=94.448620 \quad \mathrm{G}=151.435336$
Residual for this perturbation : 0.000325
Perturbation 4
Initial start : X=8.808853 $\quad \mathrm{Y}=9.663490 \quad \mathrm{Z}=7.948788 \quad \mathrm{~A}=175.972554 \quad \mathrm{~B}=84.643174 \quad \mathrm{G}=174.676452$ Initial residual: 0.000630
Converged Position : $X=7.8547 \quad Y=9.5318 \quad Z=8.680549 \quad A=171.068812 \quad B=94.356499 \quad G=158.860552$
Residual for this perturbation: 0.000326
Perturbation 5
Initial start: $X=7.551012 \quad Y=9.905971 \quad Z=9.322319 \quad A=181.298602 \quad B=99.665884 \quad G=150.253310$ Initial residual: 0.000755
Converged Position : $X=7.855989 \quad Y=9.533264 \quad Z=8.678566 \quad A=166.8734 \quad B=94.4204 \quad G=154.705526$
Residual for this perturbation : 0.000325
Perturbation 6
Initial start: $X=8.744899 \quad Y=9.766133 \quad Z=9.261065 \quad A=179.158056 \quad B=79.531163 \quad G=139.918094$ Initial residual: 0.000999
Converged Position : $X=7,9621 \quad Y=9.5312 \quad Z=8.685590 \quad A=230.781768 \quad B=93.276692 \quad G=217.845809$
Residual for this perturbation: 0.000356
Using perturbation \#: 3
Solution to improve: $X=7.860277 \quad Y=9.533711 \quad Z=8.675447 \quad A=163.562552 \quad B=94.448620 \quad G=151.435336$
Initial residual: 0.000325
Final solution : $\mathrm{X}=7.860 \mathrm{Y}=9.534 \mathrm{Z}=8.675 \mathrm{~A}=163.563 \mathrm{~B}=94.449 \mathrm{G}=151.435$
Final residual: 0.000325
Data point \#: 8
Inùial guess: $7.860277 \quad 9.5337118 .675447163 .56255294 .448620 \quad 151.435336$
Perturbation 1
Initial start : $X=7.860277 \quad Y=9.533711 \quad Z=8.675447 \quad A=163.562552 \quad B=94.448620 \quad G=151.435336$
Initial residual: 0.000742
Converged Position : $X=9.1555 \quad Y=9.8870 \quad Z=8.8745 \quad A=243.128352 \quad B=68.369457 \quad G=232.567832$
Residual for this perturbation : 0,000270
Perturbation 2
Initial start: $X=8.810907 \quad Y=8.974363 \quad Z=8.504220 \quad A=235.132695 \quad B=69.798168 \quad G=210.204906$ Initial residual: 0.000580
Converged Position : $X=9.1575 \quad Y=9.88995 \quad Z=8.8720 \quad A=242.8891 \quad B=68.314033 \quad G=232.232920$
Residual for this perturbation : 0.000269
Perturbation 3
Initial start: $X=9.128542 \quad Y=9.810556 \quad Z=8.935035 \quad A=235.363495 \quad B=96.371589 \quad G=241.225637$ Initial residual: 0.000712
Converged Position : $X=9.534783 \quad Y=9.9288 \quad Z=10.3191 \quad A=237.5129 \quad B=110.819928 \quad G=247.344471$
Residual for this perturbation : 0.000422
Perturbation 4
Initial start : $X=9.102415 \quad Y=10.635187 \quad Z=9.552580 \quad A=254.955188 \quad B=99.240319 \quad G=250.364723$

