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ABSTRACT 

NMR COMPUTER SIMULATION OF 
GLASSY AND POWDERED SAMPLES: 

APPLICATION TO STUDIES OF SODIUM BOROVANADATE GLASSES 

by 
Xian-Quan Zhang 

A computer program is devised to simulate the nuclear magnetic resonance 

(NMR) spectra observed in powdered and glassy samples in the presence of both 

nuclear quadrupole and anisotropic chemical shift interactions. This method is 

performed for the central transition of NMR spectra of nuclei with half-integral 

spin I. Typical theoretical behavior of the powder pattern is discussed and the 

"noise" and "error" in the simulated spectra are analyzed. The computer simulation 

method is applied to the studies of 11 B NMR spectra of the sodium borovanadate 

glass system for which a structural model is presented in the range for which 

glasses can be made. The model predictions are in good agreement with the 

experimental data obtained by the 11B NMR computer simulation technique. 
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CHAPTER 1 

INTRODUCTION 

The structural and dynamical properties of many kinds of solid materials can be 

obtained from nuclear magnetic resonance (NMR). The NMR spectra of many 

solids are affected by both nuclear quadrupole interactions and chemical shift 

effects. When a single crystal is under study, it is a fairly straightforward process 

to separate the two effects. However, if only a powdered sample or a glass is 

available it is a rather difficult process to obtain the relevant quadrupolar and 

chemical shift parameters from the resulting NMR spectra. Information from NMR 

studies of powdered or glassy materials has been limited because of a shortage of 

appropriate computational techniques from which the relevant theoretical 

parameters of the derivative-like spectra can be obtained. Fig.5c shows an example 

of the derivative-like spectrum for the corresponding absorption function. 

A computer program is devised to simulate the NMR spectra occuring in 

powdered and glassy samples• The theoretical behaviors (such as the locations of 

shoulders and singularities) in these NMR spectra are discussed. The powder 

patterns are calculated for the central transition of NMR of nuclei with half-

integral spin I in the presence of nuclear quadrupolar and the anisotropic chemical 

shift interactions•The powder pattern is convoluted with a Gaussian function that 

simulates the effects of dipolar interaction broadening, and finally, the derivative 

of this result yields the function shape which is compared with the actual 

experimental trace. 

With the aid of the computer simulation method, we have studied 11B NMR 

of the ternary glass system of sodium borovanadate. In addition to the 

determinations of the parameters of the quadrupolar, anisotropic chemical shift 
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and the electrical field asymmetry parameter, values are obtained as a function of 

R=mol%Na2O/mol%B2O3 (for each of the different values of 

K=mol%V2O5/mol%B2O3) for the fractions of boron in the following: BO4  units 

(N4) with four tetrahedral coordinated oxygens, symmetric BO3s  units (N3s) with 

either zero or three non-bridging oxygens (NBO's), and asymmetrical BO3A  units 

(N3A) with one and two NBO's. A structural model is presented for the glass 

system within the glass-formable region. The model predictions are in good 

agreement with the experimental data obtained by computer simulation techniques. 



CHAPTER 2 

NMR CONDITIONS AND POWDER PATTERNS 

When the nucleus with spin I is placed in a constant magnetic field Ho, the total 

interaction Hamiltonian is 

where ϰz is Zeeman interaction of nuclei with an applied constant magnetic field. 

ϰin includes the nuclear quadrupole interaction, chemical shift effect and the 

dipole-dipole interaction [1,2,3] 

where y is the gyromagnetic ratio, and I is the nuclear spin operator• 

For a nucleus which is entirely isolated from its surroundings ("bare 

nucleus"), only ϰz is available and the resonance condition is given by 

When placed in a solid, the nucleus also experiences several internal interactions 

which are nuclear quadrupole interactions, chemical shift effects and dipole-dipole 

interactions. These interactions will cause an additional shift of the resonance 

frequency location away from that of its "bare nucleus" position. The amount of 

shift will generally depend on the orientation of the nuclear environment relative 

to the applied magnetic field. In a single crystal, the resonance condition can be 

written generally as 

3 
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where B and 4) are polar angles between axes fixed in the crystal and the direction 

of the applied magnetic field Ho•  When the crystal is rotated (8 and 4) are varied), 

the location of the resonance frequency will shift. 

For a glassy or powdered sample, all nuclear spin I "sites" will exist with 

random orientations relative to Ho• In order to obtain the resonance spectrum, the 

resonance condition must be averaged over all possible nuclear site orientations. 

Assuming an individual "site" to have equal probability of being oriented in any 

element of solid angle with respect to the direction of field Ho, the absorption at 

frequency v in the interval dv is given by [2] 

where dΩ(v) is an element of solid angle (dΩ =dµ•dϕ) and I(Ω) is the probability 

for transition from initial state to final state [1]. 

where ϰ' is the time dependent perturbation due to the if field, NO, which causes 

the state transition. So, transition probabilities I(Ω) are in general independent of 

the orientation of the nuclear sites in the sample and therefore can be taken out of 

the integral of equation (6). 

The quantity P(v) is called the resonance signal at frequency v• The 

integration in the above equation is over those elements of solid angle dΩ(v) such 

that v<v'<v+dv where v' is given by equation (5)• It is important to realize that dΩ 

(v') is in general a multi-valued function of v', because there can be several 

different values of µ and 4) which yield the same resonance frequency v'• 
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2.1 Nuclear Quadrupole Interaction 

Nuclei with spin I greater than 1/2 possess an electric quadrupole moment which 

can interact with the gradient of any electric field existing at the nucleus. The 

nuclear spin I is taken to be half-integral in this paper. The Hamiltonian of the 

nuclear quadrupole interaction is [3] 

The quantites Vxx, VYY andVzz are 

the three principal values of the electric field gradient tensor and lα (α=x,y,z) are 

spin operators evaluated in the coordinate system in which the field gradient tensor 

is diagonal. The quantity Q is that component of the nuclear quadrupole moment 

tensor which, in its principal axis system, is the largest in magnitude. The term 

Qcc=e2Qq is referred to as the quadrupole coupling constant, and the asymmetry 

parameter of the electric field gradient is given by 

The contribution to the Im> <-4 |m-1> NMR transition for the ϰQ to be treated 

as the first-order perturbation of the Zeeman Hamiltonian is [3,4] 

where v0  is Zeeman transition frequency, vQ=3e2qQ/[2I(2I-1)h]=3Qcc[2I(2I-1)h]. 

