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ABSTRACT

DEVELOPMENT OF A MULTI-LEAD TRANS-THORACIC IMPEDANCE
PNEUMOGRAPH FOR HEART RATE VARIABILITY STUDIES

by
Curtis Bashford

In this study, a device that measures respiratory tidal volume and ECG for use in

heart rate variability studies, was designed, built and tested. The device developed is a

Multi-Lead Trans-Thoracic Impedance Pneumograph, which determines tidal volume on a

breath by breath basis, utilizing both hardware and software. It uses standard ECG

electrodes which provide increased comfort and mobility to the subject over traditional

spirometry methods. The device operates similar to traditional bipolar impedance

pneumographs except that instead of only one lead (electrode pair), four leads are

acquired simultaneously using time-division multiplexing; providing data from different

locations and vectors on the subjects chest.

Respiration, ECG and spirometry data were collected using the device from 6

normal, healthy subjects for several trials of normal and paced breathing. Results were

correlated against the spirometry data to determine whether sufficient data are provided by

the four leads and also to determine the accuracy of the device. It was concluded that

combining data from all 4 leads using generalized additive modeling results in correlations

in the range of 0.8 - 1.0, but more investigation is needed to determine usefulness in actual

HRV applications.
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CHAPTER 1

BACKGROUND

1.1 Introduction

This thesis involves the measurement of physiological signals and quantities. Knowledge

of both engineering and physiology are combined in an attempt to move one step closer to

understanding and solving one of the many unknowns of the workings of the human body.

This chapter contains background information that forms the foundation upon which the

thesis is based.

1.2 Objective

The objective of this thesis is to design, build and test a device that can be used to measure

both electrocardiogram (ECG) and respiratory tidal volume. This study is part of ongoing

research in heart rate variability (HRV) at the Kessler Institute for Rehabilitation in West

Orange NJ. For the HRV studies it is desired to be able to measure respiratory tidal

volume by a method that does not restrict motion, cause discomfort or cause the subject

to be overly conscious of the breathing effort. Traditional spirometry provides accurate

measurements, but can cause discomfort when used for any length of time, limits motion

and inherently makes the subject very conscious of their breathing effort.

Since it is necessary to acquire the patients ECG, it was decided to use trans-

thoracic (across the thorax or chest) impedance pneumography which also connects to a

1
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subject using only electrodes and lead wires.	 Trans-thoracic impedance (TTI)

pneumography is a technique that has been used for years to determine respiration rates,

but has had only limited success for measuring respiratory volumes consistently. Prior

research has shown that different electrode placements yield varied results and that there is

no one optimal position for different subjects or even for different breathing patterns in

any one subject [3], [8]. Based on this it was decided to develop a device that can acquire

respiration data from multiple leads or electrode pairs (thus the name Multi-Lead)

positioned around the patients chest simultaneously in the hopes that there is enough

information in the data to accurately determine tidal volume under varied conditions. To

evaluate the performance of the device, data would also be acquired from a spirometer so

that the results could be correlated and accuracy accessed. The device developed in this

study is a Multi-Lead Trans-Thoracic Impedance Pneumograph, which determines tidal

volume on a breath by breath basis, utilizing both hardware and software. If successful,

the intended operation would be such that a spirometer would only be used at the

beginning of a clinical trial for calibration purposes, after which the multi-lead TTI

pneumograph would acquire ECG and respiration data and the tidal volumes be

determined.

1.3 The Heart and the Electrocardiogram

The heart is a muscular organ located in the chest (thoracic) cavity and enclosed in a

fibrous sac, the pericardium. The heart is divided longitudinally into right and left halves,

each consisting of two chambers, an atrium and a ventricle [15]. The heart is actually two
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separate pumps, a right heart that pumps the blood through the lungs and the left heart

that pumps the blood through the peripheral organs as shown in Figure 1.3.1 [2].

Figure 1.3.1 Structure of the heart and course of blood flow through the chambers [2].

The pumping action for each heart beat or cardiac cycle, is initiated and controlled

by an organized sequence of electrical activity through a specialized excitatory and

conducting system. The conducting system of the heart is shown in figure 1.3.2. The

origin of the heart beat is a small strip of specialized muscle in the anterosuperior wall of
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the right atrium called the sinoatrial (S-A) node. The S-A node is refereed to as the

pacemaker of the heart because it contains cells that are autorhythemic, i.e. they are

capable of autonomus rhythmical self-excitation. The inherent rhythm of the S-A node is

approximately 100 beats per minute (BPM). The heart is provided with a rich supply of

both sympathetic and parasympathetic nerves which serve to control heart rate by

modifying the inherent rhythms of the S-A and atrioventricular (A-V) nodes. Sympathetic

stimulation has the effect of increasing heart rate while parasympathetic stimulation has

the opposite effect and tends to slow heart rate. This neural intervention is of interest for

heart rate variability (HRV) studies.

Figure 1.3.2 Conducting system of the heart [21
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Action potentials that are generated in the S-A node trigger the sequence of

electrical activity that cause a heart beat. From the S-A node, the wave of excitation

spreads over the atria, causing them to contract and through the intemodal pathways to

the A-V node at the base of the right atrium. The only electrically conductive path

between the atria and ventricles is through the A-V node. Once at the A-V node the

signal is delayed by approximately 0.1 second and is then enters the ventricles via the

bundle if His. It is then spread rapidly down the right and left bundle branches to the

Purkinje fibers which spread the signal to all parts of the ventricles, causing the ventricles

to contract.

Figure 1.3.3 The normal electrocardiogram (ECG) [2].
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The spread of the electrical activity throughout the cardiac tissue can be detected

and recorded at the surface of the skin as a sum of many action potentials and is refereed

to as the electrocardiogram (ECG). The normal ECG shown in figure 1.3.3 is composed

of a P wave, a "QRS complex," and a T wave. The QRS complex is often three separate

waves, the Q wave, the R wave, and the S wave [2]. The P wave is caused by electrical

currents generated as the atria depolarize prior to contraction, and the QRS complex is

caused by electrical currents generated as the ventricles depolarize. The T wave is

generated as the ventricles repolarize. Repolarization of the atria is masked by the QRS

complex. The rates of conduction can be seen by observing the ECG. The PQ interval

represents the delay at the A-V node. The Q-R interval identifies the ventricular

depolarization phase as being fast and strong, while the ventricular repolarization shown

by the T wave is much slower.

The electrical connections for the standard bipolar limb leads is shown. in figure

1.3.4. The limb leads are bipolar in that the ECG is recorded from two specific electrodes

on the body. The ECG is typically recorded using silver-silver-chloride type surface

electrodes. The limb leads use three electrodes placed on the body (or chest) and are

referred to by their placement as right arm (RA), left arm (LA) and left leg (LL). Often a

ground or guard electrode is applied to the right leg (RL).

This configuration of electrodes provides for ECG measured from three leads

(electrode pairs), lead I, lead H and lead Ill. Lead I is measured with the negative terminal

at RA and the positive at LA. Lead II is measured with the negative terminal at RA and

the positive at LL and lead HI is measured with the negative terminal at LA and the



positive at LL. Each lead provides a different vector or electrical view of the heart. Lead

II is commonly used for monitoring because it provides the largest QRS of the three leads

and it is of positive polarity. Devices for the recording of ECG are specialized high gain

amplifiers with a means for recording or displaying the amplified signal. Since the

amplitude of a typical lead II QRS is only 1mV special attention must be given to noise

rejection.

Figure 1.3.4 Conventional arrangement of electrodes for recording of the standard
electrocardiogram (ECG) [2].
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In this study, only a lead II ECG is acquired. This is all that is necessary for HRV

studies since lead II provides a large QRS and the only information required is accurate

detection of the R wave (peak of the QRS). A detailed description of the circuitry used to

acquire the ECG is provided in chapter 2.

1.4 Heart Rate Variability Studies

Heart rate is the rate at which the heart repeats it's pumping cycles and is typically

expressed in beats per minute (BPM). By observing electrical activity of the heart with

surface electrodes and viewing the electrocardiogram or ECG, the different waveforms

that occur for each cardiac cycle (heart beat) can be seen; P-wave, QRS complex and T-

wave. The standard method of heart rate measurement is to detect the R-waves and

determine the average count over some fixed time frame. If the R-R intervals (time

between successive beats) are measured accurately, it can be observed that there is

variability in heart rate. The basis for heart rate is the intrinsic pacemaker of the sinoatrial

node. This pacemaker action is modified by neurohumoral mechanisms since the heart

receives a rich supply of parasympathetic and sympathetic neural fibers. The fluctuations

in heart rate, known as heart rate variability, discloses activities of both the

parasympathetic and sympathetic nervous systems. Generally, sympathetic input increases

heart rate while parasympathetic input decreases it[18]. Investigation of these neural

control mechanisms is the basis for heart rate variability ( HRV) studies.

A HRV signal can be formed by transforming R-R intervals into a time series. As

noted by Kamath and Fallen [7], only through a transformation of the time series events to
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the frequency domain can one appreciate the existence of physiological rhythms oscillating

at specific frequencies. Over the last 20 years, the power spectrum (PS) has come to

dominate the quantitative methods. The heart rate power spectrum has been found to be

an effective noninvasive measure for studying neural modulation of the heart in a variety

of clinical and research settings [17]. The power spectrum analysis of heart rate PS-HRV

yields three major bands. A low-frequency peak that appears within the spectral band

ranging from 0.06 to 0.15 Hz is associated with baroreceptor-mediated blood pressure

control. A high-frequency peak in the range 0.15 to 0.4 Hz is strongly correlated with

respiratory sinus arrhythmia. A very-low-frequency peak below 0.05 Hz has been linked

with vasomotor control and/or temperature control [7], [18]. Figure 1.4.1 showsthe

spectrum of inter-beat intervals (MI) from a subject, in which there is a peak at the

respiration frequency.

Figure 1.4.1 A spectrum of a heart rate variability signal [18].
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Zhang [18] has noted that respitation-asscoiated heart rate variability (RA-HRV)

has recently become a topic of considerable interest for investigations of normal

physiology and disease because the potential utility of RA-HRV as an index of vagal

effects on the heart assumes special importance in understanding of the complexities of

autonomic control. It is known that inspiration increases heart rate and expiration

decreases heart rate. Conventional time-series techniques such as power spectrum

analysis and complex demodulation have been used to quantify RA-HRV. Power

spectrum analysis separates the power on the basis of the frequency components in the

interbeat intervals. Complex demodulation enables the amplitude and phase of respiration

frequency components to be displayed as functions of time [18].

Since the present study is part of ongoing research in HRV, its purpose is to

develop a device that measures both ECG and respiratory tidal volume, ultimately to be

used for HRV studies. The respiration measurement technique selected is impedance

pneumography. This method was selected in part because it complements the HRV

methods since both impedance pneumography and ECG use electrodes. Impedance

pneumography also allows greater comfort and less restriction for the subject as opposed

to using a spirometer for respiration measurements.

1.5 Respiratory Measurements

The process of respiration can be divided into four major mechanistic events: (1)

pulmonary ventilation, which means the inflow and outflow of air between the atmosphere

and the lung alveoli, (2) diffusion of oxygen and carbon dioxide between the alveoli and
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the blood, (3) transport of oxygen and carbon dioxide in the blood and body fluids to and

from the cells, (4) regulation of ventilation and other facets of respiration [2]. Within the

scope of this study we are concerned only with the first of these aspects and only as it

pertains to lung volumes and their measurement.

Figure 1.5.1 Organization of the respiratory system [15].
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The respiratory system as shown in figure 1.5.1 comprises the lungs, the series of

airways leading to the lungs, and the chest structures responsible for movement of air in

and out of the lungs. The thoracic cavity is filled by the lungs together with the heart,

great vessels, esophagus, thymus and certain nerves. The lungs are not simply hollow

balloons but have a highly organized structure consisting of air-containing sacs and tubes,

blood vessels, and elastic connective tissue [15]. The conducting portion of the

respiratory system is composed of a series of branching tubes that begin at the nose and

mouth and continually branch and become smaller until they finally terminate in the sacs

called the alveoli. The alveoli are surrounded by capillaries, the total area of which is

approximately 135m2 or roughly 80 times the external surface area of the body. This

immense interface between the alveoli and capillaries is the site where gas exchange takes

place.

To exchange air, the lungs can be expanded and contracted in two ways: (1) by

downward and upward movement of the diaphragm to lengthen or shorten the chest

cavity, and (2) by elevation and depression of the ribs to increase and decrease the

anteroposterior diameter of the chest cavity [2]. Figure 1.5.2 demonstrates how the

muscular movements (diaphragm, abdominal and intercostal) change the dimensions of the

chest cavity during inspiration and expiration. Alveolar pressure changes are caused by

these dimensional changes of the lungs. Air moves into (inspiration) and out of

(expiration) the lungs because the alveolar pressure is made, alternately, less than and

greater than atmospheric pressure [15].
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Figure 1.5.2 Expansion and contraction of the thoracic cage during expiration and
inspiration, illustrating especially diaphragmatic contraction, elevation of the rib cage, and
function of the intercostals [2].

The volume movement of air into and out of the lungs can be recorded using a

process called spirometry. There are many types of spirometers, most of which generate a

tracing or output signal as a subject breaths into a tube connected to a gas chamber. The

spirometer tracing shown in figure 1.5.3 shows changes in lung volume under different

conditions of breathings. From the figure it can be seen that there are four volumes and

four capacity regions identified, which are defined and typical volumes indicated as

follows:

• Tidal volume is the volume of air inspired or expired with each normal breath,

500 mL.

• Inspiratory reserve volume is the extra volume of air that can be inspired over

and beyond the tidal volume, c.:13000 mL.
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• Expiratory reserve volume is the volume of air that can still be expired by

forceful expiration at the end of a normal tidal expiration, 1100 mL.

• Residual volume is the volume of air remaining in the lungs after the most

forceful expiration, N 1200 mL.

• Inspiratory capacity equals the tidal volume plus the inspiratory reserve

volume, N 3500 mL.

• Functional residual capacity equals the expiratory reserve volume plus the

residual volume,  2300 mL.

• Vital capacity equals the inspiratory reserve volume plus the tidal volume plus

the expiratory reserve volume, ,:14600 mL.

• Total lung capacity is equal to the vital capacity plus the residual volume,

5800 mL.

Figure 1.5.3 Lung volumes and capacities as measured on a spirograph. When the
subject inspires the pen moves up; with expiration it moves down [15].
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Another respiratory term, minute volume, is the total amount of new air moved into the

respiratory passages each minute, and this is equal to tidal volume times the respiratory

rate.

For heart rate variability studies, the only respiratory measurement of interest is

tidal volume. Traditionally these measurements are performed with a spirometer.

Spirometry provides accurate results but requires the subject to wear a face mask with

connective tubing which is uncomfortable for long term use and restricts motion. In the

following chapters the development of an alternate method of tidal volume measurement,

Multi-lead trans-thoracic impedance pneumography, is discussed in detail.

