

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PARALLEL EXACT ENUMERATION OF SELF-AVOIDING WALK
ON CUBIC LATTICES

AND ITS APPLICATIONS TO PROTEIN FOLDING STUDIES

by
Anek Vorapanya

Exact enumeration of self-avoiding walk on many lattices have been studied

extensively recently. Even a short chain polymer (about 30 monomers) represented

as a chain of cubic lattice sites requires a considerable amount of computer time to

exhaustively search for all unique conformations. However, self-avoiding walk process

can be modified such that it exhibits a high degree of independence among subpro-

cesses. Parallel implementation of such subprocesses can reduce a great amount of

enumeration time. Parallel enumeration makes longer chain enumeration possible.

Enumerating only unique conformations requires that all rotation and mirror

conformations be removed. An algorithm to avoid generating such symmetrical

conformations is presented. A set of parallel algorithms to solve exact enumeration

of cubic lattice graphs subjected to various constraints (volume and/or contact

constraints) is presented. The speed up and communication cost are analyzed. One

of the most important application of lattice enumeration, enumerative kinetics of

protein folding, is also discussed.

PARALLEL EXACT ENUMERATION OF SELF-AVOIDING WALK
ON CUBIC LATTICES

AND ITS APPLICATIONS TO PROTEIN FOLDING STUDIES

by
Anek Vorapanya

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 1994

APPROVAL PAGE

PARALLEL EXACT ENUMERATION OF SELF-AVOIDING WALK
ON CUBIC LATTICES

AND ITS APPLICATIONS TO PROTEIN FOLDING STUDIES

Anek Vorapanya

Dr. Lonnie Welch. Thesis Advisor 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. James A. 1. McHugh. Committee Member 	 Date
Professor of Computer and Information Science, NJIT

Dr. David Nassimi. Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	Anek Vorapanya

Degree: 	Master of Science in Computer Science

Date: 	May 1994

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, USA, 1994

• Bachelor of Engineering in Electrical Engineering,
Kasetsart University, Bangkhen, Bangkok, Thailand, 1990

Major: 	Computer Science

iv

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Professor

Lonnie Welch, for his guidance, patience, kindness and financial supports throughout

this research.

Very special thanks to Dr.James McHugh and Dr.David Nassimi for serving as

members of the committee.

Very special thanks to Dr.Peter Leopold for his friendships, moral support and

for introducing this fascinating work to me.

Special thanks to Dr.Jeff Livingstone at Genetech,Inc., CA, for helping me

running my programs on SGI parallel computers at Genetech.

And finally, thanks to Ganesh, and Jin for helping me with reading the

manuscript.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 LITERATURE SURVEY 	 3

3 OBJECTIVE 	 6

4 THE PROTEIN FOLDING PROBLEM 	 8

4.1 	What are proteins? 	8

4.2 	Protein folding 	8

4.3 	Simplified models of protein backbones 	9

5 CUBIC LATTICES: PROPERTIES AND REPRESENTATIONS 	 11

5.1 Definitions and cubic lattice representations 	 II

5.2 Symmetries in cubic lattices 	 17

5.2.1 Mirror symmetry 	 17

5.2.2 Rotation symmetry 	 18

5.3 Avoiding redundant structures in self-avoiding walk 	 20

5.3.1 Avoiding rotation symmetry 	 20

5.3.2 Avoiding mirror symmetry 	 22

5.3.3 An algorithm to avoid mirror and rotation symmetries . . . 	 22

5.4 How to improve enumeration time 	 26

6 PARALLEL EXACT ENUMERATION OF LATTICE GRAPHS 	 30

6.1 Master and workers programming model 	 30

6.2 Parallel exact enumeration algorithms 	 31

6.3 Implementation 	 40

7 RESULTS AND DISCUSSIONS 	 41

7.1 Exact enumeration results with various constraints 	 41

7.2 Discussions 	 41

vii

Chapter 	 Page

8 CONCLUSIONS 	 44

APPENDIX A AN IMPLEMENTATION OF PARALLEL VOLUME AND
CONTACT CONSTRAINT EXACT ENUMERATION 	 45

APPENDIX B AN IMPLEMENTATION OF PARALLEL CONTACT CONS-
TRAINT EXACT ENUMERATION 	 80

	

REFERENCES 106

viii

LIST OF TABLES

Table 	 Page

7.1 Volume constraint enumeration of various volumes 	 42

7.2 	Volume and contact constraint enumerations of a volume 3 x 3 x 3 . 42

7.3 	Contact constraint enumeration of a chain of 30 monomers 	 42

7.4 Speed up of a volume constraint enumeration of volume 3 x 3 x 3 	 42

7.5 Speed up of a volume and contact constraint enumerations of volume
3 x 3 x 3 	 43

7.6 Speed up of contact constraint enumeration of a chain of 30 monomers 	 43

ix

LIST OF FIGURES

Figure 	 Page

2.1 	A tree of N levels with branching factor of 5 	5

5.1 	'Closed' cubic Lattices of various volumes 	 12

5.2 A contact-constrained chains 	 15

5.3 Mirror symmetry of chains in 3x3x3 cubic lattice 	 19

5.4 Rotation symmetry of chains in 3x3x3 cubic lattice 	 21

5.5 	Non-symmetry self-avoiding walk: (a) line symmetry avoiding, (b) plane
symmetry avoiding and (c) 3-D symmetry avoiding 	 23

5.6 Blocking in self-avoiding walk with volume-confined constraint 	 27

5.7 Components in self-avoiding walk with volume constraint 	 28

CHAPTER 1

INTRODUCTION

A protein is a linear chain of twenty amino acid groups and it performs crucial tasks

in a living cell. It was discovered that a denatured, newly formed protein, called

random coil, will fold up into a compact, unique shape, called native state, which is

determined solely by its amino acid sequence. However, predicting the conformation

of a protein native state based solely on the knowledge of its amino acid sequence is

far from simple. This problem has been widely known as the protein folding problem

[32].

There are many works, both theoretical and experimental, studying how a

protein fold and what makes it fold to its native state. This thesis is on the

theoretical aspect based on the 'thermodynamics hypothesis' [10]. The thermody-

namics hypothesis of protein folding states that the native structure of the globular

molecule is the conformation which has the lowest free energy, then the native

structure could be identified in principle simply by systematic evaluation of the free

energy of every possible conformation [10]. The problem is that calculating the free

energy of every possible conformation of full protein is prohibitive using currently

achievable computing power. Since high resolution simulation of protein folding is

not possible, a simplified model of protein backbone (its primary structure) is needed.

One of the most popular model of protein backbone representations used in protein

folding studies is the cubic lattice model. The protein backbone is represented as a

chain of cubic lattice sites. Using this simplified model, it is possible to study protein

folding of longer chain of amino acids.

1

2

From amino acid sequence representation , we can study the thermodynamics

hypothesis of protein folding by

1. Enumerate all unique compact conformations of an amino acid chain represen-

tation that lead to the folding pathways. A chain of lattice sites represents the

protein backbone on its folding pathway.

2. Select a set of amino acid sequences that will be used in force-field simulation.

Calculate free energy of each sequence based on all unique enumerated compact

conformations from the first phase. For each particular amino acid sequence,

the conformation that gives the lowest free energy should be the native state of

that sequence according to the thermodynamics hypothesis of protein folding.

This thesis solved the first problem by applying parallel processing to exact

enumeration problem. The second problem is being solved by the Harvard chemical

physics polymer theory research group.

First, I will review previous literatures related to exact enumeration of cubic

lattice and its application to heteropolymer studies. I will describe the cubic lattice

model of protein backbone and show how to use it to represent protein backbone in

enumeration problem. A set of graphs used to represent the model of computation

will be introduced. Then I will present a set of parallel lattice enumeration algorithms

subjected to volume and contact constraints. Experimental results are presented.

Speed up and communication costs of parallel implementation will be discussed.

CHAPTER 2

LITERATURE SURVEY

Exact enumeration of self-avoiding walk has been studied intensively for the three

decades. It is known to be a very important tool for polymer studies. The reference

works on exact enumerations and self-avoiding walks for polymer physics studies are

[2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37,

38, 39, 40, 41]

This thesis will focus on the work by Shakhnovich and Gutin [34]. In 1990,

Shakhnovich and Gutin proposed a simplified model of heteropolymers with random

sequence of links using a three-dimensional cubic lattice. They used this model

to study the freezing transition of heteropolymer chains. The model and the

enumeration algorithm used in that paper can be summarized as follow:

• Create a representation of heteropolymeric chains in cubic lattice. Each

monomer is represented by lattice sites.

o Specify a volume constraint that will confine the enumeration process. In that

paper, volume constraint lattice is used to represent the maximally compact

conformations of heteropolymeric chains.

• From volume constraint graph, specify a set of starting chain conformations

that are guaranteed to ramify to only unique structures when enumeration

process is applied. Informally, the enumeration process is a process of counting

al] unique Hamiltonian path beginning from a specified sequence of lattice sites

(monomer representation) on a specified lattice graph.

3

4

• Start the enumeration process from that set of initial conformations. The

enumeration process is subjected to a volume constraint which means all

monomer units in the specified volume graph must be presented in any

completed chain computed by the enumerator and no lattice site which is not

in that volume can be included in any chain conformation.

• Select a set of heteropolymeric chains with random sequence of links. Calculate

the minimum free energies (corresponding to the frozen state of heteropolymeric

chains) of each of these chains based on all enumerated maximally compact

conformations. 	For each selected heteropolymeric chain, the maximally

compact conformation that gives lowest free energies should be the frozen

state of that heteropolymeric chain.

This paper also discussed the applications of exact enumeration of maximally

compact conformation to investigation of thermodynamics of protein folding,

especially for globular proteins which are very compact with density in the interior

close to such of molecular crystals. Note that proteins are heteropolymers. The

paper suggested the analogy of freezing transition of heteropolymeric chain to folding

transition in proteins.

The enumeration algorithm used in that paper can be further improved as

follow:

• The exact enumeration process is a blind exhaustive search with a time

complexity of O(CN) where N is the random monomer sequence length and C

is the degree of freedom or the number of ways that a search process can ramify

the existing structure in the worst case. See figure 2.1. By modifying the initial

conformation generator, I developed a set of parallel algorithms to enumerate

all unique conformations. By observing the volume constraint in enumeration

5

Figure 2.1 A tree of N levels with branching factor of 5

problem, I developed an algorithm that can enhance the performance of any

volume-constraint enumeration.

Since self-avoiding walk (the enumeration subprocess) cannot avoid generating

symmetry structures, therefore it requires that a user specifies an initial set of

conformations which are guaranteed to ramify to only unique conformations

when the walking process is applied. This process is being done by hand. This

process becomes more complicated when a random monomer chain of interest

is longer or when a new volume is needed. I developed an algorithm that will

generate a set of initial conformations that will not ramify to any redundant

structure when the self-avoiding walk procedure is applied.

•

 The algorithms presented in this thesis are also capable of enumerating any

volumes of cubic lattice. This thesis also presents a parallel algorithm for

contact-constraint enumeration problem. [10, 11].

CHAPTER 3

OBJECTIVE

As discussed in the previous chapter, the current approach used to solve enumeration

problem requires human interactions during the initial phase. This process is

necessary to remove a large number of initial conformations that will ramify to

redundant structures during the enumeration process. If the enumerator cannot

avoid generating redundant structures, the computation time used in generating and

removing those redundant structures will account for most of the computation time

of enumeration process.

It is observed that enumeration of structural representation of protein backbones

in cubic lattice (with appropriated symmetry avoidance algorithm) exhibits a very

high degree of parallelism. This is due to the fact that the tasks of finding all

possible conformations (exact enumeration) from a set of initial conformations are

totally independent. Therefore, parallel processing can be successfully applied to

enumeration problems.

The objectives of this thesis are to devise an algorithm that will automate the

process of removing initial redundancy in enumeration problem and to apply parallel

processing to the exact enumeration problem to reduce the enumeration time which

makes longer chain enumeration possible. This thesis also discussed the application

of exact enumerations to protein folding studies.

In this thesis, I proposed a set of parallel algorithms to solve the exact

enumeration problem on cubic lattice. The followings are important characteristics

of proposed parallel exact enumeration algorithms:

6

7

• They are based on an exhaustive search. However, it is not a blind search. It

is a heuristic guided algorithm that can avoid a large number of unsuccessful

walks by using a graph connectivity checking algorithm.

• They automatically remove all initial conformations that will leads to redundant

structures by using mathematics formulation of three-dimensional geometric

transformations.

• They can enumerate any volume of cubic lattice structures, ie. not necessary

to be a perfect cubic shape.

• These algorithms are relatively easy to parallelize. The resulting parallel

algorithms are suitable for both shared and distributed memory parallel

computers.

CHAPTER 4

THE PROTEIN FOLDING PROBLEM

In this chapter, I will discuss what is protein, what is the protein folding problem,

why it is important to solve this problem and how exact enumeration of lattice helps

solving the protein folding problem. Detailed discussion of protein folding problem

can be found in [9, 10, 11, 12, 18, 19, 24, 25, 32, 33, 34, 35].

4.1 What are proteins?

Proteins are polymers. A protein is a linear polymer molecule, a chain of tens of

thousands of monomer unit. The monomers are the twenty amino acids which consist

of a central carbon atom - called the a - carbon - bound to an amino group (NH2),

a carboxyl group (COOH) and a side chain. The differences among amino acids lie

in their side chains, namely in shape, size and its polarity. Shape and size affect the

packing together of amino acids in the final molecule. Polarity (or lack of polarity)

determines the nature and strength of interactions between amino acids in a protein

and between the protein and water. Note that the interior of most cell is 70 to 90

percent water.

To understand how a protein functions, we must know its three-dimensional

structure. From its three-dimensional structure, we can study its behaviors from the

interactions of its molecules at the atomic level.

4.2 Protein folding

In the late 1950s, Christian B. Anfinsen [1) discovered that the forces most responsible

for proper folding of the newly formed protein into a specific shaped could be derived

8

9

from the basic principle of chemistry and physics. Only the amino acid sequence of

the protein was fully sufficient to specify the molecule's ultimate three-dimensional

shape and biological activity.

Unfolded or newly formed proteins are often called random coils, implying that

no region of the protein backbone looks significantly different from any other region.

For globular protein, its most important state known as its native or folded state, is

extremely compact and unique. That is, a given globular protein folds to only one

native state.

The goal of protein folding problem studies is to predict the compact three-

dimensional structure only from the knowledge of the monomer unit (amino acid

group) sequences. Solving the protein folding problem would unleash new power in

biotechnology, ie. permitting the design of new proteins. Note that enzymes, which

are the catalysts for virtually all biochemical reactions in living cell, are globular

proteins.

The balance of forces that folds a protein into its unique, compact native

structure is encoded within its amino acid sequence. This correspondence between

sequence and structure is sometimes referred to as the "second genetic code." (The

first genetic code is the correspondence between the base sequence of a DNA molecule

and the amino acid sequence of the protein whose synthesis it controls).

4.3 Simplified models of protein backbones

To explore sequence-structure relationships, a class of model has emerged in which

amino acid chains are represented as self-avoiding walk on lattices. Specific sequences

of monomers are studied in chains short enough that the full conformational space

can be enumerated exhaustively.

The simplified exact model of protein is necessary because even a short chain

molecule of protein simulation requires a considerable amount of computer time to

10

finish. This simplified exact model is helpful at the early stage of protein folding

simulation. After the early stage, conformation tends to compact and have less

variations in its three-dimensional structure, then one can employ a higher resolution

exact model to achieve better result.

There are many simplified exact models of protein backbone that are of interest

in protein folding studies. They are square lattice, cubic lattice, face-centered cubic

(fcc) lattice, bcc lattice, diamond lattice, honey-comb lattice, chess-knight lattice

and hybrid lattice.

Square and cubic lattices are the two most common types used in modeling

protein backbones. This thesis will focus on cubic lattice based on the studies

pioneered by Eugene Shakhnovich and Alexander Gutin [34]. Each protein backbone

(the chain of its a carbon group, amino group and carbon group) will be represented

by a single site of cubic lattice. Based on this model, we can exhaustively search all

conformations of protein backbone subjected to various constraints (volume- and/or

contact-constraint).

To find the stable native state of a protein, we should compute, for every

possible conformations of the protein molecule chain, the sum of the free energies of

the atomic interactions within the protein and with the solvent and then find the

conformation with the lowest free energy.

Note that finding all possible conformations by exhaustive enumerating all

possible self-avoiding walk on three-dimensional cubic lattice space is a time-

consuming process because the number of conformation of a chain molecule grows

exponentially with the chain length. It was observed that the amount of time to

do exhaustive search is much larger than the time real protein uses to fold itself.

This observation is known as Levinthal's paradox. However, enumerative kinetics of

protein folding has contributed much to our understanding of protein folding.

CHAPTER 5

CUBIC LATTICES: PROPERTIES AND REPRESENTATIONS

In this chapter, properties of cubic lattice and its representation in our computa-

tional model are discussed. Symmetry properties of cubic lattice are discussed. An

algorithm to avoid symmetry structures before starting the enumeration subprocess

(the self-avoiding walk) in cubic lattice is presented.

