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ABSTRACT 

DEVELOPMENT OF A NON-INTRUSIVE PARTICLE MOTION 
TRACKING TECHNIQUE FOR GRANULAR FLOW EXPERIMENTS 

by 
Jerry R. Volcy 

Implementation aspects of monitoring the position and orientation of a one-

inch diameter particle in space non-intrusively based on the principle of magnetic 

induction coupling are discussed. A radio-transmitter embedded within the particle 

induces voltages in receiver antennae. Position and orientation of the particle are 

deciphered from these voltages. A previously developed math model that predicts the 

voltage induced in an antenna given the position and orientation of the transmitter with 

respect to the antenna as well as the numerical techniques used to obtain the inverse 

solution of computing position and orientation from a given set of voltages are used. 

Practical issues of implementation including the experimental setup, the effect 

of model-reality discrepancy, empirical model corrections, and methods improving the 

numerical techniques are the focus of the present study. Experimental results show 

that the present tracking system has an accuracy of approximately 1 to 2 particle 

diameters and indicate the accuracy may be greatly improved with the use of multiple 

transmitters. 	The technique of tracking developed here has a wide range of 

applications because of its non-intrusive nature, however, emphasis is placed on the 

study of the behavior of bulk solids. Directions for future work are discussed. 
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Chapter 1 
Introduction 

1.1 The Study of Bulk Solids 

Bulk Solids or granular materials refer to the class of substances characterized by a 

collection of discrete solid particles dispersed in a fluid continuum. When the fluid is a 

liquid, the mix is termed a slurry and the liquid may become important in 

characterizing the behavior of the mixture. When the interstitial fluid is a static gas, 

the behavior of the bulk is governed primarily by the interactions between the solid 

elements composing the mass. Thus, a' study of the behavior of bulk solids can begin 

with a study of the dynamics between the constituents within the bulk. 

The size of the particulates within a bulk solid can range from fine dusts to 

large rocks [Woodcock (10)]. Some examples of bulk solids include coal, pack ice, 

metal powders, ceramic powders, pharmaceuticals, grain, sand, ores, kaolin, potatoes, 

sugar, table salt and rocks [Savage (6)]. Hence, the study of bulk solids finds 

applications in every industry that handle or work with these materials. The study of 

bulk materials finds relevance in many areas of science and engineering as well. 

Geology, geophysics, sedimentology, conveyor belt design, hopper design, 

pharmaceutical processing and handling, processing industries, ceramics, powder metal 

forming and bulk solids transportation are a few of the areas that can benefit from an 

improved understanding of the flow behavior of granular materials. In the case of 

conveyor belt and hopper design, the designing engineer typically is forced to rely 

strictly on the trials and errors of the past when a new design is in need. The result is 

often an expensive failure of the new design because of a lack of understanding of how 

the old design parameters are to be adapted to the newer design. Little or no scientific 

theory is at hand to guide the engineer [Savage (6)]. 
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Given the increasing importance of the study of granular materials in flow, it is 

surprising that studies in this area have lagged so far behind studies in parallel fields 

such as fluid mechanics and gas dynamics. The little theory that exists in the field has, 

however, well surpassed experimental studies. The time has come that the theory can 

no longer progress rapidly without the substantiation and corrections that can come 

only from actual experimentation. Such experiments have been lacking in the past 

primarily because of the formidable nature of the problem. For example, the 

parameter space of a free flowing mass is so wide that it almost defies the controlled 

space needed to carry out experimentation. The size of the constituents within the 

flowing mass, the shape of these constituents, the nature of the dispersant, the 

coefficient of friction between the constituents, the coefficient of restitution, the 

boundary conditions, the angle of flow, the speed of the flow, the friction and 

restitution coefficients against the boundary and the packing density of the mass are 

some of the primary parameters that must be considered. The parameter space 

increases further when particles of differing size, shape and physical properties are 

combined in a composite flow. 

There are two basic approaches to studying the behavior of a flowing system. 

One can approach the problem either from a LaGrangian or Eulerian point of view. In 

an Eulerian study, a fixed volume of space within the flow, called the Eulerian space or 

Eulerian volume, is observed. The focus is not on any individual particle, but on the 

activity of particles that cross the boundaries of the control space. Such studies give 

us an understanding of how the mass behaves as a whole, but give little insight to the 

dynamics within the flow. Macroscopic properties such as flow rate, packing density, 

pressures and other flow properties are typically devised from Eulerian studies. A 

LaGrangian study, on the other hand, attempts to study the 
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behavior of a collection of particles by observing the activities of a single particle 

typical of the moving pack and embedded therein. Such studies have proven to be of 

extreme difficulty to perform because of the large parameter space and the difficulties 

of monitoring a single particle in a flowing mass. 

Historically, experimenters have attempted to perform such studies by 

collapsing the parameter space to two dimensions or by intruding into or simply 

stopping the flowing mass to determine the state of the tracer particles. The results of 

either technique is arguably untrue to the real nature of the flow. The first has a two-

dimensional limitation. It is not clear how the results of such a study is to be 

extrapolated into three dimensions. The latter is an intrusive technique and has the 

disadvantage of disturbing the very flow it seeks to characterize. Some non-intrusive 

techniques [Tuzun(8)] that use X-rays, y-rays, radio-isotopes, radio pills or magnetic 

tracers are either extremely expensive, health hazards or incapable of measuring 

orientations because of their isotropic properties. A well established technique of 

monitoring position and orientation of a single particle in a flowing mass has yet to be 

developed. 

1.2 Statement of the Problem 

We propose to develop an authentic non-intrusive particle tracking technique that will 

be valid for use in the study of unconstrained granular chute flows. The tracking 

system uses magnetic coupling and the relationship that exists between current levels 

and the positioning of transmitter with respect to receiver to estimate the location of 

the source. The theoretical viability of this tracking system has been substantiated by 

Dave el al. [Dave (3)] through simulations. Construction of the physical tracking 

system is near completion. Methods of implementation will be discussed here. 

Difficulties in the numerical methods used will be examined as well as difficulties that 

arise form the discrepancies that exist between theory and experimentation. 
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1.3 Outline of Remaining Chapters 

In Chapter two, we describe the proposed tracking system and provide an overview of 

the technique. Details of the experimental hardware is covered and general hardware 

specifications are provided. Chapter three examines the mathematical model used to 

describe the transmitter-receiver relationship we seek to exploit. 	Discrepancies 

between the model and reality are identified and methods of error corrections are 

developed. In chapter four we focus on the signal processing part of the tracking 

system and look at various techniques used to better the inverse solution of 

determining position and orientation from measured voltages. Convergence issues are 

considered and methods of improving the numerical techniques are discussed. In 

chapter 5, we present some experimental results and discuss the need for a multiple 

transmitter system. Chapter 6 summarizes the efforts, to date, in developing the 

tracking system. Direction for future study is provided and conclusions are outlined. 



Chapter 2 

The Physical System 

2.1 Overview 

The proposed tracking system is based on the principle of magnetic induction 

coupling. This principle states that the presence of an electromagnetic source will 

induce a current in nearby objects. The magnitude of this induced current will be 

primarily a function of the conductance of the pick-up objects and the orientation of 

the transmitting source with respect to the receiving object. Typically, objects with 

low conductance like acrylic, glass, nylon, wood and other non-metals are classified as 

"radio-transparent" materials because the currents induced in these media is often 

undetectably small. Objects with high conductance include metals like copper, iron, 

silver and gold. These metals are good receptors of electromagnetic radiation and 

produce currents that can be measured by readily available electronic circuitry. 

The aim here is to exploit the relationship that exists between the transmitting 

source and the receiving antenna to determine the location of the source. Because the 

current induced within a given receiver is not unique with respect to the spatial 

position and orientation of the transmitting source, multiple receivers are needed to 

monitor the source. Triangulation-like techniques can then be used to determine the 

location of the source. 

The proposed tracking system is comprised of a radio-transparent flow space 

instrumented with number of receiving antennae. The problem, then, becomes one of 

embedding a radio transmitter source within one of the particles in the flowing mass 

and subsequently translating the antenna voltages into positions and orientations. In 

this study, the particles to be used are 1-inch acrylic spheres. 

Once the mechanics of the system are established, data is collected in the form 

of signals from the receiving antennae. These signals are filtered, amplified, digitized, 

5 
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downloaded and stored in a computer. The inverse solution refers to the process by 

which these signals are used to determine transmitter's position and orientation. 

Through theories of electricity and magnetism, it is possible to estimate the signal 

levels in a loop antenna given the position and orientation of the transmitting source 

with respect to the loop. However, it is difficult to obtain an inverse solution in closed 

form because of the complex relationship that exists between the induced signal and 

the location of the transmitter. We resort to numerical methods to solve an over-

determined system of m non-linear equations for 6 unknowns: x, y, z, a, 13, y. m is the 

number of receiving antennae in the system. x, y and z are the coordinates describing 

the position of the particle in space. a, 13 and y are parameters that describe how the 

particle is oriented in space. a, 13 and y are defined in figure 2.1 as the angles that the 

axis of the transmitter makes with the x-axis, y-axis and z-axis respectively. 

Figure 2.1 Definition of a, 13 and 7. The angles a, J3 and 7 are parameters that define the 
transmitter's, and hence the tracking sphere's, orientation in space. 

A block diagram of the entire tracking system appears in Figures 2.2 and 2.3. 

The tracking technique can be separated into two major sections: data acquisition and 

signal processing. Details of the experimental data acquisition system are presented in 
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this chapter while details of the voltage model will be discussed in the next. We will 

focus attention on the signal processing aspects in chapter 4. 

Figure 2.2 Data Acquisition Block Diagram. 



Figure 2,3 Signal Processing Block Diagram. 
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Figure 2.4 The Radio-Transparent Chute. 
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2.2 Experimental Hardware 

Successful implementation of the proposed tracking system is contingent on the ability 

to successfully build, integrate and *tune" the electrical, mechanical and computer 

hardware needed. Because of the sensitivity of the receiver-transmitter system, it is 

found that small modifications to any part of the system (configuration of antennae 

and choice of electric wires, for example) are often reflected in the results. 

Consequently, several alternative configurations are tested and evaluated and the 

optimal configuration is attained largely by trial and error. Here we shall set our focus 

on the design of the chute, transmitter, antennae, receiver, wiring and data acquisition 

system.  

