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ABSTRACT

DICHLOROMETHANE PYROLYSIS AND OXIDATION:
FORMATION OF CHLORINATED AROMATIC

PRECURSORS TO PCDD/F

by
Hong-Ming Chiang

The pyrolysis and oxidation of dichloromethane is studied in a tubular reactor at 1

atmosphere pressure, residence time between 0.3 to 2.0 seconds and in the temperature

range 680 - 840 °C. Four reactant concentration ratios are:

The degradation of dichloromethane, intermediate product formation and

decomposition, and final products are studied in both pyrolytic and oxidative reaction

environments. Chlorinated intermediate products: CH 3Cl, C 2HCl, C2H3Cl, CH2CCl2,

CHCICHCI, and C 2HCl3 are shown to be important in all systems but more difficult to

destroy in the pyrolysis than in the oxidation. The conversion of these chloro-methyl

radicals to corresponding chloro-formaldehydes, CO and CO2 is observed to be slow by

this reaction sequence. The demonstration of this bottleneck is another important result of

this thesis. Results show that conversion primarily occurs through combination of 2

chloro-methyl radicals to chloro-ethanes, then ethylenes, then chioro-vinyl radicals. The

major chloro-methyl radical conversion path under combustion condition is the chloro-



vinyl radical + 0 2. Thermodynamic parameters: ΔH298, S298 and Cp(T) for all species in the

reaction mechanism are evaluated and illustrated.

A reaction mechanism consisting of 635 elementary reactions and 215 species, to

C6 compounds, has been developed to simulate the thermal decomposition of

dichloromethane and for use in predicting the formation of aromatics and intermediate

molecular weight growth species in C 1 and C2 chlorocarbon combustion. All reactions in

the mechanism are elementary or derived from analysis of reaction systems encompassing

elementary reaction steps. All reactions are thermochemically consistent and follow

principles of Thermochemical Kinetics. Model data show good agreement for reagent

decay and major product distribution in both pyrolytic and oxidative environments.

Unimolecular dissociation of CH2CI2 and of chlorinated ethylenes is analyzed by

unimolecular quantum RRK. Combination and addition reactions such as: CH2Cl + 02,

CHCl2 + 02, CH3 + CH2Cl, CH3 + CHCl2, CH2Cl + CH2Cl, CH2Cl + CHCl 2, CHCl2 +

CHCl2, C2H3 + 02, CH2CCl + 02, CHClCH + 02, CHClCCl + 02, CCl2CH + 0 2, and

C2Cl3 + 02 are treated with bimolecular quantum RRK analysis for k(E), combined with

modified strong collision approach and/or Master equation analysis for fall-off effects.

Hydrocarbon and chlorocarbon radical addition to unsaturated species is

responsible for molecular weight growth and ultimate formation of precursors to

polychlorinated dibenzo dioxins and furans.

Reactions of HSO + 0, SO + OH, H + SO 2, OH + SO2, H + SO3 , OH + HSO, and

H + HOSO are analyzed as functions of pressure and temperature.



DICHLOROMETHANE PYROLYSIS AND OXIDATION:
FORMATION OF CHLORINATED AROMATIC

PRECURSORS TO PCDD/F

by
Hong-Ming Chiang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Chemical Engineering,
Chemistry, and Environmental Science

May 1995



Copyright @ 1995 by Hong-Ming Chiang

ALL RIGHTS RESERVED





BIOGRAPHICAL SKETCH

Author: Hong-Ming Chiang

Degree:	 Doctor of Philosophy in Environmental Science

Date: May 1995

Undergraduate and Graduate Education:

• Doctor of Philosophy in Environmental Science,
New Jersey Institute of Technology, Newark, NJ, 1995

• Master of Science in Environmental Science,
New Jersey Institute of Technology, Newark, NJ, 1992

• Bachelor of Science in Chemical Engineering,
Chinese Cultural University, Taipei, Taiwan, R.O.C., 1984

Major:	 Environmental Science

Presentations and Publications:

Chiang, Hong-Ming, Ritter, Edward R., and Kydd, Paul H. "Trace Organic Emissions
from the One Gallon Technology Development Unit. " Medical Waste Disposal
Steering Committee Meeting, Newark, NJ, May 1990.

Chaing, Hong-Ming, and Bozzelli, Joseph W. "Thermal Decomposition of Dichloro
methane in Absence and Presence of added and/or CH 4." Combustion
Fundamentals and Applications, p.322, 1993, Proceeding of 1993 Joint Technical
Meeting at New Orleans, Louisiana, The Central and Eastern States Sections of
The Combustion Institute, March 15-17, 1993.

Chaing, Hong-Ming, Wu, Yo-Ping, Ho, Wen-Ping, Won, Yang-Soo, Park, Byung-Ik, and
Bozzelli, Joseph W. "A Reaction Mechanism and its Validation for Oxidation of
CH3CI, CH2CI2, C2H3 Cl, C2H2Cl2's, C2HCl3 in Methane / Oxygen." AIChE Annual
Meeting, St. Louis, Missouri, November 7-12, 1993.

Chiang, Hong-Ming, and Kydd, Paul H. "Emissions Data from a Pyroxidizer Operating on
Regulated Medical Waste." Hazardous Waste Management Handbook, p.90, PTR
Prentice Hall, Englewood Cliffs, NJ, 1994.

iv



Chaing, Hong-Ming, and Bozzelli, Joseph W. "Pyrolysis and Oxidation of Dichloro
methane and 1,2-Dichloroethylene in Absence and Presence of Methane." Twenty
fifth International Symposium on Combustion, the Combustion Institute, Work In
Progress Posters, The University of California, Irvine, CA, July , 1994.

Chiang, Hong-Ming, Wu, Yo-Ping, Won, Yang-Soo, and Bozzelli, Joseph W. "Chemically
Activation Analysis of CH2Cl and CHCl2 Combination Reaction." 208th ACS
National Meeting, Washington, DC, August 21-25, 1994.

Chaing, Hong-Ming, and Bozzelli, Joseph W. "Formation of Chlorinated Ethylene Inter
mediates in Pyrolysis of CH2CI 2 and CH2Cl2/CH4" 208th ACS National Meeting,
Washington, DC, August 21-25, 1994.

Chaing, Hong-Ming, and Bozzelli, Joseph W. "Mechanism for Oxidation and Molecular
Weight Growth - to chlorinated benzenes and phenols, from high temperature
reactions of C1 and C2 chlorocarbons" AIChE Annual Meeting, San Francisco,
CA, November 13-19, 1994.

Chaing, Hong-Ming, and Bozzelli, Joseph W. "Experiment and Detailed Reaction
Mechanism of Chlorinated Ethylene Formation and Destruction in Pyrolysis of
CH2Cl2 and CH2Cl2/CH4" Chemical and Physical Process in Combustion, 1994,
page 278, Proceeding of 1994 Technical Meeting at Clearwater, Florida, The
Eastern States Section of The Combustion Institute, December 5-7, 1994.



This dessertation is dedicated to
my wife, Chang Shuchen Chiang

vi



ACKNOWLEDGMENT

I wish to express my appreciation to Prof. Joseph W. Bozzelli, my advisor, not

only for his professional advice but also his encouragement, patience, and kindness. I am

deeply indebted to him for the opportunities which he made available to me.

I would also like to thank to my dissertation committee members, Dr. Richard B.

Trattner, Dr. Basil C. Baltzis, Dr. Lev N. Krasnoperov and Dr. Elmar R. Altwicker for

their helpful corrections and productive comments.

It is my pleasure to thank Dr. Edward Ritter, Dr. Yang Soo Won, Dr. Yo Ping

Wu, Dr. Wen Pin Ho, who shared their experiences with me and helped me with GC/MS

analysis. In addition, I like to thank my coworkers at NJIT, Dr. Tsan-Horng Lay,

Wen-Chiun Ing, and Samuel Chern, for having dealt with me as a colleague, which has made my

time at NJIT much more enjoyable and productive.

For love and inspiration I shall be eternally grateful to my wife, Shu-Chen, my

parents and parents in law. Without their constant support and encouragement, I truly

believe all of this would not have been possible.

vii



TABLE OF CONTENTS

Chapter	 Page

	

1 INTRODUCTION   1

2 PYROLYSIS AND OXIDATION OF CH2Cl2 AND CH2Cl2/CH4 	  14

2.1 Introduction 	  14

2.2 Experiment 	  18

2.2.1 Experimental Apparatus 	  18

2.2.2 Temperature Control and Measurement 	  18

2.2.3 Qualitative and Quantitative Analysis of Reagents and Reaction
Products 	  20

2.2.4 Hydrochloric Acid Analysis 	  22

2.3 Experimental Results and Discussions 	  23

	

2.3.1 Reagent Conversion     24

2.3.2 Product Distribution and Material Balance for Each Reaction
Environments 	  25

2.3.2.1 Product Distribution in CH2Cl2/Ar Reaction System 	  25

2.3.2.2 Product Distribution in CH2Cl2/CH4/Ar 	  26

2.3.2.3 Product Distribution in the CH2Cl2/O2/Ar Reaction System 	  26

2.3.2.4 Product Distribution in CH2Cl2/CH4/O2/Ar 	 27

2.3.2.5 Material Balance 	  28

2.4 Comparison of Main Product Distribution in Four Different Reaction
Environments 	  28

2.4.1 CH3Cl Product Distribution 	  29

2.4.2 C2HCl 3 Product Distribution 	  29

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.4.3 C2H3Cl Product Distribution 	  31

2.4.4 CHClCHCl Product Distribution 	  31

	

2.5 Conclusions   32

3 MODELING THE THERMAL DECOMPOSITION OF CH2Cl 2 BY
DETAILED REACTION MECHANISM 	  34

3.1 Introduction 	  34

3.2 Computer Codes Used to Develop the Kinetic Model 	  37

3.2.1 THERM 	  38

3.2.2 RADICALC 	  39

3.2.3 CPFIT 	  39

3.2.4 CHEMACT 	  40

3.3 Kinetic Mechanism and Modeling 	  43

3.4 Results and Discussion 	  46

3.4.1 Pyrolysis of CH2Cl2 and CH2Cl2/CH4 	  46

3.4.2 Oxidation of CH2C12 and CH2Cl2/CH4 	  49

	

3.4.2.1 Reaction of CH2Cl + 02   51

3.4.2.2 Reaction of CHCl2 + 02 	  52

3.4.2.3 Comparison Between Model and Experiments 	  54

	

3.5 Conclusions   54

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4 UNIMOLECULAR DISSOCIATION OF CH 2Cl2 USING QRRK WITH
MODIFIED STRONG COLLISION AND WITH MASTER EQUATION

	

ANALYSIS   57

4.1 Introduction 	  57

4.2 Calculations 	  58

4.3 Results and Discussion 	  59

4.4 Conclusions 	  61

5 CHEMICALLY ACTIVATED COMBINATION REACTION OF METHYL
AND CHLORO METHYL RADICALS 	  62

5.1 Introduction 	  62

5.2 Thermodynamic Properties 	  67

5.3 Kinetic Calculations 	  67

5.4 Results and Discussion 	  71

5.4.1 Combination of CH 3 with CH2Cl 	  71

5.4.2 Combination of CH 3 + CHCI2 	  72

5.4.3 Combination of CH2Cl with CH2Cl 	  72

	

5.4.4 Combination of CH2CI + CHC12   74

5.4.5 Combination of CHCl 2 with CHCl2 	75

5.4.6 Dissociation of CH 2CICH2Cl and CHCI 2CHCI 2 	  76

5.5 Conclusions 	  76

6 REACTION PATHWAY ANALYSIS FOR VINYL, CHLORO VINYL
RADICALS WITH 0 2 	  79



TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.1 Introduction 	  79

6.2 Calculations 	  85

6.3 Results and Discussion 	  88

6.3.1 C2H3 + 02 	  88

6.3.2 CH2CCl + 0 2 	  90

6.3.3 CHClCH + 02 	  91

6.3.4 CHCICCI + O 2 	  92

6.3.5 CCl2CH + 02 	  93

6.3.6 C2Cl3 + 02 	  94

6.4 Conclusions 	  95

7 FORMATION OF CHLORINATED AROMATIC (DIOXIN PRECURSORS)
FROM HIGH TEMPERATURE COMBUSTION REACTIONS OF C1 AND
C2 CHLOROCARBONS : REACTION MECHANISM ANALYSIS  97

	

7.l Introduction   97

7.2 Kinetic Reaction Mechanism 	  104

7.3 Results and Discussions 	  112

7.3.1 Results of QRRK Calculation 	  112

7.3.1.1 CH2CCl Addition to C2HCl 	  112

7.3.1.2 CH2CCl Addition to C 2H3Cl 	  113

7.3.1.3 C4H4Cl(N1 + C2HCl 	  113

7.3.1.4 C4H2Cl(N2 + C 2HCl 	  114

xi



TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.3.2 Results of Model Prediction 	  115

	

7.3.3 CyC6H6 + OH and CyC6H5Cl + OH   116

7.4 Conclusions 	  117

8 QUANTUM RICE-RAMSPERGER-KASSEL (QRRK) ANALYSIS ON THE
REACTION SYSTEM OF SULFUR CONTAINING SPECIES 	  119

	

8.1 Introduction    119

8.2 Thermochemistry 	  125

8.3 Kinetic Calculations 	  127

8.4 Results and Discussion 	  130

8.4.1 HSO + O, H + SO2, and OH + SO Reactions 	  130

8.4.1.1 HSO + O 	  131

8.4.1.2H+ SO2 	  133

8.4.1.3 OH + SO 	  133

8.4.1.4 HS02 	  134

8.4.1.5 HOSO 	  135

8.4.2 H + SO3 and OH + SO2 Reactions 	  135

8.4.2.1 OH + SO2 	  135

8.4.2.2 H + SO3 	  136

	

8.4.3 H + HOSO and OH + HSO Reactions    137

8.4.3.1 OH + HSO 	  137

xii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

8.4.3.2 H + HOSO 	  138

	

8.4 Conclusions     138

	

APPENDIX I TABLES     141

APPENDIX II FIGURES 	  236

	

REFERENCES    359



LIST OF TABLES

Table 	 Page

Al Average Retention Time 	  141

A2 Relative Response Factor of Several Compounds 	  142

A3 Material Balance for 100 Moles Carbon at 1.0 sec. Residence Time
in CH2CI2 : CH4 : 02 : Ar = 1 : 1 : 4 : 94 	  143

A4 Material Balance for 100 Moles Carbon at 1.0 sec. Residence Time
in CH2Cl2 : 02 : Ar = 1 : 4 : 95 	  143

A5 Material Balance for 100 Moles Carbon at 1.0 sec. Residence Time 	 144
in CH2CI2 : CH4 : Ar = 1 1 : 98 	

A6 Material Balance for 100 Moles Carbon at 1.0 sec. Residence Time 	 144
in CH2Cl2 : CH4 : Ar = 1: 1: 98 	

B1 Detailed Reaction Mechanism for CH 2Cl2/CH4/O2/Ar Reaction System 	  145

B2 Thermodynamic Properties for CH2Cl2/CH4/O2/Ar Reaction System 	  162

B3 QRRK Input Data for CH 2CI + O2 <-> [CH2ClOO]* --> Products 	  168

B4 QRRK Input Data for CHCl2 + 02 <-> [CHCl2OO]* Products 	  169

Cl Quantum RRK Input Data for CH2Cl2 ÷-> [CH2Cl2]* ---> Products 	  170

D1 Reduced Vibrational Frequencies, Geo-Mean Frequency, Number of Internal
Rotors and Cp(0) and Cp(∞) 	  171

D2 Arrhenius Parameters for Chloro-Methyl Radical Combination Reactions
(Literature Data) 	  175

D3 Recommendated High Pressure Limit A Factors for Chloro-Methyl
Combination Reactions from Evaluation of Literature 	  176

D4 Literature Rate Constants for Cl + (Chloro) Methyl Radical 	  176

D5 QRRK Input Data for CH 3 + CH2Cl <-> [C2H5Cl]* --> Products 	  177

D6 QRRK Input Data for CH 3 + CHCl2 [CH3CHCl2]* ---> Products 	  178

xiv



LIST OF TABLES
(Continued)

Table 	 Page

D7 QRRK Input Data for CH2Cl + CH2Cl <-> [CH2CICH2Cl]* —> Products  	 179

D8 QRRK Input Data for CH2Cl + CHCl2 4-> [CH2C1CHCl2]* —> Products 	  180

D9 QRRK Input Data for CHCl 2 + CHCl2 [CHCl2CHCl2]* -> Products 	  181

D10 Apparent Rate Constants, k = AT exp(-E/RT), for Methyl and Chloromethyl
Radical Combination Reactions 	  182

El QRRK Input Data for C2H3 + 02 [C2H3OO]* —> Products 	  188

E2 QRRK Input Data for CH2CCI + O2 <-> [CH2CClOO]* —> Products 	  190

E3 QRRK Input Data for CHClCH + 024-> [CHClCHOO]* Products 	  192

E4 QRRK Input Data for CHClCCI + 02 <-> [CHClCClOO]* —> Products 	  194

ES QRRK Input Data for CCl2CH + 02 4-> [CCl2CHOO] * —> Products 	  196

E6 QRRK Input Data for C2Cl3 + O 2 4-> [CCl2CClOO]* —> Products 	  198

E7 Apparent Rate Constants, k = AT exp(-E/RT), for Addition Reactions of
Vinyl and Chloro-vinyl to 02 	  200

	

Fl Thermodynamic Properties for C4 to C6 Species   207

F2 Reaction Mechanism for Molecular Weight Growth from C2 to C6 	  213

F3 Notation of the Species in Table Fl and F2 	  221

F4 QRRK Input Data for CH2CCI + C2HCl <-> [C4H3Cl2(N4]* -> Products 	  226

F5 QRRK Input Data for CH2CCl+ C2H3Cl <-> [C4H5CI2(N1]* —> Products 	  227

F6 QRRK Input Data for C4H4Cl(N1 + C2HCl<---> [C6H5Cl2(N1]* —> Products 	  228

F7 QRRK Input Data for C4H2Cl(N2 + C2HCl<-> [C 6H3Cl2(N1]* -> Products 	  229

	

G1 Thermodynamic Properties for Sulfur Containing Species   230



LIST OF TABLES
(Continued)

Table	 Page

G2 QRRK Input Data for HSO + 0 <-> HSO2]* —> Products,
H + SO2 <-> [HOSO]* —> Products, and
OH + SO <-> [HOSO]* —p Products 	  231

G3 QRRK Input Data for OH + SO2 [HOSO 2]* —> Products, and
H + SO3 4-> [HOSO2]* —> Products 	  233

G4 QRRK Input Data for HOSO + H <—> [HOSHO]* —> Products, and

	

HSO + OH <--> [HOSHO]* -> Products   234

G5 Apparent Rate Constants, k = AT exp(-E/RT), for the Reactions of Sulfur
Compounds 	  235

xvi



LIST OF FIGURES

Figure 	 Page

Al Experimental Apparatus 	  237

A2 Reactor Temperature Profiles 	  238

A3 Sample Chromatogram in CH2Cl2/CH4/O2/Ar Reaction 	  239

A4a Experimental Results Decay of CH2Cl2 vs Time/Temperature in
CH2Cl2 : CH4 : O2 : Ar = 1: 1: 4 : 94 and CH2Cl2 : O2 : Ar = 1: 4: 95

	

Reaction Systems   240

A5 Decay of CH2Cl2 versus Temperature in Different Reaction Environments 	  241

A6a Product Distribution vs Temperature in CH 2Cl 2 : Ar = 1: 99
at 1.0 sec. Residence Time 	  242

A6b Product Distribution vs Temperature in CH2Cl2 : Ar = 1: 99
at 1.0 sec. Residence Time 	  243

A7a Product Distribution vs Temperature in CH2Cl2 : CH4 : Ar = l: 1: 98
at 1.0 sec. Residence Time 	  244

A7b Product Distribution vs Temperature in CH2Cl2 : CH4 : Ar = 1: 1: 98
at 1.0 sec. Residence Time 	  245

A8 Product Distribution vs Temperature in CH2CI2 : O2 : Ar = 1: 4 : 95
at 1.0 sec. Residence Time 	  246

A9a Product Distribution vs Temperature in CH2Cl2 : CH4 : O2 : Ar = 1: 1: 4: 94

	

at 1.0 sec. Residence Time   247

A9b Product Distribution vs Temperature in CH2Cl2 : CH 4 : 02 : Ar = 1: 1: 4 : 94
at 1.0 sec. Residence Time 	  248

A10 CH3Cl Distribution vs Temperature in Different Reaction Environments 	  249

All C2HCl3 Distribution vs Temperature in Different Reaction Environments 	  250

xvii



LIST OF FIGURES
(Continued)

Figure 	 Page

Al2 C2H3 Cl Distribution vs Temperature in Different Reaction Environments 	  251

A13 CHCICHCI Distribution vs Temperature in Different Reaction Environments .. 252

B1 Model versus Experiment CH2Cl2 and CH3CI vs Temperature
in CH2Cl2 : Ar = 1: 99 	  253

B2 Model versus Experiment C2H3Cl, CH2CCl2, CHCICHCI and C2HCI 3

vs Temperature in CH2Cl2 : Ar = 1: 99 	  254

B3 Model versus Experiment C2H3CI, CH2CCl2 , CHCICHCI and C2HCl3

vs Temperature in CH2Cl2 : CH 4 : Ar = 1: 1: 98 	  255

B4 Model versus Experiment CH2CI2, CH4 and CH3Cl vs Temperature
in CH2Cl2 : CH4 : Ar = 1 : 1 : 98 	  256

B5 Potential Energy Diagram for CH 2Cl + O2 <-4 {CH2ClOO]* Products 	  257

B6 Comparison of QRRK Calculation to Data of Fenter et al. for

	

CH2Cl + O2 ---> CH2ClOO   258

B7 Results of QRRK Analysis CH2Cl + 02 <---> [CH2ClOO]* Products at 1 atm 259

B8 Potential Energy Diagram for CHCl 2 + O2 44 [CHCl2OO] * -> Products 	  260

B9 Comparison of QRRK Calculation to Data of Fenter et al. for
CHCl2 + O2 —> CHCI2OO 	  261

B10 Results of QRRK Analysis CH2CI + O2++ [CH2ClOO]* ---> Products at 1 atm 262

B11 Model versus Experiment CH2Cl2 and CH 3Cl vs Temperature
in CH2Cl2 : 02 : Ar = 1 : 4 : 95 	  263

B 12 Model versus Experiment C 2H3Cl, CH2CCl 2, CHCICHCI and C2HCl3

vs Temperature in CH2Cl2: O2 : Ar = 1: 4 : 95 	  264

B13 Model versus Experiment CH2Cl2 and CH4 vs Temperature
in CH2Cl2 : CH4 : O2 : Ar = 1 : 1 : 4 : 94 	  265

xviii



LIST OF FIGURES
(Continued)

Figure	 Page

B14 Model versus Experiment C2H3Cl, CH2CCl2, CHClCHCl and C 2HCl3
vs Temperature in CH2Cl2 : CH4 : 02 : Ar = 1 : 1 : 4 : 94 	  266

C1	 Potential Energy Diagram for CH2CI2 4-> [CH2Cl2]* --> Products 	  267

C2 NJIT Analysis vs Experimental Data of Lim and Michael for
CH2CI2 --> Products at 6 Torr 	  268

C3 NJIT Analysis vs Experimental Data of Lim and Michael for
CH2Cl2 --> Products at 11 Torr 	  269

C4 NJIT Analysis vs Experimental Data of Lim and Michael for
CH2Cl2 --> Products at 16 Ton 	  270

C5	 Results of Master Eqn. Analysis for CH2C1 2 Unimolecular Dissociation

	

at 1 atm   271

C6 Results of Master Eqn. Analysis for CH 2Cl2 Unimolecular Dissociation

	

at 300 K   272

C7 Results of Master Eqn. Analysis for CH2Cl 2 Unimolecular Dissociation
at 1000K 	  273

D1 A Factor for Combination Reaction of Chloro-Methyl Radicals vs

	

Number of Cl' s   274

D2 Potential Energy Diagram for CH 3 + CH2Cl.<-> [C2H5CI]* --> Products 	  275

D3 Results of QRRK Analysis CH3 + CH2Cl+-> [C2H5Cl]* --> Products at 1 atm 	  276

D4 Results of QRRK Analysis CH3 + CH2Cl <-> [C2H5Cl]* --> Products
at 300 K and 1000K 	  277

D5 Potential Energy Diagram for CH3 + CHCl2<--> [CH3CHCl2]* --> Products 	  278

D6 Results of QRRK Analysis CH3 + CHCl2.<-> [CH3CHCl2]* --> Products
at 1 atm 	  279

xix



LIST OF FIGURES
(Continued)

Figure	 Page

D7 Results of QRRK Analysis CH3 + CHCl2 4-* [CH3CHCl2]* -> Products
at 300 K and 1000K 	  280

D8 Potential Energy Diagram for CH 2CI + CH2Cl 4-> [CH2ClCH2CI]* --> Products 281

D9 Results of QRRK and Master Eqn. Analysis for
CH2Cl + CH2Cl +-> [CH2ClCH2Cl]* -> Products at 1 atm 	  282

D10 Results of QRRK Analysis CH2Cl + CH2Cl 4-> [CH2ClCH2Cl]* -> Products
at 300 K and 1000K 	  283

D11 Comparison of QRRK and Master Eqn. Calculation to Data of Roussel et al.

	

for CH2Cl and CHCl2 Self-Combination    284

D12 Comparison of QRRK Calculation to Calculation of Senkan et al. for
CH2Cl + CH2Cl <-> [CH2ClCH2Cl]* -> Products 	  285

D13 Potential Energy Diagram for CH2Cl + CHCl2 4-> [CH2ClCHCl2]* -> Products 286

D14 Results of QRRK Analysis CH 2Cl + CHCl2 4-> [CH2ClCHCl2]* -> Products

	

at 1 atm   287

D15 Results of QRRK Analysis CH 2Cl + CHCl2 4-> [CH2ClCHCI2]* -> Products
at 300 K and 1000K 	  288

D16 Potential Energy Diagram for CHCl 2 + CHCl2 4-> [CHCl2CHCl2]* -> Products 289

D17 Results of QRRK Analysis CHCl2 + CHCl2 <-> [CHCl 2CHCl2]* --> Products

	

at 1 atm   290

D18 Results of QRRK Analysis CHCl2 + CHCI2 <-> [CHCI 2CHCl 2]* -> Products
at 300 K and 1000K 	  291

D19 Results of CHEMACT and Master Eqn. for CH2ClCH2Cl
Unimolecular Dissociation at 300 - 2500 K 	  292

D20 Results of CHEMACT and Master Eqn. for CHCl 2CHCl2

	

Unimolecular Dissociation at 300 - 2500 K   293



LIST OF FIGURES
(Continued)

Figure	 Page

D21 Results of CHEMACT and Master Eqn. for CH2ClCH2Cl
Unimolecular Dissociation at 1000 - 2000 K 	  294

D22 Results of CHEMACT and Master Eqn. for CHCl 2CHCl2
Unimolecular Dissociation at 1000 - 2000 K 	  295

E1 Potential Energy Diagram for C2H3 + O2 43 [C 2H3 OO]* --> Products 	  296

E2	 Comparison for Predicted values with Experiments for Vinyl + 0 2 --> Products 297

E3 Results of QRRK Analysis C2H3 + O2 +-> [C 2H3OO]* --> Products at I atm 	  298

E4 Results of QRRK Analysis C2H3 + O2 <-> [C2H3OO]* ---> Products at 300 K	 299

E5 Results of QRRK Analysis C2H3 + O2 4(4 [C2H3OO]* —> Products at 1500 K 	  300

E6 Potential Energy Diagram for CH2CCl + O2 43 [CH2CClOO]* --> Products 	  301

E7 Comparison for Predicted Values with Experiments for

	

ChloroVinyl + O 2 --> Products   302

E8 Results of QRRK Analysis CH2CCl + O 2 <-> [CH2CClO0]* — Products
at 1 atm 	  3 03

E9 Results of QRRK Analysis CH2CCI + O2 4-> [CH2CClOO]* --> Products
at 300 K 	  304

E10 Results of QRRK Analysis CH2CCl + O 2 <-> [CH2CClOO]* -3 Products

	

at 1500K    305

Ell Potential Energy Diagram for
CHClCH + O2 ÷-> [CHCICHOO]* --> Products 	  306

E12 Results of QRRK Analysis CHClCH + O2+3  [CHClCHOO]* —> Products
at 1 atm 	  307

E13 Results of QRRK Analysis CHClCH + O2+3 [CHCICHOO]* --> Products
at 300 K 	  308

xxi



LIST OF FIGURES
(Continued)

Figure	 Page

E14 Results of QRRK Analysis CHCICH + O2 44 [CHCICHOO]* Products
at 1500K 	  309

E15 Potential Energy Diagram for
CHCICCl + O2 <-> [CHCICClOO]* --> Products 	  310

E16 Results of QRRK Analysis CHCICCl + O2 <-4 [CHClCClOO]* ----> Products
at 1 atm 	  311

E17 Results of QRRK Analysis CHCICCl + O2 <-> [CHClCClOO]* Products
at 300 K 	  312

E18 Results of QRRK Analysis CHCICCl + O2 <--> [CHCICCIOO]* —> Products
at 1500K 	  313

E19 Potential Energy Diagram for CCl 2CH + O 2 +4, [CCl2CHOO]* --> Products 	 314

E20 Results of QRRK Analysis CCl 2CH + O2 +-> [CCl2CHOO]* ---> Products
at 1 atm 	  315

E21 Results of QRRK Analysis CCl2CH + O2 <-4 [CCl2CHOO] * Products
at 300 K 	  316

E22 Results of QRRK Analysis CCl2CH + O2 <---> [CCl 2CHOO]* --> Products
at 1500K 	  317

E23 Potential Energy Diagram for C2Cl3 + O24—> [CCl 2CClOO]* -4 Products 	  318

E24 Results of QRRK Analysis C2Cl3 + O2 <-> [CCl2CClOO]* Products
at 1 atm 	  319

E25 Results of QRRK Analysis C 2Cl 3 + O2 <-> [CCl2CClOO]* -> Products
at 300K 	  320

E26 Results of QRRK Analysis C2Cl3 + O2+4 [CCl2CCIOO]* Products
at 1500K 	  321

F1	 Reaction Scheme: C1 ----> C2	 C4 -4 C6 	  322



LIST OF FIGURES
(Continued)

Figure	 Page

F2 Potential Energy Diagram for

	

CH2CCl + C2HCl <-> [C4H3Cl2(N4]* —> Products   323

F3	 Results of QRRK Analysis CH2CCl + C2HCl <-> [C4H3CI2(N4]* --> Products
at 1 atm 	  324

F4 Potential Energy Diagram for
CH2CCl + C2H3Cl 4-> [C4H5Cl2(N1]* --> Products 	  325

F5	 Results of QRRK Analysis CH 2CCl + C2H3 Cl <-4. [C4H5CI2(N1]* --> Products
at 1 atm 	  326

F6	 Potential Energy Diagram for

	

C4H4Cl(N1 + C2HCl <-> [C6H5Cl2(N1]* —> Products   327

F7 Results of QRRK Analysis
C4H4Cl(N1 + C2HCl <-> [C6H5Cl2(N1]* -> Products at 1 atm 	  328

F8	 Potential Energy Diagram for
C4H2Cl(N2 + C2HCl 	 [C6H3Cl2(N1]* —> Products 	  329

F9 Results of QRRK Analysis
C4H2Cl(N2 + C2HCl 	 [C6H3Cl2(N1]* --> Products at 1 atm 	  330

F10 Product Distribution of C6H6, CyC6H5Cl and C6Cl6 vs Ratio of CH 2Cl2/CH4 	  331

F11 Product Distribution of CyC6H4Cl2 vs Ratio of CH2Cl2/CH4 	  332

F12 Product Distribution of CyC6H3Cl3 vs Ratio of CH 2Cl2/CH4 	  333

F13 Product Distribution of C6H6, CyC6H5Cl and C6Cl6 vs Phi (4)) 	  334

F14 Product Distribution of CyC6H4Cl2 vs Phi (4)) 	  335

F15 Product Distribution of CyC6H3Cl3 vs Phi (4)) 	  336

F16 Potential Energy Diagram for CyC6H6 + OH and CyC6H 5 Cl + OH 	  337



LIST OF FIGURES
(Continued)

Figure	 Page

G1 Potential Energy Diagram for HSO + O 4-> [HSO2]* --> Products,
H + SO2 +-> [HOSO]* --> Products, OH + SO 4-> [HOSO]* --> Products 	  338

G2 Results of QRRK Calculation for HSO + O 4--> [HSO2]* -> Products
at 1 atm 	  339

G3 Results of QRRK Calculation for H + SO24--> [HOSO]* -> Products

	

at 300 K and 1500 K   340

G4 Results of QRRK Calculation for H + SO 2 +> [HOSO]* --> Products
at 1 atm 	  341

G5 Results of QRRK Calculation for HSO + O 4--> [HSO 2]* --> Products

	

at 300 K and 1500 K    342

G6 Results of QRRK Calculation for OH + SO 4-> [HOSO]* -> Products
at 1 atm 	  343

G7 Results of QRRK Calculation for OH + SO 4> [HOSOr -> Products

	

at 300K and 1500 K   344

G8 Results of QRRK Calculation for HSO2 *--> [14S021* --> Products at 1 atm 	  345

G9 Results of QRRK Calculation for HSO 2 4-> [HSO 2]* --> Products
at 300 K and 1500 K 	  346

G10 Results of QRRK Calculation for HOSO 4--> [HOSO}* -> Products at 1 atm 	  347

Gil Results of QRRK Calculation for HOSO 4--> [HOSO}* -> Products

	

at 300 K and 1500 K   348

G12 Potential Energy Diagram for OH + SO 2 4-> [HOSO2]* -> Products,
H + SO3 <-4. [HOSO 2]* -> Products 	  349

G13 Results of QRRK Calculation for OH + SO24--> [HOSO 2]* ---> Products

	

at 1 atm   350

xxiv



LIST OF FIGURES
(Continued)

Figure	 Page

G14 Results of QRRK Calculation for OH + SO2 44 [HOSO2] * Products

	

at 300 K and 1500 K   351

G15 Results of QRRK Calculation for H + SO 3 <--> [HOSO2]* —> Products
at 1 atm 	  352

G16 Results of QRRK Calculation for H + SO3 <--> [HOSO2]* —> Products
at 300 K and 1500 K 	  353

G17 Potential Energy Diagram for HOSO + H <-> [HOSHO]* —> Products,
HSO + OH -> [HOSHO]* —> Products 	  354

G18 Results of QRRK Calculation for HOSO + H [HOSHO]* —> Products

	

at 1 atm    355

G19 Results of QRRK Calculation for HOSO + H 4-> [HOSHO]* -> Products
at 300 K and 1500 K 	  356

G20 Results of QRRK Calculation for HSO + OH E---> [HOSHO]* —> Products

	

at 1 atm    357

G21 Results of QRRK Calculation for HSO + OH <-> [HOSHO]* —> Products
at 300 K and 1500 K 	  358



CHAPTER 1

INTRODUCTION

In theory incineration can affect the total conversion of hazardous organic compounds to

safe, innocuous, thermodynamically controlled, end-products, such as carbon dioxide and

water, plus compounds like HCl, which maybe easily scrubbed with existing pollution

control equipment. In practice, total conversion to innocuous materials is not easily

achieved without considerable effort, and with an incinerator of less than optimum design

or operating conditions, stable components in the waste feed may not be totally

decomposed.(1) POHC (Principal Organic Hydrocarbon) and PIC (Product of Incomplete

Combustion) emissions are due to a number of factors which include chemistry, operating

conditions, uniformity of feed and mixing. The overall incineration process is complex and

involves interactions of chemistry, heat transfer, and fluid dynamic phenomena. Louw et.

al.,(2) for example, note that operating conditions of 1000 K and several minutes are

needed to limit incinerators with certain hazardous feeds from emitting intolerable

amounts of polychlorinated dibenzodioxins (PCDD).

The emission of hazardous organic compounds from poorly designed or

inadequately controlled incinerators presents a significant concern to the environment.

Hazardous organic compounds are also subject to thermal (pyrolytic) degradation in

droplets or in solids feed to incinerators and in other sources not specifically designed or

regulated for their disposal. It is important to understand the fundamental processes in
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both oxidative and pyrolytic thermal decomposition kinetics. This will permit development

of an optimum combustion process at an ideal level, that can then be utilized for

improvements in commercial scale units.

One important family of hazardous wastes is the halogenated hydrocarbons. Such

wastes include chlorinated methanes and ethanes, vinyl chloride, polychlorinated biphenyls

(PCB's) and DDT (dichlorodiphenyltrichloroethylene) and others. In order to utilize

incineration more effectively, and to better assess the applicability and limitation of the

incineration process, the chemical kinetic steps involved in chlorinated hydrocarbon

combustion must be understood in more detail. In addition, the manufacture of useful

chemicals by the controlled oxidation and pyrolysis of chlorinated hydrocarbons may be

possible through the detailed knowledge of their reaction pathways. It is also important to

discern if combustion of one and two carbon chlorinated species, which are common

solvents can result in formation of higher molecular weight chlorinated aromatic species.

These chloro-aromatics could serve as precursors to polychlorinated dibenzofurans

(PCDF) and polychlorinated dibenzodioxins (PCDD).

These chlorinated compounds are known to inhibit hydrocarbon combustion

processes, increase the levels of carbon monoxide (higher CO to CO2 ratios), and form

high molecular weight compounds and soot in flames.(3,4) Results presented in this study

show that chlorocarbons can facilitate or accelerate the initial rate of hydrocarbon

breakdown as well as inhibit it. Chlorocarbons can interact differently with hydrocarbon

combustion in each of two stages of the combustion process. They can serve to accelerate

the first pyrolysis and initiation stages by providing a very active chlorine atom (radical
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accelerates propagation). Chlorocarbons also inhibit oxidation of CO to CO 2 in the later -

burnout combustion phase.

This dissertation reports on experiments and detailed model development, which

focuses on methylene chloride, CH 2Cl2, in reaction environments relevant to combustion.

Appropriate previous literature is reviewed and experimental studies, which are performed

over wide range of conditions are presented. The experimental data of this study and data

in the literature are used to test (validate) a model which is developed to emulate CH2Cl2

combustion and incineration. The model is specifically not an empirical one, but a detailed

reaction mechanism based on fundamental thermochemical and kinetic principles. It, can

be used to characterize reactant loss, intermediate product formation and subsequent

decay, and final product formations processes as function of both time and temperature.

Interim stages of this thesis extend the model to account for molecular weight growth

including chlorinated aromatic species. The 4 and 6 carbon products of molecular weight

growth reactions are in effect trace species, under normal combustion conditions, but can

be formed in somewhat higher concentrations when incinerator upset occurs.

The following sections in this introduction serve as summary descriptions of the

thesis chapters. Relevant introductory and literature background material are in the

beginning of each respective chapter. This is necessary because of the detail in each

section and the associated problem of having this introductory material presented away

from the detailed relevant descriptions and discussions. Previous literature studies on

methylene chloride pyrolysis and oxidation are presented in the early parts of chapter 2.
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The remainder of chapter 2 describes the experimental procedures in detail and presents

results of the experiments.

Investigation into the thermal decomposition of chlorinated hydrocarbons has

received significant attention in recent years, due to concern for the environmental impact

from results of burning these materials. Specifically, there is a consistent observation of

known or suspected toxic / carcinogenic chlorocarbons or chloro-oxy carbon species in

the effluent from waste and resource recovery incinerators.(5) A number of studies on the

high temperature reaction of chlorinated hydrocarbons have been performed, and are

discussed in chapter 2.

Data are presented in chapter 2 on pyrolysis and oxidation of dichloromethane in

the presence or absence of methane in a tubular reactor. The thermal reactions of

dichloromethane are studied at 1 atmosphere pressure with six different residence times

from 0.3 to 2.0 seconds in the range of temperature 680 - 840 °C. Four reactant

concentration ratios are:

Table 1.1 Reactant Mole Fraction (%)

The degradation of dichloromethane, the intermediate product formation and

decomposition, and the final products are studied in both pyrolytic and oxidative reaction

environments. The slowest decay of dichloromethane occurs in pyrolysis with CH4
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present. Chlorinated products, such as CH3 Cl, C2HCl, C2H3Cl, CH2CCl2, CHCICHCl, and

C2HCl3 etc. are shown to be more stable in pyrolysis than in oxidation. When oxygen is

present, the concentration of chlorinated products decreases rapidly above 780 °C. Poor

carbon mass balance in the CH 2Cl2/Ar pyrolysis reaction environment at

temperatures above 780 °C, implies that the formation of higher molecular weight species

and soot are occurring at the higher temperatures in the absence of oxygen. The

observation of soot which is not incorporated into the mass balance further supports this.

Chapter 3 describes and compares the results of the model to the experimental data

on pyrolysis from chapter 2. A mechanism which contains 157 reactions and 51 species is

developed and utilized to simulate the pyrolysis of CH2Cl 2 and CH2Cl2/CH4 mixtures. An

important result is the barrier for HCl elimination from chlorinated ethylenes

is determined to be ΔHrxn + 40(±1) kcal/mol. Model

show good fit for reagent decay and major product distribution in the pyrolytic reaction

environments.

Importance of the chlorinated methyl radicals reactions with 0 2 relative to

conversion of chloro-methanes and chloro-methyl radicals is analyzed in chapter 3. These

reaction systems are analyzed using QRRK for k(E) and with modified strong collision

approach for fall-off, because formation of an energized adduct is involved. Predictions

are compared to data of Fenter et al.(6) and show good agreement with the data of Fenter

et al. for reactions

conversion of these chloro-methyl radicals to corresponding chloro-formaldehydes, CO

and CO2 is observed to be slow by this reaction sequence. The demonstration of this
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bottleneck is another important result of this thesis. Results show that conversion

primarily occurs through combination of 2 chloro-methyl radicals to chloro-ethanes, then

ethylenes, then chloro-vinyl radicals. The major chloro-methyl radical conversion path

under combustion condition is the chloro-vinyl radical + O 2 (see chapter 5 and 6).

Extending the pyrolysis reaction steps, a detailed reaction mechanism consisting of

120 species and 433 elementary reactions is developed to model the experiments in the

oxidative reaction systems of CH2Cl2 and CH2Cl2/CH4. Comparison between model and

experimental data for CH2Cl 2 : O2 Ar = 1 : 4 : 95 ratio of concentrations shows good fits

for CH2Cl2, C2H3 Cl and CH2CCl2, while over-predicting CH 3 Cl above 700 °C, and

CHCICHCl, and C2HCI3 above 760 °C. In CH2Cl2 : CH4 : O2 : Ar = 1 : 1 : 4 : 94 reaction

environments, the model shows good fits to the data for CH 4 and CH2Cl2 decay, as well as

for chlorinated ethylene (C 2H3Cl, CH2CCl2, CHCICHCI and C 2HCl3) product

distributions.

