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ABSTRACT

A NONDESTRUCTIVE METHOD FOR THE DETERMINATION OF
FRACTURE ENERGY IN CONCRETE STRUCTURES

by
Been-Jyh Yu

It is generally believed that linear elastic fracture mechanics concepts can not be
employed in determining fracture parameters in concrete, and therefore most of the
current research effort has focused on applying the principles in yielding fracture
mechanics. Despite all these efforts, comparison of results reported by many investigators
indicate wide variations in fracture toughness values even for essentially similar materials.
The main source of discrepancy in the observed results is the existence of a large process
zone at the crack tip. Hence, the amount of energy consumed in advancing the crack will
depend on the size of the process zone, and in turn on the specimen size.

Based .on these considerations, the objective of this study is to develop a
methodology for determining the fracture energy, Gy, for concrete-like materials in a non-
destructive manner. The method combines the principles of fracture mechanics and
maturity (time-temperature effects) on fracture resistance development of concrete. The
technique is based on a novel hypothesis in which the fracture parameters are related to
the strength gain charactenistics of concrete during the hydration process. The concept
was examined with cube, cylinder and three different sizes of three-point-bend notched
specimens. The range of tested specimens consisted of samples were cured under three
different isothermal temperatures(14°C, 23°C and 35°C). The specimens were tested at
six ages from 0.25 to 45 days. The hypothesis is verified through inverse determination of

thermodynamic characteristics of concrete for the specimen tested.



Based on the theoretical basis and statistical analysis of about three hundred tests,
the results show that the activation energies obtained from the three-point bend test and
from compressive tests are similar. And results also illustrate that the maturity method
may be used to predict the in-place fracture energy of concrete structure based on its

thermal history.
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CHAPTER 1

INTRODUCTION

1.1 General
Application of fracture mechanics for concrete is important for a variety of reasons,
including: determination of structural size and geometry effects upon the nominal stress at
failure of structural components and systems, computation of post-peak load deflection
diagram for computation of energy absorption capacity and structural ductility, and use of
energy criterion for more reaitstic porirayal of failure stress and strains in concrete.

Classical linear elastic fracture mechanics (LEFM), which has been successfully
applied to metallic materials is however limited when applied to concrete. Concrete is
characteristically heterogeneous. Because of the heterogeneity, the cracking process is
associated with the development of a microcracking zone or fracture process zone in front
of the crack tip and along the main crack surface. This behavior does not conform with
LEFM.

Fracturing process is associated with three elementary fracture modes: mode I or
the opening mode, mode II known as the planar shear mode and mode III as the antiplane
shear mode. Modes I and II are planar symmetric and antisymmetric, while mode III is
associated with local displacements that are skew symmetric with respect to both x-y and
x-z planes.. In general fracture is a linear combination of these three modes.

Much of the effort is being devoted to develop fracture mechanics methods for the

analysis of cracked concrete structures. Different parameters have been proposed to



describe the fracture behavior in concrete subjected to mode I deformation, such as the
fracture toughness, K., the critical-strain energy-release rate, Gy, the fracture energy, Gy
the J integrél, the critical crack tip opening displacement, CTOD,, and the crack resistance,
R.

Several models have been proposed to explain the fracture process as well as the
size dependency in concrete. Hillerborg (1976) has proposed a fictitious crack model
which is also known as a damage zone model. In this model, the tensile stress is assumed
not to fall to zero immediately after the attainment of its limiting value, but to decrease
with increasing crack widths. The fracture energy, G, which is defined as the area under
post-peak stress versus the crack opening displacement curve, the modulus of elasticity, E,
uniaxial tensile strength, o,, are the material properties required to describe the tensile
fracture behavior of concrete.

Bazant and Oh (1983} introduced thie ~oncept of crack band theory for fracture of
concrete. The fracture frofxt is modeled as a blunt smeared crack band. The material
fractgre properties are characterized by three parameters G, o, and w,, the effective width
of crack band (fracture process zone). Results are similar to those obtained from fictitious
crack model if the same values of Gy and o, are used in the crack band model. Instead of
using the value of Gy determined from the area under 6-COD curve, Bazant, Kim, and
Pheiffer (1984) have used an R-curve analysis to determine the fracture energy, Gy, for the
crack band model.

Jenq and Shah (1984) have proposed a two parameter fracture model. The two

parameters are the critical stress intensity factor calculated at the tip of the effective crack



and the elastic critical crack opening displacement. Based on their test results the two
parameters are found to be size independent.

Fracture energy G; has been considered to be a reliable fracture mechanics
parameter which can describe the process of cracking in concrete. The parameter G; is
defined as the energy absorbed to create a unit area of fracture surface. To determine the
fracture energy, the RILEM committee TCS50 has put forward a recommendation. This
Recommendation specifies a method for the determination of the fracture energy (Gy) of
mortar and concrete by means of a stable three-point bend test on notched beams.

To meet rapid construction schedules, form removal, application of post-
tensioning, termination of curing, and the removal of reshores must be carried out as early
as is possible and safe. Since concrete is a brittle material, those operations, if performed,
prior to attainment of sufficient fracture energy would cause cracking which might lead to
a catastrophical failure. The determinaiion of in-place fracture energy to enable these
operations to proceed safely at the earliest possible time requires the use of reliable in-
place tests.

In-place tests, which by nature of their applications ought to be nondestructive, are
used to obtain information about the properties of concrete as it exists in a structure. A
number of Nondestructive Evaluation (NDE) test methods are currently available for the
in-situ determination of strength and other properties in concrete structure. The most
widely used NDE methods for insitu estimation of strength are the surface hardness (the
rebound hammer), probe penetration, pullout, ultrasonic pul}se velocity, maturity, and cast-

in-place cylinder techniques.



In this dissertation, a testing methodology is developed for insitu nondestructive
‘determination of fracture energy, Gy, in concrete elements and structures. The method
combines the principles of fracture mechanics and time-temperature effects on fracture
resistance development of concrete.  “Maturity” is the term used to represent
quantitatively the cumulative effects of temperature and time on strength development in
concrete. The present methodology employs the maturity concept in order to relate the
time-temperature effects to the gain in fracture energy with time. To date, there are no
available testing techniques for the determination of fracture energy in large concrete
structures. Current fracture mechanics testing methodologies for concrete are limited to
small size laboratory specimens. The pres=nt tnchnique will have the potential for use as
the only NDE standard for the determination of Gy in all types of elements, including large

concrete structures.



1.2 Objectives
The primary objective of this dissertation is to develop a methodology for the
determination of the in-place fracture energy, Gy, for concrete-like materials in a non-
destructive manner. In doing so, the findings of this study prove that in direct
correspondence with strength, the increase in development of fracture resistance in
concrete is rate dependent. The experimental and analytical developments lead to the
determination of activation energy. Depending on the cement type, and mixture
proportions, the activation energy can be considered material constant that pertains to the
exothermic chemical process during hydration of concrete. Indirect determination of this
material constant, the activation energy, through the present fracture tests validates the .

proposed hypothesis.



CHAPTER 2
LITERATURE REVIEW

In this dissértation, the principles of fracture mechanics and maturity method (time-
temperature effects) are combined for the development of the proposed in-place NDE
methodology. In this context, the purpose of this chapter is to review the fracture
mechanics models pertinent to concrete. Moreover, the underlying principles (time-
temperature effects) governing the maturity rule as applied to the estimation of concrete
strength will be reviewed. The modifications to the maturity rule for application to

fracture testing of concrete will be explained in the subsequent chapters.

2.1 Fracture Mechanics of Concrete
Application of linear elastic fracture mechanics (LEFM) to concrete was first attempted by
* Kaplan (1961). Since then, fracture testiog of concrete has developed tremendously during
the 1980's. A large number of experimental testing techniques and specimen types have
been tried and the developments have crystallized into some effective methods. The
Fictitious Crack Model, FCM, (Hillerborg et al., 1976), the Crack Band Model, CBM,
(Bazant, et al.,, 1979, 1983) and the Two-Parameter Fracture Model, TPFM, (Jeng an;i

Shah, 1985a, 1985b) are among the most widely employed fracture models.



2.1.1 Fictitious Crack Model (FCM)

The fundamental idea of FCM is best demonstrated by means of a tension test, Figure 2.1.
The test is assumed to be deformation-controlled and stable, so that it is possible to follow
the descending branch of the stress-deformation curve all the way down to zero load.

The specimen is assumed to be homogenous and to have a constant cross section
area. The deformation is measured along two‘ equal gauge lengths A and B as shown in
the diagram. Curves A and B coincide until the maxirnurnvload is reached. On further
deformation a fracture zone forms somewhere in the specimen. This fracture zone has a
limited width in the direction of the stress. As the fracture zone develops the force will
decrease due to the formation of microcracks and the corresponding weakening of the
material. The decreasing load results in a decrease in deformation everywhere outside of
the fracture zone, corresponding to the unloading curve in the stress-strain diagram. No
more fracture zone can forr, as the load decreases.

In Figure 2.1a it is assumed that the whole fracture zone falls within gauge length
A. The deformations within gauge length B can then be described by means of a stress-
strain curve, including the unloading branch. The deformation within gage length A
includes also the deformation of the fracture zone. The additional deformation, w, due to
the fracture zone is the difference between the descending branches of curves A and B.

It is possible to describe the deformation properties of the test piece by means of
two diagrams:

1. The stress-strain (o-€) diagram, including the unloading branch, Figure 2.1c.

2. The stress-deformation (o-w) diagram for the fracture zone, Figure 2.1d.
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Figure 2.1 The principles for division of the deformation properties into
a o-¢ diagram and o-o diagram, where w is the additional
deformation due to formation of a fracture zone(Hillerborg, 1983)



The application of the fictitious crack model (FCM) to the description of the

tensile test is shown in Figure 2.2,
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Figure 2.2 The simplified description of the fracture zone as
a "fictitious crack" with width w (Hillerborg, 1983)

When using the Fictitious Crack Model, the fracture zone in front of a crack tip is
replaced by a crack that is able to transfer stress, cailed Sctitious crack, (Figure 2.3.)
(Petersson, 1981). According to the o-w curve(Figure 2.1d), the stress is a function of
the fictitious crack width. The stress transferring capability of the fictitious crack normally
decreases when the crack width increases.

