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ABSTRACT 

PARALLEL EXACT ENUMERATION OF SELF-AVOIDING WALK 
ON CUBIC LATTICES 

AND ITS APPLICATIONS TO PROTEIN FOLDING STUDIES 

by 
Anek Vorapanya 

Exact enumeration of self-avoiding walk on many lattices have been studied 

extensively recently. Even a short chain polymer (about 30 monomers) represented 

as a chain of cubic lattice sites requires a considerable amount of computer time to 

exhaustively search for all unique conformations. However, self-avoiding walk process 

can be modified such that it exhibits a high degree of independence among subpro-

cesses. Parallel implementation of such subprocesses can reduce a great amount of 

enumeration time. Parallel enumeration makes longer chain enumeration possible. 

Enumerating only unique conformations requires that all rotation and mirror 

conformations be removed. An algorithm to avoid generating such symmetrical 

conformations is presented. A set of parallel algorithms to solve exact enumeration 

of cubic lattice graphs subjected to various constraints (volume and/or contact 

constraints) is presented. The speed up and communication cost are analyzed. One 

of the most important application of lattice enumeration, enumerative kinetics of 

protein folding, is also discussed. 
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CHAPTER 1 

INTRODUCTION 

A protein is a linear chain of twenty amino acid groups and it performs crucial tasks 

in a living cell. It was discovered that a denatured, newly formed protein, called 

random coil, will fold up into a compact, unique shape, called native state, which is 

determined solely by its amino acid sequence. However, predicting the conformation 

of a protein native state based solely on the knowledge of its amino acid sequence is 

far from simple. This problem has been widely known as the protein folding problem 

[32]. 

There are many works, both theoretical and experimental, studying how a 

protein fold and what makes it fold to its native state. This thesis is on the 

theoretical aspect based on the 'thermodynamics hypothesis' [10]. The thermody-

namics hypothesis of protein folding states that the native structure of the globular 

molecule is the conformation which has the lowest free energy, then the native 

structure could be identified in principle simply by systematic evaluation of the free 

energy of every possible conformation [10]. The problem is that calculating the free 

energy of every possible conformation of full protein is prohibitive using currently 

achievable computing power. Since high resolution simulation of protein folding is 

not possible, a simplified model of protein backbone (its primary structure) is needed. 

One of the most popular model of protein backbone representations used in protein 

folding studies is the cubic lattice model. The protein backbone is represented as a 

chain of cubic lattice sites. Using this simplified model, it is possible to study protein 

folding of longer chain of amino acids. 

1 
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From amino acid sequence representation , we can study the thermodynamics 

hypothesis of protein folding by 

1. Enumerate all unique compact conformations of an amino acid chain represen-

tation that lead to the folding pathways. A chain of lattice sites represents the 

protein backbone on its folding pathway. 

2. Select a set of amino acid sequences that will be used in force-field simulation. 

Calculate free energy of each sequence based on all unique enumerated compact 

conformations from the first phase. For each particular amino acid sequence, 

the conformation that gives the lowest free energy should be the native state of 

that sequence according to the thermodynamics hypothesis of protein folding. 

This thesis solved the first problem by applying parallel processing to exact 

enumeration problem. The second problem is being solved by the Harvard chemical 

physics polymer theory research group. 

First, I will review previous literatures related to exact enumeration of cubic 

lattice and its application to heteropolymer studies. I will describe the cubic lattice 

model of protein backbone and show how to use it to represent protein backbone in 

enumeration problem. A set of graphs used to represent the model of computation 

will be introduced. Then I will present a set of parallel lattice enumeration algorithms 

subjected to volume and contact constraints. Experimental results are presented. 

Speed up and communication costs of parallel implementation will be discussed. 



CHAPTER 2 

LITERATURE SURVEY 

Exact enumeration of self-avoiding walk has been studied intensively for the three 

decades. It is known to be a very important tool for polymer studies. The reference 

works on exact enumerations and self-avoiding walks for polymer physics studies are 

[2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37, 

38, 39, 40, 41] 

This thesis will focus on the work by Shakhnovich and Gutin [34]. In 1990, 

Shakhnovich and Gutin proposed a simplified model of heteropolymers with random 

sequence of links using a three-dimensional cubic lattice. They used this model 

to study the freezing transition of heteropolymer chains. The model and the 

enumeration algorithm used in that paper can be summarized as follow: 

• Create a representation of heteropolymeric chains in cubic lattice. Each 

monomer is represented by lattice sites. 

o Specify a volume constraint that will confine the enumeration process. In that 

paper, volume constraint lattice is used to represent the maximally compact 

conformations of heteropolymeric chains. 

• From volume constraint graph, specify a set of starting chain conformations 

that are guaranteed to ramify to only unique structures when enumeration 

process is applied. Informally, the enumeration process is a process of counting 

al] unique Hamiltonian path beginning from a specified sequence of lattice sites 

(monomer representation) on a specified lattice graph. 

3 
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• Start the enumeration process from that set of initial conformations. The 

enumeration process is subjected to a volume constraint which means all 

monomer units in the specified volume graph must be presented in any 

completed chain computed by the enumerator and no lattice site which is not 

in that volume can be included in any chain conformation. 

• Select a set of heteropolymeric chains with random sequence of links. Calculate 

the minimum free energies (corresponding to the frozen state of heteropolymeric 

chains) of each of these chains based on all enumerated maximally compact 

conformations. 	For each selected heteropolymeric chain, the maximally 

compact conformation that gives lowest free energies should be the frozen 

state of that heteropolymeric chain. 

This paper also discussed the applications of exact enumeration of maximally 

compact conformation to investigation of thermodynamics of protein folding, 

especially for globular proteins which are very compact with density in the interior 

close to such of molecular crystals. Note that proteins are heteropolymers. The 

paper suggested the analogy of freezing transition of heteropolymeric chain to folding 

transition in proteins. 

The enumeration algorithm used in that paper can be further improved as 

follow: 

• The exact enumeration process is a blind exhaustive search with a time 

complexity of O(CN) where N is the random monomer sequence length and C 

is the degree of freedom or the number of ways that a search process can ramify 

the existing structure in the worst case. See figure 2.1. By modifying the initial 

conformation generator, I developed a set of parallel algorithms to enumerate 

all unique conformations. By observing the volume constraint in enumeration 
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Figure 2.1 A tree of N levels with branching factor of 5 

problem, I developed an algorithm that can enhance the performance of any 

volume-constraint enumeration. 

Since self-avoiding walk (the enumeration subprocess) cannot avoid generating 

symmetry structures, therefore it requires that a user specifies an initial set of 

conformations which are guaranteed to ramify to only unique conformations 

when the walking process is applied. This process is being done by hand. This 

process becomes more complicated when a random monomer chain of interest 

is longer or when a new volume is needed. I developed an algorithm that will 

generate a set of initial conformations that will not ramify to any redundant 

structure when the self-avoiding walk procedure is applied. 

•

 The algorithms presented in this thesis are also capable of enumerating any 

volumes of cubic lattice. This thesis also presents a parallel algorithm for 

contact-constraint enumeration problem. [10, 11]. 



CHAPTER 3 

OBJECTIVE 

As discussed in the previous chapter, the current approach used to solve enumeration 

problem requires human interactions during the initial phase. This process is 

necessary to remove a large number of initial conformations that will ramify to 

redundant structures during the enumeration process. If the enumerator cannot 

avoid generating redundant structures, the computation time used in generating and 

removing those redundant structures will account for most of the computation time 

of enumeration process. 

It is observed that enumeration of structural representation of protein backbones 

in cubic lattice (with appropriated symmetry avoidance algorithm) exhibits a very 

high degree of parallelism. This is due to the fact that the tasks of finding all 

possible conformations (exact enumeration) from a set of initial conformations are 

totally independent. Therefore, parallel processing can be successfully applied to 

enumeration problems. 

The objectives of this thesis are to devise an algorithm that will automate the 

process of removing initial redundancy in enumeration problem and to apply parallel 

processing to the exact enumeration problem to reduce the enumeration time which 

makes longer chain enumeration possible. This thesis also discussed the application 

of exact enumerations to protein folding studies. 

In this thesis, I proposed a set of parallel algorithms to solve the exact 

enumeration problem on cubic lattice. The followings are important characteristics 

of proposed parallel exact enumeration algorithms: 

6 
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• They are based on an exhaustive search. However, it is not a blind search. It 

is a heuristic guided algorithm that can avoid a large number of unsuccessful 

walks by using a graph connectivity checking algorithm. 

• They automatically remove all initial conformations that will leads to redundant 

structures by using mathematics formulation of three-dimensional geometric 

transformations. 

• They can enumerate any volume of cubic lattice structures, ie. not necessary 

to be a perfect cubic shape. 

• These algorithms are relatively easy to parallelize. The resulting parallel 

algorithms are suitable for both shared and distributed memory parallel 

computers. 



CHAPTER 4 

THE PROTEIN FOLDING PROBLEM 

In this chapter, I will discuss what is protein, what is the protein folding problem, 

why it is important to solve this problem and how exact enumeration of lattice helps 

solving the protein folding problem. Detailed discussion of protein folding problem 

can be found in [9, 10, 11, 12, 18, 19, 24, 25, 32, 33, 34, 35]. 

4.1 What are proteins? 

Proteins are polymers. A protein is a linear polymer molecule, a chain of tens of 

thousands of monomer unit. The monomers are the twenty amino acids which consist 

of a central carbon atom - called the a - carbon - bound to an amino group (NH2 ), 

a carboxyl group (COOH) and a side chain. The differences among amino acids lie 

in their side chains, namely in shape, size and its polarity. Shape and size affect the 

packing together of amino acids in the final molecule. Polarity (or lack of polarity) 

determines the nature and strength of interactions between amino acids in a protein 

and between the protein and water. Note that the interior of most cell is 70 to 90 

percent water. 

To understand how a protein functions, we must know its three-dimensional 

structure. From its three-dimensional structure, we can study its behaviors from the 

interactions of its molecules at the atomic level. 

4.2 Protein folding 

In the late 1950s, Christian B. Anfinsen [1) discovered that the forces most responsible 

for proper folding of the newly formed protein into a specific shaped could be derived 

8 
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from the basic principle of chemistry and physics. Only the amino acid sequence of 

the protein was fully sufficient to specify the molecule's ultimate three-dimensional 

shape and biological activity. 

Unfolded or newly formed proteins are often called random coils, implying that 

no region of the protein backbone looks significantly different from any other region. 

For globular protein, its most important state known as its native or folded state, is 

extremely compact and unique. That is, a given globular protein folds to only one 

native state. 

The goal of protein folding problem studies is to predict the compact three-

dimensional structure only from the knowledge of the monomer unit (amino acid 

group) sequences. Solving the protein folding problem would unleash new power in 

biotechnology, ie. permitting the design of new proteins. Note that enzymes, which 

are the catalysts for virtually all biochemical reactions in living cell, are globular 

proteins. 

The balance of forces that folds a protein into its unique, compact native 

structure is encoded within its amino acid sequence. This correspondence between 

sequence and structure is sometimes referred to as the "second genetic code." (The 

first genetic code is the correspondence between the base sequence of a DNA molecule 

and the amino acid sequence of the protein whose synthesis it controls). 

4.3 Simplified models of protein backbones 

To explore sequence-structure relationships, a class of model has emerged in which 

amino acid chains are represented as self-avoiding walk on lattices. Specific sequences 

of monomers are studied in chains short enough that the full conformational space 

can be enumerated exhaustively. 

The simplified exact model of protein is necessary because even a short chain 

molecule of protein simulation requires a considerable amount of computer time to 
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finish. This simplified exact model is helpful at the early stage of protein folding 

simulation. After the early stage, conformation tends to compact and have less 

variations in its three-dimensional structure, then one can employ a higher resolution 

exact model to achieve better result. 

There are many simplified exact models of protein backbone that are of interest 

in protein folding studies. They are square lattice, cubic lattice, face-centered cubic 

(fcc) lattice, bcc lattice, diamond lattice, honey-comb lattice, chess-knight lattice 

and hybrid lattice. 

Square and cubic lattices are the two most common types used in modeling 

protein backbones. This thesis will focus on cubic lattice based on the studies 

pioneered by Eugene Shakhnovich and Alexander Gutin [34]. Each protein backbone 

(the chain of its a carbon group, amino group and carbon group) will be represented 

by a single site of cubic lattice. Based on this model, we can exhaustively search all 

conformations of protein backbone subjected to various constraints (volume- and/or 

contact-constraint). 

To find the stable native state of a protein, we should compute, for every 

possible conformations of the protein molecule chain, the sum of the free energies of 

the atomic interactions within the protein and with the solvent and then find the 

conformation with the lowest free energy. 

Note that finding all possible conformations by exhaustive enumerating all 

possible self-avoiding walk on three-dimensional cubic lattice space is a time-

consuming process because the number of conformation of a chain molecule grows 

exponentially with the chain length. It was observed that the amount of time to 

do exhaustive search is much larger than the time real protein uses to fold itself. 

This observation is known as Levinthal's paradox. However, enumerative kinetics of 

protein folding has contributed much to our understanding of protein folding. 



CHAPTER 5 

CUBIC LATTICES: PROPERTIES AND REPRESENTATIONS 

In this chapter, properties of cubic lattice and its representation in our computa-

tional model are discussed. Symmetry properties of cubic lattice are discussed. An 

algorithm to avoid symmetry structures before starting the enumeration subprocess 

(the self-avoiding walk) in cubic lattice is presented. 

5.1 Definitions and cubic lattice representations 

To solve problems using computers, one needs some forms of problem representations 

which in turn be transformed to data structures in programming languages. Graph 

data model can be used to represent lattice enumeration problem subjected to various 

constraints very well. In this chapter, I will introduce terms and definitions used 

through out the thesis. 

Monomers: 

In our discussion, monomers (mer) are amino acid groups. These monomer 

units of protein primary structure (protein backbone) will be represented as lattice 

sites in cubic lattice which in turn represented by an undirect, connected graph. 

Since lattice sites represent monomers, the two terms will be used interchangeably 

in this thesis. 

Cubic lattices: 

Cubic lattice CL(M, L) is defined as an infinite three-dimensional rectangular 

grid in Cartesian coordinate system. At each intersection point of three orthogonal 

axes, there is a lattice site M. Each lattice site M will have exactly six possible 

near-neighbor lattice sites at a unit distance along the three axes in the Cartesian 

11 
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Figure 5.1 'Closed' cubic Lattices of various volumes 

coordinate system, ie. (Ix, ±y, +z) directions. These lattice sites are connected 

together with links L. See figure 5.1. 

Using graph data model, cubic lattice CL(M, L) can be represented as an 

undirected connected graph G(V, E), with M = V and L = E. Formally, G(V, E), 

is cubic lattice graph corresponding to cubic lattice CL(M,  L) with the following 

definition: 
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if V j  and Vk  in G(V, E) are any two distinct vertices corresponding to Mj  and 

Mk, in CL(M, L) lattice sites respectively, and are near-neighbor of each other, then 

E1 is an undirected edge, corresponding to Lj,k link, connects Vj and Vk. 

A cubic lattice CL(M, L) is called 'closed' if it contains a finite number of 

lattice sites and links. A cubic lattice CL(M, L) is called 'opened' if it has an infinite 

number of lattice sites and links. By definition, a cubic lattice is 'opened' if it is not 

explicitly declared as 'closed'. 

Sequences: 

In our discussion, a sequence refers to a list of lattice sites (a chain confor-

mation) on a lattice graph. There are two type of sequences, live and dead sequences. 

Live sequences: 

A 'live' sequence Slive is a sequence of lattice sites M in a cubic lattice CL(M, L) 

which have been selected according to the required constraints (volume and/or 

contact) imposed to the walk process. It is named 'live' sequence because it is 

going to change until it has a required length. 

Active mers (active lattice sites): 

At any instance of self-avoiding walk, there is only one lattice site (mer) that 

the self-avoiding walk can ramify from. This mer is called an 'active' mer. Active 

mers are always the last mer of any live sequence. 

Dead sequences: 

When the self-avoiding walk found a complete sequence of mers (a sequence 

of mers of a predefined length) that satisfied the imposed constraint of self-avoiding 

walk, a 'dead' sequence Sdead  has been found. A dead sequence is a 'complete' 

sequence of mers M of a given cubic lattice CL(M, L) that have been selected 

according to the required constraints (volume and/or contact) imposed to the self-

avoiding walk. It is named a 'dead' sequence because it will never be changed again 

after it has been found. These 'dead' sequences are what we want to enumerate and 
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record its three-dimensional structures. Note that there is no active mer on any dead 

sequence. 