Chapter 4 describes the unimolecular dissociation of

analyzed using QRRK for k(E) with modified strong collision approach, and

with multi-channel Master Equation analysis for fall-off effects. The high pressure limit

rate constants for the primary reaction channels are determined over a wide range of

temperature and pressure, shown as Table 1.2:

Table 1.2 High Pressure Limit Rate Constant, k = ATnexp(-αT)exp(-Ea/RT)
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The calculations of QRRK with Master Equation analysis show good agreement

with the experimental data of Lim and Michael(7) in their temperature range of 1400 -

2300 K and pressures of 6 to 16 torr. The results of modified strong collision approach

also show reasonable agreement, but under predict the CHCl + HCl products under the

experimental conditions of Lim and Michael.

Chapter 5 describes the chemically activated combination reaction of methyl and

chloro-methyl radicals. The bimolecular combination of chloro-methyl radicals results in

formation of activated chlorinated ethane adducts, which can be stabilized, further

dissociate to lower energy products (chloro-ethyl radicals + Cl or chloroethylenes + HCl),

or dissociate back to reactants before stabilization occurs. The overall reaction process is

complex and is a strong function of both temperature and pressure. The reactions are, in

addition, of importance and key to formation of C2 species and to higher molecular weight

growth in chlorocarbon pyrolysis and oxidation. Thermodynamic properties, high pressure

limit rate constants, vibration frequencies, Lennard-Jones parameters, 13 and ΔEavg are

evaluated and presented. Rate constants for each channel in the reaction systems are

estimated using a chemical activation quantum Rice-Ramsperger-Kassel (QRRK)

calculation for k(E), combined with a modified strong collision approach and separately

with multi-channel Master Equation analysis for comparison of fall-off analysis. Rate

constants are calculated for the temperature range 300 - 2500 K and bath gas (Ar) in the

pressure range 0.001 - 100 atm with comparison to experimental data where available.
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Results at 1 atm indicate the formation of chlorinated ethanes are most important

in low temperature range ( below — 650 K) for the reaction systems in this study.

Production of HCl + chlorinated ethylenes dominate at temperature between 700 to 1300

K. A decrease of these rates is observed above 1350 K as a result of increased dissociation

to chloro-ethyl radical + Cl and to reactants (two chloro-methyl radicals) at the higher

temperatures. Effect of pressure on the reaction channels at 300 K shows that stabilization

of chloro-ethane dominates at pressures above 0.1 atm, with production of HCl +

chlorinated ethylenes most important below 0.08 atm.

Master Equation and modified strong (beta) collision calculations on dissociation

rate constants for CH2ClCH2Cl and CHCl 2CHCl 2 are observed near the high pressure

limits at 1 atm for the lower temperatures and the agreement is very good for both over

the temperatures 300 - 2500 K.

Chapter 6 describes reaction pathway analysis, thermodynamics and kinetic

calculations for vinyl, and chloro-vinyl radical addition to O2 . This is a critically important

reaction in prevention of higher molecular weight product and soot formation (see chapter

3). This is because the addition reaction of alkyl radicals to unsaturated hydrocarbons

species is considered to the key step to formation of aromatics, soot, and higher molecular

weight species in hydrocarbon pyrolysis.(8-13) Analogous molecular weight growth

(MGW) reaction pathways for chlorinated hydrocarbon systems, C 1 and C2 radical

addition to chlorinated ethylenes, have been studied theoretically by Shi and Senkan.(14)

Their analysis shows production of MWG species containing 3 to 4 carbons. These C3 and

C4 species can subsequently result in the production of potential toxic chlorinated
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benzenes, phenols, dibenzofurans and dioxins.(15) The molecular weight growth

processes can be suppressed in the presence the O 2 by the fast reaction of alkyl radicals

with oxygen. These reactions, furthermore, represent the principal pathways of the chloro-

methyl and chloro-vinyl radical conversion in many hydrocarbon and chlorinated

hydrocarbon oxidation and combustion processes.(16)

The high pressure limit A factors are evaluated from literature for the reactions

range from: (4.0±0.8) x 10 12 to (1.2±0.24) x 10 12 cm3 mol-1 s-1.

The A factors decrease with increasing chlorine substitution. Energies of activation, Ea 's

are -(0.25±0.1) to -(0.83±0.23) kcal/mol and show a trend in negative activation energy

(< 1 kcal/mol) with increasing chlorine substitution. The well depth (40±2 kcal/mol) to the

peroxy adduct does not change significantly.

Calculations indicate that stabilization of the initially formed adducts (vinyl peroxy

and chloro-vinyl peroxy radicals) is important at lower temperatures (below 400 K) and

higher pressures (above 1 atm). Formation of the product sets:

and vinoxy (chloro-vinoxy) + O dominate at high temperatures. They

also increase in importance at lower pressures. Calculation results show very good

agreement with experimental data, where available.

In chapter 7 the analysis of molecular weight growth is continued - to formation of

chlorinated aromatics. Specifically described is the formation of chlorinated aromatic

(dioxin precursors) from high temperature combustion reactions of C 1 and C2

chlorocarbons. Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) are

thought to be possible cancer hazards and known to have non-cancer health effects on
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humans. Emissions of these compounds from incinerators to the atmosphere are the

dominant source in the United States.(17-21) The reaction mechanisms for production of

single ring aromatic compounds, chlorinated benzenes and phenols, from lower molecular

weight species may be important initial steps for formation of PCDDs, PCDFs, polycyclic

aromatics, soot and higher molecular weight compounds in combustion processes.(7,22-

24) Specifically the precursors to PCDD/F species can be formed in these homogeneous

processed.

A reaction mechanism consisting of 635 elementary reactions and 215 species is

developed to describe the formation of single ring aromatics, chlorobenzenes, and

intermediate molecular weight growth species in C 1 and C2 chlorocarbon and hydrocarbon

combustion. All reactions in the mechanism are elementary or are derived from analysis of

reaction systems encompassing elementary reaction steps. All reactions are

thermochemically consistent and follow principles of Thermochemical Kinetics(25).

Quantum RRK theory is used for calculation of k(E) and the modified strong collision

approach is used for fall-off effects in combination, addition, and insertion reactions and in

unimolecular dissociations or isomerizations.

The mechanism is calibrated against laboratory and literature chlorocarbon

oxidation and pyrolysis data over a range of fuel equivalence ratios, (I), from 0.5 to 2.0.

The data is primarily reactant loss, intermediate product formation/loss, and final product

concentrations.

The mechanism is then used in predicting levels of dioxin precursors (chlorinated

aromatics) from various high temperature reactions of CI and C2 chlorocarbons. Model
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results show that the concentration of benzene and chlorinated benzenes increase with the

ratio of CH2Cl2/fuel, and with increasing fuel equivalence ratios (higher levels formed in

fuel rich conditions). Little quantitative data is available in the literature on formation of

these PICs from well defined laboratory combustion or oxidation experiments. Additional

quantitative data from controlled experiments would be useful for testing this mechanism.

SOx is a major pollutant from both petroleum and coal fired combustion

operations and it is well known to contribute to acid rain.(26) Sulfur, in addition, is known

to exist in a range of oxidation states from -2 to +6 (H 2 S - SO 3),(27) its reactions with OH

and H on surfaces are important to aerosol formation, with these sulfate aerosols strongly

implicated in global climate change effects.(28) Radicals of sulfur compounds can

catalytically destroy ozone, with mechanisms operative in both the troposphere and in the

stratosphere.(29-3 1) The chemistry of formation and reactions of sulfur oxides in

combustion and energy generation processes is important to understand, in order to

develop methods for its minimization and removal.

The inclusion of reactions of sulfur and nitrogen oxides into our chloro and

hydrocarbon oxidation mechanisms would make the kinetic models more useful for actual

applications. Sulfur oxides are chosen for inclusion first. Chapter 8 presents results on our

analysis of sulfur oxide species reactions. Here we perform quantum Rice-Ramsperger-

Kassel (QRRK) analysis on several reaction systems of sulfur / oxygen species.

The thermodynamic properties related to these reaction systems have been

evaluated. The addition reactions of HSO + 0, H + SO 2 and the combination reaction of

OH + SO have been treated by using quantum Rice-Ramsperger-Kassel theory for
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determination of rate constants over 300 - 2000 K, and 0.001 - 100 atm. Thermodynamic

analysis shows that H + SO 2 and OH + SO are the low energy bimolecular products, while

HOSO is the lowest enthalpy adduct.

Results of HSO + O reactions at 1 atm show that production of H + SO2

is the dominate channel over 300 - 2000 K; the OH + SO product channel is next in

importance. At temperatures above 800 K, the rate constant to H + SO 2 falls off, while

reaction to OH + SO and dissociation of the complex to HSO + O increase in importance.

Effectively no pressure dependence is observed for reaction at 1500 K, 10 -3 - 102 atm.

Calculation results for H + SO2 at 1 atm show that reverse reaction H + SO2 is most

important above 650 K, while HOSO stabilization and H + SO2 rates are comparable at

lower temperatures. The production of OH + SO increases in importance above 400 K,

and is second in dominance above 700 K. The HOSO* complex from OH + SO

dissociates back to OH + SO as the dominant channel at 1 atm, while dissociation to H +

SO2 is next in importance. H + SO2 is observed to be most important product in the

unimolecular dissociation of HSO2 and HOSO at 300 -2000 K over the pressures

102 atm.

Calculation results of OH + SO 2 predict that stabilization is most

important below 650 K, with dissociation back to OH + SO 2 next in importance, above

that OH + SO2 is observed to dominate. In H + SO3 reactions, OH + SO2 is predicted to

be the dominant channel over the temperature range 300 - 2000 K. Stabilization is second

in importance below 1400 K. Dissociation back to H + SO3 increases with temperature,

and competes with stabilization near 1400 K.
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Results of OH + HSO indicate that reverse reaction; dissociation to OH +

HSO, dominates at 300 - 2000 K, and stabilization is predicted next in importance below

750 K. H20 elimination plus SO increases with temperature, and becomes second in

importance above 750 K. In the H + HOSO reaction system, OH + HSO is most

important between 300 to 2000 K, with stabilization next in importance below 600 K.

increases in importance with temperature, and becomes second in importance

above 650 K. Reverse dissociation to H + HOSO is also observed to increase with

temperature, and competes with H 20 + SO above 850 K.

Apparent rate constants for the reactions to various product channels and the

dissociation of the stabilized adducts in argon bath gas are calculated. The calculations

serve as useful estimates for rate constants and reaction paths in combustion and

atmospheric kinetic modeling, where experimental data are not available.



CHAPTER 2

PYROLYSIS AND OXIDATION OF CH 2Cl2 AND CH2Cl2/CH4

2.1 Introduction

Controlled high-temperature incineration, in spite of the associated high cost, is an

attractive waste reduction methodology because it leads to complete treatment and

permanent disposal of both municipal and hazardous wastes.(32) The destruction of

organic compounds in high temperature environments involves the combination of

pyrolytic and oxidative processes. The pyrolysis process is initially one of continuous

degradation to smaller and unsaturated species. At some stage of the decomposition

process, the radical and unsaturated molecules reach a level where the combination rates

become significant, leading ultimately to soot and/or higher molecular weight species.

Under oxidation, the breakdown process is enhanced. Carbon-containing radicals combine

with or add to oxygen, and further react to thermodynamically favored carbon oxides.

They therefore have little chance to form high molecular weight species where well mixed

excess oxygen. The oxidation process is highly exothermic in nature, and there are

significant increases in temperature. As a result, more radicals are created and the reaction

is driven to completion. (3 3 -3 7)

Investigation of the thermal decomposition of chlorinated hydrocarbons has

received significant attention over the past decade, due to the environmental impact from

14
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burning these materials. A number of studies on the high temperature reaction of

chlorinated hydrocarbons have been performed.

Weissman and Benson(22) studied the high temperature (1200 -1300 K)

decomposition of CH3Cl and CH3Cl/CH4 mixtures. They reported C2 hydrocarbons as the

major products of their experiments, and that CH 3Cl was a sort of catalyst for

formation from

Senser et al.(38,39) investigated PIC (Products of Incomplete Combustion)

formation during the thermal reaction of CH 2Cl2/CH4/Air in a laminar flat flame at 1

atmosphere pressure and in the temperature range 1500-2000 K. They observed that a

large number of stable intermediates

are produced early in the flame, but at a critical region of flame they are

rapidly decomposed. They also reported the presence of chlorine promotes ethane and

consumption. The author postulated that the oxidation of CH4/CH2Cl2 mixtures is

dominated by CH3 and CHCI 2 radicals, and that the combination reaction of these radicals

results in the formation of C2 compounds.

The research group of Senkan(4,40,41) investigated the oxidative pyrolysis of

in a flow reactor at 0.68 atm and made a comparative study of the

chemical structures of CH3 Cl/CH4/O2/Ar and CH4/O2/Ar flames at atmospheric pressure

effecting soot formation. In the presence of chlorine, ample amounts of

were formed rapidly in comparison to the "no chlorine" reaction system. They concluded

that the presence of oxygen in the system decreased the formation of carbonaceous
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deposits (soot) and showed the important formation of C 2H2 and C 21-14, at combined yields

as high as 60% when conversion of CH 3CI was only 30%.

Taylor et al.(32,42) conducted oxidative pyrolysis of

in a tubular reactor operating under laminar flow conditions over the temperature

range 573 - 1273 K at 1.15 atm. Taylor indicated that under near pyrolytic conditions,

PICs become more numerous, yields of chloroethylene compounds increase, and PIC

stability increases with decreasing oxygen concentration. They also proposed that the

combination of chloro-methyl radicals (chemical activation reaction) is the important

pathway to the formation of C2 chlorinated compounds.

The Thermochemical Kinetics Research group in NJIT has done a number of

studies on both the thermal reaction of chlorinated methanes in tubular reactors and the

kinetic reaction mechanism analysis. Huang(43) studied the reaction of hydrogen atom

with methylene chloride in a flow system at pressure of 2.1 to 2.7 torr and room

temperature. The major products observed were HCl and methane. The conversion of

methylene chloride increases first to a maximum and then decreases with increasing

concentration of methylene chloride. Tsao(44) examined the thermal reaction of

dichloromethane with hydrogen over the temperature range of 700 - 900 °C, at 1 atm in a

tubular reactor. The major products in this reaction system were methane and methyl

chloride. The minor products were ethylene, acetylene and HCl. Trace amounts of ethane,

chloroethylene, 1,2-dichloroethylene, trichloroethylene, and benzene were also observed.

No chlorocarbons were found at temperatures over 950 °C at 1.0 second residence time.
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Under these conditions, the only products were methane, HCI, acetylene, ethane and

benzene.

Tavakoli(45) investigated the reaction of

at 1 atm in a tubular reactor over the temperature range of 750 -

1000 °C. Acetylene, ethylene, benzene, chloromethane, and HCl were observed as the

major products, for temperatures above 750 °C and residence times of 0.08 to 2.0

seconds. Won(46) investigated the thermal reaction of CH2Cl 2/CH3CCl3 mixtures in a

hydrogen bath gas in a tubular reactor over the temperature range of 475 - 810 °C at 1

atm pressure. Won demonstrated that selective formation of HCl can result from the

thermal reaction of chlorocarbon mixtures with H2. He also showed that the

decomposition of 1,1,1-trichloroethane accelerates the rate of dichloromethane

decomposition, and that there is significant interaction between the decay products of

1,1,1-trichloroethane with the parent dichloromethane.

Ho(47) studied the thermal decomposition of dichloromethane in H2/O2 mixtures

and argon bath gas. The reaction was carried out in a tubular reactor at 1 atmosphere total

pressure over the temperature range from 610 to 820 °C with average residence times

from 0.1 to 2.0 seconds. The major products observed in this study were methyl chloride,

methane, CO, and HCl. It was found that oxygen almost has no effect on the decay of

dichloromethane when the conversion is below 50% and/or the initial oxygen

concentration is below 5%. When conversion is above 90%, the major products are HCI

and non-chlorinated hydrocarbons such as CH4, C2H2, C2H4. It was also shown that the
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higher the ratio of O2 to H2, the lower the temperature needed to observe the formation of

Won(48) examined the thermal decomposition of chloroform in absence and

presence of added O 2 and/or CH4. The reactions were studied in a tubular reactor at a 1

atm with residence times of 0.3 - 2.0 seconds, 535 - 800 °C. Increases in 0 2 were

observed to speed chloroform decay. Won demonstrated that almost all major chlorinated

products (C2Cl4, CH2CCl 2, and C2HCl3 etc.) are C2 compounds. Qing-Rui Yu(49) studied

the thermal reaction of CH3Cl/CH4/O2 and CH3Cl/H2/O2  in tubular reactor at 1 atm and in

the temperature range from 825 to 950 °C. All major intermediates were observed to be

C2 compounds.

This chapter presents experimental data on the reagent (CH2Cl 2 and/or CH4)

decay, intermediate product formation and loss, and final product formation as functions

of both temperature and residence time. The experiments are conducted to investigate the

CH2Cl 2 pyrolytic reaction environment, then the effects of adding CH4 to CH2Cl2, then the

effects of added O2, and finally the effects of 0 2 added to the CH2Cl2/CH4 system. The

experimental data are needed for comparison with the model (chapter 3) i.e. to improve or

validate the kinetic reaction data in the mechanism.

2.2 Experiment

2.2.1 Experimental Apparatus

A diagram of the experimental apparatus is shown in Figure Al. The thermal reaction of

is studied in a 10.5 mm 1.D. tubular reactor at one atmospheric pressure. The
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tubular reactor is housed within a three zone electric tube furnace of 45.7 cm length, each

zone equipped with one independent temperature controller (Omega Engineering, Inc.).

Nine temperatures between 680 °C (CH 2Cl2 begin to decay) to 840 °C (more than 99%

decay), and six residence times in the range from 0.3 to 2.0 seconds were studied.

Four reactant concentration ratio are studied:

Argon carrier is passed through dual saturation bubblers held at 0 °C using an ice

bath. A second argon flow stream is used as make-up, to achieve the desired ratios of

reagents. Methane and oxygen are then added to the CH2Cl 2/Ar stream as required. The

feed mixture can be transferred directly to the GC sampling valve via a by-pass line before

entering the reactor. This is necessary in order to determine the GC peak areas that

corresponded to the input concentration of the reagents. The inlet gas mixtures are

preheated to about 150 °C to insure mixing and improve the reactor temperature control.

The reactor effluent gas passes to the GC gas sampling valve through a heated line (-120

°C) in order to limit condensation. The gas mixtures are passed from the reactor exit to the

GC inlet, through a pyrex tube which is packed with glass wool to trap carbon particles in

order to prevent contamination of the GC system. The effluent of the reactor is passed
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through a pyrex tube packed with glass wool to trap carbon particle and/or soot, and

then through a sodium bicarbonate (NaHCO 3) flask for neutralization before it is released

to a fume hood.

2.2.2 Temperature Control and Measurement

The quartz reactor tube is housed within a three zone furnace, each zone equipped with an

independent temperature controller in order to adjust the operation condition to

isothermal. The actual temperature profile of the tubular reactor is obtained using type K

thermocouple probe, moved coaxially within the reactor, under a steady flow of argon gas.

The temperature profiles obtained, as shown in Figure A2, are isothermal to within ±5

for the central 30 cm (over 70%) of the furnace length for several residence times at 700

°C. Temperature profiles at varied temperatures but only at 1 second residence time are

also illustrated.

An energy balance calculation was done by Won(46) for the reaction system using

the reactant concentration, the experimentally observed conversion, the observed

products, and the known thermodynamic properties. It was determined that the thermal

reactions can increase the temperature by a maximum of 1.5 °C. The temperature profiles

obtained with no reactant flow (only inert), are therefore considered accurate.

2.2.3 Qualitative and Quantitative Analysis of Reagents and Reaction Products

An on-line HP-5890 gas chromatograph (GC) with two flame ionization detectors is used

to determine the concentration of the reactants and products. Based on the smallest peak
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area that can be routinely and repeatedly recorded, 500 μV-s (microvolt-seconds) for CH4

and the response to 1 mole % standard of CH4 (470,000 μV-s). The detection limit is

estimated as 10 ppmv. The GC uses a 2 m length by 2.16 mm I.D. stainless steel column

packed with 1% Alltech AT-1000 on graphpac GB to separate reactants and products.

Carbon monoxide, and carbon dioxide from the reactor effluent stream were separated

using 1.67 m length by 2.16 mm I.D. stainless steel column packed with carbosphere

80/100 mesh, which is held at 70 °C in a Varian 1400 GC oven in order to obtain optimum

resolution of CO and

The GCs used six port sampling valves with 1.0 ml volume loop maintained at 170

°C and 1 atm pressure. Chromatogram peak integration was performed with a Varian 4270

integrator/plotter. A representative chromatogram is shown Figure A3, and Table A1

including average retention time and peak identification.

In order to increase the accuracy of quantitative analysis, a catalytic converter, 5%

ruthenium on alumina (3 0/40 mesh) catalyst, was used to reduce CO and CO 2 with H2 ( 1 0

ml/min) - conversion of CO and CO 2 to methane. The results show the product peaks at

corresponding retention times, because the converter is at the exit of the carbosphere

column. Quantitative analysis of CO and CO 2 (after reduction to CH4) is performed using

the second flame ionization detector.

The gas chromatogram (GC) is run with relatively high H2 flow 30 ml/min) to

optimize sensitivity of the flame ionization detector (FID) to CCl 4 and other chlorinated

hydrocarbons. I routinely find the responses under this flow configuration for chlorinated

hydrocarbons to be similar to hydrocarbons. Calibration of the flame ionization detector
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to obtain appropriate molar response factors was done by injecting a known quantity of

the relevant compound such as CH4, C 2H4, C2H6 etc. Liquid compounds such as

etc. were bubbled through a dual stage impinger, to form a saturated Ar-

chlorocarbon mixture at ice point (0 °C), to the six port sampling valve, and the

corresponding response area measured. The relative response factor determined for

compounds is shown in Table A2. Sensitivity of the flame ionization detector in general,

corresponds with the number of carbon atoms in the species. The relative response factor

for C 1 compounds are all similar, and the relative response of C2 compounds is nearly

twice the response of the C 1 compounds. Thus, the effect of chlorine on the relative

response factor is negligible for this flame ionization detector. Analysis of larger

chlorohydrocarbons is based on the verified relative response factors, where the specific

component peak area was converted to the equivalent number of moles of each

compound.

Product identification was also performed in GC/MS (Finnigan 4000 series) with a

50 m length by 0.22 mm I.D. methyl silicone stationary phase capillary column.

2.2.4 Hydrochloric Acid Analysis

Quantitative analysis of HCl product was performed for experiments at each reaction

condition. Samples for HCl are collected independently from the GC sampling as

illustrated in Figure Al. In this HCl analysis, the reactor effluent is passed through a two

stage bubbler before being exhausted to the fume hood. Each stage contains 20 ml of

0.005 M NaOH plus three drops of phenolphthalein indicator. The effluent gas is passed
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through the two bubblers until the first stage solution reached the indicator end point. The

time required for this to occur is recorded. At this point the bubbling is stopped, the

aliquots are combined and then titrated to their end point with standardized 0.01 M HCl.

Several titration are performed using buffer solution (pH 4.7) to discern if CO 2 was

effecting the acidity. No significant effect was observed due to the relatively low

levels and the

2.3 Experimental Results and Discussion

The pyrolytic and oxidative reaction of CH 2Cl2 and CH2Cl2/CH4 mixture in argon bath gas

is carried out at atmospheric pressure in a tubular reactor. Reagent concentration ratio sets

and temperature ranges shown as Table 2.3 are studied to investigate the reagent decay,

product formation and loss for use in development and validating of the detailed reaction

mechanism.

Table 2.3 Reactant Concentration Ratio and Temperature Range 
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Duplicate analysis is necessary to determine the reproducibility and systematic

error of the experiments. Duplicated analysis is done at least 3 times for each by-pass run

and once for every 2 to 3 reaction time.

2.3.1 Reagent Conversion

Experimental results on decomposition of dichloromethane are shown in Figure A4a and

A4b as functions of residence time and temperature in four reaction environments. We see

more CH2Cl2 conversion at higher temperature and longer residence time.

Figure A5 compares dichloromethane decay as a function of temperature at 1.0

second reaction time in four different reaction environments. Each experiment is run at

constant temperature for 6 to 8 residence times. Runs at different temperature are on

different days; thus data in this figure are obtained over a time period of several weeks.

The uniformity and consistency of the data is a good test of the thoroughness of the

experimental procedures. Oxygen has positive effect on the decomposition of

dichloromethane in this study. Same result was observed by Ho et al.(47,50) for

systems. The accelerated decomposition of dichloromethane, when O 2 is

added, results in part, from the bimolecular reaction of O 2 with

products. This reaction occurs in parallel with the unimolecular dissociation of

dichloromethane under initiation conditions. The subsequent reactions involving

combination of methyl and chloro-methyl radicals with O 2 are believed( 51-54) to play a

significant role in decomposition of chlorine-containing polymeric materials.
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The slowest dichloromethane decay occurs in the presence of CH4 and absence of

O2. Some of the reactive atoms and radicals which are produced from

unimolecular dissociation (Cl, CH 2Cl, :CHCl), react with CH4 (instead with

which was added to serve as a fuel and as a hydrogen source to improve HCl production.

When O2 is added to the CH2Cl2 + CH4 reaction system, CH4 decay accelerates. This is

also observed in the chloroform reaction systems(48) and illustrates that active

intermediates react with 0 2 to accelerate the chlorocarbon conversion. Chapter 6 will

illustrates that the active intermediates are primarily vinyl radicals and to a much lesser

extent, chloro-methyl radicals.

2.3.2 Product Distribution and Material Balance for Each Reaction Environments

HCl and CO, CO2 are the major products under the oxygen reaction conditions. Carbon

mass balance in the pyrolytic reaction environment is only 20 - 80% but it is near 100%

when oxygen is present.

2.3.2.1 Product Distribution in CH2 Cl2/Ar (Pyrolysis) - The decays of CH 2Cl2, along

with the formation and loss of stable intermediate products, at 1.0 second residence time

as a function temperature are shown in Figure A6a and A6b. In this pyrolysis only reaction

system, we can exclude the effects of oxygen and methane on CH 2Cl2 decomposition and

product distribution. The major products are C2HCl3, CH 3Cl, and CHClCHCl. Minor

products observed are C2H4, C2H3Cl, and CH2CCl2 . Chloro-acetylene, C2HCl, appears
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more stable and is higher in concentration for this reaction system relative to the other

systems in this study.

2.3.2.2 Product Distribution in CH2Cl2/CH4/Ar - Figure Ala and Alb show observed

product distributions as a function of temperature at 1.0 second residence time. Relatively

high concentrations of CH3 Cl, C2H3 Cl, CHCICHCl C2HCI3 , and C2H2 are produced under

this pyrolysis condition. Minor products are C2H4, C 2HCl, CH2CCl2 . The product

distribution for CH2Cl2/CH4/Ar reaction is qualitatively similar to the reaction of

CH2Cl 2/CH4/O2/Ar.

A trace amount of benzene is observed above 740 °C. The production of benzene

in this pyrolysis condition is higher than that for CH 2Cl2/CH4/O2 oxidation conditions.

Higher levels of C2H2 C 2HCI, and C2H4 suggest that these species are intermediates to

form benzene. This implies that the formation of single ring aromatics which are

precursors of soot and higher molecular weight species in the pyrolytic reaction

environment, is more probable that in the oxidative reaction environment.

2.12.3 Product Distribution in CH2Cl2/02/Ar (No CH 4/Hydrogen Supply) - The main

products over the range of temperatures are

as presented in Figure A8. Minor products observed are

with trace levels of C2H4, CHCl 3 . More than 99% conversion of CH2Cl2 is observed at 800

°C, 1.0 second residence time. Similar results are shown in the previous study of Ho(50),
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where complete decay (> 99%) of CH2Cl2 occurs at temperature — 800 °C over the range

of equivalence ratio (4) from 0.5 to 2.5.

2.3.2.4 Product Distribution in CH2Cl2/CH4/O2/Ar - Figure A9a and A9b illustrate the

distributions for the reagents (CH2Cl 2 and CH4), major products CO and CO2, and minor

as a function of

temperature at 1.0 second residence time. Trace products

benzene are also detected at levels below 0.005%. Formation of chlorinated hydrocarbons

initially increases with increasing

temperature, then a maximum exists near 780 °C (for 1.0 residence time). The formation

increases rapidly when the parent chlorinated hydrocarbon and CH 4 decreases,

then drops above 820 °C. The major end product CO rises as the temperature increases to

740 °C where reagents and chlorinated products begins to decrease. Above 840 °C at 1.0

second residence time, no hydrocarbon or chlorinated hydrocarbon products are observed.

Benzene formation is observed in trace amount above 800 °C. Benzene can be

formed from smaller, non-aromatic hydrocarbons

the mechanism for this formation is shown in chapter 7. To form an aromatic ring from

smaller C1 or C2 species, there must be molecular weight growth, cyclization, and

aromatization reactions. In the present experiment, it is difficult to obtain sufficient

information to quantitatively validate the mechanism of benzene and chlorinated benzene

formation. The trace levels observed are consistent with the prediction (chapter 7) but

more data is needed.
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2.3.2.5 Material Balance - Material balance gives important information about higher

molecular weight species, soot and oxy-chlorinated compounds which were not detected

quantitatively. The carbon material balances for the reaction systems of

are listed in Tables

A3 - A6, respectively. The oxidation reaction systems

show relatively good material balance over wide temperature range of 680

- 840 °C at l.0 second residence time.

In reaction environments without oxygen

material balance is low, 20 - 80%, at the higher temperatures. Brown flakes are also

observed in the post-reactor zone and on the quartz fiber filter. This implies that the

formation of high molecular weight species and soot is occurring at higher temperature in

the absence of oxygen. When oxygen is present, the overall CH 2Cl2 breakdown process is

enhanced and soot formation is not observed.

2.4 Comparison of Main Product Distribution
in the Four Reaction Environments

Figure A10 to Figure A13 show the comparison of major chlorinated intermediates as a

function of temperature at 1.0 second residence time for each reaction environment.
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2.4.1 CH3CI Product Distribution

The comparison of CH3Cl product distribution in the four reaction systems is shown in

Figure A10. In the CH 2Cl2/O2/Ar reaction, the concentration of CH 3Cl is relatively low.

The formation paths of CH 3 Cl can be described as:

In the presence of O2, reactions of CH 3 + O2 and CH2Cl + 02 will compete with above

reactions, which decrease the formation of CH 3 Cl.

The concentrations of CH3Cl are relatively high in the

reaction system. They are higher here in all experiments where O2 is present.

2.4.2 C2HCl3 Product Distribution

Figure A1 1 shows the comparison of C2HCl3 production in four reaction systems. The

formation of C 2HCl 3 (trichloroethylene) is higher in CH2Cl2/Ar than for all other condition

sets. When O 2 is added in the CH 2Cl2/Ar system, the O 2 increase the C 2HCl 3 formation

rate but also increases its decomposition. We see in Figure Al 1 that C2HCl3 shows more

stability in the absence of O2 . The major formation paths of C2HCl3 can be described as:
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Combination of two CHCl2 radicals results in the formation of an energized CHCl 2CHCl2 *

adduct, (see below) which can be stabilized, further dissociate to low energy product

channels, or dissociate back to the two CHCl2 radicals. The stabilized adduct can then

unimolecular dissociate to C 2HCl 3 + HCl. Details of bimolecular QRRK analysis for this

bimolecular reaction are presented in chapter 5.

When CH4 is present (CH2Cl2/CH4/Ar and CH2Cl2/CH4/O2/Ar reaction systems),

the concentration of C 2HCl 3 is relatively low. This is a result of more conversion of

chlorine to HCl and higher levels of CH 3 , CH2Cl radicals relative to CHCl 2 radicals. The

resulting increase in the CH 3 and CH2Cl combination reactions decreases the CHCl 2 +

CHCl 2 combination to trichloroethylene. HCl levels and the number of species with one Cl

are however increased.
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2.4.3 C2H3C1 Product Distribution

Figure A12 shows that significant levels of C 2H3Cl are observed in the presence of CH4 ,

with the reasons for this presented above. Formation of C 2H3Cl increases with increasing

temperature to a maximum near 800 °C. Vinyl chloride, C 2H3Cl, levels are higher in the

cases, this is because higher levels of

combination with CHCl 2 . Formation of C2H3Cl in both reaction systems shows similar

trends. However, C 2H3 Cl in CH2Cl2/CH4/O2/Ar decreases more rapidly than in

when the temperature increases above 780 °C. This implies that

bimolecular reactions of hydrophilic radicals (OH, O and HO 2) and 02 are responsible for

acceleration of the

The vinyl chloride formation pathways can be described as:

2.4.4 CHCICHCl (1,2-Dichloroethylene) Product Distribution

Figure A13 illustrates that O2 has significant effect on the formation of CHCICHCl. The

concentration of CHCICHCl in presence of CH4 is relatively low. The reason is that
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which are produced from the parent compound CH2Cl2, react

with CH4, and other H containing species formed from reactions of CH4.

The formation pathways of CHCICHCI are shown as below:

The bimolecular reactions of hydrophilic radicals (OH, O and HO2) and 02 are responsible

for acceleration of the 1,2-dichloroethylene.

2.5 Conclusions

The pyrolysis and oxidation of methylene chloride both with and without added methane

mixture in argon bath gas is studied in a tubular reactor. The thermal reactions are studied

at 1 atmosphere pressure with six different residence times from 0.3 to 2.0 seconds in the

range of temperatures 680 - 840 °C. The degradation of dichloromethane,

the intermediate product formation and decomposition, and final products are studied in

both pyrolytic and oxidative reaction environments. The slowest decay of dichloromethane

occurs when CH4 is present and O 2 is absent. The chlorinated products, such as

etc. are shown to be more stable in

the pyrolysis than in the oxidation. When oxygen is present, the concentration of
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chlorinated products decreases more rapidly above 780 °C than when no oxygen is

present. Carbon mass balance in the CH2Cl2/Ar reaction environment is less than 60% at

temperatures above 780 °C, and less than 20% at temperatures above 840 °C. This implies

that the formation of higher molecular weight species and soot occurs at higher

temperatures in the absence of oxygen.

The conversion of these chloro-methyl radicals to corresponding chloro-

formaldehydes, CO and CO 2 is observed to be slow by this reaction sequence. The

demonstration of this bottleneck is another important result of this thesis. Results show

that conversion primarily occurs through combination of 2 chloro-methyl radicals to

chloro-ethanes, then ethylenes, then chloro-vinyl radicals. The major chloro-methyl radical

conversion path under combustion condition is the chloro-vinyl radical + O2 (see chapter 5

and 6).



CHAPTER 3

MODELING THE THERMAL DECOMPOSITION OF CH2Cl2
BY DETAILED REACTION MECHANISM

PRODUCTS
PRODUCTS

3.1 Introduction

The use of a detailed kinetic mechanism to simulate the combustion processes of

hydrocarbons and chlorinated hydrocarbons is a developed research area. But validation is

often requested for specific reaction systems. The use of a mechanism can greatly facilitate

evaluation and optimization of a combustion process. However, by showing trends on

improvements in emission levels as input concentrations or operating condition are varied.

This technology also help evaluation of important chemical species, what key reactions are

involved, and how the kinetics can be controlled to limit or promote the production of a

given species during combustion.(55) Won and Bozzelli(56) used a detailed kinetic

reaction mechanism consisting of 31 species and 67 elementary reactions to simulate

thermal decomposition of 1% CHCl 3 in argon bath gas. The reaction were studied in

tubular reactors at 1 atm with residence time 0.3 - 2.0 seconds in the temperature range of

535 - 800 °C. The modeling results showed good quantitative agreement with

experiments. They reported that the C 2Cl4 is primarily formed from combination of two

and the formation of CCl4 occurs by formation of CCl3 and then combination of

with Cl or reaction with Cl 2 . The C 2Cl4 and CCI4 are non-desirable intermediates that

need to be further reacted.

34
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Ho et al.(57) used a 167 reaction mechanism to model the thermal reactions of

mixtures, and (via reaction mechanism analysis) to investigate the

implication for chlorine inhibition of CO conversion to CO 2 . Their results indicated that

the reaction OH + HCl H 2O + Cl is a major cause of OH loss. This decrease in OH

effectively stops CO burnout until equilibrium of OH, HCl, H2O and Cl are achieved. The

lower temperatures resulting from decreased CO conversion caused the Cl + HO2 -4 HCl

+ O2 termination reaction to become an important contributor to inhibition in some cases.

The model shows good agreement with experimental results on the thermal reaction of

Ho et al.(58) later modified the reaction mechanism(57) and used it to simulate

the pyrolysis/oxidation of CH 3Cl in H2/O 2/Ar mixtures. The model results show good fits

to methyl chloride, intermediate, and final product specie profiles with both temperature

and time of reaction.

A number of experiments and simulations of flat flames burning chlorinated C I and

C2 hydrocarbon have been studied by the research group of Senkan,(3,4,40,41,59,60)

Where SANDIA flat program, PREMIX, was using. Chang and Senkan(60) used a 147

reaction mechanism that contained C1 - C4 and C6 species to model a fuel-rich

flat flame at 1 atmosphere pressure. Comparisons between model and

experiment were made and which showed good agreement for the major products. Karra

et al.(4) simulated CH3 Cl/O 2/Ar atmospheric flat flame using a detailed reaction

mechanism consisting of 184 elementary reactions. The agreement between model and

experimental data is general satisfactory, but the mechanism regard to the CI C2

chemistry needed improvement. They also indicated that the chemically activated
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recombination processes of C 1 radicals and reactions of molecular oxygen with chlorinated

radicals must be described more precisely.

Lee et al.(61) employed a detailed reaction mechanism consisting of 38 species and

358 elementary reaction steps to simulate premixed flames burning

mixtures at atmospheric pressure. Lee et al.(62) later reduced the detailed reaction

mechanism to short reaction mechanism containing 25 species, 63 elementary reactions for

premixed CH3Cl/Air flames. The results of reduced kinetic mechanism calculations

conducted for experiments are in good agreement with the predictions of the full

mechanism.

Miller et al.(55) used a reaction mechanism containing 52 species and 190

elementary reactions to model a CH 2Cl2/CH4/Air flat flame. The model showed good

agreement with the experimental data of Senser.(63) Analysis of the results showed that

the flame occurred in three stages, the first one dominated by chlorine chemistry with

oxidation occurring in the second stage and CO conversion to CO2 in third. They indicated

that the depletion reactions for chlorinated C2 compounds, and the reaction pathways for

should be included in the reaction mechanism, due to their significant

impact on the model.

There is less data in the literature on detailed reaction mechanism which model the

thermal reaction of C2 chlorinated hydrocarbons. Thomson et al.(64) used a 324 reaction

mechanism to simulate the high temperature oxidation of CH 3 CCl3 in the post flame region

of a turbulent combustor. Numeric modeling of chemical processes in the flow reactor was

performed using the CHEMKIN package(65) with the PFR driver program.(66) The
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model and the experimental data show reasonable agreement for all temperatures. They

indicated that CH3 CCl3 mainly undergoes unimolecular decomposition to form

(loss of HCl). Reacting with either Cl or OH, CH2CCl2 then forms the CCl2CH vinyl

radical. This radical reacts via two routes,

to form chloroacetylene (C 2HCl) and Phosgene (COCl2).

In this chapter, a detailed reaction mechanism is developed based on fundamental

thermodynamic and kinetic principles to model the experimental results discussed in

chapter 2. Development of the reaction mechanism started from the simpler reaction

and progressed to the more complicated reaction system

oxidation). In the CH 2C12 pyrolytic reaction system, we can exclude the

effect of CH4 and O2. This allows a simpler mechanism to be developed and most

importantly validated for the pyrolysis. The reactions relative to CH4 were then added to

the validated CH2Cl2 pyrolysis reaction mechanism. The last, oxidation reaction steps were

combined with the CH2Cl2/CH4 pyrolysis reaction mechanism.

3.2 Computer Codes Used to Develop the Kinetic Model

Model requirements include:

• Accurate thermodynamic properties of all species in the reaction mechanism.

• Forward and reverse rate constants to be consistent with thermochemical principles -

microscopic reversibility for all fundamental reactions.

• Isomerization rate constants to follow Transition State Theory (TST).
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• Quantum Rice-Ramsperger-Kassel Theory(67,68) for k(E) combined with modified

strong collision analysis for temperature and pressure compensation in chemical

activation reactions (combination, addition, insertion) and in unimolecular dissociation

reactions (simple, beta scission, isomerization).

• Abstraction Arrhenius A factors from literature evaluation or generically derived.

Abstraction energies of activation (Ea 's) from literature evaluation or from

thermodynamics and Evans-Polanyi relationships.

• Model to be tested against data in the literature when data is available.

The following computer codes are helpful tools in mechanism validation and

development.

3.2.1 THERM

THERM(69) is the computer code which can be used to calculate, edit, or enter

thermodynamic property data for gas phase radicals and molecules using Benson Group

Additivity method.(25) Properties of radicals are based on Bond Dissociation (BD) groups

which is developed by Thermodynamic Kinetic Laboratory in NJIT. BD groups consist of

enthalpy (AK), entropy (Sf), and heat capacity (C p(T)) terms, which are added to the

corresponding properties of the parent molecule to yield thermodynamic properties of the

radical (parent molecule - H atom). All group contributions considered for a species are

recorded and thermodynamic properties are generated in NASA polynomial format (for

compatibility with CHEMKIN)(65) in addition to listing which are more convenient for

thermodynamic, kinetic presentation and evaluation.
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A thermodynamic data base up to C6 for the species with C/H/Cl/O elements is

developed and used for modeling the kinetic scheme of elementary reactions input to the

program.

3.2.2 RADICALC

RADICALC(70) is a computer code that calculates the entropies and heat capacities of

radicals and transition state structures for estimation of Arrhenius A factors as a function

of temperature. Calculation of RADICALC is performed using a data base of vibrational

frequencies, moments of inertia and barriers to internal rotations and principles of

statistical mechanics.(71)

3.2.3 CPFIT

CPFIT(72,73) is a computer code that determine geometric mean frequency as well as a

reduced three frequency set to describe the vibration frequencies of a molecule. It accepts

input in the form of heat capacities at various temperatures in addition to the number of

atoms and the number of internal rotors in the molecule. This code fits the heat capacity

data in the above range to a reduced set of 3 frequencies. This comprises a 5 parameter set

3 frequencies plus degeneracies for 2 of the frequencies. Third degeneracy is determined

from the number of atoms, N, and the total number of vibrations "3N - 6" for a nonlinear

molecule or "3N - 5" for a linear molecule. The code also extends the temperature range

to 5000 K.
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3.2.4 CHEMACT

Quantum Rice-Ramsperger-Kassel analysis, as initially published by Dean,(67,68) and

recently modified by Chang et. al.(74) is used to compute apparent rate constants over a

wide range of temperature and pressure. Branching ratios of bimolecular combinations at

different temperatures and pressures are calculated using modified computer code

"CHEMACT".(68) This code uses the quantum version of RRK theory (QRRK) to

evaluate the rate constants, k(E) as functions of temperature. The modified strong

collision theory of Gilbert, Luther, and Troe(75) is used to calculate the fall-off pressure

dependencies.

Modifications to the quantum RRK(74) calculation of ref. 68 include:

• Use of reduced set of 3 vibrational frequencies for describing the energy distribution

and the 3 frequencies plus one external rotation to calculate the density of states,

ρ(E)/Q.

• The FE factor is now calculated for use in determining the collision efficiency f3,(75) in

place of the previously assigned 1.15 value.