5.1 Definitions and cubic lattice representations

To solve problems using computers, one needs some forms of problem representations

which in turn be transformed to data structures in programming languages. Graph

data model can be used to represent lattice enumeration problem subjected to various

constraints very well. In this chapter, I will introduce terms and definitions used

through out the thesis.

Monomers:

In our discussion, monomers (mer) are amino acid groups. These monomer

units of protein primary structure (protein backbone) will be represented as lattice

sites in cubic lattice which in turn represented by an undirect, connected graph.

Since lattice sites represent monomers, the two terms will be used interchangeably

in this thesis.

Cubic lattices:

Cubic lattice CL(M, L) is defined as an infinite three-dimensional rectangular

grid in Cartesian coordinate system. At each intersection point of three orthogonal

axes, there is a lattice site M. Each lattice site M will have exactly six possible

near-neighbor lattice sites at a unit distance along the three axes in the Cartesian

11

12

Figure 5.1 'Closed' cubic Lattices of various volumes

coordinate system, ie. (Ix, ±y, +z) directions. These lattice sites are connected

together with links L. See figure 5.1.

Using graph data model, cubic lattice CL(M, L) can be represented as an

undirected connected graph G(V, E), with M = V and L = E. Formally, G(V, E),

is cubic lattice graph corresponding to cubic lattice CL(M, L) with the following

definition:

13

if V j and Vk in G(V, E) are any two distinct vertices corresponding to Mj and

Mk, in CL(M, L) lattice sites respectively, and are near-neighbor of each other, then

E1 is an undirected edge, corresponding to Lj,k link, connects Vj and Vk.

A cubic lattice CL(M, L) is called 'closed' if it contains a finite number of

lattice sites and links. A cubic lattice CL(M, L) is called 'opened' if it has an infinite

number of lattice sites and links. By definition, a cubic lattice is 'opened' if it is not

explicitly declared as 'closed'.

Sequences:

In our discussion, a sequence refers to a list of lattice sites (a chain confor-

mation) on a lattice graph. There are two type of sequences, live and dead sequences.

Live sequences:

A 'live' sequence Slive is a sequence of lattice sites M in a cubic lattice CL(M, L)

which have been selected according to the required constraints (volume and/or

contact) imposed to the walk process. It is named 'live' sequence because it is

going to change until it has a required length.

Active mers (active lattice sites):

At any instance of self-avoiding walk, there is only one lattice site (mer) that

the self-avoiding walk can ramify from. This mer is called an 'active' mer. Active

mers are always the last mer of any live sequence.

Dead sequences:

When the self-avoiding walk found a complete sequence of mers (a sequence

of mers of a predefined length) that satisfied the imposed constraint of self-avoiding

walk, a 'dead' sequence Sdead has been found. A dead sequence is a 'complete'

sequence of mers M of a given cubic lattice CL(M, L) that have been selected

according to the required constraints (volume and/or contact) imposed to the self-

avoiding walk. It is named a 'dead' sequence because it will never be changed again

after it has been found. These 'dead' sequences are what we want to enumerate and

14

record its three-dimensional structures. Note that there is no active mer on any dead

sequence.

Volume-constrained cubic lattice graphs:

Volume-constraint is used to define a subspace or portion of opened cubic lattice

which confines the self-avoiding walk into that region. Throughout this thesis, a

volume-constrained cubic lattice is a special kind of 'closed' cubic lattice which has

a symmetrical rectangular shape, ie. a X x Y x Z volume. From the definition of

cubic lattice, a volume-constrained cubic lattice graph is a closed cubic lattice with

the following properties describes its vertices:

o Vc are 'corner' vertices with out-degree of exactly three. Set A vertices in figure

5.1 are examples of V,.

•

• Ve, are 'cliffed-edge' vertices with out-degree of exactly four. Set C vertices in

figure 5.1 are examples of Ve.

• Vf are 'faced-center' vertices with out-degree of exactly five. Set B vertices in

figure 5.1 are examples of Vf.

• Vi are 'inner' vertices with out-degree of exactly six. Set D vertices in figure

5.1 are examples of

It should be noted that in the case of perfect symmetry volume-confined shape

(as in the case of NxNxN volume), these vertices are symmetry to all other

vertices in the same set. This is a very important characteristic that we can use

to help avoiding a large number of rotation symmetry. Also note that any volume-

constrained lattice graph needs not to have all these types of vertices. But all valid

volume-constrained lattice graph must have V,.

Contact-constrained cubic lattice graphs:

Contact constraint is used to define a set of required near-neighborness at some

steps of self-avoiding walk. Figure 5.2 shows a contact-constrained sequence. The

15

Figure 5.2 A contact-constrained chains

numbers associated with the dots refer to step number of self-avoiding walk referenced

to the first mer (step 0) of sequence. During the self-avoiding walk, the contact

constraint map imposes a set of possible lattice sites that an active rner can ramify

the sell-avoiding walk. From the definition of cubic lattice, contact-constrained cubic

lattice graph is an opened cubic lattice graph. The self-avoiding walk with contact

constraint is free to ramify its active mer (the last lattice site in the sequence) to

any unselected near-neighbor mer of the active mer as long as it satisfies the contact

constraint map.

Contact-constrained lists:

A contact-constrained list Lcc is a set of pairs (a, b) where a, b are the two

different step number of self-avoiding walk. This contact constraint list Lcc is used

to enforce the required near-neighborness of lattice sites at step a and b of self-

avoiding walk.

16

For any sequence S to be qualified as a valid dead sequence in contact-

constrained enumeration, it is required that the ath mer and bth mer in S are

near-neighbor of each other in a specified lattice graph.

Self-avoiding walk:

A self-avoiding walk is a process of finding a sequence S of distinct mers from

a specified lattice graph, volume-constrained or contact-constrained cubic lattice

graph. For the purpose of our discussion in this thesis, there are only three possi-

bilities in applying self-avoiding walk.

• If a self-avoiding walk is applied to a closed cubic lattice graph, a volume-

constraint graph Gvc, then the self-avoiding walk is a process of finding Hamil-

tonian path on Gvc.

• If a self-avoiding walk is applied to an opened cubic lattice graph, ie. a contact-

constraint graph , then a self-avoiding walk is a process of finding a sequence

of distinct mers S, of some finite length L, that satisfies a list of required

near-neighborness of mers on any sequence S, the contact-constraint list LCC.

• If a self-avoiding walk is applied to a closed cubic lattice graph and it is also

required that the self-avoiding walk process satisfies a contact-constrained list,

then this is the case of both volume- and contact-constrained walk.

Exact enumeration of self-avoiding walk on cubic lattice:

An exact enumeration of self-avoiding walk on a cubic lattice graph is an

exhaustive search procedure that counts (and records) all possible, unique confor-

mations of a given cubic lattice graph (subjected to volume- and/or contact-

constraint).

Uniqueness in enumeration process means we do not count any dead sequence

of mers which is a mirror and/or rotation symmetry (to be defined later) of any

previously recorded 'dead' sequence.

17

5.2 Symmetries in cubic lattices

In this section, I will discuss the symmetry properties of cubic lattice that effect

enumeration problem. I will present an algorithm to remove such symmetry

structures before starting the enumeration process.

in cubic lattice, there are at most six different directions to go from a lattice site

to other near-neighbor lattice sites. They are (±x, +y, +z) directions in the three-

dimensional Cartesian coordinate system. A self-avoiding walk on cubic lattices

can be realized as a sequence of lattice site indices (a lattice site is indexed by a

unique identifier) or as a sequence of directions that a walker walks on the associated

sequence of lattice sites. The latter view is more suitable to the enumeration problem.

Consider the self-avoiding walk on a cubic lattice as a 'direction' permutation. All

one needs to compute exact enumeration of all conformations on a given lattice is

to compute all permutations of six possible directions of desired length and check if

each of such permutation sequence violates the enumeration constraint or not.

5.2.1 Mirror symmetry

Let Ep(ep0, ep1, • • • ,ep(n_1)) be a 'direction' sequence of a self-avoiding walk on a

undirect, connected graph G(V, E) (it can be a volume-constrained and/or contact-

constrained graph) and Eq (eq0, eq1, • • , eq(n-1)) be another direction sequence on the

same graph. Q is said to be a mirror symmetry of P if and only if one of the following

two conditions is satisfied:

o if Ep Eq and ϕ is any direction +x, +y or +z and Epi (the ith element of Ep)

≠ ϕ then Epi must be equal to Eqi. If Epi = 0 then Eqi must be equal to —ϕ.

• If Ep 	Eq and δ, A, ϕ are any distinct ± of x, y or z direction and if the two

direction sequences have three transformation pairs of this form: (8 in Ep ,A

in Eq), (A in E p,8 in Eq) and (ϕ in Ep,ϕ in Eq), then. Ep and Eq are mirror

symmetry. This condition leads to mirror symmetry of the two sequences

18

because after transforming A in Eq to match δ in Ep and S in Eq to match A

in E p, all ϕ in Eq will be transformed to —ϕ and the two sequences will now

satisfy the first condition.

Figure 5.3 shows a set of lattice site chains that are mirror symmetry. The

followings are 'direction' sequences of chains in figure 5.3:

Sequence (a),(b) pairs satisfy the second condition with 6 = +x, = +y and 0 = +z.

Sequence (a),(c) pairs satisfy the second condition with S = +x, A = +z and 0 = +y.

Note that the sequence pairs (b),(c) are not mirror symmetry but rotation

symmetry with the following three cyclic direction transformations

(see the next subsection).

5.2.2 Rotation symmetry

Let's define a rotational transformation as a process of changing of a direction

in three-dimensional Cartesian coordinate to another direction after a sequence of

rotation steps.

Let Ep(epo, ep1, • • • , ep(n-1)) be a 'direction' sequence of a self-avoiding walk on

a undirect, connected graph G(V, E) (it can be a volume-constrained and/or contact-

constrained graph) and Eq (eq0, eq1, • • • , eq(n-1)) be another direction sequence on the

same graph. Q is said to be a rotation symmetry of P if and only if one of the

following two conditions is satisfied:

If Ep = Eq then Ep and Eq is obviously rotation symmetry of each other.

19

Figure 5.3 Mirror symmetry of chains in 3x3x3 cubic lattice

20

• If E p 	Eq and δ A, ϕ are any distinct + of x, y or z direction, there are three

cyclic direction transformations in the form (δ 	A), (A 	0), and (0 	δ)

from Ep sequence to Eq sequence to make them satisfy the first condition.

Note: 	means 'transform to'.

Figure 5.4 shows a set of lattice site chains that are all rotation symmetry to

each others. The followings are direction sequences of chains in figure 5.4:

The followings are cyclic direction transformations of pairs of sequences in figure 5.3:

5.3 Avoiding redundant structures in self-avoiding walk

In this section, I will present an algorithm to avoid mirror and rotation symmetries

before starting an enumeration procedure. Fortunately, avoid generating redundant

structures is much easier than it seems to be as discussed in the previous section.

5.3.1 Avoiding rotation symmetry

To avoid rotation symmetry, I derived the method from the following facts about

rotation symmetry of cubic lattice. First, any two three-dimensional structures will

be rotation symmetry of each other if we can perfectly match them together by at

most three different transformation steps in three-dimensional space. Second, any

21

Figure 5.4 Rotation symmetry of chains in 3x3x3 cubic lattice

22

lattice site on cubic lattice which is the current point of ramification (the active

mer) will not ramify to rotation symmetry structure if the sequence of selected mers

is a three-dimensional structure. Third, a cubic lattice is a repetition of a funda-

mental unit, a lattice site with exactly six near-neighbor, which makes it perfectly

symmetrical from any view.

From these facts, we can see that to avoid rotation symmetry we have to

find a set of starting mers on volume-confined structure that will ramify to only

unique conformations. From this initial set of lattice sites, use it as the only possible

starting points of walk. For each such mer, the self-avoiding walk can ramify one

step at a time to its near-neighbors that are not rotation symmetry with respect

to the current structure of walking path. Figure 5.5 shows three types of non-

symmetry self-avoiding walk (avoiding both rotation and mirror symmetries). By

following this guideline, the walker will never generate any redundant structure due

to rotation symmetry.

5.3.2 Avoiding mirror symmetry

To avoid mirror symmetry, this requires knowledge of both rotation symmetry and

mirror effect. It is observed that mirror and rotation symmetries usually present

together during the self-avoiding walk. Fortunately, the mirror effect in cubic lattice

conformations can be avoided by simply following the guideline used to avoid rotation

symmetry discussed in section 4.3.1. This makes it a lot easier to remove mirror

symmetry, otherwise it will be very difficult to remove all mirror structures.

5.3.3 An algorithm to avoid mirror and rotation symmetries

Formally, we define the following algorithm to avoid generating redundant structures

in self-avoiding walk due to rotation and/or mirror symmetry properties of cubic

lattices. This algorithm will generate a set of non-redundant initial conformations

that will be used as an input to the enumeration procedure.

Figure 5.5 Non-symmetry self-avoiding walk: (a) line symmetry avoiding, (b) plane
symmetry avoiding and (c) 3-D symmetry avoiding

23

24

Algorithm 5.1: Rotation and Mirror Symmetry Avoidance

[This algorithm will generate a set of initial conformations of a given volume—

and/or contact—constraint lattice graph. When the walker ramifies these initial

conformations, it will not generate any symmetry conformations.

1. Let Head(Q),Dequeue(Q),Enqueue(Q,M),Empty(Q) be generic queue

functions that perform the following functions, return Q head, dequeue Q,

enqueue a new element M to Q and test emptiness of Q respectively. Note

that the Q itself does not change when we apply functions Head() and Empty()

to it.

2. Create a queue of conformation QR to keep redundant initial conformations.

Reset this queue.

3. For each mer that is not rotation symmetry, create a conformation which has

only one such mer and set the dimension of the conformation to zeroth (OD)

and put it into QR.

4. Create a queue of conformation QNR to keep non-redundant initial confor-

mation. Reset this queue.

5. Let P be a conformation.

6. while QR is not empty do

(a) assign Head(QR) to P, and Dequeue(QR)

(b) let M be the active mer of conformation P which is always the last mer

of P.

(c) repeat

i. case OD:

> Pick any near-neighbor N of M as the new active mer of P.

25

> Update the conformation dimension to the first dimension (1D)

and Enqueue(Q R,

ii. case 1D: (figure 5.5(a)) Consider all near-neighbors of M:

>

 If a near-neighbor N is in the same 'direction' as the first

dimension of P, then pick N as one of the next ramification.

Create a new conformation X which is the same as confor-

mation P and add mer N to X as the new active mer. Then Enqueue(Q

2 R, X).

a Otherwise, pick any one of the rest near-neighbor of M as the next

possible ramification, called it N. Create a new conformation X

which is the same as conformation P and add mer N to X as the

new active mer. Update the dimension of conformation X to the

second dimension (2D). Then Enqueue(Q R, X).

iii. case 2D: (figure 5.5(b)) Consider all near-neighbors of M:

> For each near-neighbor N which is in the plane of conformation

P (note that P is currently a planar (2D) conformation), create

a new conformation X which is the same as conformation P and

add mer N to X as the new active mer. Then Enqueue(Q R, X).

For the rest near-neighbor mers of M that is not in the plane

of conformation P, pick one of them as the new active mer.

Create a new conformation X which is the same as conformation

P and add mer N as the new active mer of X. Update the

dimension of conformation X to the third dimension (3D). Then

Enqueue(Q R, X).

iv. case 3D: (figure 5.5(c)) Record conformation P as a new non-

redundant structure by doing Enqueue(QNR, P). When applying the

26

self-avoiding walk procedure (in chapter 5) to conformation P, there

will be no redundant structure.

until current conformation P is 3D.

end while

End—Algorithm 5.1

The most interesting aspect of this algorithm is that this kind of prefix compu-

tation leads to the applicability of parallel processing of any volume. This initial set

of prefix conformations can be realized as a set of independent parallel tasks that

can be executed concurrently.

5.4 How to improve enumeration time

It is observed that volume constraint restricts the self-avoiding walk such that all

nodes in the confined-volume must be used exactly once in any completed walk. If the

self-avoiding walk is blocked before it found a complete conformation, the algorithm

will backtrack to find another possibility to ramify from its current position

A blind exhaustive search will backtrack only when the search process is

blocked. However, we can avoid a large number of unsuccessful walks (backtrack

before the search is blocked) by checking that some portions of volume-confined

structure will never be visited if we continue walking from the current active mer.

See figure 5.6. By using a connectivity checking algorithm, we can avoid this

unfruitful situation as soon as it occurs. The connectivity checker will check if the

walk has divided the set of unvisited mers into two disjointed subsets or not. If that

is the case, then one of the two unvisited mer groups will never be visited by the

walker (without backtracking to the level of this active mer again). As soon as the

set of unvisited mers is divided into two disjointed subsets, we can stop progressing

27

Figure 5.6 Blocking in self-avoiding walk with volume-confined constraint

from the active mer of current conformation and try another near-neighbor which is

available at that level of walk.

The connectivity checking algorithm is implemented as a depth first search

procedure without backtracking capability. The time complexity of this connectivity

checking algorithm is 0(N) which is less than the overall complexity of exhaustive

enumeration algorithm.