2.2.1 Chute 

Because of the radio-magnetic nature of the tracking system, the chute is a 

12"x12"x120" "radio-transparent" structure constructed primarily of Extren 500 and 

600 structural shapes (See Appendix F) and acrylic sheets. It is fastened together 

mostly by nylon nuts and bolts. The only metallic component of the structure are the 

rectangular loop antennae that tessellate the flow area. The construction of the chute 

is such that the center deflection in no larger that 5/32" under a 87.4 lb/ft load 

[La Rosa (4)]. The maximum inclination angle of the chute is 35°  . The hopper of the 

chute is a volume of 24" x 18" x 24" capable of housing 10,000 1" spherical particles. 

A picture of the chute is shown in Figure 2.4. Construction diagrams of the major 

components appear in Appendix A. The coordinate system of the chute (which we 

will call the global system) is such that the x-axis runs along the center length of the 

chute as shown in figure 2.5. 
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Figure 2.5 Flow space and coordinate system of the chute (not to scale). 

2.2.2 Transmitter 

The tracking sphere is made from a 1" acrylic sphere typical of those in the flowing 

mass. A sphere is cut into two halves which are bored hollow and threaded to fit a 

cylindrical collar as shown in figure 2.6. Within the collar is centered a 5mW Hartley 

oscillator broadcasting at 2.04 MHz [Troiano (7)]. 	The oscillator circuitry is 

constructed entirely of miniature surface-mount components arranged on a 0.55" 

diameter printed circuit board. The oscillating coil is wound around a ferrite core and 

mounted above the circuit board as shown in figure 2.7. 

The required power for the circuit is provided by two 1.5 volt nickel-cadmium 

batteries installed on either side of the coil. See figure 2.8. It is assumed that the 

interference introduced by the proximity of the metallic batteries is negligible given 

their small size. A schematic of the transmitter circuitry is shown in figure 2.9. The 

axis of the transmitter, as it will be discussed in this document is defined in figure 2.10. 



Figure 2.6 Case of the Tracking Sphere: The case of the tracking sphere is fabricated from a 1" 
acrylic sphere typical of those in the flowing mass. 

12 
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Figure 2.7 Profile of the transmitter-coil and the supporting circuitry. 

The transmitter oscillating frequency was chosen to be 2.04 MHz. This 

frequency is chosen for several reasons. One reason is that extreme frequencies 

require high capacitances or high inductances which become difficult to incorporate 

into a miniature circuit. Another reason is related to the transmission of power. The 

level of power delivered to the receiving antennae, it will be shown, is directly 

proportional to the frequency of oscillation of the source. It is thus desirable to have 

as high a frequency of oscillation as possible. The higher the frequency, however, the 

greater the power requirements and the greater the possibility of standing waves and 

interference from distant metallic objects that may reflect the radio waves. Thus, an 

upper limit is placed on the transmitting frequency because of limitations on the size of 

the power source and because of a desire to keep clear of very high frequencies where 

interference as described becomes problematic. Yet another reason for choosing a 

frequency of 2.04 MHz is its availability. For example, a frequency of 88.0 MHz is a 

bad choice because it is on the FM (Frequency Modulation) band and is constantly in 
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use, representing an endless source of high power noise. Likewise, a frequency of 

176.0 MHz is a poor choice because it is the first harmonic of the busy 88.0 MHz 

band. 2.04 MHz is a fairly isolated frequency with no immediate "busy" harmonics. 

Mechanical balancing of the tracking sphere entails the addition of nonmetallic 

materials within the package to give it the same weight as any other sphere in the 

flowing mass. Also, the weight must be positioned such that the finished package does 

not have a "heavy" side. Given the size and non-metallic limitation of the balancing 

weights, an effort to accurately balance the tracking sphere is non-trivial and beyond 

the scope of this document. 

Figure 2.8 2.04 MHz Transmitter Assembly. This exploded view of the 2.04 packaged transmitter is 
a sketch showing the actual size of components within the tracking sphere. 
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Figure 2.9 Schematic Diagram of the Transmitter Circuitry 

Figure 2.10 The axis of the transmitter. 
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2.2.3 Antenna System 

Complete determination of the position and orientation of the tracking sphere 

translates into solving six unknowns: three in position and three in orientation. Thus, 

at every instance, at least six antennae must be used to monitor the path of the tracking 

sphere. In this experiment, the a antennae used are rectangular loops. The 

configuration of these antennae, that is their location, size, shape and number has 

proven to be extremely important to the tracking system. It is found in preliminary 

studies that smaller antennae with aspect ratios close to 1 work reasonably well, 

however, further study reveals that generalities on the size of the antennae cannot 

easily be made. Larger antennae tend to give low signals and thus a small signal to 

noise ratio. Antennae with large aspect ratios tend to deviate more from the model 

predicted voltages, resulting in large systematic errors in the final results. Thus, the 

smaller the antenna, the better the results. However, more antennae are needed to 

cover the length of the chute. It is found that antennae with dimensions of 

approximately 22" by 22" cover a good space while providing consistently good 

results with the model predictions. See figure 2.11. The letters DAQ in the figure is 

shorthand for "Data AcQuisition". The units of the ordinate are counts which are 

integers with magnitudes directly proportional to the signal level in the antenna. The 

data is collected with the axis of the transmitter collinear with the axis of the antenna. 

Data is collected as the transmitter is moved away from the plane of the antenna. The 

axis of the transmitter is as defined in figure 2.10. The area of the antenna is defined 

as the vector centered in the plane of the antenna and perpendicular to it with a 

magnitude equal to the area of the loop. 

The position and orientation of the antennae that cover the chute flow space 

also have a strong impact on the end results of the inverse solution. Problems arise 

particularly when an orthogonality occurs between the axis of the tracking sphere's 

transmitter and the axis of one or more antennae. When this occurs, a very low 
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Figure 2.11 Data collected using a 22" x 22" antenna. 

current is induced within the antenna, resulting in a very low signal to noise ratio. This 

is illustrated in figure 2.12. If the space around the transmitter is being monitored by 

six antennae arranged in a cubic tessellation, then an orthogonality can result in as 

many as four of the six antennae at the same time. The result of such an occurrence is 

always the same. The two antennae with axes parallel to the transmitter axis have very 

strong signal to noise ratio while the other four antennae give signals with 

unacceptably low signal to noise ratios. In a true granular flow, such an orthogonality 

is rare in a sustained manner. Techniques are developed in the signal processing stage 

to overcome this situation. The history of the particle's path can be reconstructed by 

examining its position and orientation immediately before and after the orthogonality 

occurred and subsequently interpolating to determine a true position. The need for 
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this interpolating technique can be slightly reduced by the addition of extra antennae 

mounted at an angle with respect to the chute. 

Also important in the tracking of the sphere is the selection of antennae. A 

minimum of 31 antennae are required to do a cubic tessellating of the chute if we wish 

to respect the 22" x 22" guideline for antenna size. This implies that antennae at the 

extremities of the chute will be separated by a large distance. It is not desirable to use 

very distant antennae to compute the position and orientation of the tracking sphere 

because these antennae will provide low signal to noise ratios and will increase the 

numerical computation effort without increasing the accuracy of the end results. It is 

therefore desirable to develop a methodology to systematically select sets of antennae 

as the tracking sphere moves along the chute. This selection is to be handled in the 

signal processing stage of the experiment when true flows are being studied. 

Figure 2.12 The effect of orthogonal transmitter-receiver axes. In the above illustration, the axis of 
the transmitter is parallel to the axis of antenna #2. A high signal level will be induced in antenna #2 
as a result. On the other hand, the transmitter's axis is orthogonal to the axis of antenna #1. As a 
result, a low signal level will be registered in antenna #l. 
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2.2.4 Receivers and Data Acquisition 

The presence of the tracking sphere within the flow space yields only a few millivolts 

in the loop antennae. Receiver boards have been built to amplify these signals and 

isolate the 2.04  MHz transmitter frequency. The output of these boards is a 

differential positive DC voltage in the range of approximately 0 to 3 volts. It is crucial 

that the receiver boards amplify the signal and convert the AC input to a scaled DC 

voltage in a linear fashion. Figure 2.13 is a plot of the system's linearity [Troiano (7)]. 

Figure 2.13 Linearity of receiver boards at detector stage. 

The sensitivity of the transmitter-receiver system is a limitation of the digital data 

acquisition system (referred to as the DAQ system). Because the receiver boards are 

analog devices, they are, in theory, sensitive to infinitesimal changes in the position 

and orientation of the tracking sphere. The data acquisition system is found to be 

sensitive to small changes in angles and position. However, this sensitivity is 

dependent on the transmitter's orientation with respect to the monitoring antenna. 
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The analog to digital system is a National Instruments (see Appendix F) 12-bit 

converter that outputs a value of -2047 to 2048 "counts" corresponding to -10 volts to 

+10 volts DC. 

The sampling speed is a limitation of the digital data acquisition system and its 

host computer. In high speed chute flows, if this limitation becomes an impracticality, 

it may be overcome by first using magnetic tape to collect the analog data and 

subsequently downloading to the data acquisition system at a reduced speed. 

2.3 Calibrating the System 

The mathematical model predicts the signal level induced in each antenna as a function 

of the position and orientation of the transmitting source. The data collected from the 

data acquisition system is in the form of counts, a set of integers in the range of 0 to 

2048 that are representative of the signal level in an antenna multiplied by a scaling 

factor that is a function primarily of the amplifier gains. Determination of this scaling 

factor is imperative to converting the counts to volts. We have assumed that this 

factor is constant with respect to position, orientation and time. Calibration of the 

data acquisition system is thus done by setting the tracking sphere at a known position 

and orientation and recording the count level. The model predicted voltage at this 

same position is divided by the measured reading to obtain the scaling factor. 

Normally, calibration is done at a point of high signal levels to minimize errors. 

Because it is never possible to eliminate random noise from the environment, it 

is necessary to remove all standing waves from the collected data. This is done by 

collecting data from each antenna with the transmitter turned off. This reading, 

henceforth termed the background reading, is then subtracted from subsequently 

collected data. Background readings have accounted for as much as 5.0% of the total 

reading on a single channel. At very low signal levels, this fraction is even higher. It is 

thus necessary to eliminate this noise. 
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2.4 Interference and Wiring 

Wiring from the chute antennae run along the length of the chute in approximately 

parallel paths to the receiver boards and circuitry kept a few feet from the 

experimental space to avoid interference. When lines travel long paths in parallel and 

close proximity, it is inevitable that interference will occur. Figure 2.14 shows the 

result of antennae lines coupled from a long parallel run. The data in this figure is 

collected in a similar manner as the data set described in section 2.2.3. 	The 

transmitter, whose axis is collinear with the axis of the antenna, is moved away from 

the plane of the antenna in increments of 0.5 inches. An error of approximately 200% 

is observed between the scaled model and the curve labeled "Unbraided DAQ lines". 