1.6 Impedance Pneumography

Impedance pneumography is an indirect technique for the continuous, dynamic

measurement of respiratory volume. The impedance pneumograph is a specialized type of

impedance recorder and measures respiration through the relationship between thoracic

electrical impedance and respiratory volume [10]. The basic quantity measured by the

impedance pneumograph is trans-thoracic electrical impedance change [10]. The

measurements are trans-thoracic in that the impedance is measured across the thoracic

cavity or chest of a subject. The impedance pneumograph operates on the concept that

trans-thoracic impedance changes in proportion with changes in the geometry of the

thoracic cavity that occurs with breathing. Typically, on inspiration the diaphragm lowers,

the lungs fill with air and the chest expands resulting in an increase in impedance. As

stated by Hamilton [3] and Wadhwani et. al.[16], trans-thoracic impedance measurements
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of tidal volume have been studied by many investigators, but there is a lack of agreement

about the nature of the impedance signal associated with breathing. Possible sources of

the impedance changes that have been cited by investigators include artifact at the

electrode-skin interface, current flow through the posterior path of the thorax and changes

deep within the chest. As noted by Nyboer[9], bioelectric impedance has a frequency

dependent component as related to reactive impedance. Capacitive impedance is present

at audio and intermediate radio frequencies at the boundaries of cells. Above 5MHz, the

membranes of cells are well shunted to the extracellular matter and other cells.

Studies dating back to the early 1900's by researchers such as Cremer (1907),

Atzler (1935), Fenning (1937) and Nyboer et. al.(1940) have documented thoracic

dielectric changes. Early instrumentation techniques included modulated oscillator and

bridge circuit approaches. The most common of recent approaches is the constant current

pneumograph. This technique uses a constant current AC voltage that is passed through

the subject so that the peak to peak carrier voltage amplitude across the subject is

proportional to the magnitude of the subject impedance. Any variation in the impedance

magnitude causes modulation of the carrier amplitude. The impedance information is

recovered by a demodulator such that the output signal is proportional to changes in the

magnitude of the subject impedance[10]. The frequency of the constant current signal that

is applied to the electrodes is typically 50-100KHz. The high frequency is necessary for

two reasons, to reduce effects caused by contact impedance at the electrode to skin

interface, and to preclude the possibility of subject stimulation. Furthermore, frequencies

above 100KHz are not practical because of hardware constraints. Research done by
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Rosell et. al.[11], shows that skin impedance at a frequency of 1Hz, can vary anywhere

from 10K0 to MCI for measurements at various sites on the chest. It was also noted

that the impedance becomes relatively constant at high frequencies for the different sites;

about 20012 at 1 KHz and 120 Ω  at 1 MHz. Pacela [10], recommends a constant-current

value on the order of 0.1 to 1.0 mA p-p.

As discussed by Hamilton[3], Hua et. al.[6], Luo et. al.[8], Pacela[10], Sahakian

et. al.[12], there are two basic electrode systems that have been used in bioimpedance

measurements. These are the four-electrode (tetrapolar) and two-electrode (bipolar)

configurations, shown in figures 1.6.1 and 1.6.2 respectively. Both systems offer unique

advantages [10].

Figure 1.6.1 Tetrapolar electrode system. 	 Figure 1.6.2 Bipolar electrode system.
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In the tetrapolar electrode system, the carrier oscillator signal (current) is applied

to one pair of electrodes (Ii and 12) and the desired voltage signal is measured at the

second pair of electrodes (El and E2). This scheme offers superior rejection of noise due

to motion artifacts since changes in impedance at the electrodes does not significantly

affect the signal voltage. In the bipolar electrode system, the carrier oscillator signal

(current) and the desired voltage signal is applied to the same pair of electrodes (I1 and

12). While this system is more sensitive to motion artifact noise, it is simpler and less

restrictive because there are less electrodes on the subject. Another approach to noise

reduction is the addition of a guard ring around the electrodes or the use of a unilateral

guard. As noted by Sahakian et. al.[12], applications that include ECG monitoring may

already have a reference electrode and therefore no additional electrodes or connections

are required to provide a unilateral guard. It was concluded by Cheng et. all]] that in

multiple electrode systems, current should be applied and voltage measured from all

available electrodes.

Electrode type and placement are important considerations for volumetric

measurements. A comprehensive study by Luo et. al.[8] evaluates several electrode types

and sizes in addition to co It I wring electrode placements. They concluded that the

electrodes should meet the following requirements: low baseline impedance, high

adhesion, high physical stability, thin electrode with high flexibility and an optimal

electrode size of 70cm2 . Electrode placement was evaluated for 171 electrode pail

combinations for optimal signal to artifact ratios, based on 32 electrodes placed event}

around the body trunk at four levels. Electrode placement locations suggested for

multiple electrode measurements are shown in figure 1.6.3. As noted by Hamilton[3], the
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greatest sensitivity for the impedance signal is seen with the electrodes placed at about the

eighth intercostal space, but is linear only at higher levels. Commonly used placement for

two electrode systems for respiration measurements is at the fourth intercostal space in

line with the nipples on the mid-axillary lines.

Figure 1.6.3 Suggested electrode placement locations for multiple electrode
measurements [8].

In this study a variation on traditional impedance pneumography methods is

discussed (Multi-lead TTI pneumography). This method involves bipolar impedance

measurements from four electrodes using time-division multiplexing. The multiplexing

allows 4 separate channels or leads to be simultaneously acquired. By having 4 leads of

respiration, measurements from 4 different positions on the thorax are provided in the

hopes that the data may be combined such that respiratory tidal volume may be

determined with accuracy and consistency that is superior to that of single lead impedance

pneumography.
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1.7 Prior Research

As already noted by Hamilton[3], trans-thoracic impedance measurements of tidal volume

have been studied by many investigators. Results of the study by Hamilton [3] showed

errors of the system on the order of +/- 10% for both adults and infants as long as the

subject is quiet and inactive. These findings are typical of attempts at impedance

pneumography for volumetric measurements. It is also generally accepted that there is no

one optimal electrode placement for all subjects and that calibration is necessary for each

subject. Typically these measurements are evaluated by comparison with readings from a

spirometer. Hansen et. al. [4], [5] suggests and demonstrates connecting the output of a

spirometer to an analog to digital (A/D) converter and inputting the data into a personal

computer. This allows for easy post processing of the data and comparison with other

measurement techniques.

This study is part of ongoing research at Kessler Institute for Rehabilitation in

West Orange. Prior research done by Seshadri [13] and others provided background

information on signal processing methods and correlation of impedance pneumograph and

spirometer data. In Seshadri's study, data from a spirometer and from two impedance

pneumograph devices were evaluated quantitatively using linear and nonlinear regression

algorithms. Several of the suggestions of Seshadri's work are addressed in this study

namely; investigation of a multiple electrode system to acquire data for different electrode

positions simultaneously, and combining data from different electrode positions in such a

way to improve the correlations. Insight to the use of modeling techniques was obtained

from the work of Sheshadri [13] and Zhang[18] and is later discussed in chapter 3.



CHAPTER 2

HARDWARE DEVELOPMENT 1 EQUIPMENT

2.1 System Requirements

2.1.1 Overview

The stated objective of this thesis is the development of a device that acquires both ECG

and respiration data for use in heart rate variability (HRV) studies. The front-end circuitry

is the core of this device, which when used in conjunction with the data acquisition

software provides the data for collection and processing. The front-end circuitry

interfaces the human body to the data acquisition card, and was designed specifically for

this thesis. In addition to the bio-potentials measured on the body, the output of a

spirometer was to be interfaced to the data acquisition card for calibration and validation

of the TTI pneumograph readings. Design criteria included the number of channels,

sampling rates, bandwidth, isolation, power, and AID card interfacing.

Although it is necessary to minimize the number of electrode/leads that connect to

the patient for comfort and simplicity, it was determined that a total of seven would be

required. Four leads of respiration were to be acquired using a time-division multiplexing

scheme. A bipolar impedance measurement configuration was chosen, and therefore, at

least four electrodes were required for respiration alone. Three more electrodes would be

required, two for ECG and one for guard.

21
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2.1.2 Specifications

The following is a list of the specifications to which the front-end hardware was designed

and built:

CHARACTERISTIC	 SPECIFICATION

TTI Pneumograph Front End
Oscillator frequency 	 50KHz
Inputs 	 Four bi-polar electrode pair positions RA-

LA (leadl), RA-LL (lead II), LA-LL (lead
ELI), and LL-RL (lead IV) utilizing standard
silver-silver-chloride ECG electrodes.

Outputs  One scope (multiplexed) BNC connector,
four Respiration A/D channels, Biploar +1-
5V.

Bandwidth 	 0 1 to 25 Hz

ECG Front End
Inputs 	 One differential electrode pair RA-LL (lead

ll)utilizing standard silver-silver-chloride
ECG electrodes.

Outputs 	 One scope, one ECG A/Dchannel, Biploar
+/-5V.

Bandwidth 	 0.5 to 100 Hz
Gain 	 X1000 (1V=1mV RTI)

Spirometer Front End
Inputs 	 Both potentiometer and TTL output types.
Outputs 	 One spirometer A/Dchannel, Biploar +/-5 V.
Bandwidth 	 DC to 50 Hz

Event Marker 	 Momentary switch closure, TTL.

Isolation/Protection 	 Less than 100uA leakage current between
patient connections and other equipment
(computer/ACline) and defibrillation
protection as per AAMI standards.

Connectors
Patient Cable 	 AAMI standard 6-pin patient cable.
Spirometer POT/TTL 	 3.5mm stereo / 3.5mm mono phone jacks.
Event Marker 	 3.5mm mono phone jack.
Scope ECG/RESP out 	 BNC female / BNC female.
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Battery 	  ...1.3mm DC jack.
Charger 	 2.5mm DC jack
CIO-DAS08 analog/digital 	 DB37 female / DB37 male

Indicators
Batteryery Power 	 Red LED
Computer Power 	 Red LED

Logic control 	 TTL from CIO-DAS08
Power control 	 Toggle switch, DPDT
Battery 	 12.0V, 1.0AH NICd

2.2 Front End Design

2.2.1 Number of Channels

In designing the front end circuitry to meet the system specifications, the number of

channels was an important consideration because it directly affects the amount of

hardware required. This is most evident when the isolation circuitry required per channel

is considered. In order to minimize the number of channels, a multiplexing scheme was

devised by the author in which the four respiration leads (channels) are time division

multiplexed onto one channel for AID conversion. This scheme resulted in a significant

reduction in hardware and isolated power requirements by requiring only two channels to

cross the isolation barrier, the multiplexed respiration channel and the ECG channel. The

spirometer had no electrical connections or risk current paths with the patient and

therefore was able to be connected through a non-isolated channel. A total of three signal

channels (one with four sub-channels) are output by the front end for analog to digital

conversion by the CIO-DAS08 data acquisition card.
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2.2.2 Sampling Rates

Sampling rate requirements dictated the bandwidths of the front end circuitry. A different

sampling rate was chosen for each of the acquired signals based on their specific

requirements. The software used for data acquisition limits the maximum trial run time

because of the fixed size memory array utilized. Therefore sampling rates chosen were

optimized to allow the maximum length trial run while retaining sufficient signal integrity.

For heart rate variability studies, the ECG waveform is not important, but accurate

peak detection is required. The ECG sampling rate was chosen to be 200Hz. This rate

provides both good waveform reproduction and a resolution of 5mS for peak detection.

This resolution allows accurate peak detection for ECG up to a rate of 120 beats per

minute (BPM) since the R-R interval (time interval from R wave to R wave of successive

beats) difference for rates above 120 is less than 5mS. The scope of this study would not

involve heart rates above 120 BPM, typical rates being within the range of 60-100 BPM.

The respiration sub-channels were sampled at 25Hz each which is more than high

enough since most of the frequency content of respiration signals is below 10Hz. For

paced breathing as in this study, the respiration signal is quasi-sinusoidal with a frequency

range of 0.1 to 0.4 Hz corresponding to 6 to 24 breaths per minute. The composite

respiration channel operates at a 100Hz rate (25Hz per sub-channel with four sub-

channels).

In order to determine the sampling rate required for the TTL spirometer signal, the

maximum expiration rate had to be considered (refer to section 2.5 for a detailed

description of the spirometer). A realistic maximum rate was determined experimentally
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as 2.5L per second which is a much higher rate than will be achieved in this study. The

maximum signal transition rate is therefore 2.5 L/sec divided by 0.05L/transition which

gives 50 transitions/sec. max.. Since the signal is either TTL high or Low, only one

sample is required to determine the logic state and therefore a sampling rate of 50Hz was

selected.

2.2.3 Bandwidth

The ECG hardware bandwidth is 0.5 to 100Hz which gives a good quality signal without

the excessive baseline wander associated with a full diagnostic bandwidth (0.05 - 100Hz).

The low frequency end of the respiration hardware bandwidth had to be as close to DC as

was practical so that the signals at low respiration rates were not attenuated significantly.

As with the ECG signal, there is a trade off between low end bandwidth and baseline

wander. Overall individual respiration channel bandwidth was 0.05 to 25Hz, while the

high end of the bandwidth for the multiplexed portions of the circuitry was required to be

ten to twenty times higher so as not to cause degradation or mixing of the individual

channels.

2.2.4 Isolation and Defibrillation Protection

For the purpose of patient safety, any device that is directly connected to a patient by

conductive materials must have its patient connections electrically isolated from A/C line

power and earth ground. This requirement is to preclude the possibility of electrical shock

by risk currents should the patient come in contact with other non isolated equipment or
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earth ground (risk current paths). The Association for the Advancement of Medical

Instrumentation (AAMI) publishes specific requirements and specifications for medical

equipment relating to patient safety. For patient connected equipment, risk currents must

not exceed 10 micro amps between all patient connections and earth ground and between

all patient connections and A/C line power. Additionally, patient connected equipment

must be protected from defibrillation potentials. This requirement is to protect the

equipment from failure and to assure that the full defibrillation energy is delivered to the

patient. Because the front end circuitry of the device for this study connects directly to

the patient by means of wires and electrodes, the AAMI requirements apply but are not

required because the device is for experimental purposes only. Even though not required,

the author chose to include the safety requirements in the design as it is of good

conscience and practice to do so. The front end circuitry design incorporates industry

standard technology including battery power and opto-coupling isolators to achieve the

safety requirements. The inputs from patient connections are protected from defibrillation

potentials by means of spark gaps and current limiting resistors which clamp high voltage

potentials to 90V. Diode clamping is also used to further protect the circuitry by clamping

the inputs to the +/- supply rails.

2.2.5 Power

Power for the front end circuitry is from two sources, a 12V 1.0Ah NICd battery and the

personal computer's (PC) power supply via the CIO-DAS08 card. The isolated portion of

the circuitry was powered by the battery exclusively. This simplified the design by not
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having to incorporate or design an expensive DC-DC converter with sufficient isolation

between primary and secondary to meet the isolation specifications. The isolated 12V was

used directly in some circuits and was used to generate -12V and +/-6.6V for others by

the use of linear voltage regulators and charge-pump inverters. By generating the

additional voltages from the single battery, the need for multiple batteries was negated and

thus improved reliability by minimizing battery maintenance needs. The non-isolated

portion of the front end circuitry was powered by the PC's power supply exclusively.

Connection to the PC's power supply was available through the interconnecting cables

from the CIO-DAS08 card. The +/-12VPC and +5VPC supplies were used directly for

the non-isolated circuits and no additional regulation was required. In addition, the PC's

+10.0Vref was used as a reference in . the pot-type spirometer drive circuit. Battery

charging was provided by an external 24VDC wall adapter module (WAM) through a

current limiting resistor which provided a semi-constant current at 62mA. For NICd

batteries, a constant current charge is desired and if the charge is at a "trickle" charging

rate, it may be applied for extended periods of time without damaging the battery. The

WAM is only connected to the battery when the power switch is in the CHARGE

position. During charge, the front-end circuitry is disconnected in order to maintain

isolation, and is therefore not functional.

