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ABSTRACT 

Measurement of Heart Rate Variability 
Using Correlation Dimension and Entropy 

by 
Su Zhang 

Heart rate variability regulation is controlled by the autonomic nervous 

system. Disorders of the autonomic nervous system may cause the loss of heart rate 

variability. Two new approaches, correlation dimension and entropy, based on ideas 

from nonlinear dynamics, have been applied to studying heart rate variability. The 

correlation dimension measures the extent of correlation between the data points. 

The entropy measures the amount of information needed to specify the state of a 

system. The interbeat interval signal (1BI) from eighteen subjects (nine normal 

controls and nine patients with Chronic Fatigue Syndrome (CFS) ) have been 

analyzed and compared. The results show that the CFS patients have higher 

correlation dimension and lower entropy than normal subjects, which indicates that 

the heart rate variability is reduced for these patients. This suggests that there may 

be an autonomic nervous system imbalance in CFS patients. 
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CHAPTER 1 

INTRODUCTION 

1.1 Electrical Activity of the Heart 

The synchronized mechanical activity of the heart depends on the propagation of 

electrical excitation waves, which trigger the complex sequence of biochemical 

processes involved in the contraction of the individual heart cells. Contraction of 

cardiac muscle, like that of other muscle types, is triggered by depolarization of the 

plasma membrane. About one percent of cardiac muscle cells, like certain forms 

of smooth muscle, are autorhythmic; i.e., they are capable of autonomous 

rhythmical self-excitation. Such a property, known as automaticity, occurs normally 

in the cells of the sinoatrial node, which is the region responsible for the initiation 

of each normal heartbeat. From the SA node, the pacemaker of the heart, the 

action potential spreads throughout both atria, reaching the AV node. The bundle 

of His, a conducting link between atria and ventricles, then carries the potential to 

the ventricles, causing the ventricles to contract. An ECG occurs during this 

process. Figure 1.1 illustrates a typical normal ECG. The first wave, P, represents 

atrial depolarization. The second complex, QRS, occurring approximately 0.1 to 

0.2s later, represents ventricular depolarization and atrial repolarization. The final 

wave,T, represents ventricular repolarization. 

1 
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Figure 1.1 Typical electrocardiogram. P, atrial depolarization; QRS, ventricular 
depolarization; T, ventricular repolarization. 

1.2 Current Research in Heart Rate Variability 

If one listens to the heart through a stethoscope or feels the pulse at the wrist, the 

rhythm of the heart seems to be regular. For an individual at rest the pulse strength 

and the interval between heartbeats seem roughly constant. For this reason 

cardiologists routinely describe the normal heart rate as regular sinus rhythm. The 

traditional view of normal sinus rhythm as highly regular or periodic is contradicted 

by more careful analysis which reveals that healthy individuals have heart rates that 

fluctuate considerably even at rest. In healthy, young adults the heart rate, which 

averages about 60 beats per minute, may change as much as 20 beats per minute 

every few heartbeats. In the course of a day the heart rate may vary from 40 to 180 

beats per minute[1]. 

Heart rate variability regulation is a mechanism controlled by the 

sympathetic and parasympathetic nervous systems. Sympathetic input generally 

increases heart rate while parasympathetic input decreases it. Furthermore, changes 
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in heart rate often reflect the reciprocal action of the sympathetic and 

parasympathetic systems. These spontaneous fluctuations in heart rate are normally 

considered a healthy sign. The wide variations in heart rate are commonly seen in 

healthy individuals. By contrast, a number of physiologic and disease states 

produce alterations in autonomic function which reduce the variability in heart 

rate.Recent research discovered that the pattern of heartbeats of patients with 

diabetes, multiple sclerosis, and fetal distress often became less variable than in 

normal people [1].  Therefore, irregularity and unpredictability are important features 

of health. On the other hand, decreased variability and accentuated periodicities are 

associated with disease. Therefore, in recent years the possibility of quantifying the 

heart rate variability has aroused a growing interest. The variability in heart rate 

has been used to study the function of the cardiovascular control system. 

The measurement of heart rate variability involves taking the difference in 

time between successive R waves, which generates an interbeat interval (IBI) 

signal. First, the ECG signal is preprocessed to remove noise interference, and the 

variability is then measured from the R-R intervals by one of the conventional QRS 

detectors that defines the position of each QRS complex. A variety of methods 

have been proposed to analyze this signal,such as spectrum analysis, complex 

demodulation, standard deviation, autoregressive analysis and phase response curve 

methods [2] [3] [4] . 

A. Spectral Analysis 

The most prominent technique used to analyze heart rate variability is 

spectrumanalysis. First, the R-R interval series must be interpolated to form an 
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equidistant time series. Then, taking the Fourier transform of the time series 

produces the heartbeat interval spectrum. 

The basic proposition behind spectral analysis is that in human beings both 

divisions of the autonomic nervous system influence heart rate variability in a 

frequency-dependent way. Usually three major, identifiable peaks are distinguished 

in the power spectrum of interbeat interval variability(Figure 1.2)[2]. 

Figure 1.2 Power spectrum of instantaneous heart rate fluctuation featuring three 
peaks 

The best-known and best-defined peak is respiration related, determined as 

the heart rate spectral power at the respiratory frequency(high frequency band, 

HF-0.25 - 0.4Hz). It is purely parasympathetic in origin. The other well-understood 

peak occurs at frequencies lower than 0.05 Hz (low-frequency band, LF, 0.01 - 

0.05Hz). It is mediated by both the sympathetic and parasympathetic systems. The 
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third peak, in the region of 0.1 --0.15Hz(middle-frequency band, MF), is associated 

with the frequency response of the baroreceptor reflex reflecting vagal activity. 

B. Complex Demodulation 

Power spectrum analysis only shows the "average of the spectrum over the entire 

length of the time series". However, autonomic regulation of the cardiovascular 

system can change rapidly in response to physical or psychological demands. 

Complex demodulation is able to provide the time-local descriptions of heart 

rate variability necessary to characterize such changing autonomic regulation. The 

use of complex demodulation enables us to examine autonomic contributions to 

heart rate regulation in conditioning and a variety of other physiological and 

environmental conditions where autonomic input can be expected to change rapidly. 

Complex demodulation is a local version of harmonic analysis that enables us to 

describe the amplitude and phase of particular frequency components of a time 

series as functions of time. Consequently, complex demodulation can be used to 

study local changes of a signal over time. 

Drs. Shin, Tapp and Reisman have succeeded in analyzing the data from dogs 

by complex demodulation during classical conditioning procedures which caused 

different changes in the autonomic regulation of heart rate[3]. Two significant 

peaks in the heart rate variability spectrum were examined by this technique. The 

amplitude of the peak at the respiration frequency showed parasympathetic changes, 

while the amplitude of the low frequency peak showed both sympathetic and 

parasympathetic effects. Complex demodulation results at these frequencies clearly 

showed the activities of both branches of the autonomic nervous system in 
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regulating heart rate. 

C. Standard Deviation 

Dr. Martin and others have analyzed data from patients who died suddenly during 

ambulatory monitoring by measuring the standard deviation of heart interbeat 

intervals[4]. Comparisons were made with heart rate variability findings in twenty 

normal subjects. The standard deviation of R-R intervals was significantly lower 

in the patients who died suddenly than in the normal subjects. 

D. Phase Response Curve 

Mr.Zhang, Drs. Reisman and Tapp[5] proposed a new approach to study the heart 

rate interaction with the respiration cycle. In the study, heart rate is treated as a 

system of homogeneous, self-sustained oscillators perturbed by respiration. Because 

respiration perturbs heart rate through the autonomic nervous system, the study 

examined this relationship producing a better understanding of the autonomic 

nervous system. 

A phase respones curve can be constructed to predict the entrainment 

behavior of heart rate interacting with respiration. Their study shows that a large 

difference can be observed between normal and abnormal subjects. 

1.3 Nonlinear Dynamic Study in Heart Rate Variability 

The assessment of heart rate variation has been characterized classically by linear 

approaches such as autocorrelation histograms, spectral analysis and mean and 

variance measures. However, linear procedures are less useful for adequately 

assessing the time-dependent characteristics of cardiac variability because 
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variability seldom follows assumptions of stationarity upon which linear 

assessment techniques are based. 

In recent years clinical cardiology offered many examples of nonlinear 

dynamic behavior which includes variability , sustained and complex oscillations, 

abrupt transitions, alternans and hysteresis. For example, different types of 

electrical and mechanical alternans -- where some variable alternates in value on 

a beat-to-beat basis, are well-described in life-threatening cardiac pathologies. ST 

segment alternans indicates severe ischemia and often heralds the sudden onset of 

ventricular fibrillation in both experimental and clinical conditions. Alternation in 

the strength of each heartbeat is a sign of severe ventricular dysfunction. 

Pericardial effusion with tamponade may lead to periodic swinging of the heart 

with consequent alternation of the entire ECG vector( electrical alternans)[6]. 