The situation is rectified in the curve labeled "Braided DAQ lines". Braided data lines 

greatly reduce the effect of coupling between antennae lines. Coupling currents are 

induced in both lines simultaneously and have a net cancellation affect. 

Figure 2.14 Effects of coupled antenna leads. 



Chapter 3 
The Model 

3.1 	Derivation of the Voltage Model 

A model has been developed to predict the voltage that will exist in the 

rectangular loop antennae as a function of position and orientation of a point 

transmitter [Parasar (5)]. 	A complete derivation including assumptions and 

approximations can be found in Ashok, 1992 [Ashok (1)]. The resulting equations are 

reproduced here for convenience. 

Figure 3.1: Transmitter-Receiver Spatial Orientation 

Consider the Transmitting coil and receiving antenna depicted in figure 3.1. The 

magnetic flux vector B in the receiving antenna caused by the presence of the 

transmitter is obtained by using the principle of reciprocity [Van Valkenberg (9)]. 

First, the magnetic flux induced in each line segment of the loop is computed. These 

22 



23 

are then summed to obtain the total field in the loop, B. For i transmitters and j 

receivers, 

Where, B is the resultant magnetic flux 

and, 

µ is the permeability of the transmission medium, air 

Ii is the current in transmitter i 

Rk  , cos cok , θk are functions of the relative position of transmitter i with respect to 

receiver j. These positions are expressed as xij, yij and zij and are shown below 

without the subscript indices for clarity. The dimensions of receiver j (1j, aj) are also 

shown without the subscripts. The coordinate frame used to derive the above 

equations is as shown in figure 3.1, and is centered in the plane of the receiving loop. 
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The direction angles are given by: 

x
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, y and z are the unit direction vectors in the x, y and z directions respectively. 

The potential difference at the terminals of receiver j caused by the presence of 

transmitter i [Carr and Parasar (2)] is given by 

Or, 

where, 

Ni is the number of turns in the coil of transmitter 1, 

N • is the number of turns in receiver j, 

and fi is the oscillation frequency of transmitter i, 

Ai is the vector area of transmitter i, which has magnitude equal to the cross sectional 

area of the transmitter coil and has a direction perpendicular to this area. 



26 

The parameters αij  ᵦij and γij are the direction angles from the receiver plane to the 

normal of the transmitting coil's plane and are related by the equation 

The viability of this voltage model has been repeatedly tested and shown to 

match experimental data well. Typical model-reality plots are shown in figures 3.2a-c. 

In figure 3.2a, the axis of the transmitter is collinear with the axis of the antenna. The 

transmitter travels from within the plane of the antenna to a point 21 inches from this 

plane. In figure 3.2b, the transmitter is initially at the center of and in the plane of the 

antenna with which its axis is collinear. The transmitter is then moved away from the 

center of the antenna, but within its plane. Figure 3.2c is the result of keeping the 

transmitter in the center of the antenna and rotating about the z (vertical) axis until the 

angle between transmitter and receiver is 90°. 

Figure 3.2a Model-Reality Plot as the transmitter is moved away from the plane of the antenna in a 
path coincident with the axis of the antenna. 
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Figure 3.2h Model-Reality Plot as the transmitter is moved in a plane parallel to the plane of the 
antenna. The transmitter axis is kept parallel to the axis of the antenna. 

Figure 3.2c Model-Reality Plot as the angle between the transmitter axis and the antenna axis is 

rotated from 0°  to 90°  . 
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3.2 Propagation of Errors in the Inverse Solution 

The inverse solution, recall, is the process by which signal data is converted to 

transmitter position and orientation. In other words, given B in the equation (3.1), we 

wish to find x, y, z a, j9, and y (transmitter position and orientation) by numerical 

methods. It has been shown by simulations [Dave et al. (3)] that given an exact set of 

voltages, the backward model converges to the exact solution. That is, when voltages 

from the forward model are processed through the backward model, the computed 

solution is identical to the simulated trajectory. When small errors are added to the 

data to simulate noise, the model converges to a best solution from a number of 

possible solutions based on a residual minimizing technique. The error between this 

"best solution" and the "exact solution" is not, however, trivially related to the errors 

added to the supplied voltages. Exactly how noise in the input data translates into 

errors in the inverse solution is currently under study. Certain instances of high signal 

noise have resulted in very accurate inverse-solutions while other instances of lower 

signal noise have resulted in poorer solutions. These inconsistencies are best explained 

by the cancellation or propagation of errors in the inverse solution. What is known is 

that to assure consistency of accuracy in the inverse-solution, the supplied voltages 

must have errors no larger than about 10% of the maximum reading [Dave et al (2)]. 

It is for this reason that the plots of figure 3.2a-c are not accurate enough to assure 

consistent convergence to the desired solutions. Figures 3.3a-c are reproductions of 

figures 3.2a-c with the absolute error scaled by a factor of ten superimposed. Errors 

of up to 19% are visible from fig 3.3a, 9% from figure 3.3b and over 70% from 

figure 3.3c. 
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Figure 3.3a Model-Reality Plot as the transmitter is moved away from the plane of the antenna in a 
path coincident with the axis of the antenna. A maximum relative error of 19% is observed when the 
distance is 21 inches. 

Figure 3.3b Model-Reality Plot as the transmitter is moved in a plane parallel to the plane of the 
antenna. The transmitter axis is kept parallel to the axis of the antenna. A maximum relative error 
of 9% is observed when the distance is 5 inches. 
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Figure 3.3c Model-Reality Plot as the angle between the transmitter axis and the antenna axis is 

rotated from 0°  to 90 . A relative error of 10% is observed when the angle is 40 	The error at 

90°  is not finite because the theoretical value is zero at that point. 

3.3 Error Analysis 

Two types of errors appear into the measurements of any physical entity: random 

errors and systematic errors. Random errors or noise refers to the unpredictable 

fluctuation that creep into any measurements. Over time, these errors are self-

normalizing because of their random nature. As such noise tends to offset every 

reading or measurement equally. Noise can often be eliminated by taking "differential" 

measurements, when possible. Systematic errors unlike random errors are introduced 

into a system by the human biases or imperfections in the equipment used for 

measuring. These errors tend to accumulate and bias rather than offset a set of 

measurements. They cannot usually be simply subtracted out. They must be 

corrected. 
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Figures 3.3a-c show examples of systematic errors. Note that in every case 

because calibration is done at the point of highest antenna signal, the error grows in 

inverse proportion to signal strengths and that the error curves are all continuous. The 

ratio of model to data acquisition readings for figures 3.3a-c are shown in 

figures 3.4a-c. These graphs demonstrate the nature of the systematic errors. For 

example, the data points in figure 3.4a can be approximated by a line, implying that the 

error is a constant multiplier, the graph of figure 3.4b shows that the error is of a 

more complicated nature; perhaps a quadratic. 

Figure 3.4a Ratio of model and data acquisition voltages as the transmitter is moved away from the 
plane of the antenna on a path coincident with the axis of the antenna. The graph is very linear, 
indicating that a constant multiplier equal to the slope is introduced in every measurement from the 
data acquisition system. 
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Figure 3.4b Ratio of model and data acquisition voltages as the transmitter is moved away 
from the axis of the antenna in a plane parallel to that of the antenna. The graph is 
continuous, implying that a systematic error is'introduced in every measurement. This error 
is non-linear and is potentially dependent on a multitude of variables. 

Figure 3.4c Ratio of model and data acquisition voltages as the transmitter orientation is 
changed with respect to the axis of the antenna. The graph is very non-linear but 
continuous, implying that the errors are systematic. 
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3.4 The Two-Part Model 

The systematic errors described in the previous section are attributable to any number 

of factors: 

- The field of the transmitter is not perfectly symmetrical 

- The amplifier boards are not perfectly linear 

- The data acquisition board is not perfectly linear 

- Magnetic coupling may exist between antennae 

- Higher order terms neglected in the derivation of the model may 

be producing systematic errors 

One way to correct these errors given the difficulties in determining their source, is to 

add an empirical extension to the existing theoretical model. Such an extension could 

be an error map of correction terms in six dimensions for the six variables x, y, z, a,ᵦ  

and γ. If the space of the chute were discretized such that nodes in the space were 

separated by a distance of six inches and the angles a,13 and y were discretized by 30 

degrees, the empirical map would have 

nodes, assuming 180 degrees of symmetry in the transmitter. This is illustrated in 

figure 3.5. At each node, there are 98 possible orientations for the transmitter. 

Such a map is coarsely discretized, extremely laborious to construct and likely 

to be inadequate. Alternative methods are sought. 



Figure 3.5 Nodes for empirical correction map of chute space. There are 9 nodes per plane and 21 
planes for a total of 189 nodes. 

3.4.1 27-Point Empirical Corrections 

Rather than attempting to discretize the volume of the chute, one could instead 

discretize the space around the antennae that tessellate the chute. If the geometry of 

all the antennae is the same, then the discretization of a typical antenna should carry 

into the space of all the others, assuming that the errors we aim to minimize do not 

stem from individual antenna or amplifier board. Furthermore, because of symmetry, 

it is possible to discretize one octant of the space around an antenna and duplicate this 

8 times to build the desired space. This is illustrated below in figure 3.6. 
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Figure 3.6 One octant of the space around the antenna plane. 

A mirror-symmetry relationship exists between each of the 8 sub-spaces that form the 

volume around the plane of the loop antenna. Thus, if the volume of any one subspace 

can be discretized, the discretized volumes in the other regions can be obtained by 

simple coordinate transformations. For antennae centered around a 16"x16" flow 

space, the space of interest is a volume 8"x8"x8"", assuming a cubic tessellation of 

antennae (16" antennae are separated by 16"). Calibration nodes are distributed as 

shown in figure 3.7. 

Figure 3.7 Node points for the discretization of one octant of one antenna's space. Nodes on hidden 
faces are suppressed for clarity. 
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Eight nodes are placed at the corners of the space, twelve nodes are at the center of 

each edge, six nodes are at the center of each face and one node is in the center of the 

volume for a total of 27 nodes. 

