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ABSTRACT 

PROGRAMMABLE MICROSTRIP DIPOLE ANTENNA DESIGN 

by 
Jing Zhu 

The narrow bandwidth of microstrip dipole antennas is a major limitation for many 

applications. A method to increase the microstrip dipole antenna bandwidth is illustrated in 

this thesis. The proposed method utilizes micromechanical actuators to adjust the 

electrical length of the dipole antenna. The length change is realized by the activities of 

several microactuators arranged on both arms of the antenna. The radiation pattern and 

input impedance, as well as the microactuator mechanisms are detailed in this thesis. A 

programmable microstrip dipole antenna including the microactuators has been designed 

with the feedline taken into consideration. The fabrication techniques for this family of 

programmable antennas are also described. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Printed circuit antennas find increasing use in microwave frequencies as well as in the far 

infrared. They are ideally suited in those applications where conformal thin antennas are 

required. They may be used in spacecraft, missiles and high-velocity aircrafts. These 

antennas can be fabricated to the highest degree of precision because of the development 

of standard photolithographics techniques. 

There are advantages of such kind of antennas. The antennas are flat , have small 

dimensions and low cost, and are easy to be installed and reproduced. But there are 

disadvantages which are the low radiation efficiency and narrow bandwidth. 

Extensive research has been done on printed antennas recently. The radiation 

efficiency is not a problem because antenna arrays can be used to get specified gain. The 

main limitation is the narrow bandwidth. 

In this thesis, an innovative model of antenna: programmable microstrip dipole 

antenna (or programmable printed dipole antenna) is presented. These antennas can have 

several times wider operating bandwidth than that of conventional ones. The structure of a 

programmable microstrip antenna differs from that of a conventional one in that: micro 

electro switches are fabricated on the antenna arms symmetrically. They are controlled to 

change the length of the antenna to keep the antenna resonant. So the programmable 

antennas can work in a wider range of frequencies than the conventional antennas. 

This thesis is organized as follows: the objective of the thesis, previous works, 

the basic concepts of a programmable antenna, and overall design is presented in Chapter 

1. The operating principles of programmable microstrip dipole antennas are described in 

Chapter 2. The design technologies of programmable microstrip dipole antenna are 

1 
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presented in Chapter 3. The mechanism and design of thermal microactuators for the 

programmable dipole antenna are presented in chapter 4. Chapter 5 is concentrated on the 

fabrication sequence of the programmable microstrip dipole antennas. The merits of 

presented investigation as well as the future work with the programmable antenna are 

summarized in Chapter 6. 

1.2 Previous Work on Microactuators 

Because of the rapid advances made by silicon IC technology, microelectronic devices 

and components are used in many new areas and applications. The use of silicon as a 

mechanical material has led to the development of integrated devices combining 

transducer elements and microelectronics circuits. So far a variety of micromachined 

silicon sensors, partially with integrated electronic circuits, has been developed. However 

no applications on antennas has been reported. 

Researches on the microactuator fabrication have been done by many investigators. 

Various methods have been employed to actuate the devices. The mechanism of thermal 

effects are discussed [l][2][3][4]. The fabrication of this kind of devices are also reported 

[5][6][7][8]. Most movable devices are designed to be at rest in one stable position except 

when a driving force is applied. A few actuators with bistable states [9115] are also 

reported. 

1.3 Basic Concepts of Programmable Antennas 

The input impedance of antenna is one of the key parameter to govern the antenna 

bandwidth characteristics. The imaginary part of the input impedance is always preferred 

to be zero to get resonance. Input impedance is sensitive to frequencies. The bandwidth of 

the antenna, especially microstrip antenna, is a major problem. 

Actually the input impedance is corresponded with the current distribution on both 

arms of the antenna. This current distribution is a function of the dipole length. It is 
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possible to change the length of dipole so that the input impedance is almost fixed in a 

wide range of working frequencies. The major work in this thesis is to design the length 

changeable antenna, which is called the programmable antenna. 

A diagram of a programmable dipole antenna is shown in Figure 1.1. This 

programmable 	antenna is very similar to a fixed-length dipole except that the 

programmable antenna has micro electro switches on both arms. These switches are 

symmetrically arranged at certain positions. These switches are realized by microactuators 

which can be turned to either enabled or disabled. The symmetrical pair is always the 

same mode. External forces such as thermal, magnetic field, etc., can be used to turn on 

the switches. Thermally excited microactuators are used in this design. 

Figure 1.1 Diagram of programmable dipole antenna 

When a switch is off(open circuit), the antenna arm is disconnected and becomes 

shorter. When a switch is on(short circuit), the antenna aim is extended and becomes 

longer. The radiation pattern is not significantly affected but the input impedance changes 

when the microactuators turn on or turn off. This antenna can be tuned to adapt the 
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working frequency using the microactuators. Therefore the bandwidth of printed antennas 

can be enhanced for multiband, sequential-tuning applications. 

1.4 Overall Design 

A programmable microstrip antenna system consists of input circuit, antenna, and control 

circuit. A top view of this antenna system is shown in Figure 1.2. These schematics are not 

to scale. The input circuit is fabricated on chip 2 and it contains the transmission line and a 

balun. The antenna with microactuators are fabricated on chip 1. Chip 1 has both top and 

bottom ground plane. Chip 2 and chip 1 are connected through interchip bonding. Signals 

are input to antenna by this interconnection. The dashed lines on chip 1 are the 

transmission line to send the control signals to mciroactuators. These transmission lines 

are covered by the top ground plane. This will, prevent the transmission lines from 

affecting the antenna radiation pattern. 

The design of the programmable antenna on chip 1 is focused. This design includes 

the antenna design, actuator position choosing, and Microactuator design. 

During the microactuator design both the beam deflection and the heater resistance 

must be considered carefully. The deflections and forces for a good contact between 

antenna and microactuators are crucial and will be discussed. The n+-poly beam layer is 

not only the actuation element but also the heating element. The power needed for the 

heater will be also estimated. 
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Figure 1.2 Top view of overall design for programmable antenna system (not to scale) 



CHAPTER 2 

PRINCIPLES OF OPERATION 

2.1 Input Impedance of Dipole Antenna 

Dipole is one of the most common radiators. It is a straight conductor (often a thin wire or 

circular cylinder ) broken at some point where it is excited by a voltage derived from a 

transmission line , waveguide, or directly from a generator . Figure 2.1 shows a typical 

dipole antenna with a center-driven introduced by transmission line. This antenna is with 

total length 2/. The half-wave dipole with the length 2/ approximately equal to a half-

wavelength is very common and finds widespread use in thousands of applications. 

Figure 2.1 A typical dipole antenna with parallel transmission line 

The input impedance characteristics of cylindrical antennas have been investigated 

by many researchers. Theoretical work has mainly been confined to relatively thin 

antennas (length-to-diameter ratio greater than 15), and the effect of the junction 

connecting the antenna proper and the transmission line is usually not considered. Among 

6 
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various theories, the induced-emf method of computing the impedance of a cylindrical 

antenna based upon a sinusoidal distribution has been widely used. The formula derived 

from this method is extremely simple. It is, however, valid only when the half length of a 

center-driven antenna is not much longer than a quarter wavelength. In practice this is the 

most usefu10 range. The antennas described here are also in this range. The input impedance 

of the center-driven antenna is in fol10owing form [10]: 

where Z = input impedance, Ω, of a center-driven cylindrical antenna of total length 21 

and radius a 

Id = 270X) = electrical length , corresponding to 1, measured in radius 

R(kl) and X(kl) can be found in Reference[10] 

It is shown in (2.1) that the input impedance is a function of the antenna length and 

frequency. The wavelength and resonant frequency has the following relationship 

where c is the speed of light. 