A detailed understanding of the dynamics of such systems must necessarily 

be carried out in the context of the mathematics of nonlinear systems. The 

complexity and nonlinearity make this 	nonlinear system inaccessible to 

conventional linear techniques. Recently, nonlinear dynamic (chaos theory) has 

provided a number of new statistical tools which have been applied to the analysis 

of biomedical systems, independent of traditional measures based on mean, 

variance, or Fourier Spectrum. The most widely used techniques derived from the 

theory of nonlinear dynamical systems are fractal dimension, entropy and Lyapunov 

exponents. The algorithms for fractal dimension and entropy are relatively easy to 

apply to a time series. They are statistics which, unlike the spectrum, are sensitive 

to nonlinear correlation in a time series. 
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The fractal dimension describes the dimension of the attractor of a dynamical 

system. It indicates the number of degrees of freedom in the dynamic system. The 

dimension of the attractor is an important feature in chaos, and by extension, the 

"dimension" of a time series is considered an important chaotic statistic. For a 

deterministic system the dimension is often interpreted as the number of dynamic 

variables in the difference or differential equations needed to construct a dynamical 

system that will reproduce the measured signal[7]. 

Another way to quantify complexity is by entropy, which deals with the 

amount of information needed to predict the future state of the system. It measures 

how much information is generated by a time series, e.g. the extent to which the 

future of the time series can be predicted by the past. More complex dynamics are 

represented as a large entropy, and random noise is maximally complex[8]. 

Dr.Theiler and others[9] describe a new statistical approach for identifying 

nonlinearity in time series. This is of particular interest to forecasters, who would 

like to know whether a given time series contains the kind of nonlinear structure 

that might be exploited by a nonlinear prediction algorithm. The method first 

specifies some linear process as a null hypothesis, then generates surrogate data 

sets which are consistent with this null hypothesis, and finally computes a 

discriminating statistic for the original and for each of the surrogate data sets. If the 

value computed for the original data is significantly different from the ensemble 

of values computed for the surrogate data, then the null hypothesis is rejected and 

nonlinearity is detected. 
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1.4 The Present Research 

Recently, a general qualitative hypothesis of variability and pathology has been 

proposed: the dynamics of the healthy physiological control system produce an 

apparently irregular and highly complex type of variability, whereas disease is often 

associated with more regularity and less complexity[1]. 

Based on this idea, we used several techniques to study dynamics activity of 

heart rate variability in both healthy people and patients with Chronic Fatigue 

Syndrome(CFS). CFS is an illness of unknown origin whose primary symptom is 

extreme, devastating fatigue, compounded by mild fever, sore throat, painful or 

palpable lymph nodes, unexplained muscle weakness and/or discomfort, headaches, 

cognitive impairment and sleep disturbance. CFS differs from the more typical 

feeling of fatigue; it is a debilitating disorder that interferes with a person's ability 

to participate in the activity of daily life, sometimes for long periods of time. Even 

the simplest task can become a hurdle to overcome, and expending a small amount 

of energy can put a person right back in bed. 

The cause of CFS is not currently known. Some research is devoted to trying 

to find the cause of CFS and is involved in a variety of testing including 

viral/immunological testing, breathing studies, neuropsychological testing, body 

temperature measurements and muscle fatigue evaluation[10]. Studies suggest that 

the nerves controlling heart rate function abnormally in patients with CFS. As we 

know, heart rate variability reflects the action of autonomic nervous system 

(parasympathetic and sympathetic). Therefore, we will measure the variability of 

heart rate in normal people and CFS patients to study the action of the autonomic 
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nerve system. 

The investigation of heart rate variability was conducted to evaluate fractal 

dimension, entropy and nonlinearity of heart interbeat interval signals(IBI). The 

techniques we focused on were the correlation integral, phase space representation, 

fast Fourier transform, spectral synthesis method(SSM), and statistical hypothesis 

testing( bootstrapping"). 



CHAPTER 2 

CHAOS AND FRACTALS IN HEART RATE VARIABILITY 

2.1 introduction 

Chaos and fractals are associated with the discipline of nonlinear dynamics: the 

study of systems that respond disproportionately to stimuli. The theory of nonlinear 

dynamics provides insights into the phenomenon of epidemics, the kinetics of 

certain chemical reactions and the changes in the weather. Under some 

circumstances deterministic nonlinear systems--those that have only a few simple 

elements--behave erratically, a state called chaos. The deterministic chaos of 

nonlinear dynamics is not the same as chaos in the dictionary sense of complete 

disorganization or randomness. Nonlinear chaos refers to a constrained kind of 

randomness, which , remarkably, may be associated with fractal geometry. Fractal 

structures are often the remnants of chaotic nonlinear dynamics. Wherever a 

chaotic nonlinear process has shaped an environment (the seashore, the atmosphere, 

a geologic fault), fractals are likely to be left behind (coastlines, clouds, rock 

formations). At first the mathematics of fractals developed independently of 

nonlinear dynamics, and even today the connections between the disciplines are not 

fully established[1]. 

The term fractal, presented by the mathematician B. Mandelbrot[11], is 

currently used in three related contexts: geometric, temporal (dynamical), and 

statistical. In the most general terms, fractals are defined by a property called self- 

11 
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similarity. Fractal objects are composed of subunits that resemble the huger scale 

shape. These subunits in turn are composed of yet smaller units that also look 

similar to the large ones, and so on. Fractals, therefore, do not have a single length 

scale, but rather have structure on multiple scales of length. The notion of self-

similarity has also been extended into temporal and statistical domains. A temporal 

fractal is a process that does not have a characteristic scale of time, analogous to 

a geometric fractal that lacks a characteristic scale of length. Instead, fractal 

processes have self-similar fluctuations on multiple scales of time. This property 

is reflected by a type of broadband frequency spectrum, i.e., one having multiple 

frequencies. The concept of temporal fractals is closely related to that of "chaos". 

One example of fractal geometry is the irregular structure of the mammalian lung, 

where there is a self-similar distribution of scale sizes across multiple generations 

of branchings[12]. 

The concept of fractals, therefore, applies not only to complex physiological 

systems with self-similar structures and multiple scales of length, but also to certain 

dynamic processes which have fluctuations over multiple scale of time. 

2.2 'fractal in Heart Rate Variability 

A. The Heart's Fractal-like Anatomy 

A number of cardiac structures have a self-similar or fractal-like 

appearance[13]. Examples of this nonlinear architecture include the coronary 

arterial and venous trees, the chordae tendineae, certain muscle bundles, and the 

His-Purkinje network(Figure2.1). The latter provides an efficient way of distributing 
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the depolarization stimulus to the ventricles. Recently, there has been interest in 

modeling the electrical genesis of the QRS complex using a fractal-like conduction 

system, as well as for studying alterations in the frequency content of the normal 

QRS due to changes in His-Purkinje geometry or in myocardial conduction. 

Abboud and colleagues[1][14]  have shown that slow conduction in myocardial cells 

activated by such a fractal network can lead to "late potentials" or to selective 

attenuation of higher frequency content of the QRS, simulating changes seen in 

ischemic coronary syndromes. 

Figure 2A The self-similar branchings of the His-Purkinje system constitute a 
fractal-like network. 
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Idealized (computer-generated) fractals have infinite scales of length and 

literally have no smallest scale. Physiologic fractals are obviously bounded at both 

the upper and lower ends. However, the definition of a fractal does not require 

infinite scales of length. Furthermore, it is also apparent that physiological fractals 

are not identical on different scales of magnification. However, structures such has 

the tracheo-bronchial tree and the His-Purkinje system do maintain a similarity of 

dichotomous branching for which the term "fractal-like" is mathematically 

appropriate[1] [1][11][13]. Interconnections between branches of the His-Purkinje 

system, which makes the system more than a simple branching structure, also do 

not undermine the fractal-like nature of the geometry. 

B. The Heartbeat Interval is a Temporal Fractal 

As noted, the fractal concept can be extended from geometry to dynamics. In this 

latter context, we will describe certain complex processes that do not have a 

characteristic scale of time. The regulation of the heart rate may be one such fractal 

processes[15]. The conventional opinion considered the normal heartbeat as highly 

regular ("regular sinus rhythm") because palpation of the pulse and observation of 

the electrocardiogram in a healthy individual gives the appearance of metronomic 

regularity. However, actual measurements of interbeat interval fluctuations reveal 

quite a different impression. 

A pattern emerges from both the heart rate and heartbeat interval data plotted 

over several different time scales. See Figure2.2[15]. We find more rapid 

fluctuations whose range and sequence appear to be similar to the original, longer 

time-series plot. The beat to beat fluctuation on different time scales appear to be 
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just like the branches of a geometric fractal. Therefore, the heartbeat interval is a 

temporal fractal. This observation suggests that fractal mechanisms may be 

involved in the regulation of heart rate variability. 