Volume-constrained cubic lattice graphs: 

Volume-constraint is used to define a subspace or portion of opened cubic lattice 

which confines the self-avoiding walk into that region. Throughout this thesis, a 

volume-constrained cubic lattice is a special kind of 'closed' cubic lattice which has 

a symmetrical rectangular shape, ie. a X x Y x Z volume. From the definition of 

cubic lattice, a volume-constrained cubic lattice graph is a closed cubic lattice with 

the following properties describes its vertices: 

o Vc are 'corner' vertices with out-degree of exactly three. Set A vertices in figure 

5.1 are examples of V,. 

•

• Ve, are 'cliffed-edge' vertices with out-degree of exactly four. Set C vertices in 

figure 5.1 are examples of Ve. 

• Vf  are 'faced-center' vertices with out-degree of exactly five. Set B vertices in 

figure 5.1 are examples of Vf. 

• Vi are 'inner' vertices with out-degree of exactly six. Set D vertices in figure 

5.1 are examples of 

It should be noted that in the case of perfect symmetry volume-confined shape 

(as in the case of NxNxN volume), these vertices are symmetry to all other 

vertices in the same set. This is a very important characteristic that we can use 

to help avoiding a large number of rotation symmetry. Also note that any volume-

constrained lattice graph needs not to have all these types of vertices. But all valid 

volume-constrained lattice graph must have V,. 

Contact-constrained cubic lattice graphs: 

Contact constraint is used to define a set of required near-neighborness at some 

steps of self-avoiding walk. Figure 5.2 shows a contact-constrained sequence. The 
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Figure 5.2 A contact-constrained chains 

numbers associated with the dots refer to step number of self-avoiding walk referenced 

to the first mer (step 0) of sequence. During the self-avoiding walk, the contact 

constraint map imposes a set of possible lattice sites that an active rner can ramify 

the sell-avoiding walk. From the definition of cubic lattice, contact-constrained cubic 

lattice graph is an opened cubic lattice graph. The self-avoiding walk with contact 

constraint is free to ramify its active mer (the last lattice site in the sequence) to 

any unselected near-neighbor mer of the active mer as long as it satisfies the contact 

constraint map. 

Contact-constrained lists: 

A contact-constrained list Lcc  is a set of pairs (a, b) where a, b are the two 

different step number of self-avoiding walk. This contact constraint list Lcc  is used 

to enforce the required near-neighborness of lattice sites at step a and b of self-

avoiding walk. 
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For any sequence S to be qualified as a valid dead sequence in contact-

constrained enumeration, it is required that the ath  mer and bth  mer in S are 

near-neighbor of each other in a specified lattice graph. 

Self-avoiding walk: 

A self-avoiding walk is a process of finding a sequence S of distinct mers from 

a specified lattice graph, volume-constrained or contact-constrained cubic lattice 

graph. For the purpose of our discussion in this thesis, there are only three possi-

bilities in applying self-avoiding walk. 

• If a self-avoiding walk is applied to a closed cubic lattice graph, a volume-

constraint graph Gvc, then the self-avoiding walk is a process of finding Hamil-

tonian path on Gvc. 

• If a self-avoiding walk is applied to an opened cubic lattice graph, ie. a contact-

constraint graph , then a self-avoiding walk is a process of finding a sequence 

of distinct mers S, of some finite length L, that satisfies a list of required 

near-neighborness of mers on any sequence S, the contact-constraint list LCC. 

• If a self-avoiding walk is applied to a closed cubic lattice graph and it is also 

required that the self-avoiding walk process satisfies a contact-constrained list, 

then this is the case of both volume- and contact-constrained walk. 

Exact enumeration of self-avoiding walk on cubic lattice: 

An exact enumeration of self-avoiding walk on a cubic lattice graph is an 

exhaustive search procedure that counts (and records) all possible, unique confor-

mations of a given cubic lattice graph (subjected to volume- and/or contact-

constraint). 

Uniqueness in enumeration process means we do not count any dead sequence 

of mers which is a mirror and/or rotation symmetry (to be defined later) of any 

previously recorded 'dead' sequence. 
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5.2 Symmetries in cubic lattices 

In this section, I will discuss the symmetry properties of cubic lattice that effect 

enumeration problem. I will present an algorithm to remove such symmetry 

structures before starting the enumeration process. 

in cubic lattice, there are at most six different directions to go from a lattice site 

to other near-neighbor lattice sites. They are (±x, +y, +z) directions in the three-

dimensional Cartesian coordinate system. A self-avoiding walk on cubic lattices 

can be realized as a sequence of lattice site indices (a lattice site is indexed by a 

unique identifier) or as a sequence of directions that a walker walks on the associated 

sequence of lattice sites. The latter view is more suitable to the enumeration problem. 

Consider the self-avoiding walk on a cubic lattice as a 'direction' permutation. All 

one needs to compute exact enumeration of all conformations on a given lattice is 

to compute all permutations of six possible directions of desired length and check if 

each of such permutation sequence violates the enumeration constraint or not. 

5.2.1 Mirror symmetry 

Let Ep(ep0, ep1, • • • ,ep(n_1) ) be a 'direction' sequence of a self-avoiding walk on a 

undirect, connected graph G(V, E) (it can be a volume-constrained and/or contact-

constrained graph) and Eq (eq0, eq1, • • , eq(n-1)) be another direction sequence on the 

same graph. Q is said to be a mirror symmetry of P if and only if one of the following 

two conditions is satisfied: 

o if Ep  Eq and ϕ is any direction +x, +y or +z and Epi  (the ith  element of Ep ) 

≠ ϕ then Epi must be equal to Eqi. If Epi = 0 then Eqi must be equal to —ϕ. 

• If Ep 	Eq  and δ, A, ϕ  are any distinct ± of x, y or z direction and if the two 

direction sequences have three transformation pairs of this form: (8 in Ep ,A 

in Eq ), (A in E p,8 in Eq ) and (ϕ in Ep,ϕ in Eq ), then. Ep  and Eq  are mirror 

symmetry. This condition leads to mirror symmetry of the two sequences 
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because after transforming A in Eq  to match δ  in Ep  and S in Eq  to match A 

in E p, all ϕ in Eq  will be transformed to —ϕ and the two sequences will now 

satisfy the first condition. 

Figure 5.3 shows a set of lattice site chains that are mirror symmetry. The 

followings are 'direction' sequences of chains in figure 5.3: 

Sequence (a),(b) pairs satisfy the second condition with 6 = +x, = +y and 0 = +z. 

Sequence (a),(c) pairs satisfy the second condition with S = +x, A = +z and 0 = +y. 

Note that the sequence pairs (b),(c) are not mirror symmetry but rotation 

symmetry with the following three cyclic direction transformations 

(see the next subsection). 

5.2.2 Rotation symmetry 

Let's define a rotational transformation as a process of changing of a direction 

in three-dimensional Cartesian coordinate to another direction after a sequence of 

rotation steps. 

Let Ep(epo, ep1, • • • , ep(n-1) ) be a 'direction' sequence of a self-avoiding walk on 

a undirect, connected graph G(V, E) (it can be a volume-constrained and/or contact-

constrained graph) and Eq  (eq0, eq1, • • • , eq(n-1) ) be another direction sequence on the 

same graph. Q is said to be a rotation symmetry of P if and only if one of the 

following two conditions is satisfied: 

If Ep  = Eq  then Ep  and Eq  is obviously rotation symmetry of each other. 
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Figure 5.3 Mirror symmetry of chains in 3x3x3 cubic lattice 
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• If E p 	Eq and δ A, ϕ are any distinct + of x, y or z direction, there are three 

cyclic direction transformations in the form (δ 	A), (A 	0), and (0 	δ) 

from Ep  sequence to Eq sequence to make them satisfy the first condition. 

Note: 	means 'transform to'. 

Figure 5.4 shows a set of lattice site chains that are all rotation symmetry to 

each others. The followings are direction sequences of chains in figure 5.4: 

The followings are cyclic direction transformations of pairs of sequences in figure 5.3: 

5.3 Avoiding redundant structures in self-avoiding walk 

In this section, I will present an algorithm to avoid mirror and rotation symmetries 

before starting an enumeration procedure. Fortunately, avoid generating redundant 

structures is much easier than it seems to be as discussed in the previous section. 

5.3.1 Avoiding rotation symmetry 

To avoid rotation symmetry, I derived the method from the following facts about 

rotation symmetry of cubic lattice. First, any two three-dimensional structures will 

be rotation symmetry of each other if we can perfectly match them together by at 

most three different transformation steps in three-dimensional space. Second, any 
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Figure 5.4 Rotation symmetry of chains in 3x3x3 cubic lattice 
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lattice site on cubic lattice which is the current point of ramification (the active 

mer) will not ramify to rotation symmetry structure if the sequence of selected mers 

is a three-dimensional structure. Third, a cubic lattice is a repetition of a funda-

mental unit, a lattice site with exactly six near-neighbor, which makes it perfectly 

symmetrical from any view. 

From these facts, we can see that to avoid rotation symmetry we have to 

find a set of starting mers on volume-confined structure that will ramify to only 

unique conformations. From this initial set of lattice sites, use it as the only possible 

starting points of walk. For each such mer, the self-avoiding walk can ramify one 

step at a time to its near-neighbors that are not rotation symmetry with respect 

to the current structure of walking path. Figure 5.5 shows three types of non-

symmetry self-avoiding walk (avoiding both rotation and mirror symmetries). By 

following this guideline, the walker will never generate any redundant structure due 

to rotation symmetry. 

5.3.2 Avoiding mirror symmetry 

To avoid mirror symmetry, this requires knowledge of both rotation symmetry and 

mirror effect. It is observed that mirror and rotation symmetries usually present 

together during the self-avoiding walk. Fortunately, the mirror effect in cubic lattice 

conformations can be avoided by simply following the guideline used to avoid rotation 

symmetry discussed in section 4.3.1. This makes it a lot easier to remove mirror 

symmetry, otherwise it will be very difficult to remove all mirror structures. 

5.3.3 An algorithm to avoid mirror and rotation symmetries 

Formally, we define the following algorithm to avoid generating redundant structures 

in self-avoiding walk due to rotation and/or mirror symmetry properties of cubic 

lattices. This algorithm will generate a set of non-redundant initial conformations 

that will be used as an input to the enumeration procedure. 



Figure 5.5 Non-symmetry self-avoiding walk: (a) line symmetry avoiding, (b) plane 
symmetry avoiding and (c) 3-D symmetry avoiding 
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Algorithm 5.1: Rotation and Mirror Symmetry Avoidance 

[ This algorithm will generate a set of initial conformations of a given volume—

and/or contact—constraint lattice graph. When the walker ramifies these initial 

conformations, it will not generate any symmetry conformations. 

1. Let Head(Q),Dequeue(Q),Enqueue(Q,M),Empty(Q) be generic queue 

functions that perform the following functions, return Q head, dequeue Q, 

enqueue a new element M to Q and test emptiness of Q respectively. Note 

that the Q itself does not change when we apply functions Head() and Empty() 

to it. 

2. Create a queue of conformation QR  to keep redundant initial conformations. 

Reset this queue. 

3. For each mer that is not rotation symmetry, create a conformation which has 

only one such mer and set the dimension of the conformation to zeroth (OD) 

and put it into QR. 

4. Create a queue of conformation QNR to keep non-redundant initial confor-

mation. Reset this queue. 

5. Let P be a conformation. 

6. while QR  is not empty do 

(a) assign Head(QR) to P, and Dequeue(QR) 

(b) let M be the active mer of conformation P which is always the last mer 

of P. 

(c) repeat 

i. case OD: 

> Pick any near-neighbor N of M as the new active mer of P. 
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> Update the conformation dimension to the first dimension (1D) 

and Enqueue(Q R, 

ii. case 1D: (figure 5.5(a)) Consider all near-neighbors of M: 

>

 If a near-neighbor N is in the same 'direction' as the first 

dimension of P, then pick N as one of the next ramification. 

Create a new conformation X which is the same as confor-

mation P and add mer N to X as the new active mer. Then Enqueue(Q 

2 R, X). 

a Otherwise, pick any one of the rest near-neighbor of M as the next 

possible ramification, called it N. Create a new conformation X 

which is the same as conformation P and add mer N to X as the 

new active mer. Update the dimension of conformation X to the 

second dimension (2D). Then Enqueue(Q R, X). 

iii. case 2D: (figure 5.5(b)) Consider all near-neighbors of M: 

> For each near-neighbor N which is in the plane of conformation 

P (note that P is currently a planar (2D) conformation), create 

a new conformation X which is the same as conformation P and 

add mer N to X as the new active mer. Then Enqueue(Q R, X). 

For the rest near-neighbor mers of M that is not in the plane 

of conformation P, pick one of them as the new active mer. 

Create a new conformation X which is the same as conformation 

P and add mer N as the new active mer of X. Update the 

dimension of conformation X to the third dimension (3D). Then 

Enqueue(Q R, X). 

iv. case 3D: (figure 5.5(c)) Record conformation P as a new non-

redundant structure by doing Enqueue(QNR, P). When applying the 
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self-avoiding walk procedure (in chapter 5) to conformation P, there 

will be no redundant structure. 

until current conformation P is 3D. 

end while 

End—Algorithm 5.1 

The most interesting aspect of this algorithm is that this kind of prefix compu-

tation leads to the applicability of parallel processing of any volume. This initial set 

of prefix conformations can be realized as a set of independent parallel tasks that 

can be executed concurrently. 

5.4 How to improve enumeration time 

It is observed that volume constraint restricts the self-avoiding walk such that all 

nodes in the confined-volume must be used exactly once in any completed walk. If the 

self-avoiding walk is blocked before it found a complete conformation, the algorithm 

will backtrack to find another possibility to ramify from its current position 

A blind exhaustive search will backtrack only when the search process is 

blocked. However, we can avoid a large number of unsuccessful walks (backtrack 

before the search is blocked) by checking that some portions of volume-confined 

structure will never be visited if we continue walking from the current active mer. 

See figure 5.6. By using a connectivity checking algorithm, we can avoid this 

unfruitful situation as soon as it occurs. The connectivity checker will check if the 

walk has divided the set of unvisited mers into two disjointed subsets or not. If that 

is the case, then one of the two unvisited mer groups will never be visited by the 

walker (without backtracking to the level of this active mer again). As soon as the 

set of unvisited mers is divided into two disjointed subsets, we can stop progressing 
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Figure 5.6 Blocking in self-avoiding walk with volume-confined constraint 

from the active mer of current conformation and try another near-neighbor which is 

available at that level of walk. 

The connectivity checking algorithm is implemented as a depth first search 

procedure without backtracking capability. The time complexity of this connectivity 

checking algorithm is 0(N) which is less than the overall complexity of exhaustive 

enumeration algorithm. 

The idea that makes this algorithm works is as follow. Let VCG be a volume-

constrained graph and Q be a live sequence and Vart  be the active mer of Q. Now, 

supposed further that Vart  is the articulation point which connects the two subgraph 

Ga  and Gb of unvisited mers together at mer Va  and Vb,respectively. See figure 5.7. 

At the next step of walk, we have to choose between Va  or Vb. No matter 

which one we choose between these two mers, the volume graph of unvisited mers 

will be divided into two separated connect component. Once the walker decided to 

continue with one component, say Ga , by selecting Va  as the next mer, then the 

other component Gb will never be visited. This is because Vart  is the only mer that 



Figure 5.7 Components in self-avoiding walk with volume constraint 
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connects Ga  and Gb together and the self-avoiding walk can use Vart only once which 

means the self-avoiding walk cannot use Vart to go from Ga  to Gb. 

If the walking process keeps walking in one component, then it will eventually 

find that the search process is blocked and start to backtrack again and again until 

it comes back to Vart. 

Therefore, as soon as the self-avoiding walk selects any mer which is a near-

neighbor of Vart, the unvisited mer graph will be divided into two connected 

component graphs, then the search process can stop progressing the search with Vart  

as the active mer since there will be no path that links Ga  and Gb together in any 

ramification from Vart . If there exists such path that connects Ca  and Gb together 

then Ga  and Gb will not be two connected component graphs with articulation point 

Vart  which contradicts our assumption. 

The arguments for the case of deciding to go in Gb via Vb first are similar. 



CHAPTER 6 

PARALLEL EXACT ENUMERATION OF LATTICE GRAPHS 

In this chapter, a set of parallel exact enumeration algorithms are presented. Speed 

up and communication overheads of this parallel parallel algorithm are analyzed. 