2.2.6 Data Acquisition Card Interfacing

The CIO-DAS08 data acquisition card was installed in an 8-bit slot of the computer.

Connections from the card to the front end is by means of two DB-37 patch cables. The
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connectors were configured as both male and female types at both the CIO-DAS08 card

and front end in order to provide automatic cable keying. A total of three signal channels

were applied to the CIO-DAS08 card for A/D conversion. All three signal channels were

bipolar and scaled for a full scale of +/-5V to correspond with the input range of the CIO-

DAS08 card. ECG channel gain and scaling is such that a 1volt output corresponds to

lmV relative to input (RTI). The respiration channels provided nominally a 0.5 to 2 VP-P

signal to the A/D card. The spirometer output signal was 0-5V logic level transitions.

The fourteen digital control signals for the front end circuitry were generated under

software control and outputted by the peripheral input output (PIO) feature (8255) of the

CIO-DAS08 card. The two digital outputs from the front end circuitry were input to two

of the fixed digital inputs of the CIO-DAS08 card since all the PIO ports were configured

as outputs. These I/O lines are TTL levels and are connected directly to the non-isolated

portion of the front end circuitry.

2.2.7 Circuit Design

The circuitry used in the front-end is industry standard analog type technology, mostly

utilizing commonly available integrated circuits and other standard components. The

circuitry is divided into two main sections, isolated and non-isolated. In compliance with

the isolation specifications, all the circuitry directly connected to electrically conductive

patient connections is contained within the isolated section. Because the isolated section

is battery powered, where possible, low power devices were chosen and the amount of

isolated circuitry was minimized to reduce power consumption.
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The amount and type of circuitry required is directly related to the nature of the

signals of interest. In this study, the signals of interest are bio-potentials and as such are

very small in amplitude, thus requiring sufficient amplification and processing so that they

may cross the isolation barrier and be applied to the analog to digital (AID) converter. An

ECG signal for example, has a nominal amplitude of only 1mV on the body. In order to

amplify a signal that small to an amplitude of practical size say IV, amplification of 1000

is required. Gains of that magnitude require very high CMRR so that the signal of interest

is not obscured by unwanted noise. For bio-potential signals, the most common source of

noise is 60Hz pickup. The human body picks up the 60Hz signal from nearby power lines,

lighting and other electrical equipment. This type noise may be several magnitudes higher

in amplitude than the signal of interest. Because the noise is distributed across the body, it

is seen as common-mode noise to the instrumentation. For a good quality ECG, a CMRR

on the order of at least 900 is desired. The most common method and the method

chosen in this design for achieving a high CMRR is the use of an instrumentation

amplifier. However, an instrumentation amplifier alone is not sufficient and additional

noise canceling techniques are needed. Two methods used in this design are a driven

guard and notch filtering. The driven guard is a signal that is composed of the sums of

the input signals and is driven by an amplifier through an electrode back onto the body in

order to make the noise signal more truly common mode. The notch filter circuit used is

an active twin-T type which yields a very deep yet narrow reject band at 60Hz. A

downfall of the notch filter is that it rings in response to high frequency transients.

Typically circuitry is implemented to suppress pace-maker spikes from causing ringing and
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also injecting a pacer marker after the notch filter. Pacer detection and marking is beyond

the scope of this thesis and was not included in the design. The front-end schematic was

drawn using PC based SCHEMA schematic capture software. Copies of the schematics

are provided in appendix 1.

2.3 Front End Theory of Operation

The front end circuitry can be divided into five main sections, the respiration channel, the

ECG channel, the spirometer channel, control logic and power supply. Each section is

divided into subsections or functional blocks. The organization of these functional blocks

is shown in figure 2.3.1. For detailed understanding, refer to the front-end schematic

located in appendix 1 and the theory of operation provided in appendix 2.

2.4 Front-End Construction

After designing the front end schematic using SCHEMA schematic capture software, an

assembly drawing was created using PADS printed circuit board layout software. The

components were arranged on a 0.1" grid for easy transfer perforated proto-board.

Copies of the assembly drawings showing component outlines and reference designators

are provided in appendix 1. Factors affecting component placement included connection

length minimization, feedback paths, isolation spacing requirements and enclosure

dimensions. A 0.1" grid perforated board was cut to drawn dimensions and components

were positioned directly from the assembly drawing. A smaller board was added after

design changes required additional components which would not fit on the main board.



Figure 2.3.1 Front-end function block diagram.
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Bifurcated and trifurcated wire wrap pins were installed for most components and DIP

sockets were used for integrated circuits. Connections were made using wire wrap

techniques because of the large number of components and its advantages for prow-

typing. When done correctly, wire wrap provides very reliable connections. This is due to

its inherent redundancy since there are typically seven wraps, each of which forms four

gas-tight connections for at total of twenty eight connections on average at each pin

connection. Three wire colors, red, green, and copper where used to distinguish between

power, ground and signal connections respectively.

The circuit boards were mounted in a 3.25H x 10.25W x 7.5D desk top enclosure.

Connectors were provided in the enclosure's end panels for connection to external

equipment. End panel mechanical drawings and labeling art were created using AutoCAD

drafting software. All the front end circuitry is contained within the front end enclosure

except for the battery which is connected via a rear panel mounted jack. The jacks for the

battery and wall adapter module were chosen as 1.3 and 2.1mm DC power jacks

respectively so that their plugs could not be incorrectly connected and break the isolation.

The patient cable connector is an AAMI standard 6-pin. Three 3.5mm phono type jacks

are provided for connection to the spirometers and event marker. Two BNC jacks are

provided for monitoring the ECG and Respiration signals on an oscilloscope. LED

indicators are provided to indicate power status labeled BATTERY and COMPUTER. A

three position toggle switch for selecting power as ON (battery), OFF and CHARGE is

mounted on the rear panel as are the two DB-37 connectors for connection to the CIO-

DAS08 card. Copies of the engineering drawing are provided in appendix 1.
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2.5 Spirometer

2.5.1 TTL Type

The TTL type spirometer used is a Harvard Instruments Dry-Gas Meter. This device is

essentially a standard utility type natural gas meter with a special electronic reader

attached to the mechanical meter drive. The gas input and output fittings are modified to

fit standard respirator tubing. The spirometer is used in conjunction with a face mask that

is fitted with a one-way valve assembly. The one-way valve allows inspired air to enter

from one port and exhaled air to exit through another. The gas input is connected by a six

foot length of tubing to the expiration port of the valve assembly on the face mask. This

configuration ensures that the patient inhales fresh air directly through the inspiration port

of the valve assembly and not through the spirometer or tubing as a measure of infection

control. This configuration limits the measurements to exhalation volumes only.

The electronic reader of the spirometer displays the total volume on an LCD and is

reset to zero with a reset button. The reader also outputs TTL (0 or 5V) levels to a

3.5mm mono jack where each transition corresponds to 0.05L of air expired. The

resolution of the spirometer is 0.05L and therefore for each breath there is a +/- 0.05L

tolerance in the readings. A software or hardware counter must be used to convert the

number of transitions into volume readings. During inspiration or pauses in breathing no

air passes through the spirometer and therefore the output does not change level and

remains at the previous logic state. For this study, the output of the spirometer was

connected to the TTL SPIROMETER jack of the front-end with a 3.5mm mono patch

cable.
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2.5.2 Potentiometer Type

A second type spirometer, a potentiometer type, was considered for use. This spirometer

is mechanically coupled to the shaft of a continuous rotation potentiometer with contacts

which are available for connection to external equipment. One complete revolution of the

potentiometer corresponds to 10L of air expired. This type spirometer uses the same

mask/valve assembly used with the TTL type spirometer. To measure volumes, a stable

voltage source is applied to one of the leg terminals of the potentiometer and ground to

the other leg. The voltage measured at the wiper terminal of the potentiometer

corresponds to the volume of air expired. In order to determine the volume expired for

each breath, the voltage difference between the start and end of expiration has to be

measured or calculated with consideration for rotation of the potentiometer past 360

degrees since the voltage goes from full scale to zero.

The front-end provided a 3.5mm stereo jack for connection to the potentiometer.

The voltage supply provided at this jack is a precision 5.0VDC which yields a scale factor

of 1V = 2L since the full scale range will be 5V corresponding to one rotation which

corresponds to 10L. The resolution of this device is limited only to the resolution of the

potentiometer which is high since it is a precision type wire-wound potentiometer. There

is also a portion of the rotation at the transition near 360 degrees where the output is open

circuit and accurate readings may not be possible if expiration starts or ends in this region.

Although accommodated for, this spirometer was not used because it was taken out of

service for repair prior to performing the clinical trials for this study.
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2.6 Data Acquisition Card

The data acquisition card selected is CIO-DAS08 manufactured by Computer Boards

INC. of Mansfield, Ma. The CIO-DAS08 is a multifunction analog and digital I/0 card

designed to be compatible with MetraByte's DAS08. The CIO-DAS08 also features a

PIO-12 compatible 8255 and 37 pin connector which provides 24 programmable TTL I10

lines in addition to the 3 fixed digital inputs and 4 digital outputs. The on board Analog to

Digital (AID) converter is an industry standard 574 with 12 bit resolution connected to a

multiplexor that provides 8 single ended channels with a 2uSec. sample and hold. Input

ranges are DIP switch selectable as +/-5V, +/-10V or 0-10V. An on board 8254 provides

33 16 bit counter/timers. Connection to the front-end is provided by 2 DB37 connectors

1 male and 1 female for keying along with 6' patch cables. The CIO-DAS08 can be

controlled by programs in BASIC, C, FORTRAN or PASCAL, for this application the C

language was used. In order to simplify programming the "Universal Library" software

was purchased with the board so that canned functions could be used where possible.

Refer to the schematics in appendix 1 for connection information and pin-outs for the

CIO-DAS08 card's connectors.

2.7 Computer

The computer used for all the Computer Aided Drafting, data acquisition, signal

processing and data analysis is an AT type Personal Computer with a 486-33DX CPU,

VESA local-bus, 256K Cashe, 8M RAM, 250M hard drive and dual floppies. The CIO-

DAS08 acquisition card. was installed on an 8-bit card slot with it's base address at 300H.
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The data acquisition program runs under DOS while the signal processing and data

analysis was performed using MATLAB and S-Plus software which run under Windows

3.1. No additional computer hardware was required, although the signal processing

would run faster with additional RAM.
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METHODS

3.1 Overview

In order to determine respiratory tidal volume by trans-thoracic impedance

pneumography, data were acquired by using both hardware and software designed

specifically for this thesis. Acquired data included 4 channels (leads I, II, III and TV) of

respiration, a spirometer channel, and 1 channel of ECG (lead II). The respiration data

were acquired as 4 time-division multiplexed channels. The respiration signal was

acquired by biploar trans-thoracic impedance pneumography. It was bipolar because the

oscillator signal input was applied to the same 2 electrodes as the signal was measured

from. The multiplexing allows 4 separate channels or leads to be simultaneously acquired

onto 1 A/D channel. By having 4 leads of respiration, measurements from 4 different

positions on the body were provided so that the data may be combined such that

respiratory tidal volume may be determined with accuracy and consistency that is superior

to that of single lead impedance pneumography. The ECG channel data provides a lead

ECG for direct use in heart-rate variability studies. It would advantageous to obtain the

ECG from the RA-LL pair of respiration electrodes since it would eliminate two

electrodes and lead wires that connect to the subject. Unfortunately it was determined in

testing that this method is not possible because the as the impedance signal is switched in

and out of the electrodes, changing offsets result in noise which totally obscures the ECG

37
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signal. The spirometer data is used for determining the accuracy of the impedance based

tidal volume calculations and ultimately for calibration of the impedance measurement.

Data were collected from a total of 6 subjects, 3 males and 3 females, varying in

age from 28 to 38. This chapter discuses the methods used in conjunction with the

equipment described in chapter 2. Methods of clinical trial protocol, data acquisition and

signal processing are discussed in detail.

3.2 Clinical Trial Protocol

In preparation for testing the subjects were briefed on the test protocol and equipment to

which they were to be connected and were assured of its safety and cleanliness to reduce

possible anxiety. A standardized protocol for acquiring data was used for each subject.

Setup involved affixing the electrodes to the subject. Standard ECG

silver-silver-chloride electrodes, 3M Red Dot type were used. Electrode placement sites were prepped

by abrading the skin with a scratcher and cleaning with alcohol wipes as recommended by

Smith [141 A total of 7 electrodes were used, 4 for respiration, 2 for ECG and 1 for

guarding for. Electrodes were placed on the subject as shown in figure 3.2.1. Respiration

electrodes (RA, LA, LL and RL) were placed in the standard ECG chest locations. Right

Arm (RA) and Left Arm (LA) electrodes were placed on the right and left anterior

respectively at the first intercostal space just below the clavicles. The Right Leg (RL) and

Left Leg (LL) electrodes were placed laterally over the last intercostal space on the right

and left respectively. The guard electrode was placed just posterior to the RL electrode.

The two ECG electrodes (ECG-RA and ECG-LL) were placed in the standard ECG Lead
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II configuration adjacent to the respiration RA and LL electrodes. The respective patient

cable lead wires were connected to the electrodes and the patient cable plugged into the

front-end.

Figure 3.2.1 Electrode placement locations used.

The face mask was positioned over the subject's mouth and nose and secured in

place with the cap and Velcro straps. Tension was adjusted so the that air did not leak

from the sides of the mask. The spirometer tubing was connected to the mask and the

spirometer output connected to the front-end with the patch cable.

With the subject in a seated position, the acquisition program was run for several

seconds so that the data displayed could be checked to assure proper setup. When ready,
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the actual trials were begun by re-starting the acquisition program. The protocol included

5 - 90 second trials for each subject for a total of 30 trials. The 5 trials included one

random (non-paced) breathing, 1 paced breathing at 8 breaths per minute (BPM, not to

be confused with beats per minute referring to heart rate), 1 paced breathing at 12 BPM, 1

paced breathing at 18 BPM and 1 combination paced breathing at 30 seconds each of 8,

12 and 18 BPM. Paced breathing was accomplished by having the subject synchronize

his/her breathing with the LEDs on a custom pacing device. This device sequenced a

series of dual color LEDs from one end to the other and back at the selected rate. The

LEDs alternate color between red and green for each direction of the sequencing. The

subject was instructed to synchronize his/her breathing such that inspiration coincided with

the green phase and expiration with the red phase.

After running a trial, a data file containing raw ASCII data for the 4 respiration

leads, ECG lead II and spirometer output was created and saved for each trial.

3.3 Data Acquisition

3.3.1 General

The trial data was acquired by the front-end and the CIO-DAS08 card under control of

the ACQUIRE.EXE acquisition program. This program was written in the "C"

programming language. The acquisition program controls the front-end by use of the

programmable digital 1/0 provided on the CIO-DAS08 card. Functions of the acquire

program include control of respiration lead selection and multiplexing, gain control, A/D
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channel control and data conversion, graphical display of data waveforms and file storage

of 6 channels of acquired data arranged as columns in ASCII format..

