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ABSTRACT

EXPERIMENTAL AND NUMERICAL DETERMINATION OF
FLUID VELOCITY PROFILES AND

TURBULENCE INTENSITY IN MIXING VESSELS

by
Chun-Chiao Chou

In this study, both a laser-Doppler velocimeter (LDV) and a computational fluid

dynamic (CFD) software package (FLUENT) were used to experimentally determine and

numerically predict the velocity distribution of an unbaffled and a baffled mixing vessel.

Two types of impellers were employed, namely a flat blade turbine (FBT) and a pitched

blade turbine (PBT). These impellers were studied in a single-impeller or multiple-

impeller configuration in the unbaffled and baffled vessels. The flow characteristics in the

impeller regions were measured by LDV and used as boundary conditions in the numerical

computation. Turbulence effects were numerically simulated using either the k-ε or the

algebraic stress model (ASM).

In general, good agreement between the CFD predictions and the LDV

measurements was obtained. Predictions in which the boundary conditions were specified

at multiple surfaces in the impeller region (i.e., two planes instead of one) were found to

be superior to those in which less accurate boundary conditions were used. The

predictions based on ASM were typically found to be in closer agreement with the

experimental data than those based on the k-ε model.

The flow patterns in the unbaffled vessels were found to be dominated by the

tangential component of the velocity, regardless the types of impeller used. In the baffled

vessels the flow patterns were strongly dominated by both the axial and tangential



components. The presence of a second impeller in the baffled vessels altered the flow

considerably, producing a strong vertical recirculation pattern between the impellers, and

significantly reducing the circulation flow below the lower impeller.
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CHAPTER 1

INTRODUCTION

Mechanically agitated mixing vessels are widely used in a variety of industrial applications

such as precipitation, polymerization, fermentation, as well as crystallization and

heterogeneous catalysis. As a result, a significant literature exists on the subject, and

design principles have been determined for many situations of industrial significance. A

comprehensive review of the literature has recently been published (Tatterson, 1991).

The conventional approach to mixing-related problems based on the development of

design equations and on the use of dimensional groups and semitheoretical (or empirical)

correlations has been proven to be satisfactory in many practical applications. However,

this approach is limited in its use since it usually neglect the complexity of the turbulent

process at the basis of most mixing phenomena. In addition, this approach cannot provide

information about the "micro" scale phenomena of mixing and their impact on transport

phenomena and chemical reactions.

Recent instrumentation advancements now allow us to make flow measurements in

mixing vessels that could not be made with previous measurement techniques. The laser

Doppler velocimiter (LDV) is an ideal device to make these flow measurements because it

does not disturb the flow, and has a high-speed, direction-sensitive transducer response.

In addition, computational fluid dynamic (CFD) software programs are now widely

available. These programs numerically integrate the basic fluid dynamic conservation

equations for mass, momentum and energy and are capable of incorporate turbulence

effects in their computations. As a result, we can now measure accurately the flow in

complex tridimensional systems, such as mixing vessels, and try to predict the flow

distribution numerically. This opens the possibility of developing improved mathematics

models to successfully scaling up reactors. The scale-up can include linking flow patterns

1
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of a mixer to the final reaction results and simultaneously determining the mechanical

loads imposed on the structures.

In order to gain a more fundamental understanding of micromixing phenomena, a

more detailed knowledge of the characteristics of the flow, including is turbulent

characteristics, is necessary. Therefore, the objective of this work is to experimentally

determine and numerically predict the flow field in mixing vessels, including its

fluctuating component, as a function of the type of impeller and the geometric

characteristics of the system. In this study, the flow fields and turbulent characteristics in

both unbaffled and baffled mixing vessels combined with single or multiple flat blade

turbines (FBT) and or pitched blade turbines (PBT) are examined. For each mixing

configuration, the flow field was experimentally determined using a LDV and the results

so obtained compared with the predictions obtained through the use of Computational

Fluid Dynamics (CFD) software package.



CHAPTER 2

LITERATURE SURVEY

The flow field inside mixing systems has been the subject of a number of studies over the

years. However, only over the last decade has this field of study really benefited from two

major technical advances, namely Laser-Doppler velocimetry (LDV) and Computational

Fluid Dynamics (CFD). In general, a satisfactory agreement between the LDV

measurements and numerical simulations was reported. However, most of the limited

number of studies available focused on either the computation aspect or the LDV

component of the problems. In addition, most of the literature reviewed covered the field

of mixing in baffled single impeller vessels. Very little information is available to date on

mixing processes in multiple impellers system, and no fundamental study on the velocity

distribution and turbulent characteristics in such a system is available.

A number of theoretical and semiempirical expressions for the turbulence models

have been developed since 1877. For example, the earliest proposal was Boussinesq's

eddy viscosity model (1877) which was adopted to correlate the Reynolds stresses with

the velocity gradient. Prandtl (1925) also proposed the concept of mixing length, 1, to

describe the properties of the Reynolds stresses. Other investigators (Taylor, 1932; von

Karman, 1930; Deissler, 1955) introduced various expressions for the Reynolds stresses.

However, Chou (1945) was the first one to derive and present the Reynolds stresses

equation from the transport equation. Since 1970 the summaries of turbulent theories

were summarized by a number of investigators (Hine, 1959; Bird et al., 1960; Launder

and Spalding, 1972; Rodi, 1984). However, due to the complexity of the theory,

limitations of the computer capability, and measurement techniques, the applications of

these theories to the field of mixing in agitated vessels were not too numerous until a

decade ago.

3
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2.1 Unbaffled Mixing Systems

Nagata et al. (1975) studied the velocity distribution of a six-flat-bladed agitated vessel

with Pitot tubes. The impeller was located halfway between liquid surface and vessel

bottom. He reported that the tangential velocity components are high relative to the radial

and axial components, and that they are almost symmetrical to the impeller axis and also

to the plane of impeller rotation. The tangential velocity was found to be proportional to

the radius within the forced vortex zone, but inversely proportional to radius outside

forced vortex zone.

De Groot (1991) proposed a modified model in comparison to Nagata's model

(1975) in predicting the flow field of an unbaffled mixing vessel with a formation of a

vortex within the tank, by assuming that the dependence of the velocity to radius (r) in the

free zone is not equivalent to 1/r but 1/r04 , this leads to a better prediction of the

tangential velocity in the mixing vessel when compared to Nagata's model.

2.2 Baffled Mixing Systems

Nataga et al. (1975) reported the flow pattern in a mixing vessel agitated by a 8-flat-blade

turbine using Pitot tube. A cross sectional view of the velocity profiles along r-Z plane

clearly indicated that a strong axially directed circulation pattern was obtained. He also

concluded that the tangential velocity was greatly decreased by insertion of baffles.

Oldshue (1983) used an electrical method to determine both the average and the

fluctuating velocities for the radial component in a Rushton turbine agitated vessel. The

turbulence intensities along the impeller outflow region had an average value about 0.45.

Two recirculated flows were also found above and below the impeller using a streak

photography technique.

Chen et al. (1988) reported only experimental LDA results for a Rushton turbine

and a four-inclined-blade turbine in baffled mixing systems. By comparing the flow
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patterns generated from the Rushton and four-inclined-blade turbines systems, it was

confirmed that the axially directed flows was primarily due to the presence of the baffles in

the mixing vessel. Although the flow fields were examined extensively, the turbulent

characteristics were not presented.

Costes and Couderc (1988a) studied a fully baffled Rushton turbine agitated system

by LDA at various agitation speeds. By observing the flow patterns along the r-z plane,

they concluded that at higher Reynolds number (27,000-85,000) the non-dimensional

distribution of the mean and fluctuating velocities are nearly independent of the Reynolds

number.

Costes and Couderc (1988b) conducted an extensive study to determine the power

dissipation using both macroscale power measurement and microscale fluctuating

velocities. They concluded that the ratio of local average energy dissipation per unit mass

to power consumption per unit mass of fluid was 15.6 and 0.38 in the impeller region and

in the circulation zone, respectively. Two scale-up criteria based on the turbulent

characteristics observed in this study were also proposed.

Wu and Patterson (1989) proposed a relation between two important turbulent

parameters, namely, the turbulent kinetic energy k and turbulent dissipation rate e. This

relationship is :

where a is a characteristic constant, and w is the impeller blade width. This relation

is believed effectively correlate k and E in the impeller region in many mixing problems,

and was adopted quite frequently by many investigators (Bakker, 1992; Bouwmans, 1992;

Armenante and Chou, 1994).
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Ranade and Joshi (1989) produced an LDA study for a series of single pitched-blade

turbine agitated, fully baffled mixing configurations. The velocity profiles and turbulent

kinetic energy were determined for the top, bottom and side surfaces in the impeller

region. The comparison between the measured velocities and numerical prediction were

also presented. In general good agreement was obtained when the k-e model was used,

and only the velocity at the bottom of the impeller region was used as the impeller

boundary conditions.

Ranade et. al. (1989) presented a comparison between the numerical predictions

using the k-e model and experimental results obtained via LDA for a single pitched-blade

turbine in a fully baffled system. The flow data at the bottom of the impeller region

consisted of tangential, axial velocities, and k and E were used as the boundary conditions

in the impeller region. However, the radial velocity component on the same plane was not

specified and was calculated numerically by their CFD program. Boundary conditions

along the vessel wall were specified using the no-slip condition. Good agreement between

the experimental results and the numerical prediction was reported.

Mahouast et at. (1989) determined the local Reynolds stresses in a fully baffled

Rushton turbine agitated vessel by LDV. The local Reynolds stresses were found to be

direction dependent indicating that no homogeneous isotropic turbulence is existed. Any

calculations based on isotropic turbulence may lead to the erroneous simulations of the

flow pattern. The power consumption was calculated from the fluctuating velocity terms

and was found to be about 25% of the total power consumption.

Ranade and Joshi (1990a) studied a baffled disc turbine agitated vessel using LDA.

They concluded that in the impeller swept volume the energy dissipation rate was found to

be about 30% of the total input rate. The effect of the vessel diameter to the flow

characteristics was reported to be minimal. Locally isotropy in the bulk region was also

presented in this study.
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Ranade and Joshi (1990b) conducted the simulations of a baffled disc turbine system

with k-e model. Good agreement between the experimental data and the numerical results

was presented. However, some characteristic constants were reported to be sensitive to

the model prediction.

Costes et al. (1991) conducted a study in fully baffled, Rushton turbine agitated

systems and compared the results obtained using two measurement techniques, i.e.,

thermal anemometry (TA) and laser Doppler anemometry (LDA). It was confirmed that

LDA could produce more accurate data than TA. The radial velocity and turbulence

intensity in the impeller discharge stream along tank radius were also presented .

Jaworski et al. (1991) studied the flow in fully baffled pitched-blade turbine agitated

system by LDA. They found that near the tank base, the impeller off-bottom clearance

influenced decisively the flow pattern. The locally isotropic turbulence characteristic was

found to be prevalent throughout the mixing tank except in the impeller outflow stream.

The flow number in this study was reported to be about 0.7 for (w/D) equal to 1/5. No

simulation was reported in this works .

Kresta and Wood (1991) used a swirling jet model (SRJ) to predict the turbulence

quantities k and ε, and the mean velocity components in the region outside a Rushton

turbine in a mixing vessel. The results showed a good agreement between the

experimental data and the numerical predictions. Comparison of these predictions with

others investigators' results were also included.

Weetman (1991) studied a propeller type impeller (Lightnin A410) in a fully baffled

mixing vessel using both LDA and CFD techniques. His Results indicated that blending

time decreased with increasing of attack angle of the impeller. At Reynolds number higher

than 700 the flow was found to be axially dominated while at lower Reynolds number

(<200) the flow was radially dominated. The actual data used as boundary conditions in

the simulation were not reported.
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Hirata et al. (1991) studied a fully baffled single Rushton turbine agitated system

using LDA. The tangential and axial velocity components along the radius of the vessel

were reported. However, the radial components was not shown. The variation of

tangential velocity at the same liquid level between two baffles was reported to be very

small. No simulation work was reported in this study.

Renade et al. (1992) reported LDA results for fully baffled pitched-blade turbine (30

°-60°) configurations. In this study, three velocity components and the turbulent kinetic

energy (k) in the impeller region were measured. As boundary conditions the velocity

profiles on the bottom layer of the impeller region were used. Good agreement between

the experimental results for the axial component and the numerical predictions was

reported. However the tangential and radial components of the velocity were not

compared. A flow number of 0.85 for the 45° pitched blade turbine with (w/D) (ratio of

actual impeller blade width to impeller diameter) equal to 1/5 was reported.

Bakker (1992) conducted a series of studies for a single turbine in an agitated, fully

baffled mixing vessel with either a LIGHTNIN A315 turbine, a standard 45° pitched blade

turbine (6 blades), or a disc turbine. Fluent was used to simulate the flow pattern using

boundary conditions (tangential and axial velocities, k and e) specified at the bottom of the

impeller region. A relation between k and e was adopted from Wu and Patterson (1989).

The algebraic stress model (ASM) was used. Good agreement between the experimental

results and numerical prediction was reported. However only the comparisons for axial

component were indicated.

Bouwmans (1992) studied a fully baffled, single 45° pitched-blade turbine mixing

system. The flow simulation used the same boundary conditions as in Bakker's

case(1992). Only the simulated flow patterns were reported. No comparison between the

experimental results and the numerical prediction were indicated.

Dyster et al. (1993) studied a fully baffled Rushton turbine system. The radial

velocity components in the impeller discharge stream was proposed to be proportional to
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the -0.94 power of (r/R) (dimensionless radial position). The impeller flow number in this

particular case was reported to be about 0.78 for Reynolds numbers greater than 10,000.

