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ABSTRACT 

A THERMOELASTIC MODEL APPLIED TO 
STRESS CONTROL IN LASER HEATING OF CERAMICS 

by 
Jeff Alexander Wagner 

Localized laser heating is widely used in materials processing. In extending these 

techniques to materials with relatively low thermal conductivities and ductilities such as 

ceramics and glasses, existing methods must be modified to control the high thermal 

stresses which are associated with the localized heating of these materials. Thermal 

profiles must be designed to minimize damage to regions adjacent to the processed area. 

To achieve this with single beam sources the power and radius can be varied in time, or 

the beam can be moved across the surface in a programmed pattern to achieve the desired 

thermal profile. 

In this work the thermoelastic effects associated with fixed and moving beam 

sources are examined in light of the application described above. Finite difference models 

of the temperature rise and resulting stresses and strains for the surface heating of a 

semi-infinite half-space are presented. These simulations are then compared to 

experimental results obtained with a CO, laser aimed with computer controlled optics. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Localized laser heating is widely used in materials processing. Laser welding and 

machining in metal forming applications, and laser induced or assisted surface modification 

in semiconductor manufacture are common examples (1, 2). Laser heating is also used in 

surface sealing of ceramics and in the surface treatment of glasses (3, 4, 5). In applying 

these techniques to materials with relatively low thermal conductivities such as ceramics 

and glasses, a stategy must be adopted to control the high thermal stresses which are 

associated with the localized heating of these materials. While stresses in the target region 

may be relieved through plastic flow, adjacent areas will undergo large temperature 

changes while the material acts in the elastic regime. These stresses can easily exceed the 

elastic limits of the material leading to cracking or other undesired effects. In the surface 

sealing application stress cracking is controlled by injecting chemical modifiers into the 

processed area (3, 15). This technique is applicable in part because the entire surface is 

being treated. In some applications, such as the cosmetic repair of localized surface 

defects in glazed ceramics, these modifiers must be limited to those which allow the refired 

region to blend in visually with the surrounding material. 

Another possible method for lowering these stresses is to supply additional heat to 

the peripheral areas during some part of the process to allow a partial annealing to take 
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place. To achieve this with single beam sources the power and radius can be varied in 

time, or the beam can be moved across the surface in a programmed pattern to achieve the 

desired thermal profile. 

In this work the thermoelastic effects associated with localized laser heating are 

examined in the context of spot refiring of glazed porcelain surfaces. The heat source is 

taken to be a single Gaussian spot typical of TEM00  mode laser operation. Numeric 

models of the temperature rise and resulting stresses and strains for the surface heating of 

a semi-infinite half-space are presented. These models are compared with analytic 

solutions for the simple case of a fixed position Gaussian profile heat source. The models 

are then applied to more complex heating programs and compared to experimental results. 

The selection of thermal and elastic material constants used in the simulations are 

discussed in Chapter 2. In Chapter 3 a numeric model for the temperature rise due to 

laser heating is presented. The temperature field calculated here is used as input for the 

thermoelastic displacement model. Chapter 4 is a description of the numeric model for 

thermoelastic displacements, stresses and strains. Also included here is a comparison to 

available analytic solutions. The models are then applied to the case of a fixed position 

source, a fixed position source where the beam radius is varied in time, and finally, a 

moving source. In Chapter 5 the model predictions are compared with experimental 

results using a CO2  laser and glazed porcelain targets. Conclusions and suggestions 

concerning possible further work are given in Chapter 6. For completeness, source code 

for the numeric models and a brief description of program organization are included in the 

appendix. 
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1.2 History 

There are few references available which specifically address the laser spot refiring of 

glazed porcelain. However, important components of the problem have been investigated 

in analogous situations. 

Analytic treatments of the laser heating of solids have been presented by several 

authors. An integral expression for the temperature profile due to surface heating with a 

Gaussian beam source, and a closed form for the temperature on the beam axis at the 

surface has been presented by Ready (6) and Duley (1). Ultimate temperature rise 

characterized in terms of ratio of beam radius to absorption depth is given by Lax (7). In 

these cases radiation from the heated surface is not considered. 

In Bentini et. al. (8) the thermal stresses resulting from surface heating with a strip 

heater along with a radiative boundary condition were estimated analytically under the 

assumption that the normal stress components could be considered independently . Welsh 

et. al. (2) extend this work to fixed Gaussian sources and give the stresses as analytic 

expressions which require a single numeric integration . These semi-analytic results are 

compared with results from the stress-strain model presented here for the simple case of a 

fixed Gaussian heat source. 

The mechanical properties of ceramics and glasses treated with CO2  laser heating 

are discussed by Petitbon et. al. (3), Yi and Strutt (4), and by Glasser and Jing (9) among 

others. 

Dallaire and Cielo (10) specifically address the thermal aspects of the laser spot 

refiring of glazed porcelain, but do not include a thermoelastic stress analysis . 



CHAPTER 2 

TARGET MATERIALS AND CONSTANTS 

2.1 Target Materials 

In this study, the application of interest was the repair of surface defects in glazed 

porcelain. These defects typically consist of bubbles or small voids left after impurities are 

removed by mechanical means. The defects are filled with a paste of fritted glass and 

fired with a CO2  laser which melts the filler and fuses it to the surrounding material. 

Details of the filler composition are beyond the scope of the present paper. 

Due to the similarity in thermal properties between the glaze and body, as a first 

approximation the structure is modeled as a single homogeneous material. After fusion, 

filler materials are also considered to have similar properties to the surrounding material. 

It is further assumed that heating program design does not depend on the detailed nature 

of the boundary between the filler and surrounding materials, but will take into 

consideration the gross size of the defect. This is a necessary simplification since the 

defects are somewhat random in shape. Target thickness is much greater than defect 

depth, and will not be considered. Thus the region modeled will be a uniform half-space. 

2.2 Material Constants 

2.2.1 Optical and Thermal Properties 

In this and in the following section, the selection of values for the various relevant material 

constants is addressed. The values chosen were either determined experimentally and 

4 
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compared with published values, or taken from the literature. Where a range of values 

appears in the literature a typical value was chosen. 

The temperature model presented in Chapter 3 requires that the following material 

constants be specified as input: surface reflectivity, R; thermal conductivity, K; and the 

thermal diffusivity, K. 

Figure 2.1 Reflected versus incident power density for 10.61 laser 
radiation incident on a glazed ceramic target. 

In these experiments the target was heated with the incident beam at or near 

normal incidence. The surface reflectivity near normal incidence (15° from perpendicular) 

was taken to be the ratio of reflected to incident power as measured by a laser power 

meter. Due to the glassy nature of the target surface the reflected beam was sharply 

defined, so it is reasonable to assume that all of the reflected power was collected by the 

5 
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meter. The measurements for various incident power densities and a value for R, taken 

from the slope of a linear fit, are shown in Fig. 2.1 and Table 2.1. This value is consistent 

with that measured by Dallaire and Cielo (10) for a similar target material . 

Table 2.1 Material constants used in the simulations. 

Reflectivity, R 0.18 

Thermal conductivity, K 2.82 W/(m°C) 

Thermal diffusivity, K 1.89 m2/s 

Coefficient of linear expansion, a 4.7x1016/°C 

Young's modulus, F 1.03x1011 Pa 

Poisson's ratio, v 0.25 

Compressive stress limit 4.14x108  Pa 

Tensile stress limit 8.96x107  Pa 

The thermal constants were also determined experimentally by comparing 

temperature data obtained using a time and space resolved optical pyrometer with an 

analytic expression. Ready (1) gives the following relation for axisymmetric temperature 

rise due to a instantaneous Gaussian heat source incident on the surface of an infinite half 

space: 

where 

P is the total power incident on the target, r0  is the beam radius, and ɛ  is the emissivity, 

equal to 1 - R for opaque materials . 
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A non-linear least squares (NLS) fit using this form with K and K as free 

parameters resulted in the values given in Table 2.1. The measurements and a fit line are 

shown in Fig. 2.2. Implicit in this procedure is the assumption that thermal conduction in 

the target dominates over other forms of heat transfer. The calculated value for K is 

consistent with that given in Nagai.(11). This reference also gives typical ranges for 

density, p, and specific heat, C. Diffusivities calculated from these values through K = 

K/pC are consistent with the value used here. 