3.3.2 Running the Acquire Program

The ACQUIRE.EXE program runs under DOS and is executed by typing "ACQUIRE" at

the prompt. Once started, the operator is prompted to wait at least 15 seconds before

pressing any key to start the acquisition. This delay allows time for the data array to be

cleared to zeros and for the signal baselines to settle. An oscilloscope can be connected to

the BNC outputs if desired to view the signals before beginning the acquisition. After

starting the acquisition the display prompts the operator that the program is acquiring and

that pressing any key will cancel the acquisition. When the acquisition is completed or

canceled, the acquired signal waveforms are displayed and advanced one screen at a time

by pressing Enter. The display sequence is 8 screens of ECG, then 2 screens of

Spirometer followed by 1 screen each of respiration leads Resp 1 to Resp 4. After all the

waveforms have been displayed the operator is prompted to respond Yes or No to save

the data to a file named TRIALX.DAT. The program has now completed and the saved

file can be renamed to a different name (usually replacing the X with the trial number).

3.3.3 Acquire Program Theory of Operation

Refer to the block diagram of figure 3.3.1 and the ACQUIRE.CPP program source code

listing located in appendix 3 to aid in understanding the following detailed description of

the operation of the ACQUIRE program.
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The first section of the program sets the "include" function libraries and declares

and initializes the variables. The variable "MAXSAMPLE" is the maximum number of

samples for the respiration lead variables Resp 1 to Resp4. The number of samples for

spirometer data "Spiro" is 2 x MAXSAMPLE since it is at twice the sampling rate of the

Resp data. Likewise ECG is 8 x MAXSAMPLE since it is at 8 times the sampling rate of

the Resp data. The largest number allowed for MAXSAMPLE is limited to what will

compile and link for the array size used and is approximately 2300. A MAXSAMPLE of

2250 was chosen which gives a run time of 90 second since,

1
Runtime MAXSAMPLE

Resp sample rate

Runtime = 2250 x  1=  90 sec.
25Hz

(Eq. 3.1)

(Eq. 3.2)

The next section in the program defines the function prototypes, which are

functions that will be called by the main loop. The "Sdelay" function is a short delay loop

which is a simple incrementing "for" loop used by the ADCIn function. The "ADCIn" is

the routine for reading a single sample by the A/D converter. It sets the CIO-DAS08's

multiplexer channel (to 1 of 8), starts a 12 bit conversion, waits for end of conversion and

scales and outputs the data. The "plot" function has separate routines for displaying the

acquired data on the screen for each of the 6 channels using graphics mode. The

waveforms are displayed as cascading from top left to bottom right and multiple screens

are used for Spiro and ECG since they are sampled at higher rates than the Resp data.
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Figure 3.3.1 Flow chart for the ACQUIRE program.
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The main loop of the program begins by declaring the pointers for each of the 6

channels of data and setting all the data in the array to zero. The next section sets the gain

control outputs by writing to the 8255 of the CIO-DAS08 card with the cbDOut

command. Next the first set of prompts are written to the display by the "printf'

statements. The program then scans for a key press before jumping to the acquisition

routine. While it is scanning, a lead selection routine is running to activate the front end

circuitry and stabilize the baseline. The lead selection sequence is critical to define the

sampling rates and to suppress switching transients that occur with lead selection. The

sequence is as follows:

1) Set the lead select to lead I and switch the baseline select switch to disabled.

2) Wait 3 mS to allow the switching transient to pass.

3) Enable the baseline select switch.

4) Wait 7mS, the period of valid data.

5) Switch the baseline select switch to disabled.

6) Go to the next case

7) Select the next lead (i.e. lead II).

8) Repeat the above steps for each of the 4 leads and loop.

Once a key is pressed, the acquisition routine is started. The "Acquiring data !" prompt is

written to the display and the keyboard is again scanned for a key press to cancel the

acquisition routine. During acquisition a lead selection sequence similar to the one during

acquisition start is looped. In addition to lead selection, A/D conversions are called and

the data is acquired. The acquisition sequence is as follows (case 0):
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1) Read the spirometer channel with the A/D and increment its pointer.

2) Set the lead select to lead I and switch the baseline select switch to disabled.

3) Wait 3 mS to allow the switching transient to pass.

4) Enable the baseline select switch.

5) Wait 2 mS for sampling timing.

6) Read the ECG channel with the A/D and increment its pointer.

7) Wait 2 mS for to be in the center of the valid Resp data period.

8) Read the Resp 1 channel with the A/D and increment its pointer.

9) Wait 3 mS for sampling timing.

10)Read the ECG channel again with the A/D and increment its pointer.

11) Switch the baseline select switch to disabled.

The above sequence is repeated for cases 1, 2, and 3 with the exception that the

spirometer channel is only read during case 0 and case 2. It can be seen that the

processing time for each case is the sum of the delays which is 10mS since execution time

is negligible. Since there are four cases the total processing time for one complete loop is

40mS. The sampling rates can be determined knowing that in one complete loop;

• The Spirometer channel is sampled twice, once every 20mS or at 50Hz.

• The Resp channels are sampled once each, once every 40mS or at 25Hz.

• The ECG channel is sampled 4 times, once every 5mS or at 200Hz.
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The acquisition loop is repeated until the number of passes equals MAXSAMPLE (2250)

or a key is pressed to cancel the acquisition. When the acquisition loop is exited the

"plot" function is called and the waveforms are displayed on the screen. After the

operator pages through the waveforms by pressing any key, the "Save data to file:

TRIALX.DAT ? [Y/N]" prompt is written to the display. The Y and N keys are then

scanned. If a N is pressed (no save), no action is taken and the program exits. If the Y

key is pressed (save data), a file named "TRIALX.DAT" is opened and the data is written

as ASCII in columns defined by the fprintf statements.

The first line of the file contains the value of MAXSAMPLE in the first column

and zeros in each of the other 13 columns. This automatically provides the number of

data samples per column for post processing analysis programs. The remaining lines of

the file contain the acquired data in 14 columns where:

• Columns 1 and 2 = Spiro data (alternating).

• Column 3 = Resp 1 data.

• Column 4 = Resp2 data.

• Column 5 = Resp3 data.

• Column 6 = Resp4 data.

• Columns 7 through 14 = ECG data (alternating).
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3.4 Signal Processing

3.4.1 General

Once acquired and stored in files, the signal data is processed using programs written for

use with MATLAB software. The raw acquired data is not in a directly useable format.

The desired information is buried within the raw data and needs to be extracted. The

purpose of the signal processing programs is to process the raw acquired data into a form

from which it can be used and to extract the desired information. This information can

then be applied to the data analysis programs. Because the spirometer that was used

supplies only expiration volume data, it is not possible to properly evaluate inspiration

data. The following signal processing programs function under the premise that

respiratory tidal volume for a particular breath is directly related to the difference in signal

amplitude from the start of expiration to the end of expiration for that breath. Refer to the

MATLAB program listings located in appendix 3, to aid in understanding the following

detailed descriptions of the signal processing programs.

3.4.2 RUNTRIAL Program

The RUNTRIAL program is the master "batch" program. It serves to simplify and

automate the MATLAB signal processing programs. The first operation of RUNTRIAL

loads the raw ASCII trial data from a file named TRIAL**.dat (** = the trial #.). Once

loaded, batch programs for the three signal types are executed; SPRUN which processes

spirometer data, IPRUN which processes impedance pneumograph data and ECGRUN,

which processes ECG data. After these programs have run, the new data is saved for
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future use. The flow chart for the RUNTRIAL program is shown in figure 3.4.1 and the

individual batch programs are discussed in detail in the following sections.

Figure 3.4.1 Flow chart for RUNTRIAL program.
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3.4.3 SPRUN Programs

The program SPRUN is the batch program called by RUNTRIAL to execute the

spirometer signal processing programs. Its only function, as shown by the flow chart of

figure 3.4.2, is to call the programs SPLOAD, SPRANGE, SPINDEX, and SPVOL.

The first function of SPRUN is to call the program SPLOAD. SPLOAD first

loads the number of samples stored in the data at row 1 co1.1 "MAXSAMPLE"). It next

loads the spirometer data as SPIRO from columns 1 and 2 by alternating them until

MAXSAMPLE is reached. The SPIRO data is initially scaled to correspond to +/-5V, and

is then compared to a threshold of 2 and scaled as a 1 or 0. Figure 3.4.3 shows a sample

of the scaled spirometer data plotted against the index.

The next program called by SPRUN is SPRANGE. SPRANGE determines the

ranges of inspiration (0) and expiration (1) from the SPIRO data. It does this by testing

for transitions within the SPIRO data since the spirometer generates transitions every

0.05L during expiration and none during inspiration. The program looks ahead over the

next 1 sec. of data as it tests for transitions between inspiration and expiration in order to

distinguish between a slow expiration and the true end of expiration. An envelope of the

spirometer data is generated where periods of inspiration are "0" and periods of expiration

are "1", a sample of which is shown in figure 3.4.4.

Once the spirometer ranges of inspiration and expiration are determined, the

SPINDEX program determines and stores the number of valid breaths (totalnb) and the

inspiration and expiration starting and ending indexes. For a breath to be valid, it must be

a complete cycle with both a start of inspiration and end of expiration.
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Figure 3.4.2 Flow chart for SPRUN program.

The last program called by SPRUN is SPVOL. SPVOL determines the spirometer

volume for each breath using the indexes determined by SPINDEX. It accomplishes this

by counting the number of transitions in the indexed expiration range (spexstart to

spexend) and multiplying by 0.05 since each spirometer transition corresponds to 0.05L of

air expired. The calculated spirometer volumes are saved as SPVOL. A sample plot of

SPVOL data is shown in figure 3.4.5.
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Figure 3.4.3 Sample plot of scaled spirometer transition data plotted against the index.

Figure 3.4.4 Sample plot of SPRANGE Vs. index, an envelope of the spirometer data.
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Figure 3.4.5 Sample plot of SPVOL data, amplitude in (L) Vs. breath number index.

3.4.4 IPRUN Programs

The program IPRUN is the batch program called by RUNTRIAL to execute the

impedance pneumograph signal processing programs. As shown in the flow chart of

figure 3.4.6, its only function is to call the programs IPLOAD, IPINTREP, IPFILT,

WINDEX, and IPDIFF.

The first function of IPRUN is to call the program IPLOAD. IPLOAD first loads

the number of samples stored in the data at row 1 co1.1 "MAXSAMPLE"). It next loads

the 4 sets (leads) of respiration data as IP1 to 1P4 from columns 3,4,5 and 6 respectfully,

until MAXSAMPLE is reached. Each lead of the IP data is scaled in amplitude to

correspond to +/-5V.
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Figure 3.4.6 Flow chart for IPRUN program.

The respiration data is sampled at 25 Hz, while the spirometer data is sampled at

50 Hz. In order to simplify the signal processing, a linear interpolation routine in

MATLAB is applied to the respiration (IP) data so that the amount of data samples is

doubled in order to match the amount of spirometer data samples. The program

IPINTERP performs this function for each of the 4 sets of IP data. The scaled IP data is

noisy and needs to be filtered to remove high frequency noise introduced during
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acquisition. The next program, IPFILT, filters each of the IP data with a 2-pole bi-

directional low pass filter with Fc=6.25 Hz. The bi-direction is required to cancel time

domain phase shift that occurs with the software filtering. The MATLAB function

"filtfilt" performs this function automatically. Sample plots of unfiltered and filtered IP

data Vs. their index are shown in figures 3.4.7 and 3.4.8 respectively.

Once the EP data is filtered, program IPINDEX is run. IPINDEX is similar to

SPINDEX in that it determines the start and end indexes for the inspiration and expiration

of each breath. The peaks and valleys (maximum and minimum) of the IP signal

correspond to transitions between inspiration and expiration. IPINDEX uses the indexes

determined by SPINDEX as a range in which to test for a minimum or maximum. The

slope of the IP signal is first tested to determine if it is polarity inverted, in which case a

maximum instead of a minimum indicates the start of an inspiration. The converse is true

Figure 3.4.7 Sample plot of unfiltered IP data.
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Figure 3.4.8 Sample plot of filtered IP data.

for the start of expiration. This process is performed for each valid breath (as determined

by SPINDEX) for each lead of IPdata (IP1 - IP4). The plot of figure 3.4.9 shows one

lead of IP data (IP1) plotted with the corresponding SPRANGE data for the same index.

From the plot it can be observed that there is a time lag between the IP lead data and the

SPRANGE spirometer data that must be accommodated for when determining the peaks

and valleys of the IP signals.

The last program called by IPRUN is IPDIFF. IPDIFF calculates the amplitude

difference between the maximum and minimum for each breath of each lead of IP using

the data determined by IPINDEX. The generated data, IP2DIFF, IP2DIFF, IP3DIFF and

IP4DIFF are the impedance pneumograph (difference) volumes that will be used in the

data analysis.
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Figure 3.4.9 Sample plot of an IP lead signal overlaid onto the corresponding SPRANGE
data, showing the time lag between the two.

3.4.5 ECGRUN Programs

The program ECGRUN is the batch program called by RUNTRIAL to execute the ECG

signal processing programs. As shown in the flow chart of figure 3.4.10, its only function

is to call the programs ECGLOAD and ECGFILT.

The ECG data is processed only for noise removal and scaling to determine if it is

adequate so that it may be available for future processing. The program ECGLOAD, first

loads the number of samples stored in the data at row 1 col. 2 "MAXSAMPLE"). It next

loads the ECG data from columns 7 through 14 by alternating columns until

MAXSAMPLE is reached. The ECG data is scaled to correspond to +/-5V. It should be

noted that the time scale index is 4X the time scale for SP and IP data because the

sampling rate is 4X greater.
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Figure 3.4.10 Flow chart for ECGRUN program.

The scaled ECG data is noisy and requires filtering to remove high frequency noise

introduced during acquisition. The program, ECGFILT, filters each of the ECG data with

a 2-pole bi-directional low pass filter with Fc=50 Hz. As with the IP data, the bi-direction

is required to cancel time domain phase shift that occurs with the software filtering. A

sample plot of an actual acquired in trial 16 ECG is shown in figure 3.4.21.

3.5 Data Analysis

3.5.1 General

The results of the signal processing programs provides two sets of data for analysis.

These are the spirometer volumes (SPVOL) and the impedance pneumograph peak-valley

differences (IP2DIFF, IP2DIFF, IP3DIFF and IP4DIFF). In order to determine how well
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the IPDIFF data relates to the SPVOL data, different methods of analysis were

performed. These methods involved correlation and modeling of the IPDIFF data vs the

SPVOL data.

Figure 3.4.11 Sample plot of an actual acquired ECG, amplitude in milliVolts (mV)
relative to input (RTI) Vs. index of samples.

3.5.2 Correlation

Correlation coefficients were generated using MATLAB for comparison of the SPVOL

data (accepted) with the IPDIFF data (unknown). A correlation coefficient is a

dimensionless number that measures the strength of the linear association between two

variables. The correlation coefficient (r) is equal to covariance divided by the product of

the estimated sample populations.
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Covariance (coy) is a measure of how two random variables vary together either in a

sample or in the population, when the values of the two random variables occur in

pairs[13]. If C = cov(x) then r (x) is the matrix whose element (ij) is:

A correlation coefficient of 2 indicates that all the points lie on a straight line with positive

slope, and a -2 indicates a negative slope.

In MATLAB, the function;

is used to determine the correlation coefficients between functions x and y. For this study,

x is the SPVOL data and y is the IPDIFF data.

3.5.3 Modeling

In order to perform modeling on the data, the S-Plus for windows version 3.2 software

package was used. S-Plus is both a language and an interactive programming environment

for data analysis and graphics. Two modeling functions that are available in S-Plus were

used to attempt to combine the different leads of impedance volume data (IPDlFF) in such

a way that the result might provide a good correlation to the spirometer (SPVOL) data.