When 1 is half-integral, the central transition (m=1/2↔m=-1/2) shows an 

unshifted resonance location, which is independent of the direction of the field 

gradient tensor principle axis with respect to the magnetic field. The satellite lines 

are flanked at equal distances. The amount of shift of the satellite lines for the 

first-order perturbation is proportional to vQ and relevant to the direction of the 

principal axis of the crystal electric field gradient tensor with respect to the applied 

magnetic field• The magnitude of the scanning range is the same order of 

magnitude of vQ. The example of nucleus with 1=3/2  and η=0 is shown in figure 1. 
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The dashed line expresses the powder pattern obtained by introducing the 

resonance condition, equation (8), into the space-averaging integration equation 

(6). The solid line is the experimental spectrum of 23Na NMR for the NaNO3  

powdered sample. As shown in figure 1, the total area under the satellite line shape 

to that under the central line shape should be 3:2. The width of the central line 

shape (narrow line shape) is of the order of several 10 kHz's, but the width of the 

satellite line shape is of the order of magnitude of 1 MHz. So, within the scanning 

region of the central transition line shape, the absorption intensity contributed by 

the satellite transition is negligible. This study only considers the central transition 

and neglects the contribution of satellite transitions. 

Figure 1 The powder pattern for the case of 1=3/2, η=0. The solid line 
indicates the experimental spectrum of 23NaNO3, and the dashed 
line indicates the theoretical spectrum with a first-order quadrupolar 
effect. The experimental spectrum of 23NaNO3  was obtained from an 
MSL-300 spectrometer in the East China Normal University. 
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Treating the nuclear quadrupole interaction as a perturbation for the nuclear 

Zeeman energy of second order, the central transition line is shifted [3,4] 

where 

Figure 2 Powder pattern due to the nuclear quadrupole interaction for the 
central transition (m=1/2↔-1/2) of the NMR of a half-integral nuclear spin. 
The location of the shoulders and singularities are specified. There are two 
cases, depending on whether the asymmetry parameter is greater than or less 
than 1/3 . 
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Using equation (6) and equation (9), a powder pattern due to the effect of the 

nuclear quadrupole interaction is obtained. Figure 2 shows the powder pattern 

along with the locations of the shoulders and singularities. There are two different 

cases, depending on wether 1  is greater than or less than 1/3. 

The locations of the shoulders and singularities of the powder patterns can be 

obtained by examining the resonance condition equation (9). This equation defines 

a surface in (µ,(1)) space, and shoulders and singularities will occur at frequencies 

that correspond to critical points on the v().1,(I)) surface. These critical points are 

found using the conditions [4] 

where (a, b) are the coordinates of a critical point. The nature of the critical point 

(a,b) is determined by the sign of D [4], where 

If D>O, then (a,b) is the location of a saddle point on the surface, while if D<O, 

(a,b) corresponds to a local maximum (or minimum). The results for the pure 

quadrupole interaction are listed in Table 1. 

Table 1 Locations of Shoulders and Singularities in a Powder Pattern 
for the m=1/2->m= -1/2 Transition Due to Pure Nuclear Quadrupole 
Interaction 

Critical Points of Freq. 1<1/3 1>1/3  

v l =v0+R(3+r1)2/144v©  

v2=v0+R(3-ri)2/144v©  

v3=v0+R(1-12)/18vo  

v4=v0±R12/36vo  

v5=vo-R(1--0/9vo  

v6=v0-R( 1 4-0/9vo  

shoulder 

singularity 

none 

shoulder 

singularity 

shoulder 

shoulder 

shoulder 

singularity 

shoulder 

singularity 

shoulder 
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2.2 Anisotropic Chemical Shift 

It is known that the external magnetic field induces a current in the electronic 

orbitals of. a solid• The induced current in turn produces an additional small 

magnetic field at the nucleus which causes a shift in the resonance condition called 

the chemical shift. The chemical shift Hamiltonian is [3,7] 

where Ho is the applied magnetic field, and a is the chemical shift tensor. 

In general, it is sufficient to express ϰcs as a first-order perturbation of the 

Zeeman Hamiltonian. The contribution of to the shift of the transition |m> ↔ 

|m-1> (resonance) is proportional to <m|ϰcs|m> - <m-1|ϰcs|m-1>>. The resulting 

resonance condition is [3,6] 

where σ1,σ2,σ3 are the three principal values of the chemical shift tensor. 

Figure 3 Powder pattern due to the anaxially symmetric chemical shift 
effect. The locations of the shoulders and singularities are specified. 
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By substituting the resonance condition of equation (14) into the space-

averaging integration equation (6), a corresponding powder pattern is obtained for 

the contribution of only the chemical shift effect. Figure 3 shows the powder 

pattern along with the locations of the shoulders and singularities. 

2.3 Combined Nuclear Quadrupole and 
Anisotropic Chemical Shift Effects 

If the total interactions include both the nuclear quadrupole interactions and the 

chemical shift effects, the total Hamiltonian is 

The resonance condition is obtained by adding together the first-order resonance 

condition for the chemical shift and both the first-order and second-order 

resonance condition for the nuclear quadrupole interaction. The shift of the 

resonance location is then proportional to 

Therefore, the resonance condition of the central transition (1/2↔-1/2) can be 

obtained for spin I with half-integral [31 

The resonance condition of equation (15) is substituted into the space-

averaging integration equation (6) to get the powder pattern of the central 

transition due to the combined second order nuclear quadrupole interactions and 
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first order chemical shift effects. Figure 4 shows the powder patterns. The critical 

point v3  does not appear in the figure because of η<1/3 

Figure 4 Powder pattern for the central transition in the presence of 
quadrupole interactions and chemical shift effects at the applied 
resonance frequency v0=2.0 MHz• Parameters are Qcc=2.8 MHz, 

a1-4.8x10-3,σ2=-0•8x10-3, σ3=4.8x10-3• The locations of 
shoulders and singularities are indicated. v3  does not appear because 

of η<1/3  

Using equations (11), (12) and (15), the locations of the critical points of the 

corresponding powder pattern can be calculated and the nature of the critical 

points can be determined as shown in Table 2 
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Table 2 Locations of Shoulders and Singularities in Powder Pattern for 
m=1/2 	—1/2 Transition  

Crvtical Points of Freauencv 	 Critical Points of u and (b 

2.4 Dipole-Dipole Interaction 

The powder pattern already discussed has been obtained without the effects of the 

dipole-dipole interactions. This interaction will broaden and smooth out the 

theoretical powder pattern. The actual absorption line shape functions will be 

given by convoluting these powder patterns with isotropic broadening functions of 

the appropriate linewidth due to the dipole-dipole interactions [3,5]. 

Generally, the normalized Gaussian function, F(v—v'), is used to account for 

the dipolar broadening mechanism, 
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where 2σ is refered to as the "dipolar width" and is equal to the peak-to -peak 

width of the derivative of the F(v—v') broadening function. 

An example of convoluting the powder pattern with the dipolar broadening 

effect is shown in figure 5. 

Figure 5 (a) Powder pattern with η=0.5. 
(b) Convoluted absorption spectrum. 
(c) Derivative of the absorption spectrum of (b). 
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Figure 5(a) is the 51  V NMR powder pattern with parameters 	Q0.8 

MHZ,η=0.38. Figure 5(b) expresses the convolution result of Figure 5(a) due to 

the effects of dipolar broadening upon the powder pattern. The S(v) shape function 

expresses the actual experimental NMR absorption spectrum. Figure 5(c) shows 

the derivative spectrum of the absorption spectrum. 