Initial guess: 10.53051910 .8172129 .965465257 .53995161 .094927237 .624897
Perturbation 1
Initial start : $\mathrm{X}=10.530519 \quad \mathrm{Y}=10.817212 \quad \mathrm{Z}=9.965465 \quad \mathrm{~A}=257.539951 \quad \mathrm{~B}=61.094927 \quad \mathrm{G}=237.624897$
Initial residual: 0.000768
Converged Position : $X=10.7423 \quad Y=11.4584 \quad Z=11.2156 \quad \mathrm{~A}=274.0756 \quad \mathrm{~B}=43.958287 \quad \mathrm{G}=257.746023$
Residual for this perturbation : 0.000311
Perturbation 2
Initial start: $X=10.195219 \quad Y=10.879549 \quad \mathrm{Z}=10.640336 \quad \mathrm{~A}=284.493910 \quad \mathrm{~B}=16.199735 \quad \mathrm{G}=228.872090$
Initial residual: 0.001490
Converged Position: $X=10.7378 \quad Y=11.4507 \quad Z=11.21996 \quad A=274.15011 \quad B=43.840385 \quad G=257.805173$
Residual for this perturbation : 0.000311
Perturbation 3
Initial start : $X=10.618507 \quad Y=11.917107 \quad Z=10.481353 \quad A=259.595960 \quad B=58.762465 \quad G=279.834396$ Initial residual: 0.000699
Converged Position : $X=10.0560 \quad \mathrm{Y}=11.2027 \quad \mathrm{Z}=10.2891 \quad \mathrm{~A}=273.8535 \quad \mathrm{~B}=45.260223 \quad \mathrm{G}=287.402696$ Residual for this perturbation : 0.000482
Perturbation 4
Initial start: $X=10.728482 \quad Y=11.807226 \quad Z=11.111768 \quad A=280.313063 \quad B=37.931860 \quad G=272.634738$ Initial residual: 0.000538
Converged Position : $\mathrm{X}=10.7472 \quad \mathrm{Y}=11.4303 \quad \mathrm{Z}=11.1927 \quad \mathrm{~A}=274.8583 \quad \mathrm{~B}=44.059940 \quad \mathrm{G}=258.607281$
Residual for this perturbation : 0.000310
Perturbation 5
Initial start : $X=11.616502 \quad Y=11.117054 \quad Z=10.782353 \quad A=261.500304 \quad B=54.232615 \quad G=269.029264$
Initial residual: 0.000671
Converged Position : $X=10.05624 \quad Y=11.2038 \quad Z=10.2889 \quad A=273.8741 \quad B=45.256534 \quad G=287.417771$
Residual for this perturbation : 0.000482
Perturbation 6
Initial start : $X=10.251428 \quad \mathrm{Y}=11.425266 \quad \mathrm{Z}=9.558977 \quad \mathrm{~A}=269.901748 \quad \mathrm{~B}=72.593687 \quad \mathrm{G}=259.654057$ Initial residual: 0.001028
Converged Position : $X=10.7423 \quad Y=11.4439 \quad Z=11.20781 \quad A=274.1722 \quad B=43.986791 \quad G=257.895422$
Residual for this perturbation : 0.000311
Using perturbation \#: 4
Solution to improve: $X=10.747281 \quad Y=11.430383 \quad Z=11.192759 \quad A=274.858392 \quad B=44.059940 \quad G=258.607281$ Initial residual: 0.000310
Final solution : $\mathrm{X}=10.747 \mathrm{Y}=11.430 \mathrm{Z}=11.193 \quad \mathrm{~A}=274.858 \mathrm{~B}=44.060 \quad \mathrm{G}=258.607$
Final residual: 0.000310
Data point \#: 11
Initial guess: $10.747281 \quad 11.43038311 .192759274 .85839244 .059940 \quad 258.607281$
Perturbation 1
Initial start : $X=10.747281 \quad Y=11.430383 \quad Z=11.192759 \quad A=274.858392 \quad B=44.059940 \quad G=258.607281$ Initial residual: 0.000860
Converged Position : $\mathrm{X}=12.623587 \quad \mathrm{Y}=12.8105 \quad \mathrm{Z}=11.7841 \quad \mathrm{~A}=283.3034 \quad \mathrm{~B}=29.8861 \quad \mathrm{G}=259.428232$
Residual for this perturbation : 0.000290
Perturbation 2
Initial start : $X=13.402680 \quad Y=12.598202 \quad Z=11.850524 \quad A=306.757164 \quad B=43.805504 \quad G=287.415552$
Initial residual: 0.000954
Converged Position ; $X=12.6272 \quad Y=12.8078 \quad Z=11.7864 \quad A=283.3448 \quad B=29.882393 \quad G=259.547697$
Residual for this perturbation : 0.000290
Perturbation 3
Initial start : $X=13.038057 \quad \mathrm{Y}=13.206002 \quad \mathrm{Z}=12.172889 \quad \mathrm{~A}=268.545096 \quad \mathrm{~B}=28,615053 \quad \mathrm{G}=273.845192$
Initial residual: 0.000820
Converged Position : $\mathrm{X}=12.6273 \quad \mathrm{Y}=12.8078 \quad \mathrm{Z}=11.7864 \quad \mathrm{~A}=283.3449 \quad \mathrm{~B}=29.882343 \quad \mathrm{G}=259.548133$
Residual for this perturbation: 0,000290
Perturbation 4
Initial start : $\mathrm{X}=13.616875 \quad \mathrm{Y}=12.762104 \quad \mathrm{Z}=11.450962 \quad \mathrm{~A}=308.232734 \quad \mathrm{~B}=6.187710 \quad \mathrm{G}=247.479081$
Initial residual: 0.001080