Kresta and Wood (1993a) compared different methods to estimate the turbulent

dissipation rate in mixing tanks. Four types of methods were discussed in this study. They

are: gradient hypothesis, Taylor's hypothesis, dimensional argument, and autocorrelation

coefficient. The first two methods were suggested to be inferior to the latter two in

estimating the dissipation rate.

Kresta and Wood (1993b) determined the flow field produced by a 45° pitched

blade turbine with four blades in a fully baffled vessel. Extensive data for the tangential,

axial, and radial components of the velocity at various positions below the impeller were

given. The average flow number was found to be 0.7.



CHAPTER 3	

THEORETICAL EQUATIONS USED IN THE NUMERICAL SIMULATION

To predict the flow created by a rotating impeller, two types of reference frames can be

used, namely a stationary frame of reference and rotating frame of reference. The

stationary reference frame assumes a stationary vessel wall with respect to the rotating

impeller, while the rotating reference frame assumes a rotating wall with respect to a

stationary impeller. For the case of an unbaffled tank with a smooth wall, the boundary

conditions along the wall can be easily assumed using the rotating reference frame. On the

other hand, in the case of baffled vessels the stationary reference frame is typically chosen.

Details about these two reference frames will be examined in the following sections.

Independently of the simulation method used the vessel was always assumed to be

symmetric along its axis. Fluent was run assuming using a repeated 60° and 90° domain

for unbaffled and baffled configurations, respectively. The domain always contained

about 25,000 cells.

3.1 Stationary Reference Frame

Numerical simulations were conducted to determine the velocity profiles inside the vessel.

A commercial CFD finite difference software package (FLUENT, Version 3.03) was used

for this purpose. This program uses a finite difference approach to solve the steady-state,

time-averaged continuity and momentum equations in turbulent regime (Tatterson, 1991).

10
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Both the k-ε model and the algebraic stress model (ASM) were used to account for

turbulence effects.	 Accordingly, the Reynolds stresses p u' u' were modeled,

respectively, as:

where (Creare.x, 1991; Launder and Spalding, 1972):

The turbulent viscosity was obtained from (Rodi, 1984):

The values of the specific turbulence kinetic energy, k, and the turbulence energy

dissipation rate, ε, were obtained from their balance equations:

and:
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The values of the constants

to 1.44, 1.92, 0.55, 0.45, 0.09, 1.0, and 1.3, respectively (Rodi, 1984).

The boundary conditions imposed on the systems were as follows. The boundary

conditions at the vessel cylindrical wall, baffles, and horizontal bottom were those derived

assuming no-slip condition. This implied that the shear stress near the solid surfaces was

specified using wall functions and that equilibrium between the generation and dissipation

of turbulence energy was assumed (Launder and Spalding, 1974; Ranade et al., 1989).

The boundary conditions at the top (free surface) were of the zero-gradient, zero-flux

type, which is equivalent to a frictionless impenetrable wall. The common symmetry

boundary conditions were assumed at the symmetry axis (Ranade et al., 1989). The

program setup for the numerical simulation of unbaffled and baffled configurations are

indicated in Appendices B and C, respectively.

In the unbaffled mixing vessel with a single FBT or PBT, and in the baffled mixing

vessel with a single PBT, the boundary conditions in the impeller region were imposed at

one or more of the surfaces of the cylinder having the same size of the volume swept by

the impeller. In particular, either one of two different sets of boundary conditions (named

B.C. #1 and B.C. #2, respectively) was imposed in any given simulation. When B.C. #1

was used the time-averaged tangential and axial fluid velocities at the bottom surface of

the region swept by the impeller(s) were specified, while all the other cells (including those

in the impeller volume) were treated as "live" cells whose velocities were determined by

the simulation. The k values along the same surface were also specified, as well as the

corresponding values of 6, calculated from:
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where a was taken to be equal to 1.4 (Wu and Patterson, 1989; Armenante et al.,

1994). The boundary time-averaged velocities and the fluctuating velocities necessary to

calculate k were experimentally determined using the LDV system, as described below.

Similarly, when B.C. #2 was used the tangential and axial velocities and the corresponding

k and ε values were specified at the top and bottom surfaces of the impeller region. The

simulations of the baffled agitation systems for the single FBT, double-FBT, double-PBT,

and combination of PBT and FBT were always conducted with B.C. #2, using the

experimentally obtained velocities for the impeller region as boundary conditions.

3.2 Rotating Reference Frame

A frame of reference rotating with the vessel can be especially useful in unbaffled mixing

vessel configurations. This is because the smooth boundary conditions along the unbaffled

tank wall can be specified without LDV measurement. In the rotating reference frame, the

impeller is at rest and the tank wall is rotated at an angular velocity equal to-a. The fluid

velocity predicted in the rotating reference frame, u R, can be related to that in the

stationary reference frame as:

Fluent incorporates this relation into the momentum equation, in which the

additional terms involving n describe the acceleration of the fluid due to the acceleration

of the rotating reference frame. The tangential velocity in the stationary reference frame

can be obtained from the corresponding velocity in the rotating reference frame using the

following reverse transformation:
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All other velocity components are not affected by the transformation of the reference

frame.

Whenever the simulation is conducted with the rotating reference frame, the cells

closest to the wall are assumed to have the same tangential velocity as the rotating wall.

The other two velocity components and the turbulence parameters are assumed to be zero

at those cells. After completing the simulation in the rotating reference frame, a

transformation back to the stationary reference frame is conducted.



CHAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURE

4.1 Mixing Tank Configurations and Impeller Types

Three agitated vessel systems were used in this work: two of them were unbaffled and one

was baffled. The first (closed) unbaffled system consisted of an unbaffled, cylindrical, flat-

bottomed, plexiglas vessel provided with a flat lid, and completely filled with water (the

fluid used in all the experiments) up to the lid, leaving no head space (Figure 4-1). This

arrangement prevented the formation of the vortex typically observed in unbaffled

systems. The vessel had an internal diameter, T, and a liquid height, H, equal to 0.29 m

and 0.32 m, respectively. The second (open) unbaffled system (not shown) was identical

to that shown in Figure 4-1 with the exception of the lid, which was absent. Hence, when

the liquid was agitated a vortex could be observed.

The baffled system was similar to the open unbaffled system except for the presence

of four baffles (width: 29 mm i.e., 1/10 of tank diameter) located 15 mm off the tank

bottom (Figure 4-2). These four baffles prevented the formation of the vortex. The vessel

had an internal diameter, T, and a liquid height, H, equal to 0.29 m and 0.36 m,

respectively.

As indicated in the figures, D was the impeller diameter (0.1016 m), C was the

clearance between the blade center of the impeller and the bottom of the vessel, and S was

the distance between two impellers' centers. The agitated cylindrical mixing vessel was

surrounded by a square cross-section tank (0.4 m by 0.4 m by 0.4 m), also made of

Plexiglas, so as to minimize diffraction of the incoming laser beams.

15
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Figure 4-1. Experimental Mixing Apparatus for Unbaffled Configuration

Figure 4-2. Experimental Mixing Apparatus for Baffled Configuration
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Figure 4-3. Flat Bladed Turbine (FBT) Figure 4-4. Pitched Bladed Turbine (PBT)

Both a 6-blade, flat blade turbine (FBT) having a diameter of 0.1016 m and a blade

width of 12 mm, and a 6-blade, 45° pitch-blade turbine (PBT) having a diameters of

0.1016 m and a projected blade width of 13 mm (as seen from the side) were used in this

study. They are shown in Figure 4-3 and Figure 4-4, respectively. The impellers were

driven by a centrally mounted 1/8 hp motor controlled by an external controller. The

agitation speed were set at 100 rpm, 300 rpm, and 500 rpm in the experiments with

different impeller clearances. The clearance, C, of the impeller off the tank bottom (in the

experiments with one impeller only) was varied only in the closed unbaffled tank system

(C/D equal to 0.285, 0.5711, 0.862 and 1.427, respectively). In the experiments with

baffled vessels the agitation speed was always 300 rpm and the clearance of the (lower)

impeller off the tank bottom was constant and equal to 0.12 m. In this system experiments

were conducted in which one or two impellers were used. In the latter case the distance

between the impellers, S, was varied (S/D equal to 0.591, 0.886, and 1.181, respectively).

4.2 LDV Apparatus and Experimental Procedure

4.2.1 Detection Principles

A schematic of the laser Doppler velocimeter (LDV) is shown in Figure 4-5. This

instrument measures the velocity of a moving object by detecting the Doppler shift of the
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light scattered by the object. In flow measurements, the "object" is generally a particle

closely following the liquid flow.

The velocity and turbulence intensity profiles inside the vessel were determined using

the LDV apparatus shown above. The apparatus consisted of a multicolor 2-Watt laser

producing a beam that was passed through a color separation assembly box containing

several prisms, mirrors, and light attenuators. Only two beams (a green beam and a blue

one) emerged from this box. The beams were passed through an optical train splitting

them into four beams that were focused by a beam expander and the final transmitting lens

on a single point 480 mm away from the final lens (i.e., at a distance equal to the focal

distance of the final transmitting lens). The focusing point where the beams converged

had an 84 diameter formed by the intersection of the four beams, and was always
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within in the fluid contained in the mixing vessel in order to take a velocity measurement.

The water in the vessel was seeded with 1.5 μm silicon carbide particles. The light

scattered by the particles as they traveled through the control volume was collected by the

receiving optical assembly working in backscatter mode. The Doppler shift (directly

proportional to the particle velocity) was measured with photodetectors. Frequency

shifters were mounted on the optical train to allow reverse flow to be measured. Two

multicolor receivers connected to a computer system were used for data acquisition.

The alignment and operation procedures for LDV (TSI) apparatus are shown in

Appendix D.

4.2.2 Calibration of LDV System

The calibration procedures were conducted prior to LDV measurements. The calibrating

method used was to focus the laser beams on a disk rotating at a known constant speed.

Aligning the LDV system to measure the surface speed of a defined diameter of the disk

gives a direct calibration. For example, the known rotational speed on the outer

horizontal plane of the rotating disk can be used to calibrate the local axial velocity (green

light) local radial velocity (blue light), vice versa for the vertical plane of the rotating disk.

4.2.3 Data Processing

The photodetector output is a frequency that varies with particle velocity. To convert this

to a voltage or "number" proportional to velocity requires some type of frequency

converter. The intermittency of the signal, noise, variable amplitude and high frequencies

require sophisticated electronics to properly convert the frequency to a voltage or number

that is more directly usable.

In this study, a counter type of processor was used which measured the time, T, for

n cycles of the Doppler signal. The frequency is then calculated from f D=n/τ. Since the

time T is generally measured with a digital clock, the fundamental output of a counter is a
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digital word proportional to the time for n cycles. The value of n may either be fixed or

varied and output as another digital word.

On a counter, input filters are provided and set to filter out the "pedestal" and as

much of the noise as possible without restricting the Doppler signal. When very wide

dynamic ranges are encountered, it is often necessary to use frequency shifting to permit

effective filtering of the pedestal component. This is particularly true when the optics

gives relatively few fringes (cycles) in the measuring volume.

Figure 4-5 shows the data acquisition system. The backscattered Doppler

frequencies are amplified by the photodetectors, received and conditioned by the counters.

These signals were then transformed into velocities by LDV Data Analysis Software.

4.2.4 Experimental Procedures

The LDV system was used to experimentally determine both the average and fluctuating

velocities (and hence turbulent intensities) at 8 radial distances (2r/T equal to 0.114,

0.227, 0.335, 0.44, 0.55, 0.65, 0.76, and 0.86, respectively) and 5 different heights (Z/H

equal to 0.0656, 0.164, 0.2, 0.38, and 0,8, respectively) in the unbaffled mixing vessel, as

shown in Figure 4-1. For baffled mixing vessel measurement points at 8 radical distance

(2r/T equal to 0.11, 0.186, 0.262, 0.338, 0.414, 0.51, 0.683, and 0.841, respectively) and

5 different heights (Z/H equal to 0.1, 0.33, 0.50, 0.67, and 0.80, respectively) were taken,

as shown in Figure 4-2.

In order to measure three velocity components using two colors LDV, typically two

measurements were taken for each point at a generic radial distance, r, and height, Z: one

in which the laser was oriented perpendicularly to the radius along which the measurement

was made and another in which it was parallel, as shown in Figure 4-6. This enabled all

the three velocity components to be measured at any location.
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Figure 4-6. Position of the mixing vessel with respect to the laser assembly to measure all
three velocity components at the same location: (a). radial and axial velocities are
measured; (b). tangential and axial velocities are measured.



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Unbaffled Single-FBT Configuration

5.1.1 Velocities in the Impeller Region

In this study the impeller was positioned at (C/T) = 0.2 and rotated at a speed of 300 rpm.

The process fluid was filled up to top of the vessel and covered with a lid. The velocities

in the tangential, axial, and radial directions were experimentally determined via LDV for

the top and bottom layers of the cylindrical region swept by the impeller. These

experimentally determined velocities are reported in Figures 5-1a and 5-lb (App. A).

Each point in these figures represents the average of at least two measurements. The

results of these figures indicate that the flow in the impeller region had a strong tangential

component across the entire top and bottom surface of the impeller region, and that this

velocity had a numerical value approximately in the range 0.25-0.35 of the impeller tip

speed. The tangential velocities of the bottom layer were slightly larger than those of the

top layer.