Figure 2.2 Normal sinus rhythm is not regular, but rather shows apparently erratic 
fluctuations across multiple time scales. 
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2.3 Fractal Dimension and Measurement 

A. Fractal Dimension 

Because a fractal is composed of similar structures of ever finer detail, its length 

is not well defined. If one attempts to measure the length of a fractal with a given 

ruler, some details will always be finer than the ruler can possibly measure. As the 

resolution of the measuring instrument increases, therefore, the length of a fractal 

grows. 

Because length is not a meaningful concept for fractals, mathematicians 

calculate the "dimension' of a fractal to quantify how it fills space. The familiar 

concept of dimension applies to the objects of classical, or Euclidean,geometry. 

Lines have a dimension of one, circles have dimension of two and spheres have 

dimension of three. Fractals, however, have noninteger (fractional) dimensions. A 

fractal line--a coastline,for example-- has a dimension between one and two. 

Likewise a fractal surface --a mountain, for instance--has a dimension between two 

and three. An another well-known fractal object is the Cantor set whose dimension 

is 0.6039 (Figure 2.3)[16]. 

Figure 2.3 Construction of the Canton set by removing the middle third from each 
line segment between successive generations. 
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The initial stage (z=0) of the Cantor set is a line segment of unit length. The 

next stage (z=1) is obtained by discarding the middle third of the line, leaving the 

two intervals {O,113} and {2/3,1}, The z=2 stage is obtained by removing the 

middle third of each of the two intervals, leaving the four intervals {0,1/9}, 

{2/9,1/3},{2/3,7/9},{8/9,1} as shown. Repeating this process (z→∞) eventually 

produces the Cantor set[17]. At each stage, the number of intervals that are left 

behind increases, but they become small quite quickly. There are 2=2' intervals of 

length 1/3 after the first removal, 22  intervals of length 1/32  after the second, 23 

of length 1/3 after the third, and so forth. Thus, the number of intervals at each 

stage of the construction is 2" and length of intervals is 1/3". 

To see how we can get the fractal dimension from a fractal structure, let us 

investigate the notion of dimension of lines, squares, and cubes more thoroughly. 

One way to realize that these objects have different dimensions is to do the 

following. A line is a very self-similar object: It may be decomposed into n=n' 

little "bite-size" pieces, each of which is exactly 1/n the size of the original line and 

each of which, when magnified by a factor of n, looks exactly like the whole line. 

On the other hand, if we decompose a square into pieces that are /n the size of 

the original square, then we find we need n2  such pieces to reassemble the square. 

Similarly, a cube may be decomposed into n3  pieces, each 1/n the size of the 

original. See Figure 2.4. Therefore, the dimension may be easily determined as 

follows: The exponent in each of these cases is precisely the dimension. 
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Figure 2.4 Calculating the dimentions of a line and a square 

In these simple cases, it is trivial to read the exponent and find the dimension. 

For fractals, this is not always as easy, so let us formalize this procedure. One way 

to find the exponent in these three cases is to use the logarithm of the number of 

constituent pieces into which the object has been subdivided. For a line, we find 

For a square, 

and for a cube, 

We noticed the log (number of pieces) is equal to the dimension multiplied by log 

n.The n is called the magnification factor. If we divided the logarithm of the 

number of pieces by the logarithm of this magnification factor, we obtain the 
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dimension. That is, the dimension D is given by the formula 

For a line, we find 

For a square, 

and for a cube, 

Each of these calculations was easy because the magnification factor in each 

case was n. But what about the Cantor set? Recall that at the any stage of the 

Cantor set the interval could be magnified by a factor of 3" to produce the whole 

line. Therefore the magnification factor is 3", and the number of intervals at each 

stage is 2". Therefore, the dimension of the Cantor set is 
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B. Dimension of Fractal Time Series 

The fractal dimension determined from a process in time yields information on 

temporal correlations in the data. Thus, the observation of such a fractal dimension 

can sometimes help in revealing the mechanism that produced or maintains the 

observed pattern in a system. 

The fractal dimension is also called the attractor dimension. The attractor is 

used to describe the object on which the trajectories of a chaotic system 

accumulate. An attractor could be defined to be n-dimensional where n is not an 

integer. The fractal dimension can be computed from several different measures. 

The capacity, information dimension, and correlation dimension are used widely. 

The capacity is the simplest type of dimension. It is computed as follows. 

Cover an attractor with volume elements each with radius r. Let N(r) be the 

number of elements needed to cover the attractor. As r becomes smaller, the sum 

of the elements approaches the attractor. The capacity Dca  is obtained by solving 

the following equation: 

The information dimension is a probabilistic type of dimension. The 

computation is the same as for capacity: a covering of N(r) volume elements each 

with radius r. The information dimension Di is defined by 
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where 

The correlation dimension Dc is another probabilisic type of dimension. The 

measure is obtained by considering correlation between points of a time series on 

an attractor. Dc is defined by: 

where c(r) = lim 1/N2  {the number of pairs of points xi,xj  such that 



CHAPTER 3 

CALCULATION OF DIMENSION AND ENTROPY 

3.1. Introduction 

Chaotic dynamic systems have an attractor in phase space which is termed 

strange[18]. An attractor is a subset of the dynamical system, that "attracts" phase 

points from other regions of the phase space in the basin of the attractor. This 

attractor may have a dimension different from the space in which the attractor is 

embedded. There are several measures that can be used to describe the strangeness 

of attractors. Dimension and entropy are two of the most useful methods. 

The dimension of the attractor is an important feature in chaos. The 

development of algorithms for estimating the dimension of an attractor directly 

from a time series has been an active field of research over the last decade. The 

objective of these algorithms is to estimate the fractal dimension of a hypothesized 

strange attractor in a reconstructed state space. The correlation dimension 

developed by Grassberger and Procaccia[19] considers the statistics of distance 

between pairs of points. The correlation dimension measures extent of correlation 

between the data points. 

The entropy measures the amount of information needed to specify the state 

of a system. If we say the dimension indicates how many past values of the system 

are needed to predict the future, then we can say the entropy indicates how well 

the future can be predicted given the past. The algorithms to calculate the entropy 

22 



23 

are closely related to those of dimension. In general, entropy is calculated by 

embedding a time series, finding a set of instances where the recent history of the 

time series is similar, and quantifying the probability distribution of the near future 

of the time series after the set of instances.Both techniques have a common 

starting point: embedding the time series. 

3.2 Embedding 

For characterizing and understanding the dynamics on a finite-dimensional 

attractor the first step in analyzing such experimental data is a reconstruction of the 

observed dynamics. 

The past behavior of the time series contains information about the present 

state. This information can be represented as a delay vector of dimension m. In 

other words, a scaler time series xi  can be embedded in an m-dimensional space by 

constructing the vector time series: 

That is, each data point, along with m-1 previous points, becomes one dot in 

a m-dimensional space. This is called embedding the data. The goal of the 

embedding is to use the immediate past behavior of the time series to reconstruct 

the current state of the system. 

m is called the embedding dimension and describes the space in which the 

object is contained. When m is large enough, it can be shown that this embedding 

preserves the topological properties of the original system that generated the 

measured time series xi. Therefore, the embedding dimension must be correctly 
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chosen so that the original system and its reconstruction are qualitatively 

equivalent. There is no hard and fast rule for picking m. Takens proved that the 

embedding dimension m should be at least 2D+1 for a system that is found to have 

dimension D[20]. 

3.3 Correlation Dimension 

For a dynamical system with a m-dimensional phase space, let {x }1=1N  be the points 

of a time series on the attractor. Cover the attractor with volume elements 

(spheres,cubes,etc.) each with radius r. The correlation dimension is defined by : 

where c(r), correlation integral is obtained by considering correlations between 

points of a time series on the attractor and is given by: 

Here, N is the total number of data points, xi, xi  are embedded points, and 

H is the Heaviside function : H(x)=0 if x<0, H(x)=1 if x>0. The correlation integral 

c(r) is the proportion of pairs of data points in the embedding space whose distance 

|xi - xj| is less than r. Therefore, we can also describe c(r) as follows: 

c(r) = lim 1/N2  { the number of pairs of points xi, xi  such that 
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c(r) measures the extent to which the presence of one data point affects the position 

of the other data points. 

The formula in (3-1) will now be derived as follows: An attractor is covered 

by volume elements with radius r. Let M(r) be the number of volume elements 

needed to cover the attractor. As r is made smaller, the sum of the volume elements 

approaches the volume of the attractor. Then for small r, the number of volume 

elements needed to cover the attractor is inversely proportional to r'[19],  that is 

where D is the dimension of the attractor. Let ni  be the number of data points 

which lie within the ith element. Since c(r) counts the number of pairs of data 

points which lie in the volume elements, the ni  points form ni2  pairs of points. 

Therefore, the total number of pairs of points in the M(r) volume elements is 

Substituting into (3-3), it follows that 

where angular brackets denote an average of ni2  over all occupied elements. 