• P e is now calculated by :

Where A l and A2 are temperature-dependent

integrals involving the density of states, and a, is the average energy of down-

collisions.

• The Lennard-Jones collision frequency ZLJ is now calculated by ZLJ 	 Z C2 (42)

integral.,(76-78) Ω is obtained from fit of Reid et al.(78)
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A bimolecular combination, addition or insertion reaction, can form an energized

(chemically activated) adduct which can: be stabilized through collisions with the bath gas,

or dissociate to products, isomerize, or dissociate back to reactants before stabilization

occurs. The effect of pressure can be understood by realizing that the stabilization rate is a

function of bath gas pressure. Increased pressure, results in increased stabilization rates

and this can consequently decrease reaction of the energized adduct to products or back to

reactants. In general one can expect adduct stabilization to dominate at high pressures and

dissociation of the adduct to be more important at low pressure and/or high temperatures.

Decrease of stabilization with temperature increase is understood by realizing that rates of

dissociation of the adduct are often highly energy dependent (E a) and increase

exponentially with temperature. Stabilization rates can also decrease at high temperatures

because the bath gas molecules have more internal energy and thus remove less energy

from the adduct per collision.

An energy level diagram for formation of a chemically-activated adduct with

illustration of product, reversible isomerization (BCDA*), reaction back to reactants, and

stabilization (ABCD° and BCDA °) channels is illustrated as Figure 3.2.4:

ABCD* is the activated complex formed by the reactants, and ABCD° is its

stabilized adduct. The ABCD* can dissociate to products or react back to reactants,

isomerize to BCDA* and other complexes, or be stabilized. The BCDA* adduct can also

dissociate to products, isomerize back to ABCD* or be collisionally stabilized.
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Figure 3.2.4 Energy Level Diagram for Bimolecular Chemical Activation Reaction

Input Data needed for CHEMACT(68): (QRRK for k(E) and modified strong

collision for fall-off)

• Thermodynamic parameters: Enthalpy (AH f), entropy (S f) and heat capacities (Cp ) as a

function of temperature for reactants, adducts and products of the reaction system are

important.

• Molecular parameters describing the size, collisional energy transfer and energy levels

of the adduct formed by the initial reaction are also needed. These include the mass,

vibrational frequency set of each adduct, and Lennard-Jones parameters. Vibrational

frequencies include: reduced of 3 vibrational frequencies and respective degenercies.

• The bath gas molecule collision diameter (a), well depth (e/k) and average energy

transferred
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High pressure limit rate constants for adduct formation and various isomerization and

dissociation product channels of the adduct are also needed.

3.3 Kinetic Mechanism and Modeling

A 157 reaction mechanism which contains 51 species is utilized to simulate the pyrolysis

mixture. Expending the pyrolysis reaction steps, a detailed

reaction mechanism consisting of 120 species and 433 elementary reactions is used to

model the experiments in the oxidative reaction systems of

kinetic reaction mechanism is shown in Table Bl together with the rate parameters for the

forward reaction paths. The CHEMKIN computer program package(65) is used in

interpreting and integrating the reaction mechanism.

Specifics on Reaction Rate constants in the mechanism:

Abstraction Reactions - Abstraction reaction rate constants are not pressure dependent

and therefore do not incorporate any quantum RRK analysis. When estimation is required

for an abstraction rate constant, we use a generic reaction as a model and adjust for steric

effects as best as I can. An example of the generic type of Arrhenius A factor analysis is Cl

atom abstracting a H atom from 1, l-dichloethylene, where experiments can not discern

whether the measures values are for the abstraction or the addition reaction. Here I would

take the abstraction of H atom by Cl from 1,1,1-trichloroethane where both the mass and

the reaction degeneracy are similar.

Evans Polanyi analysis is used on the reaction in the exothermic direction to

estimate the energy of activation (E a) for the rate constant. An Evan Polanyi plot, Ea
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allows use of a known	 to obtain Ea for these reactions. Clearly the

abstraction reaction in an endothermic reaction must incorporate the OHS„ or it ,the

reaction rate constant, will violate thermodynamics.

Addition Reactions - Addition reactions are treated with the quantum RRK. formalism

described above. The reaction involve addition of an atom or radical to an unsaturated

species and typically form an energized adduct with ca. 20 to 50 kcal/mol of energy above

the ground state. This is sometimes sufficient to allow the adduct to react to other reaction

products (lower energy) before stabilization occurs. An example would be a H atom

addition to vinyl chloride, an olefin, forming one of two chloro-ethyl adducts with ca. 40

kcal/mol energy above the ground state. In the case of H atom addition to the carbon

containing the Cl atom, the chloro-ethyl adduct formed .CH2CH2Cl could rapidly eliminate

(beta scission) to form the lower energy products Cl atom plus ethylene. Some examples

of the quantum RRK analysis for this reaction are fully described in chapter 7. It is

important to note that reaction to other channels as well as isomerization, in addition to

stabilization and reverse reaction are included in these calculations.

Elimination Reactions - Beta Scission - These reactions utilize the quantum RRK

formalism and are treated in one of two ways. We use a unimolecualr quantum RRK

formalism, where we determine the reverse reaction (addition) parameters for the high

pressure case, then calculate the corresponding high pressure unimolecular beta scission

rate constants using microscopic reversibility <MR>. The high pressure unimolecular

elimination parameters are then input to the quantum RRK formalism to determine the

high pressure limit and to calculate the apparent rate constants at the appropriate pressure.
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The second method is simple use of the reverse rate constants from the CHEMACT

addition reaction calculations, see above.

Elimination Reactions - Simple Unimolecular - Simple unimolecular (elimination) rate

constants are determined by two methods similar to beta scission reactions. We use the

unimolecular quantum RRK formalism, where we determine the reverse reaction

(combination) parameters for the high pressure case, then calculate the corresponding high

pressure unimolecular dissociation rate constants using microscopic reversibility <MR>.

The high pressure unimolecular dissociation parameters are then input to the quantum

RRK formalism to determine the high pressure limit and to calculate the apparent rate

constants at the appropriate pressure. The second method is simple use of the reverse rate

constants from CHEMACT combination reaction calculations.

Combination and Insertion Reactions - These reactions involve the combination of two

radicals or an atom with a radicals. The energy of the adduct formed before stabilization is

equal to the bond energy of the new bond(s) formed and typically on the order of 80 to

120 kcal/mol. This is usually sufficient for an adduct, with this initial energy above it's

ground state energy, to react to lower energy products before stabilization occurs. The

high pressure limit rate constant for combination is obtained from literature or estimated

from known generic combinations. The quantum RRK chemical activation formalism is

then used to determine the high pressure limit and to calculate the apparent rate constants

at the appropriate pressure to all the recognized available channels.

Again, reaction to other channels as well as isomerization, in addition to

stabilization and reverse reaction are included in this calculation. This is an important
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aspect of the reaction analysis for both combination as well as insertion and addition

reactions that other modelers do not incorporate. This leads to a more correct treatment of

fall-off and pressure dependence for these non-elementary reaction systems. Rate

constants for the model are obtained which incorporate these pressure dependency

therefore make the model more fundamentally correct.

All reactions are thermochemically consistent and follow principles of

Thermochemical Kinetics.(25) The thermodynamic data base, listed in Table B2 uses :

evaluated literature data, THERM,(69) calculations of entropies S(T) and heat capacities

from changes of specific vibrations and internal rotations by use of statistical

mechanical principles applied to the Thermodynamic Properties,(70) Hydrogen Bond

Increment groups for radicals(79) as well as semi-empirical molecular orbital

calculations.(80)

3.4 Results and Discussion

3.4.1 Pyrolysis of CH2 Cl2 and CH2Cl2/CH4

The initial reaction channels for CH2Cl2 pyrolysis and their high pressure limit rate

constants include:
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The high pressure limit of A factor for reaction [I] is obtained from the high pressure limit

A factor of the reverse reaction, Cl + CH 2Cl, Ho et al.(57) and microscopic reversibility.

The E. of reaction [II] is an average of 1CH2insertion, and 1 CCl2 insertion into HO, E a = 0

and 3 kcal/mol,(56) respectively. We discuss the calculation and comparison to the data of

Lim et al.(7) for CH2Cl2 unimolecular dissociation in detail in chapter 4.

The chlorine radical has high activity(22,81) : it abstracts H from CH 2Cl 2 rapidly

because it abstracts H with high A factors and low energies of activation. Here the Cl

rapidly converts to HCl + CHCl 2 radicals. The CHCl 2 and CH2Cl radicals abstract H from

HCI to convert to CH3Cl. The results is a high level of CH2Cl and CHCl2 radicals in the

reaction system early relative to hydrocarbon systems. Combination reactions of these

methyl and chloro-methyl radicals are the important formation paths for C2 compounds as

their rates grow quadratically with the radical concentrations. This combination reaction

forms an energized chloroethane adduct, which can be stabilized, react to products or

dissociate back to reactants before be collisionally stabilized. A kinetic on relative degrees

of analysis stabilization and dissociation of the adduct is therefore needed as a function of

temperature and pressure. The reactions are showed as below and the QRRK analysis are

described in chapter 5.
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The barrier for HCl elimination reaction from chlorinated ethylenes is very

important to fit the experimental chlorinated ethylene product distribution. Additional

experimental data are needed to further validate the barrier for HCl elimination from the

chlorinated ethylenes. The evaluation of literature data on these reactions results in

suggested values of E. = ΔHrxn + (42 - 45) kcal/mol.(82,83) These Ea's were consistently

unsuccessful in matching our experimental chlorinated ethylene profiles. The E a's of All„„,

+ 40(±l) kcal/mol for HCl loss, with A factors from Transition State Theory, yield the
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results illustrated in Figure B2 and B3. The reaction mechanism includes abstraction of H

by Cl, with Cl elimination from the chlorinated species also playing important rules.

Figure B1 is a comparison between model calculation and experimental results on

reagent (CH2Cl 2) decay and major product (CH 3Cl) profiles between 680 - 840 0C at 1.0

second residence time in CH2Cl2/Ar pyrolysis. The model results of CH 2Cl2 and CH3 Cl,

match experiments is excellent. Comparisons between model and experiment for

chlorinated ethylene product distribution as a function of temperature at 1.0 second

residence time in CH2 Cl 2/Ar pyrolysis are illustrated in Figure B2. Model results show

good agreement with experimental data for the formation and decay of C2HCI3,

CHCICHCl and CH 2CCl 2 in this amplified scale, while slightly over predicts the
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further react to aldehydes, carbon monoxide and carbon dioxide. The kinetics of

chlorinated carbon radicals has not been widely studied, particularly at relatively high

temperatures above 1000 K. Methyl and chlorinated methyl radical combination with O2

competes with the combination of chloro-methyl radicals to form C2 compounds,(84)

while reaction of vinyl and chloro-vinyl radicals with 02 converts these active radicals

rapidly and serves suppress the formation of higher molecular weight species.(85) The

kinetic analysis on vinyl and chloro-vinyl radicals addition to oxygen, using QRRK

analysis will be discussed in chapter 6.

Very little kinetic information on the reactions of chlorinated methyl radicals with

O 2 is available. Only CCl 3 + O2 —> CCl 3 OO has been well studied with the high pressure

limit rate constant (1.51El2 — 3.09El2 cm 3 s4) for CCl 3 + O2 --> CCl 3OO

determined over a range of temperatures 295 - 461 K and pressures 0.8 - 760

torr.(52,54,86,87) For the partially chlorinated methyl radicals (CH2Cl and CHCl 2), only

one kinetic study has been reported. Fenter et al.(6) investigated the rate constants for the

addition of CH2Cl and CHCl 2 to oxygen over the temperature range of 298 - 448 K with

pressure range 1 - 760 torr in nitrogen bath gas. The following high pressure limit rate

constants were determined:
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In the next section, QRRK theory for k(E) and with modified strong collision approach for

fall-off analysis is used to treat these two chemical activated reaction systems at different

temperatures and pressures, and compare to the experimental data where available.

3.4.2.1 Reaction of CH 2Cl + O2 - Potential energy diagram and QRRK input parameters

for CH2Cl + O2 reaction are illustrated in Figure B5 and Table B3, respectively. Chloro-

methyl radical combines with O 2 to form the chemically activated CH 2ClOO* adduct. The

reaction channels of this energized adduct include stabilization, dissociation to

dissociation back to reactants, or isomerization via H-shifts to a

hydroperoxide which can subsequently β-scission before being collisionally stabilized. The

absence of low-energy product channels; low barriers relative to dissociation back to

reactants, suggests that significant stabilization of the initially formed adduct or

dissociation back to reactants (CH2Cl + O 2) occurs. The relatively low energy level -31

kcal/mol relative to CH2Cl + O2) of ClO elimination to CH 2O + CIO caused this reaction

may be important at higher temperatures, even the barrier is higher than that dissociation

back to reactants. The rate constant for 0 2 addition to CH2Cl is taken from Fenter et

al.,(6) with no barrier. The parameters for the energized CH2ClOO* adduct dissociation to

+ O were obtained using as estimation of 1.51El3 cm 3 mol -1 s-1 for the high-

pressure combination rate constant of the reverse reaction. The A factor for Cl0

elimination + CH2O was obtained via Transition State Theory (TST), four-member ring

transition state, with E a = 31 kcal/mol calculated by AM1/MOPAC.(80) The A factor and

barrier for the initial energized adduct isomerization to CHClOOH was calculated via TST
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intramolecular H-shift to form a four-member ring transition state. The rate constant for

the second adduct CHClOOH* β-scission to CHCIO + OH was based upon the reverse

reaction, OH addition to CHCIO and microscopic reversibility.

Figure B6 compares the predictions to experimental data of Fenter et al.(6) in the

temperature range 298 - 448 K and in the pressures 20 - 760 torn for the stabilization

channel CH2Cl + O2 -> CH 2ClOO in N2 bath gas. The QRRK calculations slightly under

predict at relatively lower temperatures (298 K), but is somewhat higher than actually

observed at higher temperatures.

The predicted rate constants versus temperature at one atmosphere pressure are

shown in Figure B7. The energized adduct dissociation back to reactants dominates below

600 K, because the complex does not have enough energy to surmount the higher barriers

to product channels. As expected, the stabilization of energized adduct is next most

important below 700 K. The formation of CH 2O + ClO increases in importance above 800

K, and becomes predominant above 1000 K. This is a new reaction path. It is very

important in our reaction mechanism and it needs to be further analyzed at high levels of

theory and in elementary reaction experiments. CH 2CIO + O, CHCIOOH and CHCIO +

OH are shown to be little importance over a wide range of temperatures (300 -2000 K).

3.4.2.2 Reaction of CHCl2 + O2 - Figure B8 illustrates the potential energy diagram for

CHCl 2 + O 2 . The relatively shallow well for this CHCl 2OO* adduct (~ 25 kcal/mol) puts

all the product reaction channels at least 6 kcal/mol higher in energy than dissociation back

to reactants. Similar to the above reaction system, the absence of low-energy exit channels
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suggests that significant stabilization of the initially formed adduct or dissociation back to

reactants (CH2Cl + 02) should dominate, with a small amount ca. < 1% of reaction over

the lowest barrier to products. Table B4 lists the input parameters for QRRK calculation.

Predictions of QRRK analysis are compared to the observation results of Fenter et

al.(6) as a function of pressure in N2 bath gas at temperatures 298 - 383 K in Figure B9.

The fit is good at room temperature, but shows over-estimate at 333 and 383 K. It is

noted that QRRK calculations suggest that the stabilization is somewhat larger than

actually observed at 333 and 383 K, the fall-off behavior and temperature dependence are

in good agreement at 298 K. This is result of back reaction of the stabilized adduct out the

low energy (25 kcal/mol) well. As an example, the high pressure rate constant for this

dissociation is 6.72E14exp(-21.54/0.7) at 350 K, k = 30.7 Life time for an

unimolecular reaction, t 1,2 = 0.693/k is then 0.023 sec., and its life time to dissociate is

short on the experimental time of Fenter's experiments (ca. 0.l sec.) The results is that to

correctly model the stabilization, a CHEMKIN type model needs to be run on the system

as a function of reaction time.

Figure B10 illustrates the calculated rate constants of various reaction channels as

a function of temperature at 1 atm. Below 1000 K, stabilization of the energized adduct is

next most important. CHCIO + Cl0 increases in importance with temperature increased,

and dominates above 1000 K. CHCl 2O + O, CCl2OOH, and COCl2 + OH are trace

products over a wide temperature range (300 - 2000 K). Again, ClO + CHCIO is an

important predicted path, further research is suggested on this channel.
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3.4.2.3 Comparison Between Model and Experiments - Extending the pyrolysis

reaction steps, a detailed reaction mechanism consisting of 120 species and 433

elementary reactions is developed to model the experiments in the oxidative reaction

systems of CH2Cl2 and CH2Cl 2/CH4 . Figure B 11 compares the CH 2Cl2 decay and CH3 Cl

product distribution as a function of temperature at 1.0 second residence time in the

CH2Cl2 : O2 : Ar = 1 : 4 : 95 reaction system. The model shows reasonable agreement for

CH2Cl2 decay over the experimental temperature range (680 - 840 °C), while it over-

predicts the product distribution of CH 3Cl above 700 °C.

The comparisons of model to experiments for chlorinated ethylene formation and

loss as a function of temperature at 1.0 second residence time in CH2C1 2 : 02 : Ar = 1 4 :

95 are illustrated in Figure Bl2. The fit is good for C 2H3Cl and CH2CCl2 at temperatures

680 - 840 °C. The model fit is good for CHCICHCl and C2HCl3 below 760 °C, but it over-

predicts these species above 760 °C.

Figure B 13 and B 14 illustrate the comparison of reagent decay (CH 2Cl2 and CH4)

and product distribution (C2H3Cl, CH2CCl 2, CHCICHCl, C2HCl3), respectively, as a

function of temperature at 1.0 second residence in CH2Cl2 : CH 4 : O2 : Ar = 1 : 1 : 4 : 94.

The model fit is good for both CH4 and CH2Cl2 decay, and for chlorinated ethylene

(C2H3Cl, CH2CCl2, CHCICHCI and C 2HCl 3) product distribution.

3.5 Conclusions

A 157 reaction mechanism which contains 51 species is utilized to simulate the pyrolysis

of CH2Cl2 and CH2Cl2/CH4 mixture. The barrier for HCl elimination from chlorinated
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ethylenes (C2H3Cl, CH 2CCl2, CHClCHCl and C 2HCl3) is important to their decay profiles

and is determined to be OH. + 40(±1) kcal/mol in order to fit the experimental results.

The model show good fit for reagent decay and major product distribution in both

pyrolysis reaction environments.

Importance of the chlorinated methyl radicals reactions with O 2 relative to

conversion of chloro-methanes and chloro-methyl radicals is analyzed in chapter 3. These

reaction systems are analyzed using QRRK for k(E) and with modified strong collision

approach for fall-off, because formation of an energized adduct is involved. Predictions

are compared to data of Fenter et al.(6) and show good agreement with the data of Fenter

et al. for reactions CH2Cl + O2 --> CH 2ClOO and CHCl2 + O2 —> CHCl 2OO. The

conversion of these chloro-methyl radicals to corresponding chloro-formaldehydes, CO

and CO2 is observed to be slow by this reaction sequence. The demonstration of this

bottleneck is another important result of this thesis. Results show that conversion

primarily occurs through combination of 2 chloro-methyl radicals to chloro-ethanes, then

ethylenes, then chloro-vinyl radicals. The major chloro-methyl radical conversion path

under combustion condition is the chloro-vinyl radical + O 2 (see chapter 5 and 6).

A detailed reaction mechanism consisting of 120 species and 433 elementary

reactions is used to model the experiments in the oxidative reaction systems of CH 2Cl2 and

CH2Cl2/CH4, where this mechanism includes all pyrolysis reactions. Comparison between

model and experimental data in CH2Cl2 : O2 : Ar = 1 : 4 : 95 shows a good agreement for

CH2Cl2, C2H3Cl and CH2CCl 2, while the model over-predicts for CH 3Cl above 700 °C,

and for CHCICHCl, and C2HCl3 above 760 °C. In CH2Cl2 : CH4 : O2 : Ar = 1 : 1 : 4 : 94
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reaction environment, the model shows good fits to the data for CH4 and CH2Cl2 decay,

and the chlorinated ethylene (C 2H3 Cl, CH2CCl2, CHCICHCl and C2HCl 3) product

distributions.



CHAPTER 4

UNIMOLECULAR DISSOCIATION OF CH 2Cl2

USING QRRK WITH MODIFIED STRONG COLLISION AND
WITH MASTER EQUATION ANALYSIS

4.1 Introduction

There are relatively few studies on the unimolecular dissociation of CH 2Cl 2 --> CH2Cl + CI

and CH2Cl 2 --> CHCI + HCI, which are important initiation paths in the pyrolysis and

oxidation of CH2CI2 . Lim and Michael(7) investigated the unimolecular decomposition of

CH2Cl2 in reflected shock waves in the temperature range 1400 - 2300 K, at three

pressures 6, 11, and 16 ton - with various initial CH2Cl 2 concentrations in krypton bath gas.

The resulting product, Cl atoms, are monitored by the atomic resonance absorption

(ARAS). The best fits to the experimental data obtained with high pressure limit rate

constants (A factor and E a), threshold energy (E0), and collisional energy transfer (ΔEdown)

for two primary dissociation reactions are listed as Table 4.l.1:

Table 4.1.1 Data of Lim and Michael

57
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Bozzelli et al.(57,80) studied the thermal decomposition of CH 2Cl2 in a tubular

reactor at 1 atm in the temperature range 873 - 1093 K with argon bath gas. They used

evaluated data for thermodynamic properties of the various species, and applied

QRRK(67,89) theory with modified strong collision analysis for fall-off to calculate rate

constants for use in the reaction mechanism. The comparisons between model and

experiments show satisfactory results. They report the high pressure limit and apparent

rate constants, shown as Table 4.1.2, at 1 atm for two initiation reactions of CH2Cl2

decomposition:

Table 4.1.2 Data of Ho and Bozzelli

In this chapter, we use quantum Rice-Ramsperger-Kassel (QRRK) calculation for

k(E), combined with a modified strong collision approach and multi-channel Master

Equation(74) analysis for comparison of fall-off as well as comparison to the experimental

data of Lim and Michael.(7)

4.2 Calculations

QRRK analysis, as initially presented by Dean,(67) later published by Dean et al.,(68)

which are combined with "modified strong collision approach" by Chang et. al.,(74) and
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with multi-channel Master Equation analysis developed by Chang et al.(74) are used to

compute apparent rate constants over a range of temperature and pressure. Details of the

QRRK are discussed in chapter 4.

The thermodynamic properties related to the species in this calculation are shown

in Table B2.

4.3 Results and Discussion

The initial reaction channels for CH2Cl2 decomposition include:

The potential energy diagram for CH 2Cl2 unimolecular dissociation is shown in Figure

Cl. Table C1 shows the input parameters of QRRK calculation which include high

pressure limit rate constants, three frequencies and the associated degeneracies, Lennard-

Jones parameters (a-, elk), <ΔE>avg for QRRK when using modified strong collision

analysis, and <ΔE>down for Master Equation calculation.

The Ea for reaction [I] is taken from reverse reaction 1 CHCl insertion to HCl,

which is an average of 1 CH2 insertion, and 1 CCl2 insertion into HCI, Ea = 0 and 3

kcal/mol(56), respectively. The high pressure limit A factor for reaction [II] is obtained

from the high pressure limit A factor of the reverse reaction, Cl + CH 2Cl thermodynamics

and microscopic reversibility. <ΔE>avg and <ΔE>down in QRRK calculation with Kr bath
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gas are taken from the calculation of Lim and Michael(7), while <ΔE>a vg with Ar bath gas

is from Knyazev et al.(89)

Figures C2, C3, and C4 show the results of QRRK with both the modified strong

collision approach and the Master Equation analysis along with the experimental data of

Lim and Michael for CH2Cl 2 unimolecular dissociation to the two primary product

channels at pressures 6, 11, and 16 ton. The calculation results of Master Equation

analysis show in good agreement with the experimental data at all three pressures for the

reaction channel, CH2Cl2 CHCI + HCl, while the results of QRRK with modified strong

collision approach under estimate the rates at 6 and 11 ton. Both analysis methods show

excellent fit to the experimental data for the reaction channel CH 2Cl2 —> CH2Cl + Cl.

Figure C5 illustrates results of QRRK with Master Equation analysis on

dissociation rate constants versus temperature (1000/T) at 1 atm. Both reaction channels

are near high pressure limit at lower temperatures. Pressure effects at 300 and 1000 K are

shown in Figure C6 and C7, respectively. Fall-off begins at 4 atm and below at 300 K for

CH2Cl + Cl, while the fall-off behavior for CHCl + HCl is observed below 0.03 atm. At

1000 K, both reaction channels are in the fall-off regime in the pressure range 10 -3 - 102

atm.

The calculated apparent rate constants for reactions CH2Cl2 	 CHCI + HCl and

CH2Cl 2 	CH2Cl + Cl at pressures 0.l - 10 atm with Ar bath gas are listed in Table Cl.
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4.4 Conclusions

The unimolecular dissociation of CH2Cl2 has been studied by using QRRK for k(E) plus

modified strong collision approach, and separately with multi-channel Master Equation

analysis for fall-off effects. The high pressure limit rate constants for the primary reaction

channels in the form are:

The calculations of QRRK with Master Equation analysis show good agreement

with the experimental data of Lim and Michael in the temperature range of 1400 - 2300 K

at pressures 6, 11, and 16 ton-, with the results of modified strong collision approach also

in reasonable fit.

Results of Master Equation analysis indicates that fall-off begins at 4 atm and

below at 300 K for CH 2CI + Cl, while the fall-off behavior for CHCI + HCI is observed

below 0.03 atm.



CHAPTER 5

CHEMICALLY ACTIVATED COMBINATION REACTION
OF METHYL AND CHLORO-METHYL RADICALS

5.1 Introduction

Combination reactions of methyl and chloro-methyl radicals are the important formation

pathways of chlorinated ethylenes (C2H3Cl, CH 2CCl2, CHCICHCl, and C 2HCI3). These

combination reactions form an energized chloroethane adduct, which can be stabilized,

react to products, or dissociate back to reactants. Analysis of stabilization and dissociation

of the adduct is therefore a function of both temperature and pressure. The important

reaction pathways for these chlorinated methyl radicals include:

62
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The relatively small adduct - 8 atoms and the availability of low energy product

channels (relative to initial of the adduct) with a tight TST (HCl elimination) as well as

mid energy products with loose TST's (CI elimination) make fall-off analysis of this

important reaction system both complex and interesting.(91-94)

H atom elimination from the energized adduct is higher in energy and less

important, and therefore not included above. H atom addition to chloro-methyl radicals is

however very important as it forms a C-H bond which is stronger than the existing C-Cl

bond, and often results in fast decomposition of the adduct, loss of Cl or HCl plus the

corresponding radical (di-radical).

Setser et al.(91-95) experimentally studied and performed RRKM calculations for

unimolecular dissociation reactions of C 2H5Cl, 1,1-C2H4Cl2, 1,2-C2H4Cl2, and l,1,2-

C2H3 Cl3 molecules. Setser reports that formation of HCl and chlorinated olefins from

chloroethanes occurs primarily via α,β elimination (four-center) with three-center α,α
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elimination having higher energy barriers. They recommend critical energies for HCl

elimination from alkyl halide of about 55 or AK,. + (38 ~ 43) kcal/mol. Weissman and

Benson(96) have also reported activation energies for the elimination of HCl from

chloroethanes by four-center elimination where the barriers are 52 - 60 kcal/mol.

The C-C bond dissociation energies are relatively well known for ethane near 90

kcal/mol at 298 K. Increased chlorine substitution in the ethanes lowers the C-C bond

dissociation energies; for example the C-C bond in 1,2-dichloroethane is 88.7 kcal/mol.

While the Ea for dissociation to two C I radicals is much higher than for HCl elimination;

the A factor for C-C bond cleavage is also about 100 times higher. This dissociation

reaction can dominate at high temperatures.

Bozzelli et. al.(56,57,97) have reported in analysis of methyl and chloro-methyl

combination (chemical activation) reactions at combustion conditions and report the HCl

elimination to form chlorinated ethylenes to be the dominant reaction channel. Karra and

Senkan(98) investigated combination reactions of CH2Cl with CH2Cl, and CH 3 with

CH2Cl using QRRK analysis in Ar and CH 4 bath gas for conditions of 500 - 1700 K and

0.5 - 10 atm. They report stabilization products are favored at temperatures below 1400

K, and that dissociation product channels become increasingly important at higher

temperatures. Roussel et al.(99) and the research group of Setser(91-95) have further

analyzed these reactions in some details, at temperature below 600 K where stabilization is

shown to dominate.

Methyl and chlorine-substituted methyl radicals CH2Cl, CHCl2 and CCl 3 are the

initial products from pyrolysis, oxidation, combustion, or photochemical reaction of
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chlorinated methanes. The reactions of these radicals play a major role in the initial

oxidation and pyrolysis chemistry of reaction systems in which they are participating. The

chloro-methyl radical addition reactions with O 2 have low rate constants to products and

thus , the combination reactions are the important formation pathways to C2 compounds,

chlorinated ethanes, ethylenes, and acetylenes. These chlorinated C2 compounds are

precursors to formation of higher molecular weight species, chlorinated-aromatics,

dibenzo-furans, and dioxins and ultimately soot + Cl 2 in pyrolysis and fuel rich oxidation

of chlorinated hydrocarbons (CHCs). An understanding of these combination and

molecular weight growth (MWG) reactions is also important in combustion of chlorinated

hydrocarbons, which has received significant attention due to the important role

incineration plays in the treatment of hazardous chemical wastes.(99) The presence of

known or suspected toxic/carcinogenic chlorocarbon or chloro-oxy carbon species in the

effluent from waste and resource recovery incinerators may result from these chloro-

methyl radical combination reactions in the combustion which persist due to the relatively

low reactivity of the chloro-methyl peroxy radicals (see below).(5)

The importance of combination reactions for methyl and chloro-methyl radicals is

further amplified by the relative slow abstraction reaction rates of these C 1 radicals relative

to H, OH, and Cl combined with the low reactivity of their respective peroxy radicals.

These C 1 radicals do not react rapidly with O 2 to form stable new products relative to

higher carbon number hydrocarbon and chloro-hydrocarbon radicals. The C 1 radicals do

react rapidly with O2 to form peroxy species, but dissociation of the adduct back to

reactants is its primary reaction under combustion conditions. Because for isomerization
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or dissociation of the methyl or chloro-methyl peroxy radicals are 6 or more kcal/mol

greater than dissociation of the adduct back to reactants. The low E a and relatively high A

(~ 1015sec-1) of the reverse reactions to dominate at even moderate temperature of 500 K

and above.

Ho and Bozzelli(57) report that a much higher fraction of C2 hydrocarbon and C2

chlorocarbon formation occurs in CH2Cl2 and CH 3 Cl systems than in CH4 oxidation, and

that this greater C2 fraction results from the very high activity of Cl. The presence of

chlorine in the system leads to rapid generation of Cl atoms, which results from the

relative low C-Cl bond energies and ease (low Ea 's) of HCl elimination reactions. Radicals

like OH, H, CH3 , R. will rapidly abstract H from HCl. Cl then undergoes fast abstraction

reactions with other parent chlorocarbons and hydrocarbons, as the reactions have high A

factors and low (near zero) Ea 's (above Alin.). This results in a more rapid formation of

chlorocarbon radicals relative to when Cl is not present. The combination reaction is

bimolecular and as the chlorohydrocarbon radical pool increases the combination reaction

rates increase quadratically. Weissman and Benson,(22,100) Karra and Senkan,(41)

Tavakoli et al.,(97) Won and Bozzelli,(56) Miller et al.,(55) Hung and Pfefferle,(101)

Taylor et al.,(42) Lucas et al.(102) and Senser et al.(38,39) have also reported increased

C2 formation in C 1 chlorocarbon pyrolysis and oxidation.

Accurate temperature and pressure analysis of these reactions is critical to reliable

modeling of the C2 formation and further molecular weight growth in chlorohydrocarbon

pyrolysis and oxidation. Accurate input parameters, and high pressure limit rate constants,

are important for estimation of the apparent rate constants of the chemical activation and
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dissociation reactions we analyze. The calculation results are compared to literature data

and rate constants are determined for use over wide temperature and pressure ranges.

5.2 Thermodynamic Properties

Thermodynamic parameters - ΔH298, S298 and Cp(300) to C p(00) for species in the reaction

schemes are listed in Table B2 along with appropriate references. Enthalpies of radials are

from evaluated literature on C-H bond energies and ΔHf of the stable molecule which

corresponds to the radical with a H atom at the radical site. Entropies and C p(T) values are

from use of Hydrogen Bond Increment (}1131).(79) The HBI group technique is based on

known thermodynamic properties of the parent molecule and calculated changes that

occur upon formation of a radical via loss of a H atom. The HBI incorporates changes that

result from loss or changes in vibrational frequencies, internal rotation, and spin

degeneracy. Symmetry is corrected for separately HBI groups, are described fully in Ref.

71, 103.

5.3 Kinetic Calculations

Branching ratios of methyl and chloro-methyl combination reactions at different

temperatures and pressures are calculated using a quantum version of RRK theory

(QRRK) to evaluate energy dependent rate constants, k(E), of the adduct to the various

channels. QRRK analysis, as initially presented by Dean,(67,68) combined with "modified

strong collision approach" of Gilbert et al.(74,75) and QRRK combined with a Master
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Equation analysis(74) are used to compute rate constants over a range of temperature and

pressure.

Modifications to the quantum RRK calculation(74) include :

• Use of a manifold of 3 frequencies plus incorporation of 1 external rotation for the

density of states, p(E)/Q.

• Use of the reduced set of 3 vibrational frequencies and degeneracies are used in

calculation of k(E) and of F(E).

• The FE factor is calculated for use in determining the collision efficiency 13 c,(75) in

place of the previously assigned 1.15 value.

• 0. is now calculated by : 13, = (αc /(αc + F E*k*T))2/Δ from Gilbert et. al. Eqn. 4.7,(75)

A = A l - (FE*k*T)/(αc + FE*k*T)*Δ2. Where A l and 02 are temperature-dependent

integrals involving the density of states, and a c is the average energy of down-

collisions.

• The Lennard-Jones collision frequency ZLJ is now calculated by ZLJ
	Z L-2(2,2)

integral.(76-78), ) is obtained from fit of Reid et al.(78)

The QRRK analysis with the modified strong collision approach and constant FE

for fall-off has been used to analyze a variety of chemical activation reaction systems,

Westmoreland et al.,(51,89,104) Dean et al.,(51,105-107) Bozzelli et al.(56,57,97,105-

107) It is shown to yield reasonable results in these applications, and provides a simple

framework by which the effects of temperature and pressure can be evaluated. Limitations

affected by the QRRK assumptions are often over shadowed by uncertainties in high
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pressure limit rate constants and thermodynamic properties for all species and TST's in the

calculation systems.

Input information requirements for QRRK calculations :

Three frequencies and the associated degeneracies are computed from fits to heat

capacity data, as described by Ritter.(72,73) These have been shown by Ritter to

accurately reproduce molecular heat capacities, C p(T), and by Bozzelli et al.(108) to yield

accurate vibrational state, p(E)/Q, to partition coefficient ratios. Frequencies are listed in

Table Dl.

Lennard-Jones parameters (a ., elk) are obtained from tabulations(78) and from a

calculation method based on molar volumes and compressibility.(109)

Arrhenius A factors for the bimolecular combination at the high pressure limit are

obtained from literature, and from trends in homologous series of these type reactions.

Figure D1 shows the high pressure limit A factors at 298 K from literature for

combination reactions of methyl and chloro-methyl radicals versus total number of CI's;

the literature data for Figure D1 are listed in Table D2. Energies of activation, E a for

combination reactions is set to 0.0. These parameters are critical to accurate rate constant

estimation by the QRRK formalism and are described in detail.

Literature data on rate constants for combination of chloro-methyl radicals show

that they decrease with increasing CI substitution. Figure D1 shows the trends at room

temperature, rate constant 2.0E13 cm 3 mol-1  s-1 for CH2Cl + CH2Cl, 5.6E12 cm3 mol -1

for CHCl2 + CHCl2, and 2.2E12 cm3 	for CCl3 + CCl3.
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Lesclaux et al.(99,110) studied the kinetics on the self-combination reactions of

CH2CI, CHCl2, and CCI 3 from 253 to 686 K at 760 torr. They further report the high

pressure limit rate constants for all of these chloro-methyl combination reactions exhibit

negative temperature dependence (T/298)" with n ranging from -0.74 to -1.0. Cobos and

Troe(111) have also reported the high pressure limit rate constants of CCl3 self-

combination reaction, which also exhibit a slight temperature negative dependence with

1((300) = 6.0E12 and k-(1500) = 5.0E12 cm3 A tabulation of recommended high

pressure limit rate constants at 298 K for chloro-methyl combination is listed in Table 5.3.

The high pressure limit A factors of k 1 in Table 5.5 - 5.9 are shown in the form of ATn

which are converted from that of A(T/298)n in Table D3.

Dissociation rate constants of the CH 2CICH2Cl and CHCl 2CHCl2 to initial

reactants (chloro-methyl radicals) is calculated from the combination rate constants,

thermodynamic properties and microscopic reversibility. Dissociation of the chloroethanes

to Cl plus chloro-ethyl radicals is calculated from the respective, reverse, combination rate

constants of Cl + chloro-ethyl radical, using thermodynamic properties and microscopic

reversibility. The Cl + chloro-ethyl combination rate constants are taken from the literature

and are specified in Table D4. Table D4 shows the trend in k for Cl + chloro-alkyl radical

is similar to that of chloro-methyl radical combination; the more Cl-substitution the lower

rate constant. All reactions are thermochemically consistent and follow principles of

Thermochemical Kinetics(25).
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5.4 Results and Discussion

5.4.1 Combination of CH 3 with CH2Cl

The potential energy diagram and input parameters for the chemical activated combination

reaction of CH3 + CH2Cl are in Figure D2 and Table D5, respectively. The parameters in

Table D5 - D9 are referenced to the ground (stabilized) state of the complex because this

is the formalism used in QRRK Theory. The use of a more complicated for k(T), k =

ATnexp(-αT)exp(-Ea/RT), was chosen to more accurately fit the rate constant over a wide

range of temperature.

Combination of CH3 + CH2Cl form an energized C2H 5 CI* adduct, which can be

stabilized, dissociate to low energy products, or dissociate back to reactants (CH3 and

CH2Cl radicals). We have considered and choose to omit H + CH 3 CHCl and 1 CH2

CH3Cl reaction channels, owing to the higher barriers. The HCl elimination channel is

lower in energy than Cl dissociation or reverse reaction. The HCl elimination channel is

lower in energy than Cl dissociation or reverse reaction. The higher A factors for C-Cl or

C-C bond cleavage, require that these channels also need to be considered in the analysis

at higher temperatures.

Figure D3 shows the rate constants versus temperature at 1 atm. Stabilization of

C2H5Cl is most important at temperatures below 650 K, with the production of HCl +

C2H4 next in importance. Between 700 and 1300K, HCl elimination + C2H4 is most

important. Above 1000 K CI + C2H5 increases in importance and dominates above 1400

K. The pressure effect for the production of various channels at 300 and 1000 K are

illustrated in Figure D4. Stabilization of C2H5Cl is important at low temperatures and high
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pressures. Product channel HCl + C2H4 dominates in the lower pressure range (p < 0.02

atm) at 300 K, and over wide pressure range (p < 8 atm) at 1000 K.

5.4.2 Combination of CH 3 + CHCl2

The potential energy diagram and QRRK input parameters for CH3 + CHCl2 combination

are shown in Figure D5 and Table D6, respectively. Figure D6 shows rate constants from

QRRK calculation as a function of temperature at 1 atm. CH3CHCl2 stabilization is

dominant below 650 K. The production of HCl + C2H3Cl is most important between 650

and 1350 K. Above 1400 K, Cl dissociation + CH3CHCl becomes dominant. Figure D7

shows the pressure effect on the various channels. Production of C2H3Cl + HCl is most

important, with Cl dissociation + CH3CHCI next in importance at pressures below 0.08

atm, 300 K, and over a wide pressures (0.001 - 10 atm) at 1000 K.

5.4.3 Combination of CH2 Cl with CH 2Cl

The potential level energy diagram and input parameters of chemical activated calculation

are illustrated in Figure D8 and Table D7, respectively. Figure D9 shows the results of

QRRK calculations with modified strong collision and the Master Equation analysis at 1

atmosphere pressure for CH 2Cl + CH2Cl. The results show some differences between the

calculation with modified strong collision and Master Equation for fall-off analysis. This is

because modified strong collision analysis does not allow reaction to lower energy product

channels (HCI + C 2H3Cl) when the adduct energy level is below the ground state energy of

the initial reactants, while Master Equation analysis does.
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The calculation shows that below 650 K, stabilization of CH 2ClCH2Cl is most

important, with the HCl elimination channel next in importance. Between 700 and 1400 K,

CH2ClCH2Cl dissociation to C 2H3 Cl + HCl dominates. Above 1000 K, dissociation of Cl

+ CH2ClCH2 radicals becomes important; above 1400 K, Cl dissociation channel is similar

in rate to HCI elimination. The turn over of both these rates above 1400 K is a result of

the reverse dissociation (back to 2 chloro-methyl radicals) increasing in importance. Rate

constants of the specific reaction channels as a function of pressure (log P) are illustrated

in Figure D10. We see near pressure independence in the total, overall rate constant in

both temperature ranges, but a dramatic change in products. At 300 K, the stabilization of

CH2ClCH2Cl dominates at pressures above 0.1 atm with HCl + C2H3Cl the dominant

product below 0.1 atm. Rate constants for HCI + C 2H3 Cl, Cl + CH2ClCH2 and

dissociation back to reactants are near pressure independent at pressures below 0.01 atm,

and show negative pressure dependence above 0.03 atm at 300 K. At 1000 K, higher

pressures are needed to observe significant stabilization. We also note that the 300 K data

indicates higher reaction rates to products than the 1000 K data. This is a result of the

higher reverse reaction rate (CH2ClCH2Cl CH2Cl + CH2Cl) at the higher temperature.

Figure D11 compares calculation results of QRRK with modified strong collision

and with Master Equation analysis to the experimental data of Roussel et al.(99) for

CH2Cl self-combination. Master Equation analysis is in good agreement with the

experimental data, QRRK with modified strong collision analysis is also in reasonable

agreement, but slightly over predicts stabilization at lower temperatures. Comparison of

this study to the data of Karra and Senkan(98) on the CH 2Cl + CH2Cl reaction at 1 atm
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are presented in Figure D12. Our estimations show less stabilization, and more HCl +

vinyl chloride and Cl + CH2CICH2 production at higher temperatures.