The value for α was supplied by American Standard, Inc., and is consistent with 

ranges of values reported in the literature (see for example Kingery (12) and Nagai (11)). 

Figure 2.2 On axis surface temperature rise versus time for P = 
21W, r0= 2.2mm. 
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2.2.2 Elastic Properties 

The values for Young's modulus and the compressive and tensile breaking stresses are 

taken from Chipman and Knapp (13). These are typical of values widely reported in the 

literature. Poisson's ratio was not known for the specific materials used, but the value of 

0.25, taken from Kingery, is also typical of reported values for ceramics in general (12). In 

any case, the model solutions are not sensitive to small changes in v. 



CHAPTER 3 

TEMPERATURE MODEL 

3.1 Physical Model 

3.1.1 Assumptions 

The temperature rise at representative points in the target during laser heating was 

modeled using a finite difference approximation to the diffusion equation in three 

dimensions. 

The target material was considered to be isotropic with respect to the thermal 

constants. Conductivity, K and diffusivity, K were taken to be constant. Although in 

general thermal constants will have some dependence on temperature, displacement, and 

the state of stress, it is often possible to neglect these effects over a limited temperature 

range. A constant value was also assumed for the surface reflectivity, R. 

The temperature profile obtained from laser heating is also dependent on the 

absorption depth (1/a), however for macroscopic targets where the absorption depth is 

much smaller than any other characteristic length in the system, this effect can be 

neglected. Lax (7) found this approximation to be valid when the ratio of beam radius to 

absorption depth is greater than approximately order 10 . Therefore, the heating action of 

the laser will be handled as a boundary condition and the temperature profile in depth will 

be controlled solely by thermal conduction. 

9 
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3.1.2 Governing Equations 

The diffusion equation was solved here in Cartesian coordinates. Previous studies of 

Gaussian heat sources have been done using cylindrical coordinates which have a natural 

advantage for fixed sources in that the circumferential dependencies may be eliminated by 

inspection. When the heat source is allowed to move across the target surface along a 

general path, as in direct laser writing, this advantage is lost. 

The diffusion equation for an isotropic solid with no internal heat source in 

Cartesian coordinates is: 

3.1.3 Boundary Conditions 

This equation is solved subject to the following boundary conditions: At the heated 

surface the energy flux, q, due to the laser (Eq. 3.2) is equated with the normal 

temperature gradient through Fourier's law for heat conduction (Eq. 3.3). 

10 
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In Equation 3.2 r is the radial distance from the beam center on the surface. When the 

beam is located at (x0, y0), then 

At the other boundaries, which are internal planes taken to be far from the heated 

region, the second derivative of the temperature with respect to position was set equal to 

zero. In other words the variation of the temperature gradients with position far from the 

heated region were considered negligible. 

3.2 Numeric Model 

3.2.1 Discretization 

In Equation 3.2 the spatial derivatives were replaced with the standard centered difference 

approximation. Fictitious points were introduced outside the boundary planes to allow the 

use of centered differences on the boundary. These points were then eliminated using 

discretized forms of the boundary equations. For example to eliminate fictitious points 

above the heated boundary the discretized form of Equation 3.3 is solved for the 

temperature at the fictitious point, 7: 

Now occurrences of Ti-1 can be eliminated in favor of the associated internal point, 

The time derivative was replaced by a simple forward difference approximation. The 

resulting equation is explicit in time, and can be applied in an iterative manner to move the 

solution forward from some set of known initial temperatures. 
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3.2.2 Stability and Step Size Selection 

The maximum time step is limited by the following stability criterion which results from 

von Neuman analysis: 

where 

and At, Ax are the time and space steps (14). 

The above restriction can be removed .by the use of a fully implicit algorithm such 

as the Crank-Nicholson method, however these schemes are more difficult to implement 

on three dimensional grids, and they require that a large linear system be solved at each 

time step. For this simulation the maximum time step is not limited by Equation 3.4, but 

rather by the rapid motion of the heat source across the boundary surface. To guarantee 

proper resolution of the moving source the time step was selected to limit the movement 

of the heat source to less than one space step per time step. Given this more stringent 

restriction it is expected that an implicit scheme would be less efficient than that described 

above. 

The space step must be set small enough to resolve peaks in the temperature 

profile. The size of these features will vary with the power, radius, and motion of the heat 

source. Fig. 3.1 shows a comparison of the analytic solution for a fixed source (Eq. 2.1) 

with values predicted by the model using various spatial step sizes characterized in terms 
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of the beam radius to step size ratio, p. For this work step sizes on the order of a few 

tenths of a millimeter were found to be adequate. 

Figure 3.1 Comparison of analytic and numeric temperature rise 
for various space step sizes characterized in terms of the beam 
radius to step size ratio, p. 

3.2.3 Results 

For initial conditions all representative points were set to room temperature. This is not 

strictly necessary since the thermoelastic analysis depends only on temperature changes, 

but it facilitates comparison with data obtained from the pyrometer. 

In most cases each second of simulation time required less than one minute of 

execution time on an engineering workstation. Upon completion the temperature and 
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temperature gradient for each representative point were written to a file in a form suitable 

for input to the thermoelastic displacement model. Typical temperature profiles at 

selected depths for typical heating parameters are shown in Figure 3.2. In Figure 3.3 a 

contour surface of temperature rise versus position on the target surface is shown. The 

heat source for this case was a beam of fixed power and radius moving along a circular 

path. 
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Figure 3.2 Temperature profiles at selected depths for P1 W, 
r0=1.5mm at t=5.75 s, depths (z) in mm. 

Figure 3.3 Simulated surface temperature rise versus position for a 
moving beam source. 



CHAPTER 4 

THERMOELASTIC DISPLACEMENT MODEL 

4.1 Physical Model 

4.1.1 Assumptions 

Elastic displacements resulting from non-uniform heating are modeled in a similar manner 

to the temperature rise. The target is modeled as an isotropic solid deformed in the elastic 

range. Obviously this assumption fails with the onset of melting, but as flow serves only 

to reduce stresses, it continues to serve as a conservative approximation throughout. If 

the target can be considered annealed after resolidification the temperature changes during 

cooling can be used to approximate the residual stresses. 

Young's modulus, E; Poisson's ratio, v; and the compressive and tensile breaking 

stresses were taken to be independent of temperature and temperature history. Only static 

stresses were considered. The time dependence entered only through the temperature 

model. 

4.1.2 Governing Equations 

In the following sets of equations the ellipsis points indicate cyclic permutation of x, y, 

and z. The thermoelastic stress-displacement relations in Cartesian coordinates: 

16 
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are substituted into the equilibrium equations: 

to get three equations in terms of the three unknown displacements, ui (15). 

Here the body forces, T. in Equations 4.2 are neglected, and the shear modulus, G and 

Lame's constant, λ are related to E and v by: 

and a is the coefficient of linear expansion. 
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4.1.3 Boundary Conditions 

Here again a mixed boundary condition is required. At the target surface (z = 0) stresses 

normal to the surface are set equal to zero: 

At the other boundary planes, which again are internal planes considered to be 

removed from the heated region, the displacements are set equal to zero. The validity of 

this boundary condition will be re-examined later. 

4.2 Numeric Model 

4.2.1 Discretization 

As in the temperature model, the spatial derivatives in Equations 4.3 are replaced with 

their finite difference equivalents. After discretization, the RHS of Equations 4.3 have the 

form: 
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and the LHS, which becomes the source vector is: 

Here the derivative of temperature with respect to position is not cast in finite difference 

form since the temperature model output includes the evaluated gradients. 

Fictitious points above the z plane are eliminated through Equations 4.1 under the 

surface condition (Eq. 4.6). At the other boundaries, fictitious points are not required. 

Since the displacements are set equal to zero, references to points outside the grid are 

ignored. Spatial step sizes were chosen to be compatible with the temperature model. It 

should be noted here that grids which are fine enough to resolve the details of the 

temperature distribution may not suffice for the displacement field where the features are 

determined by the temperature gradients. A single axisymmetric temperature peak will 

produce a displacement field with a zero at the center due to symmetry and absolute 

maximum displacements near the radius where the maximum temperature gradients occur, 

as shown in Fig. 4.1. This roughly halves the minimum feature size which the discretizing 

grid must support. 
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Figure 4.1 Typical radial displacement as a function of scaled radial 
position (r/r0) for a fixed Gaussian heat source. 