6.1 Master and workers programming model 

In this thesis, I will present a parallel programming model called master and workers 

model. The master and workers paradigm is a very intuitive way of executing tasks 

in parallel. Imagine you are a software designer. You have a number of people do 

programming jobs for you. As a designer, you will first define problems that need 

to be solved, divide the problems into subproblems and so on. Note that during the 

problem division phase, you try to minimize dependency between these subproblems 

so that programmers need not to communicate or depend on other programmers too 

much. The more the subproblems are independent, the lower the communication 

cost. This is very important in parallel program design because communication and 

synchronizations are expensive operations in parallel computers. After you finish 

dividing the problems into subproblems, you will distribute the subproblems to each 

individual worker to perform these subproblems concurrently. When each individual 

worker finishes its assignment, it reports the result back to the master. The master 

will then combine all results received from workers together into the final solution. 

It is observed that master and workers model can be scaled in a hierarchical 

way. Imagine a hierarchy of people in an organization. You may be the biggest boss 

of the company. When you want something to be done, you will ask your employees 

to do it. Those employees may ask other employees at the lower level in organization 
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hierarchy to do the jobs (as long as the job can be divided) and so on. Therefore, if 

the problem size is bigger and the number of employees in that organization is larger, 

then the problem should be effectively solved as in the case of a smaller problem and 

a small number of employees. 

6.2 Parallel exact enumeration algorithms 

Fortunately, the algorithm to remove redundant structure (algorithm 5.1) is perfectly 

fit to the master-slave paradigm. The following is a parallel algorithm to do 

enumeration based on redundant structure avoidance algorithm presented in chapter 

5. 

The followings are available globally as pre-computed data or user input data: 

• Volume-constraint lattice graph is an undirect, connected graph VCG (M, L) 

of volume lattice with dimension XDim x YDim x Z Dim. Each mer on lattice 

graph can be indexed by the index number computed by 

For example, a lattice site at the Cartesian coordinate (x,y,z) = (2,3,1) 

of volume lattice graph with dimension (X Dim,Y Dim, Z Dim) = (3,3,2) is 

indexed as the lattice site number 20. 

• The required monomer sequence length, ie. the number of element in a sequence 

that is considered a dead sequence is LREQ. 

• A contact constraint map CCMAP  for the enumeration with contact constraint. 

This is a table with each entry represents a pairs of sequence positions that 

imposes near-neighborness of mers on that sequence position pairs. 

Algorithm 6.1: Parallel Enumeration of Self-Avoiding Walk on Cubic 

Lattice 
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Enumerate all possible geometrically distinct conformations of a given cubic lattice. 

The parallel implementation is based on a parallel programming model under UNIX 

environment, ie. using processes and inter-process communication provided by UNIX 

environment. The interprocess communication mechanism uses in this algorithm 

is a half- duplex 'pipe' communication channel. A set of multiple processes is 

created under UNIX environment to execute a set of parallel tasks, the enumeration 

processes. 3 

1. Let Qnri  be a queue of initial conformations which is initialized to a empty 

queue. 

2. Let Mnr  be a set of initial mers on a given cubic lattice in case of volume 

constraint enumeration which is not redundant (subjected to rotational 

symmetry), or Mnr  be a mer, usually with index 0, in case of contact constraint 

enumeration 

3. While Mnr  is not empty do 

>

 Pick a member of M„ called it Cm„ and update Ma,. to be Mnr — C172 Cr 

t> Generate non-redundant initial conformation path set from this Cm„ and 

record all such conformations in Qnri  queue using algorithm 4.1. 

4. Install a buffered communication channel, a 'pipe' (an interprocess commu-

nication facility on UNIX), which allows interprocess communication between 

the master process and its slave processes. 

5. If there is no initial conformation in Qnri, ie. Qnri is empty then stop. (* we 

are done *1 

6. Otherwise for each initial conformation path Pic in Qnri do the following: 
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t Create a parallel slave process to enumerate all possible distinct confor-

mations of initial conformation Pic by ramifying Pic as an self-avoiding 

walk in depth-first search manner. 

✓ This parallel process will enumerate a Pic using self-avoiding walk, ie. each 

parallel process will execute the algorithm 5.3, 5.4 or 5.5 (depending upon 

the enumeration constraint) with Pic as an input. 

• When a slave process finishes the enumeration on a given Pic, it sends the 

enumeration result to the master process by putting it into the communi-

cation 'pipe' and terminates itself. 

7. The master process reads the communication 'pipe' and sums up all the results 

which is the total number of geometrically distinct conformation of a given 

constrained cubic lattice. 	  

End—Algorithm 6.1 

Algorithm 6.2: Disconnected Volume Graph Detection 

[ Check to see whether the self-avoiding walk process reached the state where the 

specified volume lattice graph has been divided into two disconnected components. 

This means we want to check the connectivity of unvisited mers in the specified 

volume lattice graph. It returns true if input lattice volume constraint graph is a 

single connected component, otherwise return false. ] 

1

. parameter: VGuv be a set of unvisited mers in a volume constraint graph. 

2. Let Mcurr be any member of set VG„,,. 

3. Let QM  be a queue of mers with Mcurr  as the only element in it. 

4. Let H ead(Q), Dequeue(Q), Enqueue(Q 	Empty(Q) be generic queue 

functions that perform the following functions, return Q head, dequeue Q, 
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enqueue a new element M to Q and test emptiness of Q respectively. Note 

that the Q itself does not change when we apply functions Head() and Empty() 

to it. 

5. Let N be a set of all near-neighbor mers of a mer X. 

6. While Empty(QM) is false do the following: 

> Set N to all near-neighbors of Head(Qm ) which are not already in. QM. 

>

 If N is empty then Dequeue(QM ) and discard the element. 

t> Otherwise, enqueue all members of set N to QM  and set VGuv to VG.- 

7. If VGuv is empty then return true. Otherwise return false. 

End—Algorithm 6.2 

Algorithm 6.3: Volume Constraint Enumeration 

[ Enumerate all geometrically distinct sequence conformations which ramify from a 

given initial geometrically distinct conformation and subject to a volume constraint 

VCG(M, L). The ramification of a given initial conformation is a self-avoiding walk 

based on the depth first search (DFS) algorithm. ] 

1. parameter: Smmc is a sequence of lattice site index number defined on volume 

lattice graph VCG(M, L) and represent an initial conformation mer sequence 

we want to ramify to find all completed conformations (dead sequence) based 

on this initial sequence. 

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer 

M. This mapping set can be computed from the volume constraint graph 

VCG(M, L) and the initial conformation sequence Smmc as follows: 
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a For each mer M do the following: 

o Determine all the near-neighbors of M, record this in NNB(M). 

o Set NNB(M) to NNB(M) — Smmc 

3. Let C ds  be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0 

(zero). 

4. Let Lcurr and Linit be the lengths of initial input sequence Smmc. 

5. Connect the communication 'pipe' to the master process. 

6. If Linit  is equal to the length of required monomer sequence L REQ then send 

1 (one) as the number of found 'dead sequence' through the communication 

'pipe' channel to the master process. Terminate the process. (* we are done *) 

7. Otherwise, do the following: 

a Let Mcurr be the last mer of the conformation at any stage of ramification. 

Initialize this variable to the last mer of Smmc. 

>

 Let Mnext  be any unvisited near-neighbor mer of Mcurr.  There is no need 

to initialize this variable at this time. 

>

 While Lcurr is greater than or equal to Linit  do the following: 

o Set Mnext  to one of unvisited near-neighbor mers of Mcurr (any mer 

in NNB(Mcurr)) and update NNB(Mcurr ) NNB(M curr 	Mnext • 

o If there is no Mnext or there is Mnext  but if we select that Mnext, the 

lattice volume graph VCG(M, L) will be divided into two connected 

components according to the algorithm 5.2 (check connectivity), then 

backtrack the self-avoiding walk by decreasing Lcurr by 1 and set 

Mcurr  to the mer at the position Lcurr of Smmc  sequence. 
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o Otherwise, set M Mcurr to Mnext increase Lcurr by 1 and update 

sequence Smmc at the position Lcurr to Mcurr. 

o If the sequence length 	is equal to the required monomer sequence 

length L REQ, then increment the number of 'dead sequence' Cds by 

1. 

>

 send the number of 'dead sequence' Cds  to the master process through the 

communication 'pipe' and terminate the process. 

End—Algorithm 6.3 

Algorithm 6.4: Volume and Contact Constraint Enumeration 

[ Enumerate all geometrically distinct sequence conformations which ramify from a 

given initial conformation and subject to both a volume constraint VCG(M, L) and 

a contact constraint CCMAP. The ramification of a given initial conformation is a 

self-avoiding walk process based on the depth first search (DFS) algorithm. ] 

1. parameter: Smmc  is a sequence of lattice site index number defined on volume 

lattice graph V CG(M , L) and represent an initial conformation mer sequence 

we want to ramify to find all completed conformations (dead sequence) based 

on this initial sequence. 

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer 

M. This mapping set can be computed from the volume constraint graph 

VCG(M, L) and the initial conformation sequence Smmc as in algorithm 5.3. 

3. Let Cds  be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0 

(zero). 

4. Let Lcurr  and Linit be the lengths of initial input sequence Smmc. 
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5. Connect the communication 'pipe' to the master process. 

6. Verify that Smmc  satisfies the contact constraint by checking whether there is 

any pairs of mer in Smmc  violates the contact requirement according to the 

contact constraint map CCMAP. If it does not, send 0 (zero) through the 

communication 'pipe' to the master process as no 'dead sequence' has been 

found. Terminate the process. (we are done). 

7. If Linit  is equal to the length of required monomer sequence LREQ  then send 1 

(one) as the number of found 'dead sequence' through the 'pipe' to the master 

process. Terminate the process. (* we are done *) 

8. Otherwise, do the following: 

• Let Mcurr be the last mer of the conformation at any stage of ramification. 

Initialize this variable to the last mer of Smmc. 

• Let Mnext  be any unvisited near-neighbor mer of Mcurr. There is no need 

to initialize this variable at this time. 

t While Lcurr is greater than or equal to Linit  do the following: 

o Set Mnext  to one of unvisited near-neighbor mers of M Mcurr and update 

NNB(Mcurr) curr to N B ( 	) (Mcurr) • Verify that this Mnext  does 

not violate the contact constraint requirement. If it does, we have to 

pick another mer that doesn't by repeating this step until we find it 

or there is no more unvisited near-neighbor mers of Mcurr left. 

o If there is no such Mnext  or if there is such Mnext  but if we choose that 

Mnext, then it will divide the lattice volume graph V CG(M, L) in to 

two disconnected components according to the algorithm 5.2 (check 

connectivity), then backtrack the self-avoiding walk by decreasing 
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L,„ by 1 and set Mcurr to the mer at the position Lcurr  of 

sequence. 

o Otherwise, set Mcurr to Mnext, increase Lcurr by 1 and update 

sequence 	at the position Lcurr to Mcurr. 

o If the sequence length Lcurr, is equal to the required monomer sequence 

length L REQ, then increment the number of 'dead sequence' Cds  by 

1. 

>

 Send the number of 'dead sequence' Cds  to the master process through 

the communication 'pipe' and terminate the process. 

End—Algorithm 6.4 

Algorithm 6.5: Contact Constraint Enumeration 

[ Enumerate all geometrically distinct sequence conformations which ramify from a 

given initial conformation and subject to a contact constraint CCMAP. The ramifi-

cation of a given initial conformation is a self-avoiding walk process based on the 

depth first search (DFS) algorithm. 

I. parameter: Smmc is a sequence of lattice site index number defined on volume 

lattice graph VCG(M,L) and represent an initial conformation mer sequence 

we want to ramify to find all completed conformations (dead sequence) based 

on this initial sequence. 

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer 

M. This mapping set can be computed from the volume constraint graph 

VCG(M,L) and the initial conformation sequence Smmc  as in algorithm 5.3. 

3. Let Cds be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0 

(zero). 
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4. Let Lcurr and Linit be the lengths of initial input sequence 

5. Connect the communication 'pipe' to the master process. 

6. Verify that Smmc  satisfies the contact constraint by checking whether there is 

any pairs of mer in Smmc violates the contact requirement according to the 

contact constraint map CCMAP. If it does not, send 0 (zero) through the 

communication 'pipe' to the master process as no 'dead sequence' has been 

found. Terminate the process. (we are done). 

7. If Linit is equal to the length of required monomer sequence LREQ  then send 1 

(one) as the number of found 'dead sequence' through the 'pipe' to the master 

process. terminate the process. (* we are done. *) 

8. Otherwise, do the following: 

t Let Mcurr be the last mer of the conformation at any stage of ramification. 

Initialize this variable to the last mer of Smcc. 

>

 Let Mnext be any unvisited near-neighbor mer of Mcurr.  There is no need 

to initialize this variable at this time. 

>

 Repeat 

o Set Mnext to one of unvisited near-neighbor mers of Mcurr r and update 

NNB (Mcurr) B(Mcurr) to NNB (Mcurr)  NNB(Mcurr) to 	NNb(Mcurr) - 	Mnext. Verify that this Mnext does 

not violate the contact constraint requirement. If it does, we have to 

pick another one that doesn't by repeating this step until we find it 

or there is no more unvisited near-neighbor mers of Mcurr  left. 

o If there is no such Mnext then backtrack the self-avoiding walk by 

decreasing Leon. by 1 and set Mcurr to the mer at the position Lcurr 

of Smmc sequence. 
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o Otherwise, set Mcurr to Mnext, increase Lcurr by 1 and update 

sequence Smmc at the position Lcurr to Mcur r  

o If the sequence length Lcurr is equal to the required monomer sequence 

length L REQ, then increment the number of 'dead sequence' Cd5  by 

1. 

until Lcurr is smaller than Linit  

send the number of 'dead sequence' Cds to the master process through the 

communication 'pipe' and terminate the process. 

End—Algorithm 6.5 

6.3 Implementation 

The sequential enumeration algorithm was originally written in the UNIX environment. 

Then the parallel algorithm has been developed using multiple concurrent processes 

on a parallel computer running UNIX. There is a parent process acts as the master 

running algorithm 5.1 which creates a set of child processes (workers) to enumerate 

all conformations based on a set of initial conformations. When the child processes 

finish their jobs, they will report the results back to the master (parent) process. 

The parallel implementation was done on a Silicon Graphics Iris parallel 

computer at Harvard Chemistry Department. All codes are conformed to POSIX.1 

standard and should be portable to any POSIX.1 compliant system. 



CHAPTER 7 

RESULTS AND DISCUSSIONS 

In this chapter, some enumeration results will be presented. The speed up of these 

results as well as communication cost will also be discussed. 

7.1 Exact enumeration results with various constraints 

The followings are results of some volume and/or contact constraint enumerations. 

Table 7.1 shows volume constraint enumerations. In all tables, initial conformation 

is the total number of non-redundant conformation of a given lattice graph as well 

as the number of independent parallel tasks. The unique conformation is the total 

number of geometrically distinct conformations. Table 7.2 is the sample of volume 

and contact-constraint enumeration on a 3 x 3 x 3 cubic lattice with various contact-

constraint lists. Table 7.3 is the sample of contact-constraint enumeration of a chain 

of 30 monomers. 

7.2 Discussions 

The following three tables show the running time of all algorithms on a Silicon 

Graphics Iris parallel computer with 4 processors. Table 7.4 shows speed up of 

volume constraint enumeration. Table 7.5 shows speed up of volume and contact 

constraint enumeration. Table 7.5 shows speed up of contact constraint enumeration. 

From table 7.4, 7.5, 7.6, the speed up are almost linear from one to four 

processors. The communication cost between the master and workers is very low in 

all algorithms. Actually, there is no synchronization at all between worker processes. 

This is a very desirable characteristic to achieve an almost linear speedup since 
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Table 7.1 Volume constraint enumeration of various volumes 

Volume Chain Length Number of Conformations Time 
(seconds) Initial Unique 

2 x 2 x 2 8 2 3 0.77 

2 x 2 x 3 12 24 73 1.96 

2 x 3 x 3 18 116 2110 6.81 
3 x 3 x 3 27 152 103346 65.49 

Table 7.2 Volume and contact constraint enumerations of a volume 3 x 3 x 3 

Contact Constraint List Number of Conformations Time 
(seconds) Initial Unique 

21-12, 23-16 152 1594 22.27 

15-4, 11-26 152 3482 11.6 
18-11, 25-8 152 2475 17.6 
8-17, 21-2 152 2562 13.41 

Table 7.3 Contact constraint enumeration of a chain of 30 monomers 

Contact Constraint List Number of Conformations Time 
(seconds) Initial Unique 

2-11 29-10 28-3 13-0 18-7 5-16 513 22540648 40961.66 

12-5 2-29 20-15 3-14 8-1 17-24 64 40407229 17317.71 

2-11 19-2 22-15 25-4 14-7 25-8 619 382716 55.13 

2-17 13-4 24-5 9-2 28-9 7-20 178 435183 261.91 

Table 7.4 Speed up of a volume constraint enumeration of volume 3 x 3 x 3 

Number of PEs Time (sec) Speed Up 
1 62.21 1 
2 32.09 1.94 
3 21.57 2.88 
4 16.1 3.86 
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Table 7.5 Speed up of a volume and contact constraint enumerations of volume 
3 x 3 x 3 

Number of PEs Contact Constraint List Time (sec) Speed Up 
1 21-12, 23-16 23.59 1 
2 12.35 1.91 
3 8.25 2.86 
4 6.10 3.87 

Table 7.6 Speed up of contact constraint enumeration of a chain of 30 monomers 

Number of PEs Contact Constraint List Time (sec) Speed Up 
1 2-17 13-4 24-5 9-2 28-9 7-20 259.22 1 
2 138.62 1.87 
3 88.77 2.92 
4 67.68 3.83 

process communication and synchronization are very expensive operations in any 

parallel computer system. 