In the development of the 27-point corrections, it is assumed that the 

propagation of systematic errors is linear. This assumption is substantiated by figure 

3.4a but is disfavored by figure 3.4b. Figure 3.4b shows a non-linear propagation, 

which will be approximated by two lines radiating outward from the point (0,1) to the 

points (5,1.1) and (-5,1.1). Such an approximation should not introduce large errors 

given the small range of the ordinate. 

Systematic errors, it has been shown, are greatest at the lower readings and 

diminish to zero at higher readings if calibration is done at the point of high signal 

levels. If the linearity assumptions made are valid, then an error correction factor can 

be obtained for the position of highest error (i.e. highest reading) and subsequently 

scaled down for readings of lower magnitudes. 

3.4.1.1 Implementation of the 27-Point Empirical Scale 

Construction of the 27-point empirical correction multipliers is described below. 

First, data is collected at the chosen points with the axis of the transmitter 

parallel to the axis of a typical antenna. This orientation gives near optimal or optimal 

transmitter to receiver signal transfer for the entire space of interest. It is selected for 

convenience of measurement. Random errors are removed from the collected data by 

subtraction of a background reading as described in section 2.3. Next, simulations are 

run on the forward model at the prescribed positions and orientations to obtain 

corresponding theoretical predictions. The data acquisition readings are then scaled 

down such that the reading at the center and within the plane of the antenna being 
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studied matches the predicted voltages exactly. The correction multiplier at this node 

is thus 1. If our model duplicated reality perfectly, we would expect to find an 

empirical map of factors in which every entry is 1. It is found that factors in our maps 

typically range from 0.6 to 1.2 with a strong distribution in the 0.85 to 1.10 range. 

Interpolation between nodes of the empirical map becomes necessary when we 

seek a correction factor for points that do not coincide with the nodes of our map. 

The interpolation used is linear and is with respect to the eight nodes that form corners 

of a rectangular volume around the point. The interpolation corrected factor, CF, is 

given by 

where, 

XL, YL, and ZL are the coordinates of the closest nodes such that XL≤x,  

YL 	and ZL≤z  

XH, YH, and ZH are the coordinates of the closest nodes such that XH≥x, 

YH≥y, and ZH≥z.  

with coordinates greater than x, y, z 

di,j,k is the distance from (x,y,z) to the node (Xi, Y1, Zk) given by the 

expression 
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3.4.1.2 Effect of the 27-Points 

The graphs that appear in figures BA through B.8 of appendix B are the results of a 

straight line trajectory along the X-axis of the chute and parallel to it. Plots of the 

results with application of the 27 point corrections are shown in figure B.2 while 

figure B.1 shows the results when no corrections are used. In figures B.3-B.8, it is 

apparent that the corrected backward model predicted voltages shown match the 

measured voltages closer than do the purely theoretical predictions. In the case of 

figures B.5 and B.6, relative errors are decreased by up to 18% from 23% on the 

uncorrected theoretical model to 5% on the corrected model. Figure B.2 shows the 

predicted and actual x-trajectory of the tracking sphere using the 27-point corrections. 

Errors that appear at the midpoint of the trajectory in the uncorrected model (figure 

B.1) are diminished and the resulting curve of predicted x position is rendered 

smoother. 

3.4.1.3 Limitations of the 27 Points 

There are a number of limitations to the 27 point empirical mapping technique. For 

one thing, the portability of the 27-point space is justifiable only if the duplicated 

antennae are of identical geometry to the original. Also, it is unclear how points that 

fall outside of the space should be scaled. Of primary importance, however, is that the 

scaling factors are a function of position and not orientation. As shown in figure 3.7, 

the 27-point correction works well when the transmitter is oriented in a manner similar 

to the orientation used in developing the map. In other instances when this is not the 

case, the improvements have been marginal. In cases of very low antenna signals, the 

corrections have even deteriorated the results. 
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3.4.2 675 Point Corrections 

To overcome the deficiencies of neglecting the transmitter orientation in the 27-point 

corrections, angles discretized by 45°  with respect to two of the antenna axes and 

added to the map. The third axis is automatically covered because of the constraint on 

the three-dimensional angles: 

Thus, at every node point, the angles with respect to two axes are to be varied and 

readings taken to construct a new map. This map will have a total of 5x5 or 25 times 

as many point as the angle-neglecting map. The number of node points is still 27, but 

each of the nodes now have 25 different values depending on orientation. This gives a 

total of 25*27 or 675 points for the new map. 

The 675-point map is a six-dimensional space in x, y, z, a,β   and y. Therefore, 

interpolation in the space is between 26  = 64 nodes. The correction factor is given by 

Such an equation is computationally intensive and significantly increases computation 

time. This is undesirable given the number of evaluations needed to arrive at a 

solution: 

Further, it is difficult to extrapolate variables in this space because of the constraint 

that exists between the variables of orientation a,β   and y. In the 27-point space, 

extrapolation is between independent variables. It is trivial to find the eight nearest 
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nodes because they can be determined one at a time. This is not the case for the 

675-point space. Suppose, for example, one wishes to find the nearest nodes to the 

point a= 55° =β 65° and γ = 45.4°. If the space is discretized by 10°  , then the 

nearest high and low nodes to a are 60°  and 50°  respectively. Likewise the nearest 

high and low nodes to ᵦ  are 70°  and 60°  and to y are 50°  and 40°  . However, 

when the low pair (50°  , 60°  , 40° ) and the high pair (60°  , 70°  , 50° ) are taken 

together or in combination, the three angles violate the angle constraint requiring that 

the square of their cosines sum to unity. Determination of the true nearest neighbors is 

complicated by this interdependence • between variables. Methods to determine 

appropriate nearest nodes add to the already computational intensive effort, making 

this approach impractical. 

3.4.3 Antenna Coupling 

One phenomenon responsible for the introduction of systematic errors is the coupling 

that develops between adjacent antennae. When a signal is induced in any one 

antenna, that antenna behaves as a transmitter and induces signal in adjacent antennae. 

These antennae is turn induce signals onward to other antennae. In theory, the chain 

carries downward ad infinitum with each new transmitter signal weaker than the 

previous. In practice, though, the propagating signal strength drops so quickly from 

antenna to antenna that only the first transmission could cause an error of any 

significance. Here, we will consider the errors caused by antenna coupling. 

3.4.3.1 Coupling Corrections 

To avoid the complexities of theoretical formulations, an empirical approach to 

eliminated the antenna coupling is considered. 

To correct the coupling between antennae, it is necessary to know how the 

signal strength in antenna i translates to a signal introduced in antenna j. As such, we 
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for all i and j. For a system of k antennae, one can construct a coupling matrix of k2  

entries as shown below: 

Elements on the diagonal of this matrix are unity by definition: 

In the ideal case, non-diagonal elements would be zero, representing no effect on 

antenna j by the signal in antenna i. For a transmitting antenna signal level of 1.00mV, 

typical coupling signal levels are shown in the coupling matrix of Appendix C. 

Induced signals as high as 6.8% of the transmitting antenna signal are observed. 

Unlike 27-point and 675-point corrections, the corrections for antenna-antenna 

decoupling are implemented against the data from the data acquisition system as 

opposed to the model predicted voltages. Here, it is assumed that errors are in the 

data and not in the theory. Thus, corrected voltages from the data acquisition are 

given by 
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If there are k antennae in the system, then, Vc  is a k-vector whose entries are the 

couple-corrected data acquisition voltage readings; VDAQ is a k-vector whose 

elements are the background corrected data from the data acquisition system; C is the 

evaluated coupling matrix; I is the identity matrix, and I = Ik. 

3.4.3.2 Evaluating [C - I] 

The matrix [C - I] is given by the coupling matrix of section 3.4.3.1 less the diagonal 

elements: 

We shall call this composite matrix C' and we seek to evaluate it by empirically 

determining expressions for each of its elements. 

Consider antenna j of figure 3.8 subjected to coupling by the presence of a 

large signal in the adjacent antenna r. 
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Figure 3.8 Antenna to Antenna signal Transfer: Antenna j is subjected to coupling from the large 
signal current I in antenna i. 

It has been found empirically that the coupling in antenna j is dependent positively on 

the signal levels of adjacent antenna i and negatively so on the signal level in antenna j 

itself. In other words, when the signals in antenna j are low, this antenna is highly 

susceptible to coupling from antenna i. When the signals in j are stronger, this antenna 

becomes slightly affected by signals in i. Beyond a certain signal level in antenna j, 

that antenna becomes indifferent to the activities in antenna i. Figure 3.9 shows how 

the susceptibility of antenna j changes as the initial signal in j (plotted on the abscissa) 

is increased. Here, the ordinate is the change in the reading of antenna j , ∆  Vj that 

occurs from a given fixed and large change in antenna i. Signal levels are controlled 

through a Marconi Instruments radio communications test set (see Appendix F) and 

monitored through the data acquisition system. The effects on the antenna can be seen 

from the graph to be highest when the signal in receiver j is null. Coupling effects 

decay exponentially from a maximum value when the initial reading in antenna/ (Voj) 

is zero to zero when Voj is large. An exponential decay curve has been approximated 

and superimposed on the graph in figure 3.9: 
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k is a constant characterizing the rate of decay. Once determined, k should carry from 
antenna to antenna. 

Thus, entries in C' are of the form 

AV/ is the magnitude of the signal forced into antenna i and ∆Vj is the response in 

Figure 3.9 The susceptibility of an antenna to coupling from an adjacent antenna drops off 
exponentially as the signal level in that antenna increases. 

antenna/ The constants in this expression can be evaluated by constructing plots like 

figure 3.9 for each antenna. k can be evaluated by considering any two points on the 

graph and fitting an exponential decay. 	In this example, k computed to be 

approximately 0.04. 
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3.4.3.3 Effects and Limitations of Antenna Decoupling Corrections 

The antenna coupling phenomenon is a noteworthy effect that exists between antennae 

in the tessellation. It has been shown that the errors that stem from this effect are very 

systematic. In the case shown, the magnitude of the error is seen to depend on the 

magnitude of the signals in neighboring antennae. What is not apparent is the sign or 

direction of this error. While the model we are using is sign-independent (i.e. only the 

magnitude of the antennae signals interest us), the coupling antennae signals are not. 