During a tensile test to complete separation, energy is absorbed inside and outside
of the fracture zone. With the FCM, the energy absorbed in the fictitious crack is given

by:
Ao dw= 4G, @1)

where A = cross sectional area,

w; = crack separation value at ¢ =0,
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G¢ = area below the o-w curve, Figure 2.1.d.

(a) J' (b) i

Figure 2. 3 (2) The fracturs procers zone, (b) Fictitious Crack with assumed stress
distribution (Petersson, 1981)

Gy is the absorbed energy per unit crack area for the complete separation of the
crack surfaces. It should be noted that the crack area in question is the projected area,
rather than the total area of the irregular crack surface. The energy absorption outside the
fictitious crack is determined in the usual way as the volume of the specimen times the
area below the o-¢ curve, Figure 2.1c. For a purely elastic material, this energy

absorption is zero.



11

The FCM is not only applicable to the tension test, but also to more complicated
stress situations. Of primary interest is in its application to the analysis of stability and
growth of a crack. For example, as shown in Figure 2.4 consider the stress distribution in
front of a notch or a crack tip in a beam under the action of a growing imposed
deformation (or load). The fracture zone that has developed is described as the fictitious
crack. Within the fictitious crack the relationship between the stress, o, and the crack
width, w, is given by the o-w curve. In the region away from the fracture process zone
(fictitious crack), the c-¢ relationship for the material is valid. As the deformation is
increased, the stresses in front of the fictitious crack tip is also increased. No stress is
assumed to be higher than the tensile strength f. As soon as a stress has reached f, any -
increase in deformation causes the development of a fictitious crack at that point. Thus
the stress at the fictitious crack tip is f; as long as the fictitious crack grows.

The FCM has 2 very genera! applicability. It can be used to analyze the formation
and growth of fracture zones and cracks, whether the fracture starts from a crack, a notch,
an irregularity or a plain surface. It can also be used where shrinkage or temperature
strains act and for non-isotropic materials.

Finite element (FEM) analysis is necessary to implement the model. In FEM
calculations it is very time-consuming and hence expensive to use non-linear o-¢ and o-w
curves. It is however relatively inexpensive to use stepwise linear o-w curves. The
simplest possible assumptions regarding o-€ and 6-w curves to be used in FEM analyses
are according to Figure 2.5, i. e., straight line approximations for both curves. Most

analyses performed so far have been based on these assumptions.
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2.1.2 Crack Band Model (CBM)
The basic idea for the crack band theory is to characterize the material behavior in the
fracture précess zone in a smeared manner through a strain-softening constitutive relation,
and to impose a fixed width w, of the front of the strain-softening zone (crack
band),which is assumed to represent a material property.

The fracture energy, G, which is defined as the energy consumed in the formation

and opening of all microcracks per unit area of plane (x,y) (Figure 2.6 & 2.7a) :
G,=w, Io; de, (2.3)

Referring to Figure 2.7b:
Ge=w.(f, &,)/2, &,=f/Ct (2.4)
where w, = the effective width of the fracture process zone (or crack band) over which
the microcracks are assumed to be unifirmly spread,
g = the fracture strai, i. e., the additional strain caused by the opening of the
microcracks,
f, =the direct tensile strength, and
g, = O/ W, (8¢=sum of the openings of individual microcracks ), is the strain at
the end of ‘strain-soﬁening and o, is zero
C: = the slope of strain-softening curve (Figure 2.7b).
The pre-peak and post-peak behavior are both described by a stress-strain
relationship, which the pre-peak modules is E and the post-peak modules is E; (< 0)

(Figure 2.7¢). If Gy, f,,and w, are known from experimental measurements. The width of

crack-band w, can be used to relate the stress-strain response to the fracture energy:
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G, =w, To, de, =—(=-=)fw, (2.4)

Both the Fictitious Crack Model and the Crack Band Model, mentioned above,

irrespective of the approaches adopted, require a complete stress-crack opening

relationship.

2.1.3 Two-Parameter Fracture Model (TPFM)

Unlike the fictitious crack model and crack band model, the two-parameter model of Jenq
and Shah (1985), does not require a post-peak (strain softening) constitutive law, yet it
can describe the nonlinear slow crack growth prior to peak load The two parameters are
the critical stress intensity factor K% and the critical crack tip opening displacement
CTOD( ré]ationship shown in Figure 2.8. This relationship is essentially linear on the
ascending portion of the curve from P = 0 up to about the load corresponding to half the
maximum load P, At this siage, the crack ¢ip opening dispiacement is negligible and K
is less than 0.5 K§.( Figurc 2.8a ). As the {nad D exceed the value of 0.5P,, inelastic
displacement and slow crack growth occur during the nonlinear range (Figure 2.8b ). At
the critical point (Figure 2.8¢ ), the crack tip opening displacement reaches a critical value
and X, = K&.. For standard plain concrete beams tested in three-point bending, the
critical point can be approximated between the point of P, and the point of 0.95 P, on the

descending branch of the P-CMOD plot.



0< K, < 0.5K5,.
CTOD =0

CMOD

0.5K5,. <K, < K5,
CTOD < CTOD,

CMOD

K, =K%
CTOD =CTOD,.

CMOD

Figure 2.8 Fracture Resistance Stages of Plain Concrete
(Jenqg and Shah, 1985)
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Since the model is based on the LEFM concept, for each specimen geometry
tested, one needs to be able to calculate K;, CMOD, and COD, all functions of the applied
load (P), crack growth (a), Young's modulus of elasticity (E), and the specimen geometry.
General LEFM based equations for three-point bend notched beam specimens are
presented by Tada et al., (1976) as follows (see Figure 2.9) :

Stress Intensity Factor (K)) :

6P a
K, =‘Z;E1hraF(E) (2.5)
a. 1 199— A(1- A)(215-3934+2.7 4%
F(=)= 2.6
@7z (1+24)1-4)" @0
Crack Mouth Opening Displacement (CMOD) :
24Pa _ a
MOD = V(= 2.7
CMO i € d) 2.7)
Vi(Z) = 0762284 +387 4" —2044" +——2 28
1(d)— . : . . a- Ay (2.8)
Crack Opining Displacement (COD) :
COD(x) = CMOD{(1- =) +(~1.149 A +1.08)[= - (Z )]} (2.9)
a a a

where E = Young's modulus; A = a / d; x = the distance measured from the crack mouth

location toward the crack tip. -

In the Two-Parameter Fracture Model the maximum applied loa& and the
corresponding elastic CMOD, are all directly obtained from the experiments. With known
specimen geometry and the Young's modulus, the effective elastic crack length a, can be
calculated from the LEFM formula using measured CMOD, and the measured mz'udmum

load. However, it is not a simple task to calculate a, using the LEFM formula. Iteration
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or trial and error method has to be adopted to obtain a,. With the calculated effective
crack length, K. and CTOD,, can be obtained. These two values should be specimen
size—indepeﬁdent as recommended in the TPFM. The validity of these values for the two
parameter model even in the cases of beams possessing different span to beam depth ratios

has yet to be established.

Figure 2.9 Three-Point Bend Notched Specimen (Jenq, 1985b)
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2.2 Maturity Method

Fracture mechanics when applied to concrete members subjected to tensile loading, should
be able to analyze the formation and growth of cracks. One way of quantifying the tensile
stress or the tensile toughness is by means of the fracture energy, Gr. At present time, all
methods to determine Gy of concrete rely on some form of destructive testing. For
instance, it is recommended to extract drilled core specimens from existing concrete
members. These specimens are then tested either in direct tension or three-point bend test
to determine Gy. Disadvantage of such schemes is damage to structures due to extration
of large pieces of materials from structures, since large beams are needed for valid fracture
tests for example for concrete containing 1/2 inch maximum aggregate size a 4x4x34 nch
size specimen is required. For this reascn, there is a great urgency in developing an NDE
technique for measuring the fracture energy, Gy, of concrete.

The maturity method is a technique to estimate in-place strength which accounts
for the effects of temperature and time on strength development. Knudsen worked with
the degree of hydration of cement rather than concrete strength. He demonstrated (1980,

1982) that the general strength-age, (f-t), equation

- kT(t_to)
C M Itk (t-t,)

(2.10)
is valid for strength development and any other property of concrete that is directly related
to the extent of cement hydration, where

f. = compressive strength,

f., = limiting compressive strength at infinite age,

kt = rate constant,
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t =age, and
t, = datum age, age when strength development is assumed to begin.
And Carino(1984) prenested the following general strength-gain function

_ F(t,T)
© T U ILR®L,T)

2.11)
where F(t,T) is a time-temperature function.

In chapters to follow, it will be demonstrated that the maturity concept is also
applicable to in-place determination of fracture energy,Gy, in concrete. The principles

underlying the basis for the maturity method as related to the relationship between time-

temperature and strength will be reviewed in this section.

2.2.1 Introduction
Concrete gains strength gradually as a result of exothermic chemical reactions (hydration)
between Portland cement and water. For a specific concrete mixture, strength at any age
is relaied to the degree of cement hydration. An increase in the curing temperature
accelerates the hydration process. The rate of hydration, and therefore, the strength
development of a given concrete mixture, will be a function of the concrete curing
temperature. Thus, the strength of concrete depends on its time-temperature history
assuming that sufficient moisture is always present for hydration. If there is insufficient
moisture in concrete for hydration, strength development ceases.

The basic principle of maturity method is that the strength varies as a function of
both time and temperature. The thermal history of the concrete and a so-called maturity

function are used to compute a maturity value that quantifies the combined effects of time
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and temperature. The strength of a particular concrete mixture is expressed as a function
of its maturity by means of a strength-maturity relationship.