CHAPTER 8 

CONCLUSIONS 

This thesis presented a set of parallel algorithms to solve exact enumeration problems. 

It discussed the application of exact enumerations to the protein folding problem. 

The experimental results justified the success of applying parallel processing to a class 

of lattice graph enumeration problems. The speed up obtained by these algorithms 

are almost linear in all algorithm which are due to the fact that all subtasks are 

highly independent. The communication and synchronization between subtasks are 

very low. 

There are also a number of enumeration. problems that need to be solved 

and require even more computing power than problems discussed in this thesis, for 

example, a binomial contact constraint exact enumeration. 

44 



APPENDIX A 

AN IMPLEMENTATION OF PARALLEL VOLUME AND CONTACT 
CONSTRAINT EXACT ENUMERATION 

In followings are the implementation of parallel exact enumerations wi th volume, 

and volume and contact constraint, ie. algorithms 4.1, 5.1, 5. 2, 5.3 and 5.4. 

/* 
Cubic lattice enumeration with volume, and volume and contact const 

raint 

by: Anek Vorapanya 

last modified: summer of 1993 
known bugs: none 

portability: all environments conform to the POSIX.1 standard 

language standard: ANSI C 

compiler: GNU compiler (gcc) 

compiler options: -ansi -02 

usage: gwalk -h 

tested environment: 

- ULTRIX 4.3A (Rev. 146) (DEC 5900) 
- SUN OS 4.1.3 (Sun) 
- AIX 3.1.2 (IBM RS/6000) 
- IRIX 5.1 (SGI) 

*/ 

#include <string.h> 

#include <malloc.h> 

#include <math.h> 
#include <sys/wait.h> 

#include <sys/times.h> 

#include <sys/time.h> 
#include <sys/resource.h> 
#include <sys/types.h> 
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#include <unistd.h> 

#include <stdarg.h> 

#define MIN_ARGUMENT 	4 	/* min. argument required */ 

#define MAX_PROCESS 	 1 	/* default max. processes */ 

#define DEF_CNT_LV_CHK 	2 	/* default connect level check, 

min.=2 */ 

#define MAX_DIR 	 6 

#define MAX_NEIGHBOR 	6 

#define INVALID_NODE 	(-1) 

#define INVALID_NNBNO 	(-1) 

#define OPPOSITE_DIR_DIFF 	(abs(PLUS_X-MINUS_X)) 

#define DISPCNT_MOD 	 1000L 

#define MIN_DISPCNT_MOD 	100L 

#define MAX_PIPL 	 50 	/* max. % of initial path length */ 

typedef enum { false, true 	boolean; 

typedef enum { 

PLUS_X='0', 

MINUS_X='1', 

PLUS_Y='2', 

MINUS_Y='3', 

PLUS_Z='4', 

MINUS_Z='5', 

INVALID_DIR='#) 

} DIRECTIONS; 

typedef struct { 

int node; 

char dir; 

} neighbor; 

typedef struct { 

int x; 	/* first node of contact */ 

int y; 	/* second node of contact */ 

} contact; 

typedef neighbor neighborlist[MAX_NEIGHBOR]; 

typedef struct { 

int *node; 	/* currently visited node no. at this level in path 
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*/ 

int *nnbno; 	/* currently use of child no of this node */ 

DIRECTIONS *dir; 
} path; 

typedef struct { 
boolean *symnodeflag; 
} symnodeseq; 

typedef enum { _ODpath, _1Dpath, _2Dpath, _3Dpath } pathtype; 

typedef enum { invalid_planetype, xyplane, yzplane, xzplane } planetyp 
e; 

typedef struct pathlist_s { 
pathtype ptype; 
planetype pltype; 
int last; 
int *node; 
DIRECTIONS *dir; 
boolean *usedflag; 
struct pathlist_s *next; 
pathlist; 

int xsize; 
int ysize; 
int zsize; 
long sys_max_child; 
long max_process; 
int min_level; 
int dispcnt_mod; 
enum { gen_initial_path, count_path, gen_path } option; 
boolean verbose=false; 
boolean resource_usage=false; 
int totalnode; 
neighborlist *nearneighbor; 
path *p; 
boolean *usedflag; 
long pathcount; 
long total_nonsym_initial=OL; 
int *num_nearneighbor; 
symnodeseq *symnodetable; 
int *nonsymnodelist; 
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int totalnonsymnode; 
pathlist *stpl; 
pathlist *nspl; 
pathlist *last_stpl; 
pathlist *last_nspl; 
pathlist head_stpl; 
pathlist head_nspl; 
FILE *gwalk_log; 
FILE *fp; 
char filename[256]; 
char initialnodes[1024]; 
long clktck; 
Boolean *tmp_used; 	/* temporary 'usedflag' */ 
int 	*queue; 
contact *contact_set; 
int total_contact=0; 
FILE *foot; 

void error (char *fmt, ...) 
{ 

va_list ap; 
char buf[512]; 

va_start(ap,fmt); 
vsprintf (buf,fmt,ap); 
va_end(ap); 
write (fileno(stderr),buf,strlen(buf)); 
exit (1); 

} 

void usage (void) 
{ 

char tmp[128]; 

fprintf (stderr,"Enumerate geometrically-distinct walk for a X*Y*Z 
volume\n"); 

fprintf (stderr,"usage: gwalk <xsize> <ysize> <zsize> [options]\n" 

); 
fprintf (stderr,"options:\n"); 
fprintf (stderr," 	: to generate initial paths only (save in lo 

g file)\n"); 
fprintf (stderr," -c : to count all possible paths\n"); 
fprintf (stderr," -w : to save generated paths in file (save in p 
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ath.xsize.ysize.zsize)\n"); 

if (sys_max_child==0) 
strcpy (tmp,"unknown"); 

else 
sprintf (tmp,"%ld",sys_max_child-1L); 

fprintf (stderr," -pX : specify no. of processes to run simultane 

ously (your system max %s)\n",tmp); 
fprintf (stderr," -1X : specify percentage of initial path length 

(recommend 15-25,max %d)\n",MAX_PIPL); 
fprintf (stderr," -tX <contact set>: specify contact set where X 

is number of contacts\n"); 
fprintf (stderr," 	and <contact set> is a contact set in the f 

orm 'a-b c-d e-f 	\n"); 
fprintf (stderr," -dX : specify counter display modulo value (min 

%d)\n",MIN_DISPCNT_MOD); 
fprintf (stderr," -v : show the enumeration counting\n"); 
fprintf (stderr," -r : show resource usage\n"); 
fprintf (stderr," -h : print this help screen\n"); 

exit (0); 

} 

void cmdline_parse (int argc,char *argv[]) 
{ 

char *s; 
char tmp[1024]; 
char c; 
int i,j,p; 
int contact_no=(-1); 
int tmptotalnode; 

xsize=0; 
ysize=0; 
zsize=0; 
option=count_path; 
min_level=0; 
dispcnt_mod=DISPCNT_MOD; 

if ((sys_max_child=sysconf(_SC_CHILD_MAX))==0) { 
fprintf (stderr,"* can't determine 'max. processes for user'\n 

"); 
fprintf (stderr," use %d as a default value\n",MAX_PROCESS); 
sys_max_child=MAX_PROCESS; 
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} 

/* set default max. process */ 
max_process=MAX_PROCESS; 

if (argc<MIN_ARGUMENT) 
usage(); 

for (i=1;i<argc;i++) { 
if (i<MIN_ARGUMENT) { 

switch (i) { 
case 1: 

if ((xsize=atoi(argv[1]))==0 II xsize<2) 
usage(); 

break; 
case 2: 

if ((ysize=atoi(argv[2]))==0 || ysize<2) 
usage(); 

break; 
case 3: 

if ((zsize=atoi(argv[3]))==0 II zsize<2) 
usage(); 

break; 
} 

} 

else { 
if (contact_no==(-1)) { 

s=argv[i]; 
if (s[0]!='-') 

usage(); 
s++; 
c=tolower(s[0]); 
} 

else 
c='t'; /* continue scanning contact set */ 

switch (c) { 
case 'c': /* count path only */ 

option=count_path; 
break; 

case 'i': /* generate only initial path and save in lo 
g file */ 

option=gen_initial_path; 
break; 
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case 'w': /* generate path file */ 
option=gen_path; 
/* prepare output file */ 
strcpy (filename,"path"); 
for (j=1;j<MIN_ARGUMENT;j++) { 

strcat(filename,"."); 
strcat(filename,argv[j]); 

} 
if ((fp=fopen(filename,"wb"))==NULL) 

error ("error: can't open output file (%s)\n", 
filename); 

break; 
case '1': /* minimum start level */ 

if ((p=atoi(++s))==0 	p>MAX_PIPL) 
usage(); 

min_level=xsize*ysize*zsize*p/100; 
fprintf (stderr,"* use min. initial level = %d\n", 

min_level); 
break; 

case 'p': /* maximum processes to run simultaneous */ 
/* we have to subtract 1 from sys_max_child 

based on assumption that we will have one 
and only one process running (parent). 

*/ 

if ((max_process=atol(++s))==0 11 max_process>(sys 
_max_child-1L)) 

usage(); 
break; 

case 'd': /* counter display modulo value */ 
if ((dispcnt_mod=atoi(++s))==0 II dispcnt_mod<MIN_ 

DISPCNT_MOD) 
usage(); 

break; 
case 'v': /* verbose */ 

if (s[1]=='-') 
verbose=true; 

break; 
case 't': /* contact constraint set */ 

if (contact_no!=-1) { 
if ((s=strchr(argv[i],'-'))!=NULL) { 

s[0]='\0'; 
if (((contact_set[contact_no].x=atoi(argv[ 

i]))==0 && argv[i][0]!='0') II contact_set[contact_no].x>=xsize*ysize* 
zsize) 
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error("error: invalid contact set no. 

(%s)\n",argv[i]); 
s++; 
if (s[0]=='\0') 

error("error: incomplete contact set ( 
contact no. %d)\n",contact_no); 

if (((contact_set[contact_no].y=atoi(s))== 
0 && s[0]!='0') II contact_set[contact_no].y>=xsize*ysize*zsize) 

error("error: invalid contact set no. 

(%s)\n",$); 
} 

else 
error("error: contact set requires 'x-y' f 

ormat where x and y are nodes no. to form the contact.\n"); 

if (++contact_no==total_contact) 
contact_no=(-1); 

} 

else 
if ((total_contact=atoi(++s))!=0) 

/* allocate contact set data */ 
contact_set=(contact *)malloc(total_contac 

t*sizeof(contact)); 
contact_no=0; 

} 
else 

usage(); 

} 
break; 

case 'r': 
resource_usage=true; 
break; 

default: 
fprintf (stderr,"* error: unknown options (%c)\n", 

s[0]); 

case 'h': 
usage(); 
break; 

} 

} 

} 

/* check if we got all contact as specify with -tX option or not * 



if (contact_no!=-1) 
error("error: number of contacts mismatched\n"); 

} 

void reset_usedflag (void) 
{ 

int i; 

for (i=0;i<totalnode;i++) 

usedflag[i]=false; 
} 

void create_near_neighbor_table (void) 
{ 

int node,count; 
void sort_nearneighbor (void); 

for (node=0;node<totalnode;node++) { 
count=0; 
if ((node%xsize)<(xsize-1)) {. 

nearneighbor[node][count].node=node+1; 
nearneighbor[node][count].dir=PLUS_X; 
count++; 

} 
if ((node%xsize)>0) { 

nearneighbor[node][count].node=node-1; 
nearneighbor[node][count].dir=MINUS_X; 
count++; 
} 

if ((node%(xsize*ysize))<(xsize*ysize-xsize)) { 
nearneighbor[node][count].node=node+xsize; 
nearneighbor[node][count].dir=PLUS_Y; 
count++; 

} 
if ((node%(xsize*ysize))>=xsize) { 

nearneighbor[node][count].node=node-xsize; 
nearneighbor[node][count].dir=MINUS_Y; 
count++; 

} 
if ((node+(xsize*ysize))<totalnode) { 

nearneighbor[node][count].node=node+(xsize*ysize); 
nearneighbor[node][count].dir=PLUS_Z; 
count++; 
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if ((node-(xsize*ysize))>=0) { 
nearneighbor[node][count].node=node-(xsize*ysize); 
nearneighbor[node][count].dir=MINUS_Z; 

count++; 

} 
num_nearneighbor[node]=count; 
} 

sort_nearneighbor (); 

void sort_nearneighbor (void) 

{ 
boolean changed; 
int i,j; 
neighbor tmp; 

/* sort neighbor list using bubble sort */ 
for (i=0;i<totalnode;i++) 

do { 
changed=false; 
for (j=0;j<num_nearneighbor[i]-1;j++) { 

if (nearneighbor[i][j].node>nearneighbor[i][j+1].node) 
{ 

tmp=nearneighbor[i][j]; 
nearneighbor[i][j]=nearneighbor[i][j+1]; 
nearneighbor[i][j+1]=tmp; 
changed=true; 

} 
} 

}

 while (changed==true); 
} 

} 

boolean is_neighbor (int x,int y) { 
int i; 

for (i=0;i<num_nearneighbor[x];i++) { 
if (nearneighbor[x][i].node==y) 

return true; 
} 

return false; 
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void set_contact_constraint (void) { 

int i,j; 

contact tmp; 

/* switch position of x and y such that x is higher than  y */ 

for (i=0;i<total_contact;i++) { 

if (contact_set[i].x<contact_set[i]) { 

/* swap */ 

j=contact_set[i].x; 

contact_set[i].x=contact_set[i].y; 

contact_set[i].y=j; 

} 

/* 

printf ("switch contact %d (%d-%d)\n",i,contact_set[i].x,conta 

ct_set[i].y); 

*/ 

} 

/* we will sort it using bubble sort */ 

for (i=0;i<total_contact;i++) { 

for (j=total_contact-1;j>i;j--) { 

if (contact_set[j].x<contact_set[j-1].x) { 

/* swap */ 

tmp=contact_set[j]; 

contact_set[j]=contact_set[j-1]; 

contact_set[j-1]=tmp; 

} 

} 

fprintf (stderr,"sort contact %d (%d-%d)\n",i,contact_set[i].x 

,contact_set[i].y); 

} 

} 

DIRECTIONS getdir (int cnode,int nnode) 

{ 

int i; 

/* find direction from this nextnode to destination */ 

for (i=0;i<num_nearneighbor[cnode] && nearneighbor[cnode][i].node< 

=nnode;i++) { 

if (nearneighbor[cnode][i].node==nnode) { 

return nearneighbor[cnode][i].dir; 
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} 

} 

return INVALID_DIR; 
} 

int getnextnode (path *p,int level) 

int i,validnnbno; 
int node; 

node=p->node[level]; 
validnnbno=0; 
for (1=0;i<num_nearneighbor[node];1++) { 

if (!usedflag[nearneighbor[node][i].node] && validnnbno++==p-> 
nnbno[level]) { 

p->dir[level]=nearneighbor[node][1].dir; 
return nearneighbor[node][i].node; 
} 

} 

return INVALID_NODE; 
} 

void list_nearneighbor (path *p) 

int l,tmp,j; 

for (1=0;1<totalnode;1++) 
fprintf (fout,"node %d (#nb %d): ",1,num_nearneighbor[1]); 
p->node[0]=1; 
usedflag[1]=true; 
for (j=0;j<num_nearneighbor[1];j++) { 

p->nnbno[0]=j; 
if ((tmp=getnextnode (p,0))!=INVALID_NODE) { 

fprintf (fout,"%d ",tmp); 
usedflag[tmp]=false; 
} 

} 

usedflag[1]=false; 
fprintf (fout,"\n"); 
} 

} 

void print_symnodetable (FILE *stream) 
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int i,j; 

for (i=0;i<totalnode;i++) { 
fprintf (stream,"node %d: ",i); 

for (j=0;j<totalnode;j++) 
if (symnodetable[i].symnodeflag[j]==true) 

fprintf (stream,"%d ",j); 

fprintf (stream,"\n"); 