4.2.2 Method of Solution 

If the solution vector of Equations 4.7 is ordered as follows: 

where n collectively represents the indices required to specify the nth spatial point in the 

target, then the coefficient matrix will have the symmetric block banded structure shown 

schematically in Equation 4.8. For a volume of Nx  by Ny by Nz spatial points with three 

equations per point the bandwidth is 3NxNy, suggesting that a simple direct elimination 

would require on the order of (3NxNy)3  N2z  operations. For the target size and spatial 
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resolution required here, the number of equations (3NxNyNz) is approximately 50,000 

making direct elimination impractical. 

Fortunately, despite the large bandwidth, the matrix is quite sparse. For systems 

such as this where direct methods destroy the sparsity of the matrix by filling in 

coefficients between the upper bands, iterative techniques such as successive over 

relaxation (SOR) are recommended (16). 

To guarantee the convergence of an iterative method it is generally necessary to 

show that the iteration matrix associated with that method has a spectral radius less than 

one. For a system such as this, the determination of the spectral radius is a problem of the 

same order as the solution of the system itself . A simpler test for convergence is to check 

that the matrix of coefficients is strictly diagonally dominant. This a sufficient, but not a 

necessary condition (17). The coefficient matrix for this model does not satisfy this 

weaker test, however it was found in practice that a unique solution was obtained for a 

variety of initial solution vectors. 

For this system the SOR method was used with an experimentally determined 

acceleration parameter of 1.5. 	Displacements were initially set equal to zero. The 
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solution was considered converged when the 1-norm of a vector of sample points was 

found to change by less than a small arbitrarily chosen percentage. 

4.2.3 Results 

Once the displacements are calculated, the stresses are determined by Eq. 4.1 The total 

strains are defined as: 

and the elastic normal strains, s' are related to the total normal strains by: 

Typical solution times for the results presented here were on the order of ten 

minutes using an engineering workstation. 
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For model validation a simple case was examined first. A fixed Gaussian beam 

with radius r0  = 1.5mm and total absorbed power P0  = 11W irradiates the target for 5.75 

seconds. The temperature profile along radials at various depths is again that shown 

previously in Fig. 3.2. These profiles are consistent with those resulting from analytical 

treatments in reference 7. 

Figure 4.2 Radial displacement versus position for a fixed Gaussian 
source, r0=1.5mm, P=11W, t=5.75s, depths (z) in mm. 

Fig. 4.2 shows radial displacement vs. radial position. Note that near the 

right-hand boundary (r=10mm) the displacement is not approaching the axis in a fully 

asymptotic manner. This shows that even when the boundary plane is removed from the 

heated region (cf. Fig 3.2) there may still be significant displacement due to the elastic 
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response of the material. This is seen more clearly in Fig. 4.3 where the total strain and 

elastic strain are seen to converge at a finite value. This effect diminishes as successively 

larger regions are modeled without any significant effect on the values or locations of the 

maximal stresses and strains which are of interest here. Because of this artifact the tail 

region of the displacement cannot be compared directly with analytic solutions where the 

radial boundary is at infinity. 

Figure 4.3 Total and elastic normal radial strains versus position 
for a fixed Gaussian source. 

Fig. 4.4 shows the three normal stresses along the x axis and at various depths. 

Here the x axis is labeled as radial position because the solutions are symmetric with 

respect to rotation about the z axis. σy and ɛy at points on the x axis are the tangentially 
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directed normal stress and strain respectively. σx and σy are the largest normal stresses. 

Both decrease monotonically, with y falling off more rapidly with increasing position than 

σx. σz and 'r (not shown) are both zero on the surface as required by the boundary 

condition. σz changes from compressive to tensile stress with increasing distance from the 

heat source. The total normal strains, ex, Ey, and ɛz, at various depths are given in Fig. 4.5. 

Again the x and y components are of the same order of magnitude, but here z is the 

largest component. These results are qualitatively consistent with the trends noted in the 

semi-analytic solutions presented by Welsh, et al. (2) with the exception that the depth 

directed components are somewhat larger relative to the x and y components for both 

stresses and strains . This is to be expected, since the temperature distributions used in 

Welsh, et al. are at the equilibrium state, i.e. infinitely long heating, whereas the 

temperature profiles used here are the result of short intense heating as required by the 

spot glazing application. 
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Figure 4.4 Normal stresses versus radial position for a fixed 
Gaussian source. Top left, σx; top right, ay; bottom , σz. 
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Figure 4.5 Normal strains versus radial position for a fixed 
Gaussian source. Top left, ɛx; top right, ɛy; bottom, ɛz. 
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4.2.4 Application to Time Varying Sources 

In this section the thermoelastic displacement model is used to simulate the stresses which 

result when the heat source is allowed to change in time. First the effect of varying the 

radius of a fixed position beam is considered. For the test case the total absorbed power is 

fixed at 11W, and the beam radius is allowed to increase linearly with time from Ito 2 mm 

over 6 seconds. Figure 4.6 shows the resulting surface temperature profiles for this case 

and for the fixed radius case where the maximum temperatures are scaled to 1 for 

comparison. 

Figure 4.6 Surface temperature profiles for fixed and variable 
radius heating. 

The temperature profile for the variable radius case is broader than that of the 

fixed radius case. The displacement, stress, and strain profiles all show a similar 

broadening, but are otherwise identical to those shown in Figures 4.2, 4.4, and 4.5. 
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While varying the radius of a fixed beam does provide additional heating to areas 

adjacent to the target region, it does not heat these areas preferentially. For fixed 

Gaussian sources the maximum power density is always on the beam axis. This can lead 

to significant overheating of the target center while peripheral regions are maintained at 

the desired process temperature. In the spot glaze repair application this effect was 

observed for fixed beam heating. When peripheral areas were sufficiently heated to 

achieve fusion the central region was often over-fired, typically resulting in a transparent 

glassy region where the opacifiers failed. 

Within the restriction of single beam heating, there are two possible techniques 

which can be used to preferentially heat adjacent areas. One method is to tune the 

heating laser to operate in a doughnut mode, where the power density on axis is at a local 

minimum. Spann, et al. (5) have successfully applied this technique to the end melting of 

ceramic rods. The second method involves rapidly moving the heating beam across the 

target surface in a programmed pattern to achieve the desired temperature profile. For 

spot defects this generally means moving the beam along circular or spiral paths. 

In this section the models are used to simulate the latter technique, although a 

simple change in the boundary conditions of the temperature model would allow the 

modeling of other beam profiles. For this test case a 2 mm radius beam circles the origin 

at a radius of 3 mm at 16 revolutions per second. The total absorbed power is 20W. The 

temperature profiles for this type of heating are not axisymmetric. There is localized 

temperature peak near the instantaneous position of the beam (cf. Figure 3.3 where the 

beam was moving counter-clockwise on the far side of the origin). This effect is always 
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present, although it diminishes at high rates of revolution. Figure 4.7 shows typical radial 

temperature profiles at various depths. Note that as opposed to the fixed position profiles, 

a much broader area can be maintained at a relatively constant elevated temperature. In 

the spot glazing application the use of this heating technique eliminated the glaze 

decomposition problems associated with the fixed beam heating. 

Figure 4.7 Temperature rise versus position along a typical radial 
for heating with a Gaussian beam moving on a circular path. 

The simulated normal stresses for this temperature distribution are given in Figure 

4.8. The maximum stresses are shifted out from the origin to a position roughly equal to 

the beam path radius. Samples heated beyond their elastic limits using this profile 

generally showed an annulus shaped region of crazing at roughly this same radius. 
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Figure 4.8 Normal stresses versus radial position for a fixed 
Gaussian source. Top left, σx;  top right , σy; bottom, σz. 



CHAPTER 5 

EXPERIMENT 

5.1 Physical Experiment 

Up to this point the model results have been examined in a qualitative manner. In this 

chapter a simple experiment is described which allows a comparison of the simulated 

stresses with published values for the breaking stresses. 