“Maturity” is the term used to represent quantitatively the cumulative effects of
temperature and time on strength development in concrete. It is computed from the time-
temperature history of the concrete. Early publications relating the development of
strength in concrete to maturity date back to 1950’s(Saul, 1951, Mclntosh, 1949 and
Nurse, 1949). According to Saul, the combined effects of time and temperature on
strength development can be described by the single factor “maturity” (Saul, 1951), which

was calculated as:

t
M=[(T-T)dt (2.12)
[V}

where M = temperature-time factor (often called "maturity"),
T = average temperature of concrete during time interval At, °c,

T,= datum temperature, C, which is the lowest temperature at which strength gain

is observed
Saul also proposed the “maturity concept” which states that samples of the same
concrete will have equal strength if they have equal maturity, irrespective of their actual
time temperature history (Saul, 1951). The concept has been viewed as a useful and
simple means to account approximately for the complex effects of time and temperature

on strength development.
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2.2.2 Maturity Functions

The maturity function is a mathematical expression that converts the thermal history of the
concrete to a maturity value. Several such functions have been proposed and are reviewed
in Malhotra (1971), RILEM (1981) and Malhotra and Carino (1991). The key feature of
a maturity function is the expression used to represent the influence of temperature on the
rate of strength developmént. The maturity value can be expressed either as a

temperature-time factor or as the equivalent age.

2.2.2.1 Linear Temperature Function
In one case it is assumed that the rate of strength development is a linear function of
temperature as follows:
k(T)=B (T-T,) (2.13)
where k(T) = a function of temperature, or the rate constant, and
B = a constant, the slope of the straight line.
And this leads to the simple maturity function shown in Figure 2.10. In this case, the
maturity index at any age equals the area between the temperature curve and a datum
temperature T, of the concrete. The term temperature-time factor is used for this area and
is calculated as follows:
t
M=BY (T,-T,) At (2.14)
¢
where M = temperature-time factor (often called "maturity"),

t = age, days,



t
T M=B/(T-T,)dt

)
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Figure 2. 10 Maturity function based on assumption that rate of strength gain varies
linearly with temperature
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T, = average temperature of concrete during time interval At, °C,
a g g

T, = datum temperature, C.

This equation has become known as the Nurse-Saul function. Saul recommended

a datum temperature of -10.5°C (13°F). As per ASTM C 1074-87, the maturity value
computed according to Eq. (2.11) is termed the "temperature-time factor". Saul was the
first to state that, under special conditions, sample of a given concrete having equal
maturity will have approximately equal strength, independent of the in-place temperature
history. The special conditions were that the concrete should not be heated too rapidly
during the start of the steam curing cycle in particular reference to prestressing operations.
He also recognized that at an early age curing temperature has more influence on strength

development than time. But at later ages, temperature is less important than time. Thus,

Saul-function widely used today with datum temperature value equal to -10°C. Note that
a datum temperature o: -10°C is appropriate only for the case of low activation encrgy
and O to 20 °C temperature range.

Based on Eqgs. 2.10 through 2.13, the time-temperature function(or called maturity

function) can be expressed as follows:
M@, T)= .TB(T— To)dt = IB(T— To)dt ~ rB(T— To)dlt (2.15)
to 0 0

where M(t,T) is a time-temperature function. If the two terms on the right hand side of
equation 2.15 are called M and M,, the maturity function is

M(t,T)=B (M-M,) (2.16)
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Substituting equation 2.16 into equation 2.11, the strength - maturity relationship can be

obtained as:

_ BM-M,)
¢ U 1+BM-M,)

2.2.2.2 Arrhenius Equation

(2.17)

The accuacy of the strength gain equation(Eq. 2.10) depends on the accuracy of the rate

constant expression, and review of technical literature reveals that the Arrhenius equation

provides a better function for the rate constant in terms of temperature. In European

practice, Arrhenius equation is empolyed for the development of time-temperature

function in the maturity method and is given by:

k(D) = Aexp(-=2)
k

where A = a coustant, or a factor,
Ty = temperature (°K),
R = universal gas constant (= 8.3144 J / °’K-mole), and
Q = activation energy (kJ/mol).

The time-temperature function can be expressed as

M T-‘tA Q d
(t, )—{ exp(-_ﬁ) t

(2.18)

(2.19)

As known by Carino (1984), Arrhenius equation is a better representation of k(T) than the

linear equation (2.13) when a wide variation in the concrete temperature is expected.

Maturity number at a particular age is computed as follows:
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3 Q
M= A% exp(— ﬁ:)At (2.20)
In equation (2.10), kr is the value of the temperature function k(T) while concrete
is isothermally cured. Based on equation (2.10), the relationship between the strength and
age is a hyperbola with initial slope at t, equal to krf.. The initial development of strength
gain is dependent on kr which is the so called rate constant. Thus, the temperature

function, or the rate constant, k(T) is a key feature of the strength gain function.

2.2.3 The Equivalent Age Approach
Instead of expressing strengtl, gain in terms of the temperature-time factor, an alternative
approach is the use of the "equivalent age" method suggested by Rastrup (1954).
Accordly (ASTM C 1074-87, 1989), the equivaient age is defined as the number of days
or hours at a specified standard temperature required to produce a maturity value equal to
the value achieved by a curing period at temperatures different from the specified
temperature. In the equivalent age approach the actual age of concrete is transformed to
its equivalent age at a specified temperature by means of a maturity function. The
equivalent age concept is a convenient method for using other functions to account for the
combined effects of time and temperature on strength development.

There are several different equations to compute an equivalent age depending upon
the maturity function. For example, The maturity function (Eq. 2.12) can be used to
transform temperature-time history to an equivalent age of curing at a standard

temperature as follows:
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(=T

A a-1) (2.21)
where t, = equivalent age at a standard temperature Ts.
Equation (2.21) can be written as follows:
t,=2 o At (2.22)
where
7-T
o= E(T-_:'rl) (2.23)

The ratio o, which is called the "age conversion factor", has a simple interpretation: it
converts a curing interval At to the equivalent curing interval at the standard reference
temperature.

By using equivalent age approach based on Arrhenius equation, the strength-
maturity relationship can be expressed as follows:

— ks<t"t_o>

=1, 2.24
C M itk (t-t,) 224)

where k, is the value of the rate constant at the standare temperature.

2.2.4 Summary

The maturity method is intended for estimating strength development of concrete. First, a
strength-maturity relationship should be developed in laboratory by measuring
compressive strength and temperature history of cylinders on the concrete mixture to be
used. Second, the temperature history of the concrete sample, for which strength is to be

estimated, is recorded from the time of concrete placement to the time when the strength
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estimation is desired. Third, the recorded temperature history is used to calculate the
maturity of the concrete sample. Finally, using the calculated maturity and the strength-
maturity relationship, the strength of the concrete sample is estimated. Strength estimates
are based on two important assumptions: 1) there is always sufficient water for continued
hydration, and 2) the concrete in the structure is the same as that used to develop the
strength-maturity relationship.
The basic principle in applying the maturity method is illustrated in Figure 2.11.
Two phases are involved:
(1) laboratory testing
e Mortar test is to delernune dalun! iemp+rature and activation energy.
e Based on the datum temperature or activation energy and recored cylinder
temperature, the strength-maturity relatidnship is established by cylinder test.

(2) field measurement of the in-place concrete temperature history.
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Figure 2. 11 Procedures for using maturity method involve laboratory testing
and field measurements



CHAPTER 3

THEORETICAL DEVELOPMENT

3.1 Introduction
A testing methodology for insitu nondestructive determination of fracture energy, G, is
developed in this study. The validity of the procedure is justified through the theoretical
basis given in this section.

The rate theory in term of Arrhenius law is applied to explain the fracture energy
gain of concrete. The derivations follow the same pattern as those developed in the
formulation of time-temperature relationships for the rate of strength gain in concrete.
However, time-temperature relationships are employed in an inverse manner to arrive at
values for the activation energy of concrete through fracture experiments. Applicability of
the maturity method is justified if, for all practical purpose, the activation energy evaluated
from fracture tests equals the activation encrgy of concrete from strength tests or

hydration studies.

3.2 The Rate Theory
Arrhenius Law which has been employed for nonlinear representation of the rate constant
as a function of temperature in strength-maturity relations has great generality. It applies
not only to the rate of strength gain in concrete, but to the rate of creep, oxidation,

" corrosion, and even to the rate at which bacteria multiplies. The Arrhenius or the rate law

32
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states that the rate of a process increase exponentially with temperature(Figure 3.1a). For

example, the rate of steady-state creep, € varies with temperature as:

¢ = Ae'%‘"k (3.1)

or the rate constant, k(T), in the maturity rule for in-place determination of strength in

concrete as:

k(T) = Ae_%T“ (3.2)

where in both Eqs. (3.1) and (3.2):

A =aconstant, or a factor,

Ty = temperature (°K),

R = universal gas constant (= 8.3144 J / °’K-mole), and

Q = activation energy (kJ/mol), the energy which the reacting molecules must

acquire before they can react.

According to Eqgs. (3.1) and (3.2) the activation energy is the slope of the linear
relationship between the natural logarithm of the rate of process(rate constant, creep rate,
etc.) and the inverse of absolute temperatare, 1/T. As an example, this is illustrated in

Figure 3.1b for the steady state creep.
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Figure 3. 1 (2) Consequences of Arrhenius' law,
(b) Strain rate follow Arrhenius' law (Ashby, 1980)
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3.3 Theoretical Basis
3.3.1 Fracture Energy Gain Function
Concrete gains rigidity and resistance to fracture at the end of induction period,
approximately 2.5 to 3.5 hours after the mixing. Temperature and moisture conditions
play an important role in the rate of strength-gain in concrete. Bernhardt (1956) explained
the rate of strength gain, at any age t, as a function of current strength, f., and the

temperature T:

% = km)-g(t,) (3:3)

where k(T) is a function of temperature and g(f;) is a function of strength. Bernhardt
went on to empirically obtain the strength function g(f;) which enabled him to develop the
following general strength-age relationship:

fo=fo {F(tT)/ [T + F&T]} (3.4)
where the general form of the time-temperature function F(t,T) is the integral of the
temperature function between time t, (the end of induction period, time at which strength

is equal to zero) and t, as follows:

F(t,T) = jt'k(T) gt (3.5)

Assuming that eq. (3.2) holds not only for strength development but for any other
properly of concrete that is directly related to the extent of cement hydration, then it is
possible to develop a general fracture energy gain function similar to that of eq. (3.4). It is
also possible to develop such a relationship for the fracture energy provided that, under

isothermal conditions, the relationship between the fracture energy and age is hyperbolic,
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and the function g(Gy) can be determined. g(Gg) is then employed for the following
relationship describing the rate of fracture energy gain as a function of fracture energy and

temperature:

St k(1) 8(Gy) | (3.6)

Rearranging terms in eq. (3.6) results in:

dG,
8(Gy)

=k(T)dt (3.7

We need to integrate eq. (3.7) to determine Gy

Gr t
{ dcff = [k(T) dt (3.8)
o g((Jf) 1:0

provided that we have already determined the function g(Gy), it will then be possible to

evaluate Gy through eq. (3.8) as follows:

Gy = £([ k(T) di) (3.9)

1

t
where, f([k(T)dt) is a function of k(T) and age after integration of eq. (3.8). Eq. (3.9)

t(!
is the fracture energy-gain function. It is necessary to determine the function of fracture

energy g(Gy) in order to expedite the integration in eq. (3.8).