The claim that there exists 180° of symmetry about the coil transmitter is valid insofar 

as we speak of magnitude. In actuality, there is a 180° phase shift in the induced 

currents when the transmitter is rotated through an angle of 180° about an axis 

perpendicular to its axis of symmetry. The currents that these loops pass on to 

neighboring antennae will also be shifted. Hence, coupling signals can have the effect 

of either adding or subtracting to the magnitude of the signal level. Because the entire 

tracking system and electronics are set up to exploit the 180° transmitter symmetry, it 

is not possible to know if coupling signals should be added or subtracted. In 

controlled cases, antenna pairs decoupled for a given transmitter orientation have 

improved model-reality agreement at that orientation. At instances where transmitter 

orientation is not strictly monitored or multiple antennae of high signals are present, 

the technique has failed to improve the agreement between model and reality. 



Chapter 4 
Signal Processing and the Inverse Solution 

Once the signal from the antennae have been collected, filtered, amplified and 

preprocessed to remove background noise, the process of translating these readings 

into position and orientation of the transmitter is begun. This process we shall call the 

inverse solution and the algorithm and procedures used to perform it comprises the 

backward model. Validation of the backward model and 'details of its content and 

methodology may be found in Ashok, 1992 [Ashok (1)]. 

The arguments in this chapter refer extensively to the data set RUN067. 

Details of this set are presented in Appendix D. 

4.1 The Optimization Problem 

The forward model predicts the voltage in antenna j caused by the presence of 

transmitter i as a function of the position. and orientation of i 

Given x, y, z, a, ,β and y,  it is possible to predict Vij by simple substitution. The 

reverse does not, however, true because it is not simple to invert the B equation 

(equation (3.1)). Given V1, we seek to determine x 

If the collected data were perfect (that is, if they matched the model 

predictions perfectly), then the backward model would reduce to a system of 6 

equations to be solved for the 6 variables x, y, z,a, /3, and γ . However, because 

noise and theory-reality disagreement is inevitable, such exact solutions exist only in 

simulations. In reality, no exact solution exists and we resort to finding an optimal 

solution to an over-determined system of in equations in 6 unknowns, where, m is the 

number of antenna voltages to be matched, and m>6. We define the optimal solution 
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as the one that produces the minimum least-squares residual. The least squares 

problem reduces to the minimization of the total system residual vector R, given by 

where 

Here, Vmodel and V,*  are the model predicted and DAQ-collected voltages respectively. 

details of the optimization procedures are found in Dave [Dave et al. (2)] 

Residual minimization is done using the Levenberg-Marquardt Algorithm (see 

Appendix F). The L-M Algorithm requires an initial guess to begin its work. The 

residual at this initial guess is evaluated and iterated to a minimum. 

4.2 Initial Approximation 

The efficiency of the L-M algorithm is dependent on the accuracy of the initial 

approximation. In certain cases, initial guesses that are too far from the correct 

solution causes the algorithm to converge to an incorrect local minimum. In other 

cases, initial guesses that are extremely erroneous lead to no convergence at all. On 

several occasions, the function's space that we wish to minimize is so non-linear and 

local minima are packed so closely around the global minimum that different initial 

guesses that are no more than 1 inch and 10°  away from the correct solution converge 

to solutions other than the global minimum. Methods of selecting good initial guesses 

are thus very important to the success of the algorithm. 
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4.2.1 Use of Previous Point as Initial Guess 

Because it is assumed that the data acquisition system will be collecting data at a speed 

high enough such that the linear and angular velocities of the tracking sphere will not 

change very much from reading to reading, the computed positions and orientations 

from the previous iterate can be used as initial guesses for the current iterate. This 

method of initial approximation works well when the speed of the data acquisition is 

high with respect to the speed of the particle, but becomes less viable as the speed of 

the particle increases with respect to the speed of the data acquisition system. For the 

data of RUN067 shown in figures D.3-D.8 of appendix D, the particle is displaced 

1/2" between samples. 

4.2.2 Use of Extrapolation for Initial Guess 

To reduce the dependency of initial guesses on the speed of the data acquisition 

system, a technique of extrapolation is used to make initial guesses. Here, the last two 

points in the tracking sphere's history is examined and extrapolated to arrive at a new 

location where the sphere would be if its path were not disturbed. For example if the 

last two points are examined and it is found that the particle started at X=0.5" then 

proceeded to X=1.0", then the extrapolated guess for the location of the particle 

would be X=1.5". This technique has improved significantly the outcome of several 

runs. Figures D.3-D.8 are plot comparing the outcome of runs using the extrapolation 

technique to those that only use the previous-point technique (described in 4.2.1) as an 

initial guess. A clear improvement is visible from the two data sets. The linear 

extrapolation technique potentially has two disadvantages. 	First, is assumes a 

continuity in the particle's path that may not be typical of granular flows. In real flows, 

both the particle's linear and angular velocity can reverse in the flow. Second, the 

linear extrapolation technique has the tendency to aggravate situations where one data 
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point may be bad. Errors in the previous estimate are doubled in the extrapolated 

guess. One could overcome this by using more than one previous point in the 

extrapolation and fitting a higher-order curve or a best fit line to the data. 

4.2.3 Use of Perturbations 

To reduce the likelihood that errors amplified by the use of extrapolation are not 

totally unrecoverable, a technique of perturbation is used. Here, initial guesses are 

randomly incremented within an arbitrary limit which we shall call the radius of 

perturbation to search for alternative minima. Should one be found (as is almost 

always the case), a new perturbation is performed about this new minimum. The 

process is repeated any number of times and the minimum residual of all the 

perturbations is selected as the global solution. The perturbation method developed is 

similar but not identical to the multiple-initial-guess method common in numerical 

methods. That approach is confined to guessing around an initial guess. If the radius 

used to vary the initial guesses is small, then little chance exists that the numerical 

methods will converge to alternate minima. If the radius is large, then a good chance 

exists that we will converge to new minima, however, a large number of initial guesses 

are needed to explore the space where possible solutions exist. In our case, the 

number of initial guesses would have to grow as the sixth power of the radius to cover 

the space with equal efficiency. The perturbation technique attempts to overcome this 

by allowing us the chance of moving far away from local minima without the need for 

a large search radius. Results of the perturbation technique are similar to those of the 

linear extrapolation technique for RUN067 (Appendix D) and are shown in 

figures D.9-D.14. However, the limitations of the extrapolation technique are not 

present. 
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4.3 The Multiple Solutions Problem 

In a perfect model-reality agreement situation, it is very unlikely that multiple solutions 

to an over-determined system of eleven equations in six unknowns can exist. Indeed 

simulations has proven time and time again that given perfect data, the inverse solution 

is always perfect [Ashok(1)], suggesting strongly that only unique solutions of position 

and orientation exist for a given set voltages. However, because the space is so non-

linear, there are, packed around the unique true solution, several "good'' solutions. 

The signal levels that correspond to these sub-optimal solutions can vary from the 

optimal solution by as little as 10% on the average. Because the disagreement 

between model and the collected data is typically no less than 10%, these sub-optimal 

solutions become important and introduce the possibility of multiple numeric solutions. 

The data set RUN067 shown in appendix D is typical of a multiple-solution 

occurrence described above. We shall refer to the data in this appendix throughout the 

remainder of this chapter for different analyses. Parts will be reproduced in the text 

for convenience of reference. 

RUN067 is a straight line constant angle trajectory performed on a chute 

configured with thirteen antennae. Eleven of these are orthogonal to the axes of the 

chute. The other two are mounted at +45°  and -45°  with respect to the X-axis. 

Inspection of the resulting solution graphs (figures D.9-D.14) 	show that the 

x-computations are fairly good, but have a small discontinuity around the fourteenth 

data point. The same discontinuity appears more clearly in the Y-graph. Here, 

because the scaling is different, the error appears to be larger, but can be seen to be 

approximately 0.6". Examination of the Z-graph is shows clearly that something has 

gone wrong in the numerical solutions. The discontinuity at the thirteenth data point 

in the Z-graph is more than 2.0". 
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Figures D.15-D27 are plots of the signal levels in the thirteen antennae used in 

the run. Because the data was collected under controlled conditions (i.e., the 

transmitter is displaced by a fixed amount along a known trajectory), we know the 

exact solution and can thus predict, using the model, what the collected data should 

look like. This prediction is represented by the curve labeled "Expected Voltage". 

The actual background corrected data is also plotted and is labeled "Measured 

Voltage". The points labeled "Computed Voltage" in the figures is determined as 

follows. By applying the inverse solution method, a trajectory is computed using the 

measured voltage ("Measured Voltage"). This trajectory is then fed into the forward 

model to yield the computed antenna voltages. How well the measured voltages 

match the computed voltages is an indication of how well the inverse solution is 

working and at which points it is having trouble. 

Figure D.11 shows that near data point #14, there is at least two inches of 

discrepancy from one data point to the next. One would expect that such a 

discrepancy would amount to large discontinuity in the "Computed Voltage" lines. 

Inspection of all thirteen voltage plots show that this is not the case. In fact, only the 

graphs of antennae 2, 4, 5 and 6 show even an indication of the discontinuity in the 

solution when their scales are reduced, and those indications are well within the range 

of acceptable errors. The conclusion is that given our range of acceptable errors, 

multiple-solutions is a reality to be dealt with. In what follows, we carefully examine 

the discrepancy near data point #14 and seek evidence for multiple solutions. 



Data RUN067 Antenna # 
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 

9 3 112 272 34 102 1 72 12 4 5 41 114 360 
10 4 117 264 36 108 2 72 14 8 6 41 112 363 
11 6 123 252 38 117 3 71 16 12 6 40 107 364 
12 4 128 241 39 126 3 70 17 17 7 40 105 363 
13 6 135 231 40 132. 3 69 19 24 8 39 101 363 
14 6 142 223 43 136 5 67 20 26 9 37 100 364 
15 7 149 215 44 140 5 66 22 29 10 37 99 364 
16 8 158 206 48 144 5 63 24 34 11 35 97 362 
17 9 166 195 50 151 7 61 24 36 13 33 96 359 

Data RUN067A Antenna # 
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 

6 6 107 27 30 102 3 59 10 4 3 60 93 401 
7 7 112 268 32 109 3 57 11 7 3 59 91 393 
8 7 117 258 34 114 3 56 12 8 4 57 89 383 
9 8 122 248 36 119 4 54 12 12 4 55 88 374 
10 9 127 236 37 124 4 53 14 14 5 52 87 361 
11 9 133 227 39 128 5 51 14 16 5 50 85 353 
12 10 141 217 41 132 6 49 15 20 6 49 84 345 
13 11 147 206 43 135 6 47 16 22 7 47 82 337 
14 12 154 196 44 138 7 44 17 25 8 45 82 329 

Table 4.1 Partial Listing of RUN067 and RUN067A. 