The experimental apparatus is shown schematically in Figure 5.1. A 50 Watt CO2  

surgical laser operating in CW mode was used. This laser was modified to allow the total 

beam power to be controlled in real time using a personal computer with an analog output 

board. The beam was focused through a servo motor driven telescope with a dedicated 

programmable controller. To aim the beam the final mirror was rotated and tilted using 

stepping motors, also under computer control. Time and space resolved temperature data 

were collected with a Pyrometer Dual Pyrofiber optical pyrometer. In the current work 

these data are used only as a diagnostic tool in designing the heating profiles, but the 

system could easily be modified to use the real-time temperature data to adjust the heating 

programs in response to the target conditions. The system is capable of executing 

complex heating programs simultaneously varying beam power, radius and position in a 

repeatable manner. 
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Figure 5.1 Schematic of the experimental apparatus. 

5.2 Analysis with Simulation 

The targets used in these experiments were glazed porcelain tiles. If a localized region of 

the target surface is heated above the strain point of the glaze, then elastic strains will be 

converted to plastic strains. For a fixed position beam the resulting stress field will be 

symmetric with respect to the beam. In the central region where the temperature is above 

the strain point the compressive stresses induced by thermal expansion will be reduced as 

the strains are converted. This area is surrounded by a region where the temperature is 

below the strain point and the material is in a state of elastic compression. For areas far 

from the heating beam there are no thermally induced stresses, although there typically will 

be a significant compression in the glaze (roughly 10,000 psi) which is built in during the 
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manufacture of the porcelain to prevent cracks from propagating from surface defects into 

the body (12). 

As the target is allowed to cool the outer regions will return to the original stress 

state, but the central region will either be in a state of reduced compression or in a state 

of tension, depending on the length of time allowed for plastic effects. If a state of 

tension exists, and the tensile limit is exceeded, cracks will develop during or after cooling. 

Due to symmetry these cracks typically are ring-shaped, centered on the heated area. 

A quantitative knowledge of the residual stress field is critical to the design of 

successful localized heating algorithms for brittle materials. It is towards this end that the 

models presented here were developed. To apply these models, which do not explicitly 

account for plastic effects, a simplifying approximation must be made. If the target is 

considered to be fully annealed at maximum temperature ( all elastic stains relieved 

through plastic effects) then the temperature changes during cooling can be used to 

calculate the final stress state, or alternatively the compression state at maximum 

temperature can be used (with the appropriate change in sign) as the residual tensile stress 

state. Any plastic effects that occur during cooling would reduce the residual stresses 

below the calculated values. 

Using this approximation the model was used to calculate the residual stress fields 

for a number of samples heated using the apparatus described above. These samples were 

heated with fixed position beams with various radii and total powers. Each sample was 

sufficiently over heated so that a ring crack occurred upon cooling. These cracks were 

observed to start at a point removed from the center of heating and then to propagate 
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along a roughly circular path forming the ring. The ring crack radii were then measured. 

The temperature and normal radial stress at the surface corresponding to each ring crack 

radius was then extracted from the simulation output for each sample. Ideally each ring 

crack would occur at a position in the stress field corresponding to the tensile limit of the 

material, however a number of factors such as local inhomogeneities in the material, 

variations in material parameters with temperature, variations in the laser power, etc. all 

contribute to the spread of the data. The breaking stress as a function of temperature is 

shown in Figure 5.2, along with two representative published values for room 

temperature. 

Figure 5.2 Simulated breaking stress versus temperature for 
thermally induced ring cracks. 
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Data could not be collected below approximately 350°C because the thermally 

induced stresses were not high enough to cause cracking. At high temperatures the data 

are unreliable as unmodeled effects such as vaporization become important. The dashed 

line in the figure is an estimate of the behavior in the untested region based on 

observations by Weyl quoted in Chu (18). Weyl found that the breaking strength of 

porcelain maintained a constant value with increasing temperature, then increased linearly 

as the annealing range was approached. This effect is the result of the healing of internal 

flaws at higher temperatures. 



CHAPTER 6 

CONCLUSION 

Numeric models for thermoelastic effects resulting from localized heating with Gaussian 

profile laser beams have been presented in the context of ceramic materials processing. 

The solutions were compared qualitatively with an existing semi-analytic solution for the 

case of a source with fixed position and radius. The models then were applied to time 

varying heating programs used to generate more useful thermal profiles. Finally the 

models are used to predict the breaking stresses associated with thermally induced cracks 

in porcelain. These results generally agreed with published values. 

The predictive power of these models could be enhanced by relaxing some of the 

simplifications made during the initial analysis. The variation of the material properties 

with temperature, once determined, could be included in a relatively straightforward 

fashion. For composite targets it may be necessary in some cases to account for the 

material properties of the individual components separately. 

A further extension of the models would be to explicitly account for the effects of 

melt and flow. In the porcelain defect work this might be quite difficult as the filler 

materials often consist of components with widely varied melting temperatures. 

These models are useful in designing and testing heating programs used in laser 

surface modification. For brittle materials, where there may be only a narrow window in 

the parameter space for successful processing, such modeling is virtually essential. 

37 



APPENDIX 

PROGRAM CODE 

The models presented in this paper were written in C and compiled and executed on a Sun 

Microsystems workstation under the UNIX operating environment. Source code for the 

two models is presented below, along with commentary on program organization. 

Executable statements are indented to distinguish them from the commentary. 

Ad Temperature Model 

The temperature model takes as input an ASCII file consisting of eight columns of 

decimal numbers. Each line of this input file represents a single stage of the heating 

program during which the beam radius, beam position radius, and beam position angle 

either remain fixed or change in a linear manner. The first number gives the total beam 

power in Watts, the second number is the duration of the stage in seconds. The third and 

forth numbers are the starting and ending beam radii in millimeters. The fifth and sixth 

numbers are the starting and ending beam position radii in millimeters. The last two 

numbers are the starting and ending beam position angles expressed in units of revolution, 

i.e. 1.0 represents a single orbit of the beam around the center point. This file is redirected 

into the model at execution. 

The values of constants used in the simulations and a summary of the heating 

program are output to file called legend.txt. Final surface temperatures are output to file 

called 'lasttemp.dat'. Maximum surface temperature gradients, and the temperatures at 
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which they occur are output to 'max  grad.dat' and 'maxgtemp.dat', respectively. 

Information required by the thermoelastic displacement model is output to a file called 

'tempinfo.dat'. 

/* This is an explicit finite difference model (FDM) for laser surface 
heating of a solid. */ 

/* compiled under UNIX using command: cc Ig.c -fsingle -lm -O 
example of execution: a.out <in.dat >t.dat */ 

#include <stdio.h> 
#include <math.h> 

#define PI 3.141593 

/* N_ are numbers of grid points used in the discretization. 
2 through N_-1 are points internal to the volume, 1 & N_ are 
boundary points, 0 & N_+1 are "fictitious" points. Keeping 
these values odd allows the (N_+1)/2 point to lie at the 
center of each axis. */ 

#define NX 41 
#define NY 41 
#define NZ 11 

I* MAX, _MIN are the positions of the boundary planes in meters. _MIN 
are 

associated with subscript 1. _MAX are associated with subscript N_. */ 
#define XMIN -7.50e-3 
#define XMAX 7.50e-3 
#define YMIN -7.50e-3 
#define YMAX 7.50e-3 
#define ZMIN 0.0e-3 
#define ZMAX 5.0e-3 

float T amb; 	/* ambient temperature (deg C) */ 

void main() 

{ 
/* function & variable declarations */ 

/* q source() contains the normalized spatial power distribution of 
the laser which is incident on the xy plane at z = ZMIN. The local 
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power density in W/m^2 is returned as a function of position, time, 
beam radius, & total power. */ 

float q_source(); 

/* T0[i][j][k] is the volume of grid points which have known temperatures 
at the begining of each time step. T1[i][j][k] is the volume of grid 
points at the advanced time, which are calculated during each time step 

*/ 

float T0[NX + 2][NY + 2][NZ + 2], 
T1 [NX + 2] [NY + 2][NZ + 2], 

/* TM[i][j] is maximum temperature reached for each surface grid point 

TM[NX + 2][NY + 2], 

/* GM[i][j] is maximum surface temperature gradient reached for each 
surface grid point */ 