3.3.2 Fracture Energy Function
Bernhardt's formulation for the rate of strength-gain, as described earlier in Eq. (3.3),
involves two distinct functions: the function of temperature, k(T), and the function of

strength g(f.) respectively. The intuitive meanings of these two functions as explained by
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ﬁernhardt were that; k(T) indicates the intensity of hardening at the given temperature,
5,1'1‘1 g(f) may be regarded as the remaining magnitude of strength to be gained. As a
1,@sult, the value of g(f.) is maximum and equal to the limiting or final strength of concrete,
Fous & the end of induction period(2.5 to 3.5 hours after mixing), and equal to zero at the
gimne when the limiting strength is achieved. Accordingly, and based on empirical

evidence, Bernhardt arrived at the following relationship for g(f:):

8(f.) = £,,[1- (%—)12 (3.10)

C!

1Y evelopments leading to the form of Eq. (3.10) stem from the hyperbolic nature of the
strength-age function for isothermally cured concretes.

Experimental results in the present study indicated that the increase in fracture
energy with age also follows a hyperbolic pattern similar to that for strength. Therefore, it
is reasonable to hypothesize that the fracture energy function will have the sawe form as

the one developed for strengih in Eq. (3.10). Consequently, the fracture energy gain rates,

_'de

, are numerically evaliated from the experimental fracture energy versus age data

(Figs. 3.2 and 3.3 for size B beam). As it turns out, the relationship between the fracture

/dG .
€nergy and —Ef— is linear (Fig. 3.4). The figures of Gr against —(—l-c—iGt—f and Gr against

/ d . .
< f- ((i}t_f for size A and size C beam are given in appendix A.

As shown in the inset of Figure 3.4, the y-intercept corresponds to the limiting or

the ultimate fracture energy of concrete (Gr). The x-intercept is the square root of
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fracture energy gain rate at maximum, and it can be evaluated by taking the square roots

from both sides of Eq. (3.6):

G
Vot = VRDEE) @.11)

Since for the case of isothermal curing, the rate constant, k(T), is constant, at x-intercept,

i . . . fdG .
the function g(Gy) must have its maximum value in order for -—at—f* to be maximum.

Moreover g(Gy) represents the remaining magnitude of the fracture energy to be gained,
and the x-intercept of Figure 3.4 corresponds to time t,, when the concrete starts gaining
rigidity. Therefore at time t,:

2(Gp = Gs (3.12)
which means at time t, concrete needs to attain all its fracture energy. And the x-intercept

value in Figure 3.4 is:

99? = Jk(T)\/Gq, | (3.13)

at y-intercept (when G¢ = 0). Hence, ihe straight line relaticnship between the fracture

energy, and the square root of fracture energy gain rate is given as:

___ Gg  [dGy
o) «/Gfu’} T O (3.14)

Eq. (3.14) leads to:

%—i— = k(T)G g, (1 -——) (3.15)
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Comparison of Eqs. (3.6) and (3.15) yields the fracture energy function:

40

Gt
8Gs)=Gr(-5 )’ (3.16)
fu
Eq. (3.16) is of the same form given for strength function in Eq. (3.10).
1
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4400 A
4
08+ |- >~ G
23°C
——
o6, 35C
= &%\ 2 days 1 day yE"ZZ
Qo4+ N &ys T 0.55 day
3 days \\
, ~ T 0.35 day
0.2 + \ )
1 day \
0 1 + T 1 5 + t } +
0 0.2 0.4 0.6 0.8 1.2
4
dt

Figure 3.4 Gy against VdG / dt
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3.3.3 Fracture Energy Gain of Concrete
The formulation of a mathematical expression to describe the fracture energy development

of concrete is discussed first. The fracture energy function is proposed as follows:
Gy
8(Ge) =G (-5 )’ (3.16)
fu

where Gy, is the limiting fracture energy at infinite age. Assuming that the limiting fracture

energy, Gy, is independent of curing temperature, substitution of g(Gy) from Eq. (3.16)

into Eq. (3.8) and rearranging terms leads to:

G dG, ~—r
{ D f k(T)dt (3.17)
L, YR (3.18)

| tar S
o (1-G//1G,) w

where t, datum age, is the age when fracture energy development is assumed to begin,

and it can be given in days.

The integral on the right side of Equation (3.17) was suggested as the general form

of the maturity function, the time-temperature function, and denoted M(t,T) with

M(t,T) = k(D) (3.19)

0
where M(t,T) = the maturity function, or a function of the time and temperature.

The integral on the left side of Equation (3.18) may be evaluated as follows:

G
(}f dGy G%u I f _ GGy
0 (1_§._f_)2 (Gfu"Gf)‘O G — Gt

fu

(3.20)
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Substituting Equation (3.19) into the right side of Equation (3.18), and Equation (3.18)

becomes:
Gfu j'k(T)dt =Gu-M(1,T) (3.21)
ta
Substitution of Equations (3.20) and (3.21) in (3.18) yields,

By rearranging terms, Equation (3.22) will have the following form:
Ge= Gy, - M, T) - Gy M(L.T) (3.23)
G [ 1+M@AT) ]=Gg - M. T) (3.24)
and it is possible to arrive at the following fracture energy development relationship:

M@.T)

Or=6r U

] (3.25)

~

This is the basic form of the frasture energy-maturity relationship, the general
fracture energy gain function, in terms of the time-temperature function. The time-
temperature function has different forms dependisg upon curing conditions and the nature

of temperature function k(T).

3.3.3.1 Isothermal conditions
For the special case of constant concrete curing temperature, the temperature function
k(T) has a constant value, kr. Therefore, the general fracture energy-age function reduces

to a simple expression:



43
Gy = Ggy —L= 1) _  (3.26)
T+kp(t—tg)
where kr is the value of the temperature function, or the rate constant, at the constant
concrete temperature T.

As it will be shown later by this study, there is not a single fracture energy-age
function for a given concrete mixture, because different initial concrete temperatures will
result in different values of Gg. Nevertheless, it is proposed that there is a unique relative
fracture energy versus age function:

Gf - kT(t"to)
Gfu 1+kT(t—to)

(3.27)

3.3.3.2 Variable temperature conditions
When the curing temperature is not constant, the temperature function k(T) is not
constant. First, the simpiest v:ase is to assume a linear relationship as follows :
K(T) =B(T-T,) | (3.28)
where T, = datum temperature, temperature corresponding to k(T) = 0, and
B = a constant, the slope of the straight line.

Substituting equation 3.28 into equation 3.19, the maturity function can be expressed as:
V t
M@, T)= jB(T~ To)dt = IB(T—- To)dt — fB(T— To)dt (3.29)
to 0 0

If the two terms on the right hand side of equation 3.29 are called M and M,, the maturity

function is

M(T)=B (M-M,) (3.30)
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Substituting equation 3.30 into equation 3.25, the fracture energy - maturity relationship
can be obtained as:

B(M-M,)
M1+ BM-M,)

G; =G (3.31)

Next, since hydration is an exothermic chemical reaction, it is reasonable to assume
that the rate constant should vary with temperature according to the Arrhenius equation,

equation3.2,i.e.,

k(T)=Aexp<--§%—)
k

An alternative to expressing fracture energy gain in terms of the time-temperature
function is to use the equivalent age approach. Equivalent age represents the age at a

standard curing temperature, T, (°K), which results in the same maturity as under the

actual curing temperature. Mathematically, equivalent age t. is defined as follows

k(T
e = j LiCH] dt (3.32)
o ks
where t. = equivalent age at the standard temperature, T,
k, = value of the rate constant at the standard temperature.
The ratio k(T) / k, has been termed the age conversion factor,
o= k(@ (3.33)
KS
and the relative fracture energy gain can be expressed in terms of equivalent age:

Gs 1+K,0(t-t,)

By using the Arrhenius equation, the age conversion factor is
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o= exp[—g(—!-—i) (3.395)
The equivalent age expression becomes as follow:

= Yexp- L L
te %exp{ R[Tk T At (3.36)

s
3.3.4 Activation Energy of Concrete

The Arrhenius equation is used to describe the relationship between the rate constant and
curing temperature. In this case, the important parameter is the activation energy, which
defines the temperature sensitivity of the rate constant. The value of activation energy
depends on the cement chemistry, the cement fineness, and the type and quantity of
cement replacements and admixtures. Typical published values of activation energy for
ordinary portland cement are between 42 and 47 kJ/mol(Gauthier, 1982, Regourd, 1980b
and Roy, 1982).

The value of the activation energy for a particular concrete can be determined in
several ways. One approach is to make and cure concrete specimens at several different
temperatures and analyze the strength-age data by transforming the hyperbolic strength-
age relations into linear equations and regression analysis as described later in this section.
However, there are alternative possibilities. It has been firmly established that the degree
of hydration of cement correlates with the mechanical strength of concrete (Alexander,
1969; Seki, 1969). Therefore it is possible to determine the activation energy from

hydration studies of cement paste. This approach is supported by the work of others

(Regourd, 1980a and b; Gauthier, 1982 ) who have shown that the activation energies
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based upon heats of hydration are the same as those based upon the mechanical strength
‘of mortars. Another approach is to measure the chemical shrinkage of cement pastes

(Geiker, 1982 and 1983).