The idea that makes this algorithm works is as follow. Let VCG be a volume-

constrained graph and Q be a live sequence and Vart be the active mer of Q. Now,

supposed further that Vart is the articulation point which connects the two subgraph

Ga and Gb of unvisited mers together at mer Va and Vb,respectively. See figure 5.7.

At the next step of walk, we have to choose between Va or Vb. No matter

which one we choose between these two mers, the volume graph of unvisited mers

will be divided into two separated connect component. Once the walker decided to

continue with one component, say Ga , by selecting Va as the next mer, then the

other component Gb will never be visited. This is because Vart is the only mer that

Figure 5.7 Components in self-avoiding walk with volume constraint

28

29

connects Ga and Gb together and the self-avoiding walk can use Vart only once which

means the self-avoiding walk cannot use Vart to go from Ga to Gb.

If the walking process keeps walking in one component, then it will eventually

find that the search process is blocked and start to backtrack again and again until

it comes back to Vart.

Therefore, as soon as the self-avoiding walk selects any mer which is a near-

neighbor of Vart, the unvisited mer graph will be divided into two connected

component graphs, then the search process can stop progressing the search with Vart

as the active mer since there will be no path that links Ga and Gb together in any

ramification from Vart . If there exists such path that connects Ca and Gb together

then Ga and Gb will not be two connected component graphs with articulation point

Vart which contradicts our assumption.

The arguments for the case of deciding to go in Gb via Vb first are similar.

CHAPTER 6

PARALLEL EXACT ENUMERATION OF LATTICE GRAPHS

In this chapter, a set of parallel exact enumeration algorithms are presented. Speed

up and communication overheads of this parallel parallel algorithm are analyzed.

6.1 Master and workers programming model

In this thesis, I will present a parallel programming model called master and workers

model. The master and workers paradigm is a very intuitive way of executing tasks

in parallel. Imagine you are a software designer. You have a number of people do

programming jobs for you. As a designer, you will first define problems that need

to be solved, divide the problems into subproblems and so on. Note that during the

problem division phase, you try to minimize dependency between these subproblems

so that programmers need not to communicate or depend on other programmers too

much. The more the subproblems are independent, the lower the communication

cost. This is very important in parallel program design because communication and

synchronizations are expensive operations in parallel computers. After you finish

dividing the problems into subproblems, you will distribute the subproblems to each

individual worker to perform these subproblems concurrently. When each individual

worker finishes its assignment, it reports the result back to the master. The master

will then combine all results received from workers together into the final solution.

It is observed that master and workers model can be scaled in a hierarchical

way. Imagine a hierarchy of people in an organization. You may be the biggest boss

of the company. When you want something to be done, you will ask your employees

to do it. Those employees may ask other employees at the lower level in organization

30

31

hierarchy to do the jobs (as long as the job can be divided) and so on. Therefore, if

the problem size is bigger and the number of employees in that organization is larger,

then the problem should be effectively solved as in the case of a smaller problem and

a small number of employees.

6.2 Parallel exact enumeration algorithms

Fortunately, the algorithm to remove redundant structure (algorithm 5.1) is perfectly

fit to the master-slave paradigm. The following is a parallel algorithm to do

enumeration based on redundant structure avoidance algorithm presented in chapter

5.

The followings are available globally as pre-computed data or user input data:

• Volume-constraint lattice graph is an undirect, connected graph VCG (M, L)

of volume lattice with dimension XDim x YDim x Z Dim. Each mer on lattice

graph can be indexed by the index number computed by

For example, a lattice site at the Cartesian coordinate (x,y,z) = (2,3,1)

of volume lattice graph with dimension (X Dim,Y Dim, Z Dim) = (3,3,2) is

indexed as the lattice site number 20.

• The required monomer sequence length, ie. the number of element in a sequence

that is considered a dead sequence is LREQ.

• A contact constraint map CCMAP for the enumeration with contact constraint.

This is a table with each entry represents a pairs of sequence positions that

imposes near-neighborness of mers on that sequence position pairs.

Algorithm 6.1: Parallel Enumeration of Self-Avoiding Walk on Cubic

Lattice

32

Enumerate all possible geometrically distinct conformations of a given cubic lattice.

The parallel implementation is based on a parallel programming model under UNIX

environment, ie. using processes and inter-process communication provided by UNIX

environment. The interprocess communication mechanism uses in this algorithm

is a half- duplex 'pipe' communication channel. A set of multiple processes is

created under UNIX environment to execute a set of parallel tasks, the enumeration

processes. 3

1. Let Qnri be a queue of initial conformations which is initialized to a empty

queue.

2. Let Mnr be a set of initial mers on a given cubic lattice in case of volume

constraint enumeration which is not redundant (subjected to rotational

symmetry), or Mnr be a mer, usually with index 0, in case of contact constraint

enumeration

3. While Mnr is not empty do

>

 Pick a member of M„ called it Cm„ and update Ma,. to be Mnr — C172 Cr

t> Generate non-redundant initial conformation path set from this Cm„ and

record all such conformations in Qnri queue using algorithm 4.1.

4. Install a buffered communication channel, a 'pipe' (an interprocess commu-

nication facility on UNIX), which allows interprocess communication between

the master process and its slave processes.

5. If there is no initial conformation in Qnri, ie. Qnri is empty then stop. (* we

are done *1

6. Otherwise for each initial conformation path Pic in Qnri do the following:

33

t Create a parallel slave process to enumerate all possible distinct confor-

mations of initial conformation Pic by ramifying Pic as an self-avoiding

walk in depth-first search manner.

✓ This parallel process will enumerate a Pic using self-avoiding walk, ie. each

parallel process will execute the algorithm 5.3, 5.4 or 5.5 (depending upon

the enumeration constraint) with Pic as an input.

• When a slave process finishes the enumeration on a given Pic, it sends the

enumeration result to the master process by putting it into the communi-

cation 'pipe' and terminates itself.

7. The master process reads the communication 'pipe' and sums up all the results

which is the total number of geometrically distinct conformation of a given

constrained cubic lattice. 	

End—Algorithm 6.1

Algorithm 6.2: Disconnected Volume Graph Detection

[Check to see whether the self-avoiding walk process reached the state where the

specified volume lattice graph has been divided into two disconnected components.

This means we want to check the connectivity of unvisited mers in the specified

volume lattice graph. It returns true if input lattice volume constraint graph is a

single connected component, otherwise return false.]

1

. parameter: VGuv be a set of unvisited mers in a volume constraint graph.

2. Let Mcurr be any member of set VG„,,.

3. Let QM be a queue of mers with Mcurr as the only element in it.

4. Let H ead(Q), Dequeue(Q), Enqueue(Q 	Empty(Q) be generic queue

functions that perform the following functions, return Q head, dequeue Q,

34

enqueue a new element M to Q and test emptiness of Q respectively. Note

that the Q itself does not change when we apply functions Head() and Empty()

to it.

5. Let N be a set of all near-neighbor mers of a mer X.

6. While Empty(QM) is false do the following:

> Set N to all near-neighbors of Head(Qm) which are not already in. QM.

>

 If N is empty then Dequeue(QM) and discard the element.

t> Otherwise, enqueue all members of set N to QM and set VGuv to VG.-

7. If VGuv is empty then return true. Otherwise return false.

End—Algorithm 6.2

Algorithm 6.3: Volume Constraint Enumeration

[Enumerate all geometrically distinct sequence conformations which ramify from a

given initial geometrically distinct conformation and subject to a volume constraint

VCG(M, L). The ramification of a given initial conformation is a self-avoiding walk

based on the depth first search (DFS) algorithm.]

1. parameter: Smmc is a sequence of lattice site index number defined on volume

lattice graph VCG(M, L) and represent an initial conformation mer sequence

we want to ramify to find all completed conformations (dead sequence) based

on this initial sequence.

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer

M. This mapping set can be computed from the volume constraint graph

VCG(M, L) and the initial conformation sequence Smmc as follows:

35

a For each mer M do the following:

o Determine all the near-neighbors of M, record this in NNB(M).

o Set NNB(M) to NNB(M) — Smmc

3. Let C ds be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0

(zero).

4. Let Lcurr and Linit be the lengths of initial input sequence Smmc.

5. Connect the communication 'pipe' to the master process.

6. If Linit is equal to the length of required monomer sequence L REQ then send

1 (one) as the number of found 'dead sequence' through the communication

'pipe' channel to the master process. Terminate the process. (* we are done *)

7. Otherwise, do the following:

a Let Mcurr be the last mer of the conformation at any stage of ramification.

Initialize this variable to the last mer of Smmc.

>

 Let Mnext be any unvisited near-neighbor mer of Mcurr. There is no need

to initialize this variable at this time.

>

 While Lcurr is greater than or equal to Linit do the following:

o Set Mnext to one of unvisited near-neighbor mers of Mcurr (any mer

in NNB(Mcurr)) and update NNB(Mcurr) NNB(M curr 	Mnext •

o If there is no Mnext or there is Mnext but if we select that Mnext, the

lattice volume graph VCG(M, L) will be divided into two connected

components according to the algorithm 5.2 (check connectivity), then

backtrack the self-avoiding walk by decreasing Lcurr by 1 and set

Mcurr to the mer at the position Lcurr of Smmc sequence.

36

o Otherwise, set M Mcurr to Mnext increase Lcurr by 1 and update

sequence Smmc at the position Lcurr to Mcurr.

o If the sequence length 	is equal to the required monomer sequence

length L REQ, then increment the number of 'dead sequence' Cds by

1.

>

 send the number of 'dead sequence' Cds to the master process through the

communication 'pipe' and terminate the process.

End—Algorithm 6.3

Algorithm 6.4: Volume and Contact Constraint Enumeration

[Enumerate all geometrically distinct sequence conformations which ramify from a

given initial conformation and subject to both a volume constraint VCG(M, L) and

a contact constraint CCMAP. The ramification of a given initial conformation is a

self-avoiding walk process based on the depth first search (DFS) algorithm.]

1. parameter: Smmc is a sequence of lattice site index number defined on volume

lattice graph V CG(M , L) and represent an initial conformation mer sequence

we want to ramify to find all completed conformations (dead sequence) based

on this initial sequence.

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer

M. This mapping set can be computed from the volume constraint graph

VCG(M, L) and the initial conformation sequence Smmc as in algorithm 5.3.

3. Let Cds be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0

(zero).

4. Let Lcurr and Linit be the lengths of initial input sequence Smmc.

37

5. Connect the communication 'pipe' to the master process.

6. Verify that Smmc satisfies the contact constraint by checking whether there is

any pairs of mer in Smmc violates the contact requirement according to the

contact constraint map CCMAP. If it does not, send 0 (zero) through the

communication 'pipe' to the master process as no 'dead sequence' has been

found. Terminate the process. (we are done).

7. If Linit is equal to the length of required monomer sequence LREQ then send 1

(one) as the number of found 'dead sequence' through the 'pipe' to the master

process. Terminate the process. (* we are done *)

8. Otherwise, do the following:

• Let Mcurr be the last mer of the conformation at any stage of ramification.

Initialize this variable to the last mer of Smmc.

• Let Mnext be any unvisited near-neighbor mer of Mcurr. There is no need

to initialize this variable at this time.

t While Lcurr is greater than or equal to Linit do the following:

o Set Mnext to one of unvisited near-neighbor mers of M Mcurr and update

NNB(Mcurr) curr to N B () (Mcurr) • Verify that this Mnext does

not violate the contact constraint requirement. If it does, we have to

pick another mer that doesn't by repeating this step until we find it

or there is no more unvisited near-neighbor mers of Mcurr left.

o If there is no such Mnext or if there is such Mnext but if we choose that

Mnext, then it will divide the lattice volume graph V CG(M, L) in to

two disconnected components according to the algorithm 5.2 (check

connectivity), then backtrack the self-avoiding walk by decreasing

38

L,„ by 1 and set Mcurr to the mer at the position Lcurr of

sequence.

o Otherwise, set Mcurr to Mnext, increase Lcurr by 1 and update

sequence 	at the position Lcurr to Mcurr.

o If the sequence length Lcurr, is equal to the required monomer sequence

length L REQ, then increment the number of 'dead sequence' Cds by

1.

>

 Send the number of 'dead sequence' Cds to the master process through

the communication 'pipe' and terminate the process.

End—Algorithm 6.4

Algorithm 6.5: Contact Constraint Enumeration

[Enumerate all geometrically distinct sequence conformations which ramify from a

given initial conformation and subject to a contact constraint CCMAP. The ramifi-

cation of a given initial conformation is a self-avoiding walk process based on the

depth first search (DFS) algorithm.

I. parameter: Smmc is a sequence of lattice site index number defined on volume

lattice graph VCG(M,L) and represent an initial conformation mer sequence

we want to ramify to find all completed conformations (dead sequence) based

on this initial sequence.

2. Let NNB(M) be a mapping set contains all unvisited near-neighbor of mer

M. This mapping set can be computed from the volume constraint graph

VCG(M,L) and the initial conformation sequence Smmc as in algorithm 5.3.

3. Let Cds be a counter of found 'dead sequences' (a geometrically distinct confor-

mation from a given initial conformation sequence Smmc) and initialize it to 0

(zero).

39

4. Let Lcurr and Linit be the lengths of initial input sequence

5. Connect the communication 'pipe' to the master process.

6. Verify that Smmc satisfies the contact constraint by checking whether there is

any pairs of mer in Smmc violates the contact requirement according to the

contact constraint map CCMAP. If it does not, send 0 (zero) through the

communication 'pipe' to the master process as no 'dead sequence' has been

found. Terminate the process. (we are done).

7. If Linit is equal to the length of required monomer sequence LREQ then send 1

(one) as the number of found 'dead sequence' through the 'pipe' to the master

process. terminate the process. (* we are done. *)

8. Otherwise, do the following:

t Let Mcurr be the last mer of the conformation at any stage of ramification.

Initialize this variable to the last mer of Smcc.

>

 Let Mnext be any unvisited near-neighbor mer of Mcurr. There is no need

to initialize this variable at this time.

>

 Repeat

o Set Mnext to one of unvisited near-neighbor mers of Mcurr r and update

NNB (Mcurr) B(Mcurr) to NNB (Mcurr) NNB(Mcurr) to 	NNb(Mcurr) - 	Mnext. Verify that this Mnext does

not violate the contact constraint requirement. If it does, we have to

pick another one that doesn't by repeating this step until we find it

or there is no more unvisited near-neighbor mers of Mcurr left.

o If there is no such Mnext then backtrack the self-avoiding walk by

decreasing Leon. by 1 and set Mcurr to the mer at the position Lcurr

of Smmc sequence.

40

o Otherwise, set Mcurr to Mnext, increase Lcurr by 1 and update

sequence Smmc at the position Lcurr to Mcur r

o If the sequence length Lcurr is equal to the required monomer sequence

length L REQ, then increment the number of 'dead sequence' Cd5 by

1.

until Lcurr is smaller than Linit

send the number of 'dead sequence' Cds to the master process through the

communication 'pipe' and terminate the process.

End—Algorithm 6.5

6.3 Implementation

The sequential enumeration algorithm was originally written in the UNIX environment.

Then the parallel algorithm has been developed using multiple concurrent processes

on a parallel computer running UNIX. There is a parent process acts as the master

running algorithm 5.1 which creates a set of child processes (workers) to enumerate

all conformations based on a set of initial conformations. When the child processes

finish their jobs, they will report the results back to the master (parent) process.

The parallel implementation was done on a Silicon Graphics Iris parallel

computer at Harvard Chemistry Department. All codes are conformed to POSIX.1

standard and should be portable to any POSIX.1 compliant system.

CHAPTER 7

RESULTS AND DISCUSSIONS

In this chapter, some enumeration results will be presented. The speed up of these

results as well as communication cost will also be discussed.

7.1 Exact enumeration results with various constraints

The followings are results of some volume and/or contact constraint enumerations.

Table 7.1 shows volume constraint enumerations. In all tables, initial conformation

is the total number of non-redundant conformation of a given lattice graph as well

as the number of independent parallel tasks. The unique conformation is the total

number of geometrically distinct conformations. Table 7.2 is the sample of volume

and contact-constraint enumeration on a 3 x 3 x 3 cubic lattice with various contact-

constraint lists. Table 7.3 is the sample of contact-constraint enumeration of a chain

of 30 monomers.

7.2 Discussions

The following three tables show the running time of all algorithms on a Silicon

Graphics Iris parallel computer with 4 processors. Table 7.4 shows speed up of

volume constraint enumeration. Table 7.5 shows speed up of volume and contact

constraint enumeration. Table 7.5 shows speed up of contact constraint enumeration.

From table 7.4, 7.5, 7.6, the speed up are almost linear from one to four

processors. The communication cost between the master and workers is very low in

all algorithms. Actually, there is no synchronization at all between worker processes.