According to the inverse solution, at data point #14 of RUN067 (table 4.1), 

there exist two points that offer similar readings in all thirteen antennae. These points 

differ primarily in the computed z-coordinates. That is, the x, y, a, β , and y values of 

these two points are not very different. z is the only variable that is increased by about 

2 inches. To validate the solution, a new trajectory called RUN067A is performed. 

This trajectory is a repeat of RUNO67 in all variables except in z, which is increased by 

two inches: 
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We expect that at about the fourteenth data point of this new trajectory, we will see 

numbers comparable to those of RUN067. Table 4.1 is a partial listing of counts from 

RUN067 and RUN067A. Observe that the numbers of the twelfth data point of 

RUN067 resemble those of the tenth data point of RUN067A. Because all the 

antennae with high readings (Antennae 2, 3, 5, 12, and 13) have good model-reality 

agreement, the residuals of RUN067A indicate that position and orientation at this 

point is mathematically an acceptable solution to RUN067 albeit incorrect in actuality. 

It is conceivable from the data presented that small variations in x, y, z, a, /3, and y 

may indeed result in readings that may approximate even closer the readings of 

RUN067. Table 4.2 is an excerpt of the iterations and perturbations of RUN067 

taken from appendix D. Computation of the fourteenth data point is shown. Five 

perturbations are performed at this data point, and perturbation number 4, having the 
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least residual is selected as the solution. The corresponding solution is 

However, the known correct solution is 

which is most closely approximated by the results of perturbations number 1 and 5. 

The residual of perturbation 4 is 0.000081 compared to 0.000091 for perturbation 1 

and 5. Given that the range of residuals from this single data set is 0.000081 to 

0.001297 (perturbation 3), there exists no significant mathematical difference between 

these two residuals. Let us suppose that the speed of the data acquisition system is 

1000 samples per second. From sample to sample then, only 1/1000 of a second will 

have elapsed. For the transmitter to have a displacement of 3.5" from data point #13 

to #14 would imply a particle speed of 3500 inches/sec or 200 miles/hour. Because 

these speeds are impractical, methods are investigated to eliminate certain solutions 

altogether. Where the mathematics are inadequate, other approaches are considered. 

4.3.1 Some Heuristics 

Because we can reason that it will not be possible for the transmitter to be displaced 

very far from sample to sample from the data acquisition system, it is possible to add a 

"penalty"' to the residual of these perturbations that converge very far from the 

previous iterate. The weight and method of implementation of these penalties are such 

that the probability of very distant successive iterates are reduced but not eliminated. 



Data point # 14 

Perturbation 1 
Initial Approximation: X = 32.013209 Y = -0.107699 Z = 5.411770 A = 50.229541 B = 136.041906 G = 105.629581 
Initial residual: 0.000106 
Converges to: X = 31.567366 Y = -0.086868 Z = 5.557476 A. = 49.868630 B = 135.734270 G = 105.537119 
Final Residual: 0.000091 

Perturbation 2 
Initial Approximation: X = 31.890262 Y = 1.380257 Z = 5.013749 A = 40.118694 B = 105.281081 G = 136.191617 
Initial residual: 0.017551 
Converges to: X = 33.870811 Y = -1.187400 Z = 3.569387 A = 49.658942 B = 126.484192 G = 118.653984 
Final Residual: 0.000584 

Perturbation 3 
Initial Approximation: X = 33.571246 Y = 0.949469 Z = 7.211216 A = 79.373913 B = 129.852437 G -- 88.461850 
Initial residual: 0.055477 
Converges to: X = 36.807691 Y = -7.192644 Z = 14.675249 A - 57.705294 B = 147.508680 G = 86.159879 
Final Residual: 0.001297 

Perturbation 4 
Initial Approximation: X = 32.734133 Y = 1.223507 Z = 5.134473 A = 43.744925 B = 116.633165 G = 115.248771 
Initial residual: 0.009541 
Converges to: X = 31.217467 Y = 0.198597 Z = 6.397609 A = 49.384315 B = 135.565205 G = 104.929628 
Final Residual: 0.000090 

Perturbation 5 
Initial Approximation: X = 31.857681 Y = 1.959145 Z = 5.220781 A= 32.253626 B = 155.662207 G = 104.896225 
Initial residual: 0.061150 
Converges to: X = 31.575464 Y = -0.093179 Z = 5.537932 A = 49.880818 B = 135.739017 G = 105.551227 
Final Residual: 0.000091 

Using perturbation #4 
Initial Approximation: X = 32.734133 Y = 1.223507 Z = 5.134473 A = 43.744925 B = 116.633165 G = 115.248771 
Initial residual: 0.009541 
Converges to: X = 30.685827 Y = 0.651336 Z = 7.813586 A = 48.486932 B = 135.173213 G = 103.897066 
Residual Vector = {-0.000027 0.000015 -0.000009 0.000006 -0.000005 -0.000030 -0.000036 0.000016 -0.000005 -0.000045 
0.000020 0.000024 -0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000081 
Stopping Criterion: 1 
Number of Function evaluations = 92 

Table 4.2 Excerpt of iterations and perturbation of RUN067 showing the solution at the fourteenth 
data point. 

4.3.1.1 Residual Add-Ons 

Two factors Fl and F2 are added to the residual such that the residual grows in slow 

proportion with the distance from the solutions between consecutive iterates. A 

residual add-on is computed as follows: 
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where, 

∆x, ∆y, ∆z, ∆α, ∆β   and ∆γ  are the changes in x, y, z, a, ᵦ , and y 

from iteration to iteration 

Fl is a factor restricting translation and 

F2 is a factor restricting rotations. 

If F2 is set to zero, then no restrictions are imposed on how much the tracking sphere 

can rotate from iteration to iteration. Conversely, large values of F1 and F2 mean that 

the residual add-on will grow quickly as the distance between consecutive iterates 

grows. If these numbers are too large, then there will be a tendency to adversely bias 

the convergence of the inverse solution. This is not the aim. Rather, we aim to select 

values of Fl and F2 that are just large enough to raise the residual of points more that 

1 inch away to a level where they become less likely to be selected over nearby points 

with slightly higher but comparable residuals. Null values of F1 and F2 are equivalent 

to no add-ons to the residual. Graphs with various values of Fl and F2 are presented 

in figures D.28-D.33 of appendix D. If F1 = F2 = 0, then no restrictions are placed 

either on translations or rotations and the graphs are equivalent to those of 

figures D.9-D.14. 

In figures D.28-D.30, a slight restriction is imposed on translation, but none on 

rotations. It is observed that the graph is markedly improved at the vicinity of 

previous trouble but is unaffected in areas near the front and back edges where 

translations and rotations between iterates are small. A small discontinuity in the plots 

still appears around the eighteenth to nineteenth data points. This discontinuity is 

reduced further in figures D.31-D.33 where the restriction on translation is increased 

to Fl = 3.5e-5  and no restriction is imposed on rotation (F2=0). 

In all the cases above, the x, y, a, β , and γ graphs were as good or better than 

those of RUN067 done with no restrictions on displacements. 
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4.3.1.2 Residual Conditioning 

Comparable residuals between point on RUN067 and RUN067A stem from the fact 

that antennae with large signal levels have good agreement. Antennae with lower 

signals are outweighed and thus contribute little to the residual. Because the emphasis 

placed on matching larger signals does not lead to unique solutions, a focus is placed 

on the antennae with lower signal levels. Here, the relative errors between the model 

and collected data is examined. This 'error is typically large for antennae with low 

readings and small for antennae with large readings. Thus, to identify antennae with 

low readings and whose model-reality correspondence is poor, the relative errors are 

analyzed. Two constants S and T are introduced into the individual components of the 

residual as follows. If the relative error between the model and collected data is larger 

that T, then the contribution to the residual is increased by a factor of S: 

where, 

Model/ is the model predicted voltage for antenna i, 

DAQi is the measured voltage from antenna i, 

resi is the ith component of the residual and is given by equation (4.3). 

Several values of T and S were used in experimentations. The results of these 

experiments are stated here qualitatively for the sake of brevity. Values of T=15% and 

S=3.0 are found to produce the best results. In every case, solution plots in. X, Y and 

Z became much less smoother, though equally accurate, compared to plots without 

these correction terms. Improvements do appear in the areas of trouble (around data 
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point #14 in RUN067). However, these improvements come only with a compromise 

in other parts of the plot that have deteriorated. 

4.3.2 Residual Manipulations 

One way to overcome the limitations introduced by simply selecting the lowest 

residual is to change the way by which the residual is computed. Currently, this is 

done by the Euclidean norm or L2  norm: 

where, 

R is the total residual and ri

 are the components of R given by 

This norm, as any other, has advantages and disadvantages. It finds its advantage in 

its ability to weigh a large range of numbers equally, even if the numbers being 

normalized differ from one another by several orders of magnitudes. The Euclidean 

norm has the disadvantage of masking trends that may exist in the components of the 

residual. For example, for the three residual vectors shown below, the Euclidean norm 

yields the same result: 
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It is unclear which of the above residual vectors is the better solution. Alternate 

methods of examining the residuals are thus in order. 

The infinity norm (L∞) applied to the set above yields 

The unity norm (L1 ) norm yields 

These norms have been used instead of the Euclidean norm and have produced mixed 

results. Combinations of the norms have also been done, though an exhaustive study 

remains to be done. For example, the L., or the L1 norm could be computed and 

incorporated as one component of the Euclidean norm. Such combinations have been 

successful in the past, but their success is realized only with some hind-sight of what 

the solution should be. Development of an "intelligent" algorithm to determine which 

norm or combination of norms is optimal given the data set is non-trivial and beyond 

the scope of this document. 



Chapter 5 
Experimental Results: A Case for Multiple Transmitters 

5.1 Experimental Results of Controlled Trajectories 

Several runs were taken in the development of this tracking technique. The results of 

some of these trajectories are presented in Appendix E. All data in this appendix is 

collected through the single 2.04 MHz transmitter described in section 2.2.2. 