} 
} 

int point (int x,int y,int z) 
{ 

if (x>=xsize II y>=ysize II z>=zsize) 

error("internal error: invalid x,y,z (%d,%d,%d), max size (%d, 

%d,%d)\n",x,y,z,xsize,ysize,zsize); 
return (int)((int)(z*ysize*xsize)+(int)(y*xsize)+x); 

} 

void gen_non_symmetry_node (void) 
{ 

int i,j; 
boolean *symnodemark; 

symnodemark=(boolean *)malloc(sizeof(boolean)*totalnode); 
if (symnodemark==NULL) 

error ("error: memory allocation (symnodemark)\n"); 

for (i=0;i<totalnode;i++) 

symnodemark[i]=false; 

totalnonsymnode=totalnode; 

for (i=0;i<totalnode;i++) { 
if (symnodemark[i]==true) 

continue; 
for (j=0;j<totalnode;j++) { 

if (symnodetable[i].symnodeflag[j]==true && i!=j) { 
symnodemark[j]=true; 

totalnonsymnode--; 
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nonsymnodelist=(int *)malloc(sizeof(int)*totalnonsymnode); 

if (nonsymnodelist==NULL) 
error ("error: memory allocation (nonsymnodelist)\n"); 

j=0; 
for (i=0;i<totalnode;i++) { 

if (symnodemark[i]==false) 

nonsymnodelist[j++]=i; 
} 

fprintf (fout,"non-symmetrical node (%d): ",totalnonsymnode); 

for (i=0;i<totalnonsymnode;i++) 
fprintf (foot, "'%d ",nonsymnodelist[i]); 

fprintf (fout,"\n"); 

fprintf (gwalk_log,"non-symmetrical node (%d): ",totalnonsymnode); 

for (1=0;i<totalnonsymnode;i++) 
fprintf (gwalk_log,"%d ",nonsymnodelist[i]); 

fprintf (gwalk_log,"\n"); 
} 

void INCLUSIVE_OR_sym_nodeseq (int snode,int dnode) 
{ 

int i; 

for (i=0;i<totalnode;i++) { 

if (symnodetable[snode].symnodeflag[i]==true) 
symnodetable[dnode] .symnodeflag[i]=true; 

else if (symnodetable[dnode].symnodeflag[i]==true) 

symnodetable[snode].symnodeflag[i]=true; 
} 

} 

void addsymnode (int x,int y) 
{ 

symnodetable[x].symnodeflag[y]=true; 
symnodetable[y].symnodeflag[x]=true; 

} 

void gen_sym_node_table (void) 
{ 

int i,j; 

int x,y,z,xx,yy,zz; 
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int a,b,c,d; 

int czsize,cysize,cxsize; 

symnodetable=(symnodeseq *)malloc(sizeof(symnodeseq)*totalnode); 

for (i=0;i<totalnode;i++) { 
symnodetable[i].symnodeflag=(boolean *)malloc(sizeof(boolean)* 

totalnode); 
for (j=0;j<totalnode;j++) 

symnodetable[i].symnodeflag[j]=false; 
} 

/* find symmetry node when rotate cube around z direction */ 

x=0; 

y=0; 

z=0; 

for (czsize=zsize,cysize=ysize,cxsize=xsize;czsize>0;czsize-=2,cys 
ize-=2,cxsize-=2) { 

for (zz=z;zz<czsize;zz++) { 

a=point(x,y,zz); 
c=point(x+cxsize-1,y+cysize-1,zz); 

b=point(x+cxsize-1,y,zz); 

d=point(x,y+cysize-1,zz); 

if (cxsize==cysize) { 

while (a<point(x+cxsize-1,y,zz)) { 

addsymnode(a,b); 

addsymnode(a,d); 

addsymnode(c,b); 

addsymnode(c,d); 

a++; 
b+=cxsize; 
c--; 

d-=cxsize; 
} 

} 
else { 

/* corners will always symmertry to other corners */ 
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addsymnode(a,b); 

addsymnode(a,d); 

addsymnode(c,b); 

addsymnode(c,d); 

while (a<point(x+cxsize-1,y,zz)) { 

addsymnode(a,c); 

a++; 

c--; 

} 

while (b<point(x+cxsize-1,y+cysize-1,zz)) { 

addsymnode(b,d); 

b+=cxsize; 

d-=cxsize; 

} 

} 
} 

x++; 

y++; 

z++; 

} 

/* find symmetry node when rotate cube around x direction */ 

x=0; 

y=0; 

z=0; 

for (czsize=zsize,cysize=ysize,cxsize=xsize;cxsize>0;czsize-=2,cys 

ize-=2,cxsize-=2) { 

for (xx=x;xx<cxsize;xx++) { 

a=point(xx,y,z); 

c=point(xx,y+cysize-1,z+czsize-1); 

b=point(xx,y+cysize-1,z); 

d=point(xx,y,z+czsize-1); 

if (cysize==czsize) { 

while (a<point(xx,y+cysize-1,z)) { 
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addsymnode(a,b); 
addsymnode(a,d); 
addsymnode(c,b); 
addsymnode(c,d); 

a+=cxsize; 
b+=cxsize*cysize; 
c-=cxsize; 
d-=cxsize*cysize; 
} 

} 
else 

/* corners will always symmertry to other corners */ 
addsymnode(a,b); 
addsymnode(a,d); 
addsymnode(c,b); 
addsymnode(c,d); 

while (a<point(xx,y+cysize-1,z)) 
addsymnode(a,c); 

a+=cxsize; 
c-=cxsize; 
} 

while (b<point(xx,y+cysize-1,z+czsize-1)) 
addsymnode(b,d); 
b+=cxsize*cysize; 
d-=cxsize*cysize; 
} 

} 
} 

x++; 
y++; 

Z++; 

} 

/* find symmetry node when rotate cube around y direction */ 

x=0; 
y=0; 
z=0; 

for (czsize=zsize,cysize=ysize,cxsize=xsize;cysize>0;czsize-=2,cys 
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ize-=2,cxsize-=2) { 

for (yy=y;yy<cysize;yy++) { 

a=point(x,yy,z); 

c=point(x+cxsize-1,yy,z+czsize-1); 

b=point(x+cxsize-1,yy,z); 

d=point(x,yy,z+czsize-1); 

if (cxsize==czsize) { 

while (a<point(x+cxsize-1,yy,z)) { 

addsymnode(a,b); 

addsymnode(a,d); 

addsymnode(c,b); 

addsymnode(c,d); 

a++; 

b+=cxsize*cysize; 
c--; 

d-=cxsize*cysize; 

} 

} 

else { 

/* corners will always symmertry to other corners */ 

addsymnode(a,b); 

addsymnode(a,d); 

addsymnode(c,b); 

addsymnode(c,d); 

while (a<point(x+cxsize-1,yy,z)) { 

addsymnode(a,c); 

a++; 

c--; 

} 

while (b<point(x+cxsize-1,yy,z+czsize-1)) { 

addsymnode(b,d); 

b+=cxsize*cysize; 

d-=cxsize*cysize; 

} 

} 

} 
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X++; 

y++; 

z++; 

} 

/* retrieve all symmetry node seq. */ 
for (i=0;i<totalnode;i++) { 

for (j=0;j<totalnode;j++) { 
if (symnodetable[i].symnodeflag[j]==true) 

INCLUSIVE_OR_sym_nodeseq (i,j); 

else if (i==j) 
symnodetable[i].symnodeflag[j]=true; 

} 
} 

print_symnodetable (gwalk_log); 
fflush (gwalk_log); 

} 

boolean issymnode (int na,int nb) 
{ 

if (nb==INVALID_NODE) 
return false; 

else if (symnodetable[na].symnodeflag[nb]==true) 
return true; 

else 
return false; 

} 

void get_all_available_nearneighbor (boolean *usedflag,int cnode,neigh 
bor *ann,int *cnt) 
{ 

int i; 

*cnt=0; 
for (i=0;i<num_nearneighbor[cnode];i++) { 

if (usedflag[nearneighbor[cnode][i].node]==false) { 
ann[*cnt].node=nearneighbor[cnode][i].node; 
ann[*cnt].dir=nearneighbor[cnode] [i].dir; 
(*cnt)++; 
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void create_newpath (pathlist *orgpath,pathlist **newpath,int newlastn 
ode,DIRECTIONS dirlastnode) 
{ 

int i; 

*newpath=(pathlist *)malloc(sizeof(pathlist)); 
(*newpath)->node=(int *)malloc(sizeof(int)*totalnode); 
(*newpath)->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode) 

; 

(*newpath)->usedflag=(boolean *)malloc(sizeof(boolean)*totalnode); 

for (i=0;i<totalnode;i++) { 
(*newpath)->node[i]=INVALID_NODE; 
(*newpath)->dir[i]=INVALID_DIR; 
(*newpath)->usedflag[i]=false; 
} 

if (orgpath!=NULL) { 
(*newpath)->last=orgpath->last; 
(*newpath)->ptype=orgpath->ptype; 
(*newpath)->pltype=orgpath->pltype; 
memcpy((*newpath)->node,orgpath->node,orgpath->last*sizeof (int 

)) ; 
memcpy((*newpath)->dir,orgpath->dir,(orgpath->last-1)*sizeof(D 

IRECTIONS)); 
memcpy((*newpath)->usedflag,orgpath->usedflag,totalnode*sizeof 

(boolean)); 
(*newpath)->dir[(*newpath)->last-1]=dirlastnode; 
} 

else { 
(*newpath)->last=0; 
(*newpath)->ptype=_ODpath; 
(*newpath)->pltype=invalid_planetype; 
} 

(*newpath)->node[(*newpath)->last]=newlastnode; 
(*newpath)->usedflag[newlastnode]=true; 
(*newpath)->last++; 
(*newpath)->next=NULL; 

} 

void add_to_stpl (pathlist *p) 



last_stpl->next=p; 
last_stpl=p; 

} 

void add_to_nspl (pathlist *p) 
{ 

last_nspl->next=p; 
last_nspl=p; 

} 

void del_head_stpl (void) 
{ 

pathlist *p; 

if (stpl->next!=NULL) { 
p=stpl->next; 
stpl->next=stpl->next->next; 
/* throw it away */ 
free (p); 
} 

} 

pathlist *del_head_nspl (void) 
{ 

pathlist *p; 

if (nspl->next!=NULL) { 
p=nspl->next; 
nspl->next=nspl->next->next; 
return p; 
} 

else 
return NULL; 

} 

planetype det_planetype (DIRECTIONS cdir,DIRECTIONS ndir) 
{ 

switch (cdir) { 
case PLUS X: 
case MINUS_X: 

if (ndir==PLUS_Y II ndir==MINUS_Y) 
return xyplane; 

else 
return xzplane; 
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break; 
case PLUS_Y: 
case MINUS Y: 

if (ndir==PLUS_X || ndir==MINUS_X) 
return xyplane; 

else 
return yzplane; 

break; 
case PLUS Z: 
case MINUS_Z: 

if (ndir==PLUS_Y || ndir==MINUS_Y) 
return yzplane; 

else 
return xzplane; 

break; 
} 

} 

void remove_ann (neighbor *ann,int idx,int *cnt) 
{ 

int i; 

if (*cnt!=1) { 
/* fill this 'hole' in 'ann' with last 'ann' */ 

ann[idx].node=ann[*cnt-1].node; 
ann[idx].dir=ann[*cnt-1].dir; 
(*cnt)--; 
} 

} 

void remove_symnode (neighbor *nn,int *cnt) 
{ 

int i,j; 

for (i=0;i<*cnt;i++) { 
for (j=i+1;j<*cnt;) { 

if (issymnode(nn[i].node,nn[j].node)) 
remove_ann (nn,j,cnt); 

else 
j++; 

} 
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void gen_non_symmetry_path (void) 
{ 

pathlist *np; 
pathlist *cp; 
int i,nsc,cnt; 
neighbor ann[MAX_NEIGHBOR]; 
boolean add; 

/* init STPL (symmetry test path list) and NSPL (non-symmetry init 
ial path list */ 

head_stpl.next=NULL; 
head_nspl.next=NULL; 
stp1=(pathlist *)&head_stpl; 
nsp1=(pathlist *)&head_nspl; 
last_stp1=(pathlist *)&head_stpl; 
last_nspl=(pathlist *)&head_nspl; 

/* add 'non-symmetry node' to initial stpl */ 
for (nsc=0;nsc<totalnonsymnode;nsc++) { 

create_newpath (NULL,&np,nonsymnodelist[nsc],INVALID_DIR); 
add_to_stpl (np); 
} 

while ((cp=stpl->next)!=NULL) { 
get_all_available_nearneighbor (cp->usedflag,cp->node[cp->last 

-1],ann,&cnt); 
switch (cp->ptype) { 

case _ODpath: 
/* we just start walking so we choose to walk 

to only node that are non-symmetrical */ 
remove_symnode (ann,&cnt); 
for (i=0;i<cnt;i++) { 

create_newpath (cp,&np,ann[i].node,ann[i].dir); 
np->ptype=_1Dpath; 

np->usedflag[ann[i].node]=true; 
add_to_stpl (np); 
} 

break; 
case _1Dpath : 

/* find 'stright path' , this path will not 
symmetry to other pathes */ 

for (i=0;i<cnt;i++) { 

if (ann[i].dir==cp->dir[0]) { 
create_newpath (cp,&np,ann[i].node,ann[i].dir) 
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np->usedflag[ann[i].node]=true; 
add_to_stpl (np); 
/* remove this from available near neighbors * 

/ 
remove_ann (ann,i,&cnt); 
break; 
} 

} 

/* add only non-symmetry neighbor */ 
/* and it will be 'plane path' from now on */ 
remove_symnode (ann,&cnt); 
for (i=0;i<cnt;i++) { 

create_newpath (cp,&np,ann[i].node,ann[i].dir); 
np->usedflag[ann[i].node]=true; 
np->ptype=_2Dpath; 
np->pltype=det_planetype (cp->dir[0],ann[i].dir); 
add_to_stpl (np); 
} 

break; 
case _2Dpath 

/* find 'ann' that is in plane */ 
/* add it to 'stpl' (it will not symmetry) */ 
for (i=0;i<cnt;) { 

if ((cp->pltype==xyplane && ann[i].dir!=PLUS_Z && 
ann[i].dir!=MINUS_Z) II (cp->pltype==yzplane && ann[i].dir!=PLUS_X && 
ann[i].dir!=MINUS_X) || (cp->pltype==xzplane && ann[i].dir!=PLUS_Y &&  
ann[i].dir!=MINUS_Y)) { 

create_newpath (cp,&np,ann[i].node,ann[i].dir) 
• 

np->usedflag[ann[i].node]=true; 
remove_ann (ann,i,&cnt); 
add_to_stpl (np); 
} 

else 
i++; 

} 

/* remove symmetry node and add the rest to 'NSPL' */ 
remove_symnode (ann,&cnt); 
for (i=0;i<cnt;i++) { 

create_newpath (cp,&np,ann[i].node,ann[i].dir); 
np->usedflag[ann[i].node]=true; 
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/* now we have non-symmetrical initial path 
list if user didn't specify 'min. level of 
initial path', we will use this as NSPL 

*/ 

if (np->last>=min_level) { 
add_to_nspl (np); 
total_nonsym_initial++; 
} 

else { 
np->ptype=_3Dpath; 
add_to_stpl (np); 
} 

} 

break; 
case _3Dpath 

for (i=0;i<cnt;i++) { 
create_newpath (cp,&np,ann[i].node,ann[i].dir); 
np->usedflag[ann[i].node]=true; 
if (np->last<min_level) 

add_to_stpl (np); 
else { 

add_to_nspl (np); 
total_nonsym_initial++; 
} 

} 

break; 
} 

del_head_stpl (); 
} 

} 

int satisfy_cc (int contact_no,int level,int node) { 
/* if no contact constrints, or contact constraint was already sat 

isfy then return true */ 
if (total_contact==0 II contact_no>=total_contact) return true; 