For small ni, or small r 
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where n1  = N has been used. From (3-5) and (3-6) we have 

Using (3-7) and (3-4), a important relationship can be derived: 

c(r) behaves as a power of r. If the attractor is a line, c(r) should be directly 

proportional to r. If it is a surface, c(r) should be proportional to r2. In general c(r) 

should be proportional to r raised to the D power for an attractor of dimension D. 

From (3-8), (3-1) follows. Formula (3-1) shows that correlation dimension 

Dc is the slope of the log c(r) versus log r relation. We calculate the slope using 

a least aware fit 

where the xi  correspond to log r and yi  correspond to log c(r). 

A log-log plot which is made from a heartbeat interval signal is shown in 
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Figure 3.1. It is clear from the figure that there is a limited range (between ra  and 

rb) where the slope is approximately constant and only data from this range should 

be used to estimate D. Unfortunately, there is currently no best technique available 

to detect the useful range of r automatically. Kaplan suggested selecting ra  and rb  

so that c(ra)= 0.5% of maximum c (r) and c(rb) = 75% of maximum c(r)[21]. Taken 

suggested only an upper cutoff value[22],  and c(ra)= 0. We selected the latter 

suggestion and set the upper cutoff to 75%. 

Figure 3.1 Correlation intergral C(r): log-log plot for one value of m 

For a deterministic system, Dc reaches a limiting value as embedding 

dimension m is increased. This limiting value can be taken as the dimension of the 

system's attractor. For a random system Dc  will increase as m is increased. 

However, even for a deterministic system, I)c will increase with m if m is small 

(See Figure3.2). When m=1,2,3,4, the slope of the curve obviously increased with 

increasing in. When m is larger than 5, the curves are relatively parallel. 
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Figure 3.2 Correlation integral C(r): log-log plot . The values of m are m=1(top 
curve), 2,3 4, 	 12(buttom curve) 

How large should the embedding dimension m be? This was discussed in 

section 3.2 where we set m≥ 2Dc-F1. But we don't know the Dc before the 

embedding has been performed. In practice, m is often selected by repeating the 

calculation for many values of m, and selecting an m in the range where the slope 

of the correlation integral curve does not vary strongly with m (range of parallel 

curves). 

In our study, we measured the correlation integral for the embedding 

dimension from m=1 to m=12 to get a group of curves. Then we selected m=8 

according to the two rules: m≥2Dc and the slope of the curve independent of m. 

3.4 Phase Space Plot and Entropy 

A.Phase Space Plot 

One of the essential differences between dynamic chaotic and predictable 
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behavior is that chaotic trajectories continually generate new information, whereas 

predictable trajectories do not. Therefore, another way to quantify complexity of 

a dynamic chaotic system is by investigating the predictability of the system, which 

deals with the amount of information needed to predict the future state of system 

given its past. This can be performed by embedding the time series with embedding 

dimension m=2, or making a phase space delay plot. Each data point xi  was plotted 

on the Y-axis against the previous value xi-1, on the x-axis to produce a phase space 

delay plot (See Figure 3.3). 

Figure 3.3 A phase space delay plot for a IBI data 

The plot illustrates the two aspects of the system: 1) the point-to-point 
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dispersion (changes in xi  at a given value of xi-1), which is reflected in the scatter 

of values on the Y-axis for a certain value of x. It measures instantaneous changes 

in the point-to-point relationship of the time series; 2) the overall range of the data 

set, which is reflected in the absolute extent of dispersion of points on both the X 

and Y-axes. It measures the overall variation of the time series. 

In order to quantify these two aspects we can look at the distribution of all 

embedding data in the overall range (along the X-axis) and the distribution of 

partial embedding of the data on the y-axis at a particular x value. If this 

distribution is narrow (i.e., the embedding data are similar), then the system is 

predictable. If the distribution is wide, the system is less predictable. Entropy is 

used to quantify the width of the distribution. 

B. Entropy 

The calculation for entropy is started by dividing the phase space plot into mxm 

boxes (see Fig. 3.3). The size of the box is determined by intervals of the X-axis 

and the Y-axis. The boxes are labelled box. The i corresponds to the ith interval 

of the X-axis and the j corresponds to the jth interval of the Y-axis. Let the 

number of points in boxij  be xij. Two entropies must be calculated: overall entropy 

and partial entropy at a given interval of the X-axis. The overall entropy quantifies 

the dispersion of all points in the overall range. The partial entropy quantifies the 

dispersion of partial points at certain range of the X-axis. 

For overall entropy, we consider a sequence xi(m) of m successive 

measurements made at the ith interval of the X-axis, xi(m)=xi1,xi2, 	xim. Let 

P(xi(m)) be the probability of the sequence xi(m), that is 
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We also know 

We can plot the distribution of probability P(xi(m)) in each interval of the X-axis 

(See Figure 3.4). 

Figure 3.4 The distribution of probability p(xi(m)) in each interval of the x-value. 
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The overall entropy E. is then given by the following: 

For partial entropy,we still need to determine xi(m) at a given i value, let 

P(xij)be the probability of points xii, that is 

It is clear that 

We can also plot the distribution of probability P(xij) in each interval of the 

Y-axis at a given i (see Fig.3.5). 

Figure 3.5 The distribution of probability P(xij) in each interval of the Y-axis at 
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The partial entropy is then given by the following: 

It is obvious that probabilities P(xi(m)) and P(x) depend on the width of 

the box. Different entropies are obtained from different box sizes. Therefore, we 

must keep the same box size for every data set in order to make the results 

comparable. 

3.5 Nonlinear Structure Detection 

We will now consider whether a given time series contains nonlinear structure that 

might be exploited by a nonlinear prediction algorithm. Classical statisticians have 

long considered tests for nonlinearity, and are becoming increasingly aware of low-

dimensional chaos. Theilers has described an approach for testing nonlinear 

structure in time series, namely,the method of surrogate data[9]. 

The method of surrogate data is a statistical hypothesis testing which includes 

three steps: first start with a null hypothesis that the time series is linearly 

correlated noise, then given a raw time series, generate an ensemble of surrogate 

data sets which share given properties of the original data ( such as mean, variance, 

or Fourier spectrum) but are otherwise random, and finally compute the 

discriminating statistic (dimension, Lyapunov,etc.) for the original and for each of 

the surrogate data sets. If the difference of the value between the original time 

series and surrogate data sets is significant, then the null hypothesis is rejected and 
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nonlinear structure in the original data set is detected. The techniques which are 

involved in this method are generating surrogate data and computing significance. 

A. Generating surrogate data 

There are several way to generate the surrogate data . We use an algorithm which 

involves randomizing the phase of a Fourier transform[9]. This method is 

numerically stable. This algorithm is based on the null hypothesis that the data 

come from a linear gaussian process. The surrogate data are constructed to have the 

same Fourier magnitude spectrum as the raw data. A practical way to do this is to 

take a Fourier transform of the raw data, and randomize the phases (while keeping 

the magnitudes intact). The Fourier transform has a complex amplitude multiplied 

by e 0, where 0 is independently chosen for each frequency from the interval [0, 

2π]. In order for the inverse Fourier transform to be real (no imaginary 

components), we must have symmetrical phases, so that 0 (f) = 	Finally we 

take the inverse Fourier transform. The resulting time series is the surrogate data 

which will have the same power spectrum as the raw time series, but will in other 

respects be random. 

B. Computing significance 

We compute the correlation dimension for the original time series and each 

surrogate data set. Let the value of D for the original time series be Do  and the 

value of D for the ith surrogate data be Di . Let Ds  and σs be the mean and standard 

deviation of the set {D,}. We define our measure of "significance" by the 

difference between Do  and Ds  divided by σs[9]: 
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then we can be confident that there is significant nonlinear 

structure in the time series that is not captured in the linear stochastic surrogate 

data sets. This calculation is similar to a two tailed t-test. We can look up the p 

value from the t-value table in terms of the S value. If p<0.05 there exists a 

significant difference between the raw data and surrogate data. Otherwise there is 

no significant difference between these two data sets. 



CHAPTER 4 

METHODS AND RESULTS 

4.1 Methods 

Chronic Fatigue Syndromes (CFS ) is a chronic disabling illness characterized by 

fatigue which is not the result of any medical conditions known to cause fatigue. 

The cause of CFS is not currently known. Because CFS patients frequently have 

symptoms including palpitation, diarrhea and urinary frequency/nocturia, an 

evaluation of autonomic nervous function might be necessary. Some earlier 

research on heart rate responses to exercise suggested autonomic dysfunctions in 

CFS. The present study on heart rate variability response to paced breathing 

addresses this question. 

Because heart rate varies with respiration, many techniques exist to quantifying 

the relationship between heart rate variability and respiration. Some studies have 

shown that all the variability in heart rate that occurs at the respiratory frequency 

is due to vagal activity[2][23]. Sisto[24] demonstrated the difficulty of deriving a 

relationship between natural respiratory and heart rate because natural respiration 

is not regular and stable. Therefore, we used a paced breathing protocol which 

improved the situation. Paced breathing is a method where subjects are forced to 

breathe at a certain rate. We performed the test using two groups: normal controls 

and CFS patients. The experimental procedure included selection of subjects, data 

collection, and data analysis. 