The functions chosen were the generalized additive model (GAM) and the generalized

linear model (GLM).
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The GAM uses an adaptive approach to model the terms nonparametrically using a

scatter plot smoother. In S-Plus, the output of the GAM function gives numbers for

degree of freedom, residuals and the residual deviances. The degree of freedom

represents the total number of data points. The residual represents the difference between

the actual and simulated data and the residual deviance is the summation of the square of

the residuals. The value of the residual deviance determines how good a fit the model is.

The smaller the deviances, the better the model. The output of the GAM can estimate the

coefficients, evaluate and examine the fits. In particular, the estimated residual and partial

residual plots can be used to illustrate discrepant observations and to identify

nonhinearities.

The general form of the GAM is as follows:

where xi and fi (i=1,2,3...p) are the predictors and the transform functions of the

predictors respectively. In this study four transform functions were used with the GAM,

no transform, "poly", "s" and lo. The "poly function is a smoothing transform which

generates a basis of polynomial regression. The "s" function is a smoothing transform that

uses the spline method. The "lo" function is a scatter-plot smoothing transform and uses

the robust locally linear fit. The generalized linear model (GLM) is another modeling

function supported by S-Plus. It functions similarly to GAM except the model is fit using

iterative reweighted least squares (IRLS).
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In addition to the default output provided by GAM or GLM, there are "extractor"

functions available in S-Plus for extracting additional data. The extractor "coefficients"

extracts the transfer function coefficients for each predictor function. The "fitted"

extractor extracts the fitted model data, and "residuals" extracts the residuals. The usage

of the extractors is of the form:

coefficients(object)

residuals(object)

fitted(object)

Modeling (both GAM and GLM) was performed on the IPDIFF (impedance peak to

valley difference) data in order to fit it to the spirometer data (SPVOL). Models were

evaluated for each of the transform functions (s, poly and lo) and also with no transform in

order to determine which provided the best fit. In addition, several combinations of the

IPDIFF data were tested; each lead independently, leads I and II, leads I, II and In, leads

I, II, III and IV and lead I and IV. This was done in order to determine what leads or

combinations of leads provided the best fit. The direct results of the modeling are

presented in numerical form, specifically as residual deviances. To view the results

graphically, the fitted model must be extracted. Extracted fitted data can be plotted

against SPVOL to graphically see how well the data fits since for an exact fit the data will

be aligned in a straight line. Figures 3.5.1 and 3.5.2 show sample plots of GAM and GLM

fitted data using the lo transform function for the combination of all leads (IPDIFF of

leads I,II III and IV) respectively. It is apparent from the plots that for the case shown,

GAM provided a much better fit than did GLM.



62

Figure 3.5.1 GAM fitted data using the lo transform function for the combination of all
leads (IPDIFF of leads I,II,III and IV) for trial 21.

Figure 3.5.2 GLM fitted data using the lo transform function for the combination of all
leads (IPDIFF of leads I,II,III and IV) for trial 21.
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RESULTS AND DISCUSSION

4.1 Results and Discussion

Data were collected from a total of 6 subjects, 3 males and 3 females, varying in

age from 28 to 38. For each subject 5 sets of trial data was acquired for a total of 30 trials

identified as trial 11 through trial 40. For each subject there is one trial of data for each of

the clinical protocol methods identified as random, paced 8, paced 12, paced 18 and paced

8,12,18. The data file for trial 15 (subject 1, paced 8,12,I8) was later found to be

corrupted and unusable. Trial numbers for each subject and their associated protocol are

shown in table 4-1.

Table 4-1 Clinical trial designations (trial #'s).

SUBJECT RANDOM PACED
8

PACED
12

PACED
18

PACED
8,12,18

1 - female, age 28 11 12 13 14 15 - N/A
2 - female, age 32 16 I7 18 19 20
3 - male, age 34 21 22 23 24 25
4 - male, age 37 26 27 28 29 30
5 - male, age 33 31 32 33 34 35
6 - female, age 35 36 37 38 39 40

The data file for each trial was loaded into MATLAB with the RUNTRIAL

program and processed by the signal processing programs it called. Output data was

saved as trial**.mat (** = trial #) files for future processing. For each trial, the signal

63
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processing programs generated two sets of output data, SPVOL and IPDIFF. The

SPVOL data was a single matrix of spirometer volumes in liters, for each breath identified

by a breath number. The IPDIFF data (IP1DIFF, IP2DIFF, IP3DIFF AND IP4DIFF) was

the impedance pneumograph (IP) difference data for each of the four leads. Data for each

lead was a matrix of the expiration peak to valley differences in volts for each breath

identified by breath numbers that corresponded to breath numbers in the SPVOL data.

Plots of these data for trial 21 are combined in figure 4.1, where each lead is represented

by a different symbol. As can be observed from the figure, each IP lead yields different

amplitudes for any given breath.

Figure 4.1 IPDIFF, peak-valley differences.



65

Data analysis was necessary do determine which IP lead or combination of leads

would provide the best correlation to the SPVOL data. Since it was not known what

combinations of the IPDIFF data or what the weights for each lead should be (i.e. what

the contribution of each lead is), the data was analyzed for each lead independently and for

two methods of combining the IPDIFF leads. The two combination methods were;

calculating a simple mean using the IPMEAN program in MATLAB (no model, mean of

IPDIFF leads) and modeling in S-Plus with GAM and GLM functions. In addition,

different transform functions for the GAM and GLM were tested, including no function, s,

poly and lo transforms in order to determine the optimal model. For each of the analysis

methods, the SPVOL data was used as the accepted standard to which the results were

compared. The IPMEAN program listing used in MATLAB and examples of functions

used in S-Plus are provided in appendix 3.

As a preliminary analysis, the mean of the IPDIFF data was determined by running

the IPMEAN program in MATLAB. The correlation coefficients for the individual leads

IP2DIFF, IP2DIFF, IP3DIFF, IP4DIFF and IPMEAN Vs SPVOL were calculated using

the MATLAB function "coorcoef' and are shown in table 4-2 as r1, r2, r3, r4 and nn

respectively. It can be seen from the correlation coefficients rl-r4 and rm, that the results

are not consistent, some show good correlation's (above 0.7) while most are poor (below

0.5). Although there is no supported basis for weighting the individual leads as a mean,

the results do show that correlations for IPMEAN (rm) are generally better than those for

the individual leads. This lends support to the rational for applying the GAM and GLM

functions which combine the IPDIFF lead data and determine the best weights for each.
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Table 4-2 Correlation coefficients (r) for the non-modeled IPDIFF data for each lead
independently and IPMEAN.

Correlation coefficients for the non-modeled IPDIFF data
Trial No. IP1DIFFr1 IP2DIFF

r2
IP3DIFF

r3
IP4DIFF

r4
IPMEAN

rm
11 0.922 _ 0.798 0.799 0.904 0.907
12 0.577 -0.529 -0.2249 0.390 0.243
13 0.628 0.335 -.0092 0.708 0.790
14 0.833 0.497 0.473 -0.036 -0,748
15 N/A N/A N/A N/A N/A
16 0.678 0.638 0.526 0.608 0.628
17 -0.255 -0.694 -0.718 -0.697 -0.710
18 0.410 -0.090 0.031 0.053 0.042
19 0.219 0.292 0.131 0.375 0.295
20 0.745 -0.141 -0.489 0.263 -0.032
21 0.890 0.764 0.993 0.405 0.850
22 0.945 -.735 0.752 0.621 0.838
23 0.338 0.351 0.415 0.219 0.366
24 0.320 0.385 0.131 0.394 0.264
25 0.919 0.964 0.970 0.937 0.963
26 -0.377 -0.050 -0.052 0.569 -0.075 	 .
27 -0.239 -0.038_ -0.014 0.218 -0.027_
28 -0.090 0.026 -0.457 0.128 -0.118
29 -0.313 0.416 0.343 0.077 0.194
30 -0.047 0.708 0.789 0.774 0.584
31 0.976 0.955 0.913 0.036 -.941
32 0.932 0.855 0.817 0.217 0,935
33 0.453 0.695 0.444 -0.040 0,589
34 0.535 0.596 0.191 0.154 0.507
35 0.527 0.503 0.493 0.519 0.560
36 0.723 0.646 0.585 0.256 0.634
37 0.248 0.733 0.741 0.000 0.632
38 0.08I 0.518 0.524 0.532 0.484
39 0.392  0.632 0.592 0.513 0.615
40 0.800  0.854 0.852 0,211  0.846
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The SPVOL and IPDIFF, data for each trial was loaded into S-Plus with the "scan"

function and several versions of the models were run in order to determine which model

provides the best fit. The criterion for the best fit was the model which consistently

provides the lowest residual deviances. The GAM was tested first with no transform

function for each IP lead individually and for lead combinations IP1+IP2, IP1+IP2+IP3,

IP1+IP2+IP3+IP4 and IP1+IP4. This was then repeated for the transform functions spline

(s), poly and lo. Because the there are 30 trials and there are 32 possible combinations to

test for each trial, only the random trial for each subject was used to test the various

iterations on the GAM function. The results of the GAM function applied to the

"random" trials are provided in tables 4-3 to 4-8, from which observations can be

immediately observed. The first observation is that the GAM models which included all

four LP leads consistently provided the lowest residual deviations. The second observation

is that the lo transform for the models which included all four 1P leads (high-lighted data)

provided the lowest residual deviation as compared to the other transforms in all but one

case. The third observation is that the poly transform provided the same results as that of

no transform function.

Table 4-3 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 1, Random.

GAM
transform

IN  1P2 IP3 1P4 IP1,1P2 IP1,IP2,
1P3

IP1,1P2,
1P3,24 ,

21,114
,

No hunt. 1.487 3.599 3.595 1.805 1.462 1,461 1.461 1.314
Spline (a) 0.936 2.774 1.774 0.683 0.188 0,095 0 0.215

Poly 1.487 3.599 3.595 1,805 1.462 1.461 1.314  1.392
1.253 3.210 2.396 1.206 0.715 0.443 0.363 1.030
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Table 4-4 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 2, Random.

GAM
transform

1P1 1P2 1P3 1P4 IP1,IP2
IP1,IP2,

1P3
IP1,IP2,
1P3,IP4

IP1,1P4

No funct. 4.37 4.79 5.85 5.10 4.3I 3.89 3.85 4.36
Spline (s) 4.05 3.90 5.22 4.30 3.21 2.53 1.93 3.41

Poly 4.37 4.79 5.85 5.10 4.31 3.89 3.85 4.36
lo 4.05 4.28 5.03 4.48 3.52 2.07 	 , 3.55

Table 4-5 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 3, Random.

GAM
transform

01 1P2 1P3 IP4 IP1,1P2 IP1,1P2,
IP3

IP1,1P2,
1P3,114

IP1,IP4

No funct. 0.236 0.473 0.249 0.952 0.229 0.199  0.191 0.236
_ Spline (s) 0.169 0.423 0.182 0.836 0.133 0.071 0.025 0.111

Poly 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236
lo 0.082 0.437 0.136 0.869 0.048 0.008D 0.064

Table 4-6 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 4, Random.

GAM
transform

IP1 IP2 IP3 1P4 11'102 111 1,1P2,
1P3

IP1,1P2,IP3,IP4 IP1,1P2

No funct. 0.115  0.133 0.133 0.090 0.112 0.108 0.074 0.082
Spline (s) 0.077 0.095 0.083 0.082 0.068 0.057 0.044 0.058

Poly 0.115 0.133 0.133 0.090 0.112 0.108 0.074 0.082
lo 0.056 0.078 0.064 0.080 0.038 0.029 0.039

Table 4-7 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 5, Random.

GAM
transform

11'1 IP2 IP3 IF'4 IP1,1P2 IP1,1P2,
IP3

IP1,IP2,
1P3,IP4

1P1,1P4

No funct. 0.136 0.253 0.480 2.880 0.124 0.058 0.024 0.051
Spline (s) 0.066 0.183 0.201 0.661 0.021 0.014 0.005 0.013

Poly 0.136 0.253 0.480 2.880 0.124 0.058 0.024 0.051
lo 0.065 0.187 0.164 1.670 0.015 0.011 ,....:;:7  0.0005
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Table 4-8 Residual deviances for different transform functions used with GAM for several
[P data combinations - Subject 6, Random.

GAM
transform

1P1 1P2 1:P3 11)4 IP1,1P2 IP1,1P2,
11'3

IP1,1P2,
1P3,1P2

21,1P4

No funct. 0.554 0.677 0.766 1.080 0.554 0.5I4 0.514 0.552
Spline (s) 0.481 0.538 0.605 0.972 0.358 0.311 0.291 0.412

Poly 0.554 0.677 0.766 1.080 0.554 0.514 0.514f . 0.552
to 0.429 0.583 0.549 0.946 0.372 0.276 0.316

Models using the GLM function were tested in a similar fashion as that of the

GAM. The GLM was tested first with no transform function for each IP lead individually

and for lead combinations IP1+IP2, IP1+IP2+IP3, IP1+IP2+IP3+IP4 and IP1+IP4. This

was then repeated for transform functions spline (s), poly and lo. From the results shown

in tables 4-9 and 4-10, it can observed that the residual deviances for the GLM function

were the same as the no transform GAM data in all cases, regardless of transform.

Table 4-9 Residual deviances for different transform functions used with GLM for several
IP data combinations - Subject 1, Random.

GLM
transform

IP1 IP2 1P3 IP4 IP1,IP2 IP1,1P2,
1P3

IP1,1P2,
1P3,1P4

IP1,IP4

No funct. 1.487 3.599 3,595 1.805 1.462 1.461 1.461 1.314
Spline (s) 1.487 3.599 3.595 1.805 1.462 1.461 1.461 1.314

Poly 1.487 3.599 3.595 1.805 1.462 1.461 1.461 1.314
lo ,	 1.487 3.599 3.595 , 	 1.805 1.462 1.46I 1.461 1.314

Table 4-10 Residual deviances for different transform functions used with GLM for
several LP data combinations - Subject 3, Random. 

GLM
transform

IP1 IP2 IP3 IP4
j

IP1,1P2 IP1,1P2,
IP3

IP1,1P2,
1P3,IP4

IP1,1P2

No funct. 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236_
Spline (s) 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236

Poly 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236
lo 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236
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Based on these findings, it was determined that the GAM function used with the lo

transform (GAM-lo), for the combination of all leads (IP1-IP4), is the model of choice to

consistently provide the lowest residual deviations and therefore the best fit of the IP data

to the SPVOL data. This model was applied to the remainder of the trial data along with

the no transform model for the individual IP leads and the lead combinations for

comparison purposes. Results provided in table 4-11 show that the GAM-lo results

yielded residual deviances in the range of three to over I00 times smaller than the non-

modeled results.

In order to simplify comparison of the GAM-lo (all leads) model results in S-Plus

to the results from the simple IPMEAN calculations in MATLAB, the "fitted" coefficients

from S-Plus were extracted, saved in ASCII format using the "write" function and loaded

into MATLAB. Once in MATLAB the correlation coefficients for the S-Plus (GAM-lo)

modeled data Vs SPVOL were calculated. As can be seen from table 4-12, the correlation

coefficients for the modeled data (rs) were excellent. Almost all the data was greater that

0.90 and many were greater than 0.98. The results of the correlation coefficients for

IPMEAN (rm) Vs. SPVOL were retabulated in table 4-13 for comparison between the

two methods. From the results it is apparent that modeling of the IP data (all leads

combined) using the GAM-lo function provides very good correlations to the spirometer

volume data (SPVOL).