3.3.5 Fracture Energy, Strength, and Activation Energy

The work presented herein suggests the use of maturity method for in-place estimation of
fracture energy in concrete structures. As shown in Figure 3.2, the fracture energy-age

relationship has the same hyperbolic form as the one for strength-age of concrete

employed in the maturity method. However, the mere similarity between the general form

of these relationships does not provide sufficient justification for the applicability of the
maturity method in estimating the in-place fracture energy.

As discussed in the previous section, in using a time-temperature function the
activation energy of concrete which iz an important parameter for the rate constant of
concrete mixture must be known. It was further discussed that several method are
available for the determination of activation energy including the methods based on
hydration studies of cement paste and regression analysis of the strength-age data. Typical
values of activation energy (42-47 kJ/mol) can also be used for cases where accuracy of
strength prediction is not crucial.

The proof for the applicability of the maturity method in estimating the fracture
energy of concrete will be in arriving at similar activation energies for the same concrete
by using the fracture energy-age date in a similar manner as the strength-age relationship

for the evaluation of activation energy. Experimental results from tests on more than 150
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beams of various dimensions (3 different sizes) in this study proved the above mentioned
hypothesis. In the following section, the strength-age approach for the determination of
activation energy from experimental results will be reviewed. An exact similar approach

will be employed for the determination of activation energy from fracture energy-age data.

3.3.6 Rate Constant, Limiting Strength, and the Activation Energy

The hyperbolic strength-maturity relationship which was independently proposed by
Bernhardt(1956), and Goral(1956) was later on adopted by committee 209 of the
American Concrete Institute to estimate concrete strength at different ages(ACI, 1971).
To evaluate the hyperbolic function for the given strength-age data for each curing .
temperature values of three parameters, namely £, kr, and t, need to be evaluated.
Similarly, to evaluate the hyperbolic function for the given fracture energy-age data, Gy,
kr, and t, need to be evaluated at each curing temperature. Several approaches are
available for evaluating the above-mentioned parameters from the experimental data,
including the least-square fit(Carino), and the trial and error approach. Knudsen's
approach(Knudsen, 1980) is the most simplistic approach in arriving at the three
parameters, and will be described in the following. In Knudsen's approach, the
approximation t ~ (t-to) simplifies the parameter evaluation procedure.

For the case of strength evaluation, equation 2.10 can be rewritten as follows:

1

1, 1
fC fCU

kpfoy t

+ (3.37)

In this dissertation the sane approach is applied for fracture energy:
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1 1 1 1
—_—= + - 3.38
Gf Gfu (kTGfu t) ( )

Thus, a plot of 1/Gr versus 1/t is a straight line, and the inverse of the intercept is the
limiting fracture energy Gg (Figure 3.5a). Having estimated the value of Gy, equation
3.26 can be written in the following form to estimate kr and t,

Gy

— ==kt +kt 3.39
Gfu“Gf Tto T ( )

~

Then, a plot of ~G—bf—G— versus t is a straight line having a slope kr and a t-axis intercept
fu " Mf

of't, (Figure 3.5b).

As the rate constant obeys the Arrhenius equation, there should be a linear
relationship between In k(T) and the reciprocal of the absolute temperatures. A plot of the
natural [ogarithm (In) of the rate constant, k(T), against the reciprocal of the absolute
temperature, 1/Ty, is & straight I'ne as shown in figure 3.6€b. The slope of this iine 1s the

value of the activation energy divided by the gas constant. This approach will be
employed for both strength-age, and fracture energy-age data. It will be shown that the

activation energies computed from both sets of data are equivalent.
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Figure 3.5 Fracture energy-age function of isothermally cured concrete:
Linear Transformations
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CHAPTER 4

EXPERIMENTAL PROGRAM

4.1 Introduction
The test program was designed for compression cylinder and cube and the three-point
bend beam tests. Compression tests were performed according to ASTM C 109 for cubes
and C 39 for cylinders. Three-point bend test on notched beams were employed for the
determination of fracture energy. The dimensions of the beam were selected according to
the recommendations by RILEM Commitiee T56 (1985). The fracture energy, Gy, was
estimated using the FCM formula given by the RILEM Committee T50 (1985) which is

given as:

. W, +mgow
(Jf —._0 & l
A,
lig

4.1)

where w, = area under the load-deflection curve of three-point bend test,
m = mass of the specimen between supports,
g =acceleration due to gravity,

Ayjg = projection of the fracture zone on a plane perpendicular to the beam axis,

and

w; = deformation at the final failure of the beam.
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4.2 Experimental Procedure
4.2.1 Materials and Mixture Proportions
Concrete and mortar mixtures were proportioned with a water-cement ratio of 0.5. Type
I portland cement was employed for the mortar and concrete mixtures. Granite was used
as the coarse aggregate with 3/8" nominal maximum size. Fine aggregate was natural
river sand. The mix proportion by weight of concrete was designed to be 1:2:2.7:0.5,
corresponding to Cement : Sand : Aggregate : Water. The mix proportion by weight of

mortar was designed to be 1:2.7:0.5, corresponding to Cement : Sand : Water.

4.2.2 Specimens Preparation

4.2.2.1 Compressive Test Specimens

For the concrete, cylindrical specimens were prepared using 3" x 6" plastic molds and then
were cast along with bean: specimens. Molds were filied in two layers, tamping each layer
15 times with a 3/8" diameter steel rod. For the mortar, cubic specimens were prepared
using 2" x 2" x 2" steel moids. Molds were filled in two layers and each layer was tamped
16 times with a hard rubber tamper. Three to eight hours after casting, cubes, cylinders
and beams were immersed carefully into water bath and allowed to cure. All the mortar
cubes were demolded at the time of the first strength test. Cylinders were demolded at the

same time as the beam specimens.
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4.2.2.2 Three-Point Bend Beams

The testing program involved experimentation with three different sizes of specimens.
Size B beam dimensions were chosen according to the recommendations by RILEM
Committee T50. Smaller size A and larger size C specimens were selected for

comparison. Specimen sizes and designations are given in Table 4.1. All beams were pre-

notched with a notch to depth ratio of 0.5.

Table 4.1 Beam specimen sizes and corresponding designations.

TYPE width (b) depth(d) span(S) length(L)
(in) (in) (in) (in)
A 3 3 18 20
B 4 4 32 34
C 4 6 38 40

4.2.3 Specimens Curing Temperature
To obtain the desired curing temperatures for specimens as quickly as possible, it was
necessary to control the temperature of the aggregates for the concrete to be mixed. As

this study was carried out in the laboratory , cements and aggregates were stored in room



54

temperature. The approximate temperature of the laboratory was about 23 °C. For
specimens to be cured at 14 °C, cements and aggregates were stored in an air conditioned
room at 14 °C.

To obtain a fresh mortar and concrete temperature close to the intended curing
temperature values of 14°C, 23°C and 35°C respectively, the temﬁerature of the mixing
water was varied. The following thermodynamic formula was employed to arrive at the
mixing water temperatures ( Portland Cement Association, 1988) :

_ 022(7::1% T IL'W{:) + TwWw
T 022, + W)+ W,

(4.2)

where T = desired temperature of fresh mortar and concrete,
T, , T¢, Ty, = temperature of aggregates, cement, and mixing water, respectively
W,, W, Wy, = weight of aggregates, cement, and mixing water, respectively.

Calculated mixing water temperatui s are given in Table 4.2

Table 4.2.a Mixing water temperatures (°C) for mortar.

Fresh Mortar Temp. of Cement & | Temp. of Mixing Temp. of Mixing
(Temp. Desired) Aggregates Water (Calculated) Water (Used)
14 14 14 14
23 23 23 23
35 23 54.5 54.5
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Table 4. 2.b Mixing water temperatures (°C) for concrete.

Fresh Concrete Temp. of Cement & | Temp. of Mixing Temp. of Mixing
(Temp. Desired) Aggregates Water (Calculated) Water (Used)
14 14 14 14
23 23 23 23
35 23 65 65

4.2.4 Specimens Temperature Monitering

Temperature of mortar and concrete specimens were monitored. via thermocouples

embedded within the samples during curing. For mortar cubes, temperatures of three

samples per a batch of 30 specimens were monitored. Concrete mixing process involved

production of 3 beams, and 3 cylinders per batch. Temperatures for 2 beams, and 2

cylinders per each concrete batch were monitored. Temperatures were monitored at 2

minutes intervals for the first 12 hours, and half hour to one hour intervals thereafter.

Thermocouples were of type T manufactured by the Omega Engineering, INC.

Temperature histories for each batch were acquired via an EXP-16 Universal Expansion

Interface, analog input multiplexer, connected to the DAS-8 data acquisition board in a
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personal computer. Based on the temperature data, it was found that the concrete and
mortar specimens reached the bath temperature within 2 to 3 hours after the start of
mixing. Figure 4.1 illustrates typical curing temperature data for a specimen in a curing
chamber. As shown in Figure 4.1, specimen temperatures deviate from the intended

values by about 3 to 4°C at the first few hours after mixing.

4.2.5 Test Schedule

This study required testing of about three hundred and fifty concrete and mortar
specimens. To obtain similar strength-age and fracture energy-age data it is necessary to
test the specimen at approximately equal maturities. Based on the maturity concept,
samples of the same concrete will have equal strength if they have equal maturity,
irrespective of their actual time-temperature histories. To determine the test age, a
preliminary investigation was carried out with mortar cube tests. Based on preliminary
tests, ASTM C1074-87, and tests by others (Carino, 1¥84), the testing age for specimens
which were cured at 23 °C were determined. The test-age schedule was established first
for tﬁe specimens at 23°C, and test ages for 14°C and 35°C specimens were determined on
the basis of equal maturity values corresponding to the 23 °C reference temperature.
Tables 4.3 and 4.4 list the testing age schedule used for the three different curing

temperatures.
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Figure 4.1 Typical curing temperature for beam specimen
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4.2.6 Three Point Bend Beam Test and Setup

All samples were tested on an MTS system closed-loop servo controlled hydraulic testing

machine. The closed-loop system enabled the use of CMOD control under which the

CMOD was increased at a rate of 50 p inch per second. Load point displacements(center

point deflections) were measured by a Linear Variable Differential Transformer(LVDT).