36 
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4.1.1 Subjects 

12 healthy subjects and 12 CFS patients took part in this study. These two groups 

were age and gender matched. Subjects were excluded from the study if they were 

on sympatholytic or sympathomimetic medications, and subjects were restricted 

from having caffeine or chocolate one hour before test. Two of the control subjects 

reported hayfever, one had mitral valve prolapse, one was pregnant and one was 

taking fluoxetine. Seven of the CFS group were taking medication. 

4.1.2 Experimental Procedure 

The subjects were asked to breathe in a normal unpaced breathing mode and at 

three controlled rates of 8,12,and 18 breaths per minute performed in both sitting 

and standing postures. Each posture lasted 8 minutes. During each 8 minutes test, 

the subjects breathed naturally in die first 2 minuets in order to become stable, 

followed by breathing at 8, 12, and 18 breaths/min. Each stage lasted 2 minutes. 

Breathing rate was controlled by a view box containing a column of lights that rose 

and fell at the desired breathing rate. The participant was instructed to match 

his/her breathing rates with the rate with which the light proceeded up and down 

the column. A light moving up directs subjects to breath in and a light moving 

down directs subjects to breathe out. 

Full ECG and respiratory signals from each participant were monitored 

during the paced breathing protocol. 
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4.2 Data Processing 

4.2.1 Data Collection 

The ECG and respiratory signals were recorded by a 2-channel pneumograph ( 

RESP1, UFI Mono Bay, CA ). Data was collected for 2 minutes per rate starting 

in the sitting position. A personal computer with internal AID converter supported 

by Dash-16 streamer software was used to digitize signals at a sampling frequency 

of 200 Hz and store the 2-channel signals sequentially. Then, data were transferred 

from the PC to a Sun Sparc workstation for processing and analysis. 

4.2.2 Data Processing 

All the data processing was performed on a Sun workstation using the Spills 

language. The heart rate variability signal was formed by detrending the signals, 

detecting R-waves, and correcting abnormal data points. The very low frequency 

components contained in a signal are sometimes an artifact caused either by the 

instruments used to acquire the signal or by such effects as the movement of 

subjects which shift the signal up and down. We eliminated those very low 

frequencies by using a locally weighted robust regression procedure[25]. Then, R-

waves were detected from ECG signals (Figure 4.1(a)) by a software algorithm. Taking 

the difference in time between successive R-waves (Figure 4.1(b)) we obtained the R-R 

interval signal which is also called interbeat interval (IBI) signal. (See Figure 4,1(c)). 
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Figure 4.1 (a) ECG signal. (b) R-waves. (c) IBI values. 

The IBI signals were viewed graphically to find the abnormal data points 

which will affect the analysis. There were a small number of abnormal R-R 

intervals caused mainly by body movements during the test. These abnormal 

intervals were corrected by either omitting or inserting beats. The number of data 

points corrected manually in this way was much less than the total number of data 

points so that the final result is not greatly affected. Some data sets have so many 

abnormal points so to cause the distortion of the signals. These data were 

discarded. We selected nine reliable data sets of each group to be used in our 

study. Each data set included six stages of data, that is, breathing at 8, 12, and 18 

cycle/min in both sitting and standing postures. The resulting data sets (IBI signals) 

were analyzed by using the algorithms described in chapter 3. 

4.3 Results 

4.3.1 Correlation Dimension 

A. Individual results 

Figure 4.2 shows the data from one healthy control and one CFS patient. Both 
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signals were obtained during breathing at 8 cycle/min in the standing posture. The 

top panel shows interbeat interval (IBI) signals. TheY-axis reflects the length of the 

R-R interval and the X-axis represents the heart beat number. The middle panel 

shows the correlation integral c(r) vs. r (log-log plot) by using formula (3-2) with 

embedding dimension m=8. The bottom panel shows the calculation of correlation 

dimension D. The straight line in the figures is obtained by using a least-square 

fit (3-9). The slope of the line is the correlation dimension D. The value for the 

normal subject is 2.296 while the value for the CFS subject is 3.24. The data for 

all  subjects are shown in Table (4.1). 

Figure 4.2 Correlation integral and correlation dimension for an IBI signals. 
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Table 4.1 Individual correlation dimension (* normal subject and #CFS 

patient) 

Subject Stagel S tage2 Stage3 S tage4 Stage5 S tage6 

1* 2.6883 2.4478 2.3754 2.4356 2.6517 3.1279 

2* 2.4911 2.9100 3.1252 2.2963 2.4953 3.1174 

3* 2.1407 3.2387 3.3031 2.5981 3.2954 3.5455 

4* 2.4071 2.5543 3.3158 2.6702 2.4385 3.3939 

5* 2.5107 3.4254 3.2453 2.4068 3.0676 3.3544 

6* 2.0237 2.6619 2.7897 2.1918 2.5104 3.3414 

7* 3.0641 2.3267 2.7298 2.2564 3.3708 3.3405 

8* 1.9368 2.7211 3.0649 2.1656 2.9053 3.1035 

9* 3.1092 2.8993 3.0594 2.3164 2.6461 2.8554 

10"  2.6216 3.5502 3.4123 2.8121 3.1432 2.7931 

11"  2.4283 3.3483 3.3522 2.4725 2.9411 3.5704 

12"  2.7112 2.8247 2.9489 2.8268 2.3209 3.2876 

13"  1.8866 2.1778 2.8551 2.2381 2.5112 2.5109 

14"  2.1787 2.1740 1.7895 2.1695 2.4273 3.2621 

15"  2.8066 2.7975 3.4296 3.2407 3.3611 4.0202 

16"  2.9063 3.3637 3.2509 2.4436 2.6137 3.2729 

17"  2.4995 3.1053 3.3019 2.9021 2.9789 3.5593 

18"  2.4836 2.6750 4.2774 2.6033 3.0946 3.2493 
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B. Correlation dimension in different stages 

Figure 4.3 shows the results from the six different stages for a normal subject. The 

left panel shows the results for breathing at 8,12, and 18 cycle/min while sitting. 

The right side is while standing. As the breathing rate increased from 8 to12 to 18 

cycle/min, the straight line became more steep in both postures. The correlation 

dimension Dc  is increased from 2.0237 to 2.7897 in sitting and from 2.1918 to 

3.3414 in standing. This result for all subjects is shown in Table (4.1). 

Figure 4.3 Correlation dimension for six stages for a normal subject. 
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C. Correlation dimension in different groups 

Figure 4.4 shows the mean value of correlation dimension from normal and CFS 

groups for all  6 stages. The solid line describes the normal group and the dotted 

line demonstrates the CFS group. Each value for the CFS group is larger than the 

corresponding value for the normal group. Therefore, in every stage the CFS 

group has a larger correlation dimension than the normal group. Bars reflect the 

standard deviation of the data. The result of a t-test shown in Figure 4.4 shows that 

there was significant difference between these two mean values except for the sixth 

stage. Also,the curve is rising as breathing rate increases within each posture. This 

is also observed in each individual subject (See Table 4.1). 

Figure 4.4 Mean of slope in normal and CFS subjects ( 	normal, 	CFS) 
stage1,2,3 are breathing at 8,12, and 18 cycle/min while sitting, stage4,5,6 are 
breathing at 8,12, and 18 cycle/min while standing. 
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4.3.2 Phase Space Plots and Entropy 

A. Phase space plots 

Phase space plots calculated from stagel (breathing at 8/min while sitting) for 9 

control subjects and 9 CFS patients are shown in Figure 4.5. Each heartbeat 

interval RR;  was plotted on the Y-axis against the previous value RRi-1  on the X-

axis, where RR is the time from one R-wave of the ECG to the next and i is the 

interval number. 

The dominant characteristic of the scatter of points in the CFS patients is that 

they are relative short and narrow. There is an obvious trajectory in the phase 

space plot of normal subjects while there is a less defined one for the CFS 

subjects. If we enlarge the picture we might see a small trajectory in the picture. 

Two points emerge from this observation: 1) the absolute extent of dispersion of 

points on the X-axis for controls is larger than that of CFS patients, which indicates 

that the overall heart rate variability is larger in normal people than in CFS 

subjects; 2) the extent of dispersion along the Y-axis at a given X-value for 

controls is more wide than that for CFS patients, which indicates the beat-to-beat 

variability is larger in normal subject than in CFS patients. 
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Figure 4.5 Phase space plots for nine normal subjects and nine CFS subjects. 
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B. Overall entropy 

The overall entropy is used to quantify the dispersion of the overall range of data 

points. We divide the phase space plot into 20 intervals as shown in Figure 4.6 

and count points in each interval. 

Figure 4.6 Phase space plot divided into 20 intervals along X-axis. 

Let the number of points within the ith interval be xi  and the total number of 

point be x. The probability of xi  is 

We calculate the Pi  for each interval and plot the distribution of Pi  as shown in 

 Figure 4.7. 