This is a very desirable characteristic to achieve an almost linear speedup since

41

Table 7.1 Volume constraint enumeration of various volumes

Volume Chain Length Number of Conformations Time
(seconds) Initial Unique

2 x 2 x 2 8 2 3 0.77

2 x 2 x 3 12 24 73 1.96

2 x 3 x 3 18 116 2110 6.81
3 x 3 x 3 27 152 103346 65.49

Table 7.2 Volume and contact constraint enumerations of a volume 3 x 3 x 3

Contact Constraint List Number of Conformations Time
(seconds) Initial Unique

21-12, 23-16 152 1594 22.27

15-4, 11-26 152 3482 11.6
18-11, 25-8 152 2475 17.6
8-17, 21-2 152 2562 13.41

Table 7.3 Contact constraint enumeration of a chain of 30 monomers

Contact Constraint List Number of Conformations Time
(seconds) Initial Unique

2-11 29-10 28-3 13-0 18-7 5-16 513 22540648 40961.66

12-5 2-29 20-15 3-14 8-1 17-24 64 40407229 17317.71

2-11 19-2 22-15 25-4 14-7 25-8 619 382716 55.13

2-17 13-4 24-5 9-2 28-9 7-20 178 435183 261.91

Table 7.4 Speed up of a volume constraint enumeration of volume 3 x 3 x 3

Number of PEs Time (sec) Speed Up
1 62.21 1
2 32.09 1.94
3 21.57 2.88
4 16.1 3.86

42

43

Table 7.5 Speed up of a volume and contact constraint enumerations of volume
3 x 3 x 3

Number of PEs Contact Constraint List Time (sec) Speed Up
1 21-12, 23-16 23.59 1
2 12.35 1.91
3 8.25 2.86
4 6.10 3.87

Table 7.6 Speed up of contact constraint enumeration of a chain of 30 monomers

Number of PEs Contact Constraint List Time (sec) Speed Up
1 2-17 13-4 24-5 9-2 28-9 7-20 259.22 1
2 138.62 1.87
3 88.77 2.92
4 67.68 3.83

process communication and synchronization are very expensive operations in any

parallel computer system.

CHAPTER 8

CONCLUSIONS

This thesis presented a set of parallel algorithms to solve exact enumeration problems.

It discussed the application of exact enumerations to the protein folding problem.

The experimental results justified the success of applying parallel processing to a class

of lattice graph enumeration problems. The speed up obtained by these algorithms

are almost linear in all algorithm which are due to the fact that all subtasks are

highly independent. The communication and synchronization between subtasks are

very low.

There are also a number of enumeration. problems that need to be solved

and require even more computing power than problems discussed in this thesis, for

example, a binomial contact constraint exact enumeration.

44

APPENDIX A

AN IMPLEMENTATION OF PARALLEL VOLUME AND CONTACT
CONSTRAINT EXACT ENUMERATION

In followings are the implementation of parallel exact enumerations wi th volume,

and volume and contact constraint, ie. algorithms 4.1, 5.1, 5. 2, 5.3 and 5.4.

/*
Cubic lattice enumeration with volume, and volume and contact const

raint

by: Anek Vorapanya

last modified: summer of 1993
known bugs: none

portability: all environments conform to the POSIX.1 standard

language standard: ANSI C

compiler: GNU compiler (gcc)

compiler options: -ansi -02

usage: gwalk -h

tested environment:

- ULTRIX 4.3A (Rev. 146) (DEC 5900)
- SUN OS 4.1.3 (Sun)
- AIX 3.1.2 (IBM RS/6000)
- IRIX 5.1 (SGI)

*/

#include <string.h>

#include <malloc.h>

#include <math.h>
#include <sys/wait.h>

#include <sys/times.h>

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>

45

46

#include <unistd.h>

#include <stdarg.h>

#define MIN_ARGUMENT 	4 	/* min. argument required */

#define MAX_PROCESS 	 1 	/* default max. processes */

#define DEF_CNT_LV_CHK 	2 	/* default connect level check,

min.=2 */

#define MAX_DIR 	 6

#define MAX_NEIGHBOR 	6

#define INVALID_NODE 	(-1)

#define INVALID_NNBNO 	(-1)

#define OPPOSITE_DIR_DIFF 	(abs(PLUS_X-MINUS_X))

#define DISPCNT_MOD 	 1000L

#define MIN_DISPCNT_MOD 	100L

#define MAX_PIPL 	 50 	/* max. % of initial path length */

typedef enum { false, true 	boolean;

typedef enum {

PLUS_X='0',

MINUS_X='1',

PLUS_Y='2',

MINUS_Y='3',

PLUS_Z='4',

MINUS_Z='5',

INVALID_DIR='#)

} DIRECTIONS;

typedef struct {

int node;

char dir;

} neighbor;

typedef struct {

int x; 	/* first node of contact */

int y; 	/* second node of contact */

} contact;

typedef neighbor neighborlist[MAX_NEIGHBOR];

typedef struct {

int *node; 	/* currently visited node no. at this level in path

47

*/

int *nnbno; 	/* currently use of child no of this node */

DIRECTIONS *dir;
} path;

typedef struct {
boolean *symnodeflag;
} symnodeseq;

typedef enum { _ODpath, _1Dpath, _2Dpath, _3Dpath } pathtype;

typedef enum { invalid_planetype, xyplane, yzplane, xzplane } planetyp
e;

typedef struct pathlist_s {
pathtype ptype;
planetype pltype;
int last;
int *node;
DIRECTIONS *dir;
boolean *usedflag;
struct pathlist_s *next;
pathlist;

int xsize;
int ysize;
int zsize;
long sys_max_child;
long max_process;
int min_level;
int dispcnt_mod;
enum { gen_initial_path, count_path, gen_path } option;
boolean verbose=false;
boolean resource_usage=false;
int totalnode;
neighborlist *nearneighbor;
path *p;
boolean *usedflag;
long pathcount;
long total_nonsym_initial=OL;
int *num_nearneighbor;
symnodeseq *symnodetable;
int *nonsymnodelist;

48

int totalnonsymnode;
pathlist *stpl;
pathlist *nspl;
pathlist *last_stpl;
pathlist *last_nspl;
pathlist head_stpl;
pathlist head_nspl;
FILE *gwalk_log;
FILE *fp;
char filename[256];
char initialnodes[1024];
long clktck;
Boolean *tmp_used; 	/* temporary 'usedflag' */
int 	*queue;
contact *contact_set;
int total_contact=0;
FILE *foot;

void error (char *fmt, ...)
{

va_list ap;
char buf[512];

va_start(ap,fmt);
vsprintf (buf,fmt,ap);
va_end(ap);
write (fileno(stderr),buf,strlen(buf));
exit (1);

}

void usage (void)
{

char tmp[128];

fprintf (stderr,"Enumerate geometrically-distinct walk for a X*Y*Z
volume\n");

fprintf (stderr,"usage: gwalk <xsize> <ysize> <zsize> [options]\n"

);
fprintf (stderr,"options:\n");
fprintf (stderr," 	: to generate initial paths only (save in lo

g file)\n");
fprintf (stderr," -c : to count all possible paths\n");
fprintf (stderr," -w : to save generated paths in file (save in p

49

ath.xsize.ysize.zsize)\n");

if (sys_max_child==0)
strcpy (tmp,"unknown");

else
sprintf (tmp,"%ld",sys_max_child-1L);

fprintf (stderr," -pX : specify no. of processes to run simultane

ously (your system max %s)\n",tmp);
fprintf (stderr," -1X : specify percentage of initial path length

(recommend 15-25,max %d)\n",MAX_PIPL);
fprintf (stderr," -tX <contact set>: specify contact set where X

is number of contacts\n");
fprintf (stderr," 	and <contact set> is a contact set in the f

orm 'a-b c-d e-f 	\n");
fprintf (stderr," -dX : specify counter display modulo value (min

%d)\n",MIN_DISPCNT_MOD);
fprintf (stderr," -v : show the enumeration counting\n");
fprintf (stderr," -r : show resource usage\n");
fprintf (stderr," -h : print this help screen\n");

exit (0);

}

void cmdline_parse (int argc,char *argv[])
{

char *s;
char tmp[1024];
char c;
int i,j,p;
int contact_no=(-1);
int tmptotalnode;

xsize=0;
ysize=0;
zsize=0;
option=count_path;
min_level=0;
dispcnt_mod=DISPCNT_MOD;

if ((sys_max_child=sysconf(_SC_CHILD_MAX))==0) {
fprintf (stderr,"* can't determine 'max. processes for user'\n

");
fprintf (stderr," use %d as a default value\n",MAX_PROCESS);
sys_max_child=MAX_PROCESS;

50

}

/* set default max. process */
max_process=MAX_PROCESS;

if (argc<MIN_ARGUMENT)
usage();

for (i=1;i<argc;i++) {
if (i<MIN_ARGUMENT) {

switch (i) {
case 1:

if ((xsize=atoi(argv[1]))==0 II xsize<2)
usage();

break;
case 2:

if ((ysize=atoi(argv[2]))==0 || ysize<2)
usage();

break;
case 3:

if ((zsize=atoi(argv[3]))==0 II zsize<2)
usage();

break;
}

}

else {
if (contact_no==(-1)) {

s=argv[i];
if (s[0]!='-')

usage();
s++;
c=tolower(s[0]);
}

else
c='t'; /* continue scanning contact set */

switch (c) {
case 'c': /* count path only */

option=count_path;
break;

case 'i': /* generate only initial path and save in lo
g file */

option=gen_initial_path;
break;

51

case 'w': /* generate path file */
option=gen_path;
/* prepare output file */
strcpy (filename,"path");
for (j=1;j<MIN_ARGUMENT;j++) {

strcat(filename,".");
strcat(filename,argv[j]);

}
if ((fp=fopen(filename,"wb"))==NULL)

error ("error: can't open output file (%s)\n",
filename);

break;
case '1': /* minimum start level */

if ((p=atoi(++s))==0 	p>MAX_PIPL)
usage();

min_level=xsize*ysize*zsize*p/100;
fprintf (stderr,"* use min. initial level = %d\n",

min_level);
break;

case 'p': /* maximum processes to run simultaneous */
/* we have to subtract 1 from sys_max_child

based on assumption that we will have one
and only one process running (parent).

*/

if ((max_process=atol(++s))==0 11 max_process>(sys
_max_child-1L))

usage();
break;

case 'd': /* counter display modulo value */
if ((dispcnt_mod=atoi(++s))==0 II dispcnt_mod<MIN_

DISPCNT_MOD)
usage();

break;
case 'v': /* verbose */

if (s[1]=='-')
verbose=true;

break;
case 't': /* contact constraint set */

if (contact_no!=-1) {
if ((s=strchr(argv[i],'-'))!=NULL) {

s[0]='\0';
if (((contact_set[contact_no].x=atoi(argv[

i]))==0 && argv[i][0]!='0') II contact_set[contact_no].x>=xsize*ysize*
zsize)

52

error("error: invalid contact set no.

(%s)\n",argv[i]);
s++;
if (s[0]=='\0')

error("error: incomplete contact set (
contact no. %d)\n",contact_no);

if (((contact_set[contact_no].y=atoi(s))==
0 && s[0]!='0') II contact_set[contact_no].y>=xsize*ysize*zsize)

error("error: invalid contact set no.

(%s)\n",$);
}

else
error("error: contact set requires 'x-y' f

ormat where x and y are nodes no. to form the contact.\n");

if (++contact_no==total_contact)
contact_no=(-1);

}

else
if ((total_contact=atoi(++s))!=0)

/* allocate contact set data */
contact_set=(contact *)malloc(total_contac

t*sizeof(contact));
contact_no=0;

}
else

usage();

}
break;

case 'r':
resource_usage=true;
break;

default:
fprintf (stderr,"* error: unknown options (%c)\n",

s[0]);

case 'h':
usage();
break;

}

}

}

/* check if we got all contact as specify with -tX option or not *

if (contact_no!=-1)
error("error: number of contacts mismatched\n");

}

void reset_usedflag (void)
{

int i;

for (i=0;i<totalnode;i++)

usedflag[i]=false;
}

void create_near_neighbor_table (void)
{

int node,count;
void sort_nearneighbor (void);

for (node=0;node<totalnode;node++) {
count=0;
if ((node%xsize)<(xsize-1)) {.

nearneighbor[node][count].node=node+1;
nearneighbor[node][count].dir=PLUS_X;
count++;

}
if ((node%xsize)>0) {

nearneighbor[node][count].node=node-1;
nearneighbor[node][count].dir=MINUS_X;
count++;
}

if ((node%(xsize*ysize))<(xsize*ysize-xsize)) {
nearneighbor[node][count].node=node+xsize;
nearneighbor[node][count].dir=PLUS_Y;
count++;

}
if ((node%(xsize*ysize))>=xsize) {

nearneighbor[node][count].node=node-xsize;
nearneighbor[node][count].dir=MINUS_Y;
count++;

}
if ((node+(xsize*ysize))<totalnode) {

nearneighbor[node][count].node=node+(xsize*ysize);
nearneighbor[node][count].dir=PLUS_Z;
count++;

53

54

if ((node-(xsize*ysize))>=0) {
nearneighbor[node][count].node=node-(xsize*ysize);
nearneighbor[node][count].dir=MINUS_Z;

count++;

}
num_nearneighbor[node]=count;
}

sort_nearneighbor ();

void sort_nearneighbor (void)

{
boolean changed;
int i,j;
neighbor tmp;

/* sort neighbor list using bubble sort */
for (i=0;i<totalnode;i++)

do {
changed=false;
for (j=0;j<num_nearneighbor[i]-1;j++) {

if (nearneighbor[i][j].node>nearneighbor[i][j+1].node)
{

tmp=nearneighbor[i][j];
nearneighbor[i][j]=nearneighbor[i][j+1];
nearneighbor[i][j+1]=tmp;
changed=true;

}
}

}

 while (changed==true);
}

}

boolean is_neighbor (int x,int y) {
int i;

for (i=0;i<num_nearneighbor[x];i++) {
if (nearneighbor[x][i].node==y)

return true;
}

return false;

55

void set_contact_constraint (void) {

int i,j;

contact tmp;

/* switch position of x and y such that x is higher than y */

for (i=0;i<total_contact;i++) {

if (contact_set[i].x<contact_set[i]) {

/* swap */

j=contact_set[i].x;

contact_set[i].x=contact_set[i].y;

contact_set[i].y=j;

}

/*

printf ("switch contact %d (%d-%d)\n",i,contact_set[i].x,conta

ct_set[i].y);

*/

}

/* we will sort it using bubble sort */

for (i=0;i<total_contact;i++) {

for (j=total_contact-1;j>i;j--) {

if (contact_set[j].x<contact_set[j-1].x) {

/* swap */

tmp=contact_set[j];

contact_set[j]=contact_set[j-1];

contact_set[j-1]=tmp;

}

}

fprintf (stderr,"sort contact %d (%d-%d)\n",i,contact_set[i].x

,contact_set[i].y);

}

}

DIRECTIONS getdir (int cnode,int nnode)

{

int i;

/* find direction from this nextnode to destination */

for (i=0;i<num_nearneighbor[cnode] && nearneighbor[cnode][i].node<

=nnode;i++) {

if (nearneighbor[cnode][i].node==nnode) {

return nearneighbor[cnode][i].dir;

56

}

}

return INVALID_DIR;
}

int getnextnode (path *p,int level)

int i,validnnbno;
int node;

node=p->node[level];
validnnbno=0;
for (1=0;i<num_nearneighbor[node];1++) {

if (!usedflag[nearneighbor[node][i].node] && validnnbno++==p->
nnbno[level]) {

p->dir[level]=nearneighbor[node][1].dir;
return nearneighbor[node][i].node;
}

}

return INVALID_NODE;
}

void list_nearneighbor (path *p)

int l,tmp,j;

for (1=0;1<totalnode;1++)
fprintf (fout,"node %d (#nb %d): ",1,num_nearneighbor[1]);
p->node[0]=1;
usedflag[1]=true;
for (j=0;j<num_nearneighbor[1];j++) {

p->nnbno[0]=j;
if ((tmp=getnextnode (p,0))!=INVALID_NODE) {

fprintf (fout,"%d ",tmp);
usedflag[tmp]=false;
}

}

usedflag[1]=false;
fprintf (fout,"\n");
}

}

void print_symnodetable (FILE *stream)

57

int i,j;

for (i=0;i<totalnode;i++) {
fprintf (stream,"node %d: ",i);

for (j=0;j<totalnode;j++)
if (symnodetable[i].symnodeflag[j]==true)

fprintf (stream,"%d ",j);

fprintf (stream,"\n");

}
}

int point (int x,int y,int z)
{

if (x>=xsize II y>=ysize II z>=zsize)

error("internal error: invalid x,y,z (%d,%d,%d), max size (%d,

%d,%d)\n",x,y,z,xsize,ysize,zsize);
return (int)((int)(z*ysize*xsize)+(int)(y*xsize)+x);

}

void gen_non_symmetry_node (void)
{

int i,j;
boolean *symnodemark;

symnodemark=(boolean *)malloc(sizeof(boolean)*totalnode);
if (symnodemark==NULL)

error ("error: memory allocation (symnodemark)\n");

for (i=0;i<totalnode;i++)

symnodemark[i]=false;

totalnonsymnode=totalnode;

for (i=0;i<totalnode;i++) {
if (symnodemark[i]==true)

continue;
for (j=0;j<totalnode;j++) {

if (symnodetable[i].symnodeflag[j]==true && i!=j) {
symnodemark[j]=true;

totalnonsymnode--;