To eliminate displacements associated with the support settlement, the setup shown in

Figures 4.2 were employed for measuring the load point displacements. This mode of
control causes a controlled failure of the sample allowing all parameters of interest to be

measured. Data including Time, Load, CMOD and LVDT were recorded using a

Metrabyts DAS-20 daia woquustdon and control board running the Labtech Notebook data |
acquisition program. Typical experimental raw data from a beam test are depicted in

Figure 4.3.

Table 4. 3 Curing temperatures and testing age for mortar cubes

Curing No. of Approximate Testing Age Total No. of
Temperature | Specimen® (days) Specimens
14°C 3 1, 2, 3, 7, 11, 22, 46 21
23°C 3 06, 1, 2, 4, 7, 14, 28 21
35°C 3 04, 08, 1, 2, 3, 9, 18 21

"Number of replicate tests at each age.
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Table 4.4 Curing temperatures and testing age for concrete specimens

Specimen Curing No. of Testing Age Total No.
Type Temperature (°C) | Specimen* (days) of
Specimens
14 3 1‘2-2, 2, 4, 7, 22, 36 18
A 23 3 0.5, 13, 3, 7, 14, 28 18
35 3 0.35, 056, 1,4, 9, 20 18
14 3 1, 2, 4, 10, 22, 38 18
B 23 3 056, 1.2, 3, 7, 14, 28 18
35 3 025, 0.55, 1.6, 4, 9, 20 18
14 2 11, 2.1, 4, 9, 18, 36 12
C 23 3 - 065, 1, 3, 7, 14, 28 18
35 2 0.29,051, 1, 4.28, 9, 20 12
14 3 1, 2, 4, 7, 10, 20, 38, 45 24
Cylinder™ 23 3 0.55,0.7, 1, 3, 7, 14, 28 21
35 3 0.375,0.56, 1,2, 4,9, 20,23 24

* Number of replicate tests per testing age.
**Companion 3x6 cylinders from the same batch as in beams.
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Figure 4.2 Three-Point Bend Test Setup
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Figure 4.3 Typical raw experimental data for a 3-point bend beam test
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CHAPTER §
RESULTS AND DISCUSSIONS

5.1 General

This dissertation aims to develop a nondestructive technique to estimate the relative
fracture energy gain of concrete based upon its time-temperature history.  This
nondestructive method is proposed and the basic fracture energy development parameters
are calculated on the basis of the fracture energy - age data from one hundred and fifty
beam spectiars. The ypavimental procedures were cutlined in Chepter 4. This chapter
presents the experimental results, analysis of results and a discussion of the observed
trends.

Experimental data was analyzed 10 study the effect of the éuring temperature Cu
the parameters governing the fracture energy development in concrete mixtures. Basic
constants for the hyperbolic model including the limiting fracture energy, the rate constant,
and age at initial hardening for specimens cured at constant temperatures of approximately
14 °C, 23 °C and 35 °C are given. The fracture energy - age data, Tabulated results of
analyzed data, and representative plots for the various sizes of tested specimens are given
in this chapter.

The strength - age data are also analyzed for the evaluation of basic constants for
the hyperbolic model, which are the limiting strength, the rate constant, and the initial age.
Once the rate constant values at various temperatures are determined, the relationship

between the rate constant and the curing temperature is evaluated by the linear as well as
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the Arrhenius time-temperature models. Finally, the relative strength development is

‘expressed in terms of maturity and equivalent age.

5.2 Experimental Results
5.2.1 Mortar Cubes and Concrete Cylinders
The strength - age test results for mortar cubes and concrete cylinders are summarized in
Table 5.1 and 5.2. Coefficients of variations given in these tables are based on test results
of three specimens. Average strength versus age data for mortar cubes and concrete
cylinders are in Figures 5.1 and 5.2. For each curing temperature, the strength-age data
cain be represenied Ly k. 2.10. The three parameters for each curing temperature,
namely the limiting strenath fi,, the rate constant kr, and the initial age t, were evaluated
based on the data in Tables 5.1 and 5.2. The method introduced by Knudsen (1980) was
empioyed. To determine f,, data at later ages are considered and the approximation t ~
(t-t,) is made. This will results Eq. 3.37 as follows:

1 1 1

fc fc:u kacu t

a plot of 1/f; versus 1/t is a straight line, and the inverse of the intercept is the limiting
strength ., (Figures 5.3 and 5.4). The regression analysis results for mortar and concrete
tests are given in Table 5.3 and 5.4. In these tables, N represents the number of data
points-working from the latest to the earliest ages-that were used in estimating f,. The
criterion was to use the number of points that produced the lowest estimated standard

error in the intercept (1/ f.,), and that is why the N-values differed.
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Table 5.1 Compressive strength - age data for mortar curbs

Isothermal curing | Age, (days) Strength, (psi) Coefficient of Variation,

Temperature, (°C) %
0.75 430 1
1.12 1130 4
1.65 2160 3
14 2.95 4165 2
5.70 5550 1
9.91 6650 4
21.00 7360 3
a0 T Ts00 1
0.75 ' 2140 Z
1.00 3220 2
2.00 4647 2
23 4.00 5252 2
7.00 6323 5

I aen I R B
28.00 7348 i 2
031 635 2
0.62 3436 1
1.00 3791 3
35 2.00 4810 1
4.00 5508 3
7.00 5845 :
12.00 6300 2
20.00 6700 1
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Table 5.2 Compressive strength - age data for concrete cylinders

Isothermal curing | Age, (days) Strength, (psi) Coefficient of Variation,

Temperature, (°C) %
1.00 436 5

1.25 1126 2

2.00 2999 7

4.10 4624 1

14 7.30 5300 4
9.00 5698 1

10.00 5811 2

22.00 6086 2

300 | 6462 2

45.00 6584 5

0.55 ™ 2

0.70 1899 1

1.00 2724 2

23 300 | 3759 4
7.006 i 5241 4

14.00 5554.8 2

28.00 6057 3

0.37 1740 4

0.56 2408 3

0.70 3250 4

1.00 3718 1

35 2.00 3915 3
4.00 4480 4

9.00 5094 5

20.00 5433 2

23.00 5535 1
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Figure 5.2 Compressive stréngth versus age for isothermally cured concrete cylinders
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Table 5.3 Analysis of strength-age mortar data to determine limiting strength

Temperature N* e Standard Error fou
(°C) (10° psi™) (10° psi™) (psi)
14 4 119 2.6 8370
23 4 126 3.1 7945
35 4 145 4.1 6915

* N represents the number of data points-working from the latest to the earliest ages- that
were used in estimation .

Table 5.4 Analysis of strength-age concrete data to determine limiting strength

Temperature N* 1/ f Standard Error fo
(°C) (10° psi’h (10° psi™) (psi)
14 G 147 3.5 6798
23 3 161 6.9 6207
35 3 171 1.2 5863

* N represents the number of data points-working from the latest to the earliest ages- that
were used in estimation f,.

Estimation of kr and t,is evaluated from Eq. 2.10 as follows:

- W (5.1)
ou — e

Thus a plot of f./( fo -f.) versus t is a straight line, its slope is kr and the t-intercept is t,
(Figures 5.5 and 5.6). The results of this second series of regression analyses are given in
Tables 5.5 and 5.6. In this case the data points used were those from the earliest to later

ages, and the number was based of the lowest standard error for the estimate of kr.
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Table 5.5 Analysis of strength-age mortar data to determine rate constant

70

Temperature N* kit, Standard kr Standard to
(°C) Error (day") | Error (day™) | (day)
14 4 0.32 0.05 0.43 0.03 0.73
23 3 0.18 0.08 0.80 0.09 0.23
35 3 0.26 0.31 1.58 0.64 0.16

* N represents the number of data points-working from the earliest to the latest ages- that
were used in estimation kr.

Table 5.6 Analysis of strength-age concrete data to determine rate constant

Temperature N* krt, Standard Kkt Standard to
(°C) o4 _Exror (day") | Error (davh | (day)
14 3 0.69 0.04 0.74 0.05 0.94
23 B 047 0.10 1.19 0.30 0.40
35 3 0.56 0.17 2.47 0.72 0.23

* N represents the number of data points-working from the earliest to the latest ages- that

were used in estimation k.

Examination of the variation of the rate constant with temperature for the mortar
and the concrete tests are based on the data in Tables 5.5 and 5.6. Figures 5.7 and 5.8
illustrate the variation of rate constant with temperature for mortar and concrete samples
respectively. In Figures 5.9 and 5.10 the ﬂatural logarithms of kr are plotted against the
reciprocal of absolute temperature. The best-fit linear function and the best-fit Arrhenius
equation were determined for k(T). Analysis of data in Figures 5.9 and 5.10 the datum
temperature T, and the activation energy Q were obtained. 'Valﬁes of T, and Q are
summarized in Table 5.7. Values of Q are expressed by rounding to the nearest whole

number.
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Table 5.7 Constants acquired for linear k(T), and Arrhenius functions

Material Datum Temperature Activation Energy
To (°C) Q (kJ/mole)

Mortar 7.0 45

Concrete 6.5 42

Based on the evaluated parameters, f,, kr, t,, T, and Q, it is possible to fit the
hyperbolic model to experimental data(Figs. 5.11 through 5.12). As pointed out by
Carino (1984), since curing temperature affects the limiting strength, data have been
presented in tertns of relative strength (f./f.,). Alternatively, Figures 5.13 through 5.14
depict relative strength versus th: equivalen! age at a standard temperature 23°C. The
hyperbolic model (Eq. 2.10) was employed to fit the data in Figures 5.13 through 5.14.

The difference between the two models (Figs 5.11 and 5.12 versus Figs. 5.13 and
5.14) is:

To describe strength gain under variable temperature conditions, a maturity
function is needed to account for the effect of time and temperature. It has been shown
that the product of the rate constant and age is the general form of the maturity function.
Thus the key element in arriving at a valid maturity function is describing the relationship
between the rate constant and the curing temperature.

For the plot of relative strength versus maturity, the rate constant is assumed to be
a linear function of temperature and the resulting mafurity function is the traditional

Nurse-Saul function. However, Carino (1984) has shown that, over a wide temperature
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range, the rate constant is not a linear function of temperature. Therefore, the Nurse-Saul
function is inherently approximate and will either overestimate or underestimate the effects
of temperature on strength gain. The key parameter of this approach is the datum
temperature. It must be emphasized that the computed values of the datum temperature
are applicable only over the temperature range 14 to 35°C.