Figure 4.7 shows the histograms of the probability distribution for the overall 

range of the data set from Figure 4.5 for subject1 and subject10. This figure 

demonstrates a big difference in the width of the distribution for the two subjects. 

The range of the distribution of the normal subject is almost twice that of the 

CFS subject. 
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Figure 4.7 Histogram of the probability distribution of the data for suject1 and 10. 

The overall entropy was calculated from Figure 4.7 by using (3-10). The 

value for the normal subject is 2.43 while the value for the CFS subject is 1.66. 

The results for all subjects are shown in table 4.2. 

C. Partial entropy 

The partial entropy is used to quantify the dispersion of partial data points 

spreading on the Y-axis at a certain x-value. We divide the phase space plot into 

10x10 boxes as shown in Figure 4.8. and count the points in each box. 

Figure 4.8 Phase space plot divided into 10x10 boxes. 
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Table 4.2 Individual overall entropy (* normal subject and # CPS patient) 

Subject Stagel Stage2 Stage3 Stage4 Stage5 Stage6 

1* 2.3182 1.7845 1.9305 2.5308 1.5907 1.4624 

2* 2.4295 2.0334 1.9899 2.1583 1.8016 1.3951 

3* 2.7628 2.7557 2.5416 2.3785 2.3493 1.6713 

4* 2.3891 2.2695 1.8389 2.2600 1.9335 1.8873 

5* 1.9398 1.4615 0.7730 1.5951 1.0067 0.9302 

6* 2.3739 2.1856 2.0323 2.0363 1.6132 1.2362 

7* 2.5783 2.3529 2.1016 2.5849 2.3314 1.9519 

8*2.4943 1.7242 1.2357 2.3163 1.8078 1.2420 

9* 1.8463 1.9941 1.8313 1.9212 1.2938 1.4416 

10"  1.3177 1.3230 1.5029 1.4937 1.0691 1.4154 

11"  1.8520 1.5963 0.8711 1.8894 1.7779 1.9651 

12"  2.0182 1.5119 1.4946 1.7557 1.2810 1.0763 

13"  2.3046 1.7652 1.1601 2.0495 1.7504 1.3519 

14"  1.5238 1.4842 1.7343 1.4867 1.3196 1.3634 

15"  1.6633 1.6120 1.2314 1.2996 1.4634 1.1665 

16"  1.0179 0.9045 0.6709 0.6392 0.6886 0.4721 

17"  1.9634 1.9864 1.7808 1.9331 1.8295 1.7900 

18"  1.5530 1.2357 1.0737 1.3766 1.1834 1.0771 
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Let the number of points in the (i,j)th box be x and xi(m) be the total 

number of points within the ith interval, of the X-axis. The probability of xij  at the 

ith interval of the X-axis can be calculated as follows: 

where 

Figure 4.9 shows the histograms of the probability distribution at all 10 intervals 

of the X-axis for subject1 and subject10. This figure shows that the width of the 

distribution is larger for subject1 (normal)(Figure 4.9 (a)) than for subject10 

(CFS)(Figure 4.9(b)) in each interval of the X-axis. 

The partial entropy is calculated from Figure 4.9 by using the formula (3-12). 

The value at each interval of the X-axis is larger for subject1 (normal) than that for 

subject10 (CFS). 
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Figure 4.9 (a) Histogram of the probability distribution at 10 intervals of the X-
axis for subject1. 
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Figure 4.9 (b) Histogram of the probability distribution at 10 intervals of X-axis 
for subject10. 
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D. Distribution of probability and overall entropy in different stages 

Figure 4.10 shows the histogram of the probability distribution and the overall 

entropy for all 6 stages for subject1. The left panel shows the result from 

breathing at 8,12 and 18 cycle/min while sitting. The right side is the result while 

standing. 

Figure 4.10 Histogram of the probability distribution for six stages for subject1. 

With increasing breathing rate, the distribution of probability decreased and 

the overall entropy dropped from 2.43 to 1.99 while sitting and from 2.16 to 1.40 
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while standing. Figure 4.10 also shows that the posture affects the width of the 

distribution. At the same breathing rate the overall entropy while sitting is larger 

than the value while standing. 

E. Result of groups 

Figure 4.11 shows the mean value of overall entropy for normal and CFS groups 

in all 6 stages. The solid line represents the mean value of the normal group and 

the dotted line represents the CFS group. The normal subjects have larger overall 

entropy than the CFS patients at each breathing rate. Bars reflects the standard 

deviation of the data. The results of the two-tailed t-test is shown on the figure as 

well, which indicates that the difference between these two mean values is 

significant (p<0.05) in every stage. Also, the variation of the curve meets the result 

described in part D of this section, that is, the overall entropy decreases as the 

breathing rate increases. 

Figure 4.11 Mean of overall entropy in normal and CFS subjects ( 	normal,- 
	 CFS), stage1,2,3 are breathing at 8,12, and 18 cycle/min while sitting, 
stage4,5,6 are breathing at 8,12, and 18 cycle/min while standing. 
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4.3.3 Nonlinear Structure Detection 

A. Surrogate data sets 

We used the spectral synthesis method (SSM) described in section 3.5 to generate 

1000 data sets for each original time series. First we computed the Fourier 

Transform of the original data and obtained the complex series A0=a0+boi. The 

amplitude r and phase Ø0 are : 

We then chose a number between 	and it randomly from a uniform 

distribution and added it to 00  to produce 0. Using the same r value and new 0 

we form a new complex series: 

where a = r cosØ and b = r sinØ. We then computed the inverse Fourier Transform of 

A and obtained a new time series, called the surrogate data set. This new time series has 

the same power spectrum as the original data set but different phase from the original 

one. Fig 4.12 shows a time series( IBI signal) and eight surrogate data sets generated by 

the SSM algorithm. It is not obvious by eye which is the actual data set and which are 

the surrogates. In this case it is the fifth time series from the top which is the real one. 
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Figure 4.12 Results of nonlinear structure test for each data sets. 

B. Computing the correlation dimension and significance 

We generated 1000 surrogate data sets for each real data set from stagel (8 

breaths/min while sitting) which included 9 normal subjects and 9 CFS patients and 

calculated the mean correlation dimension, and standard deviation for each 

surrogate data set. The results are shown in Table4.3. Do  is the correlation 

dimension for the original data. Ds  is the mean value of the correlation dimension 

for the 1000 surrogate data sets. Sd (σs) is the standard deviation of the surrogate 

data sets. The S value is calculated by (3-13) which is S=IDo-Dsl/σs.  The first nine 

subjects are normal people and the others are CFS patients. 
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Table 4.3 Results of nonlinear structure test for each data set (* normal subject 

and # CFS patient). 

Subject Do  Dc  Sd  S P 

1* 2.6883 4.4821 0.5545 3.235 <0.05 

2* 2.1407 3.9179 0.4256 4.1757 <0.05 

3* 2.4911 3.2499 0.4675 1.6232 >0.05 

4* 2.5107 3.2505 0.2683 2.757 >0.05 

5* 1.9368 3.4189 0.313 0.313 >0.05 

6* 2.0237 3.3825 0.3164 4.295 <0.05 

7* 3.0641 3.3449 0.3595 0.7811 >0.05 

8* 2.4071 3.329  0.4268 2.1598 >0.05 

9* 3.1092 3.1036 0.2631 0.0214 >0.05 

10#  2.4283 2.762 0.3529 0.9458 >0.05 

11 2.8464 3.0193 0.4347 0.3978 >0.05 

12#  2.8066 3.0116 0.4978 0.4118 >0.05 

13" 2.9063 3.1803 0.3728 0.7349 >0.05 

4" 2.6078 3.2384 0.5022 1.5577 >0.05 

15" 2.9479 3.1847 0.3594 0.5839 >0.05 

16#  2.6216 3.3467 0.2744 2.6423 >0.05 

17" 2.4996 3.1721 0.2917 2.306 >0.05 

18#  2.4836 3.2101 0.3888 1.8685 >0.05 
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Table 4.3 shows that subjects 1,2, and 6 have significantly different correlation 

dimensions between the real data and surrogate data (p<0.05) which means that the linear 

hypothesis is rejected and nonlinear structure is detected in these three time series. The 

test failed for the other data sets. 



CHAPTER 5 

DISCUSSION AND CONCLUSION 

5.1 High Correlation Dimension in CFS Patients 

The major finding of our correlation dimension study was the increase of correlation 

dimension in CFS patients. Analysis of correlation dimension and t tests of grouped data 

showed that CFS patients had significantly higher correlation dimension than controls at 

8 (p<0.05), 12(p<0.05), and 18 (p<0.01) breaths per minute while sitting and at 8 

(p<0.01) and 12 (p<0.01) while standing . There was no significant difference between 

the two groups at 18 breaths per minute while standing. 