GM[NX + 2][NY + 2], 

/* GT[i][j] is the temperature at which GM[i][j] was recorded */ 
GT[NX + 2][NY + 2], 	• 

float t, 	 /* time (seconds) */ 
dt, 	/* delta t (seconds) */ 
dx, dy, dz, 	/* delta position (meters) */ 
Kappa, 	/* thermal diffusivity (meters^2 / second) */ 
sx, sy, sz, 	/* coefficients to simplify expressions */ 
x, y, 	/* position (meters) */ 
kc, 	/* thermal conductivity (Watts / (meter * deg C)) */ 

/* initial beam radius (meters) */ 
r1, 	/* final beam radius (meters) */ 

dr, 	/* beam radius increment (meters) */ 
w, 	/* total beam power (Watts) */ 
duration, 	/* time a given set of parameters is in use (s) */ 
tchange, 	/* time to get next set of laser parameters (s) */ 
rho°, 	/* initial beam position radius (meters) */ 
rho 1, 	/* final beam position radius (meters) */ 
drho, 	/* beam position increment (meters) */ 
phi0, 	/* initial beam position angle (radians) */ 
phil, 	/* final beam position angle (radians) */ 
dphi, 	/* beam position angle increments (radians) */ 
gradx, 	/* dT/dx */ 
grady, 	/* dT/dy */ 
gradz, 	/* dT/dz */ 
surfgrad, 	/* (gradx^2 + grady^2)^0.5 */ 
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cx, cy; 	/* beam position in cartesian coordinates */ 

int 	i, j, k, 
pstep; 

char fname[14]; 

long tcount = 0; 

FILE *legend, 
*dataout, 
*dataout2;  

/* subscripts for gridpoints */ 
/* program step number */ 

/* output file name used after each program step */ 

/* count of total number of time steps taken */ 

/* pointer for output to legend text file */ 
/* pointer for output of grid data */ 

/* pointer for output of grid data */ 

/* "executable" statements begin here */ 

legend = fopen("legend.txt", "w"); 

/* calculate delta positions */ 
dx = (XMAX - XMIN) / (float)(NX - 1); 	/* meters */ 
dy = (YMAX - YMIN) / (float)(NY - 1); 
dz = (ZMAX - ZMIN) / (float)(NZ - 1); 

/* set material constants */ 
/* thermal diffusivity */ 
Kappa = 1.0e-6; 	 /* m^2 / s */ 

/* thermal conductivity */ 
kc = 1.881; 	 /* W / (m * deg C) */ 

/* room temp */ 
T amb = 20.0; 	 /* deg C */ 

/* the time step is fixed by a stability restriction for explicit 
finite difference methods. The restiction is usually expressed 
as: sx+sy+sz < 0.5. Strictly speaking, this restiction holds 
only for linear systems, so a more conservative value is used 
below to account for the nonlinear source in this case. Ref. 
C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, 
Vol. 1, Springer-Verlag, Berlin, 1988. p250. */ 

dt = 0.4 * (dx*dx * dy*dy * dz*dz) / 
(Kappa * (dy*dy*dz*dz + dx*dx*dz*dz + dy*dy*dz*dz)); 

/* start legend text */ 
fprintf(legend, "Parameters:\n"); 
fprintf(legend, "thermal diffusivity: 	%e (m^2 / s)\n", Kappa); 
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fprintf(legend, "thermal conductivity: 	%e (W / (m * deg C))\n", kc); 
fprintf(legend, "ambient temperature: 	%e (deg C)\n", T_amb); 
fprintf(legend, "sample dimensions, XMAX: %e (meters)\n", XMAX); 
fprintf(legend, " 	XMIN: %e (meters)\n", XMIN); 
fprintf(legend, " 	YMAX: %e (meters)\n", YMAX); 
fprintf(legend, " 	YMIN: %e (meters)\n", YMIN); 
fprintf(legend, " 	ZMAX: %e (meters)\n", ZMAX); 
fprintf(legend, " 	ZMIN: %e (meters)\n", ZMIN); 
fprintf(legend, "spatial discretization, x: %e (meters)\n", dx); 
fprintf(legend, " 	 y: %e (meters)\n", dy); 
fprintf(legend, " 	 z: %e (meters)\n", dz); 
fprintf(legend, "temporal discretization: %e (seconds)\n", dt); 

fprintf(legend, "\nProgram:\n"); 
fprintf(legend, 

"power time 	beam radius 	position radius position angle\n"); 
fprintf(legend, 

"(W) (sec) (mm) 	(mm) 	(revolutions)\n"); 

/* these are the customary coefs used in FDM diffusion problems */ 
sx = Kappa * dt / dx / dx; 
sy = Kappa * dt / dy / dy; 
sz = Kappa * dt / dz / dz; 

/* zero out maximum values */ 
for (i = 1; i <= NX; i++) 

for (j = 1; j <= NY; j 	) 

{ 
TM[i][j] = 0.0; 
GM[i][j] = 0.0; 
GT[i][j] = 0.0; 

} 

/* use ambient temperature as the initial conditions */ 
for (i = 1; i 	NX; i 	1) 
for (j = 1; j <= NY; j++) 

	

for (k = 1; k <= NZ; k++) 
T0[i][j][k] = T_amb; 

/* this value of tchange forces the first set of parameters to be read */ 
tchange = 0.0; 
pstep = 0; 

/* this is the main loop which carries the model forward in time. 60 
seconds is an arbitrary upper limit to keep the model from running 
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forever in the case of an error */ 
for (t = 0; t <= 60; t += dt, tcount++) 

{ 
/* check to see if it is time to read new parameters 

this should always be true for first iteration */ 
if (t >= tchange) 

pstep++ 	; 

/* read in new parameters */ 
scanf("%f %f %f %f %f %f %f %f', 

&w, &duration, &r0, &rl, &rho°, &rhol, &phi0, &phil); 
/* if duration is entered as zero then exit the time loop */ 
if (duration -- 0.0) 

break; 

/* print to legend text file */ 
fprintf(legend, "%5.3e %5.3e %5.3e %5.3e %5.3e %5.3e %5.3e 

%5.3e\n", 
w, duration, r0, r1, rho0, rhol, phi0, phil); 

/* calculate next time for a change of parameters */ 
tchange += duration; 

/* convert input data from millimeters to meters */ 
r0 *= 1.0e-3; 
r1 *= 1.0e-3; 
rho() *= 1.0e-3; 
rho1 *= 1.0e-3; 

/* convert input data from revolutions to radians */ 
phi° *= (2.0 * PI); 
phil *= (2.0 * PI); 

/* calculate beam radius increment */ 
dr = (r 1 - r0) / (duration / dt); 

/* calculate beam position radius increment */ 
drho = (rho1 - rho0) / (duration / dt); 

/* calculate beam position angle increment */ 
dphi = (phil - phi0) / (duration / dt); 



/* calculate beam position in cartesian coordinates */ 
cx = rho0 * cos(phi0); 
cy = rho() * sin(phi0); 

/* set boundary conditions on z = ZMIN and z = ZMAX planes */ 
for (i = 1; i 	<+ NX; i++ 	) 

for (j =1; j <= NY; j++ ) 
{ 
/* calculate positions for q_source() */ 
x = XMIN + dx * (float)(i - 1); 

y = YMIN + dy * (float)(j - 1); 

/* this is the condition on the plane z = ZMIN which represents 
the incident beam. It comes from the fundamental eq. for 
thermal conductivity: flux = - kc * dT/dz. Ref. Carslaw & 
Jaeger, Conduction of Heat in Solids, Oxford, London, 1948. p7. 
The derivative is replaced by the FDM equivalent, then the 
expression is solved for the Temperaure at the advanced 
time step. */ 

T0[i][j][0] = T0[i][j][2] 
+ 2.0 * dz * q_source(x - cx, y - cy, r0*r0, w) / kc; 

/* the condition at z = ZMAX is the second derivative of 
temperature with respect to z is set equal to zero. */ 

T0[i][j][NZ + 1] = 2.0 * T0[i][j][NZ] - T0[i][j][NZ - 1]; 
} 

/* set boundary conditions on y = YMIN and y = YMAX planes */ 
for (i = 1; i 	NX; i++) 

for (k = 1; k <= NZ; k++) 

/* the conditions at y = YMAX and y = YMIN are the second 
derivative of temperature with respect to y is set 
equal to zero. */ 

T0[i][0][k] = 2.0 * T0[i][1][k] - T0[i][2][k]; 
T0[i][NY + 	= 2.0 * T0[i][NY][k] - T0[i][NY - 1][k]; 