2.2 Resonant Frequency Control 

It is mentioned in Chapter 1 that the microactuators in Figure 1.1 can be switched to 

change the length of the antenna. A more detailed model is shown in Figure 21. The 

center-driven dipole antenna is 1 mm above the infinite ground surface. The labe10ed 

movable plates above the discontinuities on the antenna arms are thermal microactuators. 
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These microactuators can be moved up and down controlled by thermal energy. There are 

total 6 pairs of thermal actuators(microelectromechanical switches) which are labeled 

from #1 to #6 in Figure 2.2. The thermal microactuators will be discussed in detail in the 

next chapters. The antenna model in Figure 2.2 is a simple model for programmable 

microstrip dipole antenna. 

Figure 2.2 Cross-section of the model for I_NAC_3 simulation 

An antenna software package I_NAC_3 is used to simulate the behavior of the 

antenna in Figure 2.2. The input impedance is calculated and plotted on the Input 

impedances. Simulation results are shown in Figure 2.3-2.6 and Table 2.1. 
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The Input impedance in Figure 2.3 shows characteristics of the antenna when it is at 

full length. The calculation is done at 11 different frequencies which are labeled from 1 to 

11 on the Smith-Chart. The resonant frequency is obtained at the center (label 4), 

which is 18.5GHZ. The corresponding input impedance is 100Ω. Between 18.3GHZ and 

18.7GHZ (label 3 to label 5), the standing wave ratio of the antenna is less than 1.2. This 

is the acceptable working range of this antenna. The bandwidth is only 2.2%, which is too 

small and can't satisfy the requirement of many applications. 

Figure 2.3 Smith-chart of input impedance of dipole antenna with 1= 3.88mm 
This pattern is corresponding to the antenna on ground plane in Figure 2.2. The antenna is 
placed 1mm above the ground. This result is based on ɛr = I for underlying dielectric half-
space 
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The same normalized impedance of 100Ω is used in Figure 2.4-Figure 2.6. Figure 

2.4 is the input impedance when actuator pair #1 is open circuit. The center frequency is 

changed to 18.92GHZ and the acceptable working range is from 18.7 to 19.15GHZ, 

where SWR < 1.2. This is a 2.4% bandwidth. 

Figure 2.4 Smith-chart of input impedance with actuator #1 open and actuators #2-6 
closed. This pattern is corresponding to the antenna on ground plane in Figure 2.2. The 
antenna is placed 1 mm above the ground. This result is based on Er  = 1 for underlying 
dielectric half-space 
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Figure 2.5 is the Input impedance when #1 and #2 are open circuit and the rest are 

short circuit. The frequency range satisfying the SWR < 1.2 is (19.15GHZ - 19.6GHZ). 

This is a 2.3% bandwidth. 

Figure 2.5 Smith-chart of input impedance with actuator #1-2 open and #3-6 closed. 
This pattern is corresponding to the antenna on ground plane in Figure 2.2. The antenna is 
placed 1mm above the ground. This result is based on c. = 1 for underlying dielectric half-
space 



12 

Figure 2.6 Smith-chart of input impedance with actuator #1-3 open and #4-6 closed. 
This pattern is corresponding to the antenna on ground plane in Figure 2.2. The antenna is 
placed 1mm above the ground. This result is based on c1  = 1 for underlying dielectric half-
space 

When actuator #6 is open circuit and the rest are short circuit, the working 

frequency range is from 20.95 to 21.4GHZ. This is a 2.1% bandwidth. The continuity of 

all frequency ranges depends on the position of the actuator pairs. Since proper positions 

are chosen such that the antenna working frequency range are extended. The effective 

bandwidth of the programmable antenna with 6 pairs of actuators is 15.6%. 
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A summary of the simulation results and the antenna dimensions are given in Table 

2.1. 

Table 2.1 Resonant frequencies versus antenna lengths and standing wave ratios(VSWR) 

Micro- 
actuator 
Open 
Circuit 

Micro 
actuator 
is off at 

x(mrn) 

Resonate 
Frequency 
fo(GHz) 

Frequency Width 
with SWR < 1,2 
from(GHz) 	to 
(GHz) 

Frequency Width 
with SWR < 1.4 

from(oHz) 	to 
(GHZ) 

Frequency 	Width 
with SWR < 2.0 
from(GHz) 	to (GHz) 

None 3.88=l 18.5 18.3 18.7 18.1 18.95 17.7 19.4 

#1 3.796 18.92 18.7 19.15 18.5 19.35 18.15 19.8 

#1,2 3.71 19.35 19.15 19.6 18.95 19.8 18.52 20.0 

#1-3 3.62 19.8 19.6 20.05 19.4 20.6 19.0 20.7 

#1-4 3.54 20.26 20.05 20.5 19.85 20.7 19.4 21.2 

#1-5 3.46 20.7 20.5 20.95 20.28 21.15 19.85 21.6 

#1-6 3.38 21.15 20.95 21.4 20.75 21.65 20.3 22.1 

Figure 2.7 shows the standing wave ratio change versus frequency for a length-fixed 

antenna and programmable dipole antenna. The programmable antenna has a 12% 

effective bandwidth, which is five times more than that of the length-fixed antenna. Each 

microactuator increases the controllable effective bandwidth of the antenna by 

approximate 1.7% around 20 GHZ center frequency. 
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Figure 2.7 Comparison of antenna effective bandwidth for a length-fixed dipole and the 
programmable dipole(1max3.88mm, a=lµ m,ɛr=1.0, Z0=100Ω ). This pattern is 
corresponding to the antenna on ground plane in Figure 2.2. The antenna is placed 1mm 
above the ground. This result is based on c, = 1 for underlying dielectric half-space 
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2.3 Effective Load Capacitance 

The effective load capacitance caused by the discontinuity of the antenna arms and the 

microactuators has already been taken into consideration in I_NAC_3 simulation. The 

simulation result shows that the capacitance is very small and has negligible effect on the 

input impedance of the antenna. Figure 2.8 is the input impedance for a simple 

antenna(without microactuators) of I = 3.796mm. It is observed that Figure 2.8 has the 

same result as Figure 2.4 while Figure 2.4 is the Input impedance for a antenna with 

microactuators. Based on this observation, the capacitance can be neglected when 

calculating the input impedance of the programmable antenna. 