Residual for this perturbation : 0.000230
Perturbation 5
Initial start : $\mathrm{X}=14.863890 \quad \mathrm{Y}=15.464800 \quad \mathrm{Z}=13.98860 \quad \mathrm{~A}=280.589756 \quad \mathrm{~B}=331.820455 \quad \mathrm{G}=295.254765$
Initial residual: 0.000824
Converged Position : $\mathrm{X}=15.0803 \quad \mathrm{Y}=14.8615 \quad \mathrm{Z}=14.4269 \quad \mathrm{~A}=305.6985 \quad \mathrm{~B}=344.552505 \quad \mathrm{G}=282.670460$
Residual for this perturbation : 0.000230
Perturbation 6
Initial start : $X=14.525690 \quad \mathrm{Y}=14.387049 \quad \mathrm{Z}=14.43983 \quad \mathrm{~A}=287.181107 \quad \mathrm{~B}=365.473982 \quad \mathrm{G}=302.529166$
Initial residual: 0.001463
Converged Position : $\mathrm{X}=15.0810 \quad \mathrm{Y}=14.86197 \quad \mathrm{Z}=14.4266 \quad \mathrm{~A}=305.7079 \quad \mathrm{~B}=344.5655 \quad \mathrm{G}=282.650090$
Residual for this perturbation : 0.000230
Using perturbation \#: 1
Solution to improve: $\mathrm{X}=15.079911 \mathrm{Y}=14.860746 \mathrm{Z}=14.430564 \mathrm{~A}=305.681531 \mathrm{~B}=344.563171 \mathrm{G}=282.710330$
Initial residual: 0.000230
Final solution : $\mathrm{X}=15.080 \mathrm{Y}=14.861 \mathrm{Z}=14.431 \mathrm{~A}=305.682 \mathrm{~B}=344.563 \mathrm{G}=282.710$
Final residual: 0.000230
Data point \#: 15
Initial guess: $15.079911 \quad 14.86074614 .430564305 .681531344 .563171 \quad 282.710330$
Perturbation 1
Initial start : $X=15.079911 \quad \mathrm{Y}=14.860746 \quad \mathrm{Z}=14.430564 \quad \mathrm{~A}=305.681531 \quad \mathrm{~B}=344.56311 \quad \mathrm{G}=282.710330$
Initial residual: 0.000964
Converged Position : $X=16.2534 \quad \mathrm{Y}=15.2761 \quad \mathrm{Z}=14.4156 \quad \mathrm{~A}=316.0878 \quad \mathrm{~B}=331.305525 \quad \mathrm{G}=294.877896$
Residual for this perturbation : 0.000229
Perturbation 2
Initial start : $X=16.346005 \quad \mathrm{Y}=15.947354 \quad \mathrm{Z}=14.915969 \quad \mathrm{~A}=318.235328 \quad \mathrm{~B}=344.88409 \quad \mathrm{G}=273.235148$
Initial residual: 0.000831
Converged Position : $X=16.3796 \quad Y=15.5108 \quad Z=14.51319 \quad A=321.8600 \quad B=343.2219 \quad G=285.080070$
Residual for this perturbation : 0.000573
Perturbation 3
Initial start : X $=16.9456 \quad \mathrm{Y}=14.5442 \quad \mathrm{Z}=15.4223 \quad \mathrm{~A}=318.5476 \quad \mathrm{~B}=345.547083 \quad \mathrm{G}=301.791214$
Initial residual: 0.001059
Converged Position : $X=16.2542 \quad \mathrm{Y}=15.27591 \quad \mathrm{Z}=14.4156 \quad \mathrm{~A}=316.0849 \quad \mathrm{~B}=331.3045 \quad \mathrm{G}=294.879935$