} 

/* set boundary conditions on x = )(MIN and x = XMAX planes */ 
for (j = 1; j <= NY; j++) 

for (k = 1; k <= NZ; k++) 
{ 
/* the conditions at x = XMAX and x = XMIN are the second 

derivative of temperature with respect to x is set 

44 



45 

equal to zero. */ 
T0[0][j][k] = 2.0 * T0[1J[j][k] - T0[2][j][k]; 
T0[NX + 1][j][k] = 2.0 * T0[NX][j][k] - T0[NX 1][j][k]; 

/* this is where the volume of future values is calculated from the 
volume of known values. The basic diffusion equation: 
dT/dt = Kappa*"del squared"T is discretized using the standard 
explicit FDM, and then the result is solved for the temperature 
at the advanced time. (Fletcher p250) */ 

for (i = 1; i <= NX; i++) 

for(j=1;j<=NY;j++) 
for (k = 1; k <= NZ; k++) 
{ 
T1[i][j][k] = sx * (T0[i - 1][j][k] + T0[i + 1][j][k]) 
+ sy * (T0[i][j - 1][k] + T0[i][j + 1][k]) 
+ sz * (T0[i][j][k - 1] + T0[i][j][k + 1]) 
+ (1.0 - 2.0 * (sx + sy + sz)) * T0[i][j][k]; 

/**********************************************************I 
/* at this point print out any results of interest 

for each time step */ 
/* printf("%e %e %e\n", t, T0[(NX+1)/2][(NY+1)/2][I], r0); */ 
/**********************************************************/ 

/* save maximum values */ 
k = 1; 
for (i = 1; i <= NX; i++) 

for (j = 1; j <= NY; j++) 

if (T0[i][j][k] > TM[i][j]) 
TM[i][j] = T0[i][j][k]; 

gradx = (T0[i + 1][j][k] - T0[i - 1][j][k]) / (2.0 * dx); 
Brady = (T0[iJ[j + 1][k] - T0[i][j - 1][k]) / (2.0 * dy); 
surfgrad = sqrt(gradx*gradx + grady*grady); 
if (surfgrad > GM[i][j]) 
{ 
GM[i][j] = surfgrad; 
GT[i][j] = T0[i][j][k]; 

I 

/* now copy future values over current values */ 
for (i = 1; i <= NX; i++) 



for (j = 1; j <= NY; j-H-) 
for (k 1; k <= NZ; k++) 

T0[i] [j][k] = T1 [i] [k]; 

/* increment beam radius */ 
r0 += dr; 

/* increment beam position radius */ 
rho0 += drho; 

/* increment beam position angle */ 
phi() += dphi; 

) /* <== this marks the end of the time loop */ 

/* close legend text file */ 
fclose(legend); 

/*********************************************/ 

/* at this point print out any final results */ 

dataout = fopen("lasttemp.dat", "w"); 
k= 1; 
for (i = 1; i 	<= NX; i++) 

x = XMIN + dx * (float)(i - 1); 
for (j = 1; j <= NY; j++) 
{ 
y = YMIN + dy * (float)(j - 1); 

fprintf(dataout, ''%e %e %e\n", x, y, T1 [i][j][k]); 
} 

} 
fclose(dataout); 

/* 
dataout = fopen("maxgrad.dat", "w"); 
for (i = 1; i 	<= NX; i++) 

x = XMIN + dx * (float)(i - 1); 
for (j = 1; j <= NY; j++) 

y = YMIN + dy * (float)(j - 1); 
fprintgdataout, "%e %e %e\n", x, y, GM[i][j]); 

} 
} 

fclose(dataout); 
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dataout = fopen("maxgtemp.dat", "w"); 
for (i = 1; i <= NX; i++) 

x = XMIN + dx * (float)(i - 1); 

for(j=1;j<=NY;j++) 
{ 
y = YMIN + dy * (float)(j - 1); 

fprintf(dataout, "%e %e %e\n", x, y, GT[i][j]); 
} 

} 
fclose(dataout); 

*1 

dataout = fopen("tempinfo.dat", "w"); 
for (i = 1; i <= NX; i++) 

for(j=1;j<=NY;j++) 
for (k= I; k <=NZ; 	 

fprintf(dataout, "%e\n", T0[i][j][k] - T amb); 

for (i = 1; i <= NX; i++) 
for (j= 1; j <= NY; j++) 

for (k = 1; k <= NZ; k++) 
{ 

gradx = (T0[i + 1][j][k] - T0[i - 1][j][k]) / (2.0 * dx); 
grady = (T0[i][j + 1][k] - T0[i][j - 1][k]) / (2.0 * dy); 
gradz = (T0[i][j][k + I] - T0[i][j][k - 1]) / (2.0 * dz); 
fprintf(dataout, "%e\n%e\n%e\n", gradx, grady, gradz); 

} 
fclose(dataout); 

/*********************************************/ 

} /* <== this marks the end of the "executable" statements */ 

/* this is the laser power function described above */ 
float qsource(x, y, r0s, w) 
float x, y, r0s, w; 

return (w / PI / r0s * exp(-1.0 * (x*x + y*y) / r0s)); 
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A.1 Thermoelastic Displacement Model Code 

The thermoelastic displacement code solves the sparse banded system as described in Chapter 4 

using the SOR method. The functions makeEqns(), fillb(), and fillu() take the information 

generated by the temperature model and create the matrix, source, and solution vectors. The 

main function then repeated calls SOR() until the convergence condition is satisfied. 

#include <stdio.h> 
#include <math.h> 
#define NX 41 
#define NY 41 
#define NZ 11 
#define SIZE (NX*NY*NZ*3) 
#define NUMEQS 3 #define

 MAXTERMS 15 

#define XMIN -7.50e-3 
#define XMAX 7.50e-3 
#define YMIN -7.50e-3 
#define '{MAX 7.50e-3 
#define ZMIN 0.0e-3 
#define ZMAX 5.0e-3 

#define TRUE 1 
#define FALSE 0 

long vectorindex(); 
float duxdx(), duydx(), duzdx(), 

duxdy(), duydy(), duzdy(), 
duxdz(), duydz(),  duzdz(); 

int terms[NUMEQS*2], 
isub[ 	QS*2][MAXTERMS], 
jsub[NUMEQS*2][MAXTERMS], 
k sub [NUMEQS*2][MAXTERMS], 
xyzsub[NUMEQS*2][MAXTERMS]; 

float coef[NUMEQS*2][MAXTERMS], 
u[SIZE+1], 
b[SIZE+1], 
deltatemp[NX + 1][NY + 1][NZ + 1]; 



float E, v, alpha, G, lambda, dx, dy, dz; 

void main() 
{ 
void fillu(), makeEqns(), fillb(), SOR(), writeu(); 
float norm(); 

float newnorm, oldnorm; 
int done; 

E= 1.10e11; 
v = 0.35; 
alpha = 4.7e-6; 
G = E / (2.0 * (1.0 + v)); 
lambda = v * E / ((1.0 + v)* (1.0 - 2.0 * v)); 
dx = (XMAX - XMIN) / (float)(NX - 1); 	/* meters */ 
dy = (YMAX - YMIN) / (float)(NY - 1); 
dz = (ZMAX - ZMIN) / (float)(NZ - 1); 

makeEqns(); 
fillu(); 
fillb(); 

done = FALSE; 
oldnorm = 0.0; 
while (! done) 
{ 
newnorm = norm(); 
if (oldnorm) 

done = ( fabs((oldnorm - newnorm) / oldnorm) < 0.0002 ); 

SOR(); 
printf("%f\n",newnorm); 
oldnorm = newnorm; 

} 
writeu(); 

return; 
} 

/* This function is used to generate the matrix of coeficients. */ 
void makeEqns() 
{ 
void insert(); 
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int eq, term; 
float Ax, Ay, Az, Bx, By, Bz, Cxy, Cyz, Czx, D; 

for (eq = 0; eq < (NUMEQS * 2); eq++) 
for (term = 0; term < MAXTERMS; 	term++) 
{ 
coef[eq][term] = 0.0; 
isub[eq][term] = 0; 
jsub[eq][term] = 0; 
ksub[eq][term] = 0; 
xyzsub[eq][term] = 0; 