Figure 2.8 Smith-chart of a length-fixed dipole(without gap and microactuators, 
lmax=3.796mm, a=1µm,ɛr=1.0, Z0=100Ω). This pattern is corresponding to the antenna on 
ground plane in Figure 2.2. The antenna is placed 1mm above the ground. This result is 
based on ɛr = 1 for underlying dielectric half-space 



where 
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2.4 Radiation Pattern of Dipole Antenna 

The radiation pattern of a center-driven cylindrical antenna in genera10 depends upon its 

length and thickness. In order to calculate the radiation pattern, first of all the proper 

choice of expression functions for the current distributions must be chosen. Sinusoida10 

expansion functions are used because of the following reasons: 

1) the boundary conditions for the antenna current distribution are automatically 

satisfied; 

2) a closed-form expression for the field is obtained. 

Thus with an assumed current distribution of the form 

the radiation field, expressed in spherica10 coordinate system, is given by[10 0] 

0 = angle measured from axis of dipole, or x axis 

The radiation patterns of both length-fixed antenna shown in Figure 2.1 and 

programmable antenna shown in Figure 2.2 are calculated. The results are shown in 

Figure 2.9 and Figure 2.10 respectively. Figure 2.9 and Figure 2.10 are compared and it is 

observed that the programmable microstrip antenna in Figure 2.2 has almost the same 

radiation pattern as the length-fixed one in Figure 2.1. The length-fixed antenna is of a 

gain -1.97 dB, 3dB bandwidth 30.42° and 45.73° in E-plane and H-plane respectively, 
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while the programmable antenna is of a gain -1.74 dB, 3dB bandwidth 30.44° and 45.77° 

in E-plane and H-plane respectively. 

The following conclusions can be drawn from the above comparison: The actuators 

and the antenna arm discontinuities have negligible effect on the radiation pattern. The 

actuation does not affect the 100(Ohm) antenna impedance when frequency changes if 

proper actuation positions are chosen. This can maintain acceptable small VSWR. 

Figure 2.9 Radiation pattern of a length-fixed dipole antenna (1 = 3.88mm, a=1µm) 
This pattern is corresponding to the antenna on ground plane in Figure 2.2. The distance 
from the ground is 1mm. This result is based on r = 1 for underlying dielectric half-space 
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Figure 2.10 Radiation pattern of a programmable antenna(1 = 3.88mm but with actuators 
open). This pattern is corresponding to the antenna on ground plane in Figure 2.2. The 
distance from the ground is 1 mm. This result is based on r = 1 for underlying dielectric 
half-space 

2.5 Equivalent Radius of Rectangular Cross Sections 

Since the simulator I NAC_3 is based on circular wire antenna elements. The modeling 

for a strip dipole antenna requires careful consideration since it has a rectangular cross-

section. In the following an equivalent circular cross section is derived for the actual 

antenna which is rectangular cross-section. As far as the impedance characteristics and 

radiation pattern are concerned, a thin antenna with a rectangular cross section behaves 

like a circular cylindrical antenna with an equivalent radius[10]. The equivalent radius of 

many simply shaped cross sections can be found by the method of conformal mapping. For 
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a rectangular cross section the result is plotted in Figure 2.11. The equivalent radius aeq  of 

a rectangle is a function of the ratio of thickness t to width s. Therefore the problem of 

antennas with rectangular cross-section can be transformed to the problem of wire 

antennas. 

Figure 2.11 Equivalent radius of antenna cross-section rectangle(units normalized)[10] 

2.6 Radiation Pattern and Input Impedance of Printed Dipoles 

The discussion in previous section are based on antennas in free space although the 

ground are introduced into the simulation model in Section 2.2. The detailed discussion on 

the microstrip dipole antenna is presented in this section. Another simulator ca10led SMAD 

is used to calculate the impedance of microstrip dipole antennas. 
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Figure 2.12 and Figure 2.13 show the microstrip dipole antenna and printed wire 

antenna respectively. The difference between them is in the cross section of the antenna. 

The one in Figure 2.12 is with rectangular cross section and the other one in Figure 2.13 is 

with circular cross section. 

Figure 2.12 Microstrip dipole antenna 

Figure 2.13 Printed wire dipole antenna 
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Consider a microstrip dipole antenna in Figure 2.12. This dipole is of length 2/, 

width w and thickness t. The substrate is of thickness h. 

According to the discussion in Section 2.5, the microstrip width w can be 

transformed into the radius of a wire dipole in Figure 2.13. Then same method can be used 

to compute the radiation pattern and input impedance for both cases. 

The current distribution , input impedance and radiation pattern have been 

calculated [11] using moment method. The procedure is included in Appendix A. 

The input impedance if the printed wire dipoles for a 1.0 V input excitation is given 

by 

where Iin is the current at the input terminals of the antenna, which has been 

solved(Appendix A). 

The SMAD program is performed to calculate the input impedance of a thin 

microstrip dipole . The result is shown in Figure 2.14. This result is consistent with the 

previously published result for a printed wire dipole[11]. 



22 

Figure 2.14 Input impedance of a microstrip dipole antenna versus length I 
(ɛr=3.25, h=0.0127λ0, aeq  =0.00005λ0) 
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2.7 Conclusions of This Chapter 

The input impedance and radiation patterns of the dipoles in free space and on grounded 

substrate are discussed in this chapter. Following conclusions can be drawn from the 

computations and simulations which have been done: 

1) The resonant frequency of the dipole antenna can be changed efficiently by 

changing its 10ength. 

2) The length changing of the antenna can be realized by external control of the 

microactuators. This technique will adjust the input impedance but won't affect the shape 

of the radiation pattern. 

3) The capacitance caused by the antenna discontinuities and microactuators have 

negligible efface on the input impedance and radiation pattern of the programmable 

antenna. The fixed-length microstrip dipole antenna mode can be emp10oyed to accurately 

calculate the input impedance for programmable antenna. 



CHAPTER 3 

PROGRAMMABLE MICROSTRIP ANTENNA DESIGN 

3.1 A Fixed-length (non-Programmable) Microstrip Dipole Antenna 

Fixed-length (nonprogrammable) microstrip dipole antenna is designed as the prototype of 

the programmable one. Figure 3.1 is a schematic view of a non-programmable microstrip 

dipole. The dipole is a very thin layer (0.5um-1.5um thickness) on the top of a high 

resistivity silicon substrate. The bottom side of this substrate is coated with a thin metal 

film. The dipole is shown with a coplanar microstrip feedline. The dimensions of this 

antenna are listed in Figure 3.2. 

Figure 3.1 A microstrip dipole antenna with feedline 
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Figure 3.2 Top view and cross-section view of the microstrip dipole antenna 
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The input impedance of this antenna was calculated by using the program SMAD 

for the microstrip antenna. The resistance and reactance versus the frequency are plotted 

in Figure 3.3 and Figure 3.4 respectively. It is shown that the resonant frequency is 

19.84GHZ. The input impedance of the antenna at resonance is 44Ω. This antenna is 

excited through the coplanar microstrip line. It is known that this kind of transmission line 

with w = s = 0.1mm has characteristic impedance of Zo = 44. The theoretical standing 

wave ratio VSWR is equal to 1 at resonant frequency(19.84GHZ). 

The bandwidth for the standing wave ratio VSWR < 1.2 can be calculated. Smith-

chart is utilized here. The input impedances versus frequency are plotted on the Smith-

chart. Two points which present the impedances at the circle of VSWR=1.2 are found. 