5.4.4 Combination of 012Cl + CHCl2

The potential energy diagram and QRRK input data for CH 2Cl + CHCl2 are illustrated in

Figure D13 and Table D8, respectively. The HCl elimination channels are lower in energy

than Cl dissociation or reverse reaction. The results from QRRK calculation are shown in

D14 (log k vs 1000/T) at 1 atmosphere pressure for the various channels of CH 2Cl +

CHCl2 products. Below 800 K, the stabilization of CH2ClCHCl 2 is most important,

with the HCl elimination + chloroethylene channels next in importance. Between 800 and

1000 K CH2ClCHCl 2* dissociates primarily to CHCICHCl + HCl. Figure Dl4 shows the

HCl + CHCICHCI channel is more important than the HCl + CH2CCl2 and this is

consistent with the results observed in our experiments (see Chapter 2). Above 1000 K the

Cl elimination + C2H3Cl2 radicals product channels increase in importance. Logarithmic

rate constants (log k) of the specific reaction channels as a function of log P at 300 K, and

1000 K are illustrated in Figure Dl5. The stabilized CH 2CICHCl2 becomes dominant as

pressure increases in both temperature ranges. The HCl + CHCICHCI channel is always

more important than HCl + CH2CCl2 over the pressure range 10-3 - 102 atm. In the

pressures < 1 atm at 1000 K, production of HCl + CHCICHCI is most important, with Cl

+ CH2ClCHCl channel next in importance.
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5.4.5 Combination of CHCl2 with CHCl2

Figure D16 illustrates the potential energy diagram, with input parameters for the QRRK

calculation and kinetic input data are listed in Table D9.

Comparison of QRRK with modified strong collision and with Master Equation

analysis versus the experimental data of Roussel et al.(99) for this CH2Cl self-combination

is illustrated in Figure D11. Both calculation methods show excellent agreement with the

experimental data.

Results of QRRK with modified strong collision and with Master Eqn. analysis are

illustrated in Figure D17 at 1 atm pressure. The two fall-off calculation methods show

nearly identical results. CHCl2CHCl2 stabilization is most important below 800 K. Above

800K, HCl elimination + C2HCl 3 is predicted to be dominant. The reverse reaction to two

CHCl2 radicals competes with Cl + CHCl 2CHCl channel above 800 K. Both show

maximum rate constant near 1150 K, with HCl + trichloroethylene about a factor of 2

higher than the Cl elimination channel. Pressure effects at two temperatures are shown in

Figure D18. The overall rate constant show little change over the pressures 10 -3 - 102 at

500 K. CHCl2CHCl2 stabilization in the most important above 0.01 atm, and is observed

to be near the high pressure limit at 1 atmosphere pressure. At 1000 K, stabilization of

CHCl2CHCl2 is dominant above 1.0 atm, while HCI elimination + C 2HCl3 becomes most

important below 0.2 atm.
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5.4.6 Dissociation of CH2ClCH2Cl and CHCl2CHCl2

Master Equation and modified strong (beta) collision calculations on dissociation rate

constants for 1,2-dichloro and 1,1,2,2-tetrachloroethane are illustrated in Figure D19 and

D20 respectively for 1 atm pressure, 300 to 2500 K. Input data are identical to that used

in the chemical activation system, Table D7 and D9. Both reaction systems are near the

high pressure limits at 1 atm for the lower temperatures and the agreement is very good

for both over the entire temperature range. The dichloroethane (DCE) has a lower density

of states and is in the fall-off at higher temperature, thus the difference between the

calculations via Master Equation vs beta collision techniques are more apparent for DCE.

Amplification of these curves 1000 - 2000 K are illustrated in Figures D21 - D22.

Observation of the DCE dissociation data demonstrates that the beta collision calculations

overestimate the higher dissociation energy channels and underestimate the lowest energy

reaction. This is because they fail to correctly incorporate bleed of the energized species

out the lower energy channel when in the fall-off regime.

Table D10 lists the rate constants by QRRK with modified strong collision analysis

for methyl and chloro-methyl radical combinations, and by Master Equation analysis for

stabilized complex unimolecular dissociation to various channels in Ar and N2 bath gases

at temperatures 300 - 2500 K.

5.5 Conclusions

The bimolecular combination reactions of chloro-methyl radicals result in formation of

activated chlorinated ethane adducts, which can be stabilized, further dissociate to lower
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energy products (chloro-ethyl radicals + Cl or chloroethylenes + HCl), or dissociate back

to reactants before stabilization occurs. The overall reaction process is complex and is a

strong function of both temperature and pressure. The reactions are, in addition, of key

importance to formation of C2 species and to higher molecular weight growth in

chlorocarbon pyrolysis and oxidation. Rate constants for each channel in the reaction

systems are estimated using a chemical activation quantum Rice-Ramsperger-Kassel

(QRRK) calculation for k(E), combined with a modified strong collision approach and

separately with multi-channel Master Equation analysis for comparison of fall-off analysis.

Rate constants are calculated for the temperature range 300 - 2500 K and bath gas

(Ar and N2) in the pressure range 0.001 - 100 atm with comparison to experimental data

where available.

Results at 1 atm indicate the formation of chlorinated ethanes are most important

in low temperature ranges ( below — 650 K) for the reaction systems in this study.

Production of HCl + chlorinated ethylenes become dominant at temperature between 700

- 1300 K. A decrease of these rates is observed above 1350 K as a result of dissociation to

chloro-ethyl radical + Cl and back to reactants (two chloro-methyl radicals) become

increasing in importance. Analysis the effects of pressure on the rates of various channels

at 300 K shows that stabilization of chloroethane dominate at pressures above 0.1 atm,

with production of HCI + chlorinated ethylenes (except HCl + CH2CCl2) most important

at pressures below 0.08 atm.

Master Equation and modified strong (beta) collision calculations on dissociation

rate constants for CH2ClCH2Cl and CHCI2CHCl 2 are observed near the high pressure
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limits at 1 atm for the lower temperatures and the agreement is very good for both over

the temperatures 300 - 2500 K.



CHAPTER 6

REACTION PATHWAY ANALYSIS
FOR VINYL, CHLORO-VINYL RADICALS WITH 02

6.1 Introduction

The addition reaction of alkyl radical to unsaturated hydrocarbons species is considered to

be a key step to the formation of aromatics, soot, and higher molecular weight species in

hydrocarbon pyrolysis.(8-13) Analogous reaction pathways in chlorinated hydrocarbon

reaction systems: C 1 and C2 radical additions to chlorinated ethylenes has been studied

theoretically by Shi and Senkan.(14) These additions can undergo further molecular

weight growth reaction and subsequently result in production of potential toxic

chlorinated benzenes, phenols, dibenzofurans and dioxins.(15) In the presence the O 2, the

molecular weight growth processes can be suppressed by fast reactions of alkyl radicals

with oxygen. These oxygen reactions, furthermore, represent the principal pathways of the

radical conversion in many hydrocarbon and chlorinated hydrocarbon oxidation and

combustion processes.(8,16) They are nearly solely responsible for suppression of soot

formation and additionally : they are important for soot burnout.

Ethyl radical is a precursor to ethylene through the beta scission reaction (C 2H5

C2H4 + H) and the reaction with O 2 (C2H5 + O2 -> C2H4 + H2O). Both of which readily

occur at combustion conditions. This is however not a simple H transfer reaction, but an

addition, H-isomerization and then beta scission.

79
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The addition reaction of ethyl radical to molecular oxygen has been experimentally

studied at pressures from 1 to 6000 Ton . and temperatures from 300 to 900 K, which

exhibit that the production of C2H4 + HO2 by a process involving a stable, long-lived

cyclic intermediate unrelated to the ethyl-peroxy radical and perform a significant negative

pressure dependence.(117,120,122) The negative pressure dependence of the C2H4 yield

from the reaction C2H5 + O2 has also been investigated at 298 K for pressures from 1 to

6000 Torr in air diluent and 3 - 1500 Torr in He diluent by Kaiser et al.(123) and at

pressures from 50 to 1500 Ton- in the temperature range 260 - 530 K by Kaiser.(124)

Kaiser(124) also confirmed that at lower temperature (260 - 400 K) formation of C2H4

from C2H5 + 02 does not proceed by the direct abstraction reaction C2H5 + 02 —> C2H4 +

HO2 as this would be expected to have a substantial activation energy: it proceeds through

the C2HSOO. peroxy adduct as above.

Walker and coworkers(125) have also report similar pressure dependence for

reactions of isopropyl radicals with O 2 to produce propene + HO2. The observed pressure

and temperature dependence for olefin formation in these reaction is not, however,

consistent with a direct hydrogen-transfer mechanism, although that is often invoked in

combustion modeling.(126,127) This is an important issue to resolve, since the rate
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constants one would use for combustion models under engine or turbine conditions could

change by orders of magnitude, due to the higher pressures.

The theoretical study for C 2H5 + O2 reaction to C2H4 yield and ethyl radical loss at

pressures and temperatures has been done by Bozzelli and Dean(105) using QRRK theory

of Dean(67) and by Wagner et al.(128) using RRKM theory for C 2HSOO dissociation.

These analyses postulate the formation of a chemically activated C 2HSO2* adduct, which

can be stabilized, dissociate back to reactants (C2H5 + O2) before collisionally stabilization,

or react through a cyclic five-member ring intermediate to form a primary hydroperoxy

alkyl radical (H shift), which can be stabilized or further react to C2H4 + HO2. Wagner

only considered direct reaction of C2HSOO to C2H4 + HO 2, while Bozzelli and Dean

considered the isomer (.CH 2CH2OOH) formation and its subsequent reactions. The

formation of .CH2CH2OOH adduct and of epoxide + OH from .CH2CH2OOH in this

system is limited by a low Arrhenius A factor due to the tight transition states and a

slightly high barriers. The modeling results of Wagner et al.(128) for ethyl radical loss and

production of ethylene show good agreement with experimental data. The results of

Bozzelli and Dean(105) show excellent agreement with the experimental data of Gutman's

research group(120,122) and of Kaiser et al. (123,124) over a wide pressure range for He

and N2 bath gases.

There have been several recent studies on the reactions of unsaturated free radicals

with molecular oxygen. Slagle et al.(129) investigated the gaseous reaction of vinyl

radicals with O 2 at relative low pressure range 0.4 - 4 Ton - and temperatures between 297

and 602 K. The overall rate constant (k = 4.0E12e 0.28/RT cm3 mole-1 s- ') is pressure
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independence and is slightly decrease with increasing temperature in this experimental

condition. The pressure independence of rate constant suggests that the addition complex

formed in the C2H3 + O2 reaction decomposing preferentially by the channel leading to the

observed products rather than dissociation back to the original reactants. The products

formed in this reaction are CHO and CH2O. Fahr and Laufer(130) later measure the rate

constant for C2H3 loss at 298 K show good agreement with Slagle rate constant. These

data also agree with the room-temperature study of Krueger and Weitz.(131) Analogous

reaction of methylvinyl radicals (CH3 CH=CH) with molecular oxygen has also been

studied between 296 and 600 K by Slagle et al.(132) The rate constant is essentially

constant throughout this temperature range, k = 4.50E12 cm3 mole'' The only

products observed are CH 3 CHO + CHO.

The reaction of vinyl radical with molecular oxygen has been analyzed by

Westmoreland,(104) Bozzelli and Dean(106) using QRRK theory. The vinyl radical

combines with O 2 to form the chemically activated C2H3OO* adduct. The reaction

channels of C2H3OO* include dissociation back to reactants, collisionally stabilization,

isomerization via hydrogen shifts with subsequent β-scission/stabilization, cyclization to

form four-member ring cyclic peroxides with subsequent β-scission/stabilization, and

C2H3 O-O bond fission to form vinoxy + O. The results of both modeling show good

agreement with experimental data, CH2O and CHO are major products at lower

temperatures.(129-131) The analysis of Westmoreland(104) also predicts that H + glyoxal

and C2H2 + H02 are important product channels at relative high temperatures. The

analysis of Bozzelli and Dean(106) indicates that the well depth for the vinyl peroxy
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adduct is — 40 kcal/mol, i.e. more than 22 and 8 kcal/mol deeper than the allyl and ethyl

additions respectively. The deeper well allow the initially formed adduct to undergo

reactions such as isomerization or dissociation to other products even at lower

temperatures. Bozzelli and Dean(106) predict that vinoxy + O channel becomes more

important at higher temperatures.

Recent theoretical study for vinyl radical with O2 has been analyzed by

Carpenter(133) using semiempirical and ab initio molecular orbital calculations.

Carpenter(133) suggests that formation of the three-member ring, dioxiranylmethyl radical

has a lower barrier (23.5 kcal/mol) than that (46.9 kcal/mol) does formation of four-

member ring, cyclic peroxides. The three-member ring intermediate can rapidly rearrange

to an epoxy radical with a negligible activation barrier and highly exothermic, OH,„ ~ -44

kcal/mol. The formation of CH3 + CO2 is predicted by the PM3 model to have a

substantially higher activation enthalpy and presumably a less favorable activation entropy

than the formation of the observed products, CHO + CH 2O.

Senkan et al.(134) investigated the kinetics of the reaction CH3CHCl + O 2 <->

CH3CHClO2 products at temperatures 296 - 839 K and He densities of (3 - 49) x 10 16

molecule cm-3 by laser photolysis/photoionization mass spectrometry. At low temperature

(298 - 400 K) the rate constants are in the falloff region under the conditions of the

experiments. The high pressure limit rate constant at 298 K, k - = 6.2E12 cm3 mot' s 1 was

estimated. The bond energy ΔH°298 -31.3 kcal/mol for CH 3CHCl-O2, the entropy S°298

81.5 cal mol-1 and the heat of formation ΔH°298 -13.1 kcal/mol of the CH3CHClO2

were obtained. The bond energies of CH3CHCl-O 2 (A H°298 = -31.3 kcal/mol) and C2H5-O2
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(ΔH°298 = -35.0 kcal/mol)(16) shows that bond strength decrease 3.7 kcal/mol with one a-

C-Cl substitution.

The reactions of chlorinated vinyl radicals CH 2CCl and C2Cl 3 with molecular

oxygen have been studied by Russell et al.(85) in a tubular reactor coupled to a

photoionization mass spectrometer in the temperature range 298 - 648 K. The measured

rate constants are 3.0E12e0.33/RT  cm3 mol-1 s-1 for CH2CCl + O2 reaction and 1.3E12e0 .83/RT

cm3 mol-1 s-' for C2Cl3 + O2 reaction, respectively. They suggested that both of these

reactions analogous vinyl + O 2 proceed via the formation of a short-lived bound RO2

intermediate, that can dissociate back to reactants or form new oxygen-containing

products following intramolecular rearrangement of the adduct. The only product detected

was CH2O in CH2CCl + O 2 reaction system. The CH2O ion signal rises exponentially,

mirroring the observed exponential decay of CH 2CCl.

In this chapter, we extend the analysis of vinyl radical with oxygen to chlorinated

vinyl radicals, CH2CCl, CHClCH, CHCICCI, CCl 2CH, and C2Cl 3 with oxygen. The lower

barrier of the three-member ring transition structure, dioxiranylmethyl radical which

postulated by Carpenter(133) from initial chemically activated adduct in vinyl + O2, is

presented as major pathway to compete with the other product channels. A chemical

activation analysis is performed on addition reactions of vinyl, chlorinated vinyl radicals

with O2 and the predictions compared to the limited literature data. It is difficult to

measure each of the products and the specific rate constants to the products of these

important reactions over a wide range of both temperature and pressure. Our attempt is to

use the experimental data where available, along with QRRK analysis incorporating
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generic rate constants, evaluated thermodynamic properties and transition-state theory, to

predict the reaction paths as a function of temperature and pressure. The deeper well in

vinyl and chlorinated vinyl reaction with oxygen provide additional energy, i.e., the

initially formed adduct had higher energy relative to the barriers for unimolecular

reactions. This leads to the faster rate constants and opens possibilities for new channels.

6.2 Calculations

The addition reactions of O2 to vinyl and chlorinated vinyl radicals at different

temperatures and pressures are calculated using a quantum version of RRK theory

(QRRK) to evaluate energy dependent rate constants, k(E), for the various channels, and

with modified strong collision approach to analyze fall-off effect. QRRK theory as initially

presented by Dean(67), later published by Dean et al.(68), and used with "modified strong

collision approach" by Chang et. al.(74) are used to compute apparent rate constants over

a wide range of temperature and pressure.

The modifications to the quantum RRK calculation(74) include:

• A 3 frequency model for energy distribution and the 3 frequency model plus

incorporation of 1 external rotation for the density of states, p(E)/Q.

• The FE factor is now calculated for use in determining the collision efficiency 13„,(75) in

place of the previously assigned l.15 value.

• 13, is now calculated by : 13 c = (a, /(a., + FE*k*T))2/Δ from Gilbert et. al. Eqn. 4.7,(75)

A = 1 1 - (FE*k*T)/(αc + FE*k*T)*Δ2. Where Δ l and A2 are temperature-dependent
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integrals involving the density of states, and a c is the average energy of down-

collisions.

The Lennard-Jones collision frequency Z LJ is now calculated by ZLJ 	 Z f/(42)

integral.,(76-78) ,C/ is obtained from fit of Reid et al.(78)

QRRK analysis with the modified strong collision approach for fall-off has been

used to analyze a variety of chemical activation reaction systems.(10,51,56,57,73,97,107)

It is shown to yield reasonable results in these applications, and provides a simple

framework by which the effects of temperature and pressure can be readily understood

and evaluated by non-physics students. Limitations affected by the QRRK assumptions are

likely over showed by uncertainties in high pressure limit rate constants and

thermodynamic properties for all species and TST's in the calculation systems.

Input information requirements for QRRK calculations :

Three frequencies and the associated degeneracies are computed from fits to heat

capacity data, as described by Ritter.(72,73) These have been shown by Ritter to

accurately reproduce molecular heat capacities, C p(T), and by Bozzelli et al.(108) to yield

accurate vibrational state, ρ(E)/Q, to partition coefficient ratios. This approach offers the

advantage of avoiding the specification of the complete frequency distribution of the

adduct.

Lennard-Jones parameters (a, e/k) are obtained from tabulations(78) and from a

calculation method based on molar volumes and compressibility.(109)

Arrhenius A-factors for vinyl and chlorinated vinyl radicals addition to O2 at the

high pressure limit are obtained from literature, and from trends in homologous series of
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these type reactions. Slagle et al.(129) reported that overall rate constants for C2H3 + O2

to be (4.0±0.8) x 10 12 exp(0.25±0.1 kcal/RT) cm 3 mol-1 s-1 , later Knyazev and Slagle(135)

also determined this overall rate constants to be (4.16±0.1) x 10 12 exp(0.24±0.024

kcal/RT) cm3 s-1. The overall rate constants for CH 2CCl + O2 and C2Cl3 + 02 were

reported by Russell et al.(85) to be (3.0±0.4) x 10' 2 exp(0.33±0.2 kcal/RT) cm 3 s-1

and (1.2±0.24) x 10 12 exp(0.83±0.23 kcal/RT) cm 3 s-1, respectively. From the above

information, we can see that A factors for reactions C2H3 + O2 to C2Cl3 + O 2 range from

(4.0±0.8) x 10 12 to (1.2+0.24) x 10 12 cm3 mol-1  s-1 , which increases with increasing

chlorine substitution; energies of activation (E a) for these reactions are shown from -

(0.257E0.1) to -(0.83±0.23) kcal/mol. The trend of negative activation energy also

increases with increasing chlorine substitution.

Dissociation of the energized (chloro) vinyl peroxy adducts to initial reactants

(chloro-vinyl radicals + O2) is calculated the Arrhenius parameters for the reverse addition,

rate constants thermodynamics and microscopic reversibility. Dissociation of the energized

adducts (as above) to products is also calculated from the combination rate constants of

reverse reactions thermodynamic and microscopic reversibility. A and E a for unimolecular

isomerization reactions are determined using Transition State Theory(25) with the

appropriate thermodynamic parameters

All reactions are thermochemically consistent and follow principles of

Thermochemical Kinetics.(25) Thermodynamic properties related to these system as listed

in Table B2 are from literature data. When no literature data are available, THERM,(69)

calculations of entropies S(T) and heat capacities Cp(T) changes of specific vibrations and
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internal rotations that result when the respective H atom is lost from the parent (stable)

molecule and use of statistical mechanics.(70) This technique is termed Hydrogen Bond

Increment (HBI) groups for radicals. (79)

6.3 Results and Discussion

6.3.1 C21`13 + 02

The potential energy level diagram and input parameters for the chemical activation

calculations of vinyl radical + O2 are shown in Figure E1 and Table El, respectively. The

vinyl radical combines with O2 to form an energized C2H3OO* adduct, which can be

stabilized, further dissociate to vinoxy radical + O, dissociate back to reactants, isomerize

via H-shift with subsequent β-scission/stabilization, or further isomerize to form the three-

member ring (dioxiranylmethyl radical) intermediate. This dioxiran intermediate can then

rearrange to an epoxide-alkoxy radical (isomer) intermediate. The alkoxy radical

intermediate can react via C-O or C-C bond cleavage (beta scission) to form two different

intermediates, each of which then reacts to the same final product set CH2O + CHO.

Bozzelli and Dean(106) mentioned the importance of vinoxy + O formation versus

the initial cyclization, and suggested 35.4 kcal/mol as a lower limit for the vinoxy barrier

and 26.4 kcal/mol barrier as an upper limit for the cyclization. In this study, we utilized the

barriers 36.4 kcal/mol and 25.4 kcal/mol for vinoxy + O and initial cyclization,

respectively. This gives a branching ratio of 75% at 450 K. This value represents a suitable

compromise between the measurements of Gutman et al.(129) and the barrier inferred
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from the molecular beam studies of Lee et al.(190,191) The data we selected are in

accordance with Bozzelli and Dean.(106)

The overall rate constant for vinyl + O2 has been reported(109, 129,135) to slightly

decline with increasing temperature at low pressures. Comparison of predicted values with

literature for the total rate of vinyl + O2 as a function of temperature at low pressures (0.4

to 4 torr) in He bath gas is shown in Figure E2. The predicted results show good

agreement with the observations.

Figure E3 illustrates an important feature of this reaction system: that the product

channels change dramatically with temperature. At 1 atmospheric pressure, C 2H3 OO

stabilization is most important below 400 K with CH 2O + CHO next in importance. Above

400 K, CH2O + CHO becomes dominant. The vinyl peroxy complex dissociation back to

C2H3 + O 2 competes with the vinoxy + O channel over a wide temperature range (300 -

2500 K), and increases in importance with increasing temperature. The rate of vinoxy + O

formation at — 1000 K is ca. one half of that predicted by Bozzelli and Dean,(106) where

they reported the vinoxy + O is most important. This small decrease is because the

average A factor for dissociation to vinoxy + 0 used by Bozzelli and Dean(106) was

somewhat over-predicted at higher temperatures. In this study a more complex

temperature dependence of on k(T), k = ATnexp(-αT)exp(-E a/RT), is utilized to more

accurately fit the rate constant over a wide range of temperature.

The pressure effect on various reaction channels at 300 and 1500 K are illustrated

in Figure E4 and E5, respectively. The total rate at 300 K is seen to be near constant over

a wide pressure range (10-3 - 102 atm), but this is owing to a tradeoff between the
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C2H3OO stabilization and CH 2O + CHO product channel. A slightly lower overall rate

constant is calculated at 1500 K relative to 300 K, due to an increases in the reverse

dissociation rate. At 1500 K, we see participation of all the channels resulting from

dissociation of the chemically activated adduct to the various products.

6.3.2 CH2CCl + 02

The potential energy diagram and input parameters for QRRK calculations are shown in

Table E2 and Figure E6, respectively. The well depth of CH 2CClOO* adduct in this

system is estimated to be — 2 kcal/mol smaller than that in vinyl case, due to the

Cl-substitution of CH2CCl at α site (resonance). The reaction paths are similar to that in vinyl

+ O2, with only one new reaction channel, ketene + CIO from CH 2CClOO* adduct (ΔHrxn

= -8.5 kcal/mol). The barrier 31 kcal/mol for ClO elimination is from calibrated to

AM1/PM3 calculations and taken as that of CH2ClOO* --> CH 2O + Cl0.(136) The

relatively lower A factor (tight transition state) of this CIO elimination combine with the

lower barrier (~ 7 kcal/mol lower than chloro vinoxy + O and reverse dissociation to

CH2CCl+ O2) causes this channel to be more important at the relatively high temperature.

The CIO elimination + ketene formation has not been reported previously as a product

channel in this reaction system.

Figure E7 compares the predictions to the experimental data of Russell et al.(85)

for overall rate constant of CH2CCl + O 2. The fit shows good agreement with the

observations.
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The rate constants of various reaction channels versus temperature at 1 atm are

shown in Figure E8. Stabilization of initially formed energized adduct is most important

below 600 K, with CH2O + CC1O next in importance. Above 750 K, the C*CCIO• +

reaction channel is predicted to be dominant. The formation of CH 2C0 + ClO increases in

importance above 1000 K, and becomes most important above 2000 K.

Figure E9 shows the effects of pressure on the rate constants to various reaction

channels at 300 K. The total rate is predicted to have little pressure dependence over a

wide pressure range, which is in agreement with the observations of Russell et al.(85)

where no measurable effect of pressure with a 2.5-fold change in pressure (1.47 - 6.74

torr) was observed. Production of CH 2O + CC1O is predicted to be dominant at lower

pressures (below 0.06 atm), which agrees with the observations of Russell et al.(85) which

indicated CH2O as the only product observed between 295 - 520 K at pressures below

0.01 atm. Figure El° shows that at 1500 K, stabilization is unimportant even for pressures

above 10 atm. At this temperature, the CH2C0 + CIO formation competes with C*CC1O•

+ O over the pressure range of le - 102 atm.

6.3.3 CHCICH + O2

The potential energy diagram for CHCICH addition to O 2 is shown in Figure E11. We see

the reaction paths are similar to those in vinyl + O 2 case. Table E3 lists the input

parameters for the QRRK calculation.

Figure E12 shows the rate constants to various channels versus 1000/T at 1 atm.

The total rate shows a slight decline below 1000 K, and it is near constant above 1000 K,
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because dissociation back to reactants decreased a little above 1000 K. Stabilization of

CHCICHOO is most important below 400 K, with CHC1O + CHO next in importance.

Above 400 K, CHClO + CHO becomes the dominant channel.

The effects of pressure on various reaction channels at 300 and 1500 K are

illustrated in Figure E13 and E14, respectively. Results are similar to those in vinyl + 02

case. The total rate at 300 K is near constant over a wide pressure range (10 -3 - 102 atm),

owing to a tradeoff between the CHClCHOO stabilization and CHClO + CHO product

channel. At 1500 K, stabilization of energized adducts is seen to be unimportant, even at

100 atm.

All the channels resulting from dissociation of the chemically activated adduct to

various products are observed with no pressure dependence at 1500 K, 10 -3 - 102 atm.

6.3.4 CHCICCl + O 2

The potential energy diagram and QRRK input parameters for CHCICCl + 02 addition are

shown in Figure E15 and Table E4, respectively. The consideration for each reaction path

and ClO elimination from CHClCC1OO are similar to those in the CH2CCI + 02 reaction.

The Arrhenius plot for various reaction channels at 1 atm is illustrated in Figure

E16. Again, stabilization of CHClCClOO is most important in the lower temperatures

(below 400 K), and it is second most important until 700 K. Above 400 K, the fastest

channel calculated as CHClO + CCIO, until 1800 K where it competes with dichloro

vinoxy radical (CHCICCIO.) + 0. The formation of CHCICClO. + 0 becomes most

important above 1800 K.
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The effects of pressure on the reaction channels at 300 and 1500 K are shown in

Figure E17 and E1 8, respectively. At 300 K, CHClCClOO stabilization affects the total

rate at P > 3 atm, then falls off, and still remains most important until 0.3 atm. Formation

of CHClO + CClO increases with pressure decrease, and becomes the dominant channel

below 0.3 atm. At 1500 K, stabilization is seen to be unimportant, even at P > 10 atm.

Reaction to all the channels resulting from dissociation of the chemically activated adduct

to various products is observed, with little pressure dependence.

6.3.5 CCl2CH + O2

The potential energy diagram for CCl 2CH + 02 addition is shown in Figure E19. The

product set CCl2CO + OH resulted from a four-member ring transition state of the

energized CCl2CHOO* adduct. Although there is an expected high barrier (~ 40 kcal/mol)

for this reaction, which causes it to be unimportant at lower temperatures, its highly

exothermic (~ -30 kcal/mol) and needs to be included in the analysis. Input parameters for

the QRRK calculation are listed in Table E5.

Figure E20 illustrates the predicted effect of temperature at atmospheric pressure.

The total rate is seen to be similar to the other vinyl and chloro-vinyl radicals + O 2 cases.

It shows a slight overall negative temperature dependence. Stabilization of CCl2CHOO is

most important below 400 K, with CCl2O + CHO next in importance. CCl 2O + CHO is

predicted to be dominant between 450 and 1400 K. CC1 2CHO. + O as expected increasing

in importance above 700 K, and competes with CCl20 + CH0 near 1400 K. Above 1400

K, CCl2CHO. + O is dominant. The highly exothermic product set, CCl 2CO + OH is
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predicted unimportant over the temperatures 300 - 2500 K, because the high barrier to the

transition state.

The effects of pressure at 300 and 1500 K are illustrated in Figure E21 and E22,

respectively. At 300 K, stabilization of CCl2CHOO dominates above 0.2 atm, and is

observed to be at the high pressure limit at 10 atm. Formation of CCl2O + CHO increases

with pressure decrease, and becomes most important below 0.15 atm at 300 K.

At high temperature (1500 K), stabilization is predicted to be unimportant until 10

atm. CCl2CHO• + 0 is observed to be pressure independent and competes with CCl 2O +

CH0 over a wide pressure range, 10 -3 - 10 2 atm at 1500 K.

6.3.6 C2Cl3 + 02

The potential energy diagram for C2Cl3 + 02 is shown in Figure E23. The reaction paths

are simpler than the other chloro-vinyl radicals + 02 cases, because no intramolecular H-

shift needs to be considered. Russell et al.(85) observed low levels for the CCl2CO

products. This observation suggests that there may be a significant reaction path C 2Cl 3 +

02 --> CCl2CO + ClO, which is also discussed for CH 2CCl + 02 --> CH2CO + ClO and

CHClCCl + O 2 —> CHClCO + Cl0. Although there is no CCl 2O directly detected in the

experimental results of Russell et al.,(85) they still reported that CCl 20 formation was

considered significant. Table E6 lists the input parameters of QRRK calculation.

The Arrhenius plot for C2Cl3 + 02 reaction to various reaction channels at 1 atm is

illustrated in Figure E24. The total rate for C2Cl3 + O2 is predicted to decrease with

temperature increase, which is also observed by Russell et al.(85) at lower pressures 1.47 -
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6.74 torr. Figure E7 shows the comparison between these prediction and the observations

of Russell et al. for the overall rate constants versus 1000/T at pressures 1.47 - 6.74 torr

in He bath gas. Our calculation fit the experimental data well, and clearly show the trend

of negative temperature dependence. C 2Cl3OO stabilization is most important below 400

K, with CCl20 + CCIO next in importance. Between 450 and 1400 K, CCl2O + CClO

dominates. CCl 2CCIO. + O, CCl2CO + CIO, and dissociation back to C 2Cl3 + 02 increase

in importance above 700 K, and compete with CCl20 + CCIO above 1450 K.

Figure E25 illustrates the effects of pressure on the reaction channels at 300 K.

The total rate at 300 K is seen to be near constant over a wide pressure range (10- 3 - 102

atm). As discussed previously, this is due to a tradeoff switch between the C 2Cl3OO

stabilization and CCl 2O + CClO product channel. A slightly lower overall rate constant is

calculated at 1500 K relative to 300 K, as illustrated in Figure E26. This due to an

increase in the reverse dissociation rate. At 1500 K, stabilization is predicted to be

unimportant, and we see reaction to all channels resulting from dissociation of the

chemically activated adduct various products.

Apparent rate constants for vinyl and chlorinated vinyl (CH 2CCl, CHCICH,

CHCICHCl, CCl 2CH, and C2Cl 3) radicals + 02 in N2 bath gas are listed in Table E7.

6.4 Conclusions

Thermodynamic properties for the molecules and radicals related to the reactions of vinyl

and chloro-vinyl radicals addition to oxygen are evaluated. Reactions of vinyl and

chlorinated vinyl radicals with 02 are analyzed as bimolecular chemical activation systems
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using quantum Rice-Ramsperger-Kassel theory for k(E) with modified strong collision

approach for fall-off effects. Rate constants to the 10 possible channels are determined

from 300 - 2500 K, and 0.001 - 100 atm. Agreement with experimental data in all cases is

very good.

The high pressure limit A factors which have been evaluated from literature for

reactions C2H3 + 02 to C2CI3 + 02 range from (4.0±0.8) x 10 12 to (1.2±0.24) x 10 12 cm3

mol-1 s-1 , which decrease with increasing chlorine substitution. Energies of activation (E a)

range from -(0.25±0.l) to -(0.83±0.23) kcal/mol, and show a trend to slightly higher

negative activation energy (< 1 kcal/mol) with increasing chlorine substitution. The well

depth (40±2 kcal/mol) to the peroxy does not change significantly.

Calculations indicate that stabilization of the initially formed adducts (vinyl peroxy

and chloro-vinyl peroxy radicals) is important at low temperatures (below 400 K) and

higher pressures (above 1 atm). Formation of the product sets: CH2O (CHClO or CCl20)

+ C•110 (C.ClO) and vinoxy (chloro-vinoxy) + 0 dominate at high temperatures, and also

increase in importance at lower pressures. Calculation results show very good agreement

with experimental data, where available.



CHAPTER 7

FORMATION OF CHLORINATED AROMATICS
(DIOXIN PRECURSORS) FROM HIGH TEMPERATURE COMBUSTION

REACTIONS OF C1 AND C2 CHLOROCARBONS :
REACTION MECHANISM ANALYSIS

7.1 Introduction

Polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are

a probable carcinogen and a known noncancer health hazard to humans. The dominant

source of these compounds in the United States is emission from incinerators into the

atmosphere.(17-21) Formation of PCDDs and PCDFs during incineration is known to

occur in the post combustion zone of incinerators at temperatures between 200 - 500 °C,

(137-141) but the formation mechanism is still unclear. The reaction mechanisms for

production of single ring aromatic compounds, chlorinated benzenes and phenols

(precursors to multi-ring aromatics such as PCDDs), from lower molecular weight species

are the important initial steps for formation of these polycyclic aromatics, soot and higher

molecular weight compounds in combustion processes.(8,22-24) A number of researchers

have provided experimental confirmation on a variety of high molecular weight polycyclic

aromatics present in rich, hydrocarbon, flames(142-144), and proposed reaction paths and

kinetics for formation of benzene and other higher molecular weight species, based on

addition reactions of radicals to acetylene, Diels-Alder reactions, or combination reactions

of propargyl radicals. (8,10,11,22-24,145,146)

97
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Weissman and Benson(22) indicated addition reactions of saturated hydrocarbon

radicals to C2H2 and C2H4 are of significance to high molecular weight growth; but they

indicated that the addition of alkyl radicals to C2H4 appears to be of little importance. The

addition of vinyl radical to C2H4 is however very important; it leads to the observed

product of butadiene from butenyl radical. The addition of C2H3 to C2H2 results in

formation of the butadienyl radical, then the butadienyl radical decomposes to

vinylacetylene + H. Weissman and Benson proposed the formation pathways of benzene

are C2H3 addition to butadiene through subsequent cyclizations and dehydrogenations, and

the additions of C4 radicals to C2H2 and C 2H4 .

Frenklach et al.(8) investigated the chemical reaction pathways to soot by

experimenting with detailed kinetic models in shock-tube pyrolysis of acetylene. A

reaction mechanism consisting of approximately 600 elementary, reversible reactions and

180 species were considered to explain the time scale of soot formation and soot yields

obtained in this study. The mechanism development was based on the mechanism of

Tanzawa and Gardiner,(146) and then modified according to physical organic chemistry

principles to comprise the likely radical and atom reactions that could lead eventually to

cyclization, molecular weight growth and aromatics. The formation reactions of polycyclic

aromatics may be considered irreversible because of the ring's stabilization energy.

Subsequent reactions to multi-ring aromatics also have this effect or near irreversible

reactions. Frenklach et al. indicated that the main bottleneck for polycyclic aromatics and

soot appears at the formation of the first aromatic ring.



99

Colket(23) investigated the pyrolysis of acetylene and vinylacetylene in a single-

pulse shock tube as well as by using a detailed reaction mechanism. Colket suggested that

early benzene formation (T < 1500 K) from acetylene arises principally from acetylene

addition to the normal-butadienyl (n-C 4H5) radical, not the n-C 4H3 (vinyl-acetylene)

radical, i.e.,

Where L and Cy represent linear and cyclic, respectively. Colket's results for vinyl-

acetylene at temperatures below 1500 K indicate that the major formation paths to

benzene is through vinyl radical addition to the vinyl-acetylene.

Glassman(24) reviewed the literature for soot formation in combustion processes

and indicated that the critical soot equivalence ratios of pre-mixed flames and the smoke

heights of diffusion flames at a fixed temperature are excellent means of comparing the

relative sooting tendencies of various fuels. Glassman also indicated that concentration of

H atom, vinyl radicals and acetylene play a significant role in the rate processes leading to

the aromatic ring formation, while the rate of formation of the first rings is the rate

controlling step to soot emission.

Westmoreland et al.(10) indicated formation of benzene in C2H2/O2/Ar flames by

bimolecular QRRK calculations(67) on addition of vinyl radical to acetylene, which forms

a chemically energized adduct that can isomerize before stabilization. They concluded that
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addition of 1-C4H3 and 1-C4H5 to acetylene have the following advantages over other

paths:

1. Chemically activated isomerization is strongly favored because the cyclic isomers that

can be formed, are much more stable than thermalized linear adducts. This stability

inhibits chemically activated reverse isomerization and overcomes the entropy loss

from cyclization.

2. The energy in the chemically activated adducts greatly exceeds the thermal barrier to

isomerization. Cyclization can take place directly by low-activation energy, radical

self-addition (intramolecular) within the adducts.

3. The conjugated 7t bonds of these linear adducts add to their thermal stability. This

provides a deeper well or more energy for stabilization.

4. No bimolecular abstraction or addition of H is necessary to form an aromatic species.

Fahr and Stein(12) studied the kinetic reactions of vinyl and phenyl radicals with

ethylene, acetylene and benzene in a Kundsen cell flow reactor at temperatures 1000 -

1330 K. They reported rate constants (cm 3 mol-1 s-1) at 1100 K are:
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When combined with room temperature addition rates from the literature, Fahr and Stein

obtained the rate constants (cm 3 	s-1):

Wang and Frenklach(13) used semiempirical quantum mechanical AM1

calculations for the chemically activated reactions of acetylene with vinyl, 1-buten-3-yn-1-

yl, 1,3-butadien-1-yl, phenyl, 1-ethynylphenyl, 2-naphthyl, and 4-phenanthryl radicals. The

reaction rate coefficients were then calculated on the RRKM level theory, using the AM1

molecular parameters with small corrections to match the available experimental data.

Their results support the hypothesis that reactions of multi-ring aromatic species are

similar to those of benzene and phenyl. The distribution of reaction channels and the rate

coefficients computed for the addition of acetylene to larger aromatic radicals are similar

to those of acetylene addition to the non-cyclic species, such as n-C4H3 and n-C4H5 .

Stein et al.(145) investigated the formation paths from propargyl radicals to

benzene where he used 1,5-hexadiyne as a source of propargyl. Two studies, one at

atmospheric pressure with residence times near 30 seconds and the second under Kundsen

flow conditions (< 10 -3 torn) with residence times of the order of 0.1 second. They

reported that benzene formation from C4 radical addition reactions may be significantly

less than propargyl combination under their conditions. They also proposed that phenyl-



102

substituted propargyl radicals are involved in the formation of larger aromatic species. The

reaction schemes are illustrated below:

Very little has been published on the molecular weight growth reaction pathway

for chlorinated species. Shi and Senkan(14) studied the activation energies for the addition

of chlorinated C 1 and C2 vinylic hydrocarbon radicals to chlorinated ethylenes and

acetylenes using the semiempirical MNDO calculation with the PM3 set of parameters at

the UHF level. They reported that calculated activation energies increased with increasing

chlorine substitution of the species, and sites (13 carbon equal one carbon away from the

chlorine substituted carbon) were determined to be the preferred addition sites.

There are no elementary reaction mechanisms for prediction of chlorinated single

ring aromatics: chlorinated benzenes and phenols from oxidation of C I and C2



103

hydrocarbons and/or chlorocarbons. Taylor et al.(147) investigated the pyrolysis of

trichloroethylene (no oxygen present) using fused silica tubular reactors. They developed

an elementary reaction mechanism consisting 39 species and 62 reactions to describe

molecular growth up to CyC8CI6 (hexachloroethynylbenzene or hexachloroethynylfulvene

isomer) and CyC 8Cl8 (Octachloroethenylbenzene or octachloroethenylfulvene isomer).

Comparison of predicted versus observed reagent (C 2HCI 3) decay, major products (HCI,

C2Cl2, and C204) and minor species (C4Cl4, CyC6Cl6, CyC 8Cl6 , and CyC8Cl8) were shown

to be in good agreement.

C4 radical addition to C2 unsaturated molecules, C2 radical addition to C4

unsaturated compounds, and propargyl radical combinations are considered to be the

major formation pathways of benzene and chlorinated benzenes. There is little chance for

formation of propargyl or chloro-propargyl radicals in the combustion of CH 2Cl2, while

the formation of C2 compounds is important.

This chapter presents the reaction pathway development and kinetic analysis for

molecular weight growth by reactions of C2 addition to C2: C2 addition to C4; and C4

addition to C2 compounds. The reactions and their kinetic parameters are assembled into a

mechanism and this reaction mechanism is used to predict the formation levels of

chlorinated benzenes versus ratio of initial reagents ([CH2Cl2]/[fuel]) and fuel equivalence

ratios (4). The reaction pathways for benzene and chloro-benzene with OH radical are also

illustrated.
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7.2 Kinetic Reaction Mechanism

The reaction mechanism is based upon fundamental principles of thermochemical kinetics

including Transition State Theory (TST) and on accurate molecular thermodynamic

properties. The mechanism consists of elementary reactions with each reaction based on

literature evaluation, or if it is estimated, on thermochemical and kinetic principles and in

agreement with similar - generic reaction rates in the literature.

We incorporate corrections to experimentally determined rate constants(182,113)

where the measurements were performed at low pressures, and where pressure changes

may effect the rate; correction to adjust for atmospheric conditions. Here we utilize a

technique (quantum RRK. analysis) that calculates k(E) values and modified strong

collision analysis(75) for calculation of fall-off effects in unimolecular reactions and in

chemical activation processes such as addition or combination reactions. We apply this

analysis to rate constants, which are pressure dependent that are reported in the literature

from measurements at other pressures, as well as our estimated rate constants for these

type reactions.

If fundamentally correct, the mechanism's applicability should extend beyond the

bounds of the experimental calibrations it was developed under, because of the

thermochemical and kinetic principles (theories) it is based on. The model is not just a

mathematical or optimized fit to the experimental data over a limited parameter range. No

rate constants are arbitrarily adjusted to obtain fits to experimental data for validations.

Model Requirements include:

• Accurate thermodynamic properties of all reacting species.
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• Forward and reverse rate constants to be consistent with thermochemical principals -

microscopic reversibility for all fundamental reactions.

• Isomerization rate constants to follow Transition State Theory.

• Quantum RRK theory(67,68) for k(E) combined with modified strong collision

analysis for temperature and pressure compensation in chemical activation reactions

(addition, combination, insertion) and for in unimolecular dissociation reactions

(simple, beta scission and isomerization).