Experimentally, the derivative-like spectra are obtained by modulation 

techniques commonly used in NMR. The derivative with respect to frequency v of 

the theoretical absorption line shape is used to simulate the actual experimental 

NMR derivative spectrum. Agreement between the computed and experimental 

NMR spectra can be obtained by adjusting the parameters vQ, η (for nuclear 

quadrupole interactions); σ1, σ2, σ3  (for chemical effects); and 2a (for dipole-

dipole interactions). 



CHAPTER 3 

COMPUTER SIMULATION TECHNIQUE 

In general, when a certain type of nuclear spin is considered for several different 

environments, each corresponds to a set of Hamiltonian parameters (vQ, η,  σ1, a2, 

a3, 2a). For example, the BO, tetrahedral unit and B03  triangle unit are two kinds 

of network units [7] where "B experiences different environments for each of the 

two network units, and each one corresponds to a powder pattern. In order to 

obtain a simulation spectrum, the procedure is as follows: 

The first step in simulating an experimental spectrum is to compute the 

powder patterns for all the components of the appropriate resonance spectrum. 

The second step is to convolute these powder patterns with isotropic 

broadening functions of the appropriate linewidths. 

The third step is to add together these convoluted spectrum components with 

appropriate weighting factor for each and get the total absorption spectrum which 

simulates the experimental absorption spectrum of the sample. 

The final step requires that the derivative of the convoluted spectrum be taken 

and the resulting trace displayed graphically. 

The resonance conditions and transition probabilities discussed in above 

section are used to evaluate the powder pattern for each allowed transition and can 

be written in the following generalized form 

The NMR absorption powder pattern of the powdered sample is obtained by 

averaging equation (6) over all elements of solid angle. This averaging is done 

numerically. The numerical summation is used instead of integration equation (6) 

by using a finite small solid angle element AQ(v), ∆Ω =∆µ•∆v, instead of the 

15 
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differential solid angle element dΩ(v), and a finite small frequency step ∆v instead 

of the differential frequency step dv. So, instead of using integral equation (6), 

the numerical summation is as shown in equation (18) and Figure 6, where ∆Ω k= 

4π/N. 

Figure 6a. The grids of µ-ϕ  space are uniformly divided into N' solid 
angle elements where µ (-1↔+1) space is equally separated into N2'
units, and 0 (0↔ 2π) N3'  units. Thus N'=N2'xN3' . It is assumed that 
the resonance frequency and transition probability for the elements of 
solid angle ∆Ω k  are evaluated at the center of that element. Because 
v is an even function of µ, the µ-value is confined in the region (0↔1). 
Similarly, the ϕ-value is confined in the region (

0

↔π/2). The number 
of uniformly divided grids was N (=N2xN3). 



Figure 6b. The rectangle spectrum was obtained using equation 
(18). The absorption intensity at the frequency position v, was 
P(vi). The area of a rectangle P(vi)•∆v indicates the absorption 
intensity between ∆v at the frequency position vi. The frequency 

region of the spectrum (vmin↔vmax) was divided into N1  units. 

Total area surrounded by the curve was {P(v1)+P(v2)+... +P(vN1)} ∆v 

The resonance frequency and transition probability for the elements of solid angle 

∆Ω k  are evaluated at the center of that element. P(vi) is the intensity value of the 

powder pattern at position of frequency v, . The constant factor outside of the 

summation note in equation (18) can be disregarded because the resulting powder 

pattern should be normalized. 

Also, the numerical summation is used instead of the integral equation (16) 

for convolution 

17 



18 

The starting point and end point are respectively 1=1-k and 1=14-k where the value 

1< is adjustable and is adjusted according to the convolution width 2σ. In general, 

the value is chosen to just let the intensity of powder pattern outside the frequency 

region (1=1—k, 1=1+k) be small enough to be omited. 

This computer simulation program is developed for an IBM PC 486 computer 

by using Fortran 77. The powder pattern, the convoluted absorption spectrum and 

the derivative spectrum are calculated and obtained by this computer program. 

The computer program is verified for its correctness by the following fact. 

When only the chemical shift effects are considered, the exact analytical 

expression of the powder pattern can be obtained. In the case of an axially 

symmetric chemical shift (v11=v22=v┴, v33=v11; v11 =σ1 •vo, v22=σ2•v0, v33=σ3•vo), the 

corresponding powder pattern is expressed as [6] 

In the case of the anaxially symmetric chemical shift (supposing that V33>V22>V11), 

the corresponding powder pattern is expressed as [6] 

As shown in figure 7a, the curve of the powder pattern obtained by the exact 

analytical expression of equation (21) is shown by small circles, and the curve of 

the same powder pattern drawn by solid smooth line is obtained by the computer 



simulation program. The values for the parameters are v0=10MHZ, 
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Figure 7a The case of an axially symmetric chemical shift. The 
small circle curve is obtained through the exact analytical expression, 
and the solid smooth line is obtained through the computer 
simulation program. 

As shown in figure 7b, the curve of the powder pattern shown by small 

circles is obtained using the exact analytical expressions of equations (22), (23), 

and (24). The curve of the same powder pattern drawn by the solid smooth line is 

obtained by the computer simulation program. The parameters have the following 

values, v0=10 MHZ, σ1=-0.001, σ2=0.001, σ3=0.004. 

From figure 7a and figure 7b, it is shown that the powder patterns obtained 

by the exact analytical expressions are in good agreement with those obtained by 

the computer simulation program. 



Figure 7b The case of anaxially symmetric chemical shift. Small circle 
curve is obtained through the exact analytical expression. Solid smooth 
curve is obtained through computer simulation program. 
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CHAPTER 4 

EXPERIMENTAL 

Forty-four glass samples were made throughout the glass-forming region 

reported by O. B• Ma϶ypnH, et.al.• The compositions were chosen so as to group 

them into five families of glass samples, each family having the same K value but 

different R values, as shown in table 5• The values of K and R are indicated by 

K=mol%V2O5/mol%B2O3  and R=mol%Na2O/mol%B2O3  for the ternary system 

glass xNa2O•yB2O3•zV2O5. Reagent grade sodium carbonate (Na2CO3), orthoborate 

acid (H3BO3) and Vanadium oxide (V2O5) were thoroughly mixed in the 

appropriate proportions, placed in a platinum crucible, and fused at approximately 

1100 °C in an electric muffle furnace. After all air bubbles disappeared, the melts 

were poured onto a metal plate and quickly covered with a brass block. All glass 

samples were observed to be transparent, were ground into a fine powder, and 

sealed in polystyrene vials for the NMR study. 

A wide-line NMR Spectrometer (HC-4) connected with a Signal Averager 

was employed to detect the NMR signal of "B for the glass samples. The NMR 

spectra were obtained at a fixed frequency of 30 MHz by sweeping the magnetic 

field through the resonance condition• The scanning range of the field was 0•008 

Tesla and the time period for each scan about 3 minutes• The frequency of the 

modulation field was 32 Hz and the amplitude of the modulation field about 

0.0003 Tesla. All measurements were made with the glass samples at room 

temperature. 