The corresponding frequencies are the lower and upper bond of the bandwidth. The fixed-

length dipole has a VSWR < 1.2 from 19.79GHZ to 19.88GHZ. The bandwidth is only 

0.5%. This is a very limited bandwidth for most applications. 

The bandwidth can also be calculated using (3.1) and (3.2) . They are essential 

formulas for calculating the reflection coefficient p and the standing wave ratio VSWR. 

The standing wave ratio can be obtained from (3.1) and (3.2) using the data in Figure 3.3 

and Figure 3.4. 

and 

where Zin is the input impedance of the antenna, 

Zo is the characteristic impedance of transmission line. 
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Figure 3.3 Input resistance of the fixed-length microstrip dipole antenna versus 

frequency(ɛr=12) 
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Figure 3.4 Input reactance of the fixed-length microstrip dipole antenna versus 

frequency(ɛr=12) 
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3.2 Programmable Microstrip Dipole Antenna Design 

In order to increase the effective bandwidth of microstrip dipole antenna, a microactuator 

controlled antenna is designed. A schematic view of the programmable antenna with two 

microactuators on each arm is shown in Figure 3.5. 

Figure 3.5 Schematic view of a programmable microstrip dipole 
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A non-programmable antenna has been designed in the previous section. It works 

with a standing wave ratio VSWR < 1.2 in the range of fL=19.79GHZ to fH  =19.88GHZ. 

The procedure for designing a programmable antenna based on this non-programmable 

one is summarized as following : 

1) Increase the antenna half length to 1', which is also the distance between 

the microactuator and the center driven point of the antenna 

2) Find the input impedance versus frequency 

3) Find the new frequency fH'  and fL'  so that the standing wave ratio VSWR is 

less than 1.2 from f,1 to L' 

4) The position is found if fH'= fL 

5) if fH' ≠ fL 	adjust the antenna length. There are two cases: 

if fH' < fL decrease the length 

If f„' >f , increase the length 

Then go to step 2. 

SMAD for the microstrip antenna has been run with different antenna lengths to 

search the proper positions of the microactuator. The position for microactuator #2 was 

obtained through above procedure. The same technique was used to get the position of 

microactuator #1 and the maximum length of the antenna. When microactuator #2 closed 

the working frequency range is 19.69-19.79GHZ. When microactuator #1 is also closed, 

the working frequency is 19.59-19.69GHZ. The design results are summarized in Table 

4.1. The working frequency range covers from 19.59 to 19.88GHZ. This programmable 

antenna with two microactuators on each arm has been shown in Figure 3.5. The antenna 

dimensions and microactuator positions are shown in Figure 3.6. The details of 

microactuator structures will now be discussed in the next section. 
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Figure 3.6 A designed programmable microstrip dipole antenna with two 
microactuator positions 



Table 3.1 Programmable antenna design results for antenna in Figure 3.6 

actuated position 1'( function 

none basic fixed dipole frequency range: 19.79-19.89Ghz 

#1 1.27 working frequency range: 19.69-19.79GHz 

#2 1.275 working frequency range: 19.59-19.69GHz 

3.3 Conclusions of This Chapter 

Programmable microstrip antenna with two pairs microactuators was designed. The range 

of working effective bandwidth is increased to 2.0% from 0.5% for the fixed length 

dipole. Each actuator permits an increase of antenna effective bandwidth of approximately 

0.75%. This effective bandwidth can be increased further as more actuators are added. 
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CHAPTER 4 

THERMAL MICROACTUATORS 

4.1 Introduction 

The microelectromechanical switches provide the basis for the programmable antenna. 

There are several designs that can be used for the micro electro mechanical switches. 

Frequently used microactuation methods have been based upon electromagnetic [12][13] 

[7], piezoelectric [14], and thermal [4][6] effects.  

Figure 4.1 Simple beam microactuator structure 

Figure 4.2 Cantilever beam microactuator structure 
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The electromagnetic microactuator can be used but it is difficult to realize 

monolithic integrated actuators. The thermal actuators are chosen for the programmable 

antenna. This kind of actuator is based on the so-called bimetal effect used extensively for 

the fabrication of temperature-controlled electrical switches. Generally, materials of 

different thermal expansion are combined in a sandwich structure. When the temperature 

goes higher, the structure will bend to the direction of either layer because of the 

difference between the expansion coefficients. 

Thermal bimetallic simple beam and cantilever beam are common. These structures 

are shown in Figure 4.1 and Figure 4.2 respectively. The dashed line represents the 

movement of the beam when thermally excited. The beam can only either bend up or bend 

down depending on the materials. 

It is shown in Figure 4.1 that both ends of the simple beam are fixed. The beam can 

pop up or bend down when it is thermally excited. Figure 4.2 shows that the cantilever 

beam has a free end. The free end of the cantilever will bend up or bend down when 

heated. Both simple beam and cantilever beam contain at least two layers. The bending 

direction depends on the physical properties of the combined layers. 

The physical properties of some materials of consideration are tabulated in Table 

4.1. The best values for the difference in the thermal expansion coefficients are achieved 

by combing Poly-Si, Si or SiO2 with metals like Pb, Al, Au or Pd. 

There are following advantages with these thermal microactuators: 

1) the beam deflection is directly coupled with the dissipated electrical power and, 

therefore, the device can be operated at standard microelectronic voltage levels; 

2) the transducer elements exhibit a high mechanical rigidity; 

3) the fabrication process is simple and fully compatible to standard IC production 

steps; 

4) the whole device is fabricated with a single wafer process, and no additional 

bonding or mounting techniques are necessary to create an operating device 



Table 4.1 Physical constants for potential microactuator materials based on thermal 
expansion[4] 

35 

Material 
Thermal 
Coefficient 
of Expansion 

[10-6 / K] 

Young's 

Modulus 

10" Pa' 

Specific 

Heat 

[10 3J / kgK] 

Thermal 

Conductivity 

[W / mK] 

Density 

[103  kg I m3 ] 

Si 2.6 1.62 0.691 170 2.42 

SiO2 0.4 0.74 2.66 

Si3N4 2.8 1.55 18.5 3.44 

SiC 3.5 4.57 86.5 3.2 

Poly-Si 2.33 1.69 0.754 2.33 

AI 23.0 0.69 0.9 235 2.692 

Au 14.3 0.8 0.129 318 19.4 

Pt 8.9 1.47 0.133 73 21.5 

Cu 16.7 0.12 0.387 401 8.95 

Ni 12.8 2.1 0.444 91 9.04 

Pb 28.7 0.16 0.128 35 11.48 

Pd[33] 13 1.67 

and 

5) the actuator structure can be combined with sensing elements monitoring the 

center band setting of the microelectromechanical antenna device. 
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4.2 Characteristics of Bimorph Simple Beam 

Some silicon actuators consist of a Si-metal sandwich layer as a moving (bending) 

element. An integrated poly-Si heating resistor on Si as the driving element. While some of 

them simply contain poly-Si and metal. poly-Si acts as both moving element and driving 

element. Due to the low heat capacity of the transducer element, a high increase of 

temperature in the actuator per input power unit can be achieved. 

Figure 4.3 shows a bimorph simple beam structure. The two materials forming the 

action beam are labeled as 1 and 2 respectively. Material 1 and material 2 are combined 

together, which are with different thermal expansion coefficients α1 and α2, respectively. 