58

nonsymnodelist=(int *)malloc(sizeof(int)*totalnonsymnode);

if (nonsymnodelist==NULL)
error ("error: memory allocation (nonsymnodelist)\n");

j=0;
for (i=0;i<totalnode;i++) {

if (symnodemark[i]==false)

nonsymnodelist[j++]=i;
}

fprintf (fout,"non-symmetrical node (%d): ",totalnonsymnode);

for (i=0;i<totalnonsymnode;i++)
fprintf (foot, "'%d ",nonsymnodelist[i]);

fprintf (fout,"\n");

fprintf (gwalk_log,"non-symmetrical node (%d): ",totalnonsymnode);

for (1=0;i<totalnonsymnode;i++)
fprintf (gwalk_log,"%d ",nonsymnodelist[i]);

fprintf (gwalk_log,"\n");
}

void INCLUSIVE_OR_sym_nodeseq (int snode,int dnode)
{

int i;

for (i=0;i<totalnode;i++) {

if (symnodetable[snode].symnodeflag[i]==true)
symnodetable[dnode] .symnodeflag[i]=true;

else if (symnodetable[dnode].symnodeflag[i]==true)

symnodetable[snode].symnodeflag[i]=true;
}

}

void addsymnode (int x,int y)
{

symnodetable[x].symnodeflag[y]=true;
symnodetable[y].symnodeflag[x]=true;

}

void gen_sym_node_table (void)
{

int i,j;

int x,y,z,xx,yy,zz;

59

int a,b,c,d;

int czsize,cysize,cxsize;

symnodetable=(symnodeseq *)malloc(sizeof(symnodeseq)*totalnode);

for (i=0;i<totalnode;i++) {
symnodetable[i].symnodeflag=(boolean *)malloc(sizeof(boolean)*

totalnode);
for (j=0;j<totalnode;j++)

symnodetable[i].symnodeflag[j]=false;
}

/* find symmetry node when rotate cube around z direction */

x=0;

y=0;

z=0;

for (czsize=zsize,cysize=ysize,cxsize=xsize;czsize>0;czsize-=2,cys
ize-=2,cxsize-=2) {

for (zz=z;zz<czsize;zz++) {

a=point(x,y,zz);
c=point(x+cxsize-1,y+cysize-1,zz);

b=point(x+cxsize-1,y,zz);

d=point(x,y+cysize-1,zz);

if (cxsize==cysize) {

while (a<point(x+cxsize-1,y,zz)) {

addsymnode(a,b);

addsymnode(a,d);

addsymnode(c,b);

addsymnode(c,d);

a++;
b+=cxsize;
c--;

d-=cxsize;
}

}
else {

/* corners will always symmertry to other corners */

60

addsymnode(a,b);

addsymnode(a,d);

addsymnode(c,b);

addsymnode(c,d);

while (a<point(x+cxsize-1,y,zz)) {

addsymnode(a,c);

a++;

c--;

}

while (b<point(x+cxsize-1,y+cysize-1,zz)) {

addsymnode(b,d);

b+=cxsize;

d-=cxsize;

}

}
}

x++;

y++;

z++;

}

/* find symmetry node when rotate cube around x direction */

x=0;

y=0;

z=0;

for (czsize=zsize,cysize=ysize,cxsize=xsize;cxsize>0;czsize-=2,cys

ize-=2,cxsize-=2) {

for (xx=x;xx<cxsize;xx++) {

a=point(xx,y,z);

c=point(xx,y+cysize-1,z+czsize-1);

b=point(xx,y+cysize-1,z);

d=point(xx,y,z+czsize-1);

if (cysize==czsize) {

while (a<point(xx,y+cysize-1,z)) {

61

addsymnode(a,b);
addsymnode(a,d);
addsymnode(c,b);
addsymnode(c,d);

a+=cxsize;
b+=cxsize*cysize;
c-=cxsize;
d-=cxsize*cysize;
}

}
else

/* corners will always symmertry to other corners */
addsymnode(a,b);
addsymnode(a,d);
addsymnode(c,b);
addsymnode(c,d);

while (a<point(xx,y+cysize-1,z))
addsymnode(a,c);

a+=cxsize;
c-=cxsize;
}

while (b<point(xx,y+cysize-1,z+czsize-1))
addsymnode(b,d);
b+=cxsize*cysize;
d-=cxsize*cysize;
}

}
}

x++;
y++;

Z++;

}

/* find symmetry node when rotate cube around y direction */

x=0;
y=0;
z=0;

for (czsize=zsize,cysize=ysize,cxsize=xsize;cysize>0;czsize-=2,cys

62

ize-=2,cxsize-=2) {

for (yy=y;yy<cysize;yy++) {

a=point(x,yy,z);

c=point(x+cxsize-1,yy,z+czsize-1);

b=point(x+cxsize-1,yy,z);

d=point(x,yy,z+czsize-1);

if (cxsize==czsize) {

while (a<point(x+cxsize-1,yy,z)) {

addsymnode(a,b);

addsymnode(a,d);

addsymnode(c,b);

addsymnode(c,d);

a++;

b+=cxsize*cysize;
c--;

d-=cxsize*cysize;

}

}

else {

/* corners will always symmertry to other corners */

addsymnode(a,b);

addsymnode(a,d);

addsymnode(c,b);

addsymnode(c,d);

while (a<point(x+cxsize-1,yy,z)) {

addsymnode(a,c);

a++;

c--;

}

while (b<point(x+cxsize-1,yy,z+czsize-1)) {

addsymnode(b,d);

b+=cxsize*cysize;

d-=cxsize*cysize;

}

}

}

63

X++;

y++;

z++;

}

/* retrieve all symmetry node seq. */
for (i=0;i<totalnode;i++) {

for (j=0;j<totalnode;j++) {
if (symnodetable[i].symnodeflag[j]==true)

INCLUSIVE_OR_sym_nodeseq (i,j);

else if (i==j)
symnodetable[i].symnodeflag[j]=true;

}
}

print_symnodetable (gwalk_log);
fflush (gwalk_log);

}

boolean issymnode (int na,int nb)
{

if (nb==INVALID_NODE)
return false;

else if (symnodetable[na].symnodeflag[nb]==true)
return true;

else
return false;

}

void get_all_available_nearneighbor (boolean *usedflag,int cnode,neigh
bor *ann,int *cnt)
{

int i;

*cnt=0;
for (i=0;i<num_nearneighbor[cnode];i++) {

if (usedflag[nearneighbor[cnode][i].node]==false) {
ann[*cnt].node=nearneighbor[cnode][i].node;
ann[*cnt].dir=nearneighbor[cnode] [i].dir;
(*cnt)++;

64

void create_newpath (pathlist *orgpath,pathlist **newpath,int newlastn
ode,DIRECTIONS dirlastnode)
{

int i;

*newpath=(pathlist *)malloc(sizeof(pathlist));
(*newpath)->node=(int *)malloc(sizeof(int)*totalnode);
(*newpath)->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode)

;

(*newpath)->usedflag=(boolean *)malloc(sizeof(boolean)*totalnode);

for (i=0;i<totalnode;i++) {
(*newpath)->node[i]=INVALID_NODE;
(*newpath)->dir[i]=INVALID_DIR;
(*newpath)->usedflag[i]=false;
}

if (orgpath!=NULL) {
(*newpath)->last=orgpath->last;
(*newpath)->ptype=orgpath->ptype;
(*newpath)->pltype=orgpath->pltype;
memcpy((*newpath)->node,orgpath->node,orgpath->last*sizeof (int

)) ;
memcpy((*newpath)->dir,orgpath->dir,(orgpath->last-1)*sizeof(D

IRECTIONS));
memcpy((*newpath)->usedflag,orgpath->usedflag,totalnode*sizeof

(boolean));
(*newpath)->dir[(*newpath)->last-1]=dirlastnode;
}

else {
(*newpath)->last=0;
(*newpath)->ptype=_ODpath;
(*newpath)->pltype=invalid_planetype;
}

(*newpath)->node[(*newpath)->last]=newlastnode;
(*newpath)->usedflag[newlastnode]=true;
(*newpath)->last++;
(*newpath)->next=NULL;

}

void add_to_stpl (pathlist *p)

last_stpl->next=p;
last_stpl=p;

}

void add_to_nspl (pathlist *p)
{

last_nspl->next=p;
last_nspl=p;

}

void del_head_stpl (void)
{

pathlist *p;

if (stpl->next!=NULL) {
p=stpl->next;
stpl->next=stpl->next->next;
/* throw it away */
free (p);
}

}

pathlist *del_head_nspl (void)
{

pathlist *p;

if (nspl->next!=NULL) {
p=nspl->next;
nspl->next=nspl->next->next;
return p;
}

else
return NULL;

}

planetype det_planetype (DIRECTIONS cdir,DIRECTIONS ndir)
{

switch (cdir) {
case PLUS X:
case MINUS_X:

if (ndir==PLUS_Y II ndir==MINUS_Y)
return xyplane;

else
return xzplane;

65

66

break;
case PLUS_Y:
case MINUS Y:

if (ndir==PLUS_X || ndir==MINUS_X)
return xyplane;

else
return yzplane;

break;
case PLUS Z:
case MINUS_Z:

if (ndir==PLUS_Y || ndir==MINUS_Y)
return yzplane;

else
return xzplane;

break;
}

}

void remove_ann (neighbor *ann,int idx,int *cnt)
{

int i;

if (*cnt!=1) {
/* fill this 'hole' in 'ann' with last 'ann' */

ann[idx].node=ann[*cnt-1].node;
ann[idx].dir=ann[*cnt-1].dir;
(*cnt)--;
}

}

void remove_symnode (neighbor *nn,int *cnt)
{

int i,j;

for (i=0;i<*cnt;i++) {
for (j=i+1;j<*cnt;) {

if (issymnode(nn[i].node,nn[j].node))
remove_ann (nn,j,cnt);

else
j++;

}

67

void gen_non_symmetry_path (void)
{

pathlist *np;
pathlist *cp;
int i,nsc,cnt;
neighbor ann[MAX_NEIGHBOR];
boolean add;

/* init STPL (symmetry test path list) and NSPL (non-symmetry init
ial path list */

head_stpl.next=NULL;
head_nspl.next=NULL;
stp1=(pathlist *)&head_stpl;
nsp1=(pathlist *)&head_nspl;
last_stp1=(pathlist *)&head_stpl;
last_nspl=(pathlist *)&head_nspl;

/* add 'non-symmetry node' to initial stpl */
for (nsc=0;nsc<totalnonsymnode;nsc++) {

create_newpath (NULL,&np,nonsymnodelist[nsc],INVALID_DIR);
add_to_stpl (np);
}

while ((cp=stpl->next)!=NULL) {
get_all_available_nearneighbor (cp->usedflag,cp->node[cp->last

-1],ann,&cnt);
switch (cp->ptype) {

case _ODpath:
/* we just start walking so we choose to walk

to only node that are non-symmetrical */
remove_symnode (ann,&cnt);
for (i=0;i<cnt;i++) {

create_newpath (cp,&np,ann[i].node,ann[i].dir);
np->ptype=_1Dpath;

np->usedflag[ann[i].node]=true;
add_to_stpl (np);
}

break;
case _1Dpath :

/* find 'stright path' , this path will not
symmetry to other pathes */

for (i=0;i<cnt;i++) {

if (ann[i].dir==cp->dir[0]) {
create_newpath (cp,&np,ann[i].node,ann[i].dir)

68

np->usedflag[ann[i].node]=true;
add_to_stpl (np);
/* remove this from available near neighbors *

/
remove_ann (ann,i,&cnt);
break;
}

}

/* add only non-symmetry neighbor */
/* and it will be 'plane path' from now on */
remove_symnode (ann,&cnt);
for (i=0;i<cnt;i++) {

create_newpath (cp,&np,ann[i].node,ann[i].dir);
np->usedflag[ann[i].node]=true;
np->ptype=_2Dpath;
np->pltype=det_planetype (cp->dir[0],ann[i].dir);
add_to_stpl (np);
}

break;
case _2Dpath

/* find 'ann' that is in plane */
/* add it to 'stpl' (it will not symmetry) */
for (i=0;i<cnt;) {

if ((cp->pltype==xyplane && ann[i].dir!=PLUS_Z &&
ann[i].dir!=MINUS_Z) II (cp->pltype==yzplane && ann[i].dir!=PLUS_X &&
ann[i].dir!=MINUS_X) || (cp->pltype==xzplane && ann[i].dir!=PLUS_Y &&
ann[i].dir!=MINUS_Y)) {

create_newpath (cp,&np,ann[i].node,ann[i].dir)
•

np->usedflag[ann[i].node]=true;
remove_ann (ann,i,&cnt);
add_to_stpl (np);
}

else
i++;

}

/* remove symmetry node and add the rest to 'NSPL' */
remove_symnode (ann,&cnt);
for (i=0;i<cnt;i++) {

create_newpath (cp,&np,ann[i].node,ann[i].dir);
np->usedflag[ann[i].node]=true;

69

/* now we have non-symmetrical initial path
list if user didn't specify 'min. level of
initial path', we will use this as NSPL

*/

if (np->last>=min_level) {
add_to_nspl (np);
total_nonsym_initial++;
}

else {
np->ptype=_3Dpath;
add_to_stpl (np);
}

}

break;
case _3Dpath

for (i=0;i<cnt;i++) {
create_newpath (cp,&np,ann[i].node,ann[i].dir);
np->usedflag[ann[i].node]=true;
if (np->last<min_level)

add_to_stpl (np);
else {

add_to_nspl (np);
total_nonsym_initial++;
}

}

break;
}

del_head_stpl ();
}

}

int satisfy_cc (int contact_no,int level,int node) {
/* if no contact constrints, or contact constraint was already sat

isfy then return true */
if (total_contact==0 II contact_no>=total_contact) return true;

/* check if it satisfy contact constraints */
/*
fprintf (stderr,"check cc contact_no %d,level %d,node %d\n",contac

t_no,level,node);
*/

while (level==contact_set[contact_no].x) {

70

if (is_neighbor(p->node[contact_set[contact_no].y],node)==fals

e)
return -1; 	/* if it false, we can stop immediately */

/* if it true, we have to check that it true in all contact */

contact_no++;
}

/*
fprintf (stderr,"* check ok, new contact no. %d\n",contact_no);
*/

return contact_no;
}

boolean connect (int level,int node) {
int i,cur,last,cnode;

if (level>=totalnode-DEF_CNT_LV_CHK)
return true; 	/* assume default 'connect' */

/* use BFS to check connectivity of non-planar graph */

memcpy (tmp_used,usedflag,sizeof(boolean)*totalnode);
tmp_used [node] =true;
for (i=0;i<totalnode 	tmp_used[i]==true;i++);
tmp_used[i]=true;

cur=0;
last=0;
queue[0]=i;

do {
cnode=queue[cur];
for (1=0;i<num_nearneighbor[cnode];i++) {

if (tmp_used[nearneighbor[cnode][1].node]==false) {
queue[++last]=nearneighbor[cnode][1].node;
tmp_used[nearneighbor[cnode] [i].node]=true;
}

}

} while (++cur<=last);

if ((last+1)==totalnode-(level+2))
return true;

else

71

return false;

}

void walk (path *p,int level)
{

int i,nextnode;
int startlevel;
char line[256];
int contact_no=0;
int newctno;

startlevel=level;

/* check contact constraint */
if (total_contact!=0 && level>=contact_set[contact_no].x)

i=contact_set[contact_no].x; 	/* initial level */
do

if (i==contact_set[contact_no].x) {
if ((newctno=satisfy_cc(contact_no,i,p->node[contact_s

et[contact_no].x]))==-1)
return; /* this initial path didn't satisfy contac

t constraints */
contact_no=newctno;
}

while (++i<=level);
}

/* start walking (exhaustive search) */
do {

if ((nextnode=getnextnode(p,level))!=INVALID_NODE && connect(1
evel,nextnode) && (newctno=satisfy_cc(contact_no,level+1,nextnode))!=-
1) {

p->node[++level]=nextnode;
contact_no=newctno;

if (level==totalnode-1) {
++pathcount;
if (verbose) {

if (!(pathcount%dispcnt_mod)) {
sprintf (line," 	%s [%1d]\n",initialnodes,pat

hcount);

write (fileno(fout),line,strlen(line));
}

72

}

if (option==gen_path) {
p->dir[totalnode-1]='\n';
write (fileno(fp),p->dir,sizeof(DIRECTIONS)*totaln

ode);
}

/* backtrack to search new path by (3) step */
for (i=0;i<3;i++)

usedflag[p->node[level--]]=false;

/* 'rewind' contact constraint checking level */
if (total_contact!=0) {

while (contact_no!=0 && contact_set[contact_no-1].
x>level)

contact_no--;
}

/*
fprintf (stderr,"- (fin) backtrack at level %d new con

tact no. %d\n",level,contact_no);
*/

}
else {

p->nnbno[level]=(-1);
usedflag[nextnode]=true;
}

}

/* change to new nnbno; if nnbno is above limit, change level
*/

while (+4-p->nnbno[level]>=num_nearneighbor[p->node[level]] &&

level>startlevel) {
usedflag[p->node[level]]=false;
level--;