The results for the axial velocity in the impeller region show that the impeller

produced a consistent pumping action in the downward direction. The flow across the top

and bottom layers were calculated to be 537 mL/s and 685 mL/s. However, when the

radial velocities along the side surface of the impeller, as indicated in Figure 5-2a (App. A)

were included the mass balance in the impeller region could be closed within 6 %. It

should be noticed that the absolute values of these velocities were quite small, especially

when compared with the tip speed (typically less than 10% of the tip speed).

The radial velocity component at the top and bottom of the impeller region was

always found to be very small when compared to the tangential component. The reason

22
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for this resides in the absence of either baffles or a vortex preventing the formation of a

strong recirculation flow in either the radial or the axial direction.

The intensity of the turbulent kinetic energy in the same impeller region (obtained

through the experimental measurement of the fluctuating velocity components) is shown in

Figure 5-3 (App. A). The kinetic energy was found to be relatively constant across both

the top and bottom surface layers except for a peak in correspondence of r/R = 0.4. This

result does not appear to be attributable to any kind of experimental error since additional

experiments were conducted to confirm these results. In addition, other investigators

(Ranade and Joshi, 1989) working on entirely different systems also reported similar

significant peaks for the kinetic energy values around the impeller. The values for the

velocity components (tangential and axial) and for k shown in the above figures were used

as boundary conditions for the numerical simulation resulting in the velocity profiles inside

the vessel.

5.1.2 Velocities Outside the Impeller Region

The results of the numerical simulation are presented in Figures 5-4, 5-5, and 5-6 (App.

A). Figure 5-4 shows a comparison between the experimental data for the tangential

velocities at different positions inside the vessel and the corresponding values obtained

from the numerical simulation. One can see that the agreement is quite good for all the

cases examined here (i.e., all the different Z/H values). This figure also shows that the

tangential velocity is relatively independent of the radial position or the axial position

within the vessel, indicating that the vessel's content rotates as a solid body around the

shaft.

Figures 5-5a and 5-5b (App. A) show a comparison between the experimental data

and the numerical simulation results for the axial velocity component and the radial

velocity component, respectively. In these figures the positive direction indicates the
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upward direction (for the axial velocity case) or the direction toward the vessel wall (for

the radial velocity case). The agreement in these cases is as good as in tangential velocity

case (Figure 5-6, App. A). However, it should be emphasized that the absolute values of

the radial and axial velocities are quite small.

A comparison of the results obtained in this work with previously published data is

impossible because of the lack of data (either experimental or numerical) for similar

unbaffled systems. De Groot (1991) experimentally determined the velocity in an

unbaffled system without a lid, i.e., in which a vortex was generated. A comparison of his

tangential velocity data showed a good agreement with a numerical model and with an

earlier model (Nagata, 1975). Satisfactory comparisons between numerical and

experimental data have also been obtained by those investigators who studied baffled

systems (Ranade et al., 1989; Kresta and Wood, 1991; Weetman, 1991; Bakker, 1992).

Therefore, the level of agreement between numerical results and experimental data

obtained in this work is comparable with that reported in the literature for other mixing

systems. Figure 5-7 (App. A) shows the computational grids and a cross sectional view of

the simulation results. As can be seen from Figure 5-7b (App. A) a strong tangential

dominated flow pattern is generated. In Figure 5-8 (App. A) both the simulated contours

of turbulent kinetic energy and dissipation rate are shown. A strong gradient of both

turbulence parameters near the impeller region is observed and is propagated towards the

vessel bottom.

In order to understand the effect of the impeller off bottom clearance (C) on the

flow fields in the vessel, another experiment was carried out. Figure 5-9 (App. A) shows

the effect of the impeller clearance at (C/T) = 0.1, 0.2, 0.3 and 0.5 on the dominated

tangential velocities. The ratio u t/Utip was found to be equal to 0.2 independently of the

different impeller off bottom position. This means that the flow pattern is not altered by

the impeller position in this unbaffled configuration.



25

A separate experiment was carried out in the open unbaffled configuration to

examine the effect of the vortex on the flow pattern. The C/T ratio was 0.2. Figure 5-10

(App. A) shows the experimental results for the three velocity components within the

vessel. As one could see that the flow fields in such a vortex system is still dominated by

tangential component. Similar results were also reported by De Groot (1991).

5.1.3 Simulation Using Rotating Reference Frame

The simulations were carried out with the vessel rotating at 100, 300 and 500 rpm, and

with single FBT positioned at (C/T) = 0.2. Figure 5-11, 5-12, and 5-13 (App. A) show

the corresponding results accordingly. At 100 rpm results of the simulation were

acceptable, while at higher rotational speed (300-500 rpm) a more pronounced deviation

from the experimental data occurred. Such a deviation increased with the rotational

speed. This could be attributed to turbulence effects. At higher rotating speed the

turbulence is getting stronger, therefore turbulence parameters along the vessel wall can

no more be assumed to be zero. Unfortunately, no general rule is available to date to

predict these turbulence parameters near the wall region in the rotating reference frame.

5.2 Unbaffled Single-PBT Configuration

5.2.1 Velocities in the Impeller Region

In this study the impeller was positioned at (C/T) = 0.2 and rotated at a speed of 300 rpm.

The process fluid was filled up the vessel entirely. The velocities in the impeller regions

were experimentally determined via LDV in order to determine the boundary conditions

for the numerical simulation. As mentioned in the section on numerical simulation the

average and fluctuating velocities were determined for the top, bottom, and side surfaces

of the cylindrical region swept by the impeller. The results for the top and bottom surface,

in terms of tangential, axial, and radial velocity distribution, are given in Figure 5-14a and

5-14b (App. A), where each point represents the average of at least two measurements.
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The results for the side surface were also obtained but are not shown. These velocities

were used to calculate the flow in and out of the impeller region. It was found than the

mass balance in this region could be closed quite satisfactorily (ratio of inflow rate to

outflow rate = 94.6%). This insured that these velocity values could be reliably used as

boundary conditions in the numerical simulation.

The average tangential velocity along the impeller top surface appeared to be

constant with respect to the radial position, and equal to about 25% of the impeller tip

speed. The corresponding velocity on the bottom surface showed greater scatter. In any

case a strong tangential velocity component was observed. The axial velocity on the top

surface was always directed downwards (negative direction), as one may expect. On the

bottom surface the axial velocity was always directed downwards except for the region

near the impeller tip. The radial velocity on the top and bottom impeller surface was

always found to be very small with respect to the tip speed.

The values of the turbulence kinetic energy in the same impeller region (obtained

through the experimental determination of the fluctuating velocities) are shown in Figures

5-15a and 5-15b (App. A). While the k value on the bottom impeller surface was found to

be quite small and nearly constant, that on the top surface showed a significantly greater

variability. The experimentally determined velocity and turbulence kinetic energy data for

the impeller region were used as boundary conditions for the numerical CFD simulation in

the entire vessel.

5.2.2 Velocities Outside the Impeller Region

In Figure 5-16 (App. A) the experimental LDV results for the tangential velocity are

compared with the values predicted by FLUENT for five different values of the Z/H ratio.

These predictions were obtained using ASM as a turbulence model and B.C. #2 as the

impeller boundary conditions. One can clearly see that the comparison between the
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experimental and the numerical results is quite favorable. Figures 5-17a and 5-17b (App.

A) show the corresponding comparison for the axial velocity and the radial velocity,

respectively. In this case the axial velocity appears to be correctly predicted for Z/H equal

to 0.38 (i.e., closer to the impeller) while a deviation between the experimental and the

numerical values can be seen for Z/H equal to 0.8 and 2r/T values smaller than 0.4. The

radial velocity (although small) also appears to be more correctly predicted for Z/H equal

to 0.38 than for 0.8, as shown in Figure 5-17b (App. A).

Comparisons between the experimental data for the tangential velocity and the

numerical predictions obtained using different turbulence models (ASM or k-ε) and

different boundary conditions in the impeller region (B.C. #1, and #2) for two different

values of the Z/H ratio (0.38 and 0.8) are shown in Figure 5-18 (App. A). Independently

of the axial position it appears that the predictions based on ASM agree more closely with

the experimental results than those based on the k-ε model. This is indicated not only by

the proximity of the experimental data point to the ASM-based curves but also by the

general trend of the curves which is more similar to the experimental data for the ASM

curves than for the k-ε model curves. A possible explanation for this can be found in the

fact that whereas the k-ε model employs an isotropic eddy viscosity ASM uses an non-

isotropic eddy viscosity. This can be important in a system, such as the one under study,

in which the flow is highly directional and for which a single value of the eddy viscosity

may not be sufficient to adequately describe the turbulent flow.

Figure 5-18 (App. A) also shows that the choice of the boundary conditions has an

impact on the numerical results. This is clearly the case for the ASM curve obtained using

B.C. #2 which is in much closer agreement with the experimental points than the

corresponding curve for B.C. #1. However, the latter curve also appears to follow the

same qualitative trend of the former curve. Therefore it can be concluded that, at least for

this system, to specify the velocity distribution in the impeller region more precisely has a

positive impact on the reliability of the predictions.
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A comparison between the results obtained in this work and previous literature is

difficult because of the limited availability of data. A direct comparison can only be made

with the results recently obtained in a similar closed, unbaffled system using a flat-blade

turbine (Armenante and Chou, 1994). It appears that the velocity distribution in the

impeller region found in that study is somewhat similar to that reported here, in spite of

the different impellers used in the two systems. The reason for this is probably in the

absence of baffles, the presence of the lid, and fact that the vessel is completely full. This

is likely to reduce the differences between the flow generated by impellers that would

normally produce strong radial or axial flow in baffled systems. The two systems also

present strong similarities between the flow in the entire vessel. Because of the geometry

of the mixing system a flow dominated by a strong rotational component is generated

independently of the type of impeller used. As expected, little similarity exists between the

pitched-blade impeller system studied here and the corresponding baffled system studied

by Jaworski et al. (1991).

Finally it appears that the level of agreement between experimental data and

numerical predictions obtained in this work is quite good in spite of the fact that the

absence of baffle creates a flow that is quite difficult to model unless a non-isotropic

turbulence model is used. The results of the predicted flow pattern and the computational

grids used in the simulation are shown in Figure 5-19 (App. A). Usually a finer grids is

used in the region where strong velocity gradient is expected The cross sectional view of

the flow pattern reveals that a strong domination of the tangential velocity existed within

the vessel. In Figure 5-20 (App. A) both the simulated contours of turbulent kinetic

energy and dissipation rate are shown. A strong gradient of both turbulence parameters

near the impeller region is observed and is propagated radially towards the vessel wall.

Another experiment was conducted to examine the effect of the impeller off bottom

clearance (C) to the flow pattern in the unbaffled vessel. Figure 5-21 (App. A) shows the

tangential velocities at various impeller positions (C/T = 0.11, 0.2, 0.3, and 0.5) along the
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vessel radius. It indicates that the tangential velocities are not changed with respect to the

impeller position in the vessel, and having the values about 0.2 of the impeller tip speed.

5.3 Baffled Single-PBT Configuration

5.3.1 Velocities in the Impeller Region

The experimentally determined average axial, tangential, and radial velocities in the

impeller region are reported in Figure 5-22 (App. A). The axial velocities along the top of

the impeller were all directed downward, as one would expect for a PBT-induced flow,

and nearly constant for r/R values larger than 0.6 (Figure 5-22a, App. A). Closer to the

hub the velocities became progressively smaller and approached the zero value. The

corresponding velocities on the bottom face of the impeller were constant for r/R < 0.7

and became larger in magnitude beyond that point (Figure 5-22b, App. A). The tangential

components were relatively constant and similar in magnitude on both faces. The

velocities on the cylindrical surface representing the side of the volume swept by the

impeller were also experimentally measured. The velocity profiles in the impeller region

observed in this work are flatter than those recently reported by Kresta and Wood (1993b)

just below the impeller, or by Ranade et al. (1992) 30 mm below the impeller. On the

other hand the profiles found here are somewhat similar to those reported by Armenante

and Chou (1994) and Armenante et al. (1994) for unbaffled systems. A possible

explanation for the discrepancies with the results in baffled vessels reported above is that

in those studies the baffles extended all the way to the bottom of the vessel, whereas in

this work a gap between the baffles and the vessel bottom existed. This could have an

impact on the circulation in the region below the impeller making it more similar to that

found in unbaffled tanks.

The average velocities on all the surfaces of the volume swept by the impeller were

used to calculate the flow rate in and out of the impeller region. A mass balance based on
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the experimental velocities around the impeller indicated that the fluid flow rates entering

the top face and leaving from the bottom face were 1.90.10 -3 m3/s and 1.78.10 -3 m3/s,

respectively. When the contribution of the side surface was taken into account the mass

balance could be closed to within 2%, i.e., the total outflow from the impeller region was

98% of the total inflow into the same region. The impeller flow number, Fl, was

calculated from (Jaworski et al., 1991):

where Q is the volumetric flow rate discharged from the impeller. This number was

calculated from:

in which the first integral accounts for the flow discharged from the bottom surface of the

impeller, and the second integral represents the radial positive flow from the impeller side.