• Abstraction Arrhenius A factors from literature evaluation(113) or generically derived.

Abstraction Ea's from literature evaluation(113) or from thermodynamics and

Evans-Polanyi relationships.

• Model to be tested against data in the literature when data is available.

The following computer codes are helpful tools in mechanism validation and

development.

THERM(69) - calculates thermodynamic parameters of radicals and molecular species

based on the methods of Benson group additivity(25) and properties of radicals based on

Bond Dissociation (BD) groups developed in these laboratories. BD groups consist of

ΔHf, Sf and heat capacity terms, Cp(T), which are added to the corresponding properties

of the parent molecule to yield thermodynamic properties of the radical (parent - H atom).

THERM also converts the data in listing form into NASA format so that it can be used by

the CHEMKIN (65) integration codes.

DISSOC(68) - performs calculations on unimolecular dissociation as a function of

temperature and pressure, for pressure dependence.
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CHEMACT(68) - calculates apparent bimolecular rate constants over a range of

temperature and pressure on reactions which form a chemically activated adduct for

combination, insertion and addition type reactions.

THERMRXN - which is part of THERM(69) utilizes thermodynamic parameters plus

Arrhenius A's and Ea ratios of each reaction in the mechanism, in addition to evaluation of

specific rate constants in both the forward and reverse directions over a range of

temperatures. This data serves as a check in our mechanism generation to see if any

typing (computer input data) or rate constant estimations are in error, through

comparisons of listed forward and reverse rate constants and the thermodynamics.

TRANSCAL(149) - A technique to calculate transport properties of molecules and

radicals - Lennard-Jones collision diameters and energy transfer well depth; boiling point,

polarizability, and viscosity - using group additivity. This program uses the same groups,

with a different data base, as THERM.(69) The parameters are then used as input

transport properties to the flame code above.

RADICALC(70) - Calculation of the entropy and heat capacities of radicals and transition

states for estimation of Arrhenius A factors as a function of temperature is performed

using a data bases of vibrational frequencies, moments of inertia and barriers to internal

rotations and principles of statistical mechanics.(71)

Specifics on Reaction Rate Constants:

Abstraction Reactions - Abstraction reaction rate constants are not pressure dependent

and therefore do not incorporate any quantum RRK analysis. When estimation is required

for an abstraction rate constant we use a generic reaction as a model and adjust for steric
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effects as best we can. An example of the generic type of Arrhenius A factor analysis is Cl

atom abstracting an H from 1,1-dichloro-ethylene, where experiments can not discern

whether the measured values are for the abstraction or the addition reaction. Here we

would take the abstraction by Cl or H from 1,1,1-trichlorethane where both the mass and

the reaction degeneracy are similar. The Ea is calculated separately.

Evans Polanyi analysis is used on the reaction in the exothermic direction to

estimate the energy of activation for the rate constant. An Evans Polanyi plot, E. versus

delta H reaction, allows use of a known ΔHrxn to obtain Ea for these reactions. Clearly the

abstraction reaction in an endothermic reaction must incorporate the ΔHrxn or it, the

reaction rate constant, will violate thermodynamics.

Addition Reactions - Addition reactions are treated with the quantum RRK formalism

described above. The reactions involve addition of an atom or radical to an unsaturated

species and typically form an energized adduct with ca. 20 to 50 kcal/mol of energy above

the ground state. This is sometimes sufficient to allow the adduct to react to other reaction

products (lower energy) before stabilization occurs). An example would be H atom

addition to vinyl chloride, an olefin, forming one of two chloro-ethyl radicals with ca. 40

kcal/mol energy above the ground state. In the case of H Atom addition to the carbon

containing the Cl atom, the chloro-ethyl adduct formed .CH2CH2Cl could rapidly eliminate

CI (beta scission) to form the lower energy products CI atom plus ethylene. Some

examples of the quantum RRK analysis for this reaction are described below.

It is important to note that reaction to other channels as well as isomerization, in

addition to stabilization and reverse reaction are included in this calculation.
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Elimination - Beta Scission Reactions - These reactions utilize the quantum RRK

formalism and are treated in one of two ways. We use a unimolecular quantum RRK

formalism, where we determine the reverse reaction (addition) parameters for the high

pressure case, then calculate the corresponding high pressure unimolecular beta scission

rate constants using microscopic reversibility <MR>. The high pressure unimolecular

elimination parameters are then input to the quantum RRK formalism to determine the

high pressure limit and to calculate the apparent rate constants at the appropriate pressure.

The second method is simple use of the reverse rate constants from the addition

reaction and use of the CHEMACT calculations (see below).

Dissociation Reactions - Simple Unimolecular - Simple unimolecular (dissociation) rate

constants are determined by two methods similar to the case of beta scission reactions. We

use the unimolecular quantum RRK formalism. Here we determine the reverse reaction

(combination) rate constant parameters for the high pressure case, then calculate the

corresponding high pressure unimolecular dissociation rate constant using microscopic

reversibility <MR>. The high pressure unimolecular elimination parameters are then input

to the quantum RRK formalism to calculate the apparent dissociation rate constants at the

appropriate pressure.

The second method is simple use of the reverse rate constants from the

CHEMACT combination reaction calculations.

Combination and Insertion Reactions - These reactions involve the combination of two

radical species, or an atom and a radical. The energy of the adduct formed before

stabilization is equal to the bond energy of the new bond(s) formed and typically on the
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order of 80 to 120 kcal/mol. This is usually sufficient for an adduct, with this initial energy

above it's ground state energy, to react to lower energy products before stabilization

occurs. The high pressure limit rate constant for combination is obtained from the

literature or estimated from known generic combination rates. The combined quantum

RRK chemical activation formalism(67,68) is then used to determine the high pressure

limit and to calculate the apparent rate constants at the appropriate pressure to all the

channels. This is an important aspect of our reaction analysis for both these combination

as well as insertion and addition reactions that other modelers do not incorporate.

This leads to a more correct treatment of fall-off and pressure dependence for

these non-elementary reaction systems. Rate constants for the model are obtained which

incorporate these pressure dependency therefore make the model more fundamentally

correct.

Thermodynamic Properties - Thermodynamic properties listed in Table F 1 are

calculated by the THERM(69) computer code. Enthalpies of radials are from evaluated

literature C-H bond energies and ΔHf of the stable molecule which corresponds to the

radical with a H atom at the radical site. Entropies and C p(T) values are from use of

Hydrogen Bond Increment (HBI).(71) The HBI group technique is based on known

thermodynamic properties of the parent molecule and calculated changes that occur upon

formation of a radical via loss of a H atom. The HBI approach incorporates (i) evaluated

literature bond energies, (ii) calculated entropy and heat capacity increments resulting

from loss and/or change in vibrational frequencies including frequencies corresponding to
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inversion of the radical center, (iii) increments from changes in barriers to internal rotation,

and (iv) spin degeneracy.(79,103)

Reaction Paths - The reaction scheme for molecular weight growth of methane and

chloro-methane to C6 chlorinated benzenes (CyC6H4Cl2) is shown in Figure F1. The

presence of chlorine in the system leads to rapid generation of Cl atoms, which results

from the relative low C-Cl bond energies and low energies of activation (E a 's) for HCl

elimination reactions. Radicals like OH, H, CH3, R. will rapidly abstract H from HCl,

generating a Cl atom. Cl then undergoes relatively fast abstraction reactions with other

parent chlorocarbons and hydrocarbons, as the reactions have high A factors and low

(near zero above Ea's. This results in a more rapid formation of Cl, and

chlorocarbon radicals relative to when Cl is not present. The additions of these

chlorocarbon radicals to unsaturated compounds therefore play a critically important role

in the molecular weight growth.

The addition reaction of radicals to ethylene is known(13,22) less important than

to acetylene in the molecular weight growth, except for the vinyl radical addition to

ethylene and acetylene, both reactions show similar in importance. We discuss the

molecular weight growth up to single ring aromatic compounds by the chemically

activated reactions of

• C2 radical addition to chlorinated ethylenes and acetylenes

• C2 radical addition to chlorinated C4 unsaturated compounds

• C4 radical addition to C2 unsaturated compounds
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The above addition/combination reaction systems are analyzed by QRRK(67,68) theory

for k(E) and with modified strong collision approach(74,75) for fall-off effects under

combustion condition. One example of each type of reaction will be illustrated in detail in

this chapter.

The overall reaction mechanism is a combination of several subset mechanisms in

sequence of increasing complexity: first pyrolysis reactions of CH 2Cl2, second pyrolysis in

presence of CH4 - a hydrocarbon, and third oxidation of CH2Cl2 . These are then illustrated

in Table B 1. These are combined with reactions describing the formation of larger

molecules and radicals and ultimately the formation of single ring aromatic molecules and

radicals as shown in Table F2. Oxidation of C4 intermediates primarily via paths similar to

vinyl + O2 are also included, in order to limit MWG in presence of O2. The molecular

weight growth reactions are basically considered as those in pyrolysis of C 2H3 Cl,

CHCICHCl, and C 2HCl3, which are sub-mechanisms to the CH2Cl2 pyrolysis and

oxidation. The C2HCl 3 reaction paths are based on the mechanism of Taylor et al.;(147)

but the thermodynamic and kinetic analysis is original.

Table F3 lists the nomenclature and notation of the species, for example

C4H4Cl(N1 means a linear primary C 4H4CI radical, C4H4Cl(I1 means a linear secondary

C4H4Cl radical, C 6H3 Cl 3(L1 means a linear C6H3 Cl 3 molecule, and C 6H3Cl 3(Y1 means a

cyclic C6H3Cl3 , while C4H4CI(N1 and C4H4Cl(N2 mean the C4H 4Cl isomers with different

site of Cl-substitution, respectively.

The mechanism is calibrated against laboratory and literature C 1 and C2

chlorocarbon oxidation and pyrolysis. The mechanism is then used in predicting levels of
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dioxin precursors (chlorinated aromatics) from various high temperature reactions of C1

and C2 chlorocarbons.

Numerical calculation for the formation of chlorobenzenes from C 1 and C2

chlorocarbons is performed using CHEMKIN(65) package.

7.3 Results and Discussion

7.3.1 Results of QRRK Calculation

The chemical activated reactions leading to molecular weight growth and C6 aromatic

species include: C2 radical addition to C=C molecules, C2 radical addition to

molecules, and two types of C4 radical addition to C=C molecules. There are several

isomers for these species due to the numbers and different substitution sites of Cl atom(s).

In the next section, one example for each type of reaction is treated using QRRK

formalism, and the calculation results are illustrated.

7.3.1.1 CH2CCl addition to C2HCI - The potential energy diagram and input parameters

with corresponding references for the QRRK calculation are shown in Figure F2 and Table

F4, respectively. Addition of CH 2CCl to the α-site of C 2HCl forms an energized

C4H3 Cl2(N4* (2,3-butadienyl radical) adduct. Shi and Senkan(14) considered that β-site is

the preferred addition site, but in this chemically activated reaction, addition to α-site

leads to a rapid reaction through a low energy product channel. The chloro-vinyl acetylene

(C=CClC=C) + Cl product channel is 25 kcal/mol below the energy of the reactants and is

important to formation of aromatics and MWG products in this mechanism.
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QRRK calculation results at 1 atm are illustrated in Figure F3. C=CClC=C + Cl is

observed to be dominant channel and nearly equal to the total rate at temperatures 300 -

2500 K, with stabilization about 2 orders of magnitude lower than that of this C=CClC=C

+ Cl channel.

7.3.1.2 CH2CCI addition to C2H3Cl- Figure F4 shows the potential energy diagram for

the addition reaction of CH2CCI to C2H3Cl. It is similar to the CH2CCl + C 2HCl reaction.

The 2,3-dichlorobutenyl adduct rapidly β-scissions to Cl + 2-chlorobutadiene, which is the

lowest energy product channel other than stabilization and is shown to be the dominant

path. Input parameters for the QRRK calculation are shown in Table F5.

Figure F5 illustrates the Arrhenius plot at 1 atm. 2-chlorobutadiene + Cl is most

important over the temperature range 300 - 2500 K.

7.3.1.3 C4H4CI(N1 + C2HCI - The potential energy diagram and input parameters for

kinetic analysis on the chemically activated adduct, C 6H5 Cl 2(N1*, are shown in Figure F6

and Table F6, respectively. Chlorobutadienyl radical addition to C 2HCl results in

formation of C6H5Cl2(N1* adduct. The different reaction channels can be described as:

addition/stabilization:

addition/dissociation:
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addition/isomerization/stabilization:

addition/isomerization/dissociation:

Calculated rate constants versus temperature (1000/T) for various products at 1

atm are illustrated in Figure F7. Stabilization of C6H5Cl2(N1 is most important below 350

K, and second in importance between 350 and 1350 K. Cl + chlorobenzene is observed to

dominate above 350 K. Cl + C6H 4Cl2(L1 increases in importance with temperature

increase, and becomes second in importance above 1350 K.

7.3.1.4 C4H2Cl(N2 + C2HCl - The potential energy diagram for the addition of

1-chloro-1-buten-3-yn-1-yl to chloroacetylene is illustrated in Figure F8. The pathways for the

energized adduct are:

stabilization:

dissociation:

isomerization/stabilization:
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isomerization/dissociation:

Comparison between C4H2Cl(N2 + C2HCl and C4H4Cl(N1 + C2HCl, shows that

the relatively high barrier for C6H3Cl 2(Y1 adduct dissociation to C 6H2Cl 2(Y + H leads to

significant stabilization of C 6H3Cl2(Y1.

Input parameters for the QRRK calculation are shown in Table F7 along with their

corresponding references.

An Arrhenius plot at 1 atm for C4H2Cl(N2 + C2HCl products is presented in

Figure F9. Stabilization of C6H 3Cl2(N1 is most important below 600 K, with C 6H3 Cl2(Y1

(dichloro-phenyl) next in importance. C6H 3CI2(Y1 is observed to be the dominant channel

between 600 and 1250 K, with a maximum rate near 900 K. H + C6H 2Cl2(L1 increases in

importance above 1250 K, and becomes the dominant channel above 1550 K.

7.3.2 Results of Model Prediction

A detailed kinetic reaction mechanism consisting of 635 elementary reactions and 215

species based upon fundamental thermochemical and kinetic principles, Transition State

Theory and evaluated literature rate constant data is developed and utilized to predict the

formation of benzene and chlorinated benzenes from high temperature combustion of

CH2Cl2.

Figures F10 - F12 illustrate the predicted concentrations of benzene and

chlorinated benzenes as a function of initial reactant ratio ([CH2Cl2]/[fuel]) at 1200 K and
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stoichiometry (4) = 1.0). In our stoichiometric calculations, all Cl is assumed to react to

HCI. In our model calculations, significant Cl 2 is formed for 4) < 1. All Cl does react to

HCI when 4) > 1. Benzene and chlorobenzene are observed to have the maximum yields at

the ratio of CH2Cl2/fuel = 1, while the concentrations of dichloro-, trichloro, and

hexachloro-benzene continue to increase with increasing ratio of CH 2Cl2/fuel.

Figure F13 - F15 show the product yields of benzene and chlorinated benzenes

versus fuel equivalence ratio (4)) at 1200 K with the ratio of CH 2Cl2/fuel held constant at

1.0. The model predicts the aromatic product levels increase as 4) increases.

The model prediction at 800 K also shows a similar trend to that at 1200 K for

benzene and chlorinated benzene formation.

7.3.3 Reaction Pathway Analysis for CyC6H6 + OH and CyC6H5Cl + OH

Figure F16 illustrates the potential energy diagram for CyC6H6 + OH and CyC6H 5Cl +

OH. The upper plot shows that OH addition to CyC6H6 forms an energized

cyclohexadienyl adduct (CM.) which can be stabilized, dissociate to phenol + H, or

dissociate back to reactants. This reaction is in equilibrium and controlled by OH levels.

The phenol will rapidly react - lose a weak bonded H from OH to form phenoxy which can

further react to PCDD/F.

The reaction of OH addition to CyC 6H5 Cl, as shown in the lower plot of Figure

F16, forms an energized chloro-cyclohexadienyl adduct which can rapidly dissociate to

phenol + Cl. This reaction is exothermic and relatively fast. Its rate is controlled by

concentration of reactants.
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7.4 Conclusions

A reaction mechanism consisting of 635 elementary reactions and 215 species has been

developed to describe the formation of single ring aromatics, chloro-benzenes, and

intermediate molecular weight growth species in C 1 and C2 chlorocarbon and hydrocarbon

combustion.

All reactions in the mechanism are elementary or derived from analysis of reaction

systems encompassing elementary reaction steps. All reactions are thermochemically

consistent and follow principles of Thermochemical Kinetics. Quantum RRK theory is

used for calculation of k(E) and modified strong collision approach is used for fall-off

analysis of combination, addition, and insertion reactions and in unimolecular dissociations

or isomerizations.

The mechanism is calibrated against laboratory and literature chlorocarbon

oxidation and pyrolysis data for chloro-methane and chloro-ethane systems over the range

of fuel equivalence ratios, 4, from 0.5 to 2.0. The data is primarily reactant loss,

intermediate product formation/loss, and final product concentrations. The mechanism is

then used in predicting levels of dioxin precursors (chlorinated aromatic) from high

temperature reactions of C 1 and C2 chlorocarbons.

Model results show that the concentration of benzene and chlorinated benzenes

increase with the ratio of CH 2Cl2 to fuel, and with increasing fuel equivalence ratios

(higher levels formed in fuel rich conditions). Concentrations of chlorinated benzenes are

on the order of 0.1 ppm for (I) = 1 and 4% CH2Cl2, 1% CH 4 in the combustion system.
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Little quantitative data is available in the literature on formation of these PICs from well

defined laboratory combustion or oxidation experiments. Additional quantitative data from

controlled experiments would be useful for testing this mechanism.



CHAPTER 8

QUANTUM RICE-RAMSPERGER-KASSEL (QRRK) ANALYSIS
ON THE REACTION SYSTEM OF SULFUR CONTAINING SPECIES

8.1 Introduction

Sulfur and sulfur compounds are present as pollutants in crude oil, natural gas and coal in

the range 0.2 to 10%.(150) SOx is a major pollutant from both petroleum and coal fired

combustion operations and it is well known to contribute to acid rain.(26) Sulfur, in

addition, is known to exist in a range of oxidation states from -2 to +6 (H2S - SO 3 ),(27) its

reactions with OH and H on surfaces are important to aerosol formation, with these

sulfate aerosols strongly implicated in global climate change effects.(28) Radicals of sulfur

compounds can catalytically destroy ozone, with mechanisms operative in both the

troposphere and in the stratosphere.(29-31) The chemistry of formation and reactions of

sulfur oxides in combustion and energy generation processes is important to understand, in

order to develop methods for its minimization and removal.

Reaction mechanisms that describe combustion of hydrocarbons (HCs) and

chlorohydrocarbons (CHCs)(4,11,55,58,60,61,64,151) have been developed for use in

modeling combustion processes, and while the models are always being improved, they are

generally considered to be acceptable i.e. they achieve satisfactory results under testing.

The current data base on sulfur compound reactions in combustion processes is less

thoroughly developed, and only a few reaction mechanisms are available. These are in

119
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addition rather limited in numbers of species and interactions with other molecules. Many

sulfur oxide reaction pathways are still unstudied and/or unknown.

Cullis and Mulcahy(152) reviewed and interpreted kinetic behavior of organic and

inorganic sulfur-containing compounds which either undergo combustion themselves or

are present in gaseous combustion systems. They demonstrated how information regarding

the kinetics of sulfur compound reactions, derived from laboratory experiments, is useful

in interpreting the behavior of sulfur in practical combustion systems.

Frenklach et al.(153) reported an experimental and modeling study on the

oxidation of the H2S. The experiment was conducted in reflected shock waves from 950

to 1200 K at 1 atm. A reaction mechanism including 17 species, and 57 elementary

reactions was developed to describe the observed ignition delays and their modeling

results led to satisfactory agreement with the experimental data. The sulfur-containing

species listed in the mechanism include: S, HS, SO, S2, HSO, H2S, SO2 and S03 . They

reported that other oxides of sulfur and H-S-O species may play significant roles,

especially under high-pressure, low-temperature conditions; but did not include reactions

for them.

An experimental and numerical study of sulfur chemistry in an H 2/O2/SO2 flame

was investigated by Zachariah and Smith.(154) The experiment was studied in low

pressure (100-150 torr) premixed laminar H2/O2/Ar flat flames doped with SO 2 . The

proposed chemical kinetic model contains 17 species (9 sulfur-containing species: S, HS,

S2, H2S, SO, SO2, S20, HSO, and HS0 2) and 44 reversible elementary reactions. The

model provided good agreement with the experimental results. They reported that sulfur in
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a flame lowers the propagation velocity, which they attribute to homogeneous catalytic

effects of sulfur dioxide resulting in losses of the primary chain carrier (see below). HSO 2

was implicated as an important sulfur intermediate in the SO2 catalytic cycle and the HSO 2

chemistry was reported to be very important in the resulting distribution of sulfur species.

The deficiency in understanding the overall system was attributed to the lack of kinetics

for several important reactions proposed.

Hydrogen sulfide is known(155) to inhibit the oxidation of hydrogen. The

inhibition is reportedly caused by reactions (I), (II) and (III).(152)

The sum of (I) and (II) is loss of two 0 atoms:

Fair and Thrush(156) studied the reaction of hydrogen atoms with hydrogen

sulfide in the presence of small amounts of oxygen and deduced a value of 7.0E13 cm 3

mol-1 s4 for reaction (III) in the pressure range 1 - 4 torr at 298 K. Jourdain et al.(157)

also studied reaction (III) in a discharge flow reactor at room temperature, they reported

the rate constant, k = 5.0E13 cm 3 mol -1 Wine and Hynes(158) have recently reviewed

the literature on kinetics and mechanisms of gaseous sulfur. They recommended the rate
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constant, k(T) = 8.4E12exp(1920/T), for the reverse reaction of reaction (III), but include

no pressure dependence.

There is no kinetic information available on the reaction HSO + O. Several

research groups have done reaction pathway analysis of H + SO 2 forming the activated

complex, HSO 2 *, which may also be formed from HSO + O.

Webster and Walsh,(159) investigated the influence of added sulfur compounds to

the hydrogen-oxygen reaction system. They reported that the inhibiting effect SO 2 at

partial pressures below 3 ton -, on the second explosion limit could be attributed to

formation of HSO 2, reaction (IV). Fenimore and Jones(160) proposed that reaction (IV),

followed by the SO 2 regeneration reactions (V) and (VI), would serve as a catalytic loss

mechanism for H and OH.

Binns and Marshall(161) investigated the reaction H + SO 2 —> products using an

ab initio calculations, in order to study catalytic removal of atomic hydrogen in flames by

sulfur oxide. Energies of two the adducts HOSO and HSO 2 were estimated at optimized

geometries using spin-projected MP4/6-31G* calculations. The calculations indicate that

planar cis HOSO is more stable than Cs HSO2 by 32 kcal/mol and predict a H-OSO bond
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energy of 26.0 kcal/mol. HSO 2 is 6.0 kcal/mol endothermic with respect to H + SO 2, and

is therefore insufficiently stable to be significant in combustion chemistry. They also

proposed an unusually large energy barrier for reaction (IV), of about 22.7 kcal/mol

relative to H + SO2.

Wheeler(162) later suggested that the addition of hydroxyl radical to sulfur

dioxide, reaction (VII), which would be followed by reactions (VIII) and (IX), as a

mechanism of catalytic loss of H and OH radicals.

This H and OH radical addition-abstraction cycle has been generally accepted and

subsequent work(163,164) has focused on the determination of the relative importance of

the various elementary reactions, including reverse reactions of (IV) and (VII).

Gordon and Mulac,(165) David et aI.,(166) Harris et al., (167,168) and Wine et

al.(169) have investigated the kinetics of OH + SO2 ---> products at 760 ton - and

temperature up to 420 K. The rate constant for OH + SO 2 ----> HOSO2 are in reasonable

agreement and range from 5.0E11 to 1.0E12 cm3 mol-1 s-1 .

The research group of Marshall(161,170-172) has recently studied a number of

HSOX reaction paths and thermodynamic properties. These systems include: H + SO2
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HS02, H + SO2 HOSO, HOSO —> HSO2; characterization of O( 1 D) + H2S pathways

involving H2SO, ROSH, and H2OS; theoretical studies of the RSOO, ROSO, RS0 2 and

HOGS (R = H, CH3) radicals; characterization of 0( 3 P) + H2 S transition states, and the

enthalpy of formation of HSO and HOS.

QRRK analysis has been used by Westmoreland et al., Dean et al., and Bozzelli et

al.(51,56,57,89,97,105-107,173) to analyze a number of chemical activation reaction

systems involving hydrocarbon, chlorohydrocarbon, and nitrogen reaction systems. It is

shown to yield results in good agreement with experimental data for these systems, and it

provides a framework by which the effects of both temperature and pressure on the rate

processes can be understood and evaluated.

In this study, we:

• assemble and evaluate thermodynamic properties (ΔHf,298, S298, and Cp) related to the

sulfur compound reaction systems from literature. When no literature data are

available, semi-empirical molecular orbital calculations(80) are utilized.

• use modified quantum RRK calculations for k(E) and modified strong collision

analysis for fall-off to treat the chemical activation systems:
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This analysis provides rate constants to stabilized adducts and products as

functions of pressure (0.001 - 100 atm) and temperature (300 to 2000 K).

8.2 Thermochemistry

Thermodynamic properties (ΔHf,298, S298, and Cp) are critically important for estimation of

kinetic processes. They provide lower limits to reaction barriers and important information

on A factors. They also provide a convenient way to determine reverse reaction rate

constants using the calculated equilibrium constant and the known forward rate. Literature

data on thermodynamic properties of species listed in Table G1 are reviewed.

MOPAC(80) calculations for equilibrium geometries, vibrational frequencies and moments

of inertia at the AM1(174) and PM3(175) levels are performed for HSO, HOS, HS02,

HOSO, HOSH, H2SO, HOSOH, HOSHO, and HOSO 2 . Vibrational frequencies for

normal coordinate analysis are determined on these species. Principles of statistical

mechanics and the RRHO approximation were used to calculate entropies, S(298) and

heat capacities, Cp(T) for these molecules.

Thermodynamic properties of sulfur-containing compounds relating to this study

are summarized in Table G1, but precise ΔHf of several compounds are not well known

and require some comment.
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The enthalpies of formation for HSO and HOS radicals are somewhat

controversial. Published evaluations for heat formation for HSO are -3,(176) and -5 ± 4

kcal/mol.(177) Davidson et al.(178) analyzed the results of their crossed molecular bean

experiments to obtained ΔH°f298 (HSO) = -l.4 ± 1.9 kcal/mol. Luke and McLean(179)

determined the heats of formation of HSO and HOS to be -0.4 and -2.9 respectively using

two independent ab initio methods. They also predicted that the HOS isomer is more

stable by 3.1 kcal/mol than the HSO radicals. Melius(180) calculated ΔH0f 298(HOS) and

ΔH°f298(HSO) by the BAC-MP4 method to be -5.0 and -l.1 kcal/mol, respectively.

This result on the ΔH0f between HSO and HOS contrasts the theoretical

calculations of Xantheas and Dunning, Jr. (181,182) These authors estimate the enthalpy of

formation of HSO is -5.4 ± 1.3 kcal/mol through a series of multireference configuration

interaction (MR-CI) calculations. Their computed result show that the HSO isomer is 5.4

kcal/mol more stable than HOS radical. Volpi et al.(183) determined the enthalpy of

formation of HSO to be -0.9 ± 0.7 kcal/mol from the analysis of high resolution crossed

beam reactive scattering experiments on the reaction 0 + H 2S -> HSO + H. Espinosa-

Garcia and Corchado(184) determined the enthalpy of formation of HSO is -2.1 ± 0.9

kcal/mol using GAUSSIAN 90 system of programs. The latest theoretical values proposed

by Marshall et al.(172) for ΔHf,298 of HSO and HOS are -4.75 and -l.31 kcal/mol,

respectively. They characterized the transition states on the O( 3P) + H2S potential energy

surface at MP2=FULL/6-31G(d) level. The above literature values show ΔH0f of HSO

from -5.4 to -0.9 kcal/mol and of HOS from -0.5 to 4.5, respectively.
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8.3 Kinetic Calculations

Kineticists are becoming increasingly aware of the necessity to properly treat the pressure-

dependence of simple dissociation and combination reactions in combustion systems.

These reactions are not simple one-step processes. A bimolecular combination reaction,

forms an energized (chemically activated) adduct which can: be stabilized through

collisions with the bath gas, dissociate to products, isomerize, or dissociate back to

reactants before stabilization occurs. The effect of pressure can be understood by realizing

that the stabilization rate is a function of bath gas pressure. Increased pressure, results in

increased stabilization rates and this can consequently decrease reaction of the energized

adduct to product or back to reactant. In general one can expect adduct stabilization to

dominate at high pressures and dissociation of the adduct to be more important at low

pressure or high temperatures. Decrease of stabilization with temperature increase is

understood by realizing that rates of dissociation of the adduct are often highly energy

dependent (Ea) and increase exponentially with temperature. Stabilization rates decrease at

high temperatures because the bath gas molecules have more internal energy and thus

remove less energy from the adduct per collision.

The scheme of bimolecular chemically activated reactions is illustrated as Figure

8.2. where ABCD* is an activated complex which formed directly by the reactants, and

ABCD° is its stabilized adduct. The ABCD* can dissociate to products or react back to

reactants, isomerize to BCDA* and other complexes, or be stabilized. The isomers can

also be collisionally stabilized, or dissociate to products.



128

Figure 8.2 The Scheme of Bimolecular Chemically Activated Reactions

Quantum RRK analysis, as initially published by Dean,(67,68) and recently

modified by Chang et. al.(74) is used to compute apparent rate constants over a wide

range of temperature and pressure. Branching ratios of bimolecular combinations at

different temperatures and pressures are calculated using modified computer code

"CHEMACT".(68) This code uses the quantum version of RRK theory (QRRK) to

evaluate the rate constants, k(E) as functions of temperature. The modified strong

collision theory of Gilbert, Luther, and Troe(75) is used to calculate the fall-off pressure

dependencies.

Modifications to the quantum RRK(74) calculation of ref 67 include:

• Use of reduced set of 3 vibrational frequencies for describing the energy distribution

and the 3 frequencies plus one external rotation to calculate the density of states,

ρ(E)/Q.

• The FE factor is now calculated for use in determining the collision efficiency βc,(75) in

place of the previously assigned 1.15 value.
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• β is now calculated by : β = (α, /(αc + FE*k*T)) 2/Δ from Gilbert et. al. Eqn. 4.7,(75)

Δ = Δ1 - (FE*k*T)/(αc + FE *k*T)*Δ 2. Where Δ1 and Δ2 are temperature-dependent

integrals involving the density of states, and αc is the average energy of down-

collisions.

• The Lennard-Jones collision frequency ZLJ is now calculated by ZLJ Z n(42)

integral.,(76-78) n is obtained from fit of Reid et al.(78)

Input information requirements for QRRK calculations :

Three frequencies and the associated degeneracies are computed from fits to the

temperature-dependent heat capacity data, as described by Ritter,(72,73) and Bozzelli et

al.(108) These have been shown by Ritter to accurately reproduce molecular heat

capacities and vibrational state densities. This approach represents an improvement over

the single geometric mean frequency used earlier(67) and offers the advantage of avoiding

the specification of the complete frequency distribution of the adduct. We believe that this

three-frequency model provides a suitable approach to analyze both unimolecular fall-off

and bimolecular chemical activation reactions. Lennard-Jones parameters (a, Mc) were

obtained from tabulations(78) and from a calculation method based on molar volumes and

compressibility. (109)

Arrhenius A-factors for the bimolecular combination and addition reactions at the

high pressure limit are obtained from literature, or estimated from well studied generic

reactions of iso-electronic species. Activation energy (Ea) for combination reactions is set

to 0.0. Ea's for addition reactions are evaluated from literature. A and Ea for unimolecular

isomerization reactions are determined using Transition State theory(25) with the
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appropriate thermodynamic parameters. Kinetic parameters for dissociation to reactants

and products are obtained from application of microscopic reversibility. The input

parameters listed in Table 8.2 - 8.4 use the form k(T) = ATn exp(-αT) exp(-E a/RT); this

was chosen to more accurately fit the A factor component of the rate constant over the

wide temperature range.

Complete details of the high pressure limit rate constants, vibration frequencies,

Lennard-Jones parameters, 13 and ΔEavg, literature references for the systems in this study

are included in Table G2 - G4. Accurate high pressure limit rate constants and

thermodynamic property parameters are very important to accuracy of the calculated rate

constants.

8.4 Results and Discussion

8.4.1 HSO + 0, H + SO2, and OH + SO Reactions

Input parameters for the QRRK calculations and a potential energy diagram of HSO + O ,

H + SO2, and OH + SO reactions are illustrated in Table G2 and Figure G1, respectively.

The input parameters for dissociation of the complexes, see Table G2, are referenced to

the ground state of the complexes. The input high pressure limit rate constant for 0 +

HSO -4 HSO2 is considered as the same as 0 atm combination to a large hydrocarbon

radical, A — 6.0E13 cm 3	Ea = 0.0 kcal/mol.(148) The high pressure limit A factor

for HSO2 	H + SO2 is from the reverse reaction H + SO2 and microscopic reversibility

(MR). We estimate the A factor of H + SO 2 as H atom addition to unsaturated bond of an

olefin hydrocarbon, A = 1.3E13 cm 3 mol-1 s-1.(148) E a for HSO2 —> H + SO2 is 9.5



131

kcal/mol from the ab initio calculations of Binns and Marshall.(161) HS02 intramolecular

isomerization to HOSO is calculated via the reverse reaction HOSO —> HSO 2 and (MR).

A for HOSO isomerization to HSO 2 is from transition state theory(25) (three-member

cyclic intermediate) loss of 1 rotor, AS+ = -4.3 cal mol-1 IC'. The energy barrier relative to

HOS0 is from calculations of Binns and Marshall,(161) 55.0 kcal/mol. This is similar to

that predicted for the isomerization of HS0 to HOS from Plummer.(185) The rate

constant of HOSO 0 + HOS is evaluated from the reverse reaction 0 + HOS and

microscopic reversibility, where the A factor for O + HOS is assigned as O + HSO. The A

factor for OH + SO --> HOSO is taken one half of OH addition to C2H4, due to

degeneracy of 2 for OH + C2H4. An unusual large energy barrier of 22.7 kcal/mol for H +

SO2 --> HOSO is proposed by Binns and Marshall(161) from MP2/3-21G(*) level

calculations. They checked the transition state geometry at level, PMP4/6-31G*, to

support that the geometry is indeed reliable. In our calculations we allow the barriers for

HSO2 ----> H + SO2 and HOS0 ---> H + SO 2 to vary over the range 5.0 - 9.5 and 10.5 - 22.7

kcal/mol, respectively. The results of these calculations at 1 atm show that total rate and

the rate constants for the major channels, H + SO2 and OH + SO, change less than ±1.0%

over these range of barrier heights.

8.4.1.1 HSO + 0 - The oxygen atom bonds to the sulfur atom of the HSO radical to form

an energized adduct HSO 2*, which can be collisionally stabilized, dissociate to H + SO 2

product, react back to reactants (O + HSO), or undergo intramolecular isomerization via

H atom shift before stabilization to a second energized adduct HOSO*. HOSO* can be
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stabilized, dissociate to 0 + HOS, OH + SO and H + SO2 product channels, or isomerize

back to HSO2. Thermodynamic analysis shows that H + SO2 and OH + SO are the lower

energy bimolecular products while HOSO is the lowest enthalpy adduct.

We calculate that the major reaction pathway of HSO + 0 is to H + SO 2 via HS02

adduct. The fractional of HSO2* that isomerizes to HOSO* also decomposes to H + SO2.

This H + SO2 is the major product channel for 0 + HSO, because it is lower in energy

than other bimolecular products, and its formation has a lower barrier than HOSO along

with a higher A factor (looser transition state).

Figure G2 shows the rate constants for HSO + 0 products as a function of

1000/T at 1 atmosphere pressure. H + SO2 is the primary channel over a wide temperature

range, 300 - 2000 K; OH + SO is second in importance. At temperatures above 800 K, the

rate constant of H + SO2 channel falls off slightly, while OH + SO and the dissociation of

the complex back to reactants, HSO + 0, increase in importance. OH + SO and reverse

reaction HSO + 0 compete with the H + SO2 product channel at temperatures near 2000

K. The stabilization channels HS0 2, HOSO, as well as the HOS + 0 product set, are

lower in significance under these conditions.

Plots of rate constants versus pressure at 300 K and 1500 K for the major product

channels H + SO2, OH + SO and the reverse reaction HSO + 0 are shown in Figure G3.

In this Figure, effectively no pressure dependence is observed for reaction at 1500 K in the

pressures 10-3 - 102 atm, while shows slightly negative pressure dependence in the

pressures above 10 atm at 300K.
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8.4.1.2 + SO2 - There are two sites for H addition to SO2, addition to the S atom and to

the 0 atom. Figure G1 shows that H atom addition to the O atom of SO2 results in an

adduct (HOSO) with a lower energy than addition to the S atom. The isomerization of

HSO2 to HOS0 is 13.5 kcal/mol higher than dissociation of HSO 2 —> H + SO2, while the

barrier of HOSO --> HS02 is 6.3 kcal/mol higher than HOSO dissociation to H + SO2.

This isomerization between HSO2* and HOSO* is therefore less important than

dissociation back to the reactants (H + SO2). Calculation results at 1 atm are illustrated in

Figure 8.4 and show that reverse reaction H + SO 2 is most important above 650 K, while

HOSO stabilization and H + SO 2 rates are comparable at lower temperatures. The

production of OH + SO increases in importance above 400 K, and is second in dominance

above 700 K. The product channels 0 + HOS and 0 + HSO are less important.

Figure G5 shows the rate constants as a function of pressure for important product

channels, HOSO, OH + SO, and reverse reaction to H + SO2 at 300 and 1000 K.

Dissociation back to reactants (H + SO 2) is most important and independent of pressure

below 1 atm at 300 K and independent on pressure over a wide pressure range (10" 3 - 102

atm) at 1000 K. HOSO stabilization is next in importance and is near high pressure limit at

10 atm, 300 K, but it is still in the falloff regime at 100 atm and 1000 K.

8.4.1.3 OH + SO - OH addition to SO forms the HOSO* adduct. An Arrhenius plot for

the reaction channels of OH + SO at 1 atm is shown in Figure G6. Dissociation to HOS +

O and HSO + 0 are low in importance over a wide temperature range 300 - 2000 K, due

to their high dissociation barriers relative to the reaction channels OH + SO and H + SO2.
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Reverse reaction to OH + SO is the dominant channel in all temperature, while

dissociation to H + SO 2 is next in importance.

Figure G7 shows the apparent rate constants versus pressure for HOSO

stabilization, H + SO2, and OH + SO at 300 and 1000 K. HOSO* dissociation back to OH

+ SO is most important and shows no pressure dependence above 1 atm at 300 K and

over the pressure range 10 -3 - 102 atm at 1000 K. Stabilization of HOSO is next in

importance above 10 atm at 300 K, and it is still in fall-off regime at 100 atm in the

temperatures of 300 and 1000 K. H + SO2 is next in importance below 1 atm at 300 K,

and below 0.03 atm at 1000 K.

8.4.1.4 HSO2 - The product channels of HS02 unimolecular dissociation are H + SO2,

HSO + O, and HOSO. We treat the isomerization to HOSO as a product channel,

because we do not consider multi-wells in our analysis for unimolecular dissociation.

Figure G8 illustrates an Arrhenius plot at 1 atm for HSO 2 unimolecular dissociation. H +

SO2 is most important in the temperatures 300 -2000 K, with isomerization to HOSO next

in importance.

Figure G9 shows the rate constants versus pressure for H + SO2 and HOSO at 300

and 1500 K. Rate constants of both channels are observed to increase with pressure. H +

SO2 is predicted to be dominant at 300 and 1500 K over the pressures 10 -3 - 102 atm.
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8.4.1.5 HOSO - The Arrhenius plot at 1 atm for HOSO unimolecular dissociation is

shown in Figure G10. H + SO 2 still dominates at temperatures 300 -2000 K, with OH +

SO next in importance.

Figure G11 illustrates the effect of pressure for H + SO 2, OH + SO, and HS02 at

300 and 1500 K. H + SO 2 is observed to be most important.

8.4.2 H + SO3 and OH + SO2 Reactions

A potential energy diagram and input parameters for chemically activated reactions, H +

SO 3 and OH + SO 2, are illustrated in Figure G12 and Table G3, respectively. The high

pressure limit A factor for bimolecular reaction, OH + SO 2 HOSO2, is taken from the

recommended data of Atkinson et al.,(188) with E a — 0.0 kcal/mol. The high pressure limit

A factor for HOSO 2 --> 0 + HOS0 is from the reverse reaction 0 + HOSO,

thermodynamics and microscopic reversibility <MR>. We estimate the A factor of 0 +

HOSO as 0 atm combination to a large hydrocarbon radical, A ~ 9.6E13 cm 3 mol-1 s -1 , Ea

= 0.0 kcal/mol.(148) The high pressure limit A factor for HOSO2 --> H + SO 3 is from the

reverse reaction H + SO3 , thermodynamics and microscopic reversibility <MR>. We

estimate the A factor of H + SO 3 as H atom addition to unsaturated bond of hydrocarbon,

A = 3.0E13 cm3 mol -1 s4 .(148) Ea for H + SO 3 is estimated to be 3.0 kcal/mol.(189)

8.4.2.1 OH + SO2 - The relative shallow well for this HO-SO 2 adduct (~ 31 kcal/mol)

makes all of the channels to products at least 20 kcal/mol higher in energy than

dissociation back to reactants. An Arrhenius plot for OH addition to SO2 at 1 atm is
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shown in Figure G13. Stabilization is most important below 650 K, with dissociation back

to OH + SO2 next in importance, above that OH + SO 2 is observed to dominate.

Dissociation to H + SO 3 and 0 + HOSO is low in importance.

Figure G14 illustrates the pressure effect for HOSO 2 and OH + SO 2 at 300 and

1000 K. Stabilization is the dominant channel above 0.03 atm, and is near the high

pressure limit at 3 atm. Dissociation back to OH + SO2 increases in importance with

temperature increase and pressure decrease. At 1000 K, OH + SO 2 is predicted to be most

important below 12.5 atm.

8.4.2.2 11 + SO3 - H addition to SO3 forms an energized HOSO 2* adduct. The initial H-

OS02 adduct energy is about 20 kcal/mol higher in energy than in the OH + SO 2 case.

This causes higher fractions of the energized adduct to dissociate into OH + SO2 rather

than to reactants. Figure G15 shows rate constants versus temperature at 1 atmosphere

pressure. OH + SO2 is predicted to dominance over the temperature range 300 - 2000 K.

Stabilization is second in importance below 1400 K. Dissociation back to H + SO 3

increases with temperature, and competes with stabilization near 1400 K.