/* check if it satisfy contact constraints */ 
/* 
fprintf (stderr,"check cc contact_no %d,level %d,node %d\n",contac 

t_no,level,node); 
*/ 

while (level==contact_set[contact_no].x) { 
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if (is_neighbor(p->node[contact_set[contact_no].y],node)==fals 

e) 
return -1; 	/* if it false, we can stop immediately */ 

/* if it true, we have to check that it true in all contact */ 

contact_no++; 
} 

/* 
fprintf (stderr,"* check ok, new contact no. %d\n",contact_no); 
*/ 

return contact_no; 
} 

boolean connect (int level,int node) { 
int i,cur,last,cnode; 

if (level>=totalnode-DEF_CNT_LV_CHK) 
return true; 	/* assume default 'connect' */ 

/* use BFS to check connectivity of non-planar graph */ 

memcpy (tmp_used,usedflag,sizeof(boolean)*totalnode); 
tmp_used [node] =true; 
for (i=0;i<totalnode 	tmp_used[i]==true;i++); 
tmp_used[i]=true; 

cur=0; 
last=0; 
queue[0]=i; 

do { 
cnode=queue[cur]; 
for (1=0;i<num_nearneighbor[cnode];i++) { 

if (tmp_used[nearneighbor[cnode][1].node]==false) { 
queue[++last]=nearneighbor[cnode][1].node; 
tmp_used[nearneighbor[cnode] [i].node]=true; 
} 

} 

} while (++cur<=last); 

if ((last+1)==totalnode-(level+2)) 
return true; 

else 
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return false; 

} 

void walk (path *p,int level) 
{ 

int i,nextnode; 
int startlevel; 
char line[256]; 
int contact_no=0; 
int newctno; 

startlevel=level; 

/* check contact constraint */ 
if (total_contact!=0 && level>=contact_set[contact_no].x) 

i=contact_set[contact_no].x; 	/* initial level */ 
do 

if (i==contact_set[contact_no].x) { 
if ((newctno=satisfy_cc(contact_no,i,p->node[contact_s 

et[contact_no].x]))==-1) 
return; /* this initial path didn't satisfy contac 

t constraints */ 
contact_no=newctno; 
} 

while (++i<=level); 
} 

/* start walking (exhaustive search) */ 
do { 

if ((nextnode=getnextnode(p,level))!=INVALID_NODE && connect(1 
evel,nextnode) && (newctno=satisfy_cc(contact_no,level+1,nextnode))!=- 
1) { 

p->node[++level]=nextnode; 
contact_no=newctno; 

if (level==totalnode-1) { 
++pathcount; 
if (verbose) { 

if (!(pathcount%dispcnt_mod)) { 
sprintf (line," 	%s [%1d]\n",initialnodes,pat 

hcount); 

write (fileno(fout),line,strlen(line)); 
} 
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} 

if (option==gen_path) { 
p->dir[totalnode-1]='\n'; 
write (fileno(fp),p->dir,sizeof(DIRECTIONS)*totaln 

ode); 
} 

/* backtrack to search new path by (3) step */ 
for (i=0;i<3;i++) 

usedflag[p->node[level--]]=false; 

/* 'rewind' contact constraint checking level */ 
if (total_contact!=0) { 

while (contact_no!=0 && contact_set[contact_no-1]. 
x>level) 

contact_no--; 
} 

/* 
fprintf (stderr,"- (fin) backtrack at level %d new con 

tact no. %d\n",level,contact_no); 
*/ 

} 
else { 

p->nnbno[level]=(-1); 
usedflag[nextnode]=true; 
} 

} 

/* change to new nnbno; if nnbno is above limit, change level 
*/ 

while (+4-p->nnbno[level]>=num_nearneighbor[p->node[level]] && 

level>startlevel) { 
usedflag[p->node[level]]=false; 
level--; 

/* 'rewind' contact constraint checking level */ 
if (total_contact!=0) { 

while (contact_no!=0 && contact_set[contact_no-1].x>le 
vel) 

contact_no--; 

} 
/* 
fprintf (stderr,"- backtrack at level %d new contact no. 

d\n",level,contact_no); 
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*/ 

} 

while (level>startlevel II (level==startlevel && p->nnbno[le 
vel]<num_nearneighbor[p->node[level]])); 

} 

void print_resource_usage (void) { 
struct rusage presage; 
struct rusage crusage; 
double cputime[2][2]; 
double total_cputime; 
int i; 

if (resource_usage) { 
getrusage (RUSAGE_SELF,&prusage); 
getrusage (RUSAGE_CHILDREN,&crusage); 

fprintf (stderr,"resource usage:\n"); 
fprintf (stderr," 	parent 	child\n"); 
fprintf (stderr," user: 	%7.3f 	%7.3f [user time use 

d]\n",cputime[0][0]=(double)prusage.ru_utime.tv_sec+(double)((double)p 
rusage.ru_utime.tv_usec/1000000.0),cputime[0][1]=(double)crusage.ru_ut 
ime.tv_sec+(double)((double)crusage.ru_utime.tv_usec/1000000.0)); 

fprintf (stderr," sys: 	%7.3f 	%7.3f [system time u 
sed]\n",cputime[1][0]=(double)prusage.ru_stime.tv_sec+(double)((double 
)prusage.ru_stime.tv_usec/1000000.0),cputime[1][1]=(double)crusage.ru_ 
stime.tv_sec+(double)((double)crusage.ru_stime.tv_usec/1000000.0)); 
/* 

fprintf (stderr," maxrss: 	%6d 	%6d [maximum residen 
t set size]\n",prusage.ru_maxrss,crusage.ru_maxrss); 

fprintf (stderr," ixrss: 	446d 	%6d [integral shared 
text size]\n",prusage.ru_ixrss,crusage.ru_ixrss); 

fprintf (stderr," idrss: 	%6d 	%6d [integral data r 
esident set size]\n",prusage.ru_idrss,crusage.ru_idrss); 

fprintf (stderr," isrss: 	%6d 	%6d [integral stack 
resident set size]\n",prusage.ru_isrss,crusage.ru_isrss); 

fprintf (stderr," minflt: 	%6d 	%6d [page faults not 
requiring physical I/0]\n",prusage.ru_minflt,crusage.ru_minflt); 

fprintf (stderr," majflt: 	%6d 	%6d [page faults req 
uiring physical I/0]\n",prusage.ru_majflt,crusage.ru_majflt); 

fprintf (stderr," nswap: 	%6d 	%6d [swaps]\n",prusa 
ge.ru_nswap,crusage.ru_nswap); 

fprintf (stderr," inblock: 	%6d 	%6d [block input ope 
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rations]\n",prusage.ru_inblock,crusage.ru_inblock); 
fprintf (stderr," oublock: 	/.6d 	7.6d 

erations]\n",prusage.ru_oublock,crusage.ru_oublock); 
fprintf (stderr," msgsnd: 	%6d 	%6d 

n",prusage.ru_msgsnd,crusage.ru_msgsnd); 
fprintf (stderr," msgrcv: 	%6d 	%6d 

ed]\n",prusage.ru_msgrcv,crusage.ru_msgrcv); 
fprintf (stderr," nsignals: 	%6d 	%6d 

d]\n",prusage.ru_nsignals,crusage.ru_nsignals); 

fprintf (stderr," nvcsw: 	%6d 	%6d 

xt switches]\n",prusage.ru_nvcsw,crusage.ru_nvcsw); 

fprintf (stderr," nivcsw: 	%6d 	%6d 

[block output op 

[messages sent]\ 

[messages receiv 

[signals receive 

[voluntary conte 

[involuntary con 

text switches]\n",prusage.ru_nivcsw,crusage.ru_nivcsw); 
*/ 

total_cputime=0; 
for (i=0;i<2;i++) 

total_cputime+=cputime[i][0]; 
total_cputime+=cputime[i][1]; 

} 
fprintf (stderr,"\n* total CPU time: %.3f\n\n",total_cputime); 

} 

} 

void print_time (clock_t real,struct tms *tmsstart, struct tms *tmsend 

{ 

double cputime[2][2]; 
double total_cputime; 

int i; 

fprintf (fout,"CPU time usage (seconds):\n"); 
fprintf (fout," parent:\n"); 
fprintf (f out," 	user: %.3f\n",cputime[0][0]=(tmsend->tms_utime-

tmsstart->tms_utime)/(double)clktck); 
fprintf (fout," 	sys: %.3f\n",cputime[0][1]=(tmsend->tms_stime- 

tmsstart->tms_stime)/(double)clktck); 
fprintf (fout," child:\n"); 
fprintf (fout," 	user: %.3f\n",cputime[1][0]=(tmsend->tms_cutime 

-tmsstart->tms_cutime)/(double)clktck); 
fprintf (fout," 	sys: %.3f\n",cputime[1][1]=(tmsend->tms_cstime 

-tmsstart->tms_cstime)/(double)clktck); 
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total_cputime=0; 

for (i=0;i<2;i++) { 
total_cputime+=cputime[i][0]; 

total_cputime+=cputime[i][1]; 
} 

fprintf (fout,"\n* total cpu time: %.3f\n",total_cputime); 
fprintf (foot,"* wall clk time: %.3f (note: on SUN, this value wi 

11 be 0)\n\n",(double)real/(double)clktck); 
} 

void main (int argc,char *argv[]) 
{ 

int node,j,l,i; 
char filename [64]; 
pathlist *nsp; 

char tmp[128]; 

int pid; 
char line[1024]; 

int fd[2]; 
long sum; 

long cnt; 
long waitrun,currun; 

int r,x,y; 

struct tms tmsstart,tmsend; 

clock_t start,end; 

/* to solve problem of logging output in shell script */ 

fout=stdout; 

setbuf(fout,NULL); 	/* set it to unbuffered mode */ 

/* get system 'clock tick value' */ 
if ((clktck=sysconf(_SC_CLK_TCK))==0) 

error("error: can't fetch 'clk tick value'"); 

cmdline_parse(argc,argv); 
totalnode=zsize*ysize*xsize; 

sprintf (line,"date >> date,%d,%d,%d",xsize,ysize,zsize); 
system(line); 

sprintf (filename,"gwalk.%d.%d.%d.log",xsize,ysize,zsize); 

if ((gwalk_log=fopen (filename,"wb"))==NULL) 
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error ("error: can't open log file (%s)\n",filename); 

/* allocate data */ 
p=(path *)malloc(sizeof(path)); 
p->node=(int *)malloc(sizeof(int)*totalnode); 
p->nnbno=(int *)malloc(sizeof(int)*totalnode); 
p->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode); 
nearneighbor=(neighborlist *)malloc(sizeof(neighbor)*MAX_NEIGHBOR* 

totalnode); 
usedflag=(boolean *)malloc(sizeof(boolean)*totalnode); 
num_nearneighbor=(int *)malloc(sizeof(int)*totalnode); 
tmp_used=(boolean *)malloc(sizeof(boolean)*totalnode); 
queue=(int *)malloc(sizeof(int)*totalnode); 

if (p==NULL II p->node==NULL II p->nnbno==NULL II p->dir==NULL II 
nearneighbor==NULL II usedflag==NULL II num_nearneighbor==NULL it tmp_ 
used==NULL II queue==NULL) 

error ("(001) Memory allocation error.\n"); 

fprintf (fout,"xsize %d, ysize %d, zsize %d, totalnode %d\n",xsize 
,ysize,zsize,totalnode); 

fprintf (gwalk_log,"xsize %d, ysize %d, zsize %d, totalnode %d\n", 
xsize,ysize,zsize,totalnode); 

create_near_neighbor_table (); 
set_contact_constraint (); 

gen_sym_node_table (); 
gen_non_symmetry_node (); 
gen_non_symmetry_path (); 

fprintf (fout,"total 'initial' non-symmetrical path: %d\n",total_n 
onsym_initial); 

fprintf (gwalk_log,"total 'initial' non-symmetrical path: %d\n",to 
tal_nonsym_initial); 

/* create 'pipe' for inter-process communicatation */ 
if (pipe(fd)<0) 

error ("error create pipe"); 

cnt=0L; 
currun=0L; 
waitrun=total_nonsym_initial; 
sum=0L; 
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do { 

while ((currun<max_process II option==gen_initial_path) && wai 

trun>0L) { 

nsp=del_head_nspl(); 
if (nsp==NULL) 

break; 

waitrun--; 

if (xsize==3 && ysize==3 && zsize==3 && (nsp->node[0]==1 
nsp->node[0]==13)) 

continue; 

sprintf (initialnodes,"(%1d) enum ",cnt++); 
reset_usedflag (); 

/* prepare initial path */ 
for (i=0;i<nsp->last;i++) { 

sprintf (tmp,"%d ",nsp->node[i]); 
strcat (initialnodes,tmp); 
if (option!=gen_initial_path) { 

p->node[i]=nsp->node[i]; 
p->dir[i]=nsp->dir[i]; 
p->nnbno[i]=0; 

usedflag[nsp->node[i]]=true; 
} 

} 

/* we have to flush fout, log file here, otherwise 
child processes will do this and we will get a lot 
of duplicate data. (stderr is, by default, 
unbuffered) 

*/ 

fflush (fout); 
fflush (gwalk_log); 

if (option!=gen_initial_path) { 
if ((pid=fork0)<0) { 

fprintf (stderr,"fork error (Ctrl-C to stop all ch 
ildren)\n"); 

getchar (); 
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exit (1); 
} 

else if (pid==0) { /* child process */ 
/* get start time */ 
start=times(&tmsstart); 

/* start walking from initial path */ 

pathcount=0L; 
walk (p,nsp->last-1); 

/* get stop time */ 
end=times(&tmsend); 

if (verbose) { 
/* record total walks, time usage (only 'paren 

t') */ 
sprintf (line," * %s: [%1d] [user %.2g,sys %.2 

g]\n",initialnodes,pathcount,(tmsend.tms_utime-tmsstart.tms_utime)/(do 
uble)clktck,(tmsend.tms_stime-tmsstart.tms_stime)/(double)clktck); 

write (fileno(fout),line,strlen(line)); 

write (fileno(gwalk_log),line,strlen(line)); 
} 

if (write (fd[1],&pathcount,sizeof(long))!=sizeof( 
long)) 

error ("write to pipe failed\n"); 

exit (0); 	/* child terminate normally */ 
} 

else /* parent process */ 
currun++; 

} 

else { 
strcat (initialnodes,"\n"); 
write(fileno(gwalk_log),initialnodes,strlen(initialnod 

es)); 
} 

} 

/* if total running process is more than limit, wait for some 
of them to 

finished, then create more .. */ 
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while ((currun>=max_process II (waitrun==OL && currun>OL)) && 

option!=gen_initial_path) { 
r=wait(NULL); 
if (r<0) 

error ("wait error"); 
else if (r>0) { 

if (read (fd[0],&pathcount,sizeof(long))!=sizeof(long) 

error ("read pipe error"); 

sum+=pathcount; 
currun--; 
} 

} 
while (currun>OL II waitrun>OL); 

fprintf (fout,"* Enumeration ended\n"); 
if (option!=gen_initial_path) { 

fprintf (fout,"\n* total geometrically-distinct walks: %ld\n", 
sum); 

fprintf (gwalk_log,"\n* total geometrically-distinct walks: %l 
d\n",sum); 

} 

sprintf (line,"date >> date.%d,%d.%d",xsize,ysize,zsize); 
system (line); 

print_resource_usage(); 
} 



APPENDIX B 

AN IMPLEMENTATION OF PARALLEL CONTACT CONSTRAINT 
EXACT ENUMERATION 

In following are the implementation of parallel exact enumeration with contact 

constraint, ie. algorithm 4.1 and 5.5. 