/* 'rewind' contact constraint checking level */
if (total_contact!=0) {

while (contact_no!=0 && contact_set[contact_no-1].x>le
vel)

contact_no--;

}
/*
fprintf (stderr,"- backtrack at level %d new contact no.

d\n",level,contact_no);

73

*/

}

while (level>startlevel II (level==startlevel && p->nnbno[le
vel]<num_nearneighbor[p->node[level]]));

}

void print_resource_usage (void) {
struct rusage presage;
struct rusage crusage;
double cputime[2][2];
double total_cputime;
int i;

if (resource_usage) {
getrusage (RUSAGE_SELF,&prusage);
getrusage (RUSAGE_CHILDREN,&crusage);

fprintf (stderr,"resource usage:\n");
fprintf (stderr," 	parent 	child\n");
fprintf (stderr," user: 	%7.3f 	%7.3f [user time use

d]\n",cputime[0][0]=(double)prusage.ru_utime.tv_sec+(double)((double)p
rusage.ru_utime.tv_usec/1000000.0),cputime[0][1]=(double)crusage.ru_ut
ime.tv_sec+(double)((double)crusage.ru_utime.tv_usec/1000000.0));

fprintf (stderr," sys: 	%7.3f 	%7.3f [system time u
sed]\n",cputime[1][0]=(double)prusage.ru_stime.tv_sec+(double)((double
)prusage.ru_stime.tv_usec/1000000.0),cputime[1][1]=(double)crusage.ru_
stime.tv_sec+(double)((double)crusage.ru_stime.tv_usec/1000000.0));
/*

fprintf (stderr," maxrss: 	%6d 	%6d [maximum residen
t set size]\n",prusage.ru_maxrss,crusage.ru_maxrss);

fprintf (stderr," ixrss: 	446d 	%6d [integral shared
text size]\n",prusage.ru_ixrss,crusage.ru_ixrss);

fprintf (stderr," idrss: 	%6d 	%6d [integral data r
esident set size]\n",prusage.ru_idrss,crusage.ru_idrss);

fprintf (stderr," isrss: 	%6d 	%6d [integral stack
resident set size]\n",prusage.ru_isrss,crusage.ru_isrss);

fprintf (stderr," minflt: 	%6d 	%6d [page faults not
requiring physical I/0]\n",prusage.ru_minflt,crusage.ru_minflt);

fprintf (stderr," majflt: 	%6d 	%6d [page faults req
uiring physical I/0]\n",prusage.ru_majflt,crusage.ru_majflt);

fprintf (stderr," nswap: 	%6d 	%6d [swaps]\n",prusa
ge.ru_nswap,crusage.ru_nswap);

fprintf (stderr," inblock: 	%6d 	%6d [block input ope

74

rations]\n",prusage.ru_inblock,crusage.ru_inblock);
fprintf (stderr," oublock: 	/.6d 	7.6d

erations]\n",prusage.ru_oublock,crusage.ru_oublock);
fprintf (stderr," msgsnd: 	%6d 	%6d

n",prusage.ru_msgsnd,crusage.ru_msgsnd);
fprintf (stderr," msgrcv: 	%6d 	%6d

ed]\n",prusage.ru_msgrcv,crusage.ru_msgrcv);
fprintf (stderr," nsignals: 	%6d 	%6d

d]\n",prusage.ru_nsignals,crusage.ru_nsignals);

fprintf (stderr," nvcsw: 	%6d 	%6d

xt switches]\n",prusage.ru_nvcsw,crusage.ru_nvcsw);

fprintf (stderr," nivcsw: 	%6d 	%6d

[block output op

[messages sent]\

[messages receiv

[signals receive

[voluntary conte

[involuntary con

text switches]\n",prusage.ru_nivcsw,crusage.ru_nivcsw);
*/

total_cputime=0;
for (i=0;i<2;i++)

total_cputime+=cputime[i][0];
total_cputime+=cputime[i][1];

}
fprintf (stderr,"\n* total CPU time: %.3f\n\n",total_cputime);

}

}

void print_time (clock_t real,struct tms *tmsstart, struct tms *tmsend

{

double cputime[2][2];
double total_cputime;

int i;

fprintf (fout,"CPU time usage (seconds):\n");
fprintf (fout," parent:\n");
fprintf (f out," 	user: %.3f\n",cputime[0][0]=(tmsend->tms_utime-

tmsstart->tms_utime)/(double)clktck);
fprintf (fout," 	sys: %.3f\n",cputime[0][1]=(tmsend->tms_stime-

tmsstart->tms_stime)/(double)clktck);
fprintf (fout," child:\n");
fprintf (fout," 	user: %.3f\n",cputime[1][0]=(tmsend->tms_cutime

-tmsstart->tms_cutime)/(double)clktck);
fprintf (fout," 	sys: %.3f\n",cputime[1][1]=(tmsend->tms_cstime

-tmsstart->tms_cstime)/(double)clktck);

75

total_cputime=0;

for (i=0;i<2;i++) {
total_cputime+=cputime[i][0];

total_cputime+=cputime[i][1];
}

fprintf (fout,"\n* total cpu time: %.3f\n",total_cputime);
fprintf (foot,"* wall clk time: %.3f (note: on SUN, this value wi

11 be 0)\n\n",(double)real/(double)clktck);
}

void main (int argc,char *argv[])
{

int node,j,l,i;
char filename [64];
pathlist *nsp;

char tmp[128];

int pid;
char line[1024];

int fd[2];
long sum;

long cnt;
long waitrun,currun;

int r,x,y;

struct tms tmsstart,tmsend;

clock_t start,end;

/* to solve problem of logging output in shell script */

fout=stdout;

setbuf(fout,NULL); 	/* set it to unbuffered mode */

/* get system 'clock tick value' */
if ((clktck=sysconf(_SC_CLK_TCK))==0)

error("error: can't fetch 'clk tick value'");

cmdline_parse(argc,argv);
totalnode=zsize*ysize*xsize;

sprintf (line,"date >> date,%d,%d,%d",xsize,ysize,zsize);
system(line);

sprintf (filename,"gwalk.%d.%d.%d.log",xsize,ysize,zsize);

if ((gwalk_log=fopen (filename,"wb"))==NULL)

76

error ("error: can't open log file (%s)\n",filename);

/* allocate data */
p=(path *)malloc(sizeof(path));
p->node=(int *)malloc(sizeof(int)*totalnode);
p->nnbno=(int *)malloc(sizeof(int)*totalnode);
p->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode);
nearneighbor=(neighborlist *)malloc(sizeof(neighbor)*MAX_NEIGHBOR*

totalnode);
usedflag=(boolean *)malloc(sizeof(boolean)*totalnode);
num_nearneighbor=(int *)malloc(sizeof(int)*totalnode);
tmp_used=(boolean *)malloc(sizeof(boolean)*totalnode);
queue=(int *)malloc(sizeof(int)*totalnode);

if (p==NULL II p->node==NULL II p->nnbno==NULL II p->dir==NULL II
nearneighbor==NULL II usedflag==NULL II num_nearneighbor==NULL it tmp_
used==NULL II queue==NULL)

error ("(001) Memory allocation error.\n");

fprintf (fout,"xsize %d, ysize %d, zsize %d, totalnode %d\n",xsize
,ysize,zsize,totalnode);

fprintf (gwalk_log,"xsize %d, ysize %d, zsize %d, totalnode %d\n",
xsize,ysize,zsize,totalnode);

create_near_neighbor_table ();
set_contact_constraint ();

gen_sym_node_table ();
gen_non_symmetry_node ();
gen_non_symmetry_path ();

fprintf (fout,"total 'initial' non-symmetrical path: %d\n",total_n
onsym_initial);

fprintf (gwalk_log,"total 'initial' non-symmetrical path: %d\n",to
tal_nonsym_initial);

/* create 'pipe' for inter-process communicatation */
if (pipe(fd)<0)

error ("error create pipe");

cnt=0L;
currun=0L;
waitrun=total_nonsym_initial;
sum=0L;

77

do {

while ((currun<max_process II option==gen_initial_path) && wai

trun>0L) {

nsp=del_head_nspl();
if (nsp==NULL)

break;

waitrun--;

if (xsize==3 && ysize==3 && zsize==3 && (nsp->node[0]==1
nsp->node[0]==13))

continue;

sprintf (initialnodes,"(%1d) enum ",cnt++);
reset_usedflag ();

/* prepare initial path */
for (i=0;i<nsp->last;i++) {

sprintf (tmp,"%d ",nsp->node[i]);
strcat (initialnodes,tmp);
if (option!=gen_initial_path) {

p->node[i]=nsp->node[i];
p->dir[i]=nsp->dir[i];
p->nnbno[i]=0;

usedflag[nsp->node[i]]=true;
}

}

/* we have to flush fout, log file here, otherwise
child processes will do this and we will get a lot
of duplicate data. (stderr is, by default,
unbuffered)

*/

fflush (fout);
fflush (gwalk_log);

if (option!=gen_initial_path) {
if ((pid=fork0)<0) {

fprintf (stderr,"fork error (Ctrl-C to stop all ch
ildren)\n");

getchar ();

78

exit (1);
}

else if (pid==0) { /* child process */
/* get start time */
start=times(&tmsstart);

/* start walking from initial path */

pathcount=0L;
walk (p,nsp->last-1);

/* get stop time */
end=times(&tmsend);

if (verbose) {
/* record total walks, time usage (only 'paren

t') */
sprintf (line," * %s: [%1d] [user %.2g,sys %.2

g]\n",initialnodes,pathcount,(tmsend.tms_utime-tmsstart.tms_utime)/(do
uble)clktck,(tmsend.tms_stime-tmsstart.tms_stime)/(double)clktck);

write (fileno(fout),line,strlen(line));

write (fileno(gwalk_log),line,strlen(line));
}

if (write (fd[1],&pathcount,sizeof(long))!=sizeof(
long))

error ("write to pipe failed\n");

exit (0); 	/* child terminate normally */
}

else /* parent process */
currun++;

}

else {
strcat (initialnodes,"\n");
write(fileno(gwalk_log),initialnodes,strlen(initialnod

es));
}

}

/* if total running process is more than limit, wait for some
of them to

finished, then create more .. */

79

while ((currun>=max_process II (waitrun==OL && currun>OL)) &&

option!=gen_initial_path) {
r=wait(NULL);
if (r<0)

error ("wait error");
else if (r>0) {

if (read (fd[0],&pathcount,sizeof(long))!=sizeof(long)

error ("read pipe error");

sum+=pathcount;
currun--;
}

}
while (currun>OL II waitrun>OL);

fprintf (fout,"* Enumeration ended\n");
if (option!=gen_initial_path) {

fprintf (fout,"\n* total geometrically-distinct walks: %ld\n",
sum);

fprintf (gwalk_log,"\n* total geometrically-distinct walks: %l
d\n",sum);

}

sprintf (line,"date >> date.%d,%d.%d",xsize,ysize,zsize);
system (line);

print_resource_usage();
}

APPENDIX B

AN IMPLEMENTATION OF PARALLEL CONTACT CONSTRAINT
EXACT ENUMERATION

In following are the implementation of parallel exact enumeration with contact

constraint, ie. algorithm 4.1 and 5.5.

/*
Cubic lattice enumeration with contact constraint

by: Anek Vorapanya

last modified: summer of 1993

known bugs: none

portability: all environments conform to the POSIX.1 standard

language standard: ANSI C

compiler: GNU compiler (gcc)

compiler options: -ansi -02

usage: cwalk -h

tested environment:

- ULTRIX 4.3A (Rev. 146) (DEC 5900)

- SUN OS 4.1.3 (Sun)

- AIX 3.1.2 (IBM RS/6000)

- IRIX 5.1 (SGI)
*/

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <math.h>

#include <sys/wait.h>

#include <sys/times.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/types.h>

80

81

#include <unistd.h>

#include <stdarg.h>

#define MIN_ARGUMENT 	4 	/* min. argument required */

#define MAX_PROCESS 	 1 	/* default max. processes */

#define DEF_CNT_LV_CHK 	2 	/* default connect level check,

min.=2 */

#define MAX_DIR 	 6

#define MAX_NEIGHBOR 	6

#define INVALID_NODE 	(-1)

#define INVALID_NNBNO 	(- 1)
#define OPPOSITE_DIR_DIFF 	(abs(PLUS_X-MINUS_X))

#define DISPCNT_MOD

#define MIN_DISPCNT_MOD

#define MAX_PIPL

/* maximum dimension

#define MAX_X

#define MAX_Y

#define MAX_Z

#define plus_dir(dir)

#define minus_dir(dir)

#define inttodir(i)

1000L

100L

50 	/* max. % of initial path length */

(((dir%2)==0)?dir:(dir-1))

(((dir%2)==0)?(dir+1):dir)

((DIRECTIONS)(i+'0'))

*/
10

10

10

typedef enum { false, true } boolean;

typedef enum {

PLUS_X='0',

MINUS_X=minus_dir(PLUS_X),

PLUS_Y='2',

MINUS_Y=minus_dir(PLUS_Y),

PLUS_Z='4',

MINUS_Z=minus_dir(PLUS_Z),

INVALID_DIR='#'

} DIRECTIONS;

typedef struct {

int x;

int y;

int z;

NODE;

82

typedef struct
int ca; 	/* first node of contact */
int cb; 	/* second node of contact */

} contact;

typedef struct {
NODE *node; 	 /* currently visited node no. at this level

*/

DIRECTIONS *dir; 	/* direction of walk */
int *nnbno; 	 /* currently used child no of this node */
} path;

typedef enum { _0Dpath, _1Dpath, _2Dpath, _3Dpath pathtype;

typedef enum 	invalid_planetype, xyplane, yzplane, xzplane } planetyp
e:

typedef struct pathinfo_s {
pathtype ptype;
planetype pltype;
int last;
NODE *node;
DIRECTIONS *dir;
int *nnbno;
struct pathinfo_s *next;
} pathinfo;

long sys_max_child;
long max_process;
int min_level;
int dispcnt_mod;
enum { gen_initial_path, count_path, gen_path } option;
boolean verbose=false;
boolean resource_usage=false;
int totalnode;
long pathcount;
long total_nonsym_initial=0L;
int totalnonsymnode;
pathinfo *stpl;
pathinfo *nspl;
pathinfo *last_stpl;
pathinfo *last_nspl;
pathinfo head_stpl;

83

pathinfo head_nspl;
FILE *cwalk_log;
FILE *fp;
char filename[256];
char initialnodes[1024];
long clktck;
contact *contact_set;
int total_contact=0;
FILE *fout;

int nsplcnt=0;
int tmpnsplcnt=0;

void error (char *fmt, ...)
{

va_list ap;
char buf[512];

va_start(ap,fmt);
vsprintf (buf,fmt,ap);
va_end(ap);
write (fileno(stderr),buf,strlen(buf));
exit (1);

}

void usage (void)
{

char tmp[128];

fprintf (stderr,"Enumerate geometrically-distinct walk with contac
t constraints\n");

fprintf (stderr,"usage: cwalk <totalnode> [options]\n");
fprintf (stderr,"options:\n");
fprintf (stderr," 	: to generate initial paths only (save in lo

g file)\n");
fprintf (stderr," -c : to count all possible paths\n");
fprintf (stderr," -w : to save generated paths in file (save in p

ath.<totalnode>)\n");

if (sys_max_child==0)
strcpy (tmp,"unknown");

else
sprintf (tmp,"%1d",sys_max_child-1L);

84

fprintf (stderr," -pX : specify no. of processes to run simultane
ously (your system max %s)\n",tmp);

fprintf (stderr," 	: specify percentage of initial path length
(recommend 15-25,max %d)\n",MAX_PIPL);

fprintf (stderr," -tX <contact set>: specify contact set where X
is number of contacts\n");

fprintf (stderr," 	and <contact set> is a contact set in the f
orm 'a-b c-d e-f 	\n");

fprintf (stderr," -dX : specify counter display modulo value (min
%d)\n",MIN_DISPCNT_MOD);

fprintf (stderr," -v : show the enumeration counting\n");
fprintf (stderr," -r : show resource usage\n");
fprintf (stderr," -h : print this help screen\n");
exit (0);

}

void cmdline_parse (int argc,char *argv[])
{

char *s;
char tmp[1024]; •
char c;
int i,j,p;
int contact_no=(-1);
int tmptotalnode;

opt ion=count_path;
min_level=0;
dispcnt_mod=DISPCNT_MOD;

if ((sys_max_child=sysconf(_SC_CHILD_MAX))==0) {
fprintf (stderr,"* can't determine 'max. processes for user'\n

");
fprintf (stderr," use 	as a default value\n",MAX_PROCESS);
sys_max_child=MAX_PROCESS;
}

/* set default max. process */
max_process=MAX_PROCESS;

if (argc<MIN_ARGUMENT)
usage();

for (i=1;i<argc;i++) {
if (i==1) {

85

/* get total node */
if ((totalnode=atoi(argv[i]))==0)

usage();
}

else {
if (contact_no==(-1)) {

s=argv[i];
if (s[0]!='-')

usage();
s++;
c=tolower(s[0]);
}

else
c='t'; /* continue scanning contact set */

switch (c) {
case 'c': /* count path only */

option=count_path;
break;

case 'i': /* generate.only initial path and save in lo

g file *1
option=gen_initial_path;
break;

case 'w': /* generate path file */
option=gen_path;
/* prepare output file */
strcpy (filename,"path");
strcat(filename,".");
strcat(filename,argv[1]);
if ((fp=fopen(filename,"wb"))==NULL)

error ("error: can't open output file (%s)\n",
filename);

break;
case '1': /* minimum start level */

if ((p=atoi(++s))==0 || p>MAX_PIPL)
usage();

min_level=totalnode*p/100;
fprintf (stderr,"* use min. initial level = %d\n",

min_level);
break;

case 'p': /* maximum processes to run simultaneous */
1* we have to subtract 1 from sys_max_child based

on assumption that we will have one and only one running (parent proce
ss).