The pressure effect for HOSO2, H + SO3 , and OH + SO2 at 300 and 1000 K is

illustrated in Figure G16. OH + SO 2 is most important at pressures 10-3 - 102 atm, and

little pressure dependence is observed below 10 atm in both temperatures.
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8.4.3 H + HOSO and OH + HSO Reactions

Input parameters on H + HOSO and OH + HSO for QRRK calculations and a potential

energy diagram are illustrated in Table G4 and Figure G17, respectively. The high

pressure limit rate constant for H + HOSO is considered as that H atom combination with

large radicals, A = 1.0E14 cm3 mol-1 s-1, Ea = 0.0 kcal/mol.(148) The high pressure limit

rate constant for HOSHO OH + HSO is from the reverse reaction OH + HSO and

microscopic reversibility <MR>. We estimate the A factor of OH + HSO as OH

combination with a large radical, A ~ 2.7E13 cm3 mol-1 s-1, Ea = 0.0 kcal/mol.(148) The

high pressure limit A factor for HOSHO --> H2O + SO is calculated from Transition State

Theory, ΔSS` = -4.3 cal mol-1 K -1 . The energy barrier is considered as that of H 2O

elimination from alcohol, E a = ΔHrxn + 47 kcal/mol, see Table G4.

8.4.3.1 OH + HSO - Figure Gl8 shows the rate constants versus temperature for the

various reaction channels at 1 atm. Dissociation back to OH + HSO dominates from 300

to 2000 K, and stabilization is next in importance below 750 K. H 20 elimination plus SO

increases with temperature, and becomes second in importance above 750 K.

Figure G19 shows the rate constants as a function of pressure for HOSHO, H20 +

SO, H + HOSO, and reverse reaction to OH + HSO at 300 and 1000 K. At 300 K,

stabilization is most important above 2.5 atm, with dissociation back to 0H + HSO next in

importance. Below 2.5 atm, OH + HSO is observed to be the dominant channel. At 1000

K, dissociation back to OH + HSO dominates at pressures 10 -3 - 102 atm, with H2O + SO

next in importance.
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8.4.3.2 H + HOSO - Figure G20 shows rate constants versus temperature at 1 atm. OH +

HSO is most important at temperatures 300 - 2000 K, with stabilization next in

importance below 600 K. H20 + SO increases in importance with increasing temperature,

and becomes second in importance above 650 K. Reverse dissociation to H + HOSO is

also observed to increase in importance with temperature, and competes with H20 + SO

above 850 K.

Figure G21 illustrates the rate constants of the reaction channels versus pressure at

300 and 1500 K. At 300 K, stabilization is most important at relatively high pressure, P >

35 atm, with OH + HSO next in importance. Below 35 atm, OH + HSO is predicted to be

the dominant channel at 300 K, and observed to be near constant and similar to the 1000

K data below 6 atm.

Apparent rate constants for reactions : HSO + O, H + SO 2, OH + SO, H SO3,

OH + SO2, H + HOSO, OH + HSO to product channels and the dissociation of the

stabilized adducts in N2 bath gas are calculated and listed in Table G5. The calculations

serve as useful estimates for rate constants and reaction paths in combustion and

atmospheric kinetic modeling, where the experimental data are not available.

8.4 Conclusions

The various reaction channels of reaction : HSO + 0, H + SO2, OH + SO, H + SO 3 , OH +

SO2, H + HOSO, and OH + HSO have been treated by using quantum

Rice-Ramsperger-Kassel theory for k(E) and with modified strong collision approach for fall-off in



139

temperature range 300 - 2000 K and in pressure range 0.001 - 100 atm. The

thermodynamic properties related to this reaction system have been evaluated and

tabulated. The input high pressure limit rate constants for the reaction channels are

obtained from literature, or estimated from well studied generic reactions.

The thermodynamic properties related to these reaction systems have been

evaluated. The addition reactions of HSO + 0, H + SO2 and the combination reaction of

OH + SO have been treated by using quantum Rice-Ramsperger-Kassel theory for

determination of rate constants over 300 - 2000 K, and 0.001 - 100 atm. Thermodynamic

analysis shows that H + SO2 and OH + SO are the low energy bimolecular products, while

HOSO is the lowest enthalpy adduct.

HSO2 - Results of HSO + 0 reactions at 1 atm show that production of H + SO 2

is the dominate channel over 300 - 2000 K; the OH + SO product channel is next in

importance. At temperatures above 800 K, the rate constant to H + SO 2 falls off, while

reaction to OH + SO and dissociation of the complex to HSO + O increase in importance.

Effectively no pressure dependence is observed for reaction at 1500 K, 10 -3 - 102 atm.

Calculation results for H + SO 2 at 1 atm show that reverse reaction H + SO2 is most

important above 650 K, while HOSO stabilization and H + SO2 rates are comparable at

lower temperatures. The production of OH + SO increases in importance above 400 K,

and is second in dominance above 700 K. The HOSO* complex from OH + SO

dissociates back to OH + SO as the dominant channel at 1 atm, while dissociation to H +

SO2 is next in importance. H + SO 2 is observed to be most important product in the
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unimolecular dissociation of HSO 2 and HOSO at 300 -2000 K over the pressures 10 -3 -

102 atm.

HSO3 - Calculation results of OH + SO2 predict that stabilization is most

important below 650 K, with dissociation back to OH + SO2 next in importance, above

that OH + SO 2 is observed to dominate. In H + SO 3 reactions, . OH + SO 2 is predicted to

be the dominant channel over the temperature range 300 - 2000 K. Stabilization is second

in importance below 1400 K. Dissociation back to H + SO 3 increases with temperature,

and competes with stabilization near 1400 K.

H2SO2 - Results of OH + HSO indicate that reverse reaction; dissociation to OH +

HSO, dominates at 300 - 2000 K, and stabilization is predicted next in importance below

750 K. H20 elimination plus SO increases with temperature, and becomes second in

importance above 750 K. In the H + HOSO reaction system, OH + HSO is most

important between 300 to 2000 K, with stabilization next in importance below 600 K.

H2O + SO increases in importance with temperature, and becomes second in importance

above 650 K. Reverse dissociation to H + HOSO is also observed to increase with

temperature, and competes with H20 + SO above 850 K.

Apparent rate constants for the reactions to various product channels and the

dissociation of the stabilized adducts in argon bath gas are calculated. The calculations

serve as useful estimates for rate constants and reaction paths in combustion and

atmospheric kinetic modeling, where experimental data are not available.



APPENDIX I

TABLES

Table Al Average Retention Time
Column 1: 1.5 m length x 2.16 mm I.D.; 1% AT-1000 on Graphpac GB
Detector: Flame Ionization Detector (270 °C)
Oven Temperature : 45 °C (hold 5 min.), 15 °C/min. to 220 °C (hold 22 min.)
Carrier Gas : Helium (35 ml/min.) 

Column 2: 1.7 m length x 2.16 mm I.D.; Carbosphere 80/100 mesh
Detector: Flame Ionization Detector (270 °C); Oven Temperature: 70 °C
Carrier Gas: Helium (30 ml/min.)
Compound	 Average Retention Time (min.
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Table A2 Relative Response Factor of Several Compounds
First Flame Ionization Detector

Compound	 Relative Response Factor

(RRF)

Methane	 1.00

Acethylene	 1.85

Ethylene	 2.00

Ethane	 2.15

Chloromethane	 1.02

Propyne	 3 .33

Propene	 3.45

Vinyl Chloride	 1.93

Dichloromethane	 0.98

1,1-Dichloroethylene 	 l.88

1,1, 1-Trichloroethane	 1.85

Chloroform	 0.97

Tetrachlorocarbon 	 0.90

1, 1,2-Trichloroethane	 2.10

Second Flame Ionization Detector

Compound	 Relative Response Factor
(RRF) 

Methane	 1.00

Carbon monoxide	 1.01

Carbon dioxide	 0.96
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Table A3 Material Balance for 100 Moles Carbon
Residence Time : 1.0 second
in CH2Cl2 : CH4 : O2 : Ar = 1 : 1 : 4 : 94
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Table A4 Material Balance for 100 Moles Carbon
Residence Time : 1.0 second
in CH2Cl2 : O2 : Ar = 1 : 4 : 95



Table A5 Material Balance for 100 Moles Carbon
Residence Time : 1.0 second
in CH2Cl2 : CH4 : Ar = 1 : 1 : 98
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Table A6 Material Balance for 100 Moles Carbon
Residence Time : 1.0 second
in CH2Cl2 : Ar = 1 : 99



Table B1 Detailed Mechanism for CH 2Cl2/CH4/O2/Ar Reaction System
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Table B1 (cont'd
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Table B1 (cont'd
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Table B1 (cont'd
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Table B1 (coned
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Table B1 (cont'd
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Table B1 (cont'd
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Table B1 (cont'd
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Table B1 (cont'd
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Table B1 (cont'd)
Reactions Aa n Eab source

251. CHCHCI + 02 = C2HCI + HO2 1.26E12 0.02 3546 8

252. CHCHCI + 02 = CHCIO + CHO 2.61E16 -1.22 1776 8

253.CHCICCl + 02 = ClC*CClOO 9.13E28 -6.03 1729 8

254. CHClCCl + 02 = CHClCO + CIO 7.03E04 1.93 5461 8

255. CHCICCI + 02 = ClC*CCIO. + 0 1.01E12 0.10 3674 8

256. CHClCCI + 02 = C2Cl2 + H02 6.56E12 -0.20 9911 8

257. CHCICCI + 02 = CHCIO + CCIO 1.84E19 -2.11 3122 8

258. CCl2CH + O2 = Cl2C*COO 6.11E25 -5.13 443 8

259. CCl2CH + O2 = CCl2CO + OH 1.46E03 2.43 2492 8

260. CCl2CH + O2 = Cl2C*CO. + O 1.03E13 -0.26 2720 8

261. CCl2CH + 02 = COCl2 + CHO 4.37E16 -1.39 1956 8

262. C2Cl3 + 02 = Cl2C*CClOO 1.22E26 -5.22 520 8

263. C2Cl3 + 02 = CCl2CO + ClO 6.20E02 2.44 3309 8

264. C2Cl3 + O2 = Cl2C*CClO. + O 1.51E13 -0.38 2796 8

265. C2Cl3 + 02 = COCl2 + CClO 9.39E17 -1.82 2407 8

266. CH4 + O2 = CH3 + HO2 7.90E13 0.00 56000 19

267. CH4 + 0 = CH3 + OH 1.02E09 1.5 8604 19

268. CH4 + HO2 = CH3 + H202 1.80E11 0.00 18700 19

269. CH4 + OH = CH3 + H20 1.60E06 2.10 2460 19

270. CH4 + CH3O = CH3 + CH3OH 1.57E11 0.00 8842 21

271. CH3 + O = CH2O + H 1.34E14 -0.08 79 38

272. CH3 + O = CH2OH 6.57E12 0.04 -24 38

273. CH3 + 02 = CH300 3.36E34 -7.43 5960 38

274. CH3 + 02 = 0 + CH30 7.89E14 -0.46 31150 38

275. CH3 + 02 = OH + CH2O 1.58E11 0.03 10420 38

276. CH3 + OH = 1CH2 + H2O 9.08E15 -0.99 2909 38

277. CH3 + OH = CH2O + H2 4.04E12 -0.51 2839 38

278. CH3 + OH= CH2OH +H 6.55E13 -0.31 4619 38
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Table B1 (coned)
Reactions Aa n Eat' source

279. CH3 + OH = CH30 + H 5.61E12 -0.23 12444 38

280. CH3 + H02= CH30 + OH 2.00E13 0.00 0 19

281. CH3 + CIO = CH3O + CI 3.33E11 0.46 30 23

282. CH3 + CIO = CH2O + HCI 3.47E18 -1.80 2070 23

283.1CH2 + O2 = CO + OH + H 3.00E13 0.00 0 19

284. CH + 02 = C0 + OH 3.31E13 0.0 0 22

285. CH + O2 = CHO + 0 3.31E13 0.0 0 22

286. C2H6 + O = C2H5 + OH 9.99E08 1.50 5803 22

287. C2H6 + OH = H20 + C2H5 7.22E06 2.00 864 22

288. C2H6 + 02 = C2H5 + H02 6.03E13 0.00 51866 22

289. C2H5 + 02 = C2H4 + HO2 1.00E27 -4.826 9468 27

290. C2H5 + 02 = C2HSO + 0 1.10E13 -0.21 27934 27

291. C2H5 + 02 = C2HSOO 4.85E12 0.0 0 27

292. C2H5 + 0 = C2H4 + OH 5.00E13 0.0 0 39

293. C2H4 + OH = C2H3 + H2O 2.02E13 0.00 5955 19

294. C2H4 + OH = CH3 + CH20 1.00E13 0.00 0 40

295. C2H4 + 02 = C2H3 + H02 4.22E13 0.00 57623 21

296. C2H4 + 0 = CH3 + CHO 3.50E06 2.08 0 41

297. C2H4 + 0 = CH2O + CH2 2.50E13 0.00 5000 22

298. C2H4 + HO2 = CH3CHO + OH 6.03E09 0.00 15800 21

299. C2H4 + ClO = CH2CI + CH2O 1.00E12 0.00 0 15

300. C2H3 + OH = C2H2 +H2O 3.01E13 0.00 0 21

301. C2H3 + H202 = C2H4 + HO2 1.21E10 0.00 -596 21

302. C2H3 + CH2O = C2H4 + CHO 5.42E03 2.81 5862 21

303. C2H3 + 02 = C2H3OO 3.53E26 -5.22 1141 8

304. C2H3 + 02 = CH2CHO + 0 1.28El2 0.01 1035 8

305. C2H3 + 02 = C2H2 + H02 1.51E08 1.12 823 8

306. C2H3 + O2 = CH2O + CHO 1.67E16 -1.21 1611 8
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Reactions A3 n Eab source

307. C2H2 + 02 = C2H + H02 1.20E13 0.0 74500 21

308. C2H2 + 02 = CHO + CHO 1.20E11 0.00 44500 12

309. C2H2 + 0 = CO + CH2 7.94E13 0.00 15000 13

310. C2H2 + 0 = CH2CO 1.70E11 0.00 0 42

311. C2H2 + 0 = CHC0 + H 3.50E04 2.70 1400 43

312. C2H2 + OH = C2H+ H2O 1.45E04 2.68 12040 21

313. C2H2 + OH = CH2CO +H 3.20E11 0.00 201 44

314. C2H2 + HO2 = CH2CO + OH 6.02E09 0.00 7984 21

315. C2H + 02 = CO + CHO 5.00E13 0.00 1500 45

316. C2H+O=CH+CO 1.00E13 0.0 0 45

317. CH3CHO = CH3 + CHO 7.00E15 0.00 81674 22

318. CH3CHO + OH = CH3CO + H2O 3.40E12 0.00 -600 22

319. CH3CHO + 0 = CH3CO + OH 5.00E12 0.00 1800 28

320. CH3CHO + HO2 = CH3CO +H202 1.50E11 0.00 9000 46

321. CH3CHO + 02 = CH3CO + H02 1.00E13 0.00 38900 46

322. CH3CHO + CH3 = CH3CO + CH4 8.50E10 0.00 6000 28

323. CH2CO = CH2 + CO 3.00El4 0.00 70900 28

324.CH2CO + O = CH2 + CO2 1.74E12 0.00 1350 19

325. CH2CO + H = CH3 + CO 1.80E13 0.00 3378 22

326. CH2CO + 0 = CHCO + OH 1.00E12 0.00 8000 19

327. CH2CO + OH = CHCO + H20 7.50E12 0.00 2000 19

328. CH2CO + OH = CH2O + CHO 3.00E12 0.00 1500 15

329. CHC0 +H = CH2S + CO 3.00E13 0.00 0 28

330. CH3O + 02 = CH2O + HO2 1.00E13 0.00 7165 28

331. CH3O+M=CH2O+H+M 1.96E14 0.00 25070 28

332. CH3O + CO = CO2 + CH3 1.57E13 0.00 11800 21

333. CH3O + HO2 = CH2O + H2O2 3.01E11 0.00 0 21

334. CH30 + CH3 = CH4 + CH2O 2.41E13 0.00 0 21
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Table B1 (coned
Reactions A' n Eab source

335.CH3O + O = OH + CH2O 6.03E12 0.00 0 21

336. CH3O + OH = H2O + CH2O 1.81E13 0.00 0 21

337. CH3O + H = CH2O +H2 1.99E13 0.0 0 21

338. CH3O + CH2 = CH3 + CH2O 1.81E13 0.0 0 21

339. CH30 + C2H5 = C2H6 + CH2O 2.41E13 0.0 0 21

340. CH3O + CIO = HOCI + CH20 2.41E13 0.0 0 13

341. CH3O + Cl =HCI + CH20 4.00El4 0.0 0 13

342. CH2O + CIO = CHO + HOCI 6.03E11 0.00 4200 47

343. CH2O + CH3 = CH4 + CHO 5.54E03 2.81 5862 21

344. CH2O + O = CHO + OH 4.16El1 0.57 2762 22

345. CH2O + OH= CHO + H2O 3.44E09 1.18 -447 22

346. CH2O + H02= CHO+ H202 1.99E12 0.00 11665 21

347. CH2O + Cl = CHO + HCl 4.40E13 0.00 0 24

348. CH2O = CHO+H 2.54E28 -5.16 71501 38

349.CH2O = H2+CO 2.26E25 -4.65 81990 38

350. CH2O + O2 = CHO + HO2 2.00E13 0.00 38900 46

351. CH2O + H = CHO +112 2.29E10 1.05 3279 22

352.CHO+M=H+CO+M 1.87E17 -1.00 17000 48

353. CHO + H = CO +H2 9.04E13 0.00 0 22

354. CHO + 02 = CO2 + OH 5.45E14 -1.15 2018 49

355. CHO + 02 = CO + HO2 6.25E15 -1.15 2018 49

356. CHO + 0 = CO + OH 3.00E13 0.00 0 22

357. CHO + OH = C0 +H20 5.00E13 0.00 0 22

358. CHO + CH3 = CH4 + CO 1.21E14 0.00 0 21

359. CHO + HO2 = CO + H2O2 5.00E12 0.00 0 21

360. CHO + Cl = CO + HCl 1.50E13 0.00 0 13

361. CO + OH = CO2 +H 6.32E06 1.50 -497 22

362. CO + HO2 = CO2+OH 1.51E14 0.00 23648 21
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Table B1 (cont'd
Reactions A' II Eab source

363. CO + O2 = CO2 +O 2.53E12 0.00 47600 21
364. CO+O+M=CO2+M 5.30E13 0.00 -45400 21
365.H+O2=O+OH 1.99E14 0.00 16802 22
366.H+O2+M=HO2+M 6.16E17 -0.80 0 22

367. H + H20 = H2 + OH 6.19E07 1.90 18411 22
368.H+OH+M=H2O+M 8.34E21 -2.0 0 22

369.H+O+M=OH+M 4.71E18 -1.00 0 21

370. H + HO2 = OH + OH 1.69E14 0.00 874 21

371. H + HO2 = H2 + O2 6.62E13 0.00 2126 21

372. H + HOCl = HCl + OH 9.55E13 0.00 7620 23

373. H + H202 = OH + H2O 2.41E13 0.00 3974 21

374. H + H202 =112 + HO2 4.82E13 0.00 7950 21
375.O+O+M=O2+M 1.88E13 0.00 -1788 21
376. O+H2=H+OH 5.12E04 2.67 6285 22

377. 0 + H2O = OH + OH 4.58E09 1.30 17100 21

378. 0 + HO2 = OH + 02 1.75E13 0.00 -397 21

379. 0 + H202 = HO2 + OH 9.63E06 2.00 3974 21

380.0 + HCl= OH + Cl 6.03E12 0.00 6600 47

381. 0 + HOCl= OH + Cl0 6.03E12 0.00 4370 47

382. OH + HO2 =112O + 02 1.45E16 -1.00 0 21

383. OH + H2O2 = H02 + H2O 1.75E12 0.0 318 21

384. 02 + H202 =HO2 + HO2 5.42E13 0.0 39740 21

385. H202 + M = OH + OH + M 1.29E33 -4.86 53247 21

386. H202 + Cl = HCl + HO2 6.62E12 0.00 1950 47

387. Cl + HO2= HCl+ 02 1.08E13 0.00 100 47

388. Cl + HOCl= Cl2 + OH 1.81El2 0.00 260 47

389. Cl + HOCl= HCl+ ClO 1.81E12 0.00 258 13

390. Cl + CO = CClO 1.19E24 -3.80 0 47



Table B1 (cont'd
Reactions

391. CI + HO2 = ClO + OH

392. HOCl= Cl+ OH

393. HOCI = H + ClO

394. ClO + CO = Cl+ CO2

395. CIO + CH3 = CH3Cl+ 0

396. ClO+ Cl= 0 + Cl2

397 CIO + CH4 = CH3 + HOCI

398. CIO + CH3CI = CH2CI + HOCI

399. CIO + H2 = HOCI + H

400. CClO + OH = CO + HOCI

401. CCIO + OH = CO2 + HCI

402. CCIO + O = CO2 + CI

403. CCIO + O2 = CO2 + ClO

404. CCIO + H = CO + HCI

405. CClO + H = CHO + Cl

406. CCIO + CH3 = CO + CH3Cl

407. CCIO + CI = CO + Cl2

408. COCl2 = CCIO + CI

409. COCl2 + OH = CCIO + HOCl

410. COCl2 + OH = HCl + Cl + CO2

411. COC12 + 0 = CCIO + CIO

412. COCl2 + H = CClO + HCl

413. COCI2 + CH3 = CCIO + CH3CI

414. COCl2 + Cl = CCIO + Cl2

415.CHClO + H = CHO + HCI

416. CHCIO + H = CH20 + CI

417. CHClO = CHO + Cl

418. CHCIO = CO + HCI

159
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419.CHClO + OH = CCIO +H2O 7.50E12 0.00 1200 13

420. CHClO + OH = HCO2 + HCl 1.98E07 1.20 -1516 23

421. CHClO + 0 = CCIO + OH 8.80E12 0.00 3500 13

422. CHClO + O2 = CClO + H02 4.50E12 0.00 41800 13

423. CHClO + Cl = CCIO + HCl 1.25E13 0.00 500 13

424. CHClO + CH3 = CCIO + CH4 2.50E10 0.00 6000 13

425. CHClO + CH3 = CHO + CH3Cl 1.50E13 0.00 8800 13

426. CHClO + ClO = CCIO + HOCI 3.00E11 0.00 7000 47

427. CH2ClO = CHCIO + H 1.83E27 -5.13 21170 23

428. CH2ClO = CH2O + Cl 4.53E31 -6.41 22560 23

429. C2Cl2 + OH = CI + CICCOH 1.20E12 0.00 -140 23

430. ClCCOH + OH = H2O + ClCCO 5.00E12 0.00 0 23

431. CICCOH + 0 = OH+ CICCO 1.00E13 0.00 0 23

432. CICCOH + Cl = HCl + ClCCO 1.00E13 0.00 0 23

433. ClCCO + O2 = CCIO + CO2 1.00E12 0.00 5000 23

SOURCES of Reaction Mechanism

1 Apparent rate constant by DISSOC computer code analysis.
2 Kerr, J. A. ; Moss, S. J. "Handbook of Bimolecular and Termolecular Gas Reaction, Vol.I & II",

CRC Press Inc., 1981.
3 Weissman, M.; Benson, S. W. Int. J. Chem. Kinet. 1984, 16, 307.
4 A taken 1/2 as that of CCl4 + CH3 CCl3 + CH3Cl, A = 1.26E12, Ea = 15500, from Evans

Polanyi analysis. Ref: Matheson, I.; Tedder, J. Intl. J. of Chem. Kinet. 1982, 14, 1033.
5 A taken 3/4 as that of CCl4 + CH3 -> CCl3 + CH3Cl, A = 1.26E12, Ea = 13000 (Ref: source 4).
6 Estimated from H + CH3Cl-> CH3 + HCl, H + CH2Cl2 CH2Cl + HCl, and

H + CCl4 CCl3 + HCl.
7 Parmar, S. M.; Benson, J. W. J. Phys. Chem. 1988, 92, 2652.
8 Apparent rate constant by CHEMACT computer code analysis.
9 A taken 1/4 as that of CCl4 + CH3 CCI3 + CH3Cl, A = 3.15E11, Ea = 24800, (Ref: source 4).

10 Monion, J. A.; Louw, R. J. Chem. Perk. Trans. 2, 1988, 1547.
11 Barrat, R. B.; Bozzelli, J. W. J. Phys. Chem. 1992, 96, 2494.
12 Wu, Y. P., Ph.D. Dissertation, NJIT, Newark, 1992.
13 Won, Y. S., Ph.D. Dissertation, MIT, Newark, 1991.
14 A taken 1/2 as that of CCl 4 + CH3 -> CCl 3 + CH3C1, A = 6.30E11, Ea = 21500, (Ref: source 4).
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15 Bozzelli, J. W. estimated in this work.
16 A taken 1/2 as that of CCI4 + CH3 —> CCI3 + CH3CI, A = 6.30El1, Ea = 23000, (Ref: source 4).
17 A taken 1/2 as that of CCl4 + CH3 -÷ CCI3 + CH3CI, A = 6.30El1, Ea = 19500, (Ref: source 4).
18 A taken 1/4 as that of CCl4 + CH3 --> CCI3 + CH3Cl, A = 3.15El1, Ea = 23500, (Ref: source 4).
19 Miller, J. A.; Bowman, C. T. Pro. Ener. Comb. Sci. 1989, 15, 287.
20 Zhong, X.; Bozzelli, J. W. Eastern States Section Meeting of Combustion Institute:

Princeton, 1993.
21 Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref Data 1986, 15, 1087.
22 Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J. A.; Pilling, M. J.;

Troe, J; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref Data 1992, 21, 665.
23 Ho, W. P.; Barat, R. B.; Bozzelli, J. W. Combust. and Flame 1992, 88, 265.
24 Atkinson, R; Baulch, D. L.; Cox, R. A.; Hampson, R F.; Kerr, J. A.; Troe, J; J. Phys. Chem. Ref

Data 1989, 18, 881.
25 Dean, A. M. J. Phys. Chem. 1985, 89, 4600.
26 Timonen, R. S.; Russell, J. J.; Sarzynski, D.; Gutman, D. J. Phys. Chem. 1987, 91, 1873.
27 Bozzelli, J. W.; Dean, A. M. J. Phys. Chem. 1990, 94, 3313.
28 Warnatz, J. Combustion Chemistry (W.C. Gardiner, Jr., Ed.) Springer-Verlag, New York, 1984.
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30 Ko, T.; Fontijn, A.; Lim, K. P.; Michael, J. V. Twenty-fourth Symposium (International) on
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31 Taylor, P. H.; Jiang, Z.; Dellinger, B. Intl. J. of Chem. Kinet. 1993, 25, 9.
32 A taken 3/4 as that of CH4 + 02 -4 CH3 + H02, A = 3.0E13, Ea =	 (Ref: source 21).
33 Su, M-C; Lim, K. P.; Michael, J. V.; Hranisavljevic, J.; Xun, Y. M.; Fontijn, A. J. Phys. Chem.

1994, 98, 8411.
34 A taken l/2 as that of CH4 + 02 --> CH 3 + H02, A = 2.0E13, Ea = ΔHrxn, (Ref: source 21).
35 A taken 1/4 as that of CH4 + 02 —> CH3 + H02 , A = 1.0E13, Ea =	 (Ref: source 21).
36 Liu, A.-D.; Mulac, W. A.; Jonah, C.D. Intl. J. of Chem. Kinet. 1987, 19, 25.
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Table B2 Thermodynamic Properties

H 52.10 27.36 4.97 4.97 4.97 4.97 4.97 4.97 4.97 a
H2 0.00 31.21 6.90 6.95 6.99 7.02 7.10 7.21 7.72 a
CL 28.90 39.50 5.20 5.34 5.40 5.41 5.35 5.30 5.24 b
HCL -22.07 44.60 6.96 6.95 6.99 7.07 7.29 7.56 8.10 c
CL2 0.00 53.30 8.10 8.38 8.59 8.74 8.91 8.99 9.10 b
AR 0.00 36.98 4.97 4.97 4.97 4.97 4.97 4.97 4.97 a
O 59.55 38.47 5.23 5.14 5.08 5.04 5.01 5.01 4.98 a
OH 9.49 43.88 7.15 7.10 7.07 7.06 7.13 7.33 7.87 a
02 0.00 49.01 7.02 7.23 7.44 7.65 8.04 8.35 8.73 a
CO -26.42 47.21 6.96 7.02 7.13 7.27 7.61 7.94 8.41 a
CLO 24.20 54.10 7.50 7.91 8.21 8.43 8.69 8.81 9.00 b
CLOCL 19.70 63.60 11.10 11.90 12.50 12.90 13.30 13.50 13.70 d
OCLO 25.00 61.50 9.90 10.90 11.70 12.20 12.90 13.30 13.80 b
CLOO 23.00 63.00 11.60 12.10 12.70 13.10 14.00 14.60 15.70 b
HOCL -17.80 56.50 8.90 9.50 10.00 10.50 11.10 11.50 12.40 b
1102 3.50 54.70 8.30 8.90 9.40 9.90 10.70 11.40 12.40 a
H20 -57.80 45.10 8.00 8.10 8.40 8.60 9.20 9.80 11.20 b
H202 -32.50 55.60 10.40 11.40 12.30 13.10 14.20 15.10 16.80 a
1 CCL2 52.00 63.40 11.10 11.80 12.40 12.90 13.60 14.00 14.50 e
CCL3 19.00 72.00 15.90 17.00 17.90 18.40 19.00 19.20 19.50 b,f
CCL4 -22.90 74.20 19.90 21.70 22.90 23.20 24.60 24.90 25.50 c
CCLO -4.00 63.50 10.80 11.20 11.60 12.00 12.50 12.80 13.40 b
COCL2 -52.60 67.80 13.80 15.20 16.20 17.00 17.90 18.40 19.20 c
CCL3O -0.81 77.19 19.98 21.42 23.04 23.93 24.91 25.15 g
CO2 -94.00 51.00 8.90 9.80 10.60 11.30 12.30 12.90 13.90 a
CCL3OO -.90 86.30 24.30 26.40 28.60 29.70 31.00 31.50 h
CH 142.00 43.72 6.97 6.97 7.03 7.12 7.41 7.77 8.74 a
1 CHCL 72.00 56.10 8.80 9.40 10.10 10.80 12.10 13.20 14.70 i,j
CHCL2 23.50 66.70 12.30 13.90 14.90 15.40 16.70 17.40 18.40 k,f
CHCL3 -24.20 70.60 15.70 17.70 19.30 20.40 21.90 22.80 24.20 c
CHO 10.40 53.60 8.20 8.70 9.20 9.70 10.70 11.50 12.50 i
CHCLO -39.30 61.80 11.10 12.40 13.50 14.40 15.70 16.50 18.10 b
CHCL2O -1.00 70.10 13.90 16.30 18.00 19.30 21.20 22.20 g
CCL2OH -7.60 70.40 16.30 18.70 20.10 21.20 22.40 23.00 g
CHCL2OCL -19.00 80.50 19.60 22.40 24.30 25.50 26.90 27.60 g
CCL3OH -52.70 79.60 21.00 22.70 24.60 25.70 27.20 27.90 g
HCO2 -38.24 57.75 8.89 10.79 12.36 13.55 15.64 16.92 g
CHCLOO 46.50 69.80 16.30 19.20 21.10 22.10 23.60 24.60 g
COHCLO -99.89 66.51 13.93 16.03 17.61 18.82 20.53 21.97 g
CHCL2OO -1.50 82.61 19.10 22.10 24.20 25.80 27.70 28.90 h
CCL2OOH 10.20 79.10 21.10 24.30 26.20 27.50 28.90 29.70 g
CCL3OOH -35.90 89.20 25.80 28.30 30.60 32.00 33.70 34.60 g
1 CH2 101.40 44.10 8.30 8.70 9.20 9.60 10.40 11.10 12.40 i
CH2 92.30 46.30 8.30 8.70 9.20 9.60 10.40 11.10 12.40 a
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. .

CH2 CL 29.10 58.50 9.90 11.10 12.30 13.40 14.50 15.60 16.70 k,f
CH2CL2 -22.80 64.60 12.20 14.20 15.80 17.20 19.30 20.80 23.00 c
CH2O -26.00 50.90 8.40 9.30 10.40 11.50 13.30 14.80 16.20 g
CHCLOH -7.40 65.80 13.10 15.40 17.00 18.10 19.00 21.00 g
CH2CLO -.80 64.20 10.70 13.00 14.90 16.20 18.60 20.20 g
CH2CLOCL -18.80 74.60 16.40 19.10 21.20 22.40 24.30 25.60 g
CHCL2OH -53.00 73.10 15.80 18.40 20.20 21.80 23.90 25.30 g
CH2OO 51.30 60.60 14.10 16.50 18.10 19.40 21.30 22.70 24.20 g
CH2 CLOO .00 75.10 15.90 18.80 21.10 22.70 25.10 26.90 h
CHCLOOH 10.40 74.50 17.90 21.00 23.10 24.40 26.30 27.70 g
CHOHCLO -41.09 71.64 15.20 16.88 18.49 19.46 22.35 23.81 g
CHCL2OOH -36.10 82.70 20.60 24.00 26.30 28.10 30,40 31.90 g
CH3 35.20 46.30 9.20 10.00 10.80 11.50 12.90 14.00 16.20 a
CH3CL -19.50 56.00 9.70 11.50 13.20 14.60 17.00 18.80 21.80 1
CH2OH -2,60 56.70 10.90 12.60 14.10 15.40 17.50 19.10 20.60 g
CH3O 3.90 54.20 8.55 10.20 11.90 13.50 16.20 18.30 20.30 g
CH2 CLOH -52.80 67.20 12.60 15.10 17.10 18.70 21.30 23.30 g
CH3OCL -14.00 64.60 14.20 16.40 18.20 19.70 22.00 23.70 25.40 d,f
CH300 4.90 62.00 13.70 16.10 18.20 20.00 22.80 25.00 27.20 g
CH2OOH 15.20 65.40 15.70 18.30 20.20 21.70 24.00 25.80 27.50 g
CH300CL -13.70 78.90 18.00 21.10 24.00 28.80 29.20 31.60 g
CH2CLOOH -35.90 76.80 17.40 20.70 23.20 25.00 27.80 29.90 g
CH4 -17.90 44.40 8.50 9.70 11.10 12.40 15.00 17.20 20.60 a
CH3 OH -48.00 57.30 10.40 12.30 14.20 16.00 19.00 21.30 25.00 g
CH3 OOH -31.10 66.80 15.20 17.90 20.30 22.30 25.50 28.00 30.50 g
C2CL2 50.10 65.00 15.80 16.90 17.70 18.30 19.10 19.60 20.20 a
C2CL3 53.00 79.10 18.60 20.40 21.60 22.50 23.70 25.30 i,f
C2CL4 -3.40 81.40 22.70 24.90 26.60 27.90 29.30 30.00 30.50 c
C2CL5 7.50 92.20 27.60 30.20 32.10 33.60 35.30 36.10 37.00 m
C2 CL6 -33.80 95.10 32.60 35.60 38.10 39.60 41.30 41.80 42.50 c
CLCCO 69.63 65.76 13.90 15.11 16.11 17.43 18.32 18.86 g
CCL2CO -23.76 72.36 18.57 20.71 22.55 23.22 24.06 24.72 g
CL2C*CCLO. -12.73 80.96 21.68 24.39 26.03 27.41 28.90 29.74 g
CL2C*CCLOO 11.48 90.50 25.22 28.23 30.08 31.61 33.36 34.40 g
CL2C.COOCL 15.65 83.30 27.40 30.17 32.24 33.73 36.05 37.91 g
CL2CCOCLO. -19.52 81.20 24.57 29.75 32.41 34.10 36.34 37.09 g
CL2C.OOCLO -61.58 95.24 25.40 28.17 30.10 31.49 33.38 34.82 g
C0. CL2CCLO -49.54 88.37 25.65 29.94 31.75 32.70 34.18 34.55 g
C2H 132.00 49.50 9.00 9.60 10.10 10.60 11.40 12.10 12.90 a
C2HCL 51.10 58.10 13.10 14.20 15.10 15.80 16.80 17.50 18.80 i
HCLC2 91.10 64.37 9.40 10.56 11.91 13.06 14.99 16.29 i
CCL2CH 58.20 69.50 15.60 17.70 19.20 20.30 21.70 22.60 23.60 i,f
CHCLCCL 55.30 70.50 15.10 17.00 18.50 19.60 21.40 22.30 23.60 i,f
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Table B2 (cont'd)

. .
CHCL2CCL2 5.80 87.80 24.20 26.60 28.50 29.90 31.80 32.90 34.50 i,f
C2HCL5 -34.00 91.00 28.30 31.70 34.30 36.20 38.50 39.80 41.70 c
CHCO 41.30 60.30 11.80 12.90 14.30 14.80 15.70 16.80 18.10 g
CHCLCO -19.20 66.99 15.50 17.49 19.52 20.50 21.73 22.81 g
CLCCOH 17.67 67.41 15.84 17.19 18.37 19.86 21.08 21.94 g
CHCLCCLO -20.30 77.60 19.10 21.60 23.60 25.10 27.10 28.30 30.20 d
CL2C*CO. -7.73 74.96 18.68 21.39 23.31 24.71 26.62 27.85 g
CLC*CCLO. -8.17 75.59 18.61 21.17 23.00 24.69 26.57 27.83 g
CHCLCCL2O 23.00 90.90 21.80 26.20 28.50 30.00 32.00 33.00 37.40 g
CHCLOCCL2 29.50 88.50 22.50 26.30 29.00 30.80 32.60 33.20 34.90 g
CCL2CCLOH -36.90 89.90 24.00 26.40 27.80 28.60 29.10 29.30 32.50 g
CCL2CCL2OH -31.50 94.10 27.80 31.90 33.90 35.30 37.00 38.00 g
CHCL2CCL2O -20.50 92.10 26.20 31.10 33.80 35.70 37.90 39.10 g
CLC*CCLOO 16.04 85.13 22.15 25.01 27.05 28.89 31.03 32.49 g
CLC.CO2CL 23.25 77.77 24.74 27.51 29.91 31.33 33.94 36.11 g
CLC2OCLO. -17.02 74.38 20.59 24.14 26.82 28.37 31.98 33.43 g
CCL2*C.Q 38.51 88.80 24.48 27.78 29.75 31.29 32.91 33.96 g
CL2C*COO 16.48 84.50 22.22 25.23 27.36 28.91 31.08 32.51 g
CL2C.CYCOO 18.15 77.31 24.56 27.12 29.36 30.63 32.89 35.43 g
CL2CYCOCO. -17.02 75.21 21.73 26.70 29.53 31.00 33.18 34.61 g
CO.CL2C*O -30.64 83.17 22.50 26.63 28.66 29.93 32.15 33.05 g
CO.CLCCL*O -48.80 82.67 21.08 23.56 25.58 26.68 29.56 30.90 g
CL2C.OO*O -51.89 88.13 22.30 25.01 27.11 28.65 31.25 32.85 g
CLC.OOCL*O -57.88 90.60 23.01 25.65 27.86 29.04 31.20 33.13 g
CLC.*CCLQ 36.54 86.76 24.63 27.62 29.65 31.39 33.16 33.94 g
CYCO2C.*O 5.97 67.87 28.78 20.65 22.71 23.98 26.47 29.16 g
O*C*COO. 5.47 77.74 18.87 20.62 22.45 23.32 24.94 26.48 g
C2H2 54.10 48.00 10.60 11.90 13.00 13.90 15.30 16.30 18.20 a
CH2CCL 60.40 63.00 11.60 13.90 15.70 17.10 19.20 20.40 22.10 i,f
CHCHCL 63.30 62.30 11.80 14.30 16.10 17.50 19.50 20.60 22.30 i,f
CHCLCHCL .70 69.20 16.00 18.50 20.70 22.50 25.30 27.10 29.30 i
Z_CHCLCHCL .45 69.20 15.61 18.41 20.57 22.23 24.60 26.23 c
CH2CCL2 .60 69.20 16.00 18.50 20.70 22.50 25.30 27.10 29.30 i
CH2CLCCL2 7.00 81.30 20.80 23.40 25.40 27.00 29.40 30.90 33.80 i,f
CHCL2CHCL 9.80 82.10 20.90 23.70 25.70 27.30 29.60 31.10 33.90 i,f
CCL3CH2 14.80 81.40 22.00 24.70 26.70 28.20 30.40 31.90 34.10 i,f
C2H2CL3 8.50 83.10 22.00 24.70 26.70 28.20 30.40 31.90 34.10 i,f
CH2CLCCL3 -37.20 86.00 26.10 29.50 32.20 34.20 36.90 38.50 40.60 c
CHCL2CHCL2 -37.20 86.00 26.10 29.50 32.20 34.20 36.90 38.50 40.60 c
CH2CO -11.70 57.80 12.70 14.60 16.70 17.80 19.50 20.90 23.00 g
CLC*CO. -0.17 67.80 15.81 18.33 20.21 21.99 24.34 26.00 g
C*CCLO. -3.17 69.59 15.61 18.17 20.28 21.99 24.29 25.94 g
CHCLCCLOH -43.50 76.40 20.20 23.40 25.80 27.60 29.90 31.40 33.70 d
CHCL2CHO -46.90 78.60 18.80 22.00 24.40 26.30 28.60 30.10 33.00 g
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Table B2 (cont'd)