/* 
Cubic lattice enumeration with contact constraint 

by: Anek Vorapanya 

last modified: summer of 1993 

known bugs: none 

portability: all environments conform to the POSIX.1 standard 

language standard: ANSI C 

compiler: GNU compiler (gcc) 

compiler options: -ansi -02 

usage: cwalk -h 

tested environment: 

- ULTRIX 4.3A (Rev. 146) (DEC 5900) 

- SUN OS 4.1.3 (Sun) 

- AIX 3.1.2 (IBM RS/6000) 

- IRIX 5.1 (SGI) 
*/ 

#include <stdio.h> 

#include <string.h> 

#include <malloc.h> 

#include <math.h> 

#include <sys/wait.h> 

#include <sys/times.h> 

#include <sys/time.h> 

#include <sys/resource.h> 

#include <sys/types.h> 

80 
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#include <unistd.h> 

#include <stdarg.h> 

#define MIN_ARGUMENT 	4 	/* min. argument required */ 

#define MAX_PROCESS 	 1 	/* default max. processes */ 

#define DEF_CNT_LV_CHK 	2 	/* default connect level check, 

min.=2 */ 

#define MAX_DIR 	 6 

#define MAX_NEIGHBOR 	6 

#define INVALID_NODE 	(-1) 

#define INVALID_NNBNO 	( - 1) 
#define OPPOSITE_DIR_DIFF 	(abs(PLUS_X-MINUS_X)) 

#define DISPCNT_MOD 

#define MIN_DISPCNT_MOD 

#define MAX_PIPL 

/* maximum dimension 

#define MAX_X 

#define MAX_Y 

#define MAX_Z 

#define plus_dir(dir) 

#define minus_dir(dir) 

#define inttodir(i)  

1000L 

100L 

50 	/* max. % of initial path length */ 

(((dir%2)==0)?dir:(dir-1)) 

(((dir%2)==0)?(dir+1):dir) 

((DIRECTIONS)(i+'0')) 

*/ 
10 

10 

10 

typedef enum { false, true } boolean; 

typedef enum { 

PLUS_X='0', 

MINUS_X=minus_dir(PLUS_X), 

PLUS_Y='2', 

MINUS_Y=minus_dir(PLUS_Y), 

PLUS_Z='4', 

MINUS_Z=minus_dir(PLUS_Z), 

INVALID_DIR='#' 

} DIRECTIONS; 

typedef struct { 

int x; 

int y; 

int z; 

NODE; 
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typedef struct 
int ca; 	/* first node of contact */ 
int cb; 	/* second node of contact */ 

} contact; 

typedef struct { 
NODE *node; 	 /* currently visited node no. at this level 

*/ 

DIRECTIONS *dir; 	/* direction of walk */ 
int *nnbno; 	 /* currently used child no of this node */ 
} path; 

typedef enum { _0Dpath, _1Dpath, _2Dpath, _3Dpath pathtype; 

typedef enum 	invalid_planetype, xyplane, yzplane, xzplane } planetyp 
e: 

typedef struct pathinfo_s { 
pathtype ptype; 
planetype pltype; 
int last; 
NODE *node; 
DIRECTIONS *dir; 
int *nnbno; 
struct pathinfo_s *next; 
} pathinfo; 

long sys_max_child; 
long max_process; 
int min_level; 
int dispcnt_mod; 
enum { gen_initial_path, count_path, gen_path } option; 
boolean verbose=false; 
boolean resource_usage=false; 
int totalnode; 
long pathcount; 
long total_nonsym_initial=0L; 
int totalnonsymnode; 
pathinfo *stpl; 
pathinfo *nspl; 
pathinfo *last_stpl; 
pathinfo *last_nspl; 
pathinfo head_stpl; 
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pathinfo head_nspl; 
FILE *cwalk_log; 
FILE *fp; 
char filename[256]; 
char initialnodes[1024]; 
long clktck; 
contact *contact_set; 
int total_contact=0; 
FILE *fout; 

int nsplcnt=0; 
int tmpnsplcnt=0; 

void error (char *fmt, ...) 
{ 

va_list ap; 
char buf[512]; 

va_start(ap,fmt); 
vsprintf (buf,fmt,ap); 
va_end(ap); 
write (fileno(stderr),buf,strlen(buf)); 
exit (1); 

} 

void usage (void) 
{ 

char tmp[128]; 

fprintf (stderr,"Enumerate geometrically-distinct walk with contac 
t constraints\n"); 

fprintf (stderr,"usage: cwalk <totalnode> [options]\n"); 
fprintf (stderr,"options:\n"); 
fprintf (stderr," 	: to generate initial paths only (save in lo 

g file)\n"); 
fprintf (stderr," -c : to count all possible paths\n"); 
fprintf (stderr," -w : to save generated paths in file (save in p 

ath.<totalnode>)\n"); 

if (sys_max_child==0) 
strcpy (tmp,"unknown"); 

else 
sprintf (tmp,"%1d",sys_max_child-1L); 
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fprintf (stderr," -pX : specify no. of processes to run simultane 
ously (your system max %s)\n",tmp); 

fprintf (stderr," 	: specify percentage of initial path length 
(recommend 15-25,max %d)\n",MAX_PIPL); 

fprintf (stderr," -tX <contact set>: specify contact set where X 
is number of contacts\n"); 

fprintf (stderr," 	and <contact set> is a contact set in the f 
orm 'a-b c-d e-f 	\n"); 

fprintf (stderr," -dX : specify counter display modulo value (min 
%d)\n",MIN_DISPCNT_MOD); 

fprintf (stderr," -v : show the enumeration counting\n"); 
fprintf (stderr," -r : show resource usage\n"); 
fprintf (stderr," -h : print this help screen\n"); 
exit (0); 

} 

void cmdline_parse (int argc,char *argv[]) 
{ 

char *s; 
char tmp[1024]; • 
char c; 
int i,j,p; 
int contact_no=(-1); 
int tmptotalnode; 

opt ion=count_path; 
min_level=0; 
dispcnt_mod=DISPCNT_MOD; 

if ((sys_max_child=sysconf(_SC_CHILD_MAX))==0) { 
fprintf (stderr,"* can't determine 'max. processes for user'\n 

"); 
fprintf (stderr," use 	as a default value\n",MAX_PROCESS); 
sys_max_child=MAX_PROCESS; 
} 

/* set default max. process */ 
max_process=MAX_PROCESS; 

if (argc<MIN_ARGUMENT) 
usage(); 

for (i=1;i<argc;i++) { 
if (i==1) { 
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/* get total node */ 
if ((totalnode=atoi(argv[i]))==0) 

usage(); 
} 

else { 
if (contact_no==(-1)) { 

s=argv[i]; 
if (s[0]!='-') 

usage(); 
s++; 
c=tolower(s[0]); 
} 

else 
c='t'; /* continue scanning contact set */ 

switch (c) { 
case 'c': /* count path only */ 

option=count_path; 
break; 

case 'i': /* generate.only initial path and save in lo 

g file *1 
option=gen_initial_path; 
break; 

case 'w': /* generate path file */ 
option=gen_path; 
/* prepare output file */ 
strcpy (filename,"path"); 
strcat(filename,"."); 
strcat(filename,argv[1]); 
if ((fp=fopen(filename,"wb"))==NULL) 

error ("error: can't open output file (%s)\n", 
filename); 

break; 
case '1': /* minimum start level */ 

if ((p=atoi(++s))==0 || p>MAX_PIPL) 
usage(); 

min_level=totalnode*p/100; 
fprintf (stderr,"* use min. initial level = %d\n", 

min_level); 
break; 

case 'p': /* maximum processes to run simultaneous */ 
1* we have to subtract 1 from sys_max_child based 

on assumption that we will have one and only one running (parent proce 
ss). 
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*/ 

if ((max_process=atol(++s))==0 || max_process>(sys 

_max_child-1L)) 

usage(); 

break; 

case id': /* counter display modulo value */ 

if ((dispcnt_mod=atoi(++s))==0 II dispcnt_mod<MIN_ 

DISPCNT_MOD) 

usage(); 

break; 

case 'v': /* verbose */ 

if (s[1]=='-') 

verbose=true; 

break; 

case 't': /* contact constraint set */ 

if (contact_no!=-1) { 

if ((s=strchr(argv[i],'-'))!=NULL) { 

s[0]='\0'; 

if (((contact_set[contact_no].ca=atoi(argv 

[i]))==0 && argv[i][0]!='0') || contact_set[contact_no].ca>=totalnode) 

error("error: invalid contact set no. 

(%s)\n",argv[i]); 
s++; 

if (s[0]=='\0') 

error("error: incomplete contact set ( 

contact no. %d)\n",contact_no); 

if (((contact_set[contact_no].cb=atoi(s))= 

=0 && s[0]!='0') II contact_set[contact_no].cb>=totalnode) 

error("error: invalid contact set no. 

(%s)\n",s); 

} 

else 

error("error: contact set requires 'x-y' f 

ormat where x and y are nodes no. to form the contact.\n"); 

if (++contact_no==total_contact) 

contact_no=(-1); 

} 

else { 

if ((total_contact=atoi(++s))!=0) { 

/* allocate contact set data */ 

contact_set=(contact *)malloc(total_contac 

t*sizeof(contact)); 
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contact_no=0; 
} 

else 
usage(); 

} 

break; 
case 'r': 

resource_usage=true; 
break; 

default: 
fprintf (stderr,"* error: unknown options (%c)\n", 

s[0]); 
case 'h': 

usage(); 
break; 

} 

} 

} 

/* check if we had all contact as specify with -tX option or not * 
/ 

if (contact_no!=-1) 
error("error: number of contacts mismatched\n"); 

} 

Boolean usednode (NODE *nl,int last,NODE *n) 
{ 

int i; 

for (i=0;i<=last;i++) { 

1* 
printf ("node list [%d] (%d,%d,%d), node (%d,%d,%d)\n",i,n1[i] 

.x,nl[i].y,nl[i].z,n->x,n->y,n->z); 
*/ 

if (nl[i].x==n->x && nl[i].y==n->y && n1[1].z==n->z) { 

/* 
printf ("* used\n"); 
*/ 

return true; 
} 

} 

/* 
printf ("* UNused\n"); 
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*/ 

return false; 

} 

boolean is_neighbor (NODE *n,NODE *m) 

{ 

if ((abs(n->x-m->x)==1 && n->y==m->y && n->z==m->z) II 

(n->x==m->x && abs(n->y-m->y)==1 && n->z==m->z) II 

(n->x==m->x && n->y==m->y && abs(n->z-m->z)==1)) 

return true; 

else 

return false; 

} 

void set_contact_constraint (void) 

{ 

int i,j; 

contact tmp; 

/* switch position of x and y such that x is lower than y */ 

for (i=0;i<total_contact;i++) { 

if (contact_set[i].ca>contact_set[i].cb) { 

/* swap */ 

j=contact_set[i].ca; 

contact_set[i].ca=contact_set[i].cb; 

contact_set[i].cb=j; 

} 

/* 

printf ("switch contact %d (%d-Yed)\n",i,contact_set[i].ca,cont 

act_set[i].cb); 

*/ 

} 

/* we will sort it using bubble sort (straight forward) */ 

for (i=0;i<total_contact;i++) { 

for (j=total_contact-1;j>i;j--) { 

if (contact_set[j].ca<contact_set[j-1].ca) { 

/* swap */ 

tmp=contact_set[j]; 

contact_set[j]=contact_set[j-1]; 

contact_set[j-1]=tmp; 

} 

} 

/* 
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fprintf (stderr,"sort contact U. (%d-%d)\n",i,contact_set[i].c 

a,contact_set[i].cb); 
*/ 

} 

} 

boolean getnextnode (path *p,int level) 
{ 

int i,validnnbno; 
NODE node; 

validnnbno=0; 
for (i=0;i<MAX_NEIGHBOR;i++) 

node=p->node[level]; 
switch (inttodir(i)) { 

case PLUS_X : 
node.x+=1; 
break; 

case MINUS_X : 
node.x-=1; 
break; 

case PLUS_Y : 
node.y+=1; 
break; 

case MINUS_Y : 
node.y-=1; 
break; 

case PLUS _Z : 
node.z+=1; 
break; 

case MINUS_Z 
node.z-=1; 
break; 

} 
if (!usednode(p->node,level,&node)) { 

if (validnnbno==p->nnbno[level]) { 
p->dir[level]=inttodir(i); 
p->node[++level]=node; 
return true; 
} 

else 

validnnbno++; 
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return false; 
} 

int get_available_neighbor (NODE *cp,int level,NODE *ann,DIRECTIONS *d 

ir) 
{ 

int i,cnt; 
NODE na,nb; 

cnt=0; 
na=cp[level]; 
for (i=0;i<MAX_NEIGHBOR;i++) { 

nb=cp[level]; 
switch (inttodir(i)) { 

case PLUS_X : 
nb.x+=1; 
break; 

case MINUS_X : 
nb.x-=1; 
break; 

case PLUS_Y 
nb.y+=1; 
break; 

case MINUS_Y : 
nb.y-=1; 
break; 

case PLUS_Z : 
nb.z+=1; 
break; 

case MINUS_Z : 
nb.z-=1; 
break; 

} 

if (usednode(cp,level,&nb)==false) { 
ann[cnt]=nb; 
dir[cnt]=inttodir(i); 
cnt++; 
} 

} 

return cnt; 
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void create_newpath (pathinfo *orgpath,pathinfo **newpath,NODE *newlas 
tnode,DIRECTIONS dirlastnode) 
{ 

int i; 

*newpath=(pathinfo *)malloc(sizeof(pathinfo)); 
(*newpath)->node=(NODE *)malloc(sizeof(NODE)*totalnode); 
(*newpath)->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode) 

/* for 'nnbno', we have to use 'calloc' to clear to zero *1 
(*newpath)->nnbno=(int *)calloc(totalnode,sizeof(int)); 

if (orgpath!=NULL) { 
(*newpath)->last=orgpath->last; 
(*newpath)->ptype=orgpath->ptype; 
(*newpath)->pltype=orgpath->pltype; 
memcpy((*newpath)->node,orgpath->node,orgpath->last*sizeof(NOD 

E)); 
memcpy((*newpath)->dir,orgpath->dir,(orgpath->last-1)*sizeof(D 

IRECTIONS)); 
memcpy((*newpath)->nnbno,orgpath->nnbno,(orgpath->last-1)*size 

of(int)); 
(*newpath)->dir[(*newpath)->last-1]=dirlastnode; 
} 

else { 
(*newpath)->last=0; 
(*newpath)->ptype=_0Dpath; 
} 

(*newpath)->node[(*newpath)->last]=(*newlastnode); 
(*newpath)->last++; 
(*newpath)->next=NULL; 

} 

void add_to_stpl (pathinfo *p) 
{ 

last_stpl->next=p; 
last_stpl=p; 
nsplcnt++; 

} 

void add_to_nspl (pathinfo *p) 
{ 

last_nspl->next=p; 



last_nspl=p; 

} 

void del_head_stpl (void) 

{ 

pathinfo *p; 

if (stpl->next!=NULL) { 

p=stpl->next; 

stpl->next=stpl->next->next; 

/* throw it away */ 

free (p); 

} 

} 

pathinfo *del_head_nspl (void) 

{ 

pathinfo *p; 

if (nspl->next!=NULL) { 
• p=nspl->next; 

nspl->next=nspl->next->next; 

return p; 

} 

else 

return NULL; 

} 

planetype det_planetype (DIRECTIONS cdir,DIRECTIONS ndir) 
{ 

switch (cdir) { 

case PLUS X: 

case MINUS X: 

if (ndir==PLUS_Y II ndir==MINUS_Y) 

return xyplane; 

else 

return xzplane; 

break; 

case PLUS Y: 

case MINUS Y: 

if (ndir==PLUS_X II ndir==MINUS_X) 

return xyplane; 

else 

return yzplane; 

92 
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break; 
case PLUS_Z: 
case MINUS Z: 

if (ndir==PLUS_Y || ndir==MINUS_Y) 
return yzplane; 

else 
return xzplane; 

break; 
} 

} 

int print_pathinfo (pathinfo *pi,char *name) 
{ 

pathinfo *tmp; 
int i,j; 

tmp=pi->next; 
j=0; 
while (tmp!=NULL && j<tmpnsplcnt) { 

tmp=tmp->next; 
j++;  

} 

printf ("%s:\n",name); 
while (tmp!=NULL) { 

printf (" 	(%d) ptype %d, pltype %d, level %d\n",j++,tmp->pty 
pe,tmp->pltype,tmp->last-1); 

for (i=0;i<tmp->last;i++) 

	

printf (" 	node (%d,%d,%d)\n",tmp->node[i].x,tmp- 
>node[i].y,tmp->node[i].z); 

tmp=tmp->next; 	. 
} 

return j; 
} 

boolean satisfy_cc (int level,NODE *nodelist,NODE *nextnode) { 
static NODE ann[MAX_NEIGHBOR]; 
static DIRECTIONS dir[MAX_NEIGHBOR]; 
int j,i,mrs; 
int cnt; 
boolean satisfy; 

satisfy=true; 
for (i=0;i<total_contact;i++) { 

/* "CHECK" contact-constraint satisfaction */ 
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if (level+1==contact_set[i].cb) { 

if (is_neighbor(&nodelist[contact_set[i].ca],nextnode)==fa 
lse) { 

/* this path (with 'nextnode') does not satisfy at lea 

st one contact-constraint. 
*/ 

return false; 
} 

} 

/* "PREDICT" contact-constraint satisfaction */ 
if (level+1>contact_set[i].ca && level+1<contact_set[i].cb) { 

satisfy=false; 
cnt=get_available_neighbor (nodelist,contact_set[i].ca,ann 

,dir); 
for (j=0;j<cnt;j++) 

mrs=abs(ann[j].x-nextnode->x)+ 
abs(ann[j].y-nextnode->y)+ 
abs(ann[j].z-nextnode->z); 

if (mrs<=contact_set[i].cb-(level+1)) { 
/* this contact constraint has been satisfied by o 

ne of neighbor of 'lower' contact node 
*/ 

satisfy=true; 
break; 
} 

} 

} 

if (satisfy==false) 
/* none of neighbor of 'lower' contact node satisfy this c 

ontact constraint, ie. fails in all contact-constraint test too. 
*/ 

return false; 
} 

return satisfy; 
} 

void gen_non_symmetry_path (void) 
{ 

pathinfo *np; 
pathinfo *cp; 
NODE *ann; 	 /* available near neighbor */ 
DIRECTIONS *dir; 	/* 'direction' of 'ann' */ 
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int idx,total_nn; 
boolean _1Dto_2D,_2Dto_3D; 

/* initialize STPL (symmetry test path list) and 

NSPL (non-symmetry initial path list) 
*/ 

head_stpl.next=NULL; 
head_nspl.next=NULL; 
stp1=(pathinfo *)&head_stpl; 
nspl=(pathinfo *)&head_nspl; 
last_stp1=(pathinfo *)&head_stpl; 
last_nsp1=(pathinfo *)&head_nspl; 

ann=(NODE *)malloc(sizeof(NODE)*MAX_NEIGHBOR); 
dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*MAX_NEIGHBOR); 

if (ann==NULL II dir==NULL) 
error ("(002) Memory allocation error.\n"); 

/* add '(0,0,0)' to initial stpl, this node is the only one to bec 
ome a starting point for contact-constraint enumeration. 