The computer simulation of the "B NMR spectra for the glass samples are 

discussed in chapter 5. 
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CHAPTER 5 

DISCUSSION OF RESULTS AND EXAMPLES 

In this chapter, the noise and accuracy are analyzed, the simulation procedure and 

examples are discussed, and applications of the NMR computer simulation in the 

study of glassy and powdered samples are presented. 

5.1 Noise in Computer Simulation of Powder pattern 

Computer simulation techniques provide expeditious means for comparing 

experiment with theoretical expectation• But, the computer simulation spectra are 

not always in accurate agreement with the experimental spectra and if enough of 

the relevant factors are considered, these differences will be small. In actual 

powder samples, all "nuclear sites" have orientations which are totally random in 

angular space. For the computer simulation model, the 47c angular space is divided 

into a finite number of uniform grids, so, the experimental result will only 

approximate that of the theoretical model. If more orientations in angular space are 

taken in the computer simulation, that is, if the cosθ-ϕ  space (4π) is divided into a 

very large number of uniform grids, the experimental spectra can be accurately 

simulated by the computer simulation spectra. 

Figure 8a shows a 11B NMR computer simulation powder pattern obtained by 

adding together the resonances due to over 2500 orientations (N2=100, N3=25) in 

cosθ-ϕ 

 space where cosθ  ranges from 0 to 1 and ϕ  from 0 to 7r• The pattern 

contains 100 equal-sized intervals in frequency. Only the nuclear quadrupole 

interaction is considered for the powder pattern. The resonance frequency 

condition vo  is chosen as 30 MHZ, e2qQ (Qcc) the nuclear quadrupole coupling 
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constant as 2.58 MHZ, r the electrical field gradient asymmetry parameter as 0.14 

and 1 the nuclear spin as 3/2. 

Figure 8a 11 B powder pattern with condition, vo=30MHz, 

Qcc=2.58 MHz, η=0.14, 1=3/2, N1 =100, N2=100,N3=25. 

Figure 8b 11 B powder pattern with condition, v0=30 MHz, 
Qcc=2.58 MHz, η=0.14, 1=3/2, N1 =100, N2=400, N3=200. 
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It is noted that the "noise" of the powder pattern is appreciable in figure 8a. 

The "noise" appearing in the powder pattern formed from uniform grids tends to 

be periodic. If the resonance surface is plotted as a function of cosθ and o 

according to resonance conditions of equation (9), or equation (15), then the 

periodic noise of the powder pattern is observed to come from those regions of the 

resonance surface which have the strongest dependence on cosθ and 4). That is, the 

regions of cosθ-ϕ  space where the slope of the resonance surface is the greatest 

contibute the most "noise" to the powder pattern. If the "noise" is too large, the 

signal-to-noise ratio will be severely affected and a weak real signal will be unable 

to be observed. The resulting resolution of the powder pattern under these 

conditions is poor. 

The "noise" results from the coarseness of the "grid" used in constructing the 

powder pattern. It can be noted that if the cosθ-ϕ  space is divided into much finer 

uniform grids, then the noise tends to diminish. Figure 8b shows the powder 

pattern with the same resonance condition and Hamiltonian parameters as that in 

figure 8a, but, the 

cosθ-ϕ 

 space is divided into 80000 uniform grids {or 

orientations), that is, N2=400,N3=200. Obviously, the "noise" of the powder 

pattern in figure 8b is much weaker than that in figure 8a. 

In practice, the noise level can not diminish completely, because the number 

of grids for 

cosθ-ϕ 

 space being divided only can be finite. Fortunately, the effect 

of dipolar broadening will "smooth out" the "noise" of the powder pattern, which 

depends on the linewidth of the isotropic broadening function used to convolute 

that powder pattern. In figure 9, the theoretical absorption spectrum S(v) is 

obtained by convoluting the powder pattern in figure 8a by the Gaussian function 

with the dipolar line width 2o=6 kHz. This theoretical absorption spectrum is just 

the parallel to the experimental absorption spectrum. 



Figure 9 The spectrum S(v) is obtained by convoluting the powder pattern 
in figure 8a by a Gaussian function with dipolar line width 2σ=6 kHz. 

The relationship between the simulation spectrum "error" brought by 

spectrum "noise" and the quantity N=N2 xN3  by which the cosθ-ϕ  space is divided 

into uniform grids is analyzed. The absorption spectrum is calculated in the 

situation that only the nuclear quadrupole interaction and dipole-dipole interaction 

are available in the powder sample. We choose the following parameter values, the 

nuclear quadrupole coupling constant Qcc=2.58 MHz, the electrical field gradient 

asymmetry parameter η=0.14, the resonance frequency v0=30 MHz, and the 

Gaussian convolution width 2σ=6 kHz, which are the typical parameter values for 

the 11 B NMR of the boron-oxygen triangle unit BO35. 

We now select the quantity S0(v) to represent the "standard spectrum" which 

is obtained by dividing frequency spanning range of the pattern into 100 equal-

sized intervals (N,=100), and cosθ-ϕ  space into 80000 uniform grids (N2=400, 

N3=200). Then, different values of N2  ( N3  value being fixed) or of N3  ( N2  value 

being fixed ) are taken to obtain the convoluted spectrum S(v). We can calculate 
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curves are plotted in figure 10. 

number of uniformly divided intervals. 
number of uniformly divided intervals. 
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the relative error between each spectrum S(v) and "standard spectrum" So(v), that 

is; 

Figure 10 shows that to satisfy the requirements of computer simulation 

accuracy and reasonable calculation times, values of N2  of 100 and N3  of about 25 
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can be used with confidence to calculate the simulation spectrum of the 

Hamiltonian parameters (Qcc, r, 2o v0) which are as approximate as that in the 

figure 10. These approximations will introduce no apparent additional error into 

the calculated spectrum. 

5.2 Simulation Procedure 

In computer program simulation, it is not easy to simultaneously adjust all the 

Hamiltonian parameters so that the calculated spectra is in good agreement with 

the experimental spectra; especially when both nuclear quadrupole, interactions 

and chemical shift effects are considered in the powdered samples. 

From the resonance condition equations, it is known that the spectrum 

spanning range width caused only by chemical shift effects is proportional to the 

applied resonance frequency, that is, ∆cs cc v0  and the spectrum spanning range 

width caused only by nuclear quadrupole interactions is proportional to the 

inversion of v0, that is, ∆vQ α 1/v0. So, at the applied low resonance frequency, 

the nuclear quadrupole interactions predominate the anisotropic broadening 

effects. When the applied resonance frequency is increased, the broadening effects 

due to the nuclear quadrupole interaction are decreased and the broadening effects 

due to the chemical shift effects are increased gradually. At the applied high 

resonance frequency, the chemical shift broadening effects become the main role. 