) 

Ax = (2.0 * G + lambda) / dx / dx; 
Ay = (2.0 * G + lambda) / dy t dy; 
Az = (2.0 * G + lambda) / dz / dz; 

Bx=G/dx/dx; 
By= G / dy / dy; 
Bz = G / dz dz; 

Cxy = (lambda + G) / 4.0 / dx / dy; 
Cyz = (lambda + G) / 4.0 / dy / dz; 
Czx = (lambda + G) / 4.0 / dz / dx; 

D = lambda / (2.0 * G + lambda); 

term = 0; 
insert(0, 0, 0, 0, 0, -2.0 * (Ax + By + Bz), term++); /* x eqn */ 
insert(0, 1, 0, 0, 0, Ax, term++); 
insert(0, -1, 0, 0, 0, Ax, term++); 
insert(0, 0, 1, 0, 0, By, term++); 
insert(0, 0, -1, 0, 0, By, term++); 
insert(0, 0, 0, 1, 0, Bz, term++); 
insert(0, 0, 0, -1, 0, Bz, term++); 
insert(0, 1, 1, 0, 1, Cxy, term++); 
insert(0, 1, -1, 0, 1, -Cxy, term++); 
insert(0, -1, 1, 0, 1, -Cxy, term++); 
insert(0, -1, -1, 0, 1, Cxy, term++); 
insert(0, 1, 0, 1, 2, Czx, term++); 
insert(0, 1, 0, -1, 2, -Czx, term++); 
insert(0, -1, 0, 1, 2, -Czx, term 	i 1); 
insert(0, -1, 0, -1, 2, Czx, term++); 
terms[0] = term; 
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term = 0; 
insert(1, 0, 0, 0, 1, -2.0 * (Ay + Bz 	+ Bx), term++); 	/* y eqn */ 
insert(1, 0, 1, 0, I, Ay, term! 	1); 
insert(1, 0, -I, 0, 1, Ay, term 	! 1); 
insert(1, 0, 0, 1, I, Bz, term++); 
insert(1, 0, 0, -1, 1, Bz, term++); 
insert(1, 1, 0, 0, 1, Bx, term++); 
insert(1, -1, 0, 0, 1, Bx, term++); 
insert(1, 0, 1, 1, 2, Cyz, term++); 
insert(1, 0, 1, -1, 2, -Cyz, term 	1 1); 
insert(1, 0, -1, 1, 2, -Cyz, term 	); 
insert(1, 0, -1, -1, 2, Cyz, term-H-); 
insert(1, 1, 1, 0, 0, Cxy, term++); 
insert(1, 1, -1, 0, 0, -Cxy, term++); 
insert(1, -1, 1, 0, 0, -Cxy, term++); 
insert(1, -1, -1, 0, 0, Cxy, term++); 
terms[1] = term; 

term = 0; 
insert(2, 0, 0, 0, 2, -2.0 * (Az + Bx 	+ By), term++); 	/* z eqn *I 
insert(2, 0, 0, 1, 2, Az, term++); 
insert(2, 0, 0, -1, 2, Az, term++); 
insert(2, 1, 0, 0, 2, Bx, term++); 
insert(2, -1, 0, 0, 2, Bx, term++); 
insert(2, 0, 1, 0, 2, By, term++); 
insert(2, 0, -1, 0, 2, By, term++); 
insert(2, 1, 0, 1, 0, Czx, term++); 
insert(2, 1, 0, -1, 0, -Czx, term++); 
insert(2, -1, 0, 1, 0, -Czx, term++); 
insert(2, -1, 0, -1, 0, Czx, term++); 
insert(2, 0, 1, 1, 1, Cyz, term++); 
insert(2, 0, 1, -I, 1, -Cyz, term++); 
insert(2, 0, -1, 1, 1, -Cyz, term-H-); 
insert(2, 0, -1, -1, 1, Cyz, term++); 
terms[2] = term; 

term = 0; 	 /* x eqn @ surf"/ 
insert(3, 0, 0, 0, 0, 

Czx * 2.0 * D * dz / dx - 2.0 * (Ax + By + Bz), term++); 
insert(3, 1, 0, 0, 0, Ax, term++); 
insert(3, -1, 0, 0, 0, Ax, term 	! ++); 
insert(3, 0, 1, 0, 0, By, term++); 
insert(3, 0, -1, 0, 0, By, term 	1 1); 
insert(3, 0, 0, 1, 0, 2.0 * Bz, term++); 
insert(3, 1, 0, 0, 2, Bz * dz / dx, term++); 
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insert(3, -1, 0, 0, 2, -Bz * dz / dx, term 	I i ); 
insert(3, 1, 1, 0, 1, Cxy - Czx * D * dz / dx, term++); 
insert(3, 1, -1, 0, 1, -Cxy + Czx * D * dz / dx, term 	F 1); 
insert(3, -1, 1, 0, 1, -Cxy + Czx * D * dz / dx, term++); 
insert(3, -1, -1, 0, 1, Cxy - Czx * D * dz / dx, term++); 
insert(3, -2, 0, 0, 0, -Czx * D * dz / dx, term 	I i ); 
insert(3, 2, 0, 0, 0, -Czx * D * dz / dx, term++); 
terms[3] = term; 
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term = 0; 
insert(4, 0, 0, 0, 

Cyz * 2.0 
insert(4, 0, 1, 0, 
insert(4, 0, -1, 0, 
insert(4, 1, 0, 0, 
insert(4, -1, 0, 0, 
insert(4, 0, 0, 1, 
insert(4, 0, 1, 0, 
insert(4, 0, -1, 0, 
insert(4, 1, 1, 0, 
insert(4, 1, -1, 0, 
insert(4, -1, 1, 0, 
insert(4, -1, -1, 0;  
insert(4, 0, -2, 0, 
insert(4, 0, 2, 0, 
terms[4] = term;  

/* y eqn @ surf*/ 

- 2.0 * (Ay + Bx + Bz), term++); 
1, Ay, term++); 
1, Ay, term 1 I ); 
1, Bx, term++); 
1, Bx, term 	i ); 
1, 2.0 * Bz, term++); 
2, Bz * dz / dy, term++); 
2, -Bz * dz / dy, term 	1); 
0, Cxy - Cyz * D * dz / dy, term++); 
0, -Cxy + Cyz * D * dz / dy, term++); 
0, -Cxy + Cyz * D * dz / dy, term++); 
0, Cxy - Cyz * D * dz / dy, term++); 
1, -Cyz * D * dz dy, term++); 
1, -Cyz * D * dz / dy, term++); 

1, 
*D*dz/dy 

term = 0; 	 /* z eqn @ surf */ 
insert(5, 0, 0, 0, 2, 

2.0 * (Czx * dz / dx + Cyz * dz / dy - (Az + Bx + By)), term++ 
insert(5, 0, 0, 1, 2, 2.0 * Az, term++); 
insert(5, 1, 0, 0, 0, Az * D * dz / dx, term++); 
insert(5, -1, 0, 0, 0, -Az * D * dz / dx, term++); 
insert(5, 0, 1, 0, 1, Az * D * dz / dy, term++); 
insert(5, 0, -1, 0, 1, -Az * D * dz / dy, term++); 
insert(5, 1, 0, 0, 2, Bx, term++); 
insert(5, -I, 0, 0, 2, Bx, term++); ); 
insert(5, 0, 1, 0, 2, By, term++); 
insert(5, 0, -1, 0, 2, By, term++); 

insert(5, -2, 0, 0, 2, -Czx * dz / dx, term++); 
insert(5, 2, 0, 0, 2, -Czx * dz I dx, term++); 
insert(5, 0, -2, 0, 2, -Cyz * dz / dy, term++); 
insert(5, 0, 2, 0, 2, -Cyz * dz I dy, term++); 
terms[5] = term; 



return; 

void insert(eq, i, j, k, xyz, c, term) 
int eq, i, j, k, xyz; 
float c; 
{ 

isub[eq][term] = i; 
jsub[eq][term] = j; 
ksub[eq][term] = k; 
xyzsub[eq][term] = xyz; 
coef[eq] [term] = c; 

return; 
} 

/* This function loads the b vector from a file of temperature gradients 
generated by the temperature model. */ 

void fillb() 
{ 
int i, j, k, eq; 
float grad, temp, c0, c1; 
FILE *handle; 

c0 = alpha * E / (1.0 - 2.0 * v); 
c1 = (lambda + G) / (2.0 * G + lambda); 

handle = fopen("tempinfo.dat", "r"); 

for (i = 1; i <= NX; i++) 
for (j = 1; j <= NY; j++) 