Assume that both layers have the same length at the room temperature. Left end and right 

end of this beam are fixed. 

Figure 4.3 A bimorph Simple Beam Structure 
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The center deflection d of a simple beam can be derived using the linear(dotted line) 

model in Figure 4.4. Figure 4.4 is a schematic of a simple beam. The original length of the 

beam is 2r0  , which becomes approximately 2r1  when a the beam is heated with respect to 

the substrate and a deflection d at the center of the beam occurs. 

Figure 4.4 Schematics showing the linear approximation used for the 
center deflection calculation 

The simple beam length change is proportional to the temperature change AT and 

the difference ∆α between the thermal expansion coefficients a l  and α2. This relationship 

is expressed in (4.1). 

since r 2 
d2 

+r02, 
 and the term of O(∆2α) can be neglected, (4.2) is obtained: 

or: 
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formula (4.3) can also be expressed as: 

where 1= 2r0,, which is the length of the beam. 

Formula (4.4) shows that the deflection is proportional to the length and square 

root of the difference between expansion coefficient of two layers and the temperature 

change. This equation is often used to estimate the center deflection d of the simple beam. 

Figure 4.5 A left end and right end fixed simple beam 

The following formulas can be used to calculate the force of any point at the 

beam.[30]. These equations are corresponding to Figure 4.3 and Figure 4.5. The structure 

is left end fixed and right end fixed as shown in Figure 4.5. These force F values refer to 

the case where d = 0 and where ∆T ≠  0. 
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with 

where Ei is Young's modulus 

1, is the thickness of the respective layer 

w is the width of the layers 

K1  is the equivalent geometry coefficient(no unit) 

Figure 4.6-4.8 are a set of figures to show the center deflections and forces for 

different bimorph simple beam structures. Useful constants for calculation are listed in 

Table 4.2. 

Table 4.2 Useful constants for calculating deflection and force 

material 1 thermal coefficient of 
expansion a, [10-6/◦C] 

Young's 
modulus E1  [10"Pa] 

Al 

Au 

Pd 

Pt 

23 

14.3 

13 

8.9 

0.69 

0.8 

1.67 

1.47 

material 2 
thermal coefficient of 
expansion a.2  [10-6/°C] 

Young's 
modulus E2  [10"Pa] 

Poly-Si 2.33 1.69  
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Figure 4.6 Center deflection d versus length I for different bimorph simple beams 
based on the first order model of equation (4.4) 
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Figure 4.7 Center deflection versus ∆T(°C) for different bimorph simple beams 



42 

Figure 4.8 Force F versus distance a for different bimorph simple beams (AT-200°C) 
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4.3 Microactuator Structures for Programmable Antenna 

The microactuators can be normally open(NO) or normally closed(NC) before it is 

excited. Various kinds of structures have been considered for this programmable antenna. 

Many factors such as dimensions, deflection, force , electrical contact and fabrication ease, 

must be taken into consideration. A simple beam structure has been chosen and detailed in 

Figure 4.9 and Figure 4.10. Other models are listed schematically in Appendix B. 

Figure 4.9 shows a NO simple beam microactuator. It includes cross sections 

identifying materials and functions, respectively. This simple beam is built in a cavity 

between the gap along the antenna strip. Poly-Si and Pd(or Au) are combined together to 

form an sandwich structure. The Poly-Si is diffused with P and becomes n+-poly. This n+-

poly is also the heater providing the thermal excitation to the beam when heated. The 

beam will deflect up and electrically contact the strip dipole conductor. The direction of 

deflection is up when heated since Pd(or Au) has greater thermal expansion coefficient 

than Poly-Si. 

Between the Poly-Si and Pd(or Au) layers there is a very thin isolation layer Si3N4. 

The antenna strip is made of AI. The contact part is coated with gold. There is a structural 

material (Si3N4  or SO2) on the top of the suspension part of the antenna strip. This can 

support the suspension part and also reduce the stress in the metal. 

Figure 4.10 shows the top section view of the microactuator including the bonding 

pads and transmission line to the control circuit. 
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Figure 4.9 Cross-section views of microactuator for programmable antenna 
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Figure 4.10 Top view of actuator beam with antenna strip and 
transmission line to control circuit 

4.4 Mechanical and Electrical Considerations 

The center deflections and forces have been discussed. The Au-polysilicon is chosen 

for the design. The design results and other related information are listed in Table 4.3. 



Table 4.3 Data for the calculation of deflection d and force F with temperature rise AT 

beam length 1(µm) 80 

width w(µm) 12 

Poly-Si thickness t2(µm) 1 

metal-thickness(um) t1(µm) 0.5 

Poly-Si 

Youngs modulus E2(1011Pa) 

thermal coeff of expansion a2(10-6/K) 

1.69 

2.33 

Au 

Young's modulus E1(1011Pa) 

thermal coeff. of expansion ai(10-6/K) 

0.8 

14.3 

Pd 

Young's modulus E1(10'11N/m2) 

thermal coeff of expansion ai(10-6/K) 

1.67 

13 

force F (µN) 

at a distance a(in µm) from the fixed end 

at a contact point distance a = 30 µm 

0.00045(1-a) a AT 

0.73AT 

center deflection d (µm) 0.196 ∆T1/2  
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Figure 4.11 Center deflection d versus length I with different AT(°C) 
for a Au-Poly bimorph simple beam 
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Figure 4.12 Force F versus distance a for a Au-polysilicon simple beam 
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There is a relationship between the force and the contact resistance. Experimental 

results have.been reported by Hosaka[31] and a plot is shown in Figure 4.13. The average 

resistance decrease as the contact force increases and converges to about 2Ω. As shown in 

Figure 4.14, the contact force needed for stable resistance is lowest for Au. It is less than 

100µN. As shown in Figure 4.15, open contact forces are limited to between 0-20µN. It is 

concluded that if gold is used as the contact material, the required contact forces is 

roughly 100µN. The contact-break force is roughly 0 N. The contact area is 20 µm2.  

Figure 4.13 Relationship between on-resistance and contact force[31] 

Figure 4.14 Contact force needed to establish stable resistance[31] 
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Figure 4.15 Maximum contact force for a completely open circuit contact[31] 

Therefore according to the calculated result in Figure 4.12, a 200°C temperature 

rise is suitable for exciting the microactuator. The contact resistance is minimized to 2Ω. 

The center deflection d = 2.8um, which is obtained from Figure 4.10. 

4.5 Heater Design 

The microactuator is excited thermally. The n+-poly layer is the heater and an external 

circuit provides the electrical current to the heater. The temperature along the beam is 

actually not uniform[32]. Figure 4.16 shows the temperature T along the length of a 

polysilicon beam. The doping concentration of the polysilicon is 1 x 1019cm-3. This doping 

concentration will be used in the processing later. Figure 4.16 is obtained when pressure 

p = 1.3x10-6Torr. The temperature rise will be greatly reduced under higher pressure, 

e.g., atmosphere pressure. Figure 4.16 can be a reference for the design. The estimated 

input current for the microactuator is at several mA current level. For example, 2 mA is 

required for a 250°C temperature rise. 