In this equation, Zb is the axial coordinate at the bottom of the impeller (in this work, 5

mm below the impeller for all practical purposes), and is the axial coordinate up to

which the radial flow on the impeller side is directed outwards. The second integral was

evaluated at a radial distance that was as close to R as possible (practically 1 mm). In this

work the flow number was found to be equal to 0.36. This value is much lower than the

values that other investigators have found for PBT, such as 0.71 (Jaworski et al., 1991),

0.753 (Kresta and Wood, 1993b), 0.75-0.79 (Oldshue, 1983; Table 8-3), and 0.85

(Ranade and Joshi, 1989). However, it should be noticed that all these investigators used

PBT with a blade projected width-to-impeller diameter ratio (1/5) much larger than that

used in this work (1/8), and that no Fl value was found for PBTs geometrically similar to

those used here. On the other hand, values for Fl similar to that found here have been
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reported for curved or convex PBTs (0.39; Ranade et al., 1992), or for square pitch

propellers (0.4-0.55; Gray and Uhl, 1966; Oldshue, 1983, Table 8-3). The importance of

the w/D ratio can be also assessed by examining the literature data on power numbers for

PBT having different blade width. The power number has been reported to be equal to

1.67 for PBT having a w/D equal ratio of 1/5 (Rewatkar et al., 1990), but only 1.3 for w/D

equal to 1/8 (Bates et al., 1963; Bates et al., 1966).

The fluctuating velocities in all three dimensions were experimentally determined for

the same surfaces in the impeller region and were used to calculate the local turbulence

kinetic energy, k. The results are given in Figure 5-23 (App. A). Also in this case the

curves obtained here for k/U2tip as a function of r/R are flatter than those reported by other

investigators (Ranade and Joshi, 1989; Ranade et at., 1992; Kresta and Wood, 1993a),

who showed the existence of a peak for k for r/R 0.5. However, the results found in the

present work were more similar to those obtained in unbaffled vessels (Armenante and

Chou, 1994; Armenante et al.; 1994).

5.3.2 Velocities Outside the Impeller Region

The values of the three experimentally determined velocity components in the bulk of the

fluid were are given in Figures 5-24, 5-25, and 5-26 (App. A). In addition, the values

given above for the velocities and turbulence kinetic energies in the impeller region were

used as boundary conditions in the numerical simulations. The results for these

simulations (using different boundary conditions and turbulence models) are also given in

Figures 5-24, 5-25, and 5-26 (App. A). In general, a satisfactory agreement can be

observed between the experimental results and the simulation curves. This confirms the

validity of the experimental determinations of the boundary conditions that were used in

the simulations.
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The tangential velocity near the tank bottom (Z/H = 0.1) is only a weak function of

the radial distance (Figure 5-24, App. A). This is probably due to the lack of baffling

action in that region caused by the presence of a gap between the baffles and the tank

bottom. The agreement between experimental and simulation data in this region is

excellent almost independently of the type of boundary conditions and turbulence model.

The results for Z/H = 0.33 show the effect of the presence of the impeller. The agreement

with the simulation is good independently of the turbulence model but not of the boundary

conditions. The simulation based on B.C. #2 is clearly superior. In the section of the

vessel above the impeller the value of the tangential velocity is small and an acceptable

agreement between simulation and experiments can be seen.

Figure 5-25 (App. A) show that near the vessel bottom (Z/H = 0.1) the axial

velocity is directed downwards for 2r/T> 0.3, i.e., in the region external to the impeller.

Underneath the impeller the flow is close to zero, indicating the presence of a nearly

stagnant zone. On the impeller plane the axial velocity is strongly oriented downwards

near the impeller (2r/T > 0.7) and upwards otherwise. Above the impeller the flow is that

typical of an axial impeller, i.e., downwards in the center and upwards at the periphery of

the tank. For any of the five heights one can see that the simulation curves follow

adequately well the experimental points. The simulation based on B.C. #2 and ASM is

slightly superior to the others for any Z/H value.

A comparison between experimental data and simulations is also quite favorable for

the radial velocity component (Figure 5-26, App. A) for all Z/H values. Below the

impeller a nearly stagnant zone can be again identified. Since the radial and the axial

velocities in this zone are both close to zero little exchange of fluid between this zone and

the rest of the tank occurs. Only a swirling action is present in this zone because of the

high values of the tangential component. In correspondence of the impeller (Z/H = 0.33)

the radial velocity is also quite modest since the flow is primarily directed downwards, at

an angle. The simulations based on B.C. #2 are clearly superior to the others in this
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region. In the rest of the vessel the radial velocity is small and directed inwards to form a

large recirculation loop above the impeller.

In Figure 5-27 (App. A) the computational grids used in all the simulations of the

baffled single-impeller configurations is shown. Figure 5-28 (App. A) shows a

tridimensional view of the velocity profiles obtained via simulation (Figure 5-28a, App.

A), as well as a bidimensional cross section view across the impeller shaft of the same

velocities (Figure 5-28b, App. A). This figures shows the typical top-to-bottom main

circulation pattern associated with PBT-generated flows and the presence of nearly

stagnant zone (as far as the velocities in the cross sectional plane are concerned) under the

impeller. In Figure 5-29 (App. A) both the simulated contours of turbulent kinetic energy

and dissipation rate are shown. A strong gradient of both turbulence parameters near the

impeller region is observed and is propagated axially towards the vessel bottom.

The results obtained here for a single PBT can be partially compared with the results

obtained in the literature for other PBT systems (Ranade and Joshi, 1989; Jaworski et al.,

1991; Ranade et al., 1992; Kresta and Wood, 1993b; Armenante et al., 1994). The

tangential velocities obtained here for Z/H = 0.1 can be approximately compared with

those of Ranade et al. (1989), who examined the case for which Z/H is equal to 0.668,

0.015 and 0.233, respectively. Their nondimensional tangential velocity for the lowest of

these Z/H values is of the order of 0.1, i.e., quite similar to the value found here.

However their curve shows a moderate peak for 2r/T= 0.38 that is absent in the present

study. More pronounce peaks appear in their other curves for higher Z/H values. Kresta

and Wood (1993b) also produced several curves for the tangential velocities below the

impeller. The curve that is closest to the Z/H value used here (0.1) is that for which

Z/H = 0.192. This curve also shows a peak (ut/Utip = 0.2) for 2r/T =  0.27. The likely

explanation for these discrepancies is in the difference in baffling system, which extends all

the way to the bottom of the vessel in the case of these two literature studies, but not in

this study. In fact, the profile found in the present study is rather similar to that observed
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in a similar but closed, unbafiled vessel agitated by a PBT (Armenante et al., 1994). The

tangential velocity on the same plane of the impeller was found here to show a marked

upward trend near the impeller tip, similarly to previous results for planes under the

impeller (of Ranade and Joshi, 1989; Kresta and Wood, 1993b). In particular, the values

of the ut/Utip, for 2r/T > 0.33 were found to be very close to those of Kresta and Wood

(1993b) just below the impeller. Comparisons of the tangential velocities above the

impeller with other results in the literature are difficult because of the lack of data.

The results obtained here for the axial velocities compare quite favorably with the

results of previous literature studies if one takes into account the differences in the

geometries of the impeller and the baffles. Ranade and Joshi (1989) produced velocity

profiles for the region below the impeller that are similar to that shown in Figure 5-25 for

Z/H = 0.1. As observed previously, the numerical values of the peaks in their ua/Utip

curves are greater than that found here (0.25 vs. 0.12). However, the impeller they used

had a much larger w/D ratio than that used here (1/5 vs. 1/8). A similar argument can be

used to interpret the data of Jaworski et al. (1991), and Kresta and Wood (1993b), which

also show numerical results similar to those of Ranade and Joshi (1989). The curves that

the latter authors obtained for the region above the impeller also agree qualitatively with

the curves produced here for Z/H equal to 0.5, 0.67, and 0.8.

Previous investigations have shown that the radial component is typically quite small

anywhere in the vessel except for the region below the impeller. This is what was found

here as well (Figure 5-26, App. A). Significant agreement between the result of this work

and the data of Jaworski et al. (1991) and Kresta and Wood (1993b) was found. The data

of the former workers indicates that the radial velocity is small and directed inwards above

the impeller and is directed outwards below the impeller except for the region just under

it. This is precisely what was observed here (Figure 5-26, App. A). As before, the major

difference between previous literature data and the data of the present work is in the

magnitude of the velocities, which is lower here because of the smaller impeller blade
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width. The data of Ranade and Joshi (1989) for u,. are also in overall qualitative

agreement with the data of this study. However, the agreement between the numerical

predictions and the radial velocity data appear to be much better in the present work than

in Ranade and Joshi' s work (1989).

5.4 Baffled Double-PBT Configuration

5.4.1 Velocities in the Impeller Regions

The experimentally determined velocities in the upper impeller and lower impeller regions

are given in Figures 5-30 and 5-31 (App. A), respectively. As for the single-PBT system

the axial velocities were all directed downwards. A comparison between these two figures

reveals that the axial velocities on the top surfaces of both impellers are identical for

r/R > 0.7. For r/R < 0.7 the top layer velocity of the lower impeller is nearly flat while

that of the upper impeller decrease, in absolute value, toward zero as the ratio r/R

becomes smaller. The velocity on the bottom surface of the lower impeller was found to

be slightly but consistently higher than the corresponding velocity for the upper impeller.

These results indicate that the pumping action of the upper impeller produces a stronger

and more homogeneous downward flow across the lower impeller. With the data from

Figure 5-32 (App. A) where the radial velocities on the side surface of the impeller are

indicated, the mass balance of the flow in and out of both the upper and lower impeller can

be closed about 13.8 % difference. An examination of Figure 5-31 and Figure 5-22 (App.

A) provides a comparison between the velocities in the same (lower) impeller region in the

presence or absence of the upper impeller. The axial velocity profiles for both the top and

bottom surfaces appear nearly the same with or without the upper impeller. However, the

presence of the upper impeller produces a more constant and smooth axial velocity profile.

This is probably the result of a more directionally homogeneous inflow to the lower

impeller resulting from the presence of the upper impeller. By comparing Figure 5-30 (for
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the upper impeller, App. A) with Figure 5-22 (for the single impeller, App. A) one can see

that the axial velocity profiles on the top surfaces have nearly identical shapes, but that the

curve for the upper impeller appears translated toward the right. This is probably the

result of the shorter distance between the upper impeller and the free liquid surface

compared to the single impeller case. A similar comparison for the bottom surfaces shows

that the axial velocities are very similar but that the profile for the upper impeller is

smoother than that of the single impeller, probably because of the presence of the lower

impeller that makes the flow between the upper and lower impeller more axially oriented.

Figures 5-30 and 5-31 (App. A) also reveal that the tangential velocity profiles on

the bottom faces of the upper and lower impellers are practically identical. However, a

similar comparison for the top surfaces indicates that tangential velocities for the upper

impeller are noticeably higher than the corresponding velocities for the lower impeller.

This is somewhat counterintuitive since one would expect that a stronger tangential flow

in the neighborhood of the lower impeller would be generated in the presence of the upper

impeller rather than in its absence. On the other hand a comparison of Figure 5-30 (for

the upper impeller, App. A) with Figure 5-22 (for the single impeller, App. A) shows that

the tangential velocities on both the top and bottom surfaces are virtually superimposable.

This confirms that the flow in the upper impeller region is similar to that observed in a

single impeller region. A likely explanation for this is in the weak flow (especially

tangential flow) generated by a PBT in the vessel region above the impeller (as shown in

Figure 5-28, App. A) which makes the flow near the upper impeller nearly (although not

completely) independent of the flow field generated by the lower impeller.

The values of the turbulent kinetic energy at the top and bottom surfaces of the

upper impeller and lower impeller regions were calculated from the three components of

the fluctuating velocities and are shown in Figures 5-33 and 5-34 (App. A), respectively.

A significant difference exists between the k/U2tip profiles for the two regions. In

particular, the k/U2tip profile for the top surface of the upper impeller was found to be
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significantly lower than that for the top surface of the lower impeller. On the other hand,

a comparison between Figure 5-23a and Figure 5-33a (App. A) shows no appreciable

differences between the top surface k/U2tip , values for the single impeller case and those for

the upper impeller case. This indicates that the turbulent flow generated by the upper

impeller travels downwards resulting in a higher level of turbulence on the top face of the

lower impeller. An appreciable difference exists also between the k/U2tip values on the

bottom surfaces of the upper and lower impellers (Figures 5-33b and 5-34b, App. A),

although not as pronounced as in the top surface case. By comparing Figures 5-23b, 5-

33b, and 5-34b one can see that the bottom surface kV values are rather similar for the

single impeller and upper impeller case, but not for the lower impeller case. This again

confirms that whereas the upper impeller has a significant impact on the flow and

turbulence level in the lower impeller region, the reverse is not true, and that the upper

impeller is quite similar to a single impeller as far as flow and turbulence in the impeller

region are concerned.

5.4.2 Velocities Outside the Impeller Regions

Figures 5-35, 5-36, and 5-37 (App. A) show the velocity profiles in the bulk of the liquid

in correspondence of five different horizontal planes for the double PBT agitation system.

Examination of this figures reveals that, in general, a substantial agreement exists between

the experimental LDV data and the results of the CFD simulations in which the velocity

and turbulent kinetic energy profiles in the impeller regions (Figures 5-30, 5-31, 5-33, and

5-34, App. A) were used as boundary conditions. However, only B.C. #2 was used in the

simulations for the double PBT system. Two different turbulence models (k-ε and ASM)

were used in the simulations.

As in the single PBT case, the tangential velocity near the vessel bottom (Z/H = 0.1)

was found to be relatively constant, although significantly smaller in value (about 50%)
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than in the former case. This is somewhat counterintuitive since one would expect that

the presence of a second impeller would reinforce the flow near the vessel bottom,

including the tangential component. The tangential velocity profile for Z/H = 0.33 is

clearly affected by the presence of the impeller on the same plane, and is very similar to

the corresponding single PBT case. However, the velocity profile in the middle of the

vessel (Z/H = 0.5) is substantially higher in this case, probably because of the upper

impeller. The tangential velocity profile at Z/H = 0.67 is similar to that at Z/H = 0.33, and

even more similar to that of a single PBT also at Z/H = 0.33. Finally, the profile in the

upper region (Z/H = 0.8) shows that the tangential velocities above the impeller are only

moderately affected by the proximity of the upper impeller and are only slightly higher

than the corresponding values for the single PBT case. In any case, the curves in these

figures indicate that no significant difference exists between the predictions based on the

two turbulence models.