5.1.1 Fixed-Angle Runs 

Figures E.1-E.12 are the results of three typical fixed-angle runs. The coordinate 

systems used on these runs are not necessarily those depicted in Figure D.1 of 

appendix D. This is not, however, important to our arguments. What we seek to 

point out is the dependence of the final solution on the course of the trajectory. Note 

the relationship that exists between the quality of the solution in a given direction and 

the angle of the transmitter with that direction. In every case, it can be argued that 

when the axis of the transmitter is at a small angle ( < 45°) with a principle direction 

(X, Y or Z), the result in that direction is generally good. In the case of RUN068 

(figures E.5-E.7), agreement in the X-direction surpasses that in the Z direction 

considerably. Of no coincidence, this is reflected in the angle that the transmitter 

makes with the axes: 

Because the symmetry, =β136° is equivalent to =β44°. We expect that if the angle 

with a principle axis is zero, we should get excellent results along that direction, while 

compromising the quality of the solution in other directions. 
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5.1.2 Simulated Roll 

While small angles in a given direction usually leads to improved solutions in that 

direction, it is not impossible to obtain good results in the other directions. This is 

particularly true when the large angles are temporary. Such is expected to be the case 

in a true granular flow. Figures E.13-E.18 are the solution of a "simulated roll". By 

this we mean that the transmitter is rotated and translated by a prescribed amount in a 

prescribed direction between each data point. 	Thus, transmitter-receiver 

orthogonalities are transient; they never occur in consecutive data points. Witness the 

surprisingly high quality of the solution given that four orthogonalities (two with X 

and two with Y) occur in the course of the run. 

5.2 Multiple Transmitters 

It can be concluded from the arguments of the previous section that good solutions in 

a given direction are usually the result of good (small) transmitter angle in that 

direction. Extrapolation techniques to overcome transient orthogonalities and near-

orthogonal situations as well as techniques to reduce random and systematic noises to 

a level low enough to eliminate multiple solutions when such incidents do occur have 

proven inadequate to consistently produce acceptable results. We conclude that the 

best way to overcome the orthogonality problem is to prevent these occurrences 

altogether. Two methods of doing just that suggest themselves. The first method is 

through the addition of more receiver antennae in orientations not coincident with 

principle axes. For example, one could equip the chute with antennae mounted at 45° 

and 135° with each principle axes. This requires that the number of antennae around 

the flow area be doubled. Such a setup has been attempted. Antenna #12 and #13 or 

RUN067 (see figure D.26 and D.27 of appendix D) are a typical 45°-135° pair. 

Surprisingly, the addition of these antennae improved but did not rid the final solution 
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of discontinuities despite the accuracy of the voltage plots. Because an orthogonality 

in one direction means that a minimum of 45° exists with the corresponding slanted 

antenna, a multitude of slanted antennae inclined at several different angles would be 

necessary such that at least three angles are below 45°. This increase in the number of 

antennae increases the number of components in the residual vector, thereby 

decreasing the weight of individual components. The results is that only a marginal 

improvement arises from the addition of more receiver antennae. In cases where 

slanted antennae were implemented, it is found that the improvements in the results 

usually did not warrant the electronic and computational efforts expended. 

The alternative is to increasing the number of receivers in the system is to 

increase the number of transmitters. If three orthogonal transmitters of differing 

frequencies could be packaged in the tracking sphere, then a transmitter-receiver 

orthogonality could never occur. In such a case, the largest angle that could ever exist 

between a give direction and axes of the transmitter is 54.7°. Even a two-transmitter 

system would drastically reduce the likelihood of orthogonalities. 

One other limitation of the single transmitter system is depicted in figure 5.1. 

Because of the symmetry in the transmitter's output, there exists one axis about which 

the transmitter can rotate undetected. This axis is the axis coincident with the axis of 

the transmitter. 

Several practical considerations need to be made before such systems are 

developed. The difficulties of packaging a single transmitter described in section 2.2.2 

are further complicated when we speak of multiple transmitters. Also, the mutual 

effect of two transmitters in close proximity needs to be considered. Other matters 

requiring 
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Figure 5.1. The need for multiple transmitters: a rotation about the transmitter's axis as shown in 
not detectable given the symmetry of the transmitting source. The rotation shown would not change 
the signal level in any receiving antenna, no matter what the orientation of the antenna with respect 
to the transmitter 

attention include 

• Power requirements for multiple transmitters 

• Geometry of multiple transmitters 

• Further reduction of circuitry to allow for new circuits 

• Frequency of other transmitters 

• Receiver circuitry 

A two-transmitter system is already near completion. Figure 5.2 illustrates the 

geometry of the second transmitter operating at 3.65 MHz. The 2.04 MHz transmitter 

ferrite core mounts directly inside the 3.65 MHz air core as shown in figure 5.3. 

Results of the two-transmitter system are not yet available. 



Figure 5.2 The 3.65 MHz Transmitter. The air-core coil on the left mounts directly beneath the 
circuit board shown on the right 	  

Figure 5.3 Two-Transmitter Assembly. The ferrite coil of the 2.04 MHz transmitter mounts directly 
inside the 3.65 MHz air coil. 
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Chapter 6 
Summary and Conclusion 

6.1 Summary of Progress 

To date, most steps needed to successfully implement the proposed tracking system 

have been taken. A summary of these steps follows. 

A miniature high-power electronic radio transmitter has been built. 	This 

transmitter has been packaged within a case machined from a 1-inch acrylic sphere. A 

"radio-transparent" chute instrumented with rectangular loop receiver antennae has 

been built. Receiver boards, which include amplifiers, band-pass filters and balance 

demodulators have been designed and built to monitor the signals in the antennae. A 

PC-based data acquisition system is in place to digitize and store data collected from 

the output of the receiver boards. Once collected, a method has been established to 

calibrate the data in order to reverse the gains and loses in the process of data 

acquisition. The results of this is a set of data indicative of the voltage in the 

respective antennae. A mathematical model capable of predicting voltage levels in a 

rectangular loop antenna given the position and orientation of the tracer particle has 

been derived. Numerical techniques for obtaining the inverse solution have been 

established. In the present study, efforts are steered toward the improvement of the 

inverse solution by two primary methods. The first method used attempts to improve 

the inverse solution by reducing model-reality discrepancy in the forward solution. 

Here again, two approaches are considered. The first approach assumes that the 

collected data is free of systematic errors and that model-reality discrepancies arise 

from inadequacies in the voltage model that may have come up as a result of 

simplifications, invalid assumptions or the neglecting of higher-order terms. 	An 

attempt to correct model-reality discrepancy is implemented using a two-part model. 

The "first" part of the model is the theoretical model of section 3.1. The "second" part 
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is an empirical map of scaling factors as outlined is sections (3.4.1 and 3.4.2). Results 

of a simplified two-part model are promising (sections 3.4.1.2) but methods of 

building a complete map are still under investigation. 

The second approach to reducing model-reality discrepancy assumes that the 

theoretical model is accurate in predicting voltage induced in the receiving antennae. 

Errors, it is assumed, stem from magnetic coupling between antennae. The nature of 

this coupling has been studied and found to be complex. Further study is in progress. 

The second method used to increase the quality of the inverse solutions is 

based on altering the numerical methods. 	Techniques of initial approximation 

including the use of extrapolations and perturbations (section 4.2) are considered. 

Such techniques have greatly increased the robustness of the numerical methods. 

We consider the computed inverse solution to be the correct solution when the 

numerical method converges to the solution that is the global minimum. This is the 

solution with the least squares residual. Because of noise, model-reality discrepancies 

and the non-linear nature of the model formulation, a multitude of local minima 

surround this global minimum. Heuristic approaches are considered to reduce the 

likelihood that the numerical techniques will converge to one such local minimum. 

These are implemented in the form of the residual add-ons and manipulations 

described in section 4.3 

Experimental results show that the tracking system being developed works 

consistently and predictably but is slightly outside the acceptable levels of accuracy. 

6.2 Direction for Future Work 

A lot of work remains to be done to perfect the proposed tracking system. Issues to 

be resolved can be categorized into three classes. The first class of issues deals with 

difficulties in data acquisition and the experimental setup. The second class of issues is 

related to the voltage model and the discrepancy that exists with measured antenna 
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voltages. The third class of issues deserving further attention deals with convergence 

issues in the inverse solution. 

6.2.1 Data Acquisition and the Physical System 

There are several aspects of the data acquisition process and the physical experimental 

setup that potentially weigh heavily in determining the quality and validity of the 

inverse solution. A few of these are outlined below: 

 

6.2.1.1 Configuration of antennae 

An exhaustive study on the optimal configuration of antennae, that is their size, shape 

and number can potentially boost the accuracy of the tracking system. Throughout 

this study, it has been observed that in a given data set, certain antennae have weighed 

heavily in determining the outcome of the inverse solution. On the other hand, in 

certain cases, the addition of experimental antennae mounted on 45° angles have had 

little effect on the convergence of the numerical methods in the inverse solution. It is 

found that the addition of such antennae increases the number of components in the 

vector of residuals, thereby decreasing the weight of any single antenna. The effect of 

antennae with high signal levels, which could potentially provide results of high 

accuracy become less pronounced. Likewise, the effects of antennae with low signals 

levels, which typically do not yield results of high accuracy are also diminished. The 

result is usually only a marginal increase in the overall accuracy of the inverse solution. 

6.2.1.2 Methods of calibration 

Current methods of calibrating the data acquisition system are based on trial and error 

and observation. It is known, however, that different means of calibrating the system 

can result in slightly different solutions. Present calibration techniques are "single-

point" techniques. That is, the prediction of the model at a given point is compared 
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with the readings from the data acquisition system and an appropriate scaling factor is 

determined. This technique of calibration is subject to human errors and the ability to 

accurately position the tracer particle in a prescribed position. Small shifts in the plots 

of the model and reality, such as the one shown in figure 2.11, are, in part, caused by 

this method of calibration. Better methods of calibrating the system at multiple 

locations like the 27-point corrections can reduce this shift. 

6.2.1.3 Antenna Coupling 

Work is currently in progress to determine how antennae become coupled and how 

they can be uncoupled. Experiments show that the coupling between antennae is 

dependent on the proximity of the antenna and the orientation of the antennae with 

respect to each other. A means of configuring antennae to reduce coupling may 

increase the accuracy of tracking. Where such a configuration is inadequate, it may be 

possible to eliminate coupling effects by empirical means similar to those outlined in 

chapter 4. 