For the plot of relative strength versus equivalent age, fhe rate constant is assumed
to be a nonlinear function, Arrhenius equation, which can better represent the effect of
temperature on strength development over wide temperature range. For the Arrhenius
equation, the activation energy is the parameter which defines the temperature sensitivity
of the rate constant. The equivaient age approach is the most flexible technique to -
represent maturity. In this case, the cge factor is used to convert a curing time interval at
any temperature to an equivalent time interval at a reference temperature. The age factor
is simply the ratio of the value of the rate constant at any temperature to its value at the

reference temperature.

5.2.2 Beam Specimens

As shown earlier in table 4.4, for each of the three isothermal curing temperatures, beam
specimens were tested at six different testing age. Figures 5.15 through 5.17 represent
typical load-deflection curves for beam specimens tested in this study. Load-deflection
diagrams for all the beams tested in this study are given in appendix A. Figures 5.18

through 5.20 illustrate the effect of curing temperature and testing age on load deflection
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behavior of size B beam specimens. Fracture energies were calculated for all 150
specimens according to equation 4.1. Average fracture energies of all beams are
summarized in Tables 5.8 through 5.10. The coefficient of variation of fracture energy at
early ages is higher as compared to that of fracture energy at mature ages. This is due to
difficulties involved in proper testing of very young concretes.

Average fracture energy versus age data are shown in Figures 5.21 through 5.23.
For each curing temperature, the fracture energy versus age data can be represented by
Eq. 3.26. The hyperbolic equation can be transformed into linear equations. The three
parameters for each curing temperature, namely the limiting fracture energy Gy, the rate
constant kr, and the dainin ag i, were evaluated based on the data in Tables 5.8 through
5.10 by using the linear transforrations {F'rs. 2.38 and 3.39). To determine Gy, data at
later ages are considered and the approximation t ~ (t-t,) is made.' This will results Eq.
3.38 as follows:

1 1 1 1
=L
Gf Gfu kTGfu t

a plot of 1/G¢ versus 1/t is a straight line, and the inverse of the intercept is the limiting
fracture energy (Figures 5.24 through 5.26). The regression analysis results for three size
beams are given in Tables 5.11 through 5.13. In these tables, N represents the number of
data points-working from the latest to the earliest ages-that were used in estimating Gg.
The criterion was to use the number of points that produced the lowest estimated standard

error in the intercept (1/ Gg), and that is why the N-values differed.
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Table 5.8 Fracture energy - age data for size A

Isothermal curing Age, (days) Average Fracture Coefficient of Variation,
Temperature, (°C) Energy (Ib/in) %
1.22 0.21 12
2.04 0.35 6
14 4.03 0.49 6
7.25 0.51 3
22.04 0.56 4
36.00 0.59 4
0.50 0.20 10
1.30 0.37 9
22 3.06 0.50 8
7.16 0.53 3
| 1402 056 4
28.03 0.58 3
0.35 0.22 10
0.56 0.38 3
35 107 0.46 8
4.03 0.53 2
9.50 0.56 2
20.02 0.57 4
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Table 5.9 Fracture energy - age data for size B

Isothermal curing Age, (days) Average Fracture Coefficient of Variation,
Temperature, (°C) Energy (Ib/in) %
1.00 0.17 5
2.00 0.35 4
14 4,10 0.43 2
| 11.00 0.53 3
22.00 0.55 2
38.00 0.56 2
056 0.22 6
1.21 0.34 9
23 295 0.48 5
{ 7.16 0.52 1
14.02 0.54 1
28.00 0.59 1
0.25 0.18 1
0.55 0.38 1
35 1.55 0.50 4
4.26 0.51 3
205 0.54 4
20.20 0.58 2
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Table 5.10 Fracture energy - age data for size C

Isothermal curing Age, (days) Average Fracture CoefTicient of Variation,
Temperature, (°C) Energy (Ib/in) %
1.10 0.20 1
2.10 0.33 1
14 4.00 0.47 1
| 9.00 0.51 5
18.00 0.54 2
~36.00 0.57 1
0.65 0.22 6
1.00 0.38 4
23 3.00 0.45 8
108 051 1
14900 0.54 1
28.00 0.57 2
0.29 0.22 4
0.51 0.37 3
35 1.03 0.46 i
4.28 0.50 3
9.00 0.54 2
23.01 0.56 3
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Figure 5.24 Plot of 1/G¢ versus 1/t to evaluate Gg, for size A
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Table 5.11 Analysis of fracture energy-age data to determine
limiting fracture energy for size A

Temperature N* 1/Gg Standard Error G
(°C) (Ib/in)™ (Ib/in)™ (Ib/in)
14 3 1.68 0.04 0.60
23 3 1.68 0.01 0.59
35 3 1.72 001 0.58

* N represents the number of data points-working from the latest to the earliest ages- that
were used in estimation Gg,.

Table 5.12 Analysis of fracture energy-age data to determine
limiting fracture energy for size B

Temperature N* 1/Gg Standard Error Gr
°C) L oyt (ib/in)” (Ib/in)
4 | 3 1,68 0.22 0.60
23 3 1.70 0.07 0.59
35 3 1.70 0.04 0.59

* N represents ihe nuniber of data points-working trom the latest to the eatliest ages- that
v.ere used in estimation Gg.

Table 5.13 Analysis of fracture energy-age data to determine
limiting fracture energy for size C

Temperature N* 1/Ga Standard Error Ga
(°C) (Ib/in)"! (Ib/in)™! (Ib/in)
14 3 1.69 0.03 0.59
23 3 1.72 0.03 0.58
35 3 1.74 0.01 0.58

* N represents the number of data points-working from the latest to the earliest ages- that
were used in estimation Gg.
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Estimation of kr and t, are based on Eq. 3.39 as follows:

Gy
G -Gy

= -kt +kpt

Thus a plot of G¢ / (G - Gy) versus t is a straight line having a slope kr and a t-axis
intercept of t, (Figures 5.27 through 5.29). The results of this second series of regression
analyses are given in Tables 5.14 through 5.16. In this case the data points used were
those from the earliest to later ages, and the number was based of the lowest standard
error for the estimate of kr.

Examination of the variation of the rate constant with temperature for mortar and
concrete tests are based on the data in Tables 5.14 through 5.16. Figures 5.30 through
5.32 illustrate the variation of rate constant with temperature for size A, B, and C beams -
respectively. In Figures 5.33 through 5.35 the natural logarithms of kr are plotted against
the reciproca! o absclute temperature. The best-fit linear function and the best-fit
Arrhenius equation were determined for k(T). Analysis of data in Figures 5.33 through
5.35 the datum temperature T, and the activation energy Q were obtained. Values of T,
and Q are summarized in Table 5.17. Values of Q are expressed by rounding to the
nearest whole number,

Based on the evaluated parameters; Gy, k1, to, To and Q, it is possible to fit the
hyperbolic model to experimental data (Figs. 5.36 through 5.38). As pointed out earlier,
since curing temperature affects the limiting fracture energy, data have been presented in
terms of relative strength (Ge / G ). Alternatively, Figures 5.43 through 5.45 depict
relative strength versus the equivalent age at a standard temperature 23°C. The

hyperbolic model (Eq. 3.26) was employed to fit the data in Figures 5.39 through 5.41.



50
1 -
40+ (14°C
-
030 1+
o 35°C
)
)
\20 =+
e
o
10 -
0 n T T 1 T i —1
0 5 10 15 20

Age, t (days)

Figure 5.27 Plot of [Gy/ (Gg-Gy )] versus t to evaluate kr and t, for size A

o -

n
o
L

w
o
}

G(f) / [G(fu) - G()]
8

e
+

10 4

0 5 10 15 20
Age, t (days)

Figure 5.28 Plot of [G¢/ (Ga-Gr )] versus t to evaluate kr and t, for size B |

89



K-S
o
3

w
Q
1

N
(&)
i

G(f) 1 [G(fu) - G(N]

10 -

0 5 10 15 20
Fge, { (avs)

Figure 5.29 Plot of [Gs/ (Gau-Gr )] versus t to evaluate kr and t, for size C

90



91

Table 5.14 Analysis of fracture energy -age data to determine rate constant for size A

Temperature N* krt, Standard ky Standard to
(°C) Error (day") | Error (day™) | (day)
14 3 1.20 0.13 1.35 0.06 0.89
23 3 0.59 0.27 1.87 0.15 0.31
35 3 0.82 0.22 444 004 0.18

* N represents the number of data points-working from the earliest to the latest ages- that

were used in estimation kr.

Table 5.15 Analysis of fracture energy -age data to determine rate constant for size B

Temperature N* ki, Standard kr Standard to
©°C) - Error (day") | Error (day") | (day)
14 3 0y 1022 1.23 0.10 0.77
23 3 040 | 017 1.58 0.10 0.25
35 3 0 4% 0.16 4.00 0.17 0.11

* N represents the nunber of dais g
were used in estimation ky

~sints-working from the earliest to the latost ages- that

Table 5.16 Analysis of fracture energy -age data to determine rate constant for size C

Temperature N* krt, Standard kr Standard to
(°C) Error (day™ | Error (day’™) | (day)
14 3 0.98 0.32 1.19 0.16 0.82
23 3 0.42 0.10 148 0.06 0.28
35 3 0.43 0.18 3.85 0.33 0.11

* N represents the number of data points-working from the earliest to the latest ages- that

were used in estimation kr.
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Table 5.17 Constants of linear k(T) function and Arrhenius function
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Material Datum Temperature Activation Energy
To (°C) Q (kJ/mole)
Mortar 7.00 45
Concrete 6.50 42
Size A 7.04 42
Size B 7.27 42
Size C 7.34 42

5.3 Analysis of Results

5.3.1 Comparison of Fracture Energy Development Parameters

Comparison of compressive strength and fracture energy data presented in the preceding

section indicates the existence of a strong similarity in fracture energy, and strength gain

characteristics. For instance, results shown in Figures 5.1, 5.2 and 5.21 through 5.23

imply that in direct corollary with the strength gain relationship, the fracture energy gain

function is also hyperbolic.

hyperbolic model Eq. 3.26. The fracture energy development parameters which include

The fracture energy age data were analyzed using the
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the limiting fracture energy Gy, the rate constant kr, and the initial age t, were obtained
for all beams and are shown in Tables 5.11 through 5.16. The fracture energy-gain

parameters are discussed separately as follows.