The results reported in Figure 5-36 (App. A) show that the presence of the upper

impeller has a significant impact on the axial flow throughout the vessel. The most

dramatic evidence of this can be seen near the bottom of the vessel. A comparison

between Figures 5-36 and 5-25 (App. A) in correspondence of Z/H = 0.10 shows that the

axial flow is now directed upwards in the central bottom part of the vessel (2r/T < 0.7),

and downwards near the vessel wall. This is almost exactly the reverse of the flow

produced by a single PBT. While the axial flow in the lower impeller region (Z/H = 0.33)

is similar to that for a single impeller (Figure 5-25, App. A), the axial velocities between

the impellers (Z/H = 0.50) are significantly larger in the central vessel region for the case

of a double PBT system, which is what one could intuitively anticipate. The axial flow in

the upper impeller region (Z/H = 0.67) and in the region above that (Z/H = 0.80) are

clearly affected by the presence of the upper impeller.

As for the radial velocities significant differences exist between the double PBT and

single PBT cases in the region near the vessel bottom (Z/H = 0.10) where the flow
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intensity is much lower in the former case. Also, in the region of the lower impeller

(Z/H= 0.33) the radial flow is directed outwards in the double PBT case and inward in the

single PBT case. In the rest of the vessel no appreciable differences between the two

configurations can be seen, except for the region where the upper impeller is located

(Z/H = 0.67).

The simulated flow pattern generated by two PBTs is given in Figure 5-39 (App. A).

A comparison of this figure with the corresponding figure for the single impeller

configuration (Figure 5-28, App. A) shows the striking differences in flow pattern

resulting from the presence of the second impeller. The main top-to-bottom axial flow is

clearly stronger, especially between the two impellers. More significantly, the angled

discharge from the bottom impeller is now deflected horizontally before reaching the

bottom of the vessel. This produces an expansion of the low circulation region previously

observed just under the impeller in the single PBT case, and results in the entire bottom

region in the vessel being almost completely cut off from the main circulation loop. In

fact, a secondary recirculation loop can be observed in the region comprised between the

vessel bottom and wall. This change in the flow pattern is not only counterintuitive but

can also have dramatic consequences on some of the typical industrial applications of

PBTs, such as the off-bottom suspension of solid particles. Contrary to what one may

expect the addition of a second impeller is likely to have (at least in this case) a negative

impact on the suspension ability of the agitation system. This would not only result in a

higher agitation speed to achieve the same degree of solid suspension, but also in a much

higher power consumption caused by the presence of the second impeller. A situation of

this kind has been already described in the literature. For example, Armenante et al.

(1992) have already observed that the presence of two or three impellers instead of one

may result in higher agitation speeds and higher power consumption to achieve the same

complete particle suspension state in solid-liquid systems (Njs), or the complete dispersion

state in liquid-liquid systems (NCd). This phenomenon was observed not only with mixed-
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flow impellers, such as PBTs, but also with radial flow impellers, such as disk turbines and

flat-blade turbines (Armenante et al., 1992; Armenante and Li, 1993). In Figure 5-40

(App. A) both the simulated contours of turbulent kinetic energy and dissipation rate are

shown. A strong gradient of both turbulence parameters near the impeller region is

observed and is propagated axially towards the vessel bottom.

A separate experiment was also carried out to examine the effect of the impeller

spacing (S) to the flow pattern. Figure 5-41, 5-42, and 5-43 (App. A) show the measured

tangential, axial, and radial velocities along the vessel radius with respect to the change of

the ratio of S/D (ratio of the impeller spacing to impeller diameter). The important region

in this study is particularly aimed at the zone between two impellers. Therefore, the

horizontal planes at Z/H = 0.416, 0.444, 0.50, and 0.556 were examined. The tangential

and radial velocities seem not affected by the impeller spacing. However, the axial

velocities show the trend that the closer of the impellers the higher of the pumping action.

5.5 Baffled Single-FBT Configuration

5.5.1 Velocities in the Impeller Region

The experimentally determined average axial, tangential, and radial velocities in the

impeller region are reported in Figure 5-44 (App. A). The axial velocities along both the

top and bottom of the impeller were all downward directed, and nearly constant for r/R

values greater than 0.6. When approaching to the hub the velocities became larger in the

downward direction on the top surface, the corresponding velocities on the bottom

surface were shown to be nearly constant. The tangential velocities were relatively

constant and had a u/Utip value about 0.15. The radial velocities values were shown

fluctuate around zero on both the top and bottom surfaces, except those having values

almost identical with axial velocities for r/R < 0.75 on the bottom surface. A comparison

of the results with previous work was found to be difficult. Nagata (1975) reported a

similar downward directed velocity profiles for axial velocities with single 8-flat-blade
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turbine in a baffled mixing vessel. The radial velocities on the cylindrical surface

representing the incoming or outgoing flow on the side of the volume swept by the

impeller is shown in Figure 5-45 (App. A). The numerical simulations were obtained

using those boundary conditions in the impeller region of the measured average axial and

tangential velocities, the calculated k and e, and by assuming zero radial velocities.

The average axial velocities on both top and bottom surfaces and the average radial

velocities on the side surface were used to calculate the flow rate in and out of the

impeller region. A mass balance based on these experimental results can be closed to

within 4.9%, i.e., the total outflow from the impeller region was 104.9% of the total

inflow into the same region. The impeller flow number, Fl, was found to be equal to 0.41.

This value is found to be closed to Nagata's 0.34 for 8-flat-blade turbine configuration.

The fluctuating velocities along both the top and bottom of the impeller region for

all three dimensions were experimentally determined and used to calculate the local

turbulence kinetic energy, k. The results are shown in Figure 5-46 (App. A). The results

for the side surface was not used in the numerical predictions, and, it is not included. The

dimensionless k/U2tip values along r/R on the top surface shows a fairly constant value

about 0.006-0.008, while along the bottom surface a more scattering nature is observed as

for r/R > 0.5 the values is ranged from 0.008-0.018.

5.5.2 Velocities Outside the Impeller Region

Figures 5-47, 5-48, and 5-49 (App. A) show a comparison of the velocity profiles for both

experimentally determined and numerically predicted results of three velocity components

at five different horizontal planes. In general, a satisfactory agreement can be observed.

This confirms the validity of the experimental determinations of the boundary conditions

that were used in the simulations.

The tangential velocity near the tank bottom (Z/H = 0.1) was found to be almost

constant along the radius. This is probably due to the presence of a gap between the
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baffles and the tank bottom. The results for Z/H = 0.33, i.e., at the impeller centerline

indicate a strong gradient along the tank radius. While for Z/H = 0.5, 0.67, and 0.8 a less

strong gradient is observed.

The axial velocity (Figure 5-48, App. A) near the vessel bottom (Z/H = 0.1) shows a

upward directed flow for 2r/T < 0.7, while at Z/H = 0.33 the flow is directed downwards.

Two recirculation flows are observed in the zone for Z/H between 0.1 and 0.33.

Figure 5-49 (App. A) shows quite good agreement for the radial velocity

components for all Z/H values. Except in the region near the impeller the radial velocity is

fairly close to zero. This clearly shows that the flow is mainly dominated by the axial and

tangential velocity components.

Finally, Figure 5-50 (App. A) shows a tridimensional view of the velocity profiles

obtained via simulation (Figure 5-50a, App. A), as well as a bidimensional cross section

view across the impeller shaft of the same velocities (Figure 5-50b, App. A). This figure

shows the top-to-bottom main circulation pattern produced by FBT and an induced

circulation pattern beneath the impeller. In Figure 5-51 (App. A) both the simulated

contours of turbulent kinetic energy and dissipation rate are shown. A strong gradient of

both turbulence parameters near the impeller region is observed.

The results obtained in this work can be compared with the observation of Nagata's

(1975), in which a main circulation flow was also generated by an 8-flat-blade turbine in a

baffled mixing vessel.

5.6 Baffled Double-FBT Configuration

5.6.1 Velocities in the Impeller Region

The experimentally determined velocities in the upper impeller and lower impeller

regions are given in Figure 5-52 and Figure 5-53 (App. A), respectively. The axial

velocities on the top of both the upper and lower show a fairly constant value of 0.15 and

0.10 of the impeller tip speed, respectively. A slightly greater values for the
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corresponding velocities on the bottom of the upper impeller is observed. This indicates

that the pumping action of the upper impeller produces a stronger downward flow than

the lower impeller. However the axial velocities along the bottom surface of the lower

impeller were found to be much smaller than the corresponding velocities for the upper

impeller. This implies that a stronger radial pumping is expected. As can be seen from

Figure 5-54b (App. A), the radial velocities along the side of the lower impeller are in the

outflow direction. The average axial velocities on both top and bottom surfaces and the

average radial velocities on the side surface of the upper and lower impeller were used to

calculate the flow rate in and out of the impeller region. A mass balance based on these

experimental results can be closed to within 8% and 1.1% for the upper and lower

impeller, respectively. The impeller flow number, Fl, was found to be equal to 0.39 and

0.19 for the upper and lower impeller, respectively. The value of the upper impeller is

found to be closed to Nagata's 0.34 for 8-flat-blade turbine configuration. When

comparing the tangential velocities of the upper FBT with the single FBT in the impeller

region, a similar trend and magnitude can be seen. This confirms that the flow in the

upper impeller region is similar to that observed in the single impeller region. The average

radial velocity components along both top and bottom surfaces of the upper and lower

impeller show a near zero value.

The turbulent kinetic energy, k, at the top and bottom surfaces of the upper and

lower impeller regions were calculated from the three components of the fluctuating

velocities and are shown in Figure 5-55 and Figure 5-56 (App. A), respectively. In

general, a fairly constant value of e U2 t ip along the radius was observed, except for the

value on the top of the lower impeller where a drastic change in the turbulent kinetic

energy was shown. This indicates that the turbulent flow generated by the upper impeller

travels downwards resulting in a higher level of turbulence on the top surface of the lower

impeller. The same situation was also observed in the case of double-PBT system

(Armenante et al., 1994). When comparing Figure 5-46, 5-55, and 5-56 (App. A) one can
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see that the bottom surface k/U2tip values are rather similar for the single impeller and

upper impeller case, but not for the lower impeller case. This again confirms that the

upper impeller has a significant impact on the flow and turbulence level in the lower

impeller region. The same phenomena was also reported by Armenante et al. (1994) for

baffled double-PBT system.

5.6.2 Velocities Outside the Impeller Region

A comparison of the experimental results and numerical predictions for the tangential,

axial, and radial velocity components are shown in Figure 5-57, 5-58, and 5-59 (App. A),

respectively. In general, a substantial agreement exists between the LDV determinations

and CFD simulations were obtained. However, only B.C. #2 was used for two different

turbulence models, k-e and ASM.

The tangential velocities along the tank bottom were found to be gradually

decreased with respect to the radius. This trend is somewhat different from the single

FBT system where a fairly constant tangential velocity was found. This stronger

tangential velocities near the hub may therefore destroy the circulation pattern that existed

in the single-FBT system, and result in a swirling flow near the vessel bottom in the

double-FBT system. The tangential velocity profile at Z/H = 0.33 is similar to that of the

single impeller system, but is quite different at Z/H = 0.5. This can be attributed to the

presence of the upper impeller. The same situation was also observed for Z/H = 0.67 and

0.8. In any case, there is no significant difference between the predictions based on the

two turbulence models.

A significant impact on the axial velocities throughout the vessel is observed in

Figure 5-58 (App. A), when the upper impeller was placed. At Z/H = 0.1 a near zero

velocity in the axial direction is observed, while at Z/H = 0.33 a slightly stronger axial flow

compared to the single impeller is indicated. The most prominent changes in the axial

flow are at Z/H = 0.5 and 0.67 where a very strong pumping action exists. This is what
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one could intuitively anticipate. The flow in the region above the upper impeller (Z/H =

0.8) is clearly affected by the presence of the upper impeller. A similar situations were

also reported by Armenante et al. (1994) in a double-PBT system.

As for the radial velocities, no significant difference between single and double FBT

systems was found. The variation of the radial velocities along the vessel radius was very

small. Their values were all near by zero at all the five heights in the mixing vessel.

Finally, the simulated flow for the double-FBT configuration is shown in Figure 5-

60 (App. A). As can be seen from Figure 5-60a (App. A) a strong circulated flow pattern

exists between two impeller. However, a comparison with the flow generated by a

double-PBT system (Armenante et al., 1994) shows a higher off tank bottom circulation

pattern. This confirms that the axial velocities were weaker in the double-FBT than in the

double-PBT system near the bottom of the impeller region. Placing a second FBT into the

system also significantly affects the flow pattern by shifting the circulation flow toward the

upper part of the vessel. A swirling flow is dominates the lower part of the vessel. The

addition of a second impeller would have a negative impact on solid suspension. This

would not only results in higher agitation speed but also in higher power consumption to

achieve the same degree of solid suspension. The same conclusion was also reported by

Armenante et al. (1992). In Figure 5-61 (App. A) both the simulated contours of

turbulent kinetic energy and dissipation rate are shown. A strong gradient of both

turbulence parameters near the impeller region is observed.