Residual for this perturbation : 0.000229
Perturbation 4
Initial start : $X=16.829298 \quad \mathrm{Y}=15.284362 \quad \mathrm{Z}=14.692645 \quad \mathrm{~A}=326.252914 \quad \mathrm{~B}=303.9403 \quad \mathrm{G}=298.941775$
Initial residual: 0.001299
Converged Position : $\mathrm{X}=16.327027 \quad \mathrm{Y}=15.4791 \quad \mathrm{Z}=14.5221 \quad \mathrm{~A}=326.3029 \quad \mathrm{~B}=330.7393 \quad \mathrm{G}=295.928610$
Residual for this perturbation : 0.000535
Perturbation 5
Initial start : $\mathrm{X}=15.909587 \quad \mathrm{Y}=16.303032 \quad \mathrm{Z}=14.998665 \quad \mathrm{~A}=326.68893 \quad \mathrm{~B}=342.002722 \quad \mathrm{G}=315.220347$
Initial residual: 0.001291
Converged Position : $\mathrm{X}=15.737448 \quad \mathrm{Y}=15.3401 \quad \mathrm{Z}=15.0578 \quad \mathrm{~A}=320.7398 \quad \mathrm{~B}=332.3200 \quad \mathrm{G}=304.957035$
Residual for this perturbation : 0.000639
Perturbation 6
Initial start : $\mathrm{X}=15.0701 \quad \mathrm{Y}=16.124268 \quad \mathrm{Z}=15.974370 \quad \mathrm{~A}=298.287176 \quad \mathrm{~B}=361.013768 \quad \mathrm{G}=275.997567$
Initial residual: 0.001344
Converged Position : $X=16.2541 \quad Y=15.2755 \quad Z=14.4162 \quad A=316.0857 \quad B=331.303122 \quad G=294.883914$
Residual for this perturbation : 0.000229
Using perturbation \#: 6
Solution to improve: $X=16.254651 \quad Y=15.275593 \quad Z=14.416261 \quad A=316.085774 \quad B=331.303122 \quad G=294.883914$
Initial residual: 0.000229
Final solution : $X=16.255 \quad Y=15.276 Z=14.416 \quad A=316.086 \quad B=331.303 \quad G=294.884$
Final residual: 0.000229
Data point \#: 16
Initial guess: $\begin{array}{lllllll}16.254651 & 15.275593 & 14.416261 & 316.085774 & 331.303122 & 294.883914\end{array}$


```
Perturbation 5
Initial start : X= 17.303701 }\quad\textrm{Y}=17.7279\quad\textrm{Z}=16.527430 A=369.226885 B=276.175849 G=279.213646
Initial residual: 0.001812
Converged Position : X=17.8601 Y =16.6256 Z = 16.48538 A= 10.0962 B=285.312368 G=278.767087
Residual for this perturbation : 0.001102
Perturbation 6
Initial start: X=18.486782 }\quad\textrm{Y}=16.463889 Z=15.550147 A=29.137819 B=309.733679 G=251.221826
Initial residual: 0.001829
Converged Position : X = 17.859362 Y=16.624064 Z = 16.48277 A=10.2142 B=285.363866 G=278.632406
Residual for this perturbation : 0.001102
Using perturbation #: 4
Solution to improve: X=17.884922 Y=17.141495 Z=15.827786 A=339.343024 B=299.862868 G=307.253001
Initial residual: 0.000312
Final solution : X=17.885 Y=17.141 Z=15.828 A=339.343 B=299.863 G=307.253
Final residual: 0.000312
```