The results thus far only demonstrates the fact that data from the four IP leads can

be combined using non-linear modeling such that the fitted result correlates very well with

the spirometer data. Additional research is necessary determined if the weighting
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coefficients for each lead are consistent for different trials on a particular subject, or if

additional modeling is required. This information is crucial to determining if tidal volumes

can be measured consistently and accurately in the absence of the spirometer.

Table 4-11 Residual deviances for modeling of each trial using GAM, first with no
transform function and secondly for GAM-lo (combination of all four leads only).
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Table 4-12 Correlation coefficients (rs) of GAM-lo for IP1 + IP2 + 1P3 + 1P4 Vs
SPVOL.

SUBJECT RANDOM PACED 8 PACED 12 PACED 18 PACED
8,12,18

1 0.992 0.998 0.998 0.976 N/A
2 0.908 0.999 0.931 0.810 0.955
3 0.998 0.997 0.810 0.952 0.986
4 0.931 0.999 0.936 0.938 0.904
5 1.000 0.999 0.968 0.902 0.915
6 0.913 0.994 0.963 0.886 0.969

Table 4-13 Correlation coefficients (rm) of IPMEAN Vs SPVOL.

SUBJECT RANDOM PACED 8 PACED 12 PACED 18 PACED
8,12,18

1 0.907 0.243 0.790 0.748 N/A
2 0.629 -0.711 0.042 0.293 -0.033
3 0.851 0.839 0.366 0.265 0.963
4 -0.076 -0.027 -0.118 0.194 0.584
5 0.941 0.935 0.589 0.507 0.559
6 0.634 0.632 0.484 I 	 0.615 0.846
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions

The multi-lead TTI pneumograph device that was developed in this study worked very

well from a hardware and software standpoint, providing data from four simultaneously

acquired respiration leads, a lead II ECG and spirometer readings. Results of the analyzed

data shows that information from the respiration lead data can be combined in a manner

such that the result corresponds well with the spirometer data when processed in

conjunction with it. Further, it was determined that the best correlation results were

obtained when the combination of all four of the respiration leads together were modeled

using the GAM-lo function.

The study met its main objective, to design, build and test a device that can be used

to measure both electrocardiogram (ECG) and respiratory tidal volume, although

additional work is needed to make the device useful for actual HRV study applications.

For use in HRV studies the device must determine tidal volume in the absence of a

spirometer. The results of this study suggest that there is sufficient information within the

respiration lead data for this to be possible. Additional data processing is needed in order

to use the modeling results obtained in this study, to obtain for each subject, a best fit

model that is not spirometer dependent. In this way, for each subject, a model can be

created during a calibration phase using a spirometer and then be applied to impedance
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data on successive trials with the spirometer removed. The quality of the fit will

determine the accuracy of the tidal volume determinations.

5.2 Suggestions

As this study focused on the development of the multi-lead TTI pneumographic device,

many questions have been answered, but additional data analysis is necessary make the

overall method useful for HRV studies. Suggestions for future research includes the

following:

• Continue the development of the data analysis modeling so that the tidal volume may

be determined in the absence of a spirometer. Ideally, the spirometer should only be

used for calibration purposes at the beginning of trials for each subject.

• It was suspected that errors introduced for low tidal volumes that may have affected

some of the results. This may be due to signal to noise considerations since low

volumes produce much lower impedance signals. This spirometer is a known source

of error since it only has a resolution of only 50 mL. This can lead to large percentage

errors for low tidal volumes. It is strongly recommended that another type of

spirometer be used, one which has a much finer resolution for measuring small volume

changes and possibly both inspiration and expiration volume readings.

• Testing with additional subjects is recommended to better validate the results obtained

in this study.
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• As part of their clinical protocol, researchers may wish to include the subjects in

different postures such as standing or lying down, as well as tests involving motion

such as cycling or walking.

• If it is determined that noise from motion artifacts overly corrupts the data, it may be

desirable to modify the hardware to convert the multi-lead TTI pneumograph circuitry

from a bipolar to a tetra polar configuration.

• Further investigations should attempt to minimize the number of leads required in

order to simplify the clinical protocol and increase patient comfort yet maintain good

data.

• Investigate the many variables associated with different electrode types as well as

electrode placement sites and preparation for possible improvements.
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APPENDIX 1

Engineering Drawings



Front-End Schematic - 1 of 5
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Front-End Schematic - 2 of 5
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Front-End Schematic - 3 of 5
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Front-End Schematic - 4 of 5
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Front-End Schematic - 5 of 5



Front-End Cable wiring - I of 1
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Front-End Assembly Drawing - Main bd.
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Front-End Assembly Drawing - BLR bd.
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Front-End Enclosure - Front Panel

85



86

Front-End Enclosure - Rear Panel
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APPS I IX 2

Front End Theory of Operation

A2.1 Overview

The front end circuitry is divided into five main sections, the respiration channel, the ECG

channel, the spirometer channel, control logic and power supply. Each section is

organized by functional blocks. For better understanding, refer to figure 2.3.1 in section

2.3 and the schematics located in appendix 1.

A2.2 Theory of Operation - Respiration Channel

A2.2.1 TTI 50 Khz Oscillator

The TTI oscillator composed of U1-A and its associated components is a form of a Wein-

bridge oscillator. The frequency of oscillation is set by the RC pairs R1-C1 and R2-C2.

The output of U1-A is a quasi-sinewave at 50 Khz with an amplitude of 22VP-P. This

signal is applied to the xi inverter U1-B and is also AC coupled to one side of the primary

of transformer XFMR1. The output of U1-B is AC coupled to the other side of the

primary of )(RAM to form a bridge type differential drive. The transformer XFMR1

provides a relatively constant load for the oscillator which is required to prevent it from

stopping from running due to load changes. The secondary of XFMR1 is center tapped

with the tap being driven with a guard signal common for noise reduction. The two

outputs of the secondary provide the 50 Khz TTI oscillator signal at 44VP-P to the TTI

output lead select circuitry. The outputs of Ul-A&B are also applied to the TTI Test
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Reference circuit which is formed by the differential divider of R7 through R11. This test

reference signal is trimmed by pot. R8 and can be used for calibration and test purposes.

A2.2.2 TTI Output Lead Selection and Defibrillation Protection

The secondary of transformer XFMR1 is applied to the commons of analog switches U2

and U3. These DG508A switches are 1:8 multiplexers with make before break operation

that can operate on supplies up to +/-18V. The four low order outputs of both U2 and U3

are wired common so that the differential signal can be selectively applied to any

combination of the four respiration electrodes. Independent selection of the (+) and (-)

outputs is provided for by the separate control lines I+LDSEL* and I-LDSEL*. The four

outputs are protected from defibrillation potentials by the diode clamping network of D3

through D18. The series output resistors R12 through R23 provide current limiting for

patient safety and clamping as well as a high source impedance for the TTI oscillator. In

this way, the TTI oscillator appears as a constant current source since the voltage is high

and the source impedance is high as compared to the low load impedance the body

presents. The outputs are AC coupled to the patient cable electrodes by capacitors

C5,C6,C7 and C8.

A2.2.3 TTI Input Lead Selection and Defibrillation Protection

Inputs from the respiration electrodes are first protected against defibrillation potentials by

spark-gaps SG1-SG5 and current limiting resistors R36,R38,R40 and R42 which limit the



89

signal to 90V. The diode clamping circuits at the inputs of input buffers U5-A, U5-B, U5-

C and U5-D perform further protection by clamping to the +/- supply rails.

A2.2.4 Guard Lead Drive

The outputs of buffers U5-A,B,C and D are summed together at the X2 summing

amplifier U4-B. The output of U4-B is AC coupled to the X1 inverter of U4-C whose

output is applied to the center tap of transformer XFMR1. The output of U4-B is also

applied to the X3.5 non-inverting amplifier of U4-A. The output of U4-A is current

limited by R33 and protected from defibrillation potentials by diode clamps D19 and D20

along with spark gap SG1 and R35.

A2.2.5 TTI Input Lead Select and Instrumentation Amplifier

The TTI input selection operates in the same way as the output selection. U6 and U7 are

DG508A 1:8 multiplexers with their four low order inputs wired common so that the

differential signal can be selected from any combination of the four respiration input

buffers. Independent selection of the (+) and (-) inputs is provided for by the same control

lines as the output selection ( I+LDSEL* and I-LDSEL*) so that the input selection

automatically matches the output selection. The TTI test reference signal is applied to

input 8 of U6 and U7 for test purposes. The selected outputs of U6 and U7 are applied to

the input of the TTI instrumentation amplifier U11. Amplifier U11 was chosen as an

INA110 because it can handle the high frequency TTI signal and provides a relatively

clean output. The gain of U11 is configured for X10 by connecting U11-3 to U11-13.
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A2.2.6 X-10 and Programmable TTI Gain

The output of U11 is AC coupled to the fixed gain X-10 amplifier of U12-B whose output

is applied to the programmable gain amplifier of U12-D. The TTI gain is set ,by analog

switches U10-A and U10-B which switch in resistors in parallel to the feedback resistor of

U12-D. The gain at U12-D is delectable as X-1, X-2 or X-4 and is controlled by control

lines ITTIGAINO and ITTIGAIN1 for an overall gain of X100, X200 or X400 (non-

inverted). This programmable gain allows the TTI signal amplitude to be optimally

amplified to compensate for differences in electrode to skin impedance as needed for each

patient or trial.

A2.2.7 ECG Reject :1 1 F, Envelope Detector and 500 Hz LPF

The amplified signal from U12-D is applied to the 2-pole 1KHz high pass filter formed at

U12-C which provides rejection of any ECG signal that may be riding on the recovered

TTI signal. The output of U12-C is the Amplitude Modulated (AM) TTI signal. The

respiration signal is actually the AM signal envelope is that which is desired from the TTI

signal. To recover this information the output of U12-C is applied to the simple AM

envelope detector composed of D50, R63 and the 2-pole 500Hz Low Pass Filter of U27-

D. The cutoff frequency of this LPF was kept high because the respiration channel is

multiplexed at a 25Hz rate with four sub channels (leads) and mixing of the channels

would otherwise occur.
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A2.2.8 Respiration Base-Line Recovery

The output signal of U27-D is the composite respiration signal. The respiration signal by

it's nature is a very low frequency signal that may have base-line wander due to such

factors as motion artifact. Because of the relatively high gain in the circuitry, it is

necessary to have Base-Line Recovery (BLR) to limit this wander and prevent the signal

from going into saturation. Simple AC coupling is not acceptable, active circuitry is

required. In addition, because there are four respiration leads that are multiplexed onto

the single respiration channel by switching the lead selection during acquisition, the

individual respiration sub-channels each require their own BLR circuits.

The composite respiration signal from U27-D is applied to the common of U30-A

which is a dual 1:4 analog switch. The input common is switched to the appropriate one

of four BLR channels by the IBLRSEL* controls. Each BLR channel consists of a sample

and hold, a 2-pole 25Hz low pass filter and BLR circuit. The first respiration sub-channel

is inputted to the sample and hold circuit consisting of C210 and buffer U31-A. This

circuit holds the signal when the input is switched to the other BLR channels in order to

minimize decay of the BLR signal. The output of U31-A is filtered with the 2-pole 25Hz

LPF circuit of U31-B to remove unwanted noise outside the respiration bandwidth. The

output of U31-B is inputted to U31-C as a normal inverting amplifier however, the non-

inverting terminal is fed by the output of the integrator U31-D which forms a feedback

loop since the input to the integrator is the output of U31-C. The effect of the integrator

is to pull the output of U31-C towards 0V or baseline. There are two input paths to the

BLR integrator. The normal path is though R204, where the high pass time constant is
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set by the RC combination of R214 and the C216, C217 combination times the non-

inverting gain of U31-C and is typical near DC at approximately 0.05Hz. The second path

is a fast recovery path which speeds up the time constant for large offsets, such as when

the signal goes into saturation. Fast recovery is active only when the output of U31-C is

large enough such that the signal divided by R205, R207 is large enough to forward bias

either D100 or D101 through R206. The recovery is speeded up because the R

component of the RC combination is now R216 which is considerably lower in value than

R214. The operation of BLR channels 1,2 and 3 are identical utilizing U32, U33 and U34

respectively. The outputs of the four BLR channels are applied to U30-B for multiplexed

selection to the common output at U30-3. The BLR output selection controls and

operation are the same as for BLR input selection so that the input and output selections

automatically match. The enable input of U30 is controlled by the IBLREN line. The

enable is set high for a short period to disconnect the analog switches between BLR

channel selections to prevent switching transients from degrading the signals.

A2.2.9 Programmable Respiration Gain

The selected output of U30-B (BLROUT) is inputted to the programmable gain amplifier

of U27-A. The respiration gain is set by analog switches U28-A and U28-B which switch

in resistors R145 and R146 in parallel to the feedback resistor of U27-A (R140). The gain

at U27-A is selectable as X-5, X-10 or X-20 and is controlled by control lines

IRESGAINO and IRESGAIN1. This programmable respiration gain allows the signal
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amplitude to be optimally amplified for good signal to noise without causing saturation as

needed for each patient or trial.

A2.2.10 Respiration Opto-Isolator Input

The selected output of U27-A (ISORESP) is inputted through divider R109-R110 to the

amplifier of U13-B where a DC offset bias is injected. The output of U13-B is 0.2X

ISORESP and potentiometer R111 is adjusted for a +0.51V offset at U13-7 so that the

signal is scaled and biased within the opto-isolator's linear region. This signal is applied to

the opto drive circuit of U13-C which drives optocoupler U18' s LED with feedback from

it's internal feedback photodiode. The linear optocoupler provides the required electrical

isolation as it is only optically coupled to its output photodiode

A2.2.11 Respiration Opto-Isolator Output

The signal received at the output photodiode of U18 is inputted to the variable gain

amplifier of U17-B. Potentiometer R120 is adjusted for a X1 gain at U17-7 with respect

to U13-7. The output of U17-B is inputted to noninverting amplifier U17-C where the

offset is null'ed by adjusting potentiometer R122. The output signal of U17-C is further

amplified by the X2 noninvertring amplifier of U14-A which gives an overall gain of X2

for the transfer of signal ISORESP from the isolated to the non-isolated circuitry.
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A2.2.12 Respiration 60Hz Notch Filter

The circuitry of U14-C&D forms a driven Twin-T notch filter. The frequency setting

components were precisely measured and selected to achieve a very high Q response with

the notch centered at 60Hz. This circuit provides additional 60Hz noise rejection if

needed or can be bypassed by jumping J2 pin 1 to pin 2. For this study the notch filter

was bypassed because the high frequency of the multiplexed signal caused ringing.

A2.2.13 Respiration Output

The respiration output signal RESPOUT is wired to the front panel RESP OUT BNC jack

and to the DB37 connector for connection to the CIO-DAS08 card at AID CH0. This

signal is time-division multiplexed with the respiration signals from the four respiration

leads (electrode pairs). It is bipolar with a full scale of +/-5V and a typical signal

amplitude of 0.5 to 2VP-P.