51 

Figure 4.16 Variation of temperature along the length of the beam [32] 



where 
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The needed input power p can be estimated. 

Figure 4.17 Geometry of polysilicon layer 

The resistivity is determined by the doping concentration and the operating 

temperature[36]. If the hole concentration p 	is much greater than the electron 

concentration n as in p-type silicon, 

where 
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The temperature coefficient ST  can be presented as following based on (4.9) and 

(4.10): 

A n+-Poly with lx 1019  cm-3  has a resistivity of about p = 10-3  Ω cm at room 

temperature[36].Then the resistance of the polysilicon layer with thickness t = 1 m is 

about 10Ω/□  at room temperature. The temperature coefficient ST  = 0.17%/°C. The 

calculation results for the resistance and input power dissipation are tabulated in Table 4.4. 

The input power is usually in mili watts level. 

Table 4.4 Estimation of power needed for the beam actuation (I=80µm, w 12µm, 

∆T(°C) ρ□(Ω/□) R = ρ□(1/w)(Ω) I(mA) P = I2R(mw)  

0 10 66.7 2.0 0.27 

50 10.85 72.3 2.0 0.29 

100 11.7 78.0 2.0 0.31 

150 12.55 83.7 2.0 0.33 

200 

250 

300 

13.4 

14.25 

15.1 

89.8 2.0 0.36 

0.38 

0.40 

95.5 2.0 

101.2 2.0 
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4.6 Processing Sequence 

The processing sequence for fabricating a polysilicon simple beam and a cantilever beam 

are illustrated in Figure 4.18 and Figure 4.19 respectively. 

As shown as in the Figure 4.19, an oxide layer is initially grown or deposited on the 

silicon wafer. The first masking step opens windows for the beam support areas, as shown 

in Figure 4.19(a). Polysilicon is then deposited by chemical vapor deposition (CVD), and 

pattered by reactive ion etching in the second masking step. An overlap of poly-Si is left 

around the perimeter of the oxide window to allow for misalignment error. If the poly-Si 

edge fails to overlap the oxide, then conventional RIE will erode the substrate after 

etching through the polysilicon layer. Next the wafer is etched in buffered 1-IF to remove 

all oxide and release the poly-Si beam. In Figure 4.19(c) a free standing cantilever beam is 

created as illustrated. 

A simple beam is made by including a second oxide window, as illustrated in Figure 

4.1 
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Figure 4.18 Processing sequence of a polysilicon simple beam 



Figure 4.19 Processing sequence of a polysilicon cantilever beam 
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4.7 Conclusions for This Chapter 

Microactuators can be designed to act as the microelectromechanical switches for 

the programmable antenna. Several factors must be taken into consideration for this 

design. These include: 

1) enough deflection force to make good electrical contact 

2) dimensions to be compatible with both micromachining and antenna 

3) thermal heater to produce proper temperature profile 

4) fabrication ease and compatibility with available semiconductor process 

technology. 



Chapter 5 

FABRICATION PROCEDURE 

5.1 Processing Sequence 

The processing procedure flow chart is shown in Figure 5.1-5.14. Only part of antenna 

strip and one microactuator are shown but it is enough for illustrating the fabrication 

procedure of this family of programmable antenna. The details of the fabrication 

procedure will be discussed in section 5.2. 

The processing sequence of the programmable microstrip antenna can be 

summarized as following: 

1. Starting material (P-type 100 Si) 

2. RIE etching to open a well(cavity) 	 (mask #1) 

3. developing of LTO sacrificial layer and etching 	 (mask #2) 

4. depositing and patterning of Poly-Si layer (CVD) 	(mask #3) 

5. doping of the Poly-Si layer via ion implantation 

6. depositing and patterning of Si3N4 as isolation layer 	(mask #4 

7. depositing and patterning metal(Pd) layer (sputtering) 	(mask #5) 

8. spin-on glass as a sacrificial layer and Planerization 

9. deposit thin film of Pd(contact surface) 	 (mask #6) 

10. depositing of Al as the antenna strip(metal sputtering) 	(mask #7) 

11. deposit structural support layer 	 (mask #8) 

12, protect the device and metalize the back 

13. etching of spin-on glass to release the structurehe 

The above fabrication procedure is with respect to Figure 5.1-5.13. More detailed 

discussion will be presented with Figure 5.1-5.13 in next section. 
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5.2 Fabrication Procedure Description 

1. Starting material 

P-type silicon wafers oriented in the [100] crystallographic plane shown in Figure 

5.1 are used in this thesis. This silicon wafer is with high resistivity(>100Ω cm). 

First the silicon wafers are cleaned chemically to remove surface contamination. 

Aqueous mixtures of NH4OH-H2O2, HCL-H2O2, and H2SO4-H2O2 are often used. These 

solutions are efficient in removing metallic impurities. The ammonium hydroxide and 

sulfuric acid based mixtures will also remove organic contaminants but the latter is better. 

These cleaning resolutions leave wafer surface in a hydrophilic state due to the oxidizing 

nature of the peroxide. In a hydrophilic state, water will wet the wafer surface since water 

can be retained by surface tension. The chemicals are removed by a short immersion in 

dilute hydrogen peroxide clean followed by the hydrofluoric acid since the chemically 

grown oxide can contain impurities from these chemicals. A typical cleaning sequence 

would be a sulfuric acid-hydrogen peroxide clean followed by the hydrofluoric acid dip, 

with deionized water rinses following each acid step. 

Figure 5.1 Starting material 
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2. Lithography (mask #1) and silicon substrate etch(RIE) 

Figure 5.2 Pattern and RIE etch to open a flat-bottom cavity 

The lithographic process is illustrated in Figure 5.2. The incident radiation is 

transmitted through the transparent parts of the lithography mask. The circuit pattern of 

opaque chromium blocks some of the radiation. This type of chromium/glass mask is used 

with ultraviolet (UV) light. 

Optical lithography can be used to comprise the image with visible or ultraviolet 

radiation in a photoresist using contact printing. For integrated circuit production the line 

width limit of optical lithography lies near 0.4 µm although 0.2 µm features may 

eventually be printed under carefully controlled condition. 

Either positive and negative resists can be used. Positive resists are used for this 

device. Positive resists contain two components: a resin and a photoactive compound 

dissolved in a solvent. The photoactive compound is a dissolution inhibitor. When it is 

destroyed by exposure to light, the resin becomes more soluble in an aqueous developer 
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solution, so higher resolution is possible with positive resists. The development process of 

projection printed images in positive resists has been modeled theoretical. It is an isotropic 

etching process. The sensitivity if most standard resists peaks in the 300 to 400 nm 

spectral range. 

The window size the mask designs depends on the microactuator dimension. It is 

with area 100um x 100um and height 4 um in this design. 

RIE( reactive ion etching is used to get this cavity. RIE has the following 

characteristics: physical, chemical, directional, and more selective than sputtering. The 

pressure of this etching is in the range of 100 millitorr. 

mask #2 pattern low teperature oxidation SiO 

Figure 5.3 Deposit and pattern the LTO sacrificial layer 

3. grow oxidation layer SiO2 as a sacrificial layer 

Several techniques to develop the oxide layers have been developed, such as 

thermal oxidation, et anodization, vapor-phase technique(CVD), and plasma anodization 

or oxidation. Since the SiO2 layer is a sacrificial layer and a low-density is required, low 

temperature oxidation (LTO) is the preferred technique. 