APPENDIX D

Figure D.1: Model-Reality Plot for 2.2 Mhz transmitter as it is moved along and four inches away from the plane of the antenna.

Figure D.2: Model-Reality Plot for 2.2 Mhz transmitter as the transmitter is moved from the plane of antenna in a path coincident with the axis of the antenna.

Figure D.3: Model-Reality Plot for 2.2 Mhz transmitter as the transmitter is moved from the plane of antenna.

Scaled Measured vs. Model Voltages
Antenna No. 2; 20×20 inches; Scale $=525353$

Figure D.4: Model-Reality Plot for 2.2 Mhz transmitter as the transmitter is moved along the plane of antenna.

Experimental Results: Drop Test

Figure D.5: Experimental Results: Drop Test

Figure D.6: Experimental Results: Drop Test

Figure D.7: Experimental Results: Drop Test

Figure D.8: Experimental Results: Drop Test

Figure D.9: Experimental Results: Drop Test

Figure D.10: Experimental Results: Drop Test

REFERENCES

[1] Agrawal, J. H., "Use of Multiple Transmitters for 3-D Non-Intrusive Particle Tracking", M.S. Thesis, New Jersey Institute of Technology, 1995.
[2] Ashok, A. S., "Computational Aspects of a Three Dimensional Non-Intrusive Particle Motion Tracking System", M.S. Thesis, New Jersey Institute of Technology, Newark, New Jersey, 1992.
[3] Dave, R. N., Private Communications, New Jersey Institute of Technology, 1994.
[4] Dave, R. N., A. S. Ashok, and B. G. Bukiet, "On Development of a Three Dimensional Particle Motion Tracking System", ASME Paper, Winter Annual Meeting 1992.
[5] Dave R. N., and B. G. Bukiet, "Non-Intrusive Rigid Body Tracking Technique for Dry Particulate Flows, Part I: Theoretical Aspects," Submitted to Measurement Science and Technology (Formerly Physics E), 1994.
[6] Dennis, J. R., R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equalions, Prentice-Hall, Engelwood Cliffs, New Jersey, 1983.
[7] Goldstein, H., Classical Mechanics, Addison Wesley Publishing Company, 1980.
[8] Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory", in Numerical Analysis, G. A. Watson, ed., Lecture Notes in Math. 630, SpringerVerlag, Berlin, 1977.
[9] Moré, J. J., B. S. Garbow and K. E. Hillstrom, "User Guide for MINPACK-1", Argonne National Lab Report, 1980.
[10] Parasar, A., Lab Notes, New Jersey Institute of Technology, Newark, New Jersey, 1992
[11] Savage, S. B., "Flow of Granular Materials with Applications to Geophysical Problems," Continuum Mechanics in the Environmental Sciences and Geophysics, IUTAM International Summer School on Mechanics, Udine, Italy, June 22-26, (1992).
[12] Troiano, A., Private Communications, New Jersey Institute of Technology, Newark, New Jersey, 1994.
[13] Troiano, A., Lab Notes, New Jersey Institute of Technology, Newark, New Jersey, 1994.
[14] Van Valkenburg, M. E., Network Analysis, Prentice-Hall, Engelwood Cliffs, New Jersey, 1974.
[15] Volcy, J. R., "Develpment of a Non-Intrusive Particle Motion Tracking Technique for Granular Flow Experiments", M.S. Thesis, New Jersey Institute of Technology, Newark, New Jersey, 1994.