A separate experiment was also carried out to examine the effect of the impeller

spacing (S) to the flow pattern. Figure 5-62, 5-63, and 5-64 (App. A) show the measured

tangential, axial, and radial velocities along the vessel radius with respect to the change of

the ratio of S/D (ratio of the impeller spacing to impeller diameter). The important region

in this study is the zone between the two impellers. Therefore, the horizontal planes at

Z/H = 0.416, 0.444, 0.50, and 0.556 were examined. The tangential and radial velocities

do no to be seem affected by the impeller spacing. However, the axial velocities show that
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the closer the impellers the higher the pumping action is. The same observation was made

in the double-PBT system.

5.7 Baffled PBT-FBT Configuration

5.7.1 Velocities in the Impeller Region

The velocity profiles in the impeller region for the three velocity components of both the

upper and lower impeller are given in Figure 5-65 and Figure 5-66 (App. A), respectively.

The axial velocities on both the top surfaces of the upper PBT and the lower FBT are

nearly the same in trend and magnitude for all radial distances. A greater outgoing

pumping action from the bottom surface of the upper impeller than the incoming pumping

action on the top of the lower impeller is noticed. This can be attributed to the less

effective axial pumping action of the lower radial type FBT. When comparing this

observation with the results of the radial velocities on the side surface as indicated in

Figure 5-67b (App. A), one can confirms that the downwards pumping action of the lower

impeller is partly coining from the impeller side. A mass balance around the impeller

region was obtained by the measuring average axial velocities on both the top and bottom

surfaces, and the radial velocities on the side surface of volume swept by the impeller.

The balance can be closed to 4% and 14% for the upper and lower impeller, respectively.

The impeller flow number, Fl, was found to be equal to 0.37 and 0.30 for the upper and

lower impeller, respectively. The value of the upper impeller was found to be closer to the

value of 0.36 reported by Armenante et al. (1994), while the value of the lower impeller is

close to Nagata's 0.34 for 8-flat-blade turbine configuration.

It also can be seen that the tangential velocities are almost identical on the bottom

faces of the upper and lower impeller. However, when comparing the corresponding

velocities of the top faces, those of the lower impeller shows grater values than the upper

impeller. A further comparison of the velocities of the upper impeller with the single PBT

shows that the velocities on both the top and bottom are almost identical. This confirms
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that the flow in the upper impeller region is similar to that observed in the single PBT

impeller region.

The scattering radial velocities along both the top surfaces of the upper and lower

impeller imply that more intense turbulence exists along these surfaces. A more stable

values of the same velocities on the bottom surfaces of the upper and lower impeller is

also indicated.

The turbulent kinetic energy, k, along the top and bottom surfaces of the upper and

lower impeller regions were calculated from the three fluctuating velocities and are

indicated in Figure 5-68 and Figure 5-69 (App. A), respectively. As mentioned above, the

k values on the top surfaces show a more broaden distributions.

5.7.2 Velocities Outside the Impeller Region

Figure 5-70, 5-71, and 5-72 (App. A) show a comparison between the experimental

results and the numerical predictions for the three velocity components. Very good

agreement was obtained. However, only B.C. #2 was used as the boundary conditions in

the impeller region. Both k-e and ASM turbulence models were tested.

Near the tank bottom (Z/H = 0.1) the tangential velocities are independent of the

radius distance. This can be attributed to the gap between the baffles and the tank bottom.

The simulation for Z/H = 0.33 shows slightly off prediction at 2r/T equal to 0.5 for both

models. However, for the same radial locations at Z/H = 0.67 the agreement between

experimental and simulation data is excellent. A strong velocity gradient at Z/H = 0.5

along the radius distance is observed. Very good agreement between the LDV data and

CFD results is also obtained for both turbulence models at this horizontal plane, except for

2r/T > 0.53 where the ASM prediction are depart from the experimental observations.

This is probably due to the regional homogeneous turbulence which results in locally off

prediction of the ASM model. For Z/H = 0.8 the velocities are relatively independent of

the radial distance.
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The axial velocities along the radius near the vessel bottom (Z/7/ = 0.1) are quite

small. In comparison to the double-PBT system (Armenante et al., 1994) and the double-

FBT system (Armenante et al., 1994) the induced circulation pattern in this region has

nearly disappeared. The addition of the second different type of impeller (PBT) has

caused the flow in this region to be stagnant. A strong downwards pumping at Z/H= 0.33,

0.5, and 0.67 are clearly indicated. However when compared with the double-PBT system

(Armenante et al., 1994) a less stronger downwards pumping action is observed. In this

region, both turbulence models predict quite well the experimental results. At Z/H =0.8

which is the region above the impeller, the pumping action is not as strong as in the region

between the two impellers.

As for the radial velocity components the results indicate that a nearly zero value for

both the experimental and prediction is obtained, which confirms the previous observation

of a stagnant zone existed in this region. The radial pumping action of FBT (at Z/H=

0.33) promotes the main circulation pattern, but also reduces the strength of the induced

circulation flow near the vessel bottom. As explained earlier, a strong circulation existed

between two impellers mainly directed axially, one may expects that a near zero value for

the radial components above the lower impeller occurred. In fact, at Z/H = 0.5, 0.67, and

0.8 the experimental radial velocity components actually show a nearly zero value.

Finally Figure 5-73 (App. A) shows the velocity profiles of a tridimensional and a

bidimensional view. From the bidimensional view the main top-to-bottom circulation

pattern is clearly indicated, yet the induced circulation pattern is disappeared. In Figure 5-

74 (App. A) both the simulated contours of turbulent kinetic energy and dissipation rate

are shown. A strong gradient of both turbulence parameters near the impeller region is

observed.

A separate experiment was also carried out to examine the effect of the impeller

spacing (S) on the flow pattern. Figure 5-75, 5-76, and 5-77 (App. A) show the measured

tangential, axial, and radial velocities along the vessel radius with respect to the change of
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the S/D ratio (ratio of the impeller spacing to impeller diameter). The important region in

this study is the zone between the two impellers. Therefore, the velocities in the

horizontal planes at Z/H = 0.416, 0.444, 0.50, and 0.556 were examined. The tangential

and radial velocities do not to be seem affected by the impeller spacing. However, the

axial velocities showed a slightly higher pumping action when the impellers were close.

5.8 Power Consumption

The total power consumption of the each configuration studied above is indicated in

Figure 5-78 and Figure 5-79 (App. A). The single impeller agitated system produced a

power number (Np) of about 0.5-3.0 at different impeller clearance ratio (C/T). The

variation of the power number with respect to rpm is very small. As can be seen from

Figure 5-78 (App. A) the baffled configurations always produced a higher power

consumption. For the unbaffled systems the FBT configuration also shows a slightly

higher power consumption than the PBT configuration. The way in which the power

consumption of two impellers system was determined in this work is to fix the lower

impeller position while varying the upper impeller position. As one can see from Figure 5-

79 (App. A) the power numbers for two impeller systems ranged from 2.0 to 4.5 which is

considered to be a reasonable value for such a system. In this study the double-FBT

configuration produced the highest power consumption, and the double-PBT system

produced the lowest power consumption, regardless of the S/D ratio. The same situation

was also observed in the single impeller system. This confirms that FBT-agitated systems

always consume more power than PBT system. The power number was a very weak

function of the S/D ratio. This also validate the observation of the flow fields was not

significantly affected much by the impeller spacing.
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CONCLUSIONS

The results of this study indicate that the flow pattern within the mixing vessel can be

correctly simulated whenever a set of well defined boundary conditions and a proper

selection of simulation techniques are employed. The experimental apparatus (LDV) used

in this study to measure the velocities across the vessel was also proven to be very

suitable. When comparing the flow fields obtained with and without baffles, it was found

that the flow pattern is generated mainly because of the existence of the four baffles within

the vessel, as one can see in general, the flow pattern was found to be tangentially

dominated in the unbaffled configuration regardless of the type of impeller, while an axial

top-to-bottom circulation flow was always observed in the baffled configuration. The

ASM model was always superior to the k-ε model in predicting the flow field for the

unbaffled configuration. A better prediction was also observed when the velocities at

more surfaces around the impeller region were specified as the boundary conditions in the

unbaffled configuration. As for the baffled vessels, velocity predictions of the flow fields

were, in general, quite good with both ASM and k-ε models. Several important

observations follow:

1. In the unbaffled FBT system the axial component is typically much smaller than the

tangential component. The radial velocity component is also typically smaller than

the axial velocity and one order of magnitude smaller than the tangential

component. This is also true even in the neighborhood of the impeller, in contrast

to what has been typically observed in baffled vessels in which a turbulent stream is

typically ejected radially from radial impellers (Kresta and Wood, 1991.).

Significant agreement was observed between the numerical CFD predictions for

the tangential velocity (in which an algebraic stress model was used to model
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turbulence) and the experimental data. The agreement was less satisfactory for the

axial and radial component. However, the CFD simulation was able to capture the

trend shown in the experimental data for the radial velocity component.

2. The results obtained in the unbaffled PBT system show that the flow produced by a

pitched-blade turbine in an unbaffled vessel with no headspace is strongly

dominated by the tangential component of the velocity. In such a geometry the

impeller, independently of its type, loses its radial or axial characteristics

commonly observed in baffled systems. The flow in the system studied in this

work can be adequately predicted by numerical models that use ASM to simulate

the effect of the turbulence viscosity, whereas simulations based on k-e models are

less satisfactory. Significant agreement was observed between the numerical CFD

predictions for the tangential velocity (in which an algebraic stress model was used

to model turbulence) and the experimental data. The agreement was also found to

be quite good for the axial and radial components as long as the ASM was used,

and the boundary conditions were specified at the top and bottom of the impeller

region.

3. The results of baffled PBT(s) system indicate that significant agreement exists

between the numerical predictions based on CFD simulations and the LDV

experimental values of the tridimensional velocity profiles in baffled vessels

agitated with one or two PBTs. Better predictions can be obtained if the boundary

conditions used in the simulation are specified at two rather than one of the

surfaces of the region swept by the impeller(s). Of the two turbulence models used

in this work, i.e., ASM and k-ε, the former produced results in marginally but

consistently better agreement with the experimental data than the latter.

4. The results for the baffled single PBT configuration indicate that the flow is

dominated by the axial component of the velocity, resulting in a major top-to-

bottom recirculation loop characteristic of single PBT flow in mixing vessel. The
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introduction of a second PBT produced a significant shift in the flow pattern,

generating an even stronger axial recirculation loop in the central and upper part of

the vessel, but also creating a secondary recirculation loop in the lower part of the

vessel completely extending over the entire bottom of the vessel. Because of low

velocities observed in this secondary loop, mixing in this region is likely to be

poor. This could result in a significant and negative impact of the presence of the

second impeller on phenomena such as off-bottom solid suspension, which

strongly depends on the velocity profiles and turbulence intensity in the region near

the tank bottom. Hence, caution should be exerted when an additional PBT is

added to a single PBT in order to improve the mixing performance of the system.

5. A substantial agreement between the LDV results and CFD predictions for three

velocity components in the baffled single FBT system is obtained.

6. With the addition of the second FBT, a strong circulated pattern is formed between

the two FBTs. However a comparison with the FBT configuration shows that the

presence of the second impeller reduces the intensity of the velocities in the region

below the lower impeller.

7. In the configurations where combinations of a PBT and a FBT were used, a fairly

good agreement between the LDV results and CFD predictions for all the velocity

components across the vessel were found. However, prediction based on the k-ε

model were slightly better than those based on ASM model.



APPENDIX A

FIGURES FOR UNBAFFLED AND BAFFLED SYSTEMS

This appendix includes the figures showing the boundary conditions of the impeller region

and the comparison between the experimental data and simulation results for both

unbaffled and baffled systems.
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Figure 5-1. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical simulation. Unbaffled FBT system: (a) boundary
conditions at the top of the impeller; (b) boundary conditions at the
bottom of the impeller. Positive values indicate upwards velocities
(for the axial direction). Error bars indicate standard deviation
of duplicate experiments.
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Figure 5-2. Experimentally determined (via LDV) radial velocities on
the side layer of the impeller region. (a) UFBT system; (b) UPBT
system. Negative value indicate outwards direction from impeller.
Error bars indicate standard deviation of duplicate experiments.
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Figure 5-3. Turbulent kinetic energies in the impeller region. These
values were used as the boundary conditions in the numerical
CFD simulation. Unbaffled FBT system: (a) boundary conditions
at the top of the impeller; (b) boundary conditions at the bottom of
the impeller. Error bars indicate standard deviation of duplicate
experiments.
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Figure 5-4. Comparison between experimental LDV
tangential velocity data (ut ) and corresponding values
from CFD simulation using ASM and B.C. #2 for Z/H
equal to 0.0656, 0.164, 0.2, 0.38, and 0.8.
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Figure 5-5. Comparison between experimental LDV data and
the results of numerical CFD simulation for (a) axial velocity,
(b) radial velocity component using ASM and B. C #2 in the
unbaffled FBT system. Positive values indicate upwards
(for axial velocities) and incoming (for radial towards
impeller) velocities.
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Figure 5-6. Comparison between experimental data for tangential
velocity and numerical predictions obtained using different turbulence
models (ASM or k-e) and different boundary conditions in the impeller
region (B.C. #1 or #2) for unbaffled FBT system. (a) Comparison
for Z/H = 0.38; (b) Comparison for Z/H = 0.8.
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Figure 5-7. Simulation for the unbaffled FBT system. (a) the computational grids; (b) the cross sectional
view of the velocity distribution.