We have discussed in section 2.3 that the fractal process in heart rate variability was 

studied as a possible indicator of the complexity of the heart dynamic system and the 

correlation dimension (fractal dimension) of heartbeat intervals measures the degree of 

correlation of the heart rate, or reflects the degree of heart rate variability. Our 

observation showed that there is a higher correlation of heart rate in CFS patients than 

in normal people. Therefore, the variability of heart rate in CFS patients was reduced 

which is associated with a loss of physiological complexity. 

It is clear that heart rate fluctuations are mainly due to autonomic nervous system 

control. Any variation of the heartbeat must reflect variation of the nervous system. 

Therefore, the high correlation dimension or the loss of heart rate variability may 

represent one or more aspects of autonomic nervous system imbalance. This inference 

is in agreement with another study on vagal power which used the same data as ours. 

That study showed that there was a significant difference in vagal power between CFS 
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5.2 Low Entropy in CFS Patients 

The phase space plots described in section 3.4 are simple to construct and are useful tools 

for assessing two aspects of the dynamics of heart rate. The placement of the scatter 

within the Y vs. X axes demonstrate the overall range of interval values. In addition, the 

phase space plot shows the instantaneous variation from one beat to the next (the spread 

of Y-values at a given X-value). 

The phase space plots from controls had similar characteristic shapes (see Figure 

4.5). They were characterized by a high beat-to-beat variation ( wide spread of Y-values 

at a given X-value) and a high overall range (large placement of the scatter). The plots 

of CFS patients had opposite characteristic shapes: narrow spread of Y-values at a given 

X-value to form a positive diagonal scatter of points and small dispersion. 

The entropy of the overall range of intervals E0 quantified the width of the 

probability distribution of all points along the X-axis. The value of entropy from controls 

was significantly larger than the value for CFS subjects at 8 (p<0.01) , 12 (p<0.01) and 

18 (p<0.01) breathes per minute while sitting and at 8 (p<0.01) and 12 (p<0.01) while 

standing. There was no significant difference between the two groups at 18 breaths per 

minute while standing. 

These findings also indicated that the loss of heart rate variability in CFS patients 

may result from similar physiological mechanisms as those responsible for correlation 

dimension changes. 

In addition, the entropy of data for a given x-value (a given length of interval or 

heart rate) Ep  from CFS patients was significant less than that of controls at every heart 

rate. These values measured instantaneous changes in beat-to-beat relationship and 

showed the variability at both high heart rate ( short R-R intervals) and low heart rate 

( long R-R intervals) was significantly reduced in CFS patients. 
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It is reported that the parasympathetic nervous system directly mediates short-term 

heart rate variations. Thus, decreased vagal tone may contribute to the reduced beat-to-

beat variation. Furthermore, increased sympathetic activation can reduce short-term heart 

rate variability by inhibiting vagal activation of the heart[26]. Thus, either sympathetic 

hyperactivity or parasympathetic hypoactivity, or some interaction of the two, may 

underlie the reduced beat-to-beat heart rate variation. In CFS patients, there was a 

sustained low variation from low to high heart rate suggesting that CFS patients may 

suffer from both increased sympathetic tone and impaired vagal tone. 

5.3 Reduction of Variation of Dc and E0 with Respiratory Rate 

Another significant finding is that the variation of correlation dimension Dc  and overall 

entropy E0  with respiratory rate is reduced in CFS subjects. We have observed that the 

correlation dimension Dc  changed when the respiratory rate changed for both CFS and 

healthy subjects. So did entropy E0  (see Figure 4.4 and Figure 4.11). But the variation 

of Dc and E0  with respiration in CFS patients was much less than in controls. From stage4 

(8 breaths/min while standing) to stage5 (12 breaths/min while standing), the mean value 

Dc of controls increased from 2.4482 to 2.7426 (+12%) while the value for CFS patients 

increased from 2.767 to 2.9328 (+6%). The mean value E0  for controls decreased from 

2.1979 to 1.7476 (-20.5%) while the value of CFS patients decreased from 1.547 to 

1.3736 (-11%). From stage5 (12 breaths/min while standing) to stage6 (18 breaths/min 

while standing), the mean value Dc of controls increased from 2.7426 to 3.24 (+18%) 

while the value for CFS patients increased from 2.9328 to 3.28 (+11%). The mean value 

E0 for controls decreased from 1.7476 to 1.4687 (-16%) while the value for CFS patients 

decreased from 1.3736 to 1.2975 (-5.5%). 

It is well known that heart rate varies with respiration because the respiration is 



61 

associated with periodic discharge of afferent fibers in the lung, activating the 

parasympathetic nervous system, producing brief perturbations of the cardiac pacemaker 

which regulates the heart rate. Modulation of cardiac rate by respiration is respiratory-rate 

dependent. The reduction of heart rate variability in response to respiration infers that the 

interaction between heartbeat and respiration was changed and the responsivity of the 

cardiac variability control mechanism to changes of respiratory rate was weakened. This 

result implied that the autonomic nervous system may be in disorder. In CFS patients, 

when the respiratory rate changed, the nervous system acts too slowly to affect such rapid 

adjustments while normal behavior often requires rapid response of the cardiovascular 

system to physiological demands. 

5.4 Reduction of Heart Rate Variability with Increase of Respiratory Rate 

Figure 4.4 and Figure 4.11 show that as the respiratory rate increases the correlation 

dimension Dc increases and entropy E decreases. Both of these results indicate that 

reduction of heart rate variability is associated with higher respiratory rate. 

We can suggest from this observation that reduction of heart rate variability may 

imply the decreased parasympathetic nervous activity because the parasympathetic 

nervous system contributes to regulate the respiratory rate, with reduced vagal tone 

(reduced variability) related to higher respiratory rate. The CFS patients who have less 

heart rate variability may suffer from an infirm parasympathetic nervous system. 

From the results of correlation dimension and entropy measurement we speculate 

that autonomic disturbance may lead to cardiac instability. A primary effect of CFS is a 

loss of responsivity of cardiac variability control mechanics to physiological needs which 

is obviously maladaptive for adequate cardiac function. The major effect of CFS is to fix 

heartbeat interval variation within narrow limits. Although it is not clear that cardiac 
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instability is a factor in CFS, the changes in dynamic pattern of heart rate reported here 

indicated pronounced alterations in nervous system control of the heart in the CFS 

patients. 

5.5 Nonlinear Structure Detection 

The method of surrogate data is a statistical approach for identifying nonlinearity in time 

series. We used it to detect possible nonlinearities in the heartbeat interval signals in both 

normal and CFS subjects. The results (Table 4.3) showed that nonlinearity was detected 

in 3 time series (p<0.05) and not in the others. 

There are three possibilities for the test failing to find nonlinear structure: (1) the 

time series which was detected is a linear stochastic system. This seems incorrect because 

the IBI signal is a fractal time series which should be nonlinear except for some 

pathological condition. (2) the data size may be too small to be detected for nonlinearity. 

(3) the method may need to be modified. Because the phases of the surrogate data are 

randomized they end up "beating" against each other and producing spurious low-

frequency effects. Also spurious high-frequencies can be introduced because there is a 

jump-discontinuity from the last to the first point during the Fourier transform. Therefore 

the surrogate data may not keep the same power spectrum as the original one and cause 

the test to fail. 

We considered the latter two possibilities as the most probable cause of failure of 

the test. To solve these problems, we can use the Amplitude Adjusted Fourier Transform 

and Window Fourier Transform algorithms. They can modify the surrogate data 

greatly[9]. 
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5.6 Future Work 

The nonlinear techniques we discussed provide a noninvasive method to measure 

physiologically significant aspects of heart rate variability and have the potential 

to be useful for diagnosis. Our study has shown that dimension and entropy can 

distinguish between sick and healthy people, with CFS patients having higher 

correlation dimension and entropy than healthy ones. 

In spite of the apparent association between high correlation dimension Dc, 

low entropy E0 and CFS patients, we can only speculate on the physiologic basis 

of the observed association between these two values and CFS. The possible role 

of correlation dimension and entropy as diagnostic tools has not been addressed. 

The small sample size of the present study limits any conclusion regarding possible 

contributions of clinical variables to the outcome. Further investigation will be 

required. It must be determined whether correlation dimension and entropy are direct 

prospective indicators of CFS. Future work includes the following: 

(1) to collect and analyze more data to verify the conclusions of the present study. 

(2) to investigate the dependence of the relationship between correlation dimension, 

entropy and CFS on different physiological quantities such as respiratory flow, cardiac 

output, and blood pressure which are regulated by the autonomic nervous system. 

Knowledge of this dependence will enable us to more fully understand heart rate 

variability with CFS and its use in diagnosis. 

(3) to modify the spectral synthesis method further to detect the nonlinear structure with 

the Amplitude Adjusted Fourier Transform algorithm and Window Fourier Transform 

algorithm on large time series. Also we may use other surrogate data generated by 

shuffling time-order of the original time series to test the nonlinearity of time series. 