86

*/

if ((max_process=atol(++s))==0 || max_process>(sys

_max_child-1L))

usage();

break;

case id': /* counter display modulo value */

if ((dispcnt_mod=atoi(++s))==0 II dispcnt_mod<MIN_

DISPCNT_MOD)

usage();

break;

case 'v': /* verbose */

if (s[1]=='-')

verbose=true;

break;

case 't': /* contact constraint set */

if (contact_no!=-1) {

if ((s=strchr(argv[i],'-'))!=NULL) {

s[0]='\0';

if (((contact_set[contact_no].ca=atoi(argv

[i]))==0 && argv[i][0]!='0') || contact_set[contact_no].ca>=totalnode)

error("error: invalid contact set no.

(%s)\n",argv[i]);
s++;

if (s[0]=='\0')

error("error: incomplete contact set (

contact no. %d)\n",contact_no);

if (((contact_set[contact_no].cb=atoi(s))=

=0 && s[0]!='0') II contact_set[contact_no].cb>=totalnode)

error("error: invalid contact set no.

(%s)\n",s);

}

else

error("error: contact set requires 'x-y' f

ormat where x and y are nodes no. to form the contact.\n");

if (++contact_no==total_contact)

contact_no=(-1);

}

else {

if ((total_contact=atoi(++s))!=0) {

/* allocate contact set data */

contact_set=(contact *)malloc(total_contac

t*sizeof(contact));

87

contact_no=0;
}

else
usage();

}

break;
case 'r':

resource_usage=true;
break;

default:
fprintf (stderr,"* error: unknown options (%c)\n",

s[0]);
case 'h':

usage();
break;

}

}

}

/* check if we had all contact as specify with -tX option or not *
/

if (contact_no!=-1)
error("error: number of contacts mismatched\n");

}

Boolean usednode (NODE *nl,int last,NODE *n)
{

int i;

for (i=0;i<=last;i++) {

1*
printf ("node list [%d] (%d,%d,%d), node (%d,%d,%d)\n",i,n1[i]

.x,nl[i].y,nl[i].z,n->x,n->y,n->z);
*/

if (nl[i].x==n->x && nl[i].y==n->y && n1[1].z==n->z) {

/*
printf ("* used\n");
*/

return true;
}

}

/*
printf ("* UNused\n");

88

*/

return false;

}

boolean is_neighbor (NODE *n,NODE *m)

{

if ((abs(n->x-m->x)==1 && n->y==m->y && n->z==m->z) II

(n->x==m->x && abs(n->y-m->y)==1 && n->z==m->z) II

(n->x==m->x && n->y==m->y && abs(n->z-m->z)==1))

return true;

else

return false;

}

void set_contact_constraint (void)

{

int i,j;

contact tmp;

/* switch position of x and y such that x is lower than y */

for (i=0;i<total_contact;i++) {

if (contact_set[i].ca>contact_set[i].cb) {

/* swap */

j=contact_set[i].ca;

contact_set[i].ca=contact_set[i].cb;

contact_set[i].cb=j;

}

/*

printf ("switch contact %d (%d-Yed)\n",i,contact_set[i].ca,cont

act_set[i].cb);

*/

}

/* we will sort it using bubble sort (straight forward) */

for (i=0;i<total_contact;i++) {

for (j=total_contact-1;j>i;j--) {

if (contact_set[j].ca<contact_set[j-1].ca) {

/* swap */

tmp=contact_set[j];

contact_set[j]=contact_set[j-1];

contact_set[j-1]=tmp;

}

}

/*

89

fprintf (stderr,"sort contact U. (%d-%d)\n",i,contact_set[i].c

a,contact_set[i].cb);
*/

}

}

boolean getnextnode (path *p,int level)
{

int i,validnnbno;
NODE node;

validnnbno=0;
for (i=0;i<MAX_NEIGHBOR;i++)

node=p->node[level];
switch (inttodir(i)) {

case PLUS_X :
node.x+=1;
break;

case MINUS_X :
node.x-=1;
break;

case PLUS_Y :
node.y+=1;
break;

case MINUS_Y :
node.y-=1;
break;

case PLUS _Z :
node.z+=1;
break;

case MINUS_Z
node.z-=1;
break;

}
if (!usednode(p->node,level,&node)) {

if (validnnbno==p->nnbno[level]) {
p->dir[level]=inttodir(i);
p->node[++level]=node;
return true;
}

else

validnnbno++;

90

return false;
}

int get_available_neighbor (NODE *cp,int level,NODE *ann,DIRECTIONS *d

ir)
{

int i,cnt;
NODE na,nb;

cnt=0;
na=cp[level];
for (i=0;i<MAX_NEIGHBOR;i++) {

nb=cp[level];
switch (inttodir(i)) {

case PLUS_X :
nb.x+=1;
break;

case MINUS_X :
nb.x-=1;
break;

case PLUS_Y
nb.y+=1;
break;

case MINUS_Y :
nb.y-=1;
break;

case PLUS_Z :
nb.z+=1;
break;

case MINUS_Z :
nb.z-=1;
break;

}

if (usednode(cp,level,&nb)==false) {
ann[cnt]=nb;
dir[cnt]=inttodir(i);
cnt++;
}

}

return cnt;

91

void create_newpath (pathinfo *orgpath,pathinfo **newpath,NODE *newlas
tnode,DIRECTIONS dirlastnode)
{

int i;

*newpath=(pathinfo *)malloc(sizeof(pathinfo));
(*newpath)->node=(NODE *)malloc(sizeof(NODE)*totalnode);
(*newpath)->dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*totalnode)

/* for 'nnbno', we have to use 'calloc' to clear to zero *1
(*newpath)->nnbno=(int *)calloc(totalnode,sizeof(int));

if (orgpath!=NULL) {
(*newpath)->last=orgpath->last;
(*newpath)->ptype=orgpath->ptype;
(*newpath)->pltype=orgpath->pltype;
memcpy((*newpath)->node,orgpath->node,orgpath->last*sizeof(NOD

E));
memcpy((*newpath)->dir,orgpath->dir,(orgpath->last-1)*sizeof(D

IRECTIONS));
memcpy((*newpath)->nnbno,orgpath->nnbno,(orgpath->last-1)*size

of(int));
(*newpath)->dir[(*newpath)->last-1]=dirlastnode;
}

else {
(*newpath)->last=0;
(*newpath)->ptype=_0Dpath;
}

(*newpath)->node[(*newpath)->last]=(*newlastnode);
(*newpath)->last++;
(*newpath)->next=NULL;

}

void add_to_stpl (pathinfo *p)
{

last_stpl->next=p;
last_stpl=p;
nsplcnt++;

}

void add_to_nspl (pathinfo *p)
{

last_nspl->next=p;

last_nspl=p;

}

void del_head_stpl (void)

{

pathinfo *p;

if (stpl->next!=NULL) {

p=stpl->next;

stpl->next=stpl->next->next;

/* throw it away */

free (p);

}

}

pathinfo *del_head_nspl (void)

{

pathinfo *p;

if (nspl->next!=NULL) {
• p=nspl->next;

nspl->next=nspl->next->next;

return p;

}

else

return NULL;

}

planetype det_planetype (DIRECTIONS cdir,DIRECTIONS ndir)
{

switch (cdir) {

case PLUS X:

case MINUS X:

if (ndir==PLUS_Y II ndir==MINUS_Y)

return xyplane;

else

return xzplane;

break;

case PLUS Y:

case MINUS Y:

if (ndir==PLUS_X II ndir==MINUS_X)

return xyplane;

else

return yzplane;

92

93

break;
case PLUS_Z:
case MINUS Z:

if (ndir==PLUS_Y || ndir==MINUS_Y)
return yzplane;

else
return xzplane;

break;
}

}

int print_pathinfo (pathinfo *pi,char *name)
{

pathinfo *tmp;
int i,j;

tmp=pi->next;
j=0;
while (tmp!=NULL && j<tmpnsplcnt) {

tmp=tmp->next;
j++;

}

printf ("%s:\n",name);
while (tmp!=NULL) {

printf (" 	(%d) ptype %d, pltype %d, level %d\n",j++,tmp->pty
pe,tmp->pltype,tmp->last-1);

for (i=0;i<tmp->last;i++)

	

printf (" 	node (%d,%d,%d)\n",tmp->node[i].x,tmp-
>node[i].y,tmp->node[i].z);

tmp=tmp->next; 	.
}

return j;
}

boolean satisfy_cc (int level,NODE *nodelist,NODE *nextnode) {
static NODE ann[MAX_NEIGHBOR];
static DIRECTIONS dir[MAX_NEIGHBOR];
int j,i,mrs;
int cnt;
boolean satisfy;

satisfy=true;
for (i=0;i<total_contact;i++) {

/* "CHECK" contact-constraint satisfaction */

94

if (level+1==contact_set[i].cb) {

if (is_neighbor(&nodelist[contact_set[i].ca],nextnode)==fa
lse) {

/* this path (with 'nextnode') does not satisfy at lea

st one contact-constraint.
*/

return false;
}

}

/* "PREDICT" contact-constraint satisfaction */
if (level+1>contact_set[i].ca && level+1<contact_set[i].cb) {

satisfy=false;
cnt=get_available_neighbor (nodelist,contact_set[i].ca,ann

,dir);
for (j=0;j<cnt;j++)

mrs=abs(ann[j].x-nextnode->x)+
abs(ann[j].y-nextnode->y)+
abs(ann[j].z-nextnode->z);

if (mrs<=contact_set[i].cb-(level+1)) {
/* this contact constraint has been satisfied by o

ne of neighbor of 'lower' contact node
*/

satisfy=true;
break;
}

}

}

if (satisfy==false)
/* none of neighbor of 'lower' contact node satisfy this c

ontact constraint, ie. fails in all contact-constraint test too.
*/

return false;
}

return satisfy;
}

void gen_non_symmetry_path (void)
{

pathinfo *np;
pathinfo *cp;
NODE *ann; 	 /* available near neighbor */
DIRECTIONS *dir; 	/* 'direction' of 'ann' */

95

int idx,total_nn;
boolean _1Dto_2D,_2Dto_3D;

/* initialize STPL (symmetry test path list) and

NSPL (non-symmetry initial path list)
*/

head_stpl.next=NULL;
head_nspl.next=NULL;
stp1=(pathinfo *)&head_stpl;
nspl=(pathinfo *)&head_nspl;
last_stp1=(pathinfo *)&head_stpl;
last_nsp1=(pathinfo *)&head_nspl;

ann=(NODE *)malloc(sizeof(NODE)*MAX_NEIGHBOR);
dir=(DIRECTIONS *)malloc(sizeof(DIRECTIONS)*MAX_NEIGHBOR);

if (ann==NULL II dir==NULL)
error ("(002) Memory allocation error.\n");

/* add '(0,0,0)' to initial stpl, this node is the only one to bec
ome a starting point for contact-constraint enumeration.

*/

ann[0].x=0;
ann[0].y=0;
ann[0].z=0;

create_newpath (NULL,&np,&ann[0],INVALID_DIR);
add_to_stpl (np);

_1Dto_2D=false;
_2Dto_3D=false;

while ((cp=stpl->next)!=NULL) {
/*
print_pathinfo (stpl,"STPL");
if (nsplcnt!=tmpnsplcnt)

tmpnsplcnt=print_pathinfo (nspl,"NSPL");
*/

total_nn=get_available_neighbor(cp->node,cp->last-1,ann,dir);
for (idx=0;idx<total_nn;)

/*
printf ("cnt %d total %d\n",cnt,total_nn);
*/

switch (cp->ptype)

96

case _0Dpath:
/* we just start walking so we choose to walk

to only node that are non-symmetry. There
is only of them in case of cubic lattice.
we don't need to check contact-constraint
here, because it should satisfy, otherwise
contact-constraint set is wrong

*/
create_newpath (cp,&np,&ann[idx],dir[idx]);
np->ptype=_1Dpath;
add_to_stpl (np);
/* we need no more neighbor for this path */
idx=total_nn;
break;

case _1Dpath
/* find 'stright path' , this path will not

symmetry to other path
*/

if (dir[idx]==cp->dir[0]) {
if (satisfy_cc(cp->last-1,cp->node,&ann[idx]))

{

create_newpath (cp,&np,&ann[idx],dir[idx])

add_to_stpl (np);

}
}

else if (_1Dto_2D==false)
/* this next non-symmetry neighbor will

change this path to 'plane path' type
from now on. There is only such neighbor
in cubic lattice.

*/

if (satisfy_cc(cp->last-1,cp->node,&ann[idx]))
{

create_newpath (cp,&np,&ann[idx],dir[idx])

np->ptype=_2Dpath;
np->pltype=det_planetype (cp->dir[0],dir[i

dx]);

add_to_stpl (np);
}

/* set flag to indicate that we had
neighbor that change 1D path to 2D path
(we need only of this

97

in case of cubic lattice.
*/
1Dto_2D=true;
}

idx++; 	/* fetch next neighbor */
break;

case _2Dpath :
/* find 'ann' that is in plane add it to

'stpl' (it will not symmetry)
*/
if ((cp->pltype==xyplane && dir[idx]!=PLUS_Z && di

r[idx]!=MINUS_Z) ||
(cp->pltype==yzplane && dir[idx]!=PLUS_X &

& dir[idx]!=MINUS_X) II
(cp->pltype==xzplane && dir[idx]!=PLUS_Y &

& dir[idx]!=MINUS_Y)) {
if (satisfy_cc(cp->last-1,cp->node,&ann[idx]))

create_newpath (cp,&np,&ann[idx],dir[idx])

;
add_to_stpl (np);
}

}

else if (_2Dto_3D==false) {
/* Now path will not symmetry and there is

only such neighbor in cubic lattice.
Add it to 'NSPL'

*/
if (satisfy_cc(cp->last-1,cp->node,&ann[idx]))

{

create_newpath (cp,&np,&ann[idx],dir[idx])

/* now we have non-symmetrical initial
path list if user didn't specify 'min.
level of initial path', we will use
this as NSPL, otherwise we continue
to expand it as 3D segment.

*/

if (np->last>=min_level) {
add_to_nspl (np);
total_nonsym_initial++;
}

else {

98

np->ptype=_3Dpath;
add_to_stpl (np);
}

}
/* set flag to indicate that we had

neighbor that change 2D path to 3D path
(we need only of this
in case of cubic lattice.