CH2CCL2O 33.70 80.00 19.90 23.60 26.30 28.20 30.40 31.50 33.90 g
CHCLCHO -6.00 70.10 15.80 18.50 20.60 22.30 24.80 26.50 29.00 d
CHCLCCLOH -34.80 81.50 20.50 23.10 24.80 25.90 26.80 27.40 31.30 d
CH2OCCL2 35.60 80.30 19.90 23.60 26.30 28.20 30.40 31.50 33.90 g
CCL2CHOH -41.60 77.80 19.40 21.90 23.90 25.60 28.30 30.00 g
CHCLCHCLO 24.50 84.60 17.00 19.50 21.80 23.70 26.60 28.40 31.10 g
CH2CLCCLO -59.00 80.00 18.80 22.00 24.40 26.30 28.60 30.10 33.00 d
CHCLCCL2OH -24.90 90.90 24.00 28.40 30.80 32.50 34.80 36.10 g
CH2CLCCL2O -17.40 86.80 22.70 27.70 30.60 32.60 35.40 37.00 g
CHCLOHCCL2 -30.00 90.10 23.80 26.30 28.30 29.60 32.70 34.30 g
CHCL2CHCLO -19.00 88.10 22.20 25.50 28.20 29.90 33.50 35.40 g
CHCL2CCLOH -28.10 90.70 22.20 24.80 27.10 28.60 31.80 33.50 g
CHOCHO -50.60 65.40 14.90 17.50 19.60 21.40, 24.20 25.80 28.40 g
C*CCLOO 21.04 79.15 19.15 22.01 24.33 26.19 28.75 30.60 g
C.*CCLQ 46.50 78.51 21.21 24.26 26.45 28.36 30.70 32.14 g
C.CYCO2CL 34.35 69.38 20.84 23.74 26.22 28.21 31.45 34.20 g
CYCOCCL(O) -8.92 68.22 17.87 21.82 24.17 26.97 30.45 32.41 g
CCL*COO 23.05 77.34 19.35 22.17 24.26 26.19 28.80 30.66 g
CLC.CYCOO 25.75 71.79 21.90 24.46 27.03 28.23 30.78 33.63 g
CLCYCOC(O) -14.52 68.39 17.75 21.09 23.94 25.27 28.82 30.95 g
CO.CLC*O -29.90 77.47 17.93 20.25 22.49 23.91 27.53 29.40 g
CO.CCL*O -40.70 76.51 18.49 21.25 23.49 25.34 28.14 30.03 g
CLC.OO*O -48.19 82.82 19.85 22.70 24.97 26.55 29.37 31.42 g
C.OOCL*O -48.58 82.05 19.46 21.82 23.90 25.75 28.52 31.00 g
C.CL*CQ 41.54 80.76 21.63 24.62 26.93 28.69 30.88 32.05 g
C2H3 71.00 56.20 10.80 12.40 13.80 15.10 17.10 18.70 21.30 n
C2H3CL 5.00 63.00 12.30 15.30 17.70 19.60 22.40 24.20 26.80 a
CH3CCL2 11.30 73.60 17.20 20.30 22.90 25.20 28.50 30.80 33.80 i,f
CHCL2CH2 16.00 77.30 17.90 20.90 23.30 25.20 28.00 29.90 33.10 i,f
CH2CLCHCL 11.40 75.70 17.70 20.30 22.50 24.30 27.00 29.10 33.90 i,f
CH2CLCHCL2 -34.70 81.40 21.30 24.80 27.60 29.80 33.00 35.00 38.90 i
CH3CCL3 -33.80 76.50 22.00 25.70 28.50 30.80 34.00 35.90 38.90 i
CH3CO -2.20 62.70 11.70 13.80 15.90 17.80 20.80 23.10 25.30 g
CH2CHO 3.12 61.78 12.92 15.31 17.44 19.24 22.10 24.12 g
C*CO. 4.29 61.80 12.81 15.33 17.31 19.29 22.06 24.11 g
CH2CLCHO -43.30 70.90 16.20 18.80 21.10 23.10 26.30 28.50 32.00 g
CH2CHCLO 36.60 74.10 15.40 18.20 20.70 22.30 25.90 27.80 g
CH2OCHCL 37.70 75.80 16.60 18.60 20.70 22.80 26.70 29.50 32.20 g
CH2CCLOH -37.90 71.11 16.90 19.60 22.03 23.87 26.62 26.83 g
CH3CCLO -58.30 70.40 16.20 18.80 21.10 23.10 26.30 28.50 32.00 c
CH2CLCHO -41.60 74.00 14.90 17.90 20.50 22.70 26.00 28.40 32.10 d
CHCLCHOH -33.10 72.50 16.40 18.70 20.90 22.90 25.90 28.10 31.50 g
CH2CCL2OH -17.80 82.60 21.40 25.90 28.60 30.40 33.00 34.50 g
CHCL2CHOH -24.00 83.20 19.50 22.50 25.00 27.20 30.30 32.50 g
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Table B2 (coned

CHCLCHCLOH -23.40 85.40 20.00 22.80 25.20 26.80 30.40 32.50 g
CH2CLCHCLO -15.90 81.40 18.80 22.10 25.00 26.90 31.00 33.30 g
CH3CCL2O -14.80 77.00 20.20 25.00 27.90 30.10 33.20 35.30 g
CHCL2CH2O -14.90 80.60 19.50 23.20 26.10 28.50 32.00 34.40 g
CH2OHCCL2 -25.90 82.60 21.10 24.00 26.20 28.20 31.10 33.30 g
C.CYCO2 36.85 64.77 18.00 20.69 23.34 25.11 28.29 31.72 g
CYC2O(O.) -6.42 62.24 15.03 18.77 21.83 23.87 27.29 29.93 g
C.OOHO -38.99 73.67 17.65 19.94 22.02 23.86 27.05 29.50 g
O.CCHO -21.80 71.31 15.34 17.94 20.40 22.57 26.11 28.53 g
C.*COOH 51.03 76.70 18.24 20.87 23.06 24.90 27.72 29.73 32.89 g
C2H3OO 29.20 72.20 16.80 19.60 22.10 24.20 27.50 29.90 32.20 g
C2H4 12.50 52.30 10.20 12.70 14.90 16.80 20.00 22.40 26.20 a
CH2CLCH2 20.70 68.50 13.90 16.80 19.40 21.70 25.50 28.40 32.60 k
CH3CHCL 18.00 67.30 14.10 17.10 19.70 21.90 25.40 28.10 32.30 k
C2H4CL 17.50 67.30 14.10 17.10 19.70 21.90 25.40 28.10 32.30 k
CH3CHCL2 -31.10 73.00 18.10 21.80 24.90 27.40 31.10 33.50 37.80 i
CH2CLCH2CL -30.60 74.10 18.20 21.50 24.30 26.70 30.20 32.80 38.70 i
C2H4CL2 -30.60 74.10 18.20 21.50 24.30 26.70 30.20 32.80 38.70 i
CH3 CHO -39.10 63.10 13.20 15.70 18.20 20.40 24.20 26.90 29.70 g
CH2CHOH -29.60 62.91 14.15 17.32 19.97 22.08 25.19 27.44 31.09 g
CH2OHCHCL -18.30 77.90 17.30 20.40 23.10 25.40 28.90 31.50 g
CH2CHCLOH -15.30 77.10 17.40 20.30 23.00 24.70 28.60 30.90 g
CH3 CHCLO -12.30 71.60 16.20 19.40 22.30 24.40 28.90 31.60 g
CH2CLCH2O -10.80 73.80 16.00 19.80 22.90 25.50 29.50 32.30 g
CHCL2CH2OH -66.90 83.60 21.50 25.30 28.60 31.00 34.80 37.50 g
C2H5 28.30 57.90 12.20 14.80 17.10 19.20 22.80 25.70 30.50 p
C2H5CL -26.80 66.00 15.00 18.60 21.60 24.20 28.40 31.40 36.20 a
C2H5O -4.20 64.00 13.50 17.10 20.20 23.00 27.30 30.60 33.80 g
CH2CH2OOH 7.80 79.10 19.50 23.60 26.90 29.60 33.60 36.60 39.50 g
C2HSOO -4.50 73.20 18.60 22.90 26.50 29.40 33.90 37.30 40.70 g
C2H6 -20.20 54.80 12.50 15.80 18.70 21.30 25.80 29.30 34.90 a
C2H5OOH -40.60 76.60 20.20 24.80 28.60 31.70 36.60 40.40 44.10 g

Unit: ΔHf, kcal/mol; S and C p, cal mol-1 K-1

SOURCES of Thermodynamic Properties

a. JANAF Thermochemical Tables 3rd ed. NSRDS-NBS, 1986, 37.
b. Benson, S. W. Thermochemical Kinetics, 2nd ed., Wiley, New York, 1976.
c. Stull, D. R.; Westrum, E. F.; Sinke, G. C. The Chemical Thermodynamics Organic

Compounds, Robert E. Kreger Publishing Co., 1987.
d. Melius, C. F., Sandia National Laboratories, BAC-MP4 Heats of Formation and Free Energies,

1991.
e.	 Kohn, D. W.; Robles, E. S. J.; Logan, C. F.; Chen, P../. Phys. Chem. 1993, 97, 4936.
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f. Ritter, E. R.; Bozzelli J. W. The Eastern States Section of The Combuion Institute, Princeton
University, New Jersey, 1993, 459.

g. THERM: Computer Code for Thermodynamic Properties Estimation, Ritter, E. R.; Bozzelli, J. W.
Intl. J. Chem. Kinet. 1991, 23, 767.

h. Russell, J. J.; Seetula, J. A., Gutman, D.; Melius, C. F., twenty- Symposium (International) on
Combustion; The Combustion Institute, 1990, 163.

i. Estimated by Bozzelli, J. W. from literature review and evaluated bond energies.
j. Lias, S. G.; Karpas, Z.; Liebman, J. F. J. American Chem. Soc. 1985, 107, 6087.
k. Tschuikow-Roux, E.; Paddison, S. Intl. J. Chem. Kinet. 1987, 19, 15.
l.	 Rodgers, A. S. Selected Values for Thermodynamic Properties of Chemical Compounds,

Thermodynamic Research Center, Texas A&M University, 1982.
m. Orlov, Y. D.; Lebedev, Y. A.; Korsunskii, B. L. Russ. J. Chem. Phys. 1985, 1424.
n. McMillen, D. F.; Golden, D. M. ann. Rev. Phys. Chem. 1982, 33, 493.
o. Monion, J. A.; Louw, R. J. Chem. Perk. Trans. 2, 1988, 1547.
p. Brouard, M.; Lightfoot, P. D.; Pilling, M. J. J. Phys. Chem. 1986, 90, 445.



Table B3 QRRK Input Data for CH2Cl + 02+4 [CH2ClOO]* -> Products
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k1 CH2Cl + 02-> CH2ClO0 3.32E15 -1.3
k-1 CH2ClO0 -> CH2Cl + 02 1.38E23 -3.38
k2 CH2ClOO -> CH2Cl + 0 1.15E23 -2.92
k3 CH2ClOO -> CH2O + ClO 6.41E09 1.0
k4 CH2ClOO -> C.HClOOH 2.57E10 1.0
k-4 C.HClOOH -> CH2ClOO 4.12E09 1.0
k5 C.HClOOH -> CHClO + OH 1.94E24 -3.76

0.0 0.0
9.598E-4 26.1
-6.633E-4 56.2

0.0 31.0
0.0 46.7
0.0 36.3

-9.815E-5 1.0

500 900 1200 1500 1800 2100 2500
0.168 0.054 0.027 0.017 0.013 0.012 0.013



	8.78E15	 -1.5
7.69E26 -4.92
1.95E22 -2.95

	

1.28E10 	 1.0

	

1.28E10 	 1.0

	

4.13E09 	 1.0
9.92E24 -3.93

0.0 0.0
-1.201E-4 21.5
-7.18E-4 57.5

0.0 31.0
0.0 47.3
0.0 35.6

-2.838e-4 1.00

k 1 CHCl2 + 02 CHCl2OO
CHCl2OO ---> CHCl2 + 02

k2 CHCl2O0 -4 CHCl2O + O
k3 CHCl2OO CHCIO + Cl0
k4 CHCl2OO -> C.Cl2OOH

C.Cl2OOH --> CHCl2OO
k5	C.Cl2OOH CCl2O + OH

Table B4 QRRK Input Data for CHCl 2 + O2 [CHCl2OO]* -> Products
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Table Cl Quantum RRK Input Data for CH2Cl 2 <-> [CH2Cl2]* Products
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Calculated Apparent Rate Constants in Ar bath Gas

CH2Cl2 —> CHCl + HCl 7.54E+34 -6.54 78320 0.1 300-1500
CH2Cl2 --> CHCI + HCl 2.64E+32 -5.67 77930 1 300-1500
CH2Cl2 --> CHCl + HCl 2.47E+28 -4.35 76830 10 300-1500
CH2Cl2 -> CH2Cl+ Cl 1.70E+35 -6.48 83220 0.1 300-1500
CH2Cl2 —> CH2Cl+ Cl 4.71E+35 -6.31 83580 1 300-1500
CH2Cl2 --> CH2Cl+ Cl 6.70E+33 -5.50 83700 10 300-1500



Table D1 Reduced vibrational frequencies, geo-mean frequency, number of internal rotors
and Cp(0) and Cp(oo)
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Table D1 (cont'd)
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Table D1 (cont'd)
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Table D1 (cont'd)
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Table D2 Arrhenius Parameters for Chloro-Methyl Radical Combination Reactions
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Table D3 Recommended High Pressure Limit A Factors for Chloro-Methyl Combination
Reactions from Evaluation of Literature (see Fig. DI. and Table D2)
k = A * (T/298)-0.80±0.20) cm3 mol-1 s-1

Table D4 Literature Rate Constants for Cl + (Chloro) Methyl Radical



Table D5 QRRK Input Data for CH3 + CH2Cl 4-> [C2H5 Cl]* ---> Products
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Table D6 QRRK Input Data for CH 3 + CHCl2 <-> [CH3CHCl2]* -4 Products
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Table D7 QRRK Input Data for CH 2Cl + CH2Cl 4-+ [CH2ClCH2Cl]* --> Products
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Table D8 QRRK Input Data for CH2Cl + CHCl2 <4 [CH2ClCHCl2]* ---> Products

180



Table D9 QRRK Input Data for CHCl2 + CHCl2 [CHCl2CHCl2]* —> Products
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Table D10 Apparent rate constants, k = ATn exp(-E/RT)
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Table D10 (cont'd)
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Table D10 (cont'd)
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Table D10 (cont'd)
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Table D10 (coned)
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Table D10 (cont'd)
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Table El QRRK Input Data for C2H3 + 02 <-4 [C2H3OO]* -> Products
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Table E1 (cont'd)
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Table E2 QRRK Input Data for CH2CCl + O2 44 [CH2CClOO]* Products
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Table E2 (cont'd)
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Table E3 QRRK Input Data for CHCICH + 02 4-4 [CHCICHOO]* -> Products
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Table E3 (cont'd)
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Table E4 QRRK Input Data for CHCICCI + O 2 <-> [CHClCCIOO]* -> Products
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Table E4 (cont'd)
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Table E5 QRRK Input Data for CCl2CH + O 2 [CCl2CHOO]* ---> Products
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Table E5 (cont'd)
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Table E6 QRRK Input Data for C2Cl 3 + 02 4-> [CCl2CClOO]* --> Products
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Table E6 (cont'd)
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Table E7 Apparent rate constants, k =	 exp(-E/RT),
in N2 bath gas, at Temperatures 300 - 2500 K
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Table E7 (cont'd)
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Table E7 (cont'd)
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Table E7 (cont'd)
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Table E7 (cont'd)
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Table E7 (cont' d)
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Table E7 (cont'd)

206



207

Table F1 Thermodynamic Properties

C4CL2 103.40 78.10 22.10 23.80 25.00 26.20 28.00 29.00 	 a
C4CL3(N 10I.40 90.20 25.70 28.00 29.80 31.20 33.10 34.20 	 a
C4CL3(I1 101.40 90.20 25.70 28.00 29.80 31.20 33.10 34.20 	 a
C4CL3(I2 128.20 86.10 25.50 27.70 29.10 31.50 32.20 33.20 	 b
C4CL4 46.40 93.30 30.30 33.50 35.20 36.90 38.50 39.40 	 a
C4CL5(N 43.40 108.80 34.00 36.20 38.20 39.90 42.40 43.80 	 a
C4CL5(I1 43.40 108.80 34.00 36.20 38.20 39.90 42.40 43.80 	 a
C4CL5(I2 17.80 83.00 35.50 39.60 41.80 43.50 45.00 45.90 	 b
C4CL6 -7.70 110.20 37.90 41.60 43.70 45.80 47.70 48.80 	 a
C4CL7(N 5.40 I23.10 44.50 48.20 51.40 53.40 56.10 57.30 	 a
C4CL8 -41.60 I24.50 48.40 53.70 56.90 59.20 61.40 62.40 	 a
C4HCL(L I08.10 69.80 20.20 22.50 23.90 25.10 26.80 28.00 	 b
C4HCL2(N1 I06.90 81.10 24.40 27.70 28.70 31.30 32.40 32.90 	 b
C4HCL3(L 47.61 88.03 26.67 30.34 31.90 35.02 36.94 38.I0 	 b
C4HCL4(N 52.40 100.90 31.40 35.10 37.70 39.70 42.10 43.50 	 a
C4HCL4(N1 52.40 100.90 3I.40 35.10 37.70 39.70 42.10 43.50 	 a
C4HCL4(I 52.40 100.90 31.40 35.10 37.70 39.70 42.10 43.50 	 a
C4HCL4(I1 53.16 97.88 31.14 35.62 38.19 40.32 42.22 43.54 	 b
C4HCL5 -.60 103.00 35.60 39.80 42.90 45.10 47.90 49.40 	 a
C4HCL6(N 12.40 119.80 40.20 43.90 46.80 49.00 52.00 53.80 	 a
C4HCL6(I 12.40 119.80 40.20 43.90 46.80 49.00 52.00 53.80 	 a
C#CC#C I10.80 59.70 I7.60 20.10 21.70 23.00 24.90 26.30 	 28.80 	 b
C4H2CL(N1 116.90 73.30 21.60 24.80 25.90 28.60 30.10 3I.10 	 b
C4H2CL(N2 1I7.30 76.40 20.60 24.20 26.00 28.80 30.80 32.10 	 b
C4H2CL(I1 111.10 77.00 I9.70 23.50 25.40 28.20 30.50 32.00 	 b
C4H2CL2(L 50.30 79.30 24.00 27.90 29.60 32.80 35.00 36.40 	 b
C4H2CL2(L2 55.07 80.24 23.87 27.50 29.11 32.32 34.71 36.27 	 b
C4H2CL2(L3 57.95 83.26 22.83 26.93 29.25 32.54 35.29 37.31 	 b
C4H2CL3(N1 57.00 90.40 30.00 33.70 35.60 37.90 39.50 40.60 	 b
C4H2CL3(N2 57.40 91.80 28.90 33.10 35.80 38.10 40.20 41.60 	 b
C4H2CL3(N3 57.40 91.80 28.90 33.10 35.80 38.10 40.20 41.60 	 b
C4H2CL3(I1 51.20 92.50 28.00 32.40 35.10 37.60 39.80 41.60 	 b
C4H2CL4(L1 -3.70 95.30 31.60 36.60 39.70 42.40 45.10 47.10 	 b
C4H2CL4(L2 2.00 92.90 30.80 36.40 40.10 42.60 45.90 48.20 	 b
C4H2CL4(L3 -9.50 95.00 32.40 36.80 39.40 42.20 44.40 46.00 	 b
C4H2CL5(N1 11.00 114.70 35.80 40.00 42.40 45.10 49.50 51.70 	 b
C4H2CL5(N2 13.10 113.00 35.00 39.90 42.80 45.30 50.20 52.60 	 b
C4H2CL5(N3 I1.50 113.60 35.70 4I.50 44.80 47.50 50.40 52.20 	 b
C4H2CL5(N4 I2.70 I11.90 34.90 4I.30 45.10 47.70 51.10 53.10 	 b
C.*CC#C 127.27 68.62 17.84 2I.45 23.30 26.12 28.64 30.32 	 33.50 	 b
C*C.C#C 125.07 69.30 16.92 20.69 22.66 25.59 28.27 30.26 	 33.37 	 b
C4H3CL(L1 60.70 74.50 20.20 24.50 27.00 30.40 33.40 35.60 	 b
CLC*CC#C 60.70 74.50 20.20 24.50 27.00 30.40 33.40 35.60 	 b
C4H3CL(L2 57.83 71.54 21.25 25.09 26.90 30.19 32.78 34.63 	 b
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Table Fl (cont'd

C*CCLC#C 57.83 71.54 21.25 25.09 26.90 30.19 32.78 34.63 b
C*CC#CCL 65.4I 75.47 20.03 24.09 26.46 29.84 33.16 35.48 b
C4H3CL2(NI 67.30 84.00 26.10 30.30 33.00 35.40 38.00 39.80 b
C4H3CL2(N2 64.80 84.00 26.10 30.30 33.00 35.40 38.00 39.80 b
C4H3CL2(N3 67.30 84.00 26.10 30.30 33.00 35.40 38.00 39.80 b
C4H3CL2(N4 64.50 82.67 27.23 30.89 32.87 35.21 37.35 38.82 b
C4H3CL2(N5 64.88 84.04 26.19 30.32 33.01 35.43 38.03 39.86 b
C4H3 CL2 (11 68.06 86.09 24.23 28.99 32.51 35.12 38.34 40.84 b

C4H3 CL2 (I2 65.18 84.72 25.27 29.56 32.37 34.90 37.66 39.80 b

C4H3CL3(L 1 .80 89.90 28.50 33.30 36.70 39.70 42.80 45.20 b

C4H3 CL3 (L2 6.60 88.90 27.70 33.20 37.I0 39.90 43.60 46.30 b

C4H3CL4(NI I7.60 I10.00 3I.90 36.50 39.40 42.20 47.20 49.80 b

C4H3CL4(N2 19.70 I08.40 31.10 36.30 39.70 42.50 48.00 50.80 b
C4H3CL4(N3 17.70 107.70 31.90 36.70 39.80 42.60 47.90 50.70 b
C4H3CL4(N4 17.20 106.60 31.90 38.10 42.10 45.00 48.80 51.20 b
C4H3CL5(L1 -29.90 II4.40 36.10 4I.30 44.60 47.90 53.10 55.80 b
C4H3CL5(L2 -27.80 112.70 35.30 41.20 44.90 48.10 53.90 56.80 b
C4H3CL5(L3 -32.90 111.20 36.40 42.90 46.90 50.10 53.70 56.I0 b
C4H3CL5(L4 -31.80 109.50 35.60 42.70 47.20 50.30 54.50 57.00 b
C*CC#C 68.I7 66.77 17.41 21.68 24.25 27.71 3I.23 33.84 37.93 b
C4H4CL(NI 77.70 77.60 22.30 26.90 30.30 32.90 36.40 39.00 b
C4H4CL(N2 74.84 76.25 23.39 27.48 30.22 32.73 35.80 38.03 b
C4H4CL(N3 74.84 76.25 23.39 27.48 30.22 32.73 35.80 38.03 b
C4H4 CL(N4 75.22 77.62 22.35 26.91 30.36 32.95 36.48 39.07 b
C4H4CL(I1 72.64 76.93 22.47 26.72 29.58 32.20 35.43 37.97 b
C4H4CL(I2 72.64 76.93 22.47 26.72 29.58 32.20 35.43 37.97 b
C4H4CL(I3 75.52 78.30 2I.43 26.15 29.72 32.42 36.1I 39.01 b
C4H4CL2(L1 11.10 82.10 24.70 29.90 34.10 37.20 41.30 44.40 b
C4H4CL2(L2 5.40 79.44 26.80 31.12 33.82 36.80 39.94 42.34 b
C4H4CL2(L3 8.28 82.19 25.76 30.55 33.96 37.02 40.62 43.38 b
C4H4CL3 (N1 24.30 103.00 28.10 33.10 36.70 39.70 45.70 48.90 b
C4H4CL4(L1 -26.80 107.60 32.60 37.90 41.40 44.80 50.60 53.70 b
C4H4CL4(L2 -24.70 105.90 31.90 37.80 41.70 45.00 5I.40 54.70 b
C4H4CL4(L3 -23.20 107.30 32.30 38.00 41.90 45.40 51.50 54.90 b
C4H4CL4(L4 -27.20 I04.10 32.60 39.50 44.20 47.60 52.20 55.10 b
C*CC*C. 85.18 69.83 19.55 24.07 27.57 30.25 34.25 37.24 42.I3 b
C*CC.*C 82.98 70.51 18.63 23.31 26.93 29.72 33.88 37.18 42.00 b
C4H5CL(L1 15.74 74.40 22.96 27.7I 31.17 34.32 38.39 41.55 b
C4H5CL(L2 18.62 75.77 2I.92 27.14 31.3I 34.54 39.07 42.59 b
C4H5CL2(N1 30.19 92.57 26.55 31.22 34.36 37.54 43.25 46.45 b
C4H5CL2(N2 32.42 93.33 25.51 30.69 34.46 37.74 43.93 47.33 b
C*CC*C 26.08 66.60 19.12 24.30 28.52 31.84 36.84 40.76 46.56 b
C4H6CL(NI 39.88 85.54 22.71 27.85 31.67 35.04 4I.70 45.50 b
C4H6CL(N2 39.20 83.I7 23.63 28.27 32.1I 35.69 40.50 44.12 b
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83.93 22.59 27.74 32.21	 35.09 41.28 45.00C4H6CL(N3
C4H6CL2(LI
C4H6CL2(L2
C*CCC.
C6CL2
C6CL3
C6CL4(L
C6CL5(L
C6CL5(Y
C6CL6(L
C6CL6(Y
C6CL7(L
C6CL8(L
C6HCL2(NI
C6HCL3(L1
C6HCL5(L1
C6H2CL(N1
C6H2CL2(L1
C6H2CL2(L2
C6H2CL2(L3
C6H2CL2(Y
C6H2CL3(N1
C6H2CL3(Y
C6H2CL4(L1
C6H2CL4(L2
C6H2CL4(L3

OMPCLBZ
C6H2CL5(NI
CHD.5CL
C6H3CL(L1
C6H3CL(L2
C6H3CL(Y1
C6H3CL(Y2
C6H3CL2(N1
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C6H3CL2(Y1
C6H3CL2(Y2
C6H3CL2(Y3

C6H3CL(L1
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C6H3CL(Y2

C6H3CL2(N1
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-5.90

I83.70

I00.38
46.27

194.00
1I0.72
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Table F1 (cont'd)
, „	 , -

C6H3CL2(N2	 120.53 93.94 33.40 39.28 42.24 46.14 49.12 51.16	 b

C6H3CL2(N3	 120.15 92.11 33.82 39.33 41.69 45.59 48.21 50.15	 b
C6H3CL2(Y1	 66.53 83.32 26.89 33.28 38.23 41.93 47.09 50.52 	 b

C6H3CL2(Y2	 66.53 83.32 26.89 33.28 38.23 41.93 47.09 50.52 	 b

C6H3CL2(Y3	 66.53 83.32 26.89 33.28 38.23 41.93 47.09 50.52 	 b

C6H3CL3(L1	 6I.17 I02.44 35.59 41.92 45.40 49.86 53.64 56.32 	 b

C6H3CL3(L2	 58.29 I0I.07 36.63 42.49 45.26 49.64 52.96 55.28 	 b

C6H3CL3(L3	 58.29 99.42 36.63 42.49 45.26 49.64 52.96 55.28 	 b

C6H3CL3(L4	 61.17 102.44 35.59 41.92 45.40 49.86 53.64 56.32 	 b

C6H3CL3(L5	 61.17 100.79 35.59 41.92 45.40 49.86 53.64 56.32	 b

C6H3CL3(L6	 53.59 100.16 36.81 42.92 45.84 50.21 53.26 55.47	 b

C6H3CL3(L7	 53.59 98.51 36.81 42.92 45.84 50.21 53.26 55.47 	 b

OPCLBZ	 -0.31 88.55 31.03 37.98 43.39 47.55 53.20 56.89	 b

DMCLBZ	 0.90 89.30 30.33 37.30 42.70 46.55 52.30 56.10 	 b

OMCLBZ	 -0.3I 88.55 3I.03 37.98 43.39 47.55 53.20 56.89 	 b

C6H3CL4(NI	 60.64 I11.01 41.75 48.15 51.95 55.45 58.51 60.70 	 b

C6H3CL4(N2	 60.64 I1I.01 41.75 48.I5 51.95 55.45 58.51 60.70 	 b

C6H3CL4(N3	 66.04 108.13 41.40 48.01 51.78 55.14 58.38 60.81	 b

CL1256CHD.	 7.3 102.70 35.38 42.16 45.83 49.94 57.69 60.99	 b

CL1245CHD.	 6.73 102.09 35.38 42.20 45.79 49.92 57.69 60.83	 b

CL1I56CHD.	 12.83 99.62 36.24 44.19 49.02 53.37 58.08 61.0I 	 b

C6H4(L	 I23.82 76.94 24.62 30.64 33.48 38.42 42.32 45.14 49.48 	 b

BENZYNE	 106.0 68.17 18.61 24.33 29.19 33.19 38.90 42.81	 b

C6H4CL(N1	 I30.87 89.I7 29.56 35.87 39.59 43.66 47.57 50.37 	 b

C6H4CL(N2	 130.49 87.34 29.98 35.92 39.04 43.11 46.66 49.36 	 b

C6H4CL(N3	 130.49 85.69 29.98 35.92 39.04 43.11 46.66 49.36 	 b

C6H4CL(Y1	 73.94 77.68 22.96 29.37 34.53 38.52 44.29 48.25	 b

C6H4CL(Y2	 73.94 77.68 22.96 29.37 34.53 38.52 44.29 48.25	 b

C6H4CL2(L1	 71.51 96.02 31.75 38.51 42.75 47.38 52.09 55.53	 b

C6H4CL2(L2	 68.63 94.65 32.79 39.08 42.61 47.16 51.41 54.49	 b

C6H4CL2(L3	 68.63 94.65 32.79 39.08 42.61 47.16 51.4I 54.49 	 b

C6H4CL2(L4	 68.63 93.00 32.79 39.08 42.61 47.I6 51.41 54.49 	 b

C6H4CL2(L5	 63.93 93.74 32.97 39.51 43.19 47.73 51.7I 54.68 	 b

C6H4CL2(L6	 61.05 92.37 34.01 40.08 43.05 47.51 51.03 53.64	 b

C6H4CL2(L7	 61.05 90.72 34.01 40.08 43.05 47.51 51.03 53.64 	 b

C6H4CL2(L8	 63.93 93.74 32.97 39.51 43.19 47.73 51.71 54.68	 b

C6H4CL2(L9	 63.93 92.09 32.97 39.51 43.19 47.73 51.71 54.68 	 b

C6H4CL2(Y1	 5.30 81.70 27.20 34.I0 39.70 44.20 50.40 54.60 	 b

C6H4CL2(Y2	 6.10 83.30 27.10 34.I0 39.70 44.10 50.40 54.60 	 b

C6H4CL2(Y3	 7.I8 83.22 27.30 34.46 40.16 44.62 50.84 55.00 	 b

C6H4CL3(N1	 70.90 104.50 37.90 44.70 49.30 52.90 56.90 59.90	 b

C6H4CL3(N2	 68.10 I03.22 38.95 45.31 49.16 52.75 56.28 58.87 	 b

C6H4CL3(N3	 68.I0 I03.22 38.95 45.3I 49.16 52.75 56.28 58.87 	 b

C6H4CL3(N4	 70.98 104.59 37.91 44.74 49.30 52.90 56.90 59.90 	 b
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C6H4CL3(N5 70.98 104.59 37.9I 44.74 49.30 52.90 56.90 59.90 b
C6H4CL3(N6 70.60 I03.22 38.95 45.31 49.I6 52.75 56.28 58.87 b
C6H4CL3(N7 70.60 I03.22 38.95 45.3I 49.16 52.75 56.28 58.87 b
C6H4CL3(I1 71.28 105.27 36.99 43.98 48.66 52.44 56.59 59.85 b
C6H4CL3(I2 68.40 103.90 38.03 44.55 48.52 52.22 55.9I 58.81 b

C6H4CL3(I3 68.40 103.90 38.03 44.55 48.52 52.22 55.91 58.81 b
C6H4CL3(I4 65.62 102.53 39.07 45.12 48.38 52.00 55.23 57.77 b
CL125CHD. 17.07 95.67 31.54 38.79 43.14 47.44 56.14 60.04 b
CL256CHD. I6.49 94.67 32.46 39.21 43.58 48.09 54.94 58,66 b
CL246CHD. I6.49 94.67 32.46 39.2I 43.58 48.09 54.94 58.66 b
CL126CHD. I7.72 96.28 3I.54 38.75 43.18 47.46 56.14 60.20 b
CL124CHD. I7.07 95.67 31.54 38.79 43.14 47.44 56.14 60.04 b
CLI56CHD. 20.89 94.67 32.46 39.21 43.58 48.09 54.94 58.66 b
CL145CHD. 20.24 94.06 32.46 39.25 43.54 48.07 54.94 58.50 b
C6H5(N 140.83 80.92 26.14 32.51 36.39 40.63 45.1I 48.57 53.58 b
PHENYL 81.35 69.38 19.51 25.91 31.32 35.69 42.12 46.57 53.07 b

C6H5CL(L1 78.97 88.23 28.95 35.67 39.96 44.68 49.86 53.70 b
C6H5CL(L2 71.39 85.95 30.I7 36.67 40.40 45.03 49.48 52.85 b
C6H5CL(L3 71.39 85.95 30.I7 36.67 40.40 45.03 49.48 52.85 b
C6H5CL(L4 74.27 87.32 29.13 36.10 40.54 45.25 50.16 53.89 b
C6H5CL(L5 71.39 84.30 30.17 36.67 40.40 45.03 49.48 52.85 b
CYC6H5CL 12.30 74.80 23.30 30.50 36.40 41.20 48.00 52.70 b
C6H5CL2(N1 81.30 98.10 34.00 41.30 46.60 50.40 55.40 59.10 b

C6H5CL2(N2 78.44 96.80 35.11 41.90 46.51 50.27 54,73 58.08 b
C6H5CL2(N3 78.44 96.80 35.11 41.90 46.51 50.27 54.73 58.08 b
C6H5CL2(N4 78.44 96.80 35.I1 41.90 46.51 50.27 54.73 58.08 b
C6H5CL2(N5 80.94 96.80 35.11 41.90 46.51 50.27 54.73 58.08 b
C6H5CL2(N6 78.06 95.43 36.I5 42.47 46.37 50.05 54.05 57.04 b
C6H5CL2(N7 78.06 95.43 36.15 42.47 46.37 50.05 54.05 57.04 b
C6H5CL2(N8 80.94 96.80 35.I1 41.90 46.5I 50.27 54.73 58.08 b
C6H5CL2(N9 80.94 96.80 35.1I 4I.90 46.5I 50.27 54.73 58.08 b
C6H5CL2(I1 78.74 97.48 34.19 41.14 45.87 49.74 54.36 58.02 b
C6H5CL2(I2 75.86 96.11 35.23 41.71 45.73 49.52 53.68 56.98 b
C6H5CL2(13 81.62 98.85 33.15 40.57 46.01 49.96 55.04 59.06 b

C6H5CL2(I4 78.74 97.48 34.I9 41.14 45.87 49.74 54.36 58.02 b

C6H5CL2(I5 78.74 97.48 34.19 41.14 45.87 49.74 54.36 58.02 b

C6H5CL2(I6 78.74 97.48 34.I9 41.14 45.87 49.74 54.36 58.02 b
C6H5CL2(I7 75.86 96.11 35.23 4I.71 45.73 49.52 53.68 56.98 b

C6H5CL2(I8 75.86 96.Il 35.23 41.7I 45.73 49.52 53.68 56.98 b

CL12CHD. 27.41 89.25 27.70 35.38 40.49 44.96 54.59 59.25 b

CL26CHD. 26.73 88.25 28.62 35.80 40.93 45.61 53.39 57.87 b

CL25CHD. 26.08 87.64 28.62 35.84 40.89 45.59 53.39 57.7I b

CL24CHD. 26.08 87.64 28.62 35.84 40.89 45.59 53.39 57.71 b

CL15CHD. 28.54 89.84 28.32 35.04 39.99 44.69 52.69 57.21 b
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CL56CHD. 25.40 86.64 29.54 36.26 41.33 46.24 52.19 56.33 b
CL46 CHD. 25.40 86.64 29.54 36.26 41.33 46.24 52.19 56.33 b
CL16CHD. 31.23 88.25 28.62 35.80 40.93 45.61 53.39 57.87 b
CL I4CHD. 30.58 87.64 28.62 35.84 40.89 45.59 53.39 57.71 b
C6H6 19.80 64.25 19.53 26.69 32.68 37.67 45.30 50.60 58.17 b
C6H6(L 81.73 79.53 26.33 33.26 37.75 42.55 47.93 52.06 58.11 b
C6H6CL(N1 88.78 90.38 31.27 38.49 43.86 47.79 53.18 57.29 b
C6H6CL(N2 88.40 89.01 32.3I 39.06 43.72 47.57 52.50 56.25 b
C6H6CL(N3 88.40 89.0I 32.3I 39.06 43.72 47.57 52.50 56.25 b
C6H6CL(N4 9I.28 90.38 31.27 38.49 43.86 47.79 53.18 57.29 b
C6H6CL(N5 88.40 89.01 32.31 39.06 43.72 47.57 52.50 56.25 b
C6H6CL(N6 88.40 89.01 32.31 39.06 43.72 47.57 52.50 56.25 b
C6H6CL(I1 89.08 91.06 30.35 37.73 43.22 47.26 52.81 57.23 b
C6H6CL(I2 86.20 89.69 31.39 38.30 43.08 47.04 52.13 56.19 b
C6H6CL(I3 86.20 89.69 31.39 38.30 43.08 47.04 52.13 56.19 b
C6H6CL(I4 89.08 91.06 30.35 37.73 43.22 47.26 52.81 57.23 b

C6H6CL(I5 86.20 89.69 31.39 38.30 43.08 47.04 52.13 56.I9 b
CL1CHD. 40.92 8I.22 24.78 32.43 38.24 43.II 51.84 56.92 b
CL2CHD. 36.42 8I.22 24.78 32.43 38.24 43.11 5I.84 56.92 b
CL3CHD. 40.24 80.22 25.70 32.85 38.68 43.76 50.64 55.54 b
CL4CHD. 39.59 79.61 25.70 32.89 38.64 43.74 50.64 55.38 b
C6H7(N1 98.74 82.59 28.47 35.65 41.07 45.09 50.95 55.46 62.31 b
CHD. 49.93 73.20 21.86 29.48 36.01 41.25 49.09 54,57 62.70 b
OHCHD. 10.79 8I.36 25.51 33.94 40.94 46.I7 54.I3 59.52 b
CLOHCHD. -0.35 87.66 29.16 37.92 44.80 50.04 57.23 62.09 b
CL4OHCHD. -29.39 I09.14 39.76 47.65 52.39 56.87 63.08 66.16 b
CL5OHCHD. -40.41 II4.56 44.52 51.48 55.48 60.00 63.43 65.57 b
CL6OHCHD. -49.42 122.59 47.44 54.43 57.73 61.85 66.18 67.90 b
OPCLPH -31.47 90.76 32.14 39.49 45.35 49.70 55.79 59.72 b
OMCLPH -30.47 90.28 32.06 39.43 45.25 49.67 55.78 59.72 b
OMMCLPH -44.14 97.30 35.99 43.34 48.95 53.08 58.58 61.99 b
TCLPH -46.19 I03.87 39.40 46.14 51.34 55.08 60.07 63.I2 b
PCLPH -45.83 109.37 43.01 49.33 54.20 57.56 62.00 64.63 b
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Table F2 Reaction Mechanism for Molecular Weight Growth from C2 to C6
C4 Reaction

1. C2H3 + C2H3 = C2H4 + C2H2 2.16E13 -0.01 11 1

2. C2H3 + C2H3 = C*CC*C 2.63E11 -0.60 -217 1

3. C2H3 + CHCHCl= C4H5Cl(L2 1.06E44 -9.89 8760 1

4. C2H3 + CHCHCl= C*CC*C. + Cl 1.43E09 1.28 3860 1

5. C2H3 + CHCHCl= C*CC#C + HCl 1.35E20 -2.04 4880 1

6. C2H3 + CH2CCI = C4H5Cl(L1 5.70E46 -10.72 9740 1

7. C2H3 + CH2CCl = C*CC.*C + Cl 1.32E13 0.16 4950 1

8. C2H3 + CH2CCl= C*CC#C + HCl 9.35E22 -2.97 6970 1

9. CHCHCI + CHCHCl= C4H4Cl2(L1 1.27E44 -10.08 8630 1

10. CHCHCl + CHCHCI = C4H4Cl(N1 + Cl 4.11E07 1.64 3800 1

11. CHCHCl + CHCHCI = ClC*CC#C + HCl 3.86E19 -1.93 4780 1

12. CH2CCl + CH2CCl= C4H4Cl2(L2 1.53E46 -10.66 9500 1

13. CH2CCl + CH2CCl= C4H4Cl(I1 + Cl 4.12E12 0.23 5630 1

14. CH2CCl + CH2CCl= C*CClC#C + HCl 8.16E21 -2.67 5900 1

15. CH2CCI + CHCHCl= C4H4Cl2(L3 1.21E45 -10.42 8800 1

16. CH2CCl + CHCHCI = C4H4Cl(N2 + Cl 3.46E09 0.96 3700 1

17. CH2CCl + CHCHCI = C4H4Cl(13 + Cl 1.14E11 0.57 3750 1

18. CH2CCl + CHCHCI = C*CClC#C + HCl 1.10E21 -2.48 4950 1

19. CH2CCl+ CHCHCl= ClC*CC#C + HCl 8.03E19 -2.20 4810 1

20. CHCHCI + CHCICCI = C4H3CI3(L1 2.22E44 -10.16 8860 1

21. CHCHCl + CHCICCl= C4H3Cl2(N1 + CI 2.23E10 0.67 4980 1

22. CHCHCI + CHCICCl= C4H3Cl2(I1 + CI 2.34E10 0.75 5000 1

23. CHCHCI + CHCICCl= C4H3Cl2(N3 + Cl 2.23E10 0.67 4980 1

24. CHCHCI + CHCICCl= C4H2Cl2(L + HCl 1.78E21 -2.52 5630 1

25. CHCHCI + CHCICCl= C4H2Cl2(L3 + HCl 1.23E18 -1.74 5300 1

26. CHCICCl+ CHCICCI = C4H2Cl4(L3 4.57E46 -10.85 10030 1

27. CHCICCI + CHCICCl= C4H2Cl3(N1 + Cl 1.70E13 -0.25 6700 1
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28. CHClCCl + CHCICCl= C4H2Cl3(I1 + Cl

29. CHCICCI + CHCICCl = C4HCl3(L + HCl

30. C2H3 + C2H3Cl = Cl + C*CC*C

31. CH2CCl + C2H3Cl= CI + C4H5Cl(L1

32. CHCHCI + C2H3Cl = CI + C4HSCI(L2

33. CHCHCI + CHCICHCl = CI + C4H4Cl2(L1

34. CHClCCl + CHCICHCl = Cl + C4H3Cl3(L1

35. CCl2CH + CHCICHCI = Cl + C4H3Cl3(L2

36. CHCHCl + C2HCl3 = Cl + C4H3Cl3(L2

37. CHCICCI + C2HCl3 = Cl + C4H2Cl4(L1

38. CCl2CH + C2HCl3 = Cl + C4H2Cl4(L2

39. CHCHCI + C2HCI3 = CI + C4H3Cl3(L1

40. CHCICCI + C2HCI3 = CI + C4H2Cl4(L3

41. CCl2CH + C2HCl3 = Cl + C4H2Cl4(L1

42. C2H3 + C2H2 = C*CC*C.

43. C2H3 + C2H2 = H + C*CC#C

44. CH2CCI + C2H2 = C4H4Cl(N2

45. CH2CCl + C2H2 = H + C*CClC#C

46. CHCHCI + C2H2 = C4H4Cl(N1

47. CHCHCI + C2H2 = H + ClC*CC#C

48. C2H3 + C2HCl= C4H4Cl(N3

49. C2H3 + C2HCl = CI + C*CC#C

50. CH2CCI + C2HCl = C4H3C12(N4

51. CH2CCl + C2HCl = Cl + C*CCIC#C

52. CHCHCI + C2HCI = C4H3Cl2(N1

53. CHCHCI + C2HCl = CI + CIC*CC#C

54. CHCICCI + C2H2 = C4H3Cl2(N3

55. CHCICCI + C2H2 = H + C4H2Cl2(L3

5.33E16 -1.06 6640 1

6.89E20 -2.58 6850 1

5.06E11 -0.06 5120 1

6.05E11 -0.08 5170 1

5,49E11 -0.07 5150 1

2.57E13 -0.54 6270 1

7.06El1 -0.10 5220 1

3.27E12 -0.29 5660 1

6.18E15 -1.22 7830 1

1.76E12 -0.21 5460 1

2.20E14 -0.81 6770 1

4.82E11 -0.05 5110 1

4.76E11 -0.05 5080 1

5.84E11 -0.08 5150 1

4.92E40 -9.24 13310 1

1.57E18 -1.79 11350 1

2.41E39 -8.77 13120 1

2.51E19 -2.17 13030 1

1.73E39 -8.77 11910 1

3.20E18 -1.81 12400 1

1.23E18 -3.70 4300 1

3.39E11 -0.01 5010 1

4.43E13 -2.21 2860 1

3.50E11 -0.01 5000 1

3.45E13 -2.33 3000 1

3.23E11 0.00 5000 1

4.36E36 -7.91 12260 1

9.65E19 -2.29 13500 1
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56. CHClCCl+ C2HCI= C4H2Cl3(N1 	 5.79E11 -1.65 2350 	 1