Figure 11 shows five powder patterns in the presence of both nuclear 

quadrupole interactions and chemical shift effects for the powder sample. The 

following Hamiltonian parameters of 5 'V of the NaVO3  sample are chosen: 

Qcc=3.65 MHz, η=0.6, σ1=-1.5x10-4, σ2=0.8x10-4, σ3=3.4x10-4, and 1=7/2. The 

powder patterns have been calculated for the applied frequencies v0=1, 4, 30, 90, 

and 160 MHz using the computer. These parameters and frequencies are chosen to 

span the range from nearly pure nuclear quadrupole interaction to nearly pure 
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chemical shift. Figure 12a shows three powder patterns in the presence of only 

nuclear quadrupole interactions for the powdered sample with parameters as, 

Qcc=3.65MHz, ri=0.6, and I=7/2, for the applied frequencies vo=1, 4 and 30 MHz. 

Figure 12b shows three powder patterns in the presence of only chemical shift 

effects for the powdered sample with parameters as, 

for the applied frequencies vo=30, 90 and 160 MHz. 

Figure 11 Powder patterns in the coexistence of nuclear quadrupolar 
interactions and chemical shift effects with parameters as,Qcc=3.65 MHz, 
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Figure 12a Powder patterns due to only the nuclear quadrupolar 
interactions with parameters as, Qcc=3.65 MHz, η=0.6, and 
v0=1, 4, 30 MHz. 

Figure 12b Powder patterns due to only the chemical shift effect with 
parameters as, σ1=-1.5x10-4, σ2=0.8x10-4, σ3=3.4x10-4, and v0=30, 
90, 160 MHz. 

Comparing figure 11 with figure 12a and figure 12b, it can be concluded that 

chemical shift effects can be disregarded at the applied low resonance frequencies 
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, v0=1, 4 MHz, and nuclear quadrupole interactions can be disregarded at the 

applied high resonance frequencies, v0=90, 160MHz. But, at the applied medium 

resonance frequency, v0=30 MHz, both nuclear quadrupole interactions and 

chemical shift effects can not be disregarded. 

In the presence of both nuclear quadrupole interactions and chemical shift 

effects, the procedure used in fitting the experimental spectra can be followed by 

two steps. 

First, by neglecting all chemical shift effects, the values of Qcc, η, and 2σ are 

estimated from the experimental spectrum taken with lower frequency for which a 

usable NMR signal can be obtained. In this case, chemical shifts turn out to be 

really quite small at these low frequencies. This procedure yields a good first 

estimate of the quadrupole parameters, Qcc, η, and the dipolar width 2σ. 

Next, the experimental spectra taken at the higher available frequency are 

fitted by the adjustment of the three chemical shift parameters (σ1, σ2, σ3) of the 

calculated spectra. Finally, it is necessary to make small corrections for the low-

frequency spectra after chemical shift effects are included• This iterative procedure 

is continued until the computed spectra agree with the experimental spectra at all 

frequencies. 

Figure 13 shows the example of computer simulation for simulating 1 'B 

NMR of xLi2O•yB2O3•zV2O5 ternary system glass samples. Superimposed on the 

experimental derivative spectra are the computed and derivative spectra calculated 

from the corresponding absorption spectra. 

The physical parameters (or, Hamiltonian parameters) obtained by the best fit 

to the experimental spectra are listed in table 3. The result agree with those 

obtained by other authors, T• H. Yun, P• J• Bray [7] for the study of xLi2O•yB2O3 

binary system glass samples shown in table 4. 



Figure 13 11B NMR experimental spectra of xLi2O•yB2O3•zV2O5  
system glass (K=0.4) at a resonance frequency vo, of 30 MHz 
superimposed with the computer simulation spectra (solid smooth 

curve) R=x/y, K=z/y. 
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Table 3 The Parameters (Qcc, 	a) of the Three Distinct Boron Sites in 
the System of xLi,O•yB2O3•zV2O5 Glasses Through Computer Simulation 

Samples Symmetry BO3S  unit Asymmetry•BO3A unit B04  unit 

order  K(z/Y) R(x/y) Qcc(MHz) 	11 σ(kHz) Qcc(MHz) 	η σ(kHz) Qcc(MHz) 	η 	σ(kHz) 

1 	0.4 	0.2 2.61 	0.17 	4.0 / 	/ 	/ 0.5 	0 	3.5 

2 	0.4 	0.4 2.61 	0.17 	4.0 / 	/ 	/ 0.5 	0 	3.5 

3 	0.4 	0.8 2.61 	0.17 	4.0 / 	/ 	/ 0.5 	0 	3.7 

4 	0.4 	1.4 2.64 	0.08 	4.0 2.61 	0.47 	4.0 0.5 	0 	3.7 

5 	0.4 	1.7 2.64 	0.08 	4.0 2.61 	0.47 	4.0 0.5 	0 	3.5 

6 	0.4 	2.6 2.64 	0.08 	4.0 2.61 	0.47 	4.0 0.5 	0 	3.3 

Table 4 The Parameters (Qcc, r, a) of the Two Distinct Boron Sites in 
the System of xLi2O•yB2O3 Glasses Through Computer Simulation [71 

Samples symmetry BO unit Asymmetry BO3A  unit 

order R(x/y) Qcc(MHz) η σ(kHz) Qcc(MHz) 1 σ(kHz)  

1 0.6 2.61 0.14 3.6 2.61 0.45 3.0 

2 0.8 2.61 0.13 3.8 2.60 0.49 3.7 

3 0.9 2.64 0.08 3.5 2.58 0.47 3.5 

4 1.0 2.60 0.08 3.5 2.56 0.50 3.9 

5 1.2 2.64 0.10 4.0 2.58 0.47 3.5 

6 1.4 2.69 0.08 3.5 2.61 0.47 3.5 

7 1.6 2.66 0.08 3.0 2.59 0.50 3.5 

8 1.86 2.64 0.08 4.0 2.58 0.47 3.5 
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The computer simulation is based on the single parameters which are most 

probable. Actually, the parameter should have some distribution of values around 

the most probable value for the powdered sample, especially for a vitrious sample. 

This is another important reason for some disagreement between the calculated 

and experimental spectrum and this further factor needs to be considered in the 

computer simulation in order to obtain a better goodness of fit between the 

calculated and experimental spectra. 