APPENDIX 

PROGRAMS 

Calculation of Correlation Dimension 

subroutine corr2 (x,c,l) 
double precision x(1) 
double precision m(16) 
double precision c(16) 
integer 1 
b0=2 
e=0.55 
b1=b0**(-15*e) 
b2=b0**(-14*e) 
b3=b0**(-13*e) 
b4=b0**(-12*e) 
b5=b0**(-11*e) 
b6=b0**(-10*e) 
b7=b0**(-9*e) 
b8=b0**(-8*e) 
b9=b0**(-7*e) 
bl0=b0**(-6*e) 

b11=b0**(-5*e) 
b12=b0**(-4*e) 
b13=b0**(-3*e) 
b14=b0**(-2*e) 
b 1 5=b0**(-1*e) 
b16=b0**(+0*e) 
do 5 i=1,16 
m(i)=0 

5 	continue 
j=8 
do 40 p=1,l-j 
do 50 n=p+1,l-j+1 
y=0 
do 60 mi=0,j-1 
y=y+(x(p+mi)-x(n+mi))**2 

60 continue 
z=sqrt(y) 

if(z.lt.b1) then 
m(1)=m(1)+1 
endif 
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if(z.lt.b2) then m(2)=m(2)+1 

endif 
if(z.lt.b3) then 
m(3)=m(3)+1 
endif 
if(z.lt.b4) then 
m(4)=m(4)+1 
endif 
if(z.lt.b5) then 
m(5)=m(5)+1 
endif 
if(z.lt.b6) then m(6)=m(6)+1 

endif 
if(z.lt.b7) then 
m(7)=m(7)+1 
endif 
if(z.lt.b8) then 
m(8)=m(8)+1 
endif 
if(z.lt.b9) then 
m(9)=m(9)+1 
endif 
if(z.lt.b10) then 
m(10)=m(10)+1 
endif 
if(z.lt.b11) then 
m(11)=m(11)+1 
endif 
if(z.lt.b12) then 
m(12)=m(12)+1 
endif 
if(z.lt.b13) then 
m(13)=m(13)+1 
endif 
if(z.lt.b14) then 
m(14)=m(14)+1 
endif 
if(z.lt.b15) then 
m(15)=m(15)+1 
endif 
if(z.lt.b16) then m(16)=m(16)+1 
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endif 
50 continue 
40 continue 

do 100 i=1,16 
if(m(i).ne.0) then 
d=m(i) 
c(i)=alog(d) 
else 
c(i)=0 
endif 

100 continue 
do 30 i=1,16 
if(c(i).eq.0) then 
do 70 p=i+1,16 
if(c(i).gt.c(p)) then 
c(i)=c(p) 
endif 

70 continue 
endif 

30 continue 
return 
end 

m_0.55 
d1_-15*m 

d2_-14*m 
d3_-13*m 

d4-12*m 
d5_-11*m 
d6-10*m 
d7_-9*m 
d8_-8*m 
d9 -7*m 
d10_-6*m 
d11_-5*m 
d12_-4*m 
d13_-3*m 
d14_-2*m 
d15_-1*m 
d16 -0*m 
z_c(d1,d2,d3,d4,d5,d647,d8,d9,d10,d11,d12,d13,d14,d15,d16) 
par(mfrow=c(4,2)) 
x_scan("wlb.7") 
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x_x[1:135] 
x_x/200 

y_corr2(x) 
wlb.6_y[1:16] 

a_wlb.6 
plot(z,a,xlab=" ",ylab="ln cd") 
for(i in 1:9){ 
if (a[i]<=0) next 
al_i-1 
break 

for (i in 4:16) { 
if (a[i]<0.75*max(a)) next 
a2_i.  
break 
} 
b_lsfit(z[al:a2],a[al:a2])$coef 

lines(z[al:a2],b[1]+z[al:a2]*b[2]) 
wlb5.s1_round(b[2],4) 

tide("wlb(Normal)",paste("slope=",wlb5.s1)) 

Calculation of Entropy 

x1_scan("wlb.2") 
z_len(x1) 

y_x1 
yl_y[1:z-1] 
y2_y[2:z] 
x_array(0,c(2,z-1)) 

a_0 

b0 
b1_0 

hi 0 
d__0 d1_0 

e_0 
el 0 
f0 f1_0 

g__0 g1_0 

i__0 i1_0 
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l_0 
11 0 
m_0 

m1 _0 
n_0 
n1_0 

bb _0 
bb11 0 
hh_0 
hh1_0 

dd 0 
dd1_0 

ee_0 
eel 0 
ff_0 
ff1_0 
w_mean(x1)-50 
z_z-1 
for (j in 1:z){ 
x[,j]_c(x 1 [1],x1 [j+1]) 

t10 
for (j in 1:z){ 
if(x[1,j]<w ) 
if(x[1,j]>=w && x[1,j]<w+t ) b[j]_x[2,j] 
if(x[1 j]>=w+t && x[1,j]<w+2*t ) b1 [j]_x[2,j] 
if(x[1,j]>=w+2*t && x[1,j]<w+3*t ) h[j]_x[2,j] 
if(x[1,j]>=w+3*t && x[1,j]<w+4*t ) h1[j]_x[2,j] 
if(x[1,j]>=w+4*t && x[1,j]<w+5*t ) d[j]_x[2,j] 
if(x[1,j]>=w+5*t && x[1,j]<w+6*t ) d1_[j]_x[2,j] 
if(x[1,j]>=w+6*t && x[1,j]<w+7*t ) e[j]_x[2,j] 
if(x [1 j]>=w+7*t && x[1,j]<w+8*t ) el[j]_x[2,j] 
if(x[1,j]>=w+8*t && x[1,j]w+9*t ) f[j]_x[2,j] 
if(x[1,j]>=w+9*t && x[1,j]<w+10*t ) f1[j]_x[2,j] 

for (j in 1:len(b)){ 
if (is.na(b[j]) next 

if(b[j]>=w && b[j]<w+t ) bb_bb+1 
if(b[j]>=w+t && b[j]<w+2*t ) bb1_bb1+1 
if(b[j]>=w+2*t && b[j]<w+3*t ) hh_hh+1 
if(b[j]>=w+3*t && b[j]<w+4*t ) hh1_ hh1+1 
if(b[j]>=w+4*t && b[j]<w+5*t ) dd_dd+1 
if(b[j]>=w+5*t && b[j]<w+6*t ) ddl_ddl+1 
if(b[j]>=w+6*t && b[j]<w+7*t ) ee_ee+1 
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if(b[j]>=w+7*t && h[j]<w+8*t ) eel ee1+1 
if(b[j]>=w+8*t && b[j]<w+9*t ) ff ff+1 
if(b[j]>=w+9*t && b[j]<w+10*t ) ff1_ff1+1 
} 

k_c(bb,bb1,hh,hh1,dd,dd1,ee,ee1 ,ff,ffl) z_bb+bb1+hh+hh1+dd+dd1+ee+eel+ff+ff1_0 
wlb22.1_k/z 

en 0 
for (j in l:10) { 
if (is.na(wlb22.1[j])) wlb22.1[j]_0 
if (wlb22.1[j] !=0) en_en+wIb22.1W*log(wlb22.1W) 
} 

if (is.na(en)) en _0 else en_-en 
wlb22.Ie_round(en,4) 

par(mfrow=c(5,2),mar=c(5,15,5,15)) 
barplot(w1b22.1,angle=c(45,135),lab=c(10,15,10),histo=T, 

ylab='probability') 
title(" w1b22.1(CFS)",paste("Entropy=",wlb22.1e," (i=1)")) 

Generating Surrogate Data 

y_scan("wlb.8") 
ml _2 
m2 7 
p_1000 
1 len(y) 
l-0_1/2 
ll_ceiling(10) 
if(11>10) 12_1 
if(11<=10) 12_1-1 
x_y[1:12] 
xl_fft(x,inverse=F) 
a atanam(x1)/Re(x1)) 

13_12-1 

14_13/2 
#par(mfrow=c(1,2)) 

b_array(0,c(p,12)) 
d_array(0,c(p,16)) 
for(j in 1:p) { 
a l_runif(14,-3 .14,3.14) 
15_14+2 

a11_a[15:12]+a1 
a22_-rev(al 1) 
a2_c(a22,a11) 
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a3_sqrt(Re(x1)A2+Im(x1)^2) 
a4_a3[2:12]*cos(a2) 
a5_a3 [2:12] *sin(a2) 
x2_c(x1 [1 ] ,complex(13,null,a4,a5)) 
x22_fft(x2,inverse=T) 
x3_x22/12 
b[j,]_round(Re(x3),0) 
d11_b[j,] 
d22_corr(d11) 
d[j,]_d22[1:16] 
aa_d [j,] 
x4_fft(x3,inverse=F) 

x5_fft(x1,inverse=T) 
x22_sqrt(Re(x4)^2+Im(x4)^2) 
g _slop(aa,m1,m2) 

wlb.b_b 
rm(b ) 
wl b.d_d 
rm(d) 
gg_sort(g) 
wlb.g_round(gg,4) 
write(wlb.g,"wlb.cd",ncol=12) 
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