Figure 5-8. CFD prediction of turbulence parameters distribution
in the vessel. System: unbaffled FBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-9. Experimentally determined (via LDV) tangential
velocities at (C/T) equal to 0.1, 0.2, 0.3, and 0.5 for UFBT
system.
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Figure 5-10. LDV measurements of the unbaffled flat blade
turbine agitated system with formation of vortex for (a)
axial, (b) radial, and (c) tangential components, at (C/T)=0.2,
H=32 cm, T=29 cm, and 300 rpm.
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Figure 5-11. Comparison between the experimental data and
numerical prediction for UFBT system using reference
frame rotating with the vessel at 100 rpm at (a) Z/H = 0.8,
and (b) Z/H = 0.38.
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Figure • 5-12. Comparison between the experimental data and
numerical prediction for UFBT system using reference
frame rotating with the vessel at 300 rpm at (a) Z/H = 0.8,
and (b) Z/H = 0.38.
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Figure 5-13. Comparison between the experimental data and
numerical prediction for UFBT system using reference
frame rotating with the vessel at 500 rpm at (a) Z/H = 0.8,
and (b) Z/H = 0.38.
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Figure 5-14. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical simulation. •Unbaffled PBT system: (a) boundary
conditions at the top of the impeller; (b) boundary conditions at the
bottom of the 'impeller. Positive values indicate upwards velocities
(for the axial direction). Error bars indicate standard deviation
of duplicate experiments.
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Figure 5-15. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Unbaffled PBT system: (a) boundary conditions
at the top of the impeller; (b) boundary conditions at the bottom
of the impeller. Error bars indicate standard deviation of duplicate
experiments.
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Figure 5-16. Comparison between experimental LDV
tangential velocity data and corresponding values
from CFD simulation using ASM and B.C. #2 for Z/H
equal to 0.0656, 0.164, 0.2, 0.38, and 0.8.
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Figure 5-17. Comparison between experimental LDV data and
the results of numerical CFD simulation for (a) axial velocity, (b)
radial velocity component using ASM and B. C. #2. Positive
values indicate upwards velocities.
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Figure 5-113. Comparison between experimental data for tangential
velocity and numerical predictions obtained using different turbulence
models (ASM or k-ε) and different boundary conditions in the impeller
region (B.C. #1, or #2) for unbaffled PBT system. (a) Comparison
for Z/H = 0.38; (b) Comparison for Z/H = 0.8.
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Figure 5-19. Simulation for the unbaffled PBT system. (a) the computational grids; (b) the cross sectional
view of the velocity distribution.



Figure 5-20. CFD prediction of turbulence parameters distribution
in the vessel. System: unbaffled PBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-21. Experimentally determined (via LDV) tangential
velocities at (C/T) equal to 0.1, 0.2, 0.3, and 0.5 for UPBT
system.
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Figure 5•22. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical CFD simulation. Single PBT system: (a) boundary
coditions at the top of the impeller; (b) boundary conditions at the
bottom of the impeller. Positive values indicate upward velocities
(for the axial direction). Error bars indicate standard deviation of
duplicate experiments.
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Figure 5.23. Turbulent kinetic energies in the impeller region. These
values were used as the boundary conditions in the numerical CFD
simulation. Single PBT system: (a) boundary conditions at the top
of the impeller; (b) boundary conditions at the bottom of the impeller.
Error bars indicate standard deviation of duplicate experiments.
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Figure 5-24. Comparison between experimental measurements
and numerical predictions of the tangential velocities in single
PBT system.
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Figure 5-25. Comparison between experimental measurements
and numerical predictions of the axial velocities in single PBT
system.
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Figure 5-26. Comparison between experimental measurements
and numerical predictions of the radial velocities in single PBT
system.
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Figure 5-27. The computational grids for baffled single impeller
system.



Figure 5-28. CFD prediction of velocity distribution in the vessel. System: baffled single PBT. Boundary,
conditions: B.C. #2. Turbulence model: ASM. (a) Tridimensional view; (b) Bidimensional cross section
across the impeller shaft (only one half section shown). 00



Figure 5-29. CFD prediction of turbulence parameters distribution
in the vessel. System: baffled PBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-30. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as boundary conditions
in the numerical CFD simulation. Double PBT system: (a) boundary
conditions at the top of the upper impeller; (b) boundary conditions
at the bottom of the upper impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.
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Figure 5-31. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as boundary conditions
in the numerical CFD simulation. Double PBTs system: (a) boundary
conditions at the top of the lower impeller; (b) boundary conditions
at the bottom of the lower impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.



Figure 6-32. Experimentally determined (via LDV) radial velocities
on the side layer of the impeller region. B2PBT system: (a) upper
impeller; (b) Lower impeller. Negative value indicate outwards
direction from impeller. Error bars indicate standard deviation of
duplicate experiments.

85



Figure 5-33. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Double PBTs system: (a) boundary conditions at
the top of the upper impeller; (b) boundary conditions at the bottom
of the upper impeller. Error bars indicate standard deviation of
duplicate experiments.
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Figure 5 ,34. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Double PBTs system: (a) boundary conditions at
the top of the lower impeller; (b) boundary conditions at the bottom
of the lower impeller. Error bars indicate standard deviation of
duplicate experiments.
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Figure 5-35. Comparison between experimental measurements
and numerical predictions of the tangential velocities in double
PBTs system.
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Figure 5-36. Comparison between experimental measurements
and numerical predictions of the axial velocities in double PBTs
system.
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Figure 5-37. Comparison between experimental measurements
and numerical predictions of the radial velocities in double PBTs
system.
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Figure 5-38. The computational grids for baffled double impeller
system.



Figure 5-39. CFD prediction of velocity distribution in the vessel. System: baffled 2PBT. Boundary
conditions: B.C. #2. Turbulence model: ASM. (a) Tridimensional view; (b) Bidimensional cross section
across the impeller shaft (only one half section shown).



Figure 5-40. CFD prediction of turbulence parameters distribution
in the vessel. System: baffled 2PBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-41. LDV measurements of the dimensionless
tangential velocities along the dimensionless tank radius
at impeller spacing (SID) equal to 0.59,0.886, and 1.181
for (Z/H) at 0.416, 0.444, 0.50, and 0.556 of the B2PBT
system.
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Figure 5-42. LDV measurements of the dimensionless axial
velocities along the dimensionless tank radius at impeller
spacing (SID) equal to 0.59, 0.886, and 1.181 for (Z/H) at
0.416, 0.444, 0.50, and 0.556 of the B2PBT system.



Figure 5-43. LDV measurements of the dimensionless radial
velocities along the dimensionless tank radius at impeller
spacing (SID) equal to 0.59, 0.886, and 1.181 for (Z/H) at
0.416, 0.444, 0.50, and 0.556 of the B2PBT system.
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Figure 5-44. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical CFD simulation. Single FBT system: (a) boundary
conditions at the top of the impeller; (b) boundary conditions at the
bottom of the impeller. Positive values indicate upwards velocities
(for the axial direction). Error bars indicate standard deviation of
duplicate experiments.
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Figure 5-45. Experimentally determined (via LDV) radial velocities
on the side layer of the impeller region. (a) BFPT system; (b) BPBT
system. Negative value indicate outwards direction from impeller.
Error bars indicate standard deviation of duplicate experiments.
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Figure 5-46. Turbulent kinetic energies in the impeller region. These
values were used as the boundary conditions in the numerical
CFD simulations. Single FBT system: (a) boundary conditions
at the top of the impeller; (b) boundary conditions at the bottom of
the impeller. Error bars indicate standard deviation of duplicate
expriments.

99



Figure 5-47. Comparison between experimental measurements
and numerical predictions of the tangential velocities in single
FBT system.
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Figure 5-48. Comparison between experimental measurements
and numerical predictions of the axial velocities in single FBT
system.
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Figure 5-49. Comparison between experimental measurements
and numerical predictions of the radial velocities in single FBT
system.
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Figure 5-50. CFD prediction of velocity distribution in the vessel. System: baffled single FBT. boundary
conditions: B.C. #2. Turbulence model: ASM. (a) Tridimensional view; (b) Bidimensional cross section
across the impeller shaft (only one half section shown).



Figure 5-51. CFD prediction of turbulence parameters distribution
in the vessel. System: baffled FBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-52. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as boundary conditions
in the numerical CFD simulation. Double FBTs system: (a) boundary
conditions at the top of the upper impeller; (b) boundary conditions at
the bottom of the upper impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.
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Figure 5-53. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as boundary conditions
in the numerical CFD simulation. Double FBTs system: (a) boundary
conditions at the top of the lower impeller; (b) boundary conditions at
the bottom of the lower impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.
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Figure 5-54. Experimentally determined (via LDV) radial velocities
on the side layer of the impeller region. B2FBT system: (a) upper
impeller; (b) Lower impeller. Negative value indicate outwards
direction from impeller. Error bars indicate standard deviation of
duplicate experiments.
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Figure 5-55. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Double FBTs system: (a) boundary conditions
at the top of the upper impeller; (b) boundary conditions at the
bottom of the upper impeller. Error bars indicate standard
deviation of duplicate experiments:
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Figure 5-56. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Double FBTs system: (a) boundary conditions
at the top of the lower impeller; (b) boundary conditions at the
bottom of the lower impeller. Error bars indicate standard
deviation of duplicate experiments.



Figure 5-57. Comparison between experimental measurements
and numerical predictions of the tangential velocities in double
FBTs system.
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Figure 5-58. Comparison between experimental measurements
and numerical predictions of the axial velocities in double FBTs
system.
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Figure 5-59. Comparison between experimental measurements
and numerical predictions of the radial velocities in double FBTs
system.



Figure 5-60. CFD prediction of velocity distribution in the vessel. System: baffled 2FBT. boundary
conditions: B.C. #2. Turbulence model: ASM. (a) Tridimensional view; (b) Bidimensional cross section
across the impeller shaft (only one half section shown). j.......
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Figure 5 -61. CFD prediction of turbulence parameters distribution
in the vessel. System: baffled 2FBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-62. LDV measurements of the dimensionless
tangential velocities along the dimensionless tank
radius at impeller spacing (SID) equal to 0.59, 0.886,
and 1.181 for (Z/H) at 0.416, 0.444, 0.50, and 0.556
of the B2FBT system.
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Figure 5-63. LDV measurements of the dimensionless
axial velocities along the dimensionless tank radius
at impeller spacing' (S/D) equal to 0.59, 0.886, and
1.181 for (Z/H) at 0.416, 0.444, 0.50, and 0.556 of the
B2FBT system.
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Figure 5-64. LDV measurements of the dimensionless
radial velocities along the dimensionless tank radius
at impeller spacing (S/D) equal to 0.59, 0.886,and 1.181
for (Z/H) at 0.416, 0.444, 0.50, and 0.556 of the B2FBT
system.
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Figure 5-65. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical CFD simulation. Baffled PFBT system: (a) boundary
conditions at the top of the upper impeller; (b) boundary conditions at
the bottom of the upper impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.
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Figure 5-66. Experimentally determined (via LDV) velocities in the
impeller region. These values were used as the boundary conditions
in the numerical CFD simulation. Baffled PFBT system: (a) boundary
conditions at the top of the lower impeller; (b) boundary conditions at
the bottom of the lower impeller. Positive values indicate upwards
velocities (for the axial direction). Error bars indicate standard
deviation of duplicate experiments.
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Figure 5-67. Experimentally determined (via LDV) radial velocities
on the side layer of the impeller region. BPFBT system: (a) upper
impeller; (b) lower impeller. Negative value indicate outwards
direction from impeller. Error bars indicate standard deviation of
duplicate experiments.
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Figure 5-68. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Baffled PFBT system: (a) boundary conditions
at the top of the upper impeller; (b) boundary conditions at the
bottom of the upper impeller. Error bars indicate standard deviation
of duplicate experiments.
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Figure 5-69. Turbulent kinetic energies in the impeller region.
These values were used as the boundary conditions in the numerical
CFD simulation. Baffled PFBT system: (a) boundary conditions
at the top of the lower impeller; (b) boundary conditions at the
bottom of the lower impeller. Error bars indicate standard deviation
of duplicate experiments.
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Figure 5-70. Comparison between experimental measurements
and numerical predictions of the tangential velocities in baffled
PFBT system.



Figure 5-71. Comparison between experimental measurements
and numerical predictions of the axial velocities in baffled PFBT
system.
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Figure 5.72. Comparison between experimental measurements
and numerical predictions of the radial velocities in baffled PFBT
system.



Figure 5-73. CFD prediction of velocity distribution in the vessel. System: baffled PFBT. boundary
conditions: B.C. #2. Turbulence model: ASM (a) Tridimensional view; (b) Bidimensional cross section
across the impeller shaft (only one half section shown).



Figure 5-74. CFD prediction of turbulence parameters distribution
in the vessel. System: baffled PFBT. Contours for (a) turbulence
kinetic energy; (b) dissipation rate.
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Figure 5-75. LDV measurements of the dimensionless
tangential velocities along the dimensionless tank
radius at impeller spacing (SID) equal to 0.59, 0.886,
and 1.181 for (Z/H) at 0.416, 0.444, 0.50, and 0.556 of
the BPFBT system.
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Figure 5-76. LDV measurements of the dimensionless axial
velocities along the dimensionless tank radius at impeller
spacing (SID) equal to 0.59, 0.886, and 1.181 for (Z/H) at
0.416, 0.444, 0.50, and 0.556 of the BPFBT system.
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Figure 5-77. LDV measurements of the dimensionless radial
velocities along the dimensionless tank radius at impeller
spacing (S/D) equal to 0.59, 0.886, and 1.181 for (Z/H) at
0.416, 0.444, 0.50, and 0.556 of the BPFBT system.
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Figure 5-78. Power number (Np) versus impeller off bottom
clearance ratio (cm at rpm equal to (a) 100, (b) 300, and
(c) 500.