5.3 Multiple Sites in the 11B NMR Spectra of 
Sodium Borovanadate Glasses 

In general, separate sites may be characterized by different isotropic broadening 

function as well as different Hamiltonian parameters. For example, the NMR 

spectrum of boron in a sodium borovanadate glass consists of three distinct nuclear 

sites, one corresponding to a boron atom coordinated to four oxygen atoms, and 

two corresponding to a boron atom coordinated to three oxygen atoms [7]. The 

single four-coordinated boron site and the two three-coordinated boron sites all 

have different Hamiltonian parameters and dipolar broadening Iinewidths which 

can be uniquely determined by computer simulation techniques. Also, the relative 

abundances of these three types of boron nuclear sites can be calculated by 

computer simulation. By determining the relative intensities of the three types of 

boron nuclear sites, that is, determining the fraction N4  of BO4  units with four 

tetrahedral bridging oxygens, the fraction N3S  of BO3S  units with three triaganal 

bridging oxygens and the fraction N3A  of BO3A  units with one or two non-bridging 

oxygens (NBO's), the structure of the alkali borate glasses can be studied. In the 

following two sub-sections, NMR studies are focused on the sodium borovanadate 

ternary glass by using computer simulation techniques. 
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5.3.1 Analysis of 11B NMR Spectra of Sodium Borovanadate Glasses by 
Computer Simulation Techniques 

Forty-four glass samples described in chapter 4 are analyzed by 11B NMR and 

computer simulation. As indicated in chapter 4, 11B spectra of the samples were 

obtained at a fixed frequency of 30 MHz by sweeping the magnetic field through 

the resonance by employing wide-line NMR Spectrometer (HC-4)• 

Figure 14 shows the "B NMR (derivative) spectrum at a resonance frequency 

vo  of 30 MHz for a sample with K=0•5 and R=0.6. Smooth solid line 

superimposed on the spectrum in figure 14 is computer-simulated spectrum. 

Figure 14 "B NMR derivative spectrum at a resonance frequency 
vo  of 30 MHz for xNa2O•yB2O3•zV2O5  glass with K=0•5 and R=0.6• 
The smooth solid curve represents a computer-simulated spectrum 
which are the sums of responses due to three distinct boron sites 
BO4, BO38  and BO3A. 
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The spectrum shows two distinct portions: (1) a narrow line shape due to BO4 

units, and (2) a broad line shape due to BO3  units. The BO3  units yield a broad 

resonance line shape due to a large interaction between the nuclear quadrupole 

moment and electric field gradient present at the boron site. 

By fitting the computer-simulated spectra to experimental spectra, fractions 

of N4(E), N3 (E) and N3A(E) can be determined for all the different composition 

samples (different K and R values). Table 5 shows all the data of fractions of 

N4(E), N3 (E) and N3A(E) experimentally determined by computer simulation. In 

addition, all the data of fractions of N4(C), N3(C)  and N3A(C) are calculated from 

the structure model proposed in this paper. 

Table 5 Experimental Values of N4(E), N3S(E) and N3A(E) Determined by 
Computer Simulation Technique and Theoretical Values of N4(C), N3 (C) and 

N3A(C) Calculated from Their Corresponding Compositions According to the 
Model Proposed in This Paper 
Number 1 K R N4(E) N4(C) N3s(E) N1s(C) N3A  (E) N1A(C) 

1 0 0.8
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0.21 0.20 0.79 0.80 0.00 0.00 

2 0 0.30 0.30 0.70 0.70 0.00 0.00 

3 0 0.37 0.40 0.63 0.60 0.00 0.00 

4 0 0.46 0.50 0.54 0.50 0.00 0.00 

5 0 0.44 0.47 0.38 0.40 0.17 0.13 

6 0 0.43 0.45 0.30 0.30 0.27 0.25 

7 0 0.40 0.40 0.10 0.10 0.50 0.50 

8 0 0.25 0.25 0.11 0.10 0.65 0.65 

9 0.5 0.22 0.22 0.78 0.80 0.00 0.00 

10 0.5 0.31 0.30 0.70 0.70 0,00 0.00 

11 0.5 0.41 0.45 0.60 0.55 0,00 0.00 

12 0.5 0.45 0.46 0.37 0.33 0.18 0.21 

13 0.5 0.37 0.38 0.09 0.00 0.54 0.63 

14 0.5 0.30 0.29 0.09 0.07 0.61 0.64 

15 0.5 0.24 0.23 0.13 0•12 0.63 0.66 

16 0.5 0.21 0.19 0.15 0.15 0.64 0.66 

17 0.5 0.14 0.15 0.20 0.18 0.65 0.67 

18 1.0 0.24 0.12 0,76 0.88 0.00 0.00 

19 1.0 0.29 0.27 0.71 0.73 0.00 0.00 

20 1.0 0.33 0.33 0.67 0.67 0.00 0.00 



Table 5: Continued 
Number K R N4(E) N4(C) N3s(E) N3s(C) 1\134(E) N3A(C) 

21 1.0 1.4 0.45 0.47 0.55 0.53 0.00 0.00 
22 1.0 1.6 0.45 0.48 0.41 0.43 0.15 0.09 
23 1.0 1.8 0.43 0.45 0.36 0.29 0.21 0.27 
24 1.0 2.0 0.42 0.41 0.26 0.14 0.33 0.45 
25 1.0 2.2 0.35 0.37 0.15 0.00 0.50 0.63 
26 1.0 2.4 0.34 0.34 0.08 0.03 0.58 0.63 
27 1.0 2.6 0.31 0.30 0.08 0.06 0.61 0.64 
28 1.0 3.2 0.22 0.20 0.14 0.14 0.63 0.66 
29 1.0 3.6 0.15 0.12 0.19 0.20 0.66 0.68 
30 1.5 0.8 0.28 0.20 0.73 0.80 0.00 0.00 
31 1.5 1.8 0.37 0.45 0.63 0.55 0.00 0.00 
32 1.5 2.2 0.48 0.47 0.42 0.38 0.10 0.16 
33 1.5 2.6 0.38 0.41 0.23 0.13 0.39 0.47 
34 1.5 3.0 0.35 0.35 0.11 0.03 0.55 0.63 
35 1.5 3.4 0.31 0.28 0.10 0.08 0.60 0.64 
36 1.5 3.8 0.23 0.22 0.12 0.13 0.66 0.66 
37 2.0 0.8 0.19 0.16 0.82 0.84 0.00 0.00 
38 2.0 1.6 0.34 0.32 0.67 0.68 0.00 0.00 
39 2.0 2.0 0.36 0.40 0.65 0.60 0.00 0.00 
40 2.0 2.5 0.43 0.50 0.58 0.50 0.00 0.00 
41 2.0 3.0 0.45 0.43 0.30 0.22 0.26 0.35 
42 2.0 3.5 0.37 0.36 0.09 0.01 0.55 0.63 
43 2.0 4.5 0.28 0.22 0.12 0.12 0.60 0.66 
44 2.0 5.0 0.18 0.15 0.21 0.18 0.61 0.67 

The dependence of the fraction N4  of BO4, the fraction N3s  of BO3S, and the 

fraction N3A  of BO3, on R and K values is much more interesting and valuable. The 

experimental values of N4(E), N3S(E) and N3A(E) of different R for each of the five 

families of glass samples are shown in figure 15, figure 16 and figure 17. Also, 

fractions of N4(C), N3 (C) and N3A(C) for each of five family glasses predicted by 

the structural model are plotted as a function of R in these figures. The 

experimental values of N4(E), N3S(E) and N3A(E) are in reasonably good agreement 

with the values N4(C), N3(C)  and N3A(C) predicted by the structural model, within 
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experimental error. This result supports the structural model proposed by this 

paper. 

Figure 15 N4  versus R for xNa2O•yB2O3•zV2O5  glasses. 