A2.3 Theory of Operation - ECG Channel

A2.3.1 ECG Input Defibrillation Protection and Buffers

Inputs from the ECG electrodes (ECG-RA & ECG-LL) are first protected against

defibrillation potentials by spark-gaps SG6 and SG7 and current limiting resistors R66 and

R67 which limit the signal to 90V. The diode clamping circuits at the inputs of input

buffers U27-B and U27-C perform further protection by clamping to the +1- supply rails.
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A2.3.2 ECG Instrumentation Amplifier and 100Hz LPF

The outputs of buffers U27-B and U27-C (ECGDIFF(+/-) are applied to the input of the

ECG instrumentation amplifier U8. Amplifier U8 is a low-power high-accuracy

instrumentation amplifier that provides a minimum of 90dB of common mode rejection.

The gain of U8 is configured for X10 by connecting U8-2 to U8-6 and U8-7. The output

of U8 is filtered by the 2-pole unity gain 100Hz Low Pass Filter (LPF) which filters out

the high frequency TTI oscillator signal that is picked up at the electrodes and leaves the

ECG signal.

A2.3.3 Calibration Generator and Select Switch

Voltage reference D39 provides a -1.25V reference to pin 4 of analog switch U10-C. The

output of U10-C is divided by the divider network of R48, R49 and R50 and inputted to

the inverting input of X50 amplifier U9-C. The noninverting pin of U9-C is sourced by

the common of analog switch U28-C and is selected by control line ICCLSEL such that

either the filtered ECG signal from U9-C or iso-ground is applied. Potentiometer R48 is

adjusted for 0.50V at the output of U9-C (ISOECG) with both ICALSEL and ICCLCLK

set to low. When the control line for U10-C (ICALCLK) is clocked and ICALSEL is set

low (Cal.), the output of U9-C is a 0 to 0.5 V calibration signal corresponding to lm

Relative To the Input (RTI).
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A2.3.4 ECG Base Line Recovery

The output of U9-C (ISOECG) is inputted to the BLR circuit of U9-B which forms a

feedback loop since the output of the BLR circuit is fed back to the COM terminal of the

instrumentation amplifier. U9-B is configured as an integrator. The effect of the

integrator is to pull the output of U9-C towards OV or baseline. There are two input paths

to the BLR integrator. The normal path is through R55, where the high pass time

constant is set by the RC combination of R55 and the C26, C26 combination is

approximately 0.5Hz. The second path is a fast recovery path which speeds up the time

constant for large offsets, such as when the signal goes into saturation. Fast recovery is

active only when the output of U9-C is large enough such that the signal divided by R53,

R54 is large enough to forward bias either D40 or D41 through R56. The recovery is

speeded up because the R component of the RC combination is now R56 which is

considerably lower in value than R55.

A2.3.5 ECG Opto-Isolator Input

The output of U9-C (ISOECG) is inputted through divider R92-R93 to the amplifier of

U13-A where a DC offset bias is injected. The output of U13-C is 0.2X ISOECG and

potentiometer R94 is adjusted for a +0.51V offset at U13-1 so that the signal is scaled and

biased within the opto-isolator's linear region. This signal is applied to the opto drive

circuit of U13-D which drives optocoupler U16's LED with feedback from it's internal

feedback photodiode. The linear optocoupler provides the required electrical isolation as

it is only optically coupled to its output photodiode
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A2.3.6 ECG Opto-lsolator Output

The signal received at the output photodiode of U16 is inputted to the variable gain

amplifier of U17-A. Potentiometer R103 is adjusted for a XI gain at U17-1 with respect

to U13-1. The output of U17- A is inputted to X5 noninverting amplifier U17-D where

the offset is nulled by adjusting potentiometer R105. The output signal of U17-A is

further amplified by the X2 noninvertring amplifier of U15-B which gives an overall gain

of X2 for the transfer of signal ISOECG from the isolated to the non-isolated circuitry.

A2.3.7 ECG 60Hz Notch Filter

The circuitry of U15-C&D forms a driven Twin-T notch filter. The frequency setting

components were precisely measured and selected to achieve a very high Q response with

the notch centered at 60Hz. This circuit provides additional 60Hz noise rejection if

needed or can be bypassed by jumping J2 pin 1 to pin 2. For this study the notch filter

was used.

A2.3.8 ECG Output

The ECG output signal ECGOUT is wired to the front panel ECG OUT BNC jack and to

the DB37 connector for connection to the CIO-DAS08 card at A/D CH1. The ECG

signal has an overall gain of 1000 RTI (1mV=1V) and is bipolar with a full scale of +/-

5V.
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A2.4 Theory of Operation - Spirometer Channel

Because there is no electrical or conductive connections between the spirometer and

patient, there are no isolation requirements and the spirometer's output is able to connect

directly to the non-isolated portion of the front-end circuitry. There are two input jacks

provided to accommodate two types of spirometer outputs. The 3.5mm stereo jack

labeled SPIROMETER POT is for spirometers with isolated potentiometer outputs. The

voltage at the input to buffer U15-A is set to +5.0V by pot R155 which forms a voltage

divider on the +10.0VREF line. The output of buffer U15-C supplies the high side of the

spirometer's potentiometer (SPIROPOTHI) and the low side is tied to analog ground

(SPIROPOTLO). In this configuration the wiper of the spirometer's potentiometer

provides a voltage between 0 and +5V corresponding to it's mechanical position which

relates to respiration. This signal (SPIROPOTW) is inputted directly to AID channel 2.

Capacitor C204 provides noise suppression.

The 3.5mm mono jack labeled SPIROMETER Tit is for spirometers with TTL

transition outputs. Because this type of input does not require any drive circuitry, the

TTL signal (0 to +5V) is wired directly to the SPIROPOTW line and is inputted to A/D

channel 2 the same as for the potentiometer type spirometer. This is allowed since only

one type spirometer is used at a time.

A2.5 Theory of Operation - Control Logic

All of the front-end digital control logic, both Input and Output (I/0) is wired to the CIO-

DAS08 card through the PIO DB37 cables. The I/O on the CIO-DAS08 card is provided
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by an 8255 which is a programmable peripheral that has 24 bits of I/0 on three ports and

by four dedicated outputs and three dedicated inputs. All of the logic levels are standard

TTL (0 to 5V). Fourteen bits of the programmable I/O is used as outputs for control of

the front-end circuitry. One dedicated digital input (DIN1 is used and is wired directly to

the event marker jack. No control logic is utilized on the non-isolated portion of the

front-end circuitry and therefore must be transferred to the isolated portion. To

accomplish this, the controls are inputted ULN2003 open collector drivers U22 and U23.

The outputs of U22 and U23 are wired the cathodes of optocouplers U19, U20, U21 and

U29 and resistor arrays R145 and R152 are wired to the anodes. When one of the

outputs used from the CIO-DAS08 is TTL high, the output of the associated ULN2003

gate goes low which turns on the led of the associated optocoupler. This turns on its

paired phototransistor which pulls the isolated control line low. By this gating sequence

there is a net inversion of logic levels from the output of the CIO-DAS08 to the isolated

control. Logic high on the isolated side is pulled up by the +6.6VI supply through resistor

arrays R144 and R151. Isolated controls are labeled the same as their associated non-

isolated controls with the addition of an '1" prefix to designate them as isolated.

A2.6 Theory of Operation - Power Supply

There are two power supply sections for the front-end circuitry, one for the isolated

section and one for the non-isolated section. The power source for the isolated section is

a single LP5 12.0V l.0AHr NICd battery pack. The battery is external to the front-end

enclosure and is connected at the 1.3mm DC jack BCTTERY connector. The battery
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connections are switched by the DPDT power switch where OFF disconnects the battery,

ON connects the battery to the front-end circuitry and CHARGE connects the battery to

the CHARGER jack through a 200 ohm current limiting resistor. To charge the battery, a

24VAC Wall Adapter Module (WAM) is connected to the 2.1mm CHARGER jack and

the power switch is set to CHARGE. The current limiting resistor sets the charge rate to

approximately Capacity/16 or 60mA which is a trickle charge rate and can be applied for

extended periods of time. When the battery is charging, the CHARGE LED is lit.

When the power switch is in the ON position, the battery power is applied to the

+12W circuit and is indicated by the BATTERY LED. In addition to supplying some

circuits directly, the +12VI supply powers linear regulator U24 and inverter U26.

Regulator U24 is a positive 6V regulator with its ground reference connected through

diode D44 which raises the output of U24 to 6.6V. The output of U24 is the source for

the +6.6W supply. U26 is charge-pump type voltage inverter which generates the -12W

supply by inverting the +12VI supply. The -6.6VI supply is generated similarly from the

+6.6VI supply by U25 which is a high output (100mC) charge-pump inverter. These four

voltage supplies power the entire isolated section of the front-end.

The power supply for the non-isolated section of the front-end circuitry is the

computers switching power supply. The +12VPC, -12VPC, +5VPC, -5VPC and

+10.0VREF voltages are passed through the CIO-DAS08 card and DB37 cables to the

front-end. No additional regulation is required, the only circuitry is filter capacitors

C201,C202 and C203. Computer power is indicated by the COMPUTER LED. The

power distribution and pin-outs for the integrated circuits are shown in the two tables on

page four of the front end schematic.
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ACQ :I' .CPP PROGRAM

/* ACQ2_0.CPP 10/26/94 - SPIRO @50Hz, RESP1-4 @ 25Hz, ECG AT 100Hz */

#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <cb.h>

#define MAXSAMPLE 2250

FILE *out;
int i = 0;
int j;
int k=0;
int Datapoint = 0;
int BoardNum = 0;
int PortNum, Direction, DataValue;
char ch;

unsigned
Resp 1[MAX SAMPLE],Resp2 [MAXSAMPLE],Resp3 [MAXSAMPLE], Resp4 [MAX SA
MPLE];
unsigned ECG[8*MAXSAMPLE], Spiro[2*MAXSAMPLE];
unsigned *Resplptr,*Resp2ptr,*Resp3ptr,*Resp4ptr;
unsigned *ECGptr,*Spiroptr;

#define ADCBCSE 0x3 00

void Sdelay(int interval) 7* short delay, depends upon CPU speed */
{ for(k=0; k<interval; k++);
}

void ADCIn(int BoardNum,int Channel,int Gain,unsigned *OUTptr) /* ADC format */
{ int k;
outportb(CDCBASE+2,(char) Channel); /* set mux ch */
Sdelay(1); /* delay to allow signal to stablize from mux to ADC */
outportb(CDCBASE+1,0); /* initiate 12bit conversion */
k=0; while(((inportb(ADCBASE+2)&0x80)---0x80)&&(k<10000)) k++; /* test for

EOC = 0 */
if(k<10000)
{ *OUTptr = (unsigned)(inportb(ADCBASE+1) * 256 + inportb(ADCBASE)) >> 4;
}
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else
( printf(" \n	 ** ERROR ** ADC Conversion fail 	 ");

*OUTptr = 0xffff,
BoardNum = Gain; /* dummy code */
Gain = BoardNum; /* dummy code */
getch();

}

void plot(void)
{ int gdriver = DETECT, gmode, errorcode;

int xmax, ymax,xpos,ypos;
int j;
/* initialize graphics and local variables */
initgraph(&gdriver, &gmode, "");
/* read result of initialization */
errorcode = graphresult();
/* an error occurred */
if (errorcode != grOk)
{ printf("Graphics error: %s\n", grapherrormsg(errorcode));

printf("Press any key to halt");
getch();
exit(1);

}

setcolor(getmaxcolor());
xmax = getmaxx();

/* ymax = getmaxy(); */
/* draw ECG waveform */

outtext("ECG");
moveto(0, 120-(long)(ECG[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE*8; i++)
( lineto(xpos,120-(long)(ECG[i])*120/4096+ypos);
if(++xpos>=xmax)
{ j++; xpos=0; ypos=120*j; if(ypos==360) ypos--;

moveto(0, 120-(long)(ECG[i+1])*120/4096+ypos); i++;
if(j>3)

{ j=0;
getch();
clearviewport();
moveto(0, 120-(long)(ECG[i+1])*120/4096); ypos=0;

}

}

getch();



/* draw Spiro waveform */
clearviewport();
outtext(" Spiro");
moveto(0, 120-(1ong)(Spiro[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE*2; i++)
{ lineto(xpos,120-(long)(Spiro[i])*120/4096+ypos);

if(++xpos>=xmax)
j++; xpos=0; ypos=120*j; if(ypos==360) ypos--;

moveto(0, 120-(long)(Spiro[i+1])*120/4096+ypos); i++;
if(j>3)

( j=0;
getch();
clearviewport();
moveto(0, 120-(long)(Spiro[i+1])*120/4096); ypos=0;

}

}

}

getch();
/* draw Resp 1 waveform */

clearviewport();
outtext("Resp1");
moveto(0, 120-(long)(Resp1[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE; i++)
{ lineto(xpos, 120-(long)(Resp 1 [i])*120/4096+yp os);

if(++xpos>=xmax)
j++; xpos=0; ypos=120*j; if(ypos==360) ypos--;

moveto(0, 120-(long)(Resp1[i+1])*120/4096+ypos); i++;

if(j>3)
( j=0;
getch();
clearviewport();
moveto(0, 120-(long)(Resp1[i+1])*120/4096); ypos=0;

}

}

}

getch();
/* draw Resp2 waveform */

clearviewport();
outtext("Resp2");
moveto(0, 120-(long)(Resp2[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE; i++)

lineto(xpos,120-(long)(Resp2[i])*120/4096+ypos);
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if(++xpos>=xmax)
j++; xpos=0; ypos=120*j; if(ypos==360) ypos--;

moveto(0, 120-(long)(Resp2[i+1])*120/4096+ypos); i++;
if(j>3 )
{ j=0;
getch();

clearviewport();
moveto(0, 120-(long)(Resp2[i1])*120/4096); ypos=0;

}

}

getch();
/* draw Resp3 waveform */

clearviewport();
outtext("Resp3");
moveto(0, 120-(1ong)(Resp3[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSCMPLE; i++)
{ lineto(xpos,120-(long)(Resp3[i])*120/4096+ypos);

if(++xpos>=xmax)
{ j++; xpos=0; ypos=120*j; ifypos==360) ypos--;

moveto(0, 120-(long)(Resp3[i+1])*120/4096+ypos); i++;
if(j>3)

{ j=0;
getch();
clearviewport();
moveto(0, 120-(long)(Resp3[i+1])*120/4096); ypos=0;

}

}

}

getch();
/* draw Resp4 waveform */

clearviewport();
outtext("Resp4");
moveto(0, 120-(long)(Resp4[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE; i++)
{ lineto(xpos,120-(long)(Resp4[i])*120/4096+ypos);

if(++xpos>=xmax)
j++; xpos=0; ypos=120*j; if(ypos==360) ypos--;

moveto(0, 120-(long)(Resp4[i+1])*120/4096+ypos); i++;

if(j>3)
{ j=0;
getch();

clearviewport();
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moveto(0, 120-(long)(Resp4[i+1])*120/4096); ypos=0;

}

}

getch();
/* clean up */
closegraph();

}

void main(void)
Resp 1ptr = Resp 1;
Resp2ptr = Resp2;
Resp3ptr = Resp3;
Resp4ptr = Resp4;
ECGptr = ECG;
Spiroptr = Spiro;
for(i=0; i<MAXSAMPLE; i++)
{ Resp I [i]=Resp2[i]=Resp3[i]=Resp4[i]=Spiro[i*2]=Spiro[i*2+1]=0;
for(j=0;j<8j++)