*/ 

ann[0].x=0; 
ann[0].y=0; 
ann[0].z=0; 

create_newpath (NULL,&np,&ann[0],INVALID_DIR); 
add_to_stpl (np); 

_1Dto_2D=false; 
_2Dto_3D=false; 

while ((cp=stpl->next)!=NULL) { 
/* 
print_pathinfo (stpl,"STPL"); 
if (nsplcnt!=tmpnsplcnt) 

tmpnsplcnt=print_pathinfo (nspl,"NSPL"); 
*/ 

total_nn=get_available_neighbor(cp->node,cp->last-1,ann,dir); 
for (idx=0;idx<total_nn;) 

/* 
printf ("cnt %d total %d\n",cnt,total_nn); 
*/ 

switch (cp->ptype) 
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case _0Dpath: 
/* we just start walking so we choose to walk 

to only node that are non-symmetry. There 
is only of them in case of cubic lattice. 
we don't need to check contact-constraint 
here, because it should satisfy, otherwise 
contact-constraint set is wrong 

*/ 
create_newpath (cp,&np,&ann[idx],dir[idx]); 
np->ptype=_1Dpath; 
add_to_stpl (np); 
/* we need no more neighbor for this path */ 
idx=total_nn; 
break; 

case _1Dpath 
/* find 'stright path' , this path will not 

symmetry to other path 
*/ 

if (dir[idx]==cp->dir[0]) { 
if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) 

{ 

create_newpath (cp,&np,&ann[idx],dir[idx]) 

add_to_stpl (np); 

} 
} 

else if (_1Dto_2D==false) 
/* this next non-symmetry neighbor will 

change this path to 'plane path' type 
from now on. There is only such neighbor 
in cubic lattice. 

*/ 

if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) 
{ 

create_newpath (cp,&np,&ann[idx],dir[idx]) 

np->ptype=_2Dpath; 
np->pltype=det_planetype (cp->dir[0],dir[i 

dx]); 

add_to_stpl (np); 
} 

/* set flag to indicate that we had 
neighbor that change 1D path to 2D path 
(we need only of this 
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in case of cubic lattice. 
*/ 
1Dto_2D=true; 
} 

idx++; 	/* fetch next neighbor */ 
break; 

case _2Dpath : 
/* find 'ann' that is in plane add it to 

'stpl' (it will not symmetry) 
*/ 
if ((cp->pltype==xyplane && dir[idx]!=PLUS_Z && di 

r[idx]!=MINUS_Z) || 
(cp->pltype==yzplane && dir[idx]!=PLUS_X & 

& dir[idx]!=MINUS_X) II 
(cp->pltype==xzplane && dir[idx]!=PLUS_Y & 

& dir[idx]!=MINUS_Y)) { 
if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) 

create_newpath (cp,&np,&ann[idx],dir[idx]) 

; 
add_to_stpl (np); 
} 

} 

else if (_2Dto_3D==false) { 
/* Now path will not symmetry and there is 

only such neighbor in cubic lattice. 
Add it to 'NSPL' 

*/ 
if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) 

{ 

create_newpath (cp,&np,&ann[idx],dir[idx]) 

/* now we have non-symmetrical initial 
path list if user didn't specify 'min. 
level of initial path', we will use 
this as NSPL, otherwise we continue 
to expand it as 3D segment. 

*/ 

if (np->last>=min_level) { 
add_to_nspl (np); 
total_nonsym_initial++; 
} 

else { 
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np->ptype=_3Dpath; 
add_to_stpl (np); 
} 

} 
/* set flag to indicate that we had 

neighbor that change 2D path to 3D path 
(we need only of this 
in case of cubic lattice. 

*/ 
_2Dto_3D=true; 

} 
idx++; 	/* fetch next neighbor */ 
break; 

case _3Dpath 
/* for 3D segment, all neighbor will form 

up a unique pattern in 3D space 
*/ 
if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) { 

create_newpath (cp,&np,&ann[idx],dir[idx]); 
if (np->last<min_level) 

add_to_stpl (np); 
else { 

add_to_nspl (np); 
total_nonsym_initial++; 
} 

} 

idx++; 	/* fetch next neighbor */ 
break; 

} 

} 

del_head_stpl(); 
/* reinitialize path transformation flag */ 
_1Dto_2D=false; 
_2Dto_3D=false; 

} 

free (ann); 
free (dir); 

} 

void walk (pathinfo *pi) 
{ 

char line[256]; 
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int level; 
path p; 

p.node=pi->node; 
p.dir=pi->dir; 
p.nnbno=pi->nnbno; 
level=pi->last-1; 

/* start walking (exhaustive search) */ 
do { 

if (getnextnode(&p,level)==true && satisfy_cc(level,p.node,&p. 
node[level+1])) { 

/* update 'level' ('node' and 'dir' filled in 'getnextnode 
' fn) */ 

++level; 

if (level==totalnode-1) { 
++pathcount; 
if (verbose) { 

if (!(pathcount%dispcnt_mod)) { 
sprintf (line," 	%s [%1d]\n",initialnodes,pat 

hcount); 
write (fileno(fout),line,strlen(line)); 
} 

} 
if (option==gen_path) { 

p.dir[totalnode-1]='\n'; 
write (fileno(fp),p.dir,sizeof(DIRECTIONS)*totalno 

de); 
} 

/* backtrack to search new path by (1) step, 
(contact constraint, we can backtrack at most 
1 step 

*/ 

level--; 
} 

else 
p.nnbno[level]=(-1); 

} 

/* change to new nnbno; if nnbno is above limit, change level 
*/ 

while (++p.nnbno[level]>=MAX_NEIGHBOR && level>pi->last-1) 
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level--; 

} while (level>pi->last-1 II (level==pi->last-1 && p.nnbno[lev 
el]<MAX_NEIGHBOR)); 
} 

void print_resource_usage (void) { 
struct rusage prusage; 
struct rusage crusage; 
double cputime[2][2]; 
double total_cputime; 
int i; 

if (resource_usage) { 
getrusage (RUSAGE_SELF,&prusage); 
getrusage (RUSAGE_CHILDREN,&crusage); 

fprintf (stderr,"resource usage:\n"); 
fprintf (stderr," 	 parent 	child\n"); 
fprintf (stderr," user: 	%7.3f 	%7.3f [user time use 

d]\n",cputime[0][0]=(double)prusage.ru_utime.tv_sec+(double)((double)p 
rusage.ru_utime.tv_usec/1000000.0),cputime[0][1]=(double)crusage.ru_ut 
ime.tv_sec+(double)((double)crusage.ru_utime.tv_usec/1000000.0)); 

fprintf (stderr," sys: 	%7.3f 	%7.3f [system time u 
sed]\n",cputime[1][0]=(double)prusage.ru_stime.tv_sec+(double)((double 
)prusage.ru_stime.tv_usec/1000000.0),cputime[1][1]=(double)crusage.ru_ 
stime.tv_sec+(double)((double)crusage.ru_stime.tv_usec/1000000.0)); 
/* 

fprintf (stderr," maxrss: 	%6d 	%6d [maximum residen 
t set size]\n",prusage.ru_maxrss,crusage.ru_maxrss); 

fprintf (stderr," ixrss: 	%6d 	%6d [integral shared 
text size]\n",prusage.ru_ixrss,crusage.ru_ixrss); 

fprintf (stderr," idrss: 	%6d 	%6d [integral data r 
esident set size]\n",prusage.ru_idrss,crusage.ru_idrss); 

fprintf (stderr," isrss: 	%6d 	%6d [integral stack 
resident set size]\n",prusage.ru_isrss,crusage.ru_isrss); 

fprintf (stderr," minflt: 	%6d 	%6d [page faults not 
requiring physical I/0]\n",prusage.ru_minflt,crusage.ru_minflt); 

fprintf (stderr," majflt: 	%6d 	%6d [page faults req 
uiring physical I/0]\n",prusage.ru_majflt,crusage.ru_majflt); 

fprintf (stderr," nswap: 	%6d 	%6d [swaps]\n",prusa 
ge.ru_nswap,crusage.ru_nswap); 

fprintf (stderr," inblock: 	%6d 	%6d [block input ope 
rations]\n",prusage.ru_inblock,crusage.ru_inblock); 



fprintf (stderr," oublock: 	%6d 	%6d 
erationshn",prusage.ru_oublock,crusage.ru_oublock); 

fprintf (stderr," msgsnd: 	%6d 	%6d 
n",prusage.ru_msgsnd,crusage.ru_msgsnd); 

fprintf (stderr," msgrcv: 	%6d 	%6d 
edhn",prusage.ru_msgrcv,crusage.ru_msgrcv); 

fprintf (stderr," nsignals: 	%6d 	%6d 
d]\n",prusage.ru_nsignals,crusage.ru_nsignals); 

fprintf (stderr," nvcsw: 	%6d 	%6d 
xt switches]\n",prusage.ru_nvcsw,crusage.ru_nvcsw); 

fprintf (stderr," nivcsw: 	%6d 	%6d  
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[block output op 

[messages sent]\ 

[messages receiv 

[signals receive 

[voluntary conte 

[involuntary con 

text switches]\n",prusage.ru_nivcsw,crusage.ru_nivcsw); 
*/ 

total_cputime=0; 
for (i=0;i<2;i++) { 

total_cputime+=cputime[i][0]; 
total_cputime+=cputime[i][1]; 
} 

fprintf (stderr,"\n* total CPU time: %.3f\n\n",total_cputime); 

} 

void print_time (clock_t real,struct tms *tmsstart, struct tms *tmsend 

{ 

double cputime[2][2]; 
double total_cputime; 
int i; 

fprintf (fout,"CPU time usage (seconds):\n"); 
fprintf (font," parent:\n"); 
fprintf (f out," 	user: %.3f\n",cputime[0][0]=(tmsend->tms_utime-

tmsstart->tms_utime)/(double)clktck); 
fprintf (fout," 	sys: %.3f\n",cputime[0][1]=(tmsend->tms_stime- 

tmsstart->tms_stime)/(double)clktck); 
fprintf (fout," child:\n"); 
fprintf (fout," 	user: %.3f\n",cputime[1][0]=(tmsend->tms_cutime 

-tmsstart->tms_cutime)/(double)clktck); 
fprintf (f out," 	sys: %.3f\n",cputime[1] [1]=(tmsend->tms_cstime 

-tmsstart->tms_cstime)/(double)clktck); 

total_cputime=0; 
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for (i=0;i<2;i++) { 
total_cputime+=cputime[i][0]; 
total_cputime+=cputime[i][1]; 
} 

fprintf (fout,"\n* total cpu time: %.3f\n",total_cputime); 
fprintf (foot,'"* wall clk time: %.3f (note: on SUN, this value wi 

11 be 0)\n\n",(double)real/(double)clktck); 
} 

void main (int argc,char *argv[]) 
{ 

int j,l,i,r; 
char filename [64]; 
pathinfo *nsp; 
char tmp[128]; 
char line[1024]; 
int pid; 
int fd[2]; 
long sum,cnt; 
long waitrun,currun; 

struct tms tmsstart,tmsend; 
clock_t start,end; 

/* to solve problem of logging output in shell script */ 

fout=stdout; 
/* 
setbuf(fout,NULL); 
*/ 

/* get system 'clock tick value' */ 
if ((clktck=sysconf(_SC_CLK_TCK))==0) 

error("error: can't fetch 'clk tick value'"); 

/* command line parsing */ 
cmdline_parse(argc,argv); 

sprintf (filename,"cwalk,%d.log",totalnode); 
if ((cwalk_log=fopen (filename,"wb"))==NULL) 

error ("error: can't open log file (%s)\n",filename); 

/* set up contact constraint list */ 
set_contact_constraint (); 
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/* generate all non-redundant initial conformations */ 
gen_non_symmetry_path (); 

fprintf (fout,"total 'initial' non-symmetrical path: %d\n",total_n 
onsym_initial); 

fprintf (cwalk_log,"total 'initial' non-symmetrical path: %d\n",to 
tal_nonsym_initial); 

/* create 'pipe' for inter-process communicatation */ 
if (pipe(fd)<0) 

error ("error create pipe"); 

cnt=0L; 
currun=0L; 
waitrun=total_nonsym_initial; 
sum=0L; 

/* create slaves to do enumeration */ 
do { 

while ((currun<max_process || option==gen_initial_path) && wai 
trun>0L) { 

nsp=del_head_nspl(); 
if (nsp==NULL) 

break; 

waitrun--; 

sprintf (initialnodes,"(%1d) enum ",cnt++); 

for (i=0;i<nsp->last;i++) { 
sprintf (tmp,"(%d,%d,%d) ",nsp->node[i].x,nsp->node[i] 

.y,nsp->node[i].z); 
strcat (initialnodes,tmp); 

} 

/* we have to flush foot and log file here, otherwise 
child processes will do this and we will get a lot of 
duplicate data. (stderr is, by default, unbuffered) 

*/ 

fflush (fout); 
fflush (cwalk_log); 
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if (option!=gen_initial_path) { 
if ((pid=fork())<0) { 

fprintf (stderr,"fork error (Ctrl-C to stop all ch 

ildren)\n"); 
getchar (); 
exit (1); 
} 

else if (pid==0) { /* child process */ 
/* get start time */ 

start=times(&tmsstart); 

/* start walking from initial path */ 

pathcount=0L; 
walk (nsp); 

/* get stop time */ 
end=times(&tmsend); 

if (verbose) { 
/* record total walks, time usage (only 'paren 

t') */ 
sprintf (line," * %s: [%1d] [user %.3f,sys %.3 

f]\n",initialnodes,pathcount,(tmsend.tms_utime-tmsstart.tms_utime)/(do 
uble)clktck,(tmsend.tms_stime-tmsstart.tms_stime)/(double)clktck); 

write (fileno(fout),line,strlen(line)); 
write (fileno(cwalk_log),line,strlen(line)); 
} 

if (write (fd[1],&pathcount,sizeof(long))!=sizeof( 
long)) 

error ("write to pipe failed\n"); 

exit (0); 	/* child terminate normally */ 
} 

else /* parent process */ 
currun++; 

} 
else { 

strcat (initialnodes,"\n"); 

write(fileno(cwalk_log),initialnodes,strlen(initialnod 
es)); 

} 

} 
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/* if total running process is more than limit, wait for some 

of them 
to finished, then create more .. 

*/ 

while ((currun>=max_process II (waitrun==0L && currun>0L)) a 
option!=gen_initial_path) { 

r=wait(NULL); 
if (r<0) 

error ("wait error"); 
else if (r>0) { 

if (read (fd[0],&pathcount,sizeof(long))!=sizeof(long) 

error ("read pipe error"); 

sum+=pathcount; 
currun--; 

} 
} 

while (currun>0L II waitrun>0L); 

fprintf (foot,"* Enumeration ended\n"); 
if (option!=gen_initial_path) { 

fprintf (fout,"\n* total geometrically-distinct walks: %1d\n", 
sum); 

fprintf (cwalk_log,"\n* total geometrically-distinct walks: %1 
d\n",sum); 

} 

/* display resource usage */ 
print_resource_usage(); 
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