Then the oxidation layer is etched out patterned by mask #2 as shown in Figure 

5.3. 
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4. Deposit Poly-Si followed by patterning 

mask #3 define Poly-Si layer area 

Figure 5.4 Deposit Poly-Si(CVD) layer 

Poly-Si is prepared by pyrolyzing silane at 575 to 650°C. Polysilicon layer is deposited by 

LPCVD(Low temperature Chemical Vapor Deposition). The chemical reaction is 

The thickness of this Poly-Si layer is 1 urn. 

Wet etch is used to etch out the area which is not in the pattern. Polysilicon is 

typically wet etched in mixtures of nitric (HNO3) and hydrofluoric aid (HF). The reaction 

is initiated by the HNO3 which forms a layer of silicon dioxide on the silicon, and the HF 

dissolves the oxide away. The overall reaction is : 



Figure 5.5 Deposit Si3N4  isolation layer 

63 

Water can be used to dilute the etchant, but acetic acid (CH3COOH) is preferred as a 

buffering agent, since it causes less dissolution of HNO3 and thus yields a higher 

concentration of the undisipaciated species. 

The mixture compositions can be varied to yield different etch rates. At high HF 

and low HNO3 concentrations the etch is controlled by the HNO3 concentration, because 

in such mixtures there is an excess of I-IF to dissolve the SiO2 created during the reaction. 

n the other hand at low HF and high HNO3 concentrations, the etch rate is limited by the 

ability of the HF to remove the SiO2 as it is created. In such enchants the etching is 

isotropic, and they are used as polishing agents. 

5. Dope via ion implantation 

Doping concentration is 1 x1018-1x1019cm-3. 

6. deposit and pattern Si3N4  as isolation layer 

This step needs mask #4. The thickness of the Si3N4  is 0.1µm. 

mask #4  define isolation laver area 
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7. sputtering Pd and Pd removal 

Sputtering is a mechanism in which atoms are dislodged from the surface of a 

materiel by collision with plasma-produced particles. It has become the most widely used 

deposition technique for a variety of metallic films in VLSI fabrication, including 

aluminum, aluminum alloy, platinum, gold, titanium: tungsten and tungsten. 

Palladium(Pd) is utilized in the simple beam. Pd film is deposited with a thickness 

0.5um. Wet etching can etch out Pd. This procedure is shown in Figure 5.6. 

mask #5 define Pd layer area 

Figure 5.6 Deposit Pd layer 

8. spin-on glass as a sacrificial layer and Planerize spin-on glass 

The spin-on glass is liquid solutions to form doped SiO2 layers. The spin-on dopants 

are applied to the wafers in a similar fashion as photoresist. The thickness of the deposit 

depends on the solution viscosity and the spin speed. The dopants concentration in the 

film can be varied by dilution with organic solvents. It is often necessary to bake the 

wafers at 200°C for 15 minutes to density the film, and to prevent absorption of water 

vapor prior to driving the dopant into the silicon. The diffusion is performed over a range 

of temperatures and times depending on the desired sheet resistance and junction depth. 
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Figure 5.7 Spin-on glass as a sacrificial layer 

Figure 5.8 Planerize spin-on glass 

The conformal deposition of a dielectric such as phosphorus-doped silicon dioxide 

over a pattern conduction layer results in a stepped profile. In order to insure a uniform 

coverage of the antenna strip the dielectric surface must be planerized. This can be 

accomplished by flowing the dielectric at high temperature (> 800°C). When the highest 

allowable substrate temperature is less than the dielectric flow temperature, two etching 

techniques can be used to smooth the surface. The first, called planerization, is 
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accomplished by spinning a resist or any other polymeric layer onto the irregular dielectric 

film, which is deposited thicker than necessary for the final structure. This results in a 

smooth of the new top surface. This new surface is then transferred to the dielectric by 

etching in a reactive plasma that etches the resist and the dielectric at the same rate. 

Smoothing of a dielectric surface can also be accomplished by depositing more dielectric 

than necessary and then etching in an RIB mode. 

9. spin on metal Pd as contact area 

mask #6 is required for the upper metal contact(sputtering Pd) as shown in Figure 

5.9. Al is no good as a contact material because it always contains a thin oxide A12O3  film 

insulator. 

mask #6 define upper contact area 

Figure 5.9 Sputtering and patterning upper metal contact 

10. sputtering and patterning metal (Al) as antenna strip 

Sputter metal Al with thickness of 0.2-0.5µm in this step. This metal layer forms 

antenna strip and feedline. mask # 7 is needed to define the area. 



mask #7 define antenna strip and feedline 

Figure 5.10 Pattern and develop antenna strip and feedline 

11. deposit and pattern Si3N4  as a structural material 

Same technique in step 4 will be used to form a structural layer. 

mask #8 define structural material area 

Figure 5.11 Deposit Si3N4  as structural material 
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12. back metalization 

sputtering technique can be used to form a metal film on the back of the wafer 

while the device is protected. Mask is not needed. 

Figure 5.12 Metalize the back side 

13. etch out sacrificial layers to release the structure 

49% HF can be used to etch out the spin-on glass and LTO in the cavity. The 

etching rate depends on the density and doping of the spin-on glass and LTO. This speed 

is much faster than the etching rate of Al, Cu or Pd and Au. Therefore protection of the 

device is unnecessary. 

Figure 5.13 Etch out sacrificial LTO and glass layers 



Chapter 6 

CONCLUSIONS AND SUMMARY 

The application of thermal actuators has resulted in a broad bandwidth programmable 

microstrip dipole antenna. The problem of narrow band width of microstrip dipole antenna 

can be solved by this proposal. 

The theoretical analysis and simulations have been done on this innovative device. 

The research is focused on the input impedance of the antenna since it is a crucial 

parameter related to the antenna bandwidth. The radiation pattern and feedline also have 

been taken into consideration. The effective load capacitance because of the presence of 

microactuators is investigated in a simple model. This model is shown in Figure 2.5 in 

which the substrate is not included. The mechanism of thermal actuators is also discussed 

and several models for the programmable antennas are proposed. The following 

conclusion are drawn through the research: 

1) the antenna working frequency can be tuned by changing the antenna length; 

microactuators can be utilized as electro mechanical micro switches; 

2) microactuators can change the current distribution as well as the effective length 

when calculating input impedance; 

3) but microactuators has negligible effects on the antenna radiation pattern since its 

small dimension. 

4) the discontinuity on the antenna arms caused by the microactuators has negligible 

effects on the input impedance in a simple model . Its effect on an real programmable 

microstrip antenna is unknown. 

A programmable antenna has been design with details. This design also includes the 

thermal actuator design. The processing flow in NJIT cleanroom is discussed in the later 
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part of the thesis. This fabrication procedure is compatible with that for the general IC 

circuit, 

The future work will be done in some aspects. The models used in simulations are 

not precise enough. More detailed model is needed to be developed. This new model will 

include capacitance effect, fringing effect, etc. 