5.3.1.1 Fracture Energy

The gain in fracture energy as a function of age for the three curing temperatures are
presented in Figures 5.21 through 5.23. As seen in the Figures 5.21 through 5.23, the
fracture energy exhibit faster gains at early ages for higher curing temperatures, and higher

final values at lower temperatures.

5.3.1.2 Limiting Fracivre Euergy

The limiting fracture energy, Ga, is the computed asymptotic value of the fracture energy
at late ages based on the assumpiicn that fracture energy - gain obeys linear
transformations (Eq. 5.1) and the hyperbolic model (Eq. 3.26). As shown in Figure 5.42
shows that the iimiting fracture energy decreases as the curing temperature of concrete

increases.

5.3.1.3 Rate Constant

In the hyperbolic fracture energy-age equation 3.26, the rate constant, kr, is the initial
slope at t, divided by the limiting fracture energy. Figures 5.30 through 5.32 show that the
rate constant is a function of the curing temperature, and they increase with curing

temperature. The kr values calculated based on fracture energy, Gg, which are obtained
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from load-deflection curves of three-point bend tests are higher than those based on

compressive strength, f..

5.3.1.4 Datum Age

Datum age, (Initial age), t., is age at the end of induction period, when the fracture energy
development is assumed to begin. The datum age of concrete decreases as the curing
temperature increase. The datum age does not appear to be significantly different for the

cubes, cylinders or beams.

5.3.2 Variation oi Rate Constant with Temperature

5.3.2.1 Datum Temperzsiure

Figures 5.30 through 5.32 indicate the variation of rate constant with curing temperature
and are fitted in the linear. In the linear function, the datum temperature, T,, is the
temperature corresponding to a rate constant equal to zero. The values of datum
temperature are shown in Table 5.17. For a given concrete mixture, in which the rate
constant varies in a non-linear manner with temperature, the value of datum temperature
depends upon the temperature range being considered. In this study, the temperature
range for the best fit values of the datum temperature are 14 °C to 35 °C. There are some
published values of datum temperature and listed on Table 5.18 . None of the datum
temperature calculated in this study, equaled to -10 °C which the value used in the

traditional maturity function.



Table 5.18 The value of datum temperature published in various references
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datum temperature

Reference Cement
To(°C)
Saul, 1951 Concrete with Type I cement -10.0
Carino, 1984 Mortar with Type I cement 4.0
Carino, 1984 Concrete with Type I cement 45
Tank, 1988 FMortar with Type T cement 7.0-11.0
Tank, 1988 | Mortar with Type II cement 6.0-9.0
Ta:ll-;_ 1988 Mortar with Type I1I cement ) 6.0-6.0
Tank, 1988 Concrete with Type I cement 1 8.0-11.0
Tank, 1988 Concrete with Type II cement 6.0-9.0
Tank, 1988 Concrete with Type III cement 7.0
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5.3.2.2 Activation Energy
The rate constants vary with temperature according to the Arrhenius equation(Figures
5.33, 5.34 émd 5.35). Therefore, the activation energy, Q, is an important parameter of
the temperature function. Values of the activation energy as calculated from strength-age
and fracture energy-age data are given in Tables 5.7 and 5.17. Both strength-age and
fracture energy-age data yielded similar activation energies for concrete.

Published activation energy values are ﬁsfed in Table 5.19 . Activation energies
obtained in this study for mortar and concrete mixtures with type I cement are within the

range of the published values.

Table 5.19 The value of Activation energy published in various references

Referance Cement Aciivation Energy
Q (ki/mole)
Carino, 1934 Mortar with Type I cement 43.7
éuho, 1984 ” Concrete with Type I cement 40.8
Gauthier, 1982 Ordinary portland cement 42.0-47.0
Geiker, 1982 Ordinary poﬁland cement 61.0
Geiker, 1982 Rapid Hardening cement 57.0
Tank, 1988 Mortar with Type I cement 440-62.0
Tank, 1988 Concrete with Type I cement 46.0 - 61.0
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5.3.3 Relative Fracture Energy Gain

It is shown that the limiting fracture energy of a concrete mixture is affected by the early-
age curing temperature history. Thus there is no unique fracture energy versus maturity
function for a given concrete. However, there is a unique relative fracture energy versus
maturity function.

- Based on time-temperature function, the relative fracture energy can be plotted in
two way. First, the traditional maturity function is used with a datum temperature shown
in Table 5.17. The resulting relative fracture energy versus maturity plot are presented in
Figures 5.36 through 5.38. Alternatively, the relative fracture energy can be plotted
versus the equivalent age at standard temperature by using an activation energy given in
Table 5.17. The resulting relative fracture energy versus equivalent age plot are presented
in Figure 5.39 through 5.41.

Because curing temperature affects the limiting fracturs e'nerg;“/, the data have beea
presented in terms of relative fracture energy and the results presented in Figures 5.36
through 5.41. show that the shape of the relative fracture cnergy versus the time-
temperature function (maturity or equivalent age) is independent of the curing
temperature. In addition, it has been shown that by using the correct datum temperature,
the traditional maturity function can describe relative fracture energy gain almost as

precisely as equivalent age based on the Arrhenius equation.



CHAPTER 6

CONCLUSIONS

The overall objective of this dissertation was to develop a methodology for determining
the in-place fracture energy for concrete-like materials in a nondestructive manner. The
method combines the principles of fracture mechanics and time-temperature effects on the
fracture energy development of concrete. This nondestructive test has been developed
based on the theoretical basis given here and on the basis of experimental data on 150
beam specimens, 162 cylinders and 63 cubes. The relative fracture energy-gain of |
concrete is related to the maturity or the equivalent age by means of a hyperbolic function
and three parameters. The ihree parameters are the limiting fracture energy, Gs, the rate
constant, 1, and datuin age, t,, The effect of mujor vartalles on the fracture ensrgy
‘development parameters are studied by statistical analysis of isothermally cured fracture
energy-gain data.

To verify the equivalency of activation energy values obtained from fracture and
compressive tests, mortar cubes and concrete cylinders were also tested in compression.
Comparison of results from mortar cubes, concrete cylinders and three-point bend beams
indicated that similar activation energy values are obtained in beam and cylinder tests for
the same concrete mixture. This proves that the maturity method is also applicable

determination of fracture energy in structures.
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The followings conclusions from this study and are summarized as follows:

1. In the theoretical development, the fracture energy gain of concrete under isothermal
conditions can be described by a hyperbolic curve which is defined by three
parameters: (i) to, the age when fracture energy development is assumed to begin, (ii)
kt, a rate constant, which is the initial slope of the curve, and (iii) Gg, the limiting
fracture energy. These three parameters are temperatﬁre dependent and can be
obtained from fracture energy tests by using linear regression analyses.

2. The rate constant, kr, values calculated based on compressive strength, f., are lower
than based on fracture energy, Gy, obtained from load-deflection curve of three-point
bent tests. This is because the rate of increase of f. with age is lower than the rate of
increase of Gy with age. Howevor, it is interesting to note that the activation energy,
Q, calculated from these two tests are almost the same. Values of kr when plotted on
a logarithrn scale against 1/Ty yield straight lines which are paraliei(Figure 6.1) yielding
equal slopes. This slope is magnitude of activation energy divided by the gas
constant(= 8.3144 J/°K-mole).

3. Due to the fact that the early age curing temperature affects the limiting fracture
energy, there is not a unique fracture energy versus maturity function curve for a given
concrete mixture. However, there is a unique relative fracture energy versus maturity
function curve for all concretes.

4. Activation energy results confirmed the notion that fracture tests can be used as an

alternate technique for obtaining the activation energy of concrete.
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5. The results of comparison of datum temperature and activation energy appear to
gonﬁrm the notion that tests of concrete cylinders can provide the datum temperature
T, or activation energy Q requires to develop the time-temperature function of the
beam tests.

6. The fracture energy-maturity relationship for concrete was established by conducting
laboratory three-point bend tests on the concrete mix used.

7. Based on the maturity concept an insitu nondestructive method for the determination
of the fracture energy for concrete has been developed. The fracture energy in any
concrete element or structures can be determined based on the fracture energy-

maturity relationship in a similar manner as to the maturity tests for strength.
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APPENDIX A

| DEVELOPMENT OF FRACTURE ENERGY FUNCTION

Figures corresponding to the empirical procedure employed for the determination of the

fracture energy function g(Gy) in chapter 3.3.2.
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Figure 3.7 G versus dG¢/dt for size A
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APPENDIX B
EXPERIMENTAL DATA

j/,pad deflection diagrams for all the beams tested in this study.

<
o 3 1 3 ] 3 i 4 1 3 1] ot 3 3 Il )
4 Tt T T T T T - T T T T T

0 0.002 D4 2005 D.00E 0.01 0.212 0.014 C.D16
Ceflection (in)

Figure Ala Load versus deflection for size A, curing at 14°C, age = 1.22 days

0 s 1 3 I + - 3 (] — 4 i L 'l -t -
t T y 14 t T T T T T t T t T t

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Deflection (in)

Figure A1b Load versus deflection for size A, curing at 14°C, age = 1.22 days
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Figure B17b Load versus deflection for size B(T = 35°C, t = 9.05 days)
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Figure B17¢ Load versus deflection for size B(T =35°C, t = 9.05 days)
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Figure C4b Load versus deflection for size C(T = 14°C, t = 9.0 days)
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Figure C5b Load versus deflection for size C(T = 14°C, t = 18.0 days)

170



171

400

300 +
g
= 200
©
o
—t

100 -

0 ——ot i } t } + } +——if +
0 0.005 0.01 0.015 0.02 0.025 0.03
Deflection (in)

Figure C6a Load versus deflection for size C(T = 14°C, t = 36.0 days)
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Figure C11b Load versus deflection for size C(T = 23°C, t = 14.0 days)
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