Figure 16 N3S  versus R for xNa2O•yB2O3•zV2O5  glasses• 
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Figure 17 N3A  versus R for xNa2O•yB2O3•zV2O5  glasses• 

By analyzing the behavior of the dependence of N4, N3S  and N3A  on R, the 

spanning range of R for each K family glass can be resonably divided into three 

regions in figure 15, figure 16 and figure 17• 

In the first region, R 0•5+K, N4(C), N3S(C) versus R are represented by 

dashed line• By inscreasing R, figure 15 and figure 16 show that the values of N4  

increase while the values of NiS  decrease. When R = 0•5+K, values of N4  reach 

their maximum values, and values of N3S reach their first critical turning points. 

Values of N3A  do not appear in the first region. 

In the second region, 0•5+K 	R 	1.0+1•2K, N4(C), N3S(C) and N3A(C) 

versus R are represented by solid line• By increasing R, figure 15, figure 16 and 

figure 17 show that the values of N4  and N3S  decrease while the values of N3A  

increase. When R = 1.0+1•2K, values of Nis  reach their minimum values 

(approximately, zero values) and values of N3A  reach their first critical turning 

points. 
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In the third region, R 1.0+1.2K, N4(C), N3S(C)  and N3A(C) are represented 

by dash-dotted line. By increasing R, figure 15, figure 16 and figure 17 show that 

the values of N4  decrease at the same rate as they do in the second region while the 

values of N3S  and N3A  increase. 

5.3.2 Structure Model of Sodium Borovanadate Glass and Discussion 

Binary alkali borate glasses have been studied by many authors [7,8,9,12] by 

means of 11 B NMR , Infrared and Raman Spectroscopies. Krough-Moe [9], Y. 

H.Yun and P. J. Bray [7] state that alkali borate glasses for all different 

compositions (different R values) are constructed as a random network of nine 

basic structural groups which occur in crystalline compounds. These structural 

groups are shown in figure 18 [9,7,10]. All the grouping units are formed from 

different compositions of alkali oxide reacted with boron oxide (boroxol units). 

For binary sodium borate glasses xNa2O•yB2O3, Krough-Moe's [9] structural 

model concluded that 

(a) Pure boron oxide glass consists mainly of boroxol units. In the region 

0 	R 	0.25 (R=mol%Na2O/mol%B2O3), the addition of one molecule of Na2O 

results in the formation of one tetraborate unit at the expense of four boroxol units. 

(b) When R = 0.25, the glass consists mainly of tetraborate units. In the 

region 0.25 	R 	the addition of one molecule of Na2O results in the 

formation of two diborate units at the expense of one tetraborate unit. 

(c) When R = 0.5, the glass consists mainly of diborate units. 

Yun and Bray [7] proposed the further structural model of binary sodium 

borate glasses for region R 0.5, that is 

(d) For 0.5 	R 	1, the addition of one molecule of Na2O results in the 

formation of 2.5 metaborate units and 1.5 loose BO4  units at the expense of one 

diborate unit. 
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Figure 18 The nine basic structural groups in alkali borate glasses. 

(e) When R = 1, the glass consists mainly of metaborate units and loose BO4  

units. For 	the addition of one molecule of Na2O results in the formation of 
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0.6 pyroborate units and 0.4 orthoborate units at the expense of 1•1 metaborate 

units and 0.5 loose BO4  units. The upper limit on R is at about R = 1.86• 

The experimental values of N4, N3S  and N3A  of "B NMR for binary sodium 

borate glasses are in reasonably good agreement with the values predicted by the 

above structural model. 

The binary lithium vanadate xLi2O•zV2O5  glasses have been studied and 

described in several reports [11]. There is a majority agreement as to the existence 

of LiV3O8, LiVO3  and Li3VO4.  Extensive glass formation was observed from pure 

V2O5  (R=mol%Li2O/mol%V2O5=0) to higher Li2O content at about 

R=0.6/0.4=1•5. 

In the region about 0 R 1/3, the main reaction occuring in glass is that the 

addition of Li2O results in the formation of LiV3O8  at the expense of V2O5 • 

When R = 1/3, the glass consists mainly of LiV3O8• In the region about 

1/3≤R≤1, the main reaction occuring in glass is that the addition of Li2O results in 

the formation of LiVO3  at the expense of LiV3O8. 

When R= 1, the glass consists mainly of LiVO3.  In the region about 

, the main reaction happened in glass is that the addition of Li2O results in the 

formation of Li3VO4  at the expense of LiVO3. 

Now, studies are focused on the ternary sodium borovanadate glasses. By 

inspecting figure 15, figure 16 and figure 17, it is observed that the changing trend 

of experimental values of N4(E), N3S(E) and N3A(E) versus R for the ternary 

xNa2O•yB2O3•zV2O5  glasses is similar to that for the binary xNa2O•yB2O3  glasses. 

But, the decreasing rate or increasing rate of values of the former is slower than 

that of the latter, because the added V2O5  shares the Na2O with B2O3• This 

characteristic implies that this ternary xNa2O•yB2O3•zV2O5  can be studied 

somewhat like a binary sodium borate glass with the consideration about the 

sharing of Na2O by both B2O3  and V2O5. According to the studies of the binary 
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sodium borate glasses, the binary alkali vanadate glasses, and the behaviors of 

figure 15, figure 16 and figure 17, the structural model for the ternary sodium 

borovanadate can be proposed as follows: 

When x molecules of Na2O are added into glasses, x1  molecules of Na2O 

react with boron oxide or borate glasses and x2  molecules of Na2O react with 

vanadium oxide or vanadate glasses. It can be concluded by inspecting figure 15, 

figure 16 and figure 17 that the ratio of x1  to x2  is proportional to K (K=6), that 

is, 

where C is the proportional constant which can be determined experimentally from 

the relationship of N4(E) R, N3 (E) R and N3A(E) ~ R. 

The reaction structural model is proposed as following: 

1). In the first region, R 0.5+K, there are three reaction processes and this region 

can be further divided into three subregions which are, 

. 

of the one molecule of additional 

molecules of B2O3  to form tetraborate 
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2K 	 6K  
units, and 	 molecules of Na2O destroy 	 molecules of V2O5  to font' 

2K+1 	 2K + 1 

molecules of NaV3O8. In equation form, the reaction model is 

where [B8O13]2-  denotes a tetraborate unit. Let (B4), (B3S), and (B3A) express the 

amount of boron atoms in four-coordination with oxygen [BO4], the amount of 

boron atoms in symmetric three-coordination with oxygen [BO3S], and the amount 

of boron atoms in asymmetric three-coordination with oxygen [BO3A], 

respectively. Equation (25) reaction model predict that, for one additional Na2O 

2 	 2 
molecule, (B4) increases by 	(B3S) decreases by 	 and (B3A) remains 

2K +1, 	 2K +1, 

zero, that is, (B4) = 	2 x , (B3S) = (B) 	2  x, and (B3S) = 0. So, the 
2K+1 	 2K+1 

reaction model predicts that 
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When R = 1/
6 

+ K/3 all z moleculecules of V2O5 are destroyed to form 2z/3 molecules 

	