ECG[i*8+j]=0;
}

PortNum = FIRSTPORTB;
Direction = DIGITALOUT;
DataValue = 0;
cbDConfigPort (BoardNum, PortNum, Direction);
cbDConfigPort (BoardNum, FIRSTPORTA, Direction);
cbDOut (BoardNum, FIRSTPORTA, 10); /* RESP gain=m, TTI gain=m */
clrscr();
printf("\n\n\n\n\n 	 Allow at least 15 seconds for baseline to stabilizer);

printf("\n\n\n	 When ready .... ");
printf(" \n\n\n	 Press any key to START data acquisition .... ");

while(!kbhit())
switch(i)

case 0:
DataValue = 222; /* 222 LD I, SW X*/
cbDOut (BoardNum,, PortNum, DataValue);
delay (3);
DataValue = 223; /* 223 LD I, SW 0*/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);
DataValue = 222; /* 222 LD I, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

break;
case 1:

DataValue = 156; /* 156 LD 11, SW X*/
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cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 157; /* 157 LD, H SW 1*/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);
DataValue = 156; /* 156 LD H, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

break;
case 2:

DataValue = 146; /* 146 LD III, SW X*/
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 147; 1* 147 LD III, SW 2*/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);
DataValue = 146; Pk 146 LD ID, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

break;
case 3:

DataValue = 136; /* 136 LD IV, SW X*/
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 137; /* 137 LD IV, SW 3*/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);
DataValue = 136; /* 136 LD IV, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

break;

}

if(++i==	 4) i=0;

if(kbhit()) getch(); 	 /*acquisition start*/
clrscr();
printf("\n\n\n\n\n\n\n\n 	 Acquiring data !");
printf("n\n\n\n 	 Press any key to CANCEL data acquisition ......");
while((!kbhit())&&(Datapoint<MAXSAMPLE))

switch(i)
( case 0:

ADCIn(BoardNum, 2, 0, Spiroptr); /* read Spirometer channel */
Spiroptr++;
DataValue = 222; /* 222 LD I, SW X */ /* select lead & disable BLR sw */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 223; /* 223 LD I, SW 0 */ /* enable BLR sw */
cbDOut (BoardNum, PortNum, DataValue);
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delay (2);
ADCIn(BoardNum, 1, 0, ECGptr); 	 /* read ECG CH */
ECGptr++;

delay (2); 	 /* delay to center of good data */
ADCIn(BoardNum, 0, 0, Resp1ptr); /* read RESP1 CH *1
Resp1ptr++;

delay (3);
ADCIn(BoardNum, 1, 0, ECGptr); 	 /* read ECG CH */
ECGptr++;

DataValue = 222; /* 222 LD I, SW X */ /* disable BLR sel sw */
cbDOut (BoardNum, PortNum, DataValue);

break; 	 /* repeat for next RESP leads */
case 1:

DataValue = 156; /* 156 LD II , SW X */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 157; /* 157 LD, II SW 1 */
cbDOut (BoardNum, PortNum, DataValue);
delay (2);
ADCIn(BoardNum, 1, 0, ECGptr);

ECGptri++;
delay (2);
ADCIn(BoardNum, 0, 0, Resp2ptr);
Resp2ptr++;

delay (3);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr I ;

DataValue = 156; /* 156 LD 11 , SW X */
cbDOut (BoardNum, PortNum, DataValue);

break;
case 2:
ADCIn(BoardNum, 2, 0, Spiroptr); /* read Spirometer channel */
Spiroptr I I;
DataValue = 146; /* 146 LD III, SW X */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 147; /* 147 LD III, SW 2 */
cbDOut (BoardNum, PortNum, DataValue);
delay (2);
ADCIn(BoardNum, 1, 0, ECGptr);

ECGptr++ 	 ;
delay (2);

ADCIn(BoardNum, 0, 0, Resp3ptr);
Resp3ptr

delay (3);

10
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ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;

DataValue = 146; /* 146 LD III, SW X */
cbDOut (BoardNum, PortNum, DataValue);

break;
case 3:
DataValue = 136; /* 136 LD IV, SW X */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 137; 1* 137 LD IV, SW 3 */
cbDOut (BoardNum, PortNum, DataValue);
delay (2);
ADCIn(BoardNum, 1, 0, ECGptr);

ECGptr++-;
delay (2);

ADCIn(BoardNum, 0, 0, Resp4ptr);
Resp4ptr++;

delay (3);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;

DataValue = 136; /* 136 LD IV, SW X */
cbDOut (BoardNum, PortNum, DataValue);
Datapoint++; /* last case, increment # of samples taken */

break;

}

if(++i == 4) i=0;

}

if(kbhit()) getch();	 /* end of acquisition*/
/* plot waveform */

plot();
printf("\n\n\n\n\n\n\n 	 Save data to file: TRIALX.DAT ? [Y/N] ");

scanf("%c",&ch);
if((ch=='y')|| (ch=='Y'))
{ /* open file and save data in file */
if ((out = fopen("TRIALX.DAT", "wt"))== NULL)
{ printf("Cannot open TRIALX.DAT file.\n");

else
{ /*fprintf(out,"Spiro Resp 1 Resp2 Resp3 Resp4 ECG\n");*/ /*OPTIONAL TITLE

FOR EACH COLUMN*/
fprintf(out,"%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d %-

7d",
MAXSAMPLE,0,0,0,0,0,0,0,0,0,0,0,0,0);

fprintf(out,"\n");
for(i=0; i<MAXSAMPLE; i++)



fprintf(out," %-7d%-7d%-7d%-7d%-7d%-7d" ,
Spiro [i*2], Spiro [i*2+ 1],Resp 1 [i],Resp 2 [i],Resp3 [i],Resp4[i]);

for(j=0;j<8j++)
fprintf(out," %-7d",ECG[i* 8+j]);

fprintf( out," \n");
}

fclose(out);

}

}

}
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MATLAB PROGRAMS

% RUNTRIAL.M

% This is the main batch program for the MCTLAB programs

clear all;
load c:\patikrial**.dat;

clear trial**;
pack;
sprun;
iprun;
ecgrun;
clear trial
pack
save trial**,
ipmean**--=ipmean;
spvol* *=spool;
rm**=rm;
save cordat40 ipmean40 spvol40 rm40;
%corrplot;
clear all;
pack;
%end

% SPRUN.M
%	 This is the batch program for the spirometer
%	 signal processing programs.

spload;
sprange;
spindex;
spvol;
%clear spiro;
clear sprange;
pack;
%end
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% SPLO J: .M
% THIS PROGRAM LOADS THE SPIROMETER DATA FROM TWO
% COLUMNS ANS SCALES IT.
maxsample=trial(1,1);	 % loads number of samples per column from data
spiro=zeros((maxsample)*2,1);	 % initalizes spiro to one column
for i=1:(maxsample),	 % trial row 1 is invalid

spiro((i*2)-1)=trial(i+1,1)1409.6-5.0; % loads and scales data by
spiro(i*2)=trial(i+1,2)/409.6-5.0; % alternating columns

end
spsample=maxsample*2; 	 % defines total number of spiro samples
for i=1:sp sample,

if spiro(i,1)>2	 % scales data to 1 or 0 based on a threshold
spiro(i,1)=1;

else
spiro(i,1)=0;

end
end
%end of program

% SPRANGE.M
% THIS PROGRAM FINDS THE RANGES OF INSPIRATION (0)
% AND EXPIRATION (1) OF THE SPIROMETER DATA.
sprange=zeros(spsample,1);
sprange(1, 1)=spiro(1, 1); 	 % initalize first data point
k=0;
for i=1:(spsample-51),

if (spiro(i) + spiro(i+1))=1 % true = transition
for j=1:50,	 % tests over the next 1 sec. of data
if (spiro(i+1) + spiro(i+1+j))==1

k=(k+1);
else
end

end
if k=0

sprange(i+1)=0;	 % Transition to inspiration.
else

sprange(i+1)=1;	 % Transitions detected.
k=0;

end
else

sprange(i+1)=sprange(i); 	 % No transition.
end

end
%end of program
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% SP I I ELM
% THIS PROGRAM INDEXES EACH SPIROMETER BREATH AND ITS
ASSOCIATED
% INSPIRATION AND EXPIRATION.

bn=0;	 % initialize breath number
for i=3 :spsample-52,

if sprange(i) + sprange(i+1)==1 % tests for transition in range
if sprange(i+1)==0

bn=bn+ 1 ;
spinstart(bn)=i+1; % finds start of inspiration

elseif bn> 0
sp exstart(bn)=i+ 1; % finds start of expiration

else	 % skips if first insp not found yet
end

else
end

end
totalnb=bn- 1; 	 % total valid breaths indexed
for j= 1 :bn- 1,

spinend(j)=spexstart(j); 	 % finds end of inspiration
spexend(j)=spinstart(j+1); % finds end of expiration

end
% end of program.

% SPVOL.M
% THIS PROGRAM COUNTS THE SPIROMETER EXPIRATION TRANSITIONS
% AND CACULTAES THE VOLUME FOR EACH BREATH IN SPIRO USING
% INDEXES FROM INDEX.
%bn = breath number
%tot alnb = total number of breaths
spvol=zeros(totalnb- 1,1);
for bn=1:totalnb- 1,

count(bn)=0;
for i=(spexstart(bn)-2):(spexend(bn)+2),

if spiro(i) + spiro(i+1)==1	 % tests for transition
count(bn) = count(bn)+1;
else
end

end
spvol(bn)=count(bn)*0.05; % vol 	 11 	 of transitions x .05L

end

% end of program.
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%
ipload;
ipinterp;
ipfilt; 	 % filtered data (comment out for -unfiltered)
ipindex;
clear ipx;
ipdiff;
%ipcomp;
ipmean;
pack;

% IPLO I.31
% THIS PROGRAM EXTRACTS THE RESPIRATION LEADS
% FROM THE RAW ACQUIRED DATA AND AND SCALES THE DATA TO +/-5V.

maxsample=trial(1, 1); 	 % loads number of samples per 	 column from data
ipl=zeros((maxsample),1);
ip2=zeros((maxsample),1);
ip3=zeros((maxsample),1);
ip4=zeros((maxsample),1);
for i=1:(maxsample), % trial row 1 is invalid

ip l(i)=trial(i+1,3)/409.6-5.0; 	 % input ip data and 	 scale
ip2(i)=trial(i+1,4)/409.6-5.0;

ip3(i)=trial(i+1,5)/409.6-5.0;
ip4(i)=trial(i+1,6)/409.6-5.0;

end
pack;
% end of program

% IPINTERP.M
% THIS PROGRAM INTERPOLATES THE LP DATA TO 2X THE
% NUMBER OF SAMPLES TO MATCH THE SPIRO DATA.
ip1=interp(ip1,2);
ip2=interp(ip2,2);
ip3=interp(ip3,2);
ip4=interp(ip4,2);

c,1/0 end of program
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% IPFILT.M

% THIS PROGRAM FILTERS THE SCALED IP DATA.

[b,a]=butter(1,0.25);	 °A 2-pole LPF (1 each direction), 6,25Hz.
ip 1=filtfilt(b, a,ip 1);

ip3=filtfilt(b,a,ip3);
ip4=filtfilt(b,a,ip4);

% end of program

% IP I I EX.M
% THIS PROGRAM FINDS THE IP EXPIRATION START AND END DATA, AND
%THEIR INDEXES FOR EACH BREATH FOR EACH SET OF IP LEAD DATA.

for x=1:4,
if x==1	 % ip lead 1

ipx=ip1,
elseif x=--2	 % ip lead 2

ipx=ip2;
elseif x==3	 % ip lead 3

ipx=ip3;
elseif x==4	 % ip lead 4

ipx=ip4;
end
for bn=1 :totalnb- 1,	 % last breath is not valid

y1=ipx(spexstart(bn));
y2=ipx((spexstart(bn))+10);

if yl>y2	 % tests for polarity inversion
[y,i]=max(ipx(spinstart(bn): spinstart(bn+1)));

[z,j] =min(ipx(spexstart(bn): spexstart(bn+1)));
else	 % finds max & min

[y,i]=min(ipx(spinstart(bn): spinstart(bn+I)));
[zj]=max(ipx(spexstart(bn):spexstart(bn+1)));

end
if x==1

ip1exstdata(bn)=y;	 % stores indexes for each breath
ip1exstart(bn)=i+spinstart(bn);

ip1exendata(bn)=z;
ip1exend(bn)=j+spexstart(bn);

elseif
ip2exstdata(bn)=y;



ip2exstart(bn)=i+spinstart(bn);
ip2exendata(bn)=z;

ip2exend(bn)=j+spexstart(bn);
elseif x==3
ip3 exstdata(bn)=y;
ip3 exstart(bn)=i+spinstart(bn);

ip3 exendata(bn)=z;
ip3 exend(bn)=j+spexstart(bn);
elseif
ip4exstdata(bn)=y;
ip4exstart(bn)=i+spinstart(bn);

ip4exendata(bn)=z;
ip4exend(bn)=j+spexstart(bn);

end
end

end

% end of program.

% IPDIFF.M
% THIS PROGRAM CALCULATES THE DIFFERENCE IPEXSTDATA -
% IPEXENDATA
% AND DECLARS TIM TO BE IP#DIFF. THIS IS DONE FOR EACH BREATH
% IN EACH OF THE IP LEADS.

	

bn=0;	 % breath number
for bn=1:totalnb-1,

ip 1diff(bn)=abs(ip 1exstdata(bn)-ip lexendata(bn));
end
for bn= 1 : totalnb- 1,

	

ip2diff(bn)=abs(ip2exstdata(bn)-ip2exendata(bn));
end
for bn=1:totalnb-1,

ip3 diff(bn)=abs(ip3 exstdata(bn)-ip 3 exendata(bn));
end
for bn=1:totalnb-1,

ip4diff(bn)=abs(ip4exstdata(bn)-ip4exendata(bn));
end

ip1diff=ip1diff(:);
ip2diff=ip2diff( :);

ip3diff=ip3diff(:);
ip4diff=ip4diff(:);

% end of program.
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% ECGRUN.M
ecgload;
ecgfilt;	 % comment out for unfiltered

%end of program

% ECGLOAD.M
% THIS PROGRAM LOADS THE ECG DATA FROM EIGHT COLUMNS AND
SCALES IT.
maxsample=trial(1,1); % loads number of samples per column from data
ecg=zeros((maxsample)*8,1);	 % initalizes ecg to one column
for i=1:(maxsamp1e),

for j=1:8,	 % trial row1 data is invalid
ecg((i*8)+j-8)=trial(i+1,6+j)/409.6-5.0.0; % loads and scales data

end
end

%end of program
% ECG I T.M
% THIS PROGRAM FILTERS THE ECG DATA

[b,a]=butter(1,0.5); 	 % 2-pole LPF (1 each direction), 50Hz.
ecg=filtfilt(b,a,ecg);

% IPMEAN.M
ipmean=zeros(totalnb-1,1);
for i=1:totalnb-1,

ipmean(i)=((ip 1 diff(i))+(ip2 # i))+(ip 3 diff(i))+(ip4diff(i)))/4 ;
end

% end of program
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S-Plus Functions

To scan in a 1column by x row ASCII matrix,:

output matrix(scan("path/_data\\inputfilename",)ncol=1,byrow=T

To call the GAM or GLM function:

result_gam(standard data—s(datal)+s(data2)+s(data3)+s(data4)

The transfer functionm "s" (spline) can be substituted with p (poly), to (loess) or no
function.

To obtain residual deviances, type result.

To "extract" model data use:

fitted(result)

residuals(result)

coefficients(result)

To write data in S-Plus to an ASCII file:

write(round(data,#),"output name",ncol=1)

# = the number of digits to round to
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