57. CHClCCl + C2HCl= Cl + C4H2Cl2(L 	 3.41E11 -0.01 5000 	 1

58. C*CC*C. =H + C*CC#C 	 1.21E40 -8.51 46360 	 1

59. C4H4Cl(N2 = H + C*CClC#C 	 7.26E35 -7.33 45000 	 1

60. C4H4Cl(N1 = H+ ClC*CC#C 	 6.11E37 -7.80 45580 	 1

61. C4H4Cl(N3 = Cl + C*CC#C 	 1.05E42 -9.54 27870 	 1

62. C4H3Cl2(N4 = Cl + C*CClC#C 	 2.78E40 -8.99 28300 	 1

63. C4H3Cl2(N1 = Cl + ClC*CC#C 	 3.62E41 -9.33 28000 	 1

64. C4H3Cl2(N3 = H + C4H2Cl2(L3 	 3.09E32 -6.28 44120 	 1

65. C4H2Cl3(N1 = Cl + C4H2Cl2(L 	 3.07E40 -8.95 28340 	 1

66. C*CC*C + Cl = C*CC*C. + HCl 	 5.00E13 	 0.00 10000 	 2

67. C*CC*C + Cl= C*CC.*C +HCl 	 5.00E13 	 0.00 8000	 2

68. C4H5Cl(L1 + Cl = HCl + C4H4Cl(N2 	 5.00E13 	 0.00 10000 	 2

69. C4H5Cl(L1 + Cl = HCl + C4H4Cl(N3 	 2.50E13 	 0.00 8000 	 3

70. C4H5Cl(L1 + Cl = HCl + C4H4Cl(I1 	 2.50E13 	 0.00 8000 	 3

71. C4H5Cl(L2 + Cl = HCl + C4H4Cl(N1 	 5.00E13 	 0.00 10000 	 2

72. C4H5Cl(L2 + Cl = HCl + C4H4Cl(N4 	 2.50E13 	 0.00 7500 	 3

73. C4H5Cl(L2 + Cl = HCl + C4H4Cl(I2 	 2.50E13 	 0.00 5000 	 3

74. C4H4Cl2(L1 + Cl= C4H3C12(I1 +HCl 	 2.50E13 	 0.00 8000 	 3

75. C4H4Cl2(L2 + Cl = C4H3Cl2(N4 +HCl 	 5.00E13 	 0.00 10000 	 2

76. C4H4Cl2(L3 + Cl = C4H3Cl2(I2 +HCl 	 2.50E13 	 0.00 8000 	 3

77. C4H4Cl2(L3 + Cl = C4H3Cl2(N1 + HCl 	 5.00E13 	 0.00 10000 	 2

78. C*CC.*C = C*CC*C. 	 6.41E09 	 1.00 41900 	 4

79. C4H4Cl(I1 = C4H4Cl(N2 	 6.41E09 	 1.00 41900 	 4

80. C4H4Cl(I2 = C4H4Cl(N4 	 6.41E09 	 1.00 41900 	 4

81. C4H4Cl(I3 = C4H4Cl(N1 	 6.41E09 	 1.00 41900 	 4

82. C4H3Cl2(I1 = C4H3Cl2(N2 	 6.41E09 	 1.00 41900 	 4

83. C4H3CI2(I2 = C4H3Cl2(N5 	 6.41E09 	 1.00 41900 	 4
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Table F2 (cont'd)

84. C2H2 + C2H2 = C*CC#C 5.89E13 0.00 44600 5

85. C2H2 + C2HCl= ClC*CC#C 4.00E13 0.00 40000 6

86. C2HCl + C2HCl= C4H2Cl2( 3.00E13 0.00 35000 6

87. C*CC#C + CI = C.*CC#C + HCl 2.50E13 0.00 10000 3

88. C*CC#C + CI = C*C.C#C + HCI 2.50E13 0.00 8000 3

89. C4H2Cl2(l + CI = C4HCl2(N1 + HCl 2.50E13 0.00 7500 3

90. ClC*CC#C + CI = C4H2Cl(N2 +HCl 2.50E13 0.00 7500 3

91. ClC*CC#C + Cl = C4H2Cl(I1 + HCI 2.50E13 0.00 2000 3

92. C*C.C#C = C.*CC#C 6.41E09 1.00 42300 4

93. C4H2Cl(I1 = C4H2Cl(N1 6.41E09 1.00 42300 4

94. C4HCl2(N1 = C4HCI(L + CI 4.06E14 0.00 31100 7

95. C4H2CI(N2 = C4HCl(L + H 1.02E13 0.00 54000 8

96. C4H2Cl(I1 = C#CC#C + CI 6.31E13 0.00 29600 7

97. C4H2Cl(N1 = C#CC#C + CI 1.80E14 0.00 23800 7

98. C.*CC#C = C#CC#C + H 1.04E12 0.00 38130 8

99. C*C.C#C = C#CC#C +H 1.00E12 0.00 40000 8

100. C4H3Cl2(I1 = ClC*CC#C + CI 5.96E14 0.00 22540 7

101. C4H2Cl3(I1 = C4H2Cl2(L + CI 1.51E14 0.00 29000 7

102. C4HCl4(I1 = C4HCl3(L + Cl 6.09E14 0.00 24350 7

103. C4H4Cl2(L1 + Cl = C4H3Cl2(N2 + HCl 5.00E13 0.00 4500 2

104. C4H3Cl3(L1 + C1 = C4H2CI3(N2 + HCl 5.00E13 0.00 7500 2

105. C4H3Cl3(L1 + Cl = C4H2Cl3(N3 + HCl 5.00E13 0.00 7500 2

106. C4H3Cl3(L1 + Cl = C4H2Cl3(I1 + HCI 2.50E13 0.00 2000 3

107. C4H2Cl4(L3 + CI = C4HCl4(I1 + HCI 2.50E13 0.00 13000 3

108. C4H2Cl3(I1 = C4H2Cl3(N3 6.41E09 1.00 44500 4

109. C4HCl4(I1 = C4HCl4(N1 6.41E09 1.00 41000 4

110. C2HCI3 + Cl = CHCICCI + Cl2 1.00E14 0.00 33000 9

111. C2Cl4 + C1 = C2Cl3 + Cl2 1.00E14 0.00 37000 9
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Table F2 (cont'd)

112. 02Cl4 = C2Cl3 + Cl 1.00E15 0.00 81500 10

113. C2Cl3 + C2HCl3 = C4HCl6(N 6.00E11 0.00 4000 9

114. C2Cl3 + C2Cl2 = C4Cl5(N 5.00E11 0.00 7000 9

115. 02Cl3 + C2Cl4 = C4Cl7(N 5.00E11 0.00 7000 9

116. C2Cl3 + C2Cl3 = C4Cl6 6.12E13 -0.50 0 9

117. C2Cl2 + C2Cl2 = C4Cl4 2.00E13 0.00 30000 9

118. C4Cl4 + Cl = C4Cl3(I1 + Cl2 1.00E14 0.00 28000 9

119. C4Cl4 + C1 = C4CI3(N + Cl2 1.00E14 0.00 30000 9

120. C4Cl3(I1 = C4Cl2 + Cl 2.50E13 0.00 35000 9

121. C4Cl3(N = C4Cl2 + Cl 2.50E13 0.00 33000 9

122. C4Cl4 = C4Cl3(I1 + Cl 1.00E16 0.00 82000 9

123. C4Cl4 = C4Cl3(N + Cl 1.00E16 0.00 84000 9

124. C4HCl5 = C4HCI4(N1 + Cl 1.00E16 0.00 82000 9

125. C4HCl5 = C4HCI4(I + Cl 1.00E16 0.00 80000 9

126. C4HCl5 + Cl = C4HCI4(N1 + Cl2 1.00E14 0.00 29000 9

127. C4HCl5 + Cl = C4HCl4(I + Cl2 1.00E14 0.00 27000 9

128. C4Cl5(N = C4Cl4 + C1 1.75E13 0.00 36000 9

129. C4Cl5(I1 = C4Cl4 + Cl 1.75E13 0.00 38000 9

130. C4HCl5 + Cl = C4Cl5(I1 + HCl 1.70E13 0.00 4000 9

131. C4Cl6 = C4Cl5(N + Cl 1.20E16 0.00 80000 9

132. C4Cl6 = C4Cl5(I1 + Cl 1.20E16 0.00 78000 9

133. C4Cl6 + Cl = C4CI5(N+ Cl2 1.00E14 0.00 26000 9

134. C4Cl6 + Cl = C4Cl5(I1 + Cl2 1.00E14 0.00 24000 9

135. C4HCl6(N = C4HCl5 + Cl 2.50E13 0.00 16000 9

C6 Reaction

136. C*CC*C. + C2H2 = C6H6 + H 3.65E13 -0.63 4550 1

137. C*CC*C. + C2HCI = CYC6H5Cl +H 4.02E12 -0.42 4400 1

138. C4H4CI(N1 + C2H2 = C6H6 + Cl 2.41E13 -0.57 4460 1
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139. C4H4Cl(N2 + C2H2 = CYC6H5Cl + H

140. C4H4CI(N3 + C2H2 = CYC6H5CI + H

141. C4H4Cl(N4 + C2H2 = CYC6H5Cl + H

142. C4H4CI(N1 + C2HCl= CYC6H5Cl + Cl

143. C4H4CI(N2 + C2HCl= C6H4Cl2(Y2 + H

144. C4H4CI(N3 + C2HCl= C6H4Cl2(YI + H

145. C4H4Cl(N4 + C2HCl= C6H4Cl2(Y2 + H

146. C4H3Cl2(N1 + C2H2 = CYC6H5Cl + Cl

147. C4H3Cl2(N4 + C2H2 = C6H4Cl2(Y3 + H

148. C4H3Cl2(N5 + C2H2 = C6H4Cl2(Y2 + H

149. C4H3Cl2(N3 + C2H2 = CYC6H5Cl + Cl

150. C4H3Cl2(N2 + C2H2 = CYC6H5CI + Cl

151. C4H3Cl2(N1 + C2HCl= C6H4Cl2(Y1 + Cl

152. C4H3Cl2(N4 + C2HCl= OPClBZ + H

153. C4H3Cl2(N5 + C2HCl=DMCIBZ + H

154. C4H3Cl2(N3 + C2HCl= C6H4Cl2(Y2 + Cl

155. C4H3Cl2(N2 + C2HCl= C6H4Cl2(Y2 + Cl

156. C4H2Cl3(N1 + C2H2 = C6H4Cl2(Y3 + CI

157. C4H2Cl3(N2 + C2H2 = C6H4Cl2(Y3 + Cl

158. C4H2Cl3(N1 + C2HCl=DMCIBZ + Cl

159. C4H2Cl3(N2 + C2HCl=DMCIBZ + Cl

160. C4HCl4(N1 + C2H2 = OMClBZ + Cl

161. C4HCI4(N1 + C2HCI = OMPCIBZ + Cl

162. C.*CC#C + C2H2 = PHENYL

163. C.*CC#C + C2HCl= C6H4CI(Y1

164. C4H2CI(N2 + C2H2 = C6H4Cl(Y1

165. C4H2Cl(N2 + C2HCl= C6H3Cl2(Y1

166. C4H2Cl(N1 + C2H2 = C6H4CI(Y2

1.12E14 -0.77 4870 1

4.21E13 -0.65 4580 1

1.35E14 -0.80 4740 1

2.20E12 -0.35 4190 1

1.28E13 -0.56 4730 1

2.36E13 -0.64 4900 1

1.30E13 -0.57 4680 1

6.15E13 -0.70 4600 1

1.68E14 -0.83 4880 1

2.21E14 -0.86 4890 1

6.15E13 -0.70 4600 1

6.09E13 -0.70 4600 1

2.11E12 -0.34 4200 1

1.37E14 -0.85 5460 1

7.71E14 -1.06 5970 1

3.49E12 -0.41 4270 1

3.63E12 -0.41 4290 1

1.11E13 -0.47 4380 1

2.98E13 -0.60 4500 1

1.01E12 -0.25 4090 1

1.68E12 -0.32 4160 1

4.12El6 -1.58 5500 1

2.79E12 -0.39 4180 1

2.74E40 -8.91 14674 1

1.72E41 -9.26 14770 1

3.60E39 -8.64 14483 1

7.65E41 -9.47 15070 1

2.84E54 -13.72 17647 1
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Table F2 (cont'd)

Reactions A' n Eat source

167. C4H2Cl(N1 + C2HCl= C6H3Cl2(Y2 3.33E45 -11.37 13587 1

168. C4HCl2(N1 + C2H2 = C6H3Cl2(Y3 3.41E51 -12.88 16593 1

169. C4HC12(N1 + C2HCl= C6H2Cl3(Y 2.10E45 -10.96 14662 1

170. PHENYL + Cl = CYC6H5Cl 9.00E12 0.00 0 11

171. C6H4Cl(Y1 + CI = C6H4Cl2(Y2 9.00E12 0.00 0 11

172. C6H4Cl(Y2 + Cl = C6H4Cl2(Y3 9.00E12 0.00 0 11

173. C6H3Cl2(Y1 + Cl =DMClBZ 9.00E12 0.00 0 11

174. C6H3Cl2(Y2 + Cl = OPCIBZ 9.00E12 0.00 0 11

175. C6H3Cl2(Y3 + Cl = OMCIBZ 9.00E12 0.00 0 11

176. C6H2Cl3(Y + Cl = OMPCIBZ 9.00E12 0.00 0 11

177. C4Cl3(I1 + C2Cl2 = C6Cl5(L 4.30E12 0.00 30000 9

178. C4Cl5(I1 + C2Cl2 = C6Cl7(L 3.20E12 0.00 30000 9

179. C4CI3(N + C2Cl2 = C6Cl5(L 4.30E12 0.00 6000 9

180. C4Cl5(N + C2Cl2 = C6Cl7(L 3.20E12 0.00 6000 9

181. C6Cl5(L = C6Cl5(Y 1.00E10 0.00 0 9

182. C6Cl7(L = C6Cl6(Y + C1 1.00E10 0.00 0 9

183. C6Cl5(Y + C1 = C6Cl6(Y 7.20E14 -0.50 0 9

184. C6Cl6(Y + Cl = C6Cl5(Y + Cl2 1.00E14 0.00 38000 9

185. C6Cl5(L + Cl = C6Cl6(L 7.20E14 -0.50 0 9

186. C6Cl6(L = C6Cl6(Y 1.00E10 0.00 0 9
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Table F3 Notation of the species
The length of species can't more than 10 characters.
The symbol of species in this study are noted below:
(L : Linear molecule 	 (N: Primary Radical
(I : Secondary Radical     (Y : Cycliccompound
C4Cl2 CIC=C-C=CCl C4C13(I1 Cl2C=C.-C=CCI

C4Cl3(N ClC.=CCl-C=CCl C4Cl4 Cl2C=CCI-C=CCl

C4Cl5(N C12C=CCI-CCl=C.Cl C4 C15 (I 1 Cl2C=C .-CCl=CC12

C4Cl6 Cl2C=CCI-CCl=CC12 C4Cl7 Cl2C=CC1-CCl2-C.C12

C4HCl(L ClC=C-C=CH C4HCl2(N1 ClC.=CCl-C=CH

C4HCI3(L HClC=CCl-C=CCl C4HCl4(I Cl2C=CH-C.=CCl2
C4HCl4(N1 Cl2C=CH-CCI=C.Cl C4HCl4(I1 HCIC=CCl-C.=CCl2

C4HCI5 Cl2C.-CHCI-CCI=CCl2 C4HCl6(N CIC=CH-CCI=CCl2

C#CC#C HC=C-C=CH C4H2CI(N1 HC.=CCI-C=CH

C4H2CI(N2 CIC.=CH-C=CH C4H2Cl(I1 HClC=C.-C=CH

C4H2Cl2(L HClC=CCl-C=CH C4H2Cl2(L2 H2C=CCIC=CCl

C4H2Cl2(L3 CIHC=CHC-=CCl C4H2C13(N 1 HCIC=CCI-CCI=C.H

C4H2Cl3(N2 HClC=CH-CCl=C.Cl C4H2Cl3(N3 CIC.=CH-CCI=CHCl

C4H2Cl3(I1 HClC=CCl-C.=CHCl C4H2Cl4(Ll HClC=CCI-CH=CCl2

C4H2Cl4(L2 Cl2C=CH-CH=CCl2 C4H2Cl4(L3 HCIC=CCI-CCl=CHCI

C4H2Cl5(N1 HClC=CCl-CHCI-C.Cl2 C4H2Cl5(N2 Cl2C=CH-CHCI-C.Cl2

C4H2Cl5(N3 HClC=CCI-CCl2-C.HCI C4H2Cl5(N4 Cl2C=CH-CCl2-C.HCl

C.*CC#C HC.=CH-C=CH C*C.C#C H2C=C.-C=CH

ClC*CC#C HClC=CH-C=CH C*CClC#C H2C=CCI-C=CH

C*CC#CCl H2C=CHC=CCl C4H3Cl2(N1 HClC=CH-CCl=C.H

C4H3Cl2(N2 HCIC=CH-CH=C.Cl C4H3Cl2(N3 HC.=CH-CCl=CHCI

C4H3Cl2(N4 H2C=CCl-CCI=C.H C4H3Cl2(N5 H2C=CCI-CH=C.Cl

C4H3Cl2(I1 HClC=CH-C.=CHCI C4H3Cl2(I2 H2C=CCI-C.=CHCl

C4H3Cl3(Ll HClC=CCl-CH=CHCI C4H3Cl3(L2 Cl2C=CH-CH=CHCI

C4H3Cl4(Nl HClC=CCl-CHCI-C.HCl C4H3Cl4(N2 Cl2C=CH-CHCl-C.HCl

C4H3Cl4(N3 HClC=CH-CHCI-C.Cl2 C4H3Cl4(N4 HClC=CH-CCl2-C.HCI

C*CC#C H2C=CH-C=CH C4H4CI(N1 HCIC=CH-CH=C.H

C4H4CI(N2 H2C=CCl-CH=C.H C4H4Cl(N3 H2C=CH-CCl=C.H
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C4H4CI(N4

C4H4Cl(I2

C4H4Cl2(L 1

C4H4Cl2(L3

C*CC*C.

C4H5Cl(L1

C4H5 Cl2(N 1

C*CC*C

C6HCl3(L 1

C6H2Cl2(L2

C6H2CI3 (N 1

C6H2Cl4(L2

C6H3CI(L1

C6H3Cl2(N 1

C6H3Cl2(N3

C6H3 Cl3 (L2

C6H3 Cl3 (L4

C6H3 Cl3 (L6

C6H3Cl4(N 1

C6H3Cl4(N3

C6H4Cl(N3

C6H4 CL2 (L2

C6H4CL2(L4

C6H4CL2(L6

C6H4CL2(L8

C6H4Cl3 (N 1

C6H4Cl3 (N3

C6H4Cl3 (N5

C6H4Cl3 (N7

C6H4Cl3 (I2

C6H4Cl3 (I4

H2C=CH-CH=C . CI

H2C=CH-C.=CHCl

HClC=CH-CH=CHCl

H2C=CCl-CH=CHCl

H2C=CH-CH=C.H

H2C=CH-CC1=CH2

H2 C=CCl-CHCl-C.H2

H2 C=CH-CH=CH2ClC=C-CCI=CCI-C=CH

ClC=C-CH=CCl-C=CH

ClC.=CH-CCl=CCl-C=CHHClC=CH-CCI=CHClC=CCI

ClC=C-CH=CH-C=CH

CIC.=CH-CCI=CH-C=CH

HC.=CH-CCl=CCI-C=CHH2=CCl-CCl=CH-C=CCl

HCl=CCI-CH=CH-C=CCl

HCl=CCl-CCI=CH-C=CH

HClC=CCl-CCI=CH-CH=C. CI

Cl2C=CCl-CCI=CH-CH=C.HHC.=CH-CH=CCI-C=CH

H2C=CCl-CH=CH-C=CCI

H2C=CH-CH=CCI-C=CClH2C=CCl=CCI=CH-C=CH

HCIC=CCl-CH=CH-C=CH

HClC=CH-CCl=CH-CH=C.Cl

H2C=CCI-CH=CCl-CH=C . CI

HClC=CH-CH=CCI-CH=C.ClH2C=CCl-CH=CCl-CCl=C.H

H2C=CCI-C.=CCl-CH=CHCI

H2C=CCl-C.=CCl-CCl=CH2

C4H4Cl(I 1

C4H4Cl(I3

C4H4 Cl2 (L2

C4H4Cl3 (N 1

C*CC.*C

C4H5 CI(L2

C4H5 Cl2(N2

C4H6Cl(N 1

C6H2Cl2(L 1

C6H2Cl2(L3

C6H2Cl4(L 1

C6H2 CI4(L 3

C6H3Cl(L2

C6H3 Cl2(N2

C6H3 Cl3 (L 1

C6H3 Cl3 (L3

C6H3 C13 (L5

C6H3 Cl3 (L7

C6H3Cl4(N2

C6H4(L

C6H4CL2(L 1

C6H4CL2(L3

C 6H4 CL2 (L5

C6H4CL2(L7

C6H4CL2(L9

C6H4Cl3 (N2

C6H4Cl3 (N4

C6H4Cl3 (N6

C6H4Cl3 (I1

C6H4Cl3 (I3

C6H5 (N

H2C=C.-CCl=CH2

H2C=C.-CH=CHCI

H2C=CCI-CCl=CH2

HClC=CH-CHCl-C .HCl

H2C=CH-C . =CH2

H2 C= CH-CH=CHCI

HClC=CH-CHCl-C .H2

H2 C=CH-CHCI-C .H2ClC=C-CCI=CH-C=CH

HC=C-CCl=CCl-C=CH

HC I C=CCl-CCl=CH-C=CCl

Cl2 C=CCI-CCI=CH-C=CHHC=C-CH=CCI-C=CH

C I C .=CH-CH=CCI-C=CHHCI=CH-CCI=CH-C=CCI

H2=CCI-CH=CCI-C=CCI

HCl=CH-CH=CCI-C=CClC=CCl

HClC=CH-CCl=CCI-CH=C.Cl

HCE---C-CH=CH-C=CH

HCIC=CH-CH=CH-CECClH2C=CH-CCI=CH-C=CCl

HClC=CH-CCI=CH-C=CH

H2C=CCl-CH=CCI-C=CH

HClC=CH-CH=CCI-C=CH

H2C=CCl-CCl=CH-CH=C . CI

HCIC=CCI-CH=CH-CH=C .Cl

HClC=CCl-CH=CH-CCI=C.H

HCIC=CCl-C .=CH-CH=CHCl

HClC=CCl-C . =CH-CC l=CH2HC=C- CH=CH-CH=C.H



C6H5 Cl(L2

C6H5Cl(L4

C6H5 Cl2(N 1

C6H5 Cl2(N3

C6H5 Cl2(N5

C6H5 Cl2 (N7

C6H5 Cl2 (N9

C6H5 Cl2 (NN

C 6H5 Cl2 (I2

C6H5 Cl2(I4

C6H5 Cl2(I6

C6H5 Cl2(18

C6H6CI(N 1

C6H6Cl(N3

C6H6Cl(N5C6H6Cl(I1

C6H6Cl(13

C6H6CI(15

C6H2Cl3(Y

CHD .5 CI

C6H3Cl(Y2

C6H3Cl2(Y2

OPCIBZ

H2 C=CCI-CH=CH-C=CH

HClC=CH-CH=CH-C=CH

HCIC=CH-CH=CH-CH=C. Cl

H2C=CH-CCI=CH-CH=C. Cl

HCIC=CH-CCl=CH-CH=C .H

H2 C=C Cl-CH=CCl-CH=C .H

HCIC=CH-CH=CH-CCl=C.H

H2 C=CH-CH=CCl-CCI=C .H

H2C=CCl-C.=CCI-CH=CH2

H2C=CCI-C.=CH-CH=CHCl

HCIC=CH-C .=CH-CCI=CH2

H2C=CH-C.=CCI-CCl=CH2

H2 C =CH-CH=CH-CH=C . CI

H2 C=CH-CCl=CH-CH=C .H

H2C=CH-CH=CCl-CH=C .H

HCIC=CH-C .=CH-CH=CH2

H2 C=CH-C .=CCl-CH=CH2

H2 C=CH-C .=CH-CC I =CH2

223

Table F3 (cont'd) 
C6H5Cl(L 1 H2C=CH-CH=CH-C=CCl

C6H5Cl(L3 H2C=CH-CCI=CH-C=CH

C6H5 Cl(I,5 H2C=CH-CH=CCI-C=CH

C6H5Cl2(N2 H2 C=C CI-CH=CH-CH=C . CI

C6H5Cl2(N4 H2C=CH-CH=CCI-CH=C . CI

C6H5Cl2(N6 H2C=CCI-CCI=CH-CH=C.H

C6H5Cl2(N8 HClC=CCI-CH=CH-CH=C.H

C6H5Cl2(NO H2 C=CCl-CH=CH-CCI=C .H

C6H5 Cl2(I1 HClC=CCl-C.=CH-CH=CH2

C6H5 Cl2(I3 HCIC=CH-C.=CH-CH=CHCI

C6H5 Cl2(I5 H2C=CH-C.=CCl-CH=CHCl

C6H5 Cl2(I7 H2C=CCI-C.=CH-CCI=CH2

C6H5 Cl3 (L 1 HCIC=CH-CH=CH-CH=CCl2

C6H6CI(N2 H2C=CCl-CH=CH-CH=C.H

C6H6Cl(N4 HClC=CH-CH=CH-CH=C.H

C6H6C1(N6 H2C=CH-CH=CH-CCI=C.H

C6H6Cl(I2	 H2C=CCl-C.=CH-CH=CH2

C 6H6 CI (I4	 H2 C=CH-C .=CH-CH=CHCI

C6H7(N 1	 H2C=CH-CH=CH-CH=C.H

C6H2Cl2(Y

OMPClBZ

C6H3 CI(Y 1

C6H3 Cl2(Y 1

C6H3 Cl2(Y3



Table F3 (cont'd
DMCIBZ

C11256CHD.

C11156CHD.

C6H4CI(Y1

C6H4Cl2(Y1

C6H4Cl2(Y3

Cl256CHD.

C1126CHD.

Cl156CHD.

PHENYL

Cl12CHD.

Cl25CHD.

Cl15CHD.

OMCIBZ

Cl1245CHD.

BENZYNE

C6H4CI(Y2

C6H4Cl2(Y2

CI125CHD.

Cl246CHD.

Cl124CHD.

Cl145CHD.

CYC6H5CI

Cl26CHD.

Cl24CHD.

Cl56CHD.

224



225

Table F3 (cont'd)
Cl46CHD.

Cl14CHD.

Cl1CHD.

Cl3CHD.

Cl16CHD,

C6H6

Cl2CHD.

Cl4CHD.



Table F4 QRRK Input Data for CH2CCl + C2HCl 4-÷ [C4H3Cl2(N4]* --> Products
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Table F5 QRRK Input Data for CH2CCl + C2H3Cl <-> [C4H5Cl2(N1]* -> Products

227



Table F6 QRRK Input Data for C4H4Cl(N1 + C2HCl 4.> [C6H5Cl2(N1]* -> Products

228



Table F7 QRRK Input Data for C4H 2Cl(N2 + C2HCI 44 [C6H3Cl2(N1]* -> Products

229



Table G1 Thermodynamic Properties'

230



Table G2 QRRK Input Data for HSO + 0 +4 [HSO 2]* --> Products
H + SO2 <-> [HOSO]* -> Products
OH + SO <-> [HOSO]* -4 Products
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Table G2 (cont'd)

232



Table G3 QRRK Input Data for OH + SO 2 -> [HOSO2]* —> Products
H + SO3 <-> [HOSO2]* -> Products
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Table G4 QRRK Input Data for HOSO + H <-> [HOSHO]* -> Products
HSO + OH 4-> [HOSHO]* —> Products

234



Table G5 Apparent rate constants at temperatures 300 - 2000 K, in N2 bath gas
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APPENDIX II

FIGURES
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Figure A1 Experimental Apparatus



Figure A2 Reactor Temperature Profiles with Tight Control
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Figure A3 Sample Chromatogram CH2Cl2/CH 4/O2/Ar Reaction
Column : 1.5 m length x 2.16 mm I.D.; l% AT-1000 on Graphpac GB
Detector : Flame Ionization Detector (270 °C)
Oven Temperature : 45 °C (hold 5 min.), 15 °C/min. to 220 °C (hold 22 min.)
Carrier Gas : Helium (35 ml/min.)
Reaction Conditions : I second residence, 780 °C
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240

Figure A4 Experimental Results Decay
of CH2Cl

2 
vs. Time/Temperature



Figure AS Decay of CH2C12 vs Temperature

in different Reaction Environments

241



242

Figure A6a Product Distribution vs Temperature in
CH2Cl2:Ar=1:99 Reaction System



Figure A6b Product Distribution vs Temperature in
CH2Cl2 :Ar = 1:99 Reaction System
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Figure Ala Product Distribution vs Temperature in
CH2Cl2 :CH4:Ar=1: 1:98 Reaction System
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Figure Alb Product Distribution vs Temperature in
CH2Cl2 :CH4:Ar=1:1:98 Reaction System
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Figure A8 Product Distribution vs Temperature in
CH2Cl2 :O2:Ar=1:4:95 Reaction System
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Figure Aga Product Distribution vs Temperature in
CH2Cl 2 :CH4:O2 :Ar=1:1:4:94 Reaction System
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Figure A9b Product Distribution vs Temperature in
CH2Cl2:CH4:O2:Ar=1:1 :4:94 Reaction System
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Figure A10 CH3C1 Distribution vs Temperature

in different Reaction Environments
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250

Figure All C2HCI 3 Distribution vs Temperature

in different Reaction Environments



Figure Al2 C2H3Cl Distribution vs Temperature

in different Reaction Environments
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252

Figure A13 CHClCHCl Distribution vs Temperature
in different Reaction Environments



Figure B1 Model versus Experiment CH 2Cl2 and CH3Cl

vs Temperature in CH2CI2 Ar = 1 99
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Figure B2 Model versus Experiment C2H3C1, CH2CCl 2 ,
CHCICHCI and C 2HC13 vs Temperature

in CH2C12 : Ar = 1 . 99
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Figure B3 Model versus Experiment C2H3Cl, CH2CCl2 ,

CHClCHCl and C2HCl3 vs Temperature

in CH2Cl 2 : CH4 : Ar = 1 : 1 : 98
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Figure B4 Model versus Experiment CH2Cl 2, CH4 and CH3Cl

vs Temperature in CH2Cl2 : CH4 : Ar = 1 : 1 : 98
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Figure B5 Potential Energy Digram for
CH2Cl + 02 -.4--o- [CH2ClOO]* --0.- Products



Figure B6 Comparison of QRRK Calculation to Data of
Fenter et al. for CH

2
 Cl + 02 	 CH2ClO0
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259

Figure B7 Results of QRRK Analysis
CH2CI + O2 <=> [CH2ClOO]* => Products



Figure B8 Potential Energy Digram for
CHCl2 + 02 -4--0-- [CHCl2OO]* -PP- Products



Figure B9 Comparison of QRRK Calculation to Data
of Fenter et al. for CHCl2 + O2 	CHCl2OO
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Figure B10 Results of QRRK Analysis
CHCl

2 
+ 0

2 
<=> [CHCl 2OO] * => Products
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Figure 1311 Model versus Experiment CH2Cl2 and CH3Cl
vs Temperature in CH2Cl2 : 02 : Ar = 1 : 4 : 95
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Figure B12 Model versus Experiment C2H3Cl, CH2CCl2 ,

CHCICHCl and C2HCl3 vs Temperature

in CH2Cl2 : O2 : Ar = 1 : 4 : 95
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265

Figure B13 Model versus Experiment CH 2Cl2 and CH4 vs Temperature

in CH
2
Cl

2 : 
CH

4 •
' O

2 
: Ar = 1 : 1 : 4 : 94



Figure B14 Model versus Experiment C 2H3 Cl, CH2CCl2 ,
CHClCHCl and C 2HCl 3 vs Temperature

in CH2Cl2 : CH4 : 02 : Ar = 1 : 1 : 4 : 94
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Figure Cl Potential Energy Diagram for
CH2Cl2 -01---11-- [CH2C12]* --0.- Products
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Figure C2 NJIT Analysis vs. Experimental Data of Lim et al.
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Figure C3 NJIT Analysis vs. Experimental Data of Lim et al.
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Figure C4 NJIT Analysis vs. Experimental Data of Lim et al.
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271

Figure C5 Results of Master Eqn. Analysis
for CH2Cl2 Unimolecular Dissociation



272

Figure C6 Results of Master Eqn. Analysis
for CH2Cl2 Unimolecular Dissociation
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Figure C7 Results of Master Eqn. Analysis
for CH2Cl2 Unimolecular Dissociation



Figure D1 A Factor for Combination Reaction of
Chloro-Methyl Radicals vs Number of Cl's



Figure D2 Potential Energy Diagram for
CH3 + CH2Cl <—> [C2H5Cl]*—.- Products



Figure D3 Results of QRRK Analysis
CH3 + CH2Cl <=> [C2H5Cl]* => Products
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Figure D4 Results of QRRK Analysis
CH3 + CH2CI <=> [C2H5Cl]* => Products
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Figure D5 Potential Energy Diagram for
CH3 + CHCl2	 [CH3CHCl2]*--, Products



279

Figure D6 Results of QRRK Analysis
CH3 + CHCl2 <=> [CH3CHCl2]* => Products



280

Figure D7 Results of QRRK Analysis
CH3 + CHCl 2 <=> [CH3CHCl2]* => Products



Figure D8 Potential Energy Diagram for
CH2Cl + CH2Cl	 [CH2ClCH2Cl]*, Products



Figure D9 Results of QRRK and Master Eqn. Analysis
CH2CI + CH2Cl <=> [CH2ClCH2Cl]* => Products
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Figure D10 Results of QRRK Analysis
CH2Cl + CH2CI <=> [CH2ClCH2Cl]* => Products



Figure D11 Comparison of QRRK and Master Eqn. Calculation to
Data of Roussel et al. for CH

2
Cl and CHCl

2 
Self-Combination

284



Figure D12 Comparison of QRRK Calculation to Calculation of
Senkan et al. : CH2CI + CH

2
Cl <=> [CH2ClCH2Cl] * -"=> Products
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Figure D13 Potential Energy Diagram for
CH2Cl + CHCl2 -.-1- [CH2ClCHCl2]*,- Products



Figure D14 Results of QRRK Analysis
CH2Cl + CHCl2 <=> [CH2ClCHCl2]* => Products
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Figure D15 Results of QRRK Analysis
CH2CI + CHCl2 <=> [CH2ClCHCl2]* => Products
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Figure D16 Potential Energy Diagram for
CHCl2 + CHCl2 <---> [CHCl2CHCl2]*--.- Products



Figure D17 Results of QRRK and Master Eqn. Analysis
CHCl2 + CHCl 2 <=> [CHCl 2CHCl 2]* => Products
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Figure D18 Results of QRRK Analysis
CHCl 2 + CHCl2 <=> [CHCl 2CHCl2]* => Products
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Figure D19 Results of CHEMACT and Master Eqn.
CH

2
Cl CH

2
Cl Unimolecular Dissociation
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Figure D20 Results of CHEMACT and Master Eqn.
CHCI

2
CHCl

2 
Unimolecular Dissociation

293



Figure D21 CH2ClCH2Cl Unimolecular Dissociation
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Figure D22 CHCl 2CHCl2 Unimolecular Dissociation

295



Figure El Potential Energy Diagram for
C2H3 + 02	 [C2H3OO]* --R.- Products



Figure E2 Comparison of Predicted values with Experiments
Vinyl + O2 	Products
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Figure E3 Results of QRRK Calculation for
C

2
H

3 
+ O

2 
<=> [C2H3OO]* => Products
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Figure E4 Results of QRRK Calculation for
C

2
H

3 
+ 0

2 
<=> [C

2
H

3
OO] * => Products
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Figure E5 Results of QRRK Calculation for
C

2
H

3 
+ 0

2 
<=> [C2H3OO]* => Products



Figure E6 Potential Energy Diagram for
CH2CCI + 02 -4-00.- [CH2CClOO]*----> Products



Figure E7 Comparison of Predicted values with Experiments
for Chloro Vinyl Radicals + O 2 —5— Products
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303

Figure E8 Results of QRRK Calculation for
CH

2
CCI + 0

2 
<=> [C=CClOO] * => Products
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Figure E9 Results of QRRK Calculation for
CH

2
Ca + O2 <=> [C=CClOO] * ==> Products



Figure EN Results of QRRK Calculation for
CH2CCl + 02 <=> [C=CCIOO]* => Products
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Figure Ell Potential Energy Diagram for
CHCICH + O2	 [CHCICHOO] *	 Products



Figure E12 Results of QRRK Calculation for
CHCICH + 0

2 
<=> [CCl=COO]* => Products
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Figure E13 Results of QRRK Calculation for
CHClCH + O

2 
<=> [CCl=COO]* => Products
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Figure E14 Results of QRRK Calculation for
CHCICH + O

2 
<=> [CCl=COO] * -=> Products



Figure E15 Potential Energy Diagram for
CHCICCI + 02 	 [CHCICCIOO]* 	 Products



Figure E16 Results of QRRK Calculation for
CHCICCI + 0

2
 <=> [CHClCClOO]* => Products
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Figure E17 Results of QRRK Calculation for
CHClCCl + O

2 
<=> [CHClCCIOO]* => Products
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Figure E18 Results of QRRK Calculation for
CHCICCI + O

2 
<=> [CHClCClOO]* => Products
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Figure E19 Potential Energy Diagram for
CCl2CH + O2 --*---0- [CCl2CHOO]* ---10-- Products
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Figure E20 Results of QRRK Calculation for
CCl2CH + O

2 
<=> [CCl

2
CHOO]* => Products



Figure E21 Results of QRRK Calculation for
CCl

2
CH + O

2 
<=> [CCl2CHOO] * => Products
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Figure E22 Results of QRRK Calculation for
CCl

2
CH + O

2 
<=> [CCl

2
CHOO]* => Products
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Figure E23 Potential Energy Diagram for
C2Cl3 + O2	 [C2Cl3OO]*	 Products



319

Figure E24 Results of QRRK Calculation for
C

2
Cl

3 
+ O

2 
<=> [C

2
Cl

3
OO] * => Products



320

Figure E25 Results of QRRK Calculation for
C2Cl

3 
+ O

2 
<=> [C2Cl3OO] * => Products



Figure E26 Results of QRRK Calculation for
C

2
Cl

3 
+ O

2 
<=> [C

2
Cl

3
OO] * => Products
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Figure F 1 Reaction Scheme: C1 —0.-C2 —0-C4 --11.-- C6
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Figure F2 Potential Energy Diagram for
CH2CCl + C2HCl 	 [C4H3Cl2(N4]*--,- Products



324

Figure F3 CH2CCl + C2HCI <=> [C4H3Cl2(N4]* => Products



Figure F4 Potential Energy Diagram for
CH2CCI + C2H3Cl <---> [C4H5Cl2(N1]* -----> Products



Figure F5 CH2CCl + C2H3Cl <=> [C4H5Cl 2(N1}* => Products
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Figure F6 Potential Energy Diagram for
C4H4Cl(N1 + C2HCl 	 [C6H5Cl2(N1]* --lb- Products



Figure F7 C4H4Cl(N1 + C2HCI <=> [C6H5Cl2(N1]* => Products
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Figure F8 Potential Energy Diagram for
C4H2Cl(N2 + C2HCl 	 [C6H3Cl2(N1]*	 Products
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Figure F9 C4H2Cl(N2 + C2HCl <=> [C6H3Cl 2(N1]* => Products



Figure F10 Product Distribution of C 6H6, CyC6H5Cl
and C6Cl6 vs. Ratio of CH2Cl2/Fuel
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Figure F11 Product Distribution of CyC 6H4Cl2

vs. Ratio of CH2Cl2/Fuel
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Figure F12 Product Distribution of CyC6H3Cl3

vs. Ratio of CH2Cl2/Fuel
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Figure F13 Product Distribution of C6H6,

CyC6H5Cl and C6Cl6 vs. Phi (4))
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Figure F14 Product Distribution of CyC 6H4Cl 2 vs. Phi (4)
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Figure F15 Product Distribution of CyC6H3Cl3 vs. Phi (4)
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Figure F16 Potential Energy Diagram for
CyC6H6 + OH and CyC6H5Cl + OH
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Figure G1 Potential Energy Diagram for
HSO + 0 -.41-10.- HSO2]*---► Products
OH + SO
H + SO2 "4"--4" [HOSO]*----> Products



Figure G2 Results of QRRK Calculation for
O + HSO <=> [HSO

2
] * => Products
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Figure G3 Results of QRRK Calculation for
O + HSO <=> [HSO

2
]* => Products
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Figure G4 Results of QRRK Calculation

for H + SO <=> [HOBO] => Products
2 	[HSO2]*
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Figure G5 Results of QRRK Calculation
[HOSO]*

for H + SO2 <=> [HSO2]* => Products
2 
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Figure G6 Results of QRRK Calculation
for OH + SO <=> [HOSO]* => Products
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Figure G7 Results of QRRK Calculation
for OH + SO <=> [HOSO]* => Products
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Figure GS Results of QRRK Calculation
for HSO

2 
<=> [HSO

2
] * => Products
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Figure G9 Results of QRRK Calculation
for HSO

2 
<=> [11SO2] * -=> Products
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Figure G10 Results of QRRK Calculation
for HOSO <=> [HOSO]* => Products
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Figure G11 Results of QRRK Calculation
for HOSO <=> [HOSO]* => Products



Figure G12 Potential Energy Diagram for
S03 + H 	  [HOSO2]* --->	 Products
SO2+ OH



Figure G13 Results of QRRK Calculation
for OH + SO

2 
<=> [HOSO2] * => Products
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Figure G14 Results of QRRK Calculation
for OH + SO

2 
<=> {HOSO2] * -=> Products
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Figure G15 Results of QRRK Calculation
for H + SO3 <=> [HOSO 2]* => Products



Figure G16 Results of QRRK Calculation
for H + SO

3 
<=> [HOSO2] * => Products

353



Figure G17 Potential Energy Diagram for
HOSO + H	 [ HOSHO]*	 Products
HSO + OH

HO-S=0[
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Figure G18 Results of QRRK Calculation for
OH + HSO <=> [HOSHO]* => Products



Figure G19 Results of QRRK Calculation for
OH + HSO <=> [HOSHO]* => Products
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Figure G20 Results of QRRK Calculation for
HOSO H <=> [HOSHO]* => Products
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Figure G21 Results of QRRK Calculation for
HOSO + H <=> [HOSHO}* => Products

358
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