3 	 3 

of NaV3O8, and 2y/3 molecules of B2O3  are destroyed to form tetraborate units. 
3 	 6 

The glass system mainly consists of 

of the one molecule of additional 

4 + 1 	 2K 1  + 1 
molecules of Na2O destroy 

2K 	
molecules of B2O3  to form 	 tetraborate 

units, and 
 2K 	 2K molecules of Na2O destroy 	 molecules of NaV3O8  to form 

	

2K+1 	 2K + 1 

6K 
molecules of NaVO3. In equation form, the reaction model is 

This reaction model still predicts that 

When R = 1/4 + K/2, 
 

all y molecules of B2O3  are destroted to form y/4 tetraborate 
4 2 	 4 

units, z/6 molecules of NaV3O8  are destroyed to form z/2 molecules of NaVO3, and z/2  

2K± 1 
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molecules of - NaV3O8  remain unreacted. The glass system mainly consists of 

of the one molecule of additional 

1 
molecules of Na2O destroy 	 tetraborate units to form 	2/2K+1 diborate units, 

2K +1 	 2K +1 

2K 	 2K 	 6K  
and 	molecules of Na2O destroy 	 molecules of NaV3O8  to form 

2K--1 	 2K+1 	 2K+1 

molecules of NaVO3. In equation form, the reaction model is 

This reaction model still predicts that 

1 
When R = —+K, all tetraborate units are destroyed to form diborate units, and 

2 	 2 

all NaV3O8  are destroyed to form 2z molecules of NaVO3. The glass system 

mainly consists of 
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2). In the second region, 0.5 + K R ≤ 1+1.2K, of the one molecule of additional 

1 
Na2O, 	 molecules of Na2O destroy 	1/ 1+0.4K diborate units to form 

1+0.4K 	 1+0•4K 

	2.5/1+0.4K 	   
	 metaborate units and 1.5/1+0.4K loose BO4 units 	

0.4K 
, and 	 molecules of 

	

1+0•4K 	 1+0.4K 	 1+0.4K 

0.4K / 1+0.4K Na2O destroy 	 molecules of NaVO3  to form 	 molecules of 
1+ 0. 4K 	 1+0.4K 

Na3VO4. In equation form, the reaction model is 

where [BOA-  and [BO2]2-  denote metaborate unit and loose BO4  unit, 

respectively. This reaction model predicts that 

When R = 1+1.2K, all diborate units are destroyed to form 1•25y metaborate units 

and 0.75y loose BO4  units, 0•2z molecules of NaVO3  are destroyed to form 0.2z 

molecules of Na3VO4, and 1.8z molecules of NaVO3  remain unreacted. The glass 

system mainly consists of 

3) 	In the third region, R 1+1•2K, of the one molecule of additional Na2O, 

1.1K 	 0.5/ 1+0.4K 
molecules of Na2O destroy 	 metaborate units and 	 loose 

1+0.4K 	 1+0.4K 
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BO4  units to form 	
0. 6 	 0.4 

pyroborate units and 0.4/ 1+0.4K orthoborate units, 

	

1+ 0.4K 	 1 + O. 4K 

0

. 4K 	 molecules of Na2O destroy 	molecules of NaVO3  to form 
1 + O. 4K 	 1 + 0.4K 

molecules of Na3VO4. In equation form, the reaction model is 

denote pyroborate unit and 

orthoborate unit, respectively. This reaction model predicts that 

Using equations (26), (27), (28), (32), (33), (34), (36), (37) and (38) with 

values of K=0, 0.5, 1.0, 1.5 and 2.0, the curves of N4  ~ R, N3S  ~ R and 

N3A 	R of each K value family for the proposed reaction model are plotted in 

figure 15, figure 16 and figure 17. Also, all the N4(C), N3S(C)  and N3A(C) values 

are listed in table 5. Figure 15, figure 16, figure 17 and table 5 show that the 

theoretical model values of N4(C), N3S(C)  and N3A(C) are in reasonablly good 

agreement with the experimental values of N4(E), N3S(E) and N3A(E), which are 

obtained by '1 B NMR computer simulation techniques. 



CHAPTER 6 

CONCLUSION 

A computer program is devised which can calculate the powder pattern for 

arbitrary quadrupolar and chemical shift parameters, convolute it with an 

appropriate Gaussian function that simulates the effects of dipolar broadening, and 

ultimately form a derivative-like spectrum which is characteristic of the 

experimental results. The development of this program which simulates the NMR 

spectra observed in powdered and glassy samples makes it possible to calculate the 

relevant Hamiltonian parameters for a NMR spectrum occuring in a powdered 

solid sample. Table 3 in section 5.2 shows the values of the relative parameters 

of the three distinct boron sites in the system of 

glasses by using computer simulation method. In addition, this computer technique 

can also be used to calculate the relative intensities of several overlapping spectra. 

Table 5 in section 5.3 shows the results of the relative intensities (N4, N3S, N3A) of 

overlapping spectra due to three different boron-oxygen network units BO4, BO3S, 

and BO3A. 

Typical theoretical behavior of the powder pattern for the central transition in 

the presence of both quadrupolar and chemical shift interactions is discussed in 

chapter 2. The locations of shoulders and singularities of the powder patterns are 

listed in table 1 and table 2 in chapter 2. 

The "noise" of the simulated-spectrum caused by numerical calculation is 

analyzed in section 5.1. Figure 8a and figure 8b indicate that the smaller the 

division of the cosθ-ϕ  space into uniform grids, the less the "noise", and 

consequently, the greater the signal to noise ratio for the powder pattern. 

48 
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The details of the simulation procedure are discussed in section 5.2. It is 

noted that chemical shift effects are negligible at low frequencies, so that the 

quadrupole parameters, Qcc, η, and the dipolar width 2σ, can easily be estimated 

from the experimental spectra taken at lower frequency. second, the experimental 

spectra taken at the higher available frequency are fitted by varying the three 

chemical shift parameters (σ1, σ2, σ3) of the calculated-spectra, and finally, minor 

corrections for all of the parameters results in computed spectra which are in 

agreement with the experimental spectra at all frequencies• 

The computer simulation techniques are applied to the studies of 11B NMR 

spectra of the sodium borovanadate glass system and the data of N4(C), N3S(C) and 

N3A(E) as functions of R and K are obtained. The relative abundance of each of 

different borate units (networks) in the glass system are obtained when the 

compositions (R, K) of the glass system are varied, as shown in figures 15, 16 and 

17. Considering figures 15, 16 and 17, together with the studies of some binary 

glass systems of alkali borates and lithium vanadates by the other authors [7, 9, 

111 the structural reaction model for the ternary sodium boro-vanadate glass 

system as proposed in section 5.3 is expressed by the equations (25), (29), (30), 

(31) and (35)• According to this structural reaction model, the data of N4(C), 

N3S(C) and N3A(C) as functions of R and K are calculated, and the results are in 

reasonable agreement with the experimental data of N4(E), N3S(E) and N3A(E) 

which are obtained by using our computer simulation method. 
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