	

for (k = 1; k <= NZ; k 	I I) 
fscanf(handle, "%e", &deltatemp[i][j][k]); 

for (i = I; i <= NX; i++ ) 
for (j = 1; j <= NY; j++) 

k = 1; 

eq = 0; 
fscanf(handle, "%e", &grad); 
b[vectorindex(i, j, k, eq)] = (1.0 - cl) * c0 * grad; 
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eq = 1; 
fscanf(handle, "%e", &grad); 
b[vectorindex(i, j, k, eq)] = (1.0 - cl) * c0 * grad; 

eq = 2; 
fscanf(handle, "%e", &grad); 
b[vectorindex(i, j, k, eq)] = c0 * grad + 

2.0 / dz * c0 * deltatemp[i][j][k]; 

for (k = 2; k <= NZ; k 	I I ) 
for (eq = 0; eq < NUMEQS; eq++) 
{ 
fscanf(handle, "%e", &grad); 
b[vectorindex(i, j, k, eq)] = c0 * grad; 

} 
fclose(handle); 
return; 

} 

/* This function loads the u vector with an initial estimate. */ 
void fillu() 

long m; 

for (m= 1; m <= SI7E; m++) 
u[m] = 0.0; 

return; 

/* This function writes the u vector to a file. */ 
void writeu() 

int i, j, k, n; 
float sxx, syy, szz, sxz, exx, eyy, ezz, exz, dT; 

j=(NY/2)+1; 

for (k = 1; k <= 5; k++) 

for (i = 1; i <= NX; i++) 
{ 
dT = deltatemp[i][j][k]; 
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sxx = lambda * (duxdx(i, j, k) + duydy(i, j, k) + duzdz(i, j, k)); 
sxx += 2.0 * G * duxdx(i, j, k); 
sxx -= alpha * E / (1.0 - 2.0 * v) * dT; 

syy = lambda * (duxdx(i, j, k) + duydy(i, j, k) + duzdz(i, j, k)); 
syy += 2.0 * G * duydy(i, j, k); 
syy -= alpha * E / (1.0 - 2.0 * v) * dT; 

szz = lambda * (duxdx(i, j, k) + duydy(i, j, k) + duzdz(i, j, k)); 
szz += 2.0 * G * duzdz(i, j, k); 
szz -= alpha * E / (1.0 - 2.0 * v) * dT; 

sxz = G * (duzdx(i, j, k) + duxdz(i, j, k)); 

exx = duxdx(i, j, k) + alpha * dT; 

eyy = duydy(i, j, k) + alpha * dT; 

ezz = duzdz(i, j, k) + alpha * dT; 

exz = duzdx(i, j, k) + duxdz(i, j, k); 

printf("%e %e %e %e %e %e %e %e %e %e %e %e\n", 
dT, u[vectorindex(i, j, k, 0)], 
u[vectorindex(i, j, k, I)], 
u[vectorindex(i, j, k, 2)], 
sxx, syy, szz, sxz, exx, eyy, ezz, exz); 

} 
printf("\n"); 

} 
return; 

} 

void SOR() 
{ 
long m, n; 
int i, j, k, eq, term, i0, j0, k0, eq0; 
float du, accel; 

m = 0; 

accel = L5; 

for (i = 1; i <= NX; i++) 



for (j = 1; j <= NY; j++) 

	

for (k 1; k <= NZ; k 	1) 
for (eq = 0; eq < NUMEQS; eq++ 	) 

{ 
m++; 
du = b[m]; 

if (k 	 1) 
eq0 = eq + NUMEQS; 

else 
eq0 = eq; 

for (term = 0; term < terms[eq0]; term++ ) 
{ 
i0 = i + isub[eq0][term]; 
j0 = j + jsub[eq0][term]; 
k0 = k + ksub[eq0][term]; 

if ( (i0 >= 1) && (j0 >= 1) && (i0 <= NX) &&(j0<= NY) && 
(k0 <= NZ) ) 

{ 
n = vectorindex(i0, j0, k0, xyzsub[eq0][term]); 
du -= coef[eq0][term] * u[n]; 

} 
} 

du *= accel / coef[eq0][0]; 

u[m] += du; 
} 

return; 
} 

float norm() 
{ 
float ret; 
long m; 
ret = 0.0; 
for (m = 1; m <= SIZE; m++) 

ret += fabs(u[m]); 

return (ret); 
} 

float duxdx(i, j, k) 
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int i, j, k; 
{ 
float ulow, uhigh; 

if (i == 1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i - 1, j, k, 0)]; 

if (i == NX) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i + I, j, k, 0)]; 

return ( (uhigh - ulow) / (2.0 * dx) ); 
} 

float duydx(i, j, k) 
int i, j, k; 
{ 
float ulow, uhigh; 

if (i 	 1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i - 1, j, k, 1)]; 

if (i == NX) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i + 1, j, k, 1)]; 

return ( (uhigh - ulow) / (2.0 dx) ); 
} 

float duzdx(i, j, k) 
int i, j, k; 

float ulow, uhigh; 

if (i    1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i - 1, j, k, 2)]; 
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if (i == NX) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i + 1, j, k, 2)]; 

return ( (uhigh - ulow) / (2.0 * dx) ); 
} 

float duydy(i, j, k) 
int i, j, k; 

{ 
float ulow, uhigh; 

if (j == 1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i, j - 1, k, 1)]; 

if (j == NY) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j + 1, k, 1)]; 

return ( (uhigh - ulow) / (2.0 * dy) ); 
} 

float duxdy(i, j, k) 
int i, j, k; 
{ 
float ulow, uhigh; 

if (j 	1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i, j - 1, k, 0)]; 

if (j ==NY) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j + 1, k, 0)]; 

return ( (uhigh - ulow) / (2.0 * dy) ); 
} 

float duzdy(i, j, k) 
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int i, j, k; 
{ 
float ulow, uhigh; 

if (j == 1) 
ulow = 0.0; 

else 
ulow = u[vectorindex(i, j - 1, k, 2)]; 

if (j == NY) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j + 1, k, 2)]; 

return ( (uhigh - ulow) / (2.0 * dy) ); 
} 

float duzdz(i, j, k) 
int i, j, k; 

float ulow, uhigh, ret; 

if (k    1) 
{ 
ret = -lambda * (duxdx(i, j, k) + duydy(i, j, k)); 
ret += E * alpha * deltatemp[i][j][k] / (1.0 - 2.0 * v); 
ret 1= (lambda + 2.0 * G); 

} 
else 
{ 
ulow = u[vectorindex(i, j, k - 1, 2)]; 

if (k == NZ) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j, k + 1, 2)]; 

ret = (uhigh - ulow) / (2.0 * dz); 
} 
return (ret); 
} 

float duxdz(i, j, k) 
int i, j, k; 
{ 
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float ulow, uhigh, ret; 

if (k == 1) 
ret = -1.0 * duzdx(i, j, k); 

else 
{ 
ulow = u[vectorindex(i, j, k - 1, 0)]; 

if (k 	NZ) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j, k + 1, 0)]; 

ret = (uhigh - ulow) / (2.0 * dz); 
} 
return (ret); 

} 

float duydz(i, j, k) 
int i, j, k; 

float ulow, uhigh, ret; 

if (k == 1) 
ret = -1.0 * duzdy(i, j, k); 

else 
{ 
ulow = u[vectorindex(i, j, k - 1, 1)]; 

if (k == NZ) 
uhigh = 0.0; 

else 
uhigh = u[vectorindex(i, j, k + 1, 1)]; 

ret = (uhigh - ulow) / (2.0 * dz); 
} 
return (ret); 

} 

long vectorindex(i, j, k, xyz) 
int i, j, k, xyz; 
{ 
long ret; 

ret = ( (i - 1) * NY * NZ * NUMEQS 
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+ (j - 1) * NZ * NUMEQS 
+ (k - 1) * NUMEQS ) 
+xyz+ 1; 

return (ret); 
) 
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