APPENDIX A 

MOMENT METHOD FOR CALCULATING 
THE CURRENT DISTRIBUTION ON PRINTED ANTENNA [11] 

The current distribution is obtained by solving Pocldington's equation by moment 

methods. The Pocklington's equation for printed wires can be written in the form 

where x is the direction the dipole is in. For our case 

and 

in the equation above the following parameters need to be defined: 

where 
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Considering the printed wire along the x direction, since the wire is unloaded at the 

ends, the unknown antenna current distribution 1(x) must satisfy the end boundary 

condition 

In order to solve (A-2) for the antenna current 1(x ), the method of moments is 

used. Accordingly, the wire is divided into equal augments. As it is usually, the proper 

choice of current expansion function must be made. Sinusoidal expansion functions are 

still useful in this case for thin antennas for the advantages mentioned before in Section 

2.4. The form of the ith expansion function centered at xi is simply as follows, which is a 

little more complex than (2.3): 

where d is the length of each segment given by d = 21/N. 
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Substitute the N-1 term current expansion series into (A-1) 

(A-9) 

where H is given by (A-3) and 

with 

Note that (A-8) does not involve derivatives of I1 and II, . The derivatives yield 

improper integrals for z = B. Further more, the expression for Ex is in closed form, as it 

involves integrals which are convergent in nature. 

Sinusoidal functions are chosen as testing functions and both sides of (A-9) are 

multiplied by the testing functions given by (A-8), with the subscript I replaced by j and 

the variable x' by x. the integration with respect to x reduces the problem to the matrix 

form 
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where I is related to the currents on the subsections and V to the electromagnetic 

excitation column. Depending upon the feeding point, the corresponding excitation 

voltage is set to unity in the excitation column. 

The radiation pattern and impedance can be obtained once the current distribution 

I(x') has been solved from (A-12). 



APPENDIX B 

MECHANISM OF CANTILEVER BEAM 

Cantilever beam has the similar mechanism as simple beam. One of the basic values 

describing the behavior of cantilever beam is the conversion factor y. Combining the 

deflection d at the free end of the cantilever with the temperature change AT 

Assuming a uniform heat distribution within the cantilever, the conversion factor is 

given by[15] 

for 1 << r with the bending radius r and length 1 of the beam. 

Geometry of a cantilever beam is shown in Figure B.1. The two materials forming 

the action beam are labeled as 1 and 2 respectively. Assume that both layers have the same 

length at the room temperature. The formula for the bending radius r or the curvature k 

had been derived by Riethmuller[4], and was modified by Chu[16] later. Chu's solution 

matches the experimental result better. Corresponding to Figure B.1, Chu's formula 

is[16]: 
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where 

Ei is Young's modules α

i

	is the thermal coefficient of expansion, 

t, is the thickness of the layer, and 

b is the width of the layer 

Figure B.1 Geometry of a typical bimetallic cantilever beam 

If the different layers have identical geometry and dimensions and Young's modulus 

are similar in magnitude, the curvature k can be expressed as: 
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The deflation d at the free end of the cantilever is a function of the constant 

curvature k introduced by thermal strain[16] 

for L<< r. 

The deflection d of the beam can also be expressed by a function of the electrical 

power P. 

where P =12 R with input current I and diffusion resistance R. ye is the effective 

conversion. 

It is hard to derive a closed form for the effective conversion ye. 'ye is usually 

determined by experimental data. 

Formula (B-5) is useful since it gives important rules to design thermal actuators: 

the absolute width of the structure does not affect the characteristics of the actuators. It is 

best if ∆α and I are as large as possible and if t is as small as possible. Variations of 

Young's modulus have only a small effect on the conversion efficiency and can easily be 

compensated for by changing some dimensions of the second layer. 

The length and the thickness are geometrical parameters and can be adjusted in a 

wide range. The values for Ac are limited by materials compatible with standard IC 

production steps and anisotropy etching techniques. 



APPENDIX C 

MICROACTUATOR STRUCTURES FOR 
PROGRAMMABLE ANTENNA 

Figure C.1 shows a simple beam microactuator with NO actuation switches. Figure C.1 

includes top view, cross section identifying materials and cross section identifying 

function. This simple beam is built on the gap along the antenna strip. Poly-Si and Au are 

combined together to form an sandwich structure. The beam will bend down and contact 

the strip when heated. 

The structure in Figure C.1 is not strong enough unfortunately because of the stress 

of the metal. An improved device model is shown in Figure C.2. This is also a normally 

open simple beam structure. This simple beam structure has metal layer on the top of the 

polysilicon layer. The polysilicon layer supports the metal layer and reduces its stress. 

The beam will bend up to reach the stretching-out strips when heated. 

The deflection of a simple beam is limited. Cantilever beam usually has more 

deflection than simple beam. A cantilever beam microactuator for programmable antenna 

is shown in Figure C.3. This improved model is based on the structure in Figure C.2. 

Similar to the simple beam in Figure C.2, the cantilever beam is also made of Au and Poly-

Si with Au on the top of the Poly-Si. This cantilever beam is normally closed as shown in 

Figure C.3. The beam will bend down to make the antenna wire become open circuit when 

heated. 

The simple beam structure in Figure C.4 is selected for the programmable antenna. 

For fabrication consideration it is better to fabricate the device in a cavity as shown as in 

Figure C.4. This design will avoid depositing thick Si3N4 layer as an isolation. 
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Figure C.1 Schematic views of a NO simple beam for programmable antenna 



Figure C.2 Schematic views of a NO simple beam for programmable antenna 
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Figure C.3 Schematic views of a cantilever beam for programmable antenna 
This structure can be NO or NC depending upon processing anneal and built in 
beam stress 
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Figure CA Schematic views of a NO microactuator used for programmable antenna 



APPENDIX D 

DESCRIPTION OF I NAC 3 AND SMAD 

The highly portable I_NAC_3 software is developed by Compact Software, Inc, 483 

mcLean Blvd, Paterson, NJ 07504. It has the following major output options and 

capabilities: 

1) Far-field diagrams for all field components including magnitude and phase 

pattern, plots in polar or rectangular form, linear, lin-log or logarithmic scale, and gain 

over frequency. 

2) Near-field distribution for all field components including 1,2,3 dimensional plots, 

plots in vector and contour form. 

3) Current and charge distribution (only 1-dimensional, and all selected segment ) 

4) Impedance and loading including SMITH chart(for multiple sources), VSWR 

plots and peak load voltages and currents 

5) Interactive rerun capability including new geometry, new incident field excitation 

and new frequency . 

6) Time step plots including current, charge and near-field distributions. 

7) Automatic disk file store and recall capability of input data, geometry data, 

current coefficients, impedances, far-field data, near-filed data, back-up and archive 

feature, and ASCII formatting for file interchange. 

I_NAC_3 can only be used for the antennas in a uniform space with same dielectric 

constant. It can not be used for the simulation of microstrip antennas. 

SMAD is used in the simulation for microstrip antenna. It is developed by Phraxos 

Research & Development Inc., Santa Monica, CA. It provides the following utilities which 

are not supported by I_NAC_3: current distributions, input impedance, and radiation 

patterns of microstrip antennas with rectangular and round shapes. 
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