Figure 5-79. Power number (Np) versus impeller spacing (S/D) •
at rpm equal to (a) 100, (b) 300, and (c) 500.



APPENDIX B

SIMULATION PROGRAM SETUP FOR UNBAFFLED CONFIGURATION

This appendix contains the procedures for setting up the computer program of unbaffled

configuration.

133



134

B.1 Stationary Reference Frame

Customize the length unit . De me domain size number o cells and activate turbulent

s1 no
ex su
no
yes 3
centimeters
0.01
no
quit
dd num
53
26
17
done
ds yes
33.6
0
14.5
1.047197
done
dv
yes

done
quit

Generating a non-uniform grid

gg
yes 5
0.87 4.2232 8
1 10 19
1.15 17.4832 11
1
yes 5
1 1.2 3
1.18 4.0616 5
1 11.8166 10
0.835
yes 4
0.835 0.508



1 0.54768
1.197

Set cells. 
Wall zone 1: tank walls— w 1 

2: impeller wall-w0 
3: Inlet cells-40

sc 1 53 11 117 s
sc 1 53 26 26 1 17 w 1
sc 1 1 126 1 17 w1
sc 53 53 226 117 w 1
sc1453 23 117 w0
sc 1 53 1 26 1 1 cyclic
sc 1 53 1 26 17 17 cyclic
sc 17 17 5 11 1.17 i 0
sc2121 511 117 i0

Define density, viscosity , and boundary conditions.
Before the properties are defined, reset the length unit to meters
by first setting units to the British system then back to SI.

ex
su
yes
x
su
no
x
quit
pc
de, n, 1000
vi, 0.001
quit
quit
n
ex
sp
x
yes
yes
0.001
n

done
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pa
...key in the location of the i0 cell and then the corresponding velocities, k, and e.
quit

Set sweep, underrelaxation and variables. 

ex sweep
25
5
5
10
5
5
1
3
yes
done
ul
0.1
0.1
0.1
1.0
0.1
0.1
0.1
done
sv
yes
yes
yes
yes
yes
yes
done
quit

Solution step 1: Use the k-ε model and get iteration started 

sc ufbt.cas
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit
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quit
c1 500

sd ufbt.dat

Solution step 2: Turn on ASM in the expert menu. Solve for the ASM model. 

ex sp
x
x
x
x
x
x
x
yes
x
x
x

done
quit
sc ufbta.cas
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit
quit
c 1 500
sd ufbta.dat

B.2 Rotating Reference Frame

Customize the length unit . Define domain size number of cells, and activate turbulent
flow. 

s1 no
ex su
no
yes 3
centimeters
0.01
no
quit



dd num
53
26
17
done
ds yes
33.6
0
14.5
1.047197
done
dv
yes

done
quit

Generating a non-uniform grid

gg
yes 5
0.87 4.2232 8
1 10 19
1.15 17.4832 11
1
yes 5
1 1.2 3
1.18 4.0616 5
1 11.8166 10
0.835
yes 4
0.835 0.508
1 0,54768
1.197

Set cells. 
Wall zone 1: tank walls--w1 

2: turbine assembly—w0
3: Inlet cells--i0

se 1 53 11 117 s
sc 1 53 26 26 1 17 w 1
sell 126 117 w1
sc 53 53 2 26 1 17 w 1
sc 14 53 23 117 w0
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sc 14 21 4 4 1.17 w0
sc 14 17 510 99 w0
sc 1 53 1 26 1 1 cyclic
sc 1 53 1 26 17 17 cyclic
sc 2 52 25 25 1 17 i 0

Enable rotating reference frame, define rotating speed

ex op
no
yes
x
x
x
x
x
yes
done
body-force
x
x
x
10.472 (for 100 rpm)
done
quit

Before near wall velocities are defined, reset the length unit to meters
by first setting units to the British system, then back to  SI.

ex
su
yes
x
su
no
x
quit
pc
de, n, 1000
vi, 0.001
quit
quit
pa
2
52
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25
25
1
17
w
-1.51844
quit

Set sweep. underrelaxation and variables. 

ex sweep
25
5
5
10
5
5
1
3
yes
done
ul
0.1
0.1
0.1
1.0
0.1
0.1
0.1
done
sv
yes
yes
yes
yes
yes
yes
done
quit

Solution step 1: Use the k- ε model and get iteration started 

sc ufbtr.cas
ex install
optimizer-solver (no for all)
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done
basic (no for vector hardware)
done
quit
quit
c1 500
sd ufbtr.dat

Solution step 2: Turn on ASM in the expert menu. Solve for the ASM model. 

ex sp
x
x
x
x
x
x
x
yes
x
x
x

done
quit
sc ufbtra.cas
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit
quit
c1 500
sd ufbtra.dat
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APPENDIX C

SIMULATION PROGRAM SETUP FOR BAFFLED CONFIGURATION

This appendix contains the procedures for setting up the computer program of baffled

configuration.
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C.1 Single Impeller

Customize the length unit. Define domain size, number of cells, and activate turbulent
flow. 

s1 no
ex su
no
yes 3
centimeters
0.01
no
quit
dd num
56
21
21
done
ds yes
36.0
0
14.5
1.570796
done
dv
yes

done
quit

Generating a non-uniform grid

gg
yes 4
0.87 8.639 12
1 25.759 32
1.15
yes 4
1 4.86 9
1.19 8.80 5
1
yes 4
0.8696 0.759218 9
1 0.8115781 1
1.15



Set cells. 
Wall zone I: tank walls--w1

2: turbine assembly--w0
3: top wall—w2 
4: Inlet cells--i0

sc 1 18 11 121 s
sc 1 56 21 21 1 21 w 1
se 1 1 121 121 w 1
sc 56 56 320 121 w2
sc 19 56 1 2 1 21 w 0
sc 3 56 19 20 11 11 w0
se 18 18 411 121 i0
sc 22 22 411 121 i0

Set links for slip wall—w2. 
Define system density, viscosity, and boundary coditions.
Before properties are defined, reset the length unit to meters
by, first setting units to the British system, then back to SI.

ex
su
yes
x

su
no
x

quit
ex op
yes
no
yes

done
quit
be w2
set-links
yes
yes
yes
quit
pc
de, n, 1000
vi, 0.001
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quit
quit
n
ex
sp
x
yes
yes
0.001
n

done
pa
...key in the location of each 10 cell and then the corresponding velocities, k, and e.
quit

Set sweep, underrelaxation, and variables. 

ex sw
20
5
5
10
5
5
1
3
yes
done
u1
0.1
0.1
0.1
1.0
0.1
0.1
0.1
done
sv
yes
yes
yes
yes
yes
yes
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done
quit

Solution step I: Use the k-ε model and get iteration started 

sc bfbt.cas
sd bfbt.dat
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit
quit
c1 500
sd bfbt1. dat

Solution step 2: Turn on ASM in the expert menu. Solve for the ASM model.

ex sp
x
x
x
x
x
x
x
yes
x
x
x

done
quit
sc bfbta.cas
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit
quit
c1 500
sd bfbta. dat
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C.2 Double Impellers

Customize the length unit. Define domain size, number of cells, and activate turbulent
flow. 

s1 no
ex su
no
yes 3
centimeters
0.01
no
quit
dd num
56
21
21
done
ds yes
36.0
0
14.5
1.570796
done
dv
yes

done
quit

Generating a non -uniform grid

gg
yes 4
0.87 8.639 12
1 25.759 32
1.15
yes 4
1 4.86 9
1.19 8.80 5
1
yes 4
0.8696 0.759218 9
1 0.8115781 1
1.15



Set cells. 
Wall zone 1: tank walls—w1 

2: turbine assembly-w0
3: top wall-w2 
4: Inlet cells-40

sc 1 18 11 121 s
sc 1 56 21 21 121 w1
sc 1 1 121 121 w 1
sc 56 56 3 20 1 21 w 2
sc 19 56 12 121 w0
sc 3 56 19 20 11 11 w0
sc 18 18 411 121 i0
sc 22 22 411 121 i0
sc 4141 411 121 i0
sc 45 45 411 121 i0

Set links for slip wall—w2. 
De me stem density, viscosity, and boundary coditions.Before properties are defined, reset the length to meters

by first by first setting units to the british system, then back to SI.

ex
su
yes
x
su
no
x
quit
ex op
yes
no
yes

done
quit
be w2
set-links
yes
yes
yes
quit
Pc
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de, n, 1000
vi, 0.001
quit
quit
n
ex
sp
x
yes
yes
0.001
n

done
pa
...key in the location of each i0 cell and then the corresponding velocities, k, and ε.
quit

Set sweep, underrelaxation, and variables. 

ex sw
20
5
5
10
5
5
1
3
yes
done
u1
0.1
0.1
0.1
1.0
0.1
0.1
0.1
done
sv
yes
yes
yes
yes
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yes
yes
done
quit

Solution step 1: Use the k-ε model and get iteration started 

sc b2fbt. cas
sd b2fbt.dat
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit quit
c1 500
sd b2fbt1.dat

Solution step 2: Turn on ASM in the expert menu. Solve for the ASM model. 

ex sp
x
x
x
x
x
x
x
yes
x
x
x

done
quit
sc b2fbta.cas
ex install
optimizer-solver (no for all)
done
basic (no for vector hardware)
done
quit quit
c1 500
sd b2fbta.dat

150



APPENDIX D

ALIGNMENT AND OPERATION PROCEDURES FOR LDV

This appendix contains the procedures for aligning the laser beams and routine operation

of the LDV system.
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D.1 Alignment Procedures for LDV

1. Install Model 9102-12 on to the base (Model 9127) of the LDV apparatus, and align

the blue and green lights by letting lights pass through the 50 mm holes on the

alignment block (using the fine adjust screws on Model 9107) which is sit at a

distance about 3 feet away from Model 9107.

2. Install Model 9115-1 and Model 9174 sequentially on to the base and again let the

lights pass through the holes on the alignment block by adjusting the screws on

Model 9107.

3. Install Model 9102-11 and Model 9115-1 sequentially and repeat the aligning

procedures as stated in step 2.

4. Install Model 9182-12 (for green light) and align the light with the alignment block.

Tune the compensating wedge ring and tilt adjust on Model 9182-12 which would

make the green light shown as a series of vertical spot lights on the alignment block.

Then tune the tilt adjust to make the upper most light spot as bright as possible, and

make sure that this spot light is disappeared with the frequency shifter off Now the

direction of fringe movement is directed upwards, that is the flow in the upward

direction is defined as having a positive sign for green light.

5. Place Model 9182-11 (for blue light) and align the light with the alignment block.

Tune the compensating wedge ring and tilt adjust on Model 9182-11 which would

make the blue light shown as a series of horizontal spot lights on the alignment

block. Then tune the tilt adjust to make the third light spot from left to be the

brightest, and make sure that this spot light is disappeared with the frequency shifter

off Now the direction of fringe movement is directed to the right, that is the flow in

the rightward direction is defined as having a positive sign for blue light.

6. Place Model 9140 and then Model 9176 on to the base, and also align with the

alignment block.

7. Place Model 9145 and align with the alignment block.
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8. Install Model 9143 and then Model 9181-4 on to the base. Adjust Model 9181-4

making the emitted light to be the brightest and therefore block off the stray light.

9. Place Model 9176 and then Model 9175, and also align with the alignment block.

10. Place Model 9113-13 and 9189 onto the base.

11. To focus the light converging, Model 10092 (Moving Objective) is employed in

combination with the fine adjustment of Model 9175 and 9107.

12. Adjust Model 9140 and 9143 (receiving assembly) and let the Doppler signal to be

detected by the oscilloscope.

13. In the mean time, if the aligning procedures are correct, blocking any of the emitted

light from the optics would result in no Doppler signal being detected by the

oscilloscope.

D.2 Operation Procedures for LDV

1. Slowly open the water supply valve, and allow water to flow through the laser to

displace all air in the cooling system.

2. Plug in the electrical power cord.

3. Turn the LINE circuit breaker on. The three LINE indicators and the three fuse

indicators will light.

4. The completion of the interlock chain can be inspected by observing the indicators

of COVERS, WATER TEMP, WATER FLOW, and REG TEMP. If an indicator is

lighten, the interlock chain is complete through that interlock.

5. Slide the BEAM ATTENUATOR to the "CLOSED" position.

6. Set the CONTROL SELECTOR to the "CURRENT" position. Turn the

CURRENT CONTROL knob fully clockwise. Turn the METER selector switch to

the "CURRENT 50A" position.

7. Press the POWER ON pushbottom.
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8. After a 20-30 seconds delay, the ready indicator will light. Then press the LASER

START pushbottom to ionize the plasma tube.

9. Once the laser has been started, the LASER meter will indicate a plasma-tube

current of 27-33 amperes.

10. Slide the BEAM ATTENUATOR to the "OPEN" position.

11. Slight adjustments to the VERTICAL and HORIZONTAL tuning knobs may now

be made to peak the power output.

12. The laser operating level may be set by adjusting the CURRENT CONTROL knob

or by the LIGHT CONTROL knob (if operated by light control).

13. To stop the LDV lasing simply sliding the BEAM ATTENUATOR to the

"CLOSED" position, and decrease the current level before pressing POWER OFF.

14. Turn off LINE circuit breaker and unplug the power cord, and then close the water

supply valve.
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