*/
_2Dto_3D=true;

}
idx++; 	/* fetch next neighbor */
break;

case _3Dpath
/* for 3D segment, all neighbor will form

up a unique pattern in 3D space
*/
if (satisfy_cc(cp->last-1,cp->node,&ann[idx])) {

create_newpath (cp,&np,&ann[idx],dir[idx]);
if (np->last<min_level)

add_to_stpl (np);
else {

add_to_nspl (np);
total_nonsym_initial++;
}

}

idx++; 	/* fetch next neighbor */
break;

}

}

del_head_stpl();
/* reinitialize path transformation flag */
_1Dto_2D=false;
_2Dto_3D=false;

}

free (ann);
free (dir);

}

void walk (pathinfo *pi)
{

char line[256];

99

int level;
path p;

p.node=pi->node;
p.dir=pi->dir;
p.nnbno=pi->nnbno;
level=pi->last-1;

/* start walking (exhaustive search) */
do {

if (getnextnode(&p,level)==true && satisfy_cc(level,p.node,&p.
node[level+1])) {

/* update 'level' ('node' and 'dir' filled in 'getnextnode
' fn) */

++level;

if (level==totalnode-1) {
++pathcount;
if (verbose) {

if (!(pathcount%dispcnt_mod)) {
sprintf (line," 	%s [%1d]\n",initialnodes,pat

hcount);
write (fileno(fout),line,strlen(line));
}

}
if (option==gen_path) {

p.dir[totalnode-1]='\n';
write (fileno(fp),p.dir,sizeof(DIRECTIONS)*totalno

de);
}

/* backtrack to search new path by (1) step,
(contact constraint, we can backtrack at most
1 step

*/

level--;
}

else
p.nnbno[level]=(-1);

}

/* change to new nnbno; if nnbno is above limit, change level
*/

while (++p.nnbno[level]>=MAX_NEIGHBOR && level>pi->last-1)

100

level--;

} while (level>pi->last-1 II (level==pi->last-1 && p.nnbno[lev
el]<MAX_NEIGHBOR));
}

void print_resource_usage (void) {
struct rusage prusage;
struct rusage crusage;
double cputime[2][2];
double total_cputime;
int i;

if (resource_usage) {
getrusage (RUSAGE_SELF,&prusage);
getrusage (RUSAGE_CHILDREN,&crusage);

fprintf (stderr,"resource usage:\n");
fprintf (stderr," 	 parent 	child\n");
fprintf (stderr," user: 	%7.3f 	%7.3f [user time use

d]\n",cputime[0][0]=(double)prusage.ru_utime.tv_sec+(double)((double)p
rusage.ru_utime.tv_usec/1000000.0),cputime[0][1]=(double)crusage.ru_ut
ime.tv_sec+(double)((double)crusage.ru_utime.tv_usec/1000000.0));

fprintf (stderr," sys: 	%7.3f 	%7.3f [system time u
sed]\n",cputime[1][0]=(double)prusage.ru_stime.tv_sec+(double)((double
)prusage.ru_stime.tv_usec/1000000.0),cputime[1][1]=(double)crusage.ru_
stime.tv_sec+(double)((double)crusage.ru_stime.tv_usec/1000000.0));
/*

fprintf (stderr," maxrss: 	%6d 	%6d [maximum residen
t set size]\n",prusage.ru_maxrss,crusage.ru_maxrss);

fprintf (stderr," ixrss: 	%6d 	%6d [integral shared
text size]\n",prusage.ru_ixrss,crusage.ru_ixrss);

fprintf (stderr," idrss: 	%6d 	%6d [integral data r
esident set size]\n",prusage.ru_idrss,crusage.ru_idrss);

fprintf (stderr," isrss: 	%6d 	%6d [integral stack
resident set size]\n",prusage.ru_isrss,crusage.ru_isrss);

fprintf (stderr," minflt: 	%6d 	%6d [page faults not
requiring physical I/0]\n",prusage.ru_minflt,crusage.ru_minflt);

fprintf (stderr," majflt: 	%6d 	%6d [page faults req
uiring physical I/0]\n",prusage.ru_majflt,crusage.ru_majflt);

fprintf (stderr," nswap: 	%6d 	%6d [swaps]\n",prusa
ge.ru_nswap,crusage.ru_nswap);

fprintf (stderr," inblock: 	%6d 	%6d [block input ope
rations]\n",prusage.ru_inblock,crusage.ru_inblock);

fprintf (stderr," oublock: 	%6d 	%6d
erationshn",prusage.ru_oublock,crusage.ru_oublock);

fprintf (stderr," msgsnd: 	%6d 	%6d
n",prusage.ru_msgsnd,crusage.ru_msgsnd);

fprintf (stderr," msgrcv: 	%6d 	%6d
edhn",prusage.ru_msgrcv,crusage.ru_msgrcv);

fprintf (stderr," nsignals: 	%6d 	%6d
d]\n",prusage.ru_nsignals,crusage.ru_nsignals);

fprintf (stderr," nvcsw: 	%6d 	%6d
xt switches]\n",prusage.ru_nvcsw,crusage.ru_nvcsw);

fprintf (stderr," nivcsw: 	%6d 	%6d

101

[block output op

[messages sent]\

[messages receiv

[signals receive

[voluntary conte

[involuntary con

text switches]\n",prusage.ru_nivcsw,crusage.ru_nivcsw);
*/

total_cputime=0;
for (i=0;i<2;i++) {

total_cputime+=cputime[i][0];
total_cputime+=cputime[i][1];
}

fprintf (stderr,"\n* total CPU time: %.3f\n\n",total_cputime);

}

void print_time (clock_t real,struct tms *tmsstart, struct tms *tmsend

{

double cputime[2][2];
double total_cputime;
int i;

fprintf (fout,"CPU time usage (seconds):\n");
fprintf (font," parent:\n");
fprintf (f out," 	user: %.3f\n",cputime[0][0]=(tmsend->tms_utime-

tmsstart->tms_utime)/(double)clktck);
fprintf (fout," 	sys: %.3f\n",cputime[0][1]=(tmsend->tms_stime-

tmsstart->tms_stime)/(double)clktck);
fprintf (fout," child:\n");
fprintf (fout," 	user: %.3f\n",cputime[1][0]=(tmsend->tms_cutime

-tmsstart->tms_cutime)/(double)clktck);
fprintf (f out," 	sys: %.3f\n",cputime[1] [1]=(tmsend->tms_cstime

-tmsstart->tms_cstime)/(double)clktck);

total_cputime=0;

102

for (i=0;i<2;i++) {
total_cputime+=cputime[i][0];
total_cputime+=cputime[i][1];
}

fprintf (fout,"\n* total cpu time: %.3f\n",total_cputime);
fprintf (foot,'"* wall clk time: %.3f (note: on SUN, this value wi

11 be 0)\n\n",(double)real/(double)clktck);
}

void main (int argc,char *argv[])
{

int j,l,i,r;
char filename [64];
pathinfo *nsp;
char tmp[128];
char line[1024];
int pid;
int fd[2];
long sum,cnt;
long waitrun,currun;

struct tms tmsstart,tmsend;
clock_t start,end;

/* to solve problem of logging output in shell script */

fout=stdout;
/*
setbuf(fout,NULL);
*/

/* get system 'clock tick value' */
if ((clktck=sysconf(_SC_CLK_TCK))==0)

error("error: can't fetch 'clk tick value'");

/* command line parsing */
cmdline_parse(argc,argv);

sprintf (filename,"cwalk,%d.log",totalnode);
if ((cwalk_log=fopen (filename,"wb"))==NULL)

error ("error: can't open log file (%s)\n",filename);

/* set up contact constraint list */
set_contact_constraint ();

103

/* generate all non-redundant initial conformations */
gen_non_symmetry_path ();

fprintf (fout,"total 'initial' non-symmetrical path: %d\n",total_n
onsym_initial);

fprintf (cwalk_log,"total 'initial' non-symmetrical path: %d\n",to
tal_nonsym_initial);

/* create 'pipe' for inter-process communicatation */
if (pipe(fd)<0)

error ("error create pipe");

cnt=0L;
currun=0L;
waitrun=total_nonsym_initial;
sum=0L;

/* create slaves to do enumeration */
do {

while ((currun<max_process || option==gen_initial_path) && wai
trun>0L) {

nsp=del_head_nspl();
if (nsp==NULL)

break;

waitrun--;

sprintf (initialnodes,"(%1d) enum ",cnt++);

for (i=0;i<nsp->last;i++) {
sprintf (tmp,"(%d,%d,%d) ",nsp->node[i].x,nsp->node[i]

.y,nsp->node[i].z);
strcat (initialnodes,tmp);

}

/* we have to flush foot and log file here, otherwise
child processes will do this and we will get a lot of
duplicate data. (stderr is, by default, unbuffered)

*/

fflush (fout);
fflush (cwalk_log);

104

if (option!=gen_initial_path) {
if ((pid=fork())<0) {

fprintf (stderr,"fork error (Ctrl-C to stop all ch

ildren)\n");
getchar ();
exit (1);
}

else if (pid==0) { /* child process */
/* get start time */

start=times(&tmsstart);

/* start walking from initial path */

pathcount=0L;
walk (nsp);

/* get stop time */
end=times(&tmsend);

if (verbose) {
/* record total walks, time usage (only 'paren

t') */
sprintf (line," * %s: [%1d] [user %.3f,sys %.3

f]\n",initialnodes,pathcount,(tmsend.tms_utime-tmsstart.tms_utime)/(do
uble)clktck,(tmsend.tms_stime-tmsstart.tms_stime)/(double)clktck);

write (fileno(fout),line,strlen(line));
write (fileno(cwalk_log),line,strlen(line));
}

if (write (fd[1],&pathcount,sizeof(long))!=sizeof(
long))

error ("write to pipe failed\n");

exit (0); 	/* child terminate normally */
}

else /* parent process */
currun++;

}
else {

strcat (initialnodes,"\n");

write(fileno(cwalk_log),initialnodes,strlen(initialnod
es));

}

}

105

/* if total running process is more than limit, wait for some

of them
to finished, then create more ..

*/

while ((currun>=max_process II (waitrun==0L && currun>0L)) a
option!=gen_initial_path) {

r=wait(NULL);
if (r<0)

error ("wait error");
else if (r>0) {

if (read (fd[0],&pathcount,sizeof(long))!=sizeof(long)

error ("read pipe error");

sum+=pathcount;
currun--;

}
}

while (currun>0L II waitrun>0L);

fprintf (foot,"* Enumeration ended\n");
if (option!=gen_initial_path) {

fprintf (fout,"\n* total geometrically-distinct walks: %1d\n",
sum);

fprintf (cwalk_log,"\n* total geometrically-distinct walks: %1
d\n",sum);

}

/* display resource usage */
print_resource_usage();

REFERENCES

1. Anfinsen,C.B., "Principles that govern the folding of protein chains," Science,
vol. 181, pp. 223-230, 1973.

2. Barat,K., Karmakar,S.N., and Chakrabarti,B.K., "Self-avoiding walk connec-
tivity constant and theta-point on percolating lattices," Journal of

Physics A - Mathematical and General, vol. 24, pp. 851-860, February
1991.

3. Barber,M.N. and Ninham,B.W., Random and Restricted Walks: Theory and
Applications, Gordon and Breach, New York, 1970.

4. Berretti,A. and Sokal,A.D., "Vectorized program for Monte-Carlo simulation of
self-avoiding walks," Computer Physics Communications, vol. 58, pp. 1-
16, February 1990.

5. Bishop,M. and Clarke,J.H.R., "Investigation of the end-to-end distance distri-
bution function for random and self-avoiding walks in 2 and 3
dimensions," Journal of Chemical Physics, vol. 94, pp. 3936-3942, March
1991.

6. Bradley,R.M., Debierre,J.M., and Strenski,P.N., "A novel growing self-avoiding
walk in 3-dimensions," Journal of Physics A - Mathematical and General,
vol. 25, pp. 1541-1548. May 1992.

7. Bradley,R.M., Strenski,P.N., and Debierre,J.M., "A growing self-avoiding walk
in 3 dimensions and its relation to percolation," Physical Review A,
vol. 45, pp. 8513-8524, June 1992.

8. Caracciolo,S., Pelissetto,A., and Sokal,A.D., "Nonlocal Monte-Carlo algorithm
for self-avoiding walks with fixed endpoints," Journal of Statistical
Physics, vol. 60, pp. 1-53, July 1990.

9. Chan,H.S. and Dill,K.A., "Compact polymers," Macromolecules, vol. 22,
pp. 4559-4573, December 1989.

10. Chan,H.S. and Dill,K.A., "Intrachain loops in polymers: Effects of excluded
volume," Journal of Chemical Physics, vol. 90, pp. 492-509, January 1989.

11. Chan,H.S. and Dill,K.A., "The effects of internal constraints on the config-
urations of chain molecules," Journal of Chemical Physics, vol. 92,
pp. 3118-3135, March 1990.

12. Chan,H.S. and Dill,K.A., "The Protein Folding Problem," Physics Today,
pp. 24-32, February 1993.

106

107

13. Conway,A.R., Enting,I.G., and Guttmann,A.J., "Algebraic techniques for
enumerating self-avoiding walks on the square lattice," Journal of Physics

A - Mathematical and General, vol. 26, pp. 1519-1534, April 1993.

14. Conway,A.R. and Guttmann,A.J., "Enumeration of self-avoiding trails on a
square lattice using a transfer matrix technique," Journal of Physics A -
Mathematical and General, vol. 26, pp. 1535-1552, April 1993.

15. Dayantis,J. and Palierne,J.F., "Monte-Carlo precise determination of the end-
to-end distribution function of self-avoiding walks on the simple-cubic
lattice," Journal of Chemical Physics, vol. 95, pp. 6088-6099, October
1991.

16. Eizenberg,N. and Klafter,J., "Self-avoiding walks on a simple cubic lattice,"
Journal of Chemical Physics, vol. 99, pp. 3976-3982, September 1993.

17. Englisch,H., Wang,J.F., and Yao,K.L., "Directed true self-avoiding levy flights,"
Journal of Physics A - Mathematical and General, vol. 24, pp. 4843-4851,
October 1991.

18. Gibson,K.D. and Scheraga,H.A., The multiple-minima problem in protein
folding, pp. 67-94, Adenine Press., Guilderland, New York, 1988.

19. Godzik,A., Kolinski,A., and Skolnick,J., "De novo and inverse folding
predictions of protein structure and dynamics," Journal of Computer-
Aided Molecular Design, vol. 7, pp. 397-438, 1992.

20. Hammersley,J.M., "Self-avoiding walk," Physica A, vol. 177, pp. 51-57,
September 1991.

21. Kim,I.M., Kim,A.S., and Kim,S.W., "An exactly solvable self-avoiding walks
model," Journal of Physics A - Mathematical and General, vol. 22,
pp. 2533-2537, July 1989.

22. Kim,J.E., and Kim,S.W., "An exactly solvable self-avoiding walks
model 2: Triangular and honeycomb lattices," Journal of Physics A -
Mathematical and General, vol. 24, pp. 1903-1914, April 1991.

23. Klein,D.J. and Schmalz,T.G., "Exact enumeration of long-range-ordered dieter
coverings on the square-planar lattice," Physical Review B - Condensed
Matter, vol. 41, pp. 2244-2248, February 1990.

24. Lau,K.F. and Dill,K.A., "A lattice statistical mechanics model of the confor-
mational and sequence spaces of proteins," Macromolecules, vol. 22,
pp. 3986-3997, October 1989.

25. Leopold,P., Montal,M., and Onuchic,J.N., "Protein folding funnels: A kinetic
approach to the sequence-structure relationship," Proceeding of National
Academy of Science, USA, vol. 89, pp. 8721-8725, September 1992.

108

26. Macdonald,D., Hunter,D.L.„ Kelly,K., and Jan,N., "Self-avoiding walks in 2 to
5 dimensions - exact enumerations and series study," Journal of Physics
A - Mathematical and General, vol. 25, pp. 1429-1440, March 1992.

27. Machta,J., "The computational complexity of the self-avoiding walk on random
lattices," Journal of Physics A - Mathematical and General, vol. 25,
pp. 521-527, February 1992.

28. Masand,B., 	 Massar,J.P., and Redner,S., "An extension of the 2-
dimensional self-avoiding walk series on the square lattice," Journal of
Physics A - Mathematical and General, vol. 25, pp. 1365-1369, April 1992.

29. Mayer,J.M., Guez,C., and Dayantis,J., "Exact computer enumeration of the
number of Hamiltonian paths in small plane square lattices," Physical
Review B - Condensed Matter, vol. 42, pp. 660-664, July 1990.

30. Moon,J. and Nakanishi,H., "Self-avoiding levy walk - a model for very stiff
polymers," Physical Review A, vol. 42, pp. 3221-3224, September 1990.

31. Nemirovsky,A.M., Dudowicz,J., and Freed,K.F., "Thermodynamics of a dense
self-avoiding walk with contact interactions," Journal of Statistical
Physics, vol. 67, pp. 395-412, April 1992.

32. Richards,F.M., "The Protein Folding Problem," Scientific American, pp. 54-63,
January 1991.

33. Ripoll,D.R. and Thomas,S.J., "A parallel Monte-Carlo search algorithm for
the conformational analysis of polypeptides," Journal of Supercomputing,
vol. 6, pp. 163-185, 1992.

34. Shakhnovich,E. and Gutin,A., "Enumeration of all compact confomrations of
copolymers with random sequence of links," Journal of Chemical Physics,
vol. 93, pp. 5967-5971, October 1990.

35. Skolnick,J. and Kolinski,A., "Simulations of the folding of a globular protein,"
Science, vol. 250, pp. 1121-1125, November 1990.

36. Smailer,I., Machta,J., and Redner,S., "Exact enumeration of self-avoiding walks
on lattices with random site energies," Physical Review E, vol. 47, pp. 262-
266, January 1993.

37. Sumners,D.W. and Whittington,S.G., "Detecting knots in self-avoiding walks,"
Journal of Physics A - Mathematical and General, vol. 23, pp. 1471-1472,
April 1990.

38. Vilgis,T.A., "Generalized screening of excluded-volume interactions in levy
walks and self-avoiding walks," Physical Review A, vol. 43, pp. 4156-4158,
April 1991.

109

39. Wang,]., "A new algorithm to enumerate the self-avoiding random walk,"
Journal of Physics A - Mathematical and General, vol. 22, pp. 1969-1971,
October 1989.

40. Windwer,S., "Knottedness in self-avoiding walks," Journal of Physics A -

Mathematical and General, vol. 22, pp. 1605-1608, July 1989.

41. Windwer,S., "On the topology of loop-erased self-avoiding random walks,"
Journal of Chemical Physics, vol. 93, pp. 765-766, July 1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Literature Survey
	Chapter 3: Objective
	Chapter 4: The Protein Folding Problem
	Chapter 5: Cubic Lattices: Properties and Representations
	Chapter 6: Parallel Exact Enumeration of Lattice Graphs
	Chapter 7: Results and Discussions
	Chapter 8: Conclusions
	Appendix A: An Implementation of Parallel Volume and Contact Constraint Exact Enumeration
	Appendix B: An Implementation Of Parallel Contact Constraint Exact Enumeration
	References

	List of Tables
	List of Figures