6.2.1.4 Multiple-Transmitters 

The orthogonality and near-orthogonal conditions described in section 2.2.3 have been 

a primary reason why the numerical methods have failed to converge to the correct 

solution. In section 5.2, it is concluded that one approach to resolve the problems of 

large transmitter-receiver angles is to package multiple transmitters in the tracking 

sphere. Efforts to achieve this end is well in progress. 

6.2.1.5 Balancing of the Tracking Sphere 

Mechanical balancing of the tracking sphere refers to the addition of non-metallic 

weights into the package to give the tracer particle the same mass as the other acrylic 

spheres in the mass. Also, the packaged transmitter should not have a "heavy" side 
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(section 2.2.2.). Efforts to mechanically balance the tracking sphere require the use of 

fairly sophisticated CAD/CAM packages capable of doing centroid and moment 

analyses of composite rigid bodies. 

6.2.2 Model-Reality Agreement 

In simulations, the inverse solution from the numerical methods always converges to 

an exact solution. That is, when the model matched reality perfectly, the results would 

always be perfect. Thus, it is possible to improve the inverse solutions by improving 

the agreement between the model and reality. A few methods of doing this are 

outlined in chapter 3. 	All techniques that can improve the model-reality 

correspondence can potentially eliminate many or all of the difficulties encountered in 

developing the tracking system. All such techniques are worthy of investigation. 

6.2.3 Convergence Issues in the Inverse Solution 

Convergence Issues in the numerical methods of the inverse solution can be 

categorized in two ways: 

1. Convergence to the wrong solution. Because the formulation relating transmitter 

position and orientation to induced voltage is extremely non-linear, there exists a 

strong possibility that the numerical methods will converge to a local minimum 

rather than the global minimum. Methods to reduce the likelihood of such an 

occurrence are described in chapter 4. Other methods to increase the probability 

of convergence to the global solution are worthy of investigation. 

2. Problems of multiple solutions. In the case where there exists several local 

minima, the inverse solution credited as the "correct" solution is the one that 

corresponds to the solution producing the minimum residual. Problems arise when 

two or more local minima produce residuals that differ only slightly. In such cases 
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of multiple solutions, heuristics have been used to select the better of the two 

solutions. Other methods of selecting solutions or alternate methods of computing 

the residual may be able to reduce or eliminate the difficulties of multiple solutions. 

6.3 Conclusion 

It should be pointed out that the areas worthy of investigation described in section 6.2 

are not "independent". That is, the resolution of one or two of these difficulties may 

eliminate the need for the others. For example, if a means of greatly improving the 

model-reality correspondence is found, then it is likely that convergence issues in the 

numerical methods of the inverse solution will disappear. Likewise, it has been 

noticed that when there exist multiple-solutions, one of the local minima is usually the 

correct solution even though it may not be the least residual solution. If a technique 

based on heuristics or an analysis of the tracking particle's displacement history could 

be implemented such that the correct (not necessarily the least residual) local minimum 

would always be selected as the best solution, then it is possible that efforts to improve 

model-reality agreement as well as efforts to improve calibration and obtain optimal 

antenna configurations, may not be needed. In the case of multiple-transmitter, it is 

believed that many of the convergence issues in the inverse solution will become 

insignificant even with a two transmitter system. 

In summary, through simulations and experimentation, the viability of the 

proposed tracking system has been substantiated. Presently, the system is working 

consistently and predictably but is slightly outside the acceptable limits of accuracy. It 

is the author's belief that further study into the areas outlined in the previous section 

will result in a robust and accurate tracking technique. 



APPENDIX A 
Chute Construction Diagrams 

The figures in this appendix are the major construction diagrams for the chute. The 

radio-transparent structure is composed primarily of Extren 500, Extren 600 and 

acrylic and is fastened with nylon nuts and bolts. 

Figure A.1 Cross section of the chute showing a 15' x 12.25" flow space. 
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Figure A.2 Chute Assembly, plan view 
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Figure A.3 Chute Side Sill 
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Figure A.4 Chute Center Sill 
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Figure A.5 Chute Base Support, assembly drawing 
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Figure A.6 Chute Upper End, assembly drawing 



APPENDIX B 
Effect of 27-Point Corrections 

The data in this appendix pertain to a straight line trajectory along the X-direction. 

The axis of transmitter is parallel to the axis of the X-antenna. We expect that results 

in the Y and Z directions will be very poor. These results are omitted here. Antenna 

plots for three X-antennae are also presented. Again, readings in Y and Z antennae 

are expected to be overwhelmed with noise and interference. 

The three antennae shown have axes in the X-direction and are located at 

X = 0", X = 20" and X = 40" respectively. Each antenna is square and has a 20" x 20" 

geometry. In figures B.1 and B.2 are the X-results from the inverse solution. 

Figure B.1 uses a purely theoretical voltage model in its computation. Figure B.2 uses 

the 27-point empirical extension added on to the theoretical model. Figures B.3 to 

B.8 are voltage plots showing model-reality plots. Each plot of reality and theoretical 

model is followed by a plot of reality and empirical-theoretical model. Antennae in the 

Y and Z directions have low signal levels and are thus of little interest to us. 
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Figure BA Computed and actual X-displacement as X goes from 0 to 40 inches. The voltage model 
used carries no empirical modifications. 

Figure B.2 Computed and actual X-displacement as X goes from 0 to 40 inches. The voltage model 
used is modified by the 27-point correction factors. 
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Figure B.3 Output of antenna #1 located at X=0" 

Figure B.4 Output of antenna #1 located at X=0" 
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Figure B.5 Output of antenna #2 located at X=20" 

Figure B.6 Output of antenna #2 located at X=20" 
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Figure B.7 Output of antenna #3 located at X=40" 

Figure B.8 Output of antenna #3 located at X=40" 



APPENDIX C 
Coupling Matrix 
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APPENDIX D 
RUN067 Data and Solution Using Perturbations 

D.1 Overview 

The materials in this appendix pertain to the data set RUN067. This data is the result 

to a straight-line, constant-angle trajectory. Antenna configuration and numbers are 

shown in figure D.1. An illustration of the particle's path is shown in figure D.2. A 

listing of the collected data is presented in Table D.1. Solution plots for x, y, z, 

a, /3 and y using the previous-point and extrapolation techniques are shown in 

figures D.3-D.8. Solution plots for x, y, z, a, /3 and y using the perturbation 

technique are shown in figures D.9-D.14. Voltage plots are shown in figures D.15-

D.27. The first curve in the voltage plots is representative of the expected signal level 

given the exact trajectory. The second curve is the signal level as registered by the 

data acquisition system. The third curve is from the inverse solution. 

Figure D.1 Antenna configuration and numbers for the system used in RUN067. 
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The complete solution process including iterations and perturbations for 

RUN067 appears in Table D.2. For each data point, 5 perturbations are performed 

about the initial guess. Some of these points converge to different minima, resulting in 

different final residuals. A record of local minima and residuals is kept, and at the 

completion of all perturbations, the local minima producing the lowest residual is 

selected as the solution. The residual vector has 16 components. The first 13 

components are a measure of model-reality voltage agreement: 

The 14th element is a constraint on a, /3 and γ : 

The magnitude of the constant F is varied to change the weight of this constraint. 

Typically, F is selected such that the constraint carries more weight than any voltage 

match, but is not so great that a large number of significant figures are required to 

satisfy the condition. The 15th ant 16th components are for constraints on the velocity 

of the tracking sphere as described in section 4.3.1.1. Component 4 15 is for 

translational velocities while # 16 is for rotational velocities. In the case shown here, 

both Fl and F2 (see sec. 4.3.1.1) are set to zero. Hence, components 15 and 16 are 

null and contribute nothing to the residual. In figures D.28 to D.33, the results after 

varying Fl is shown. Varying F2 is of little consequence here because the trajectory is 

angle-invariant. 
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Figure D.2 Course of the controlled trajectory RUN067. 

D.2 RUN067 Listing 

Below is a listing of the data collected for RUN067. This data is typical of 

those from the data acquisition system. Each reading is repeated three times to reduce 

the chance of sporadic data. These readings are later averaged. The first readings in 

the file is the background reading. This is the data collected with the transmitter off 

and is representative of standing waves in the environment or noise in the amplification 

process. The background reading is followed by correlation points. For this run, 6 

correlation points are taken. The remainder of the data are the actual readings as the 

tracking sphere is moved along the chute. 43 data points are taken here. 



Data 
Point 

Antenna Readings 
Antenna # 

# 1 2 	3 	4 	5 	6 7 8 9 10 11 12 13 

# Name: RUN067 

# 1 Background Reading 
1 -7 0 	-15 	-2 	5 	1 -5 -9 -4 -2 0 17 0 

-8 1 	-16 	-2 	5 	2 -6 -9 -4 -4 0 17 -1 
-7 1 	-16 	-3 	5 	1 -5 -9 -3 -2 0 16 -1 

# 6 Correlation Points 
1 26 287 255 	72 	7 	22 -1 44 16 34 0 248 384 

27 286 254 	71 	7 	22 -2 44 16 34 1 248 384 
27 287 255 	71 	6 	22 -1 44 16 34 0 247 384 

2 218 327 	27 	6 	43 	3 13 -1 45 7 22 121 162 
219 326 	27 	6 	42 	4 14 -1 46 7 21 120 163 
218 328 	26 	7 	43 	3 14 -1 45 7 22 121 163 

3 -6 7 	-9 	13 224 	6 88 -9 -3 -2 1 16 12 
-6 8 	-8 	14 223 	6 88 -9 -2 -2 1 17 10 
-5 7 	-8 	14 224 	6 88 -9 -3 -2 1 17 12 

4 -3 7 -16 315 	10 105 -3 -8 -3 -1 0 16 2 
-4 7 -15 315 	9 106 -3 -8 -2 -1 -1 17 2 
-3 7 -16 315 	9 105 -3 -7 -3 -1 0 17 3 

5 -7 3 	-12 	-2 	7 	1 -3 8 167 7 104 300 468 
-7 3 	-12 	-2 	7 	1 -3 9 165 8 104 300 468 
-8 3 	-12 	-2 	8 	1 -2 9 166 7 105 299 468 

6 -6 3 -16 	8 	4 	4 -6 200 6 172 3 29 2 
-6 3 -15 	7 	5 	4 -6 200 7 172 3 28 2 
-6 3 -16 	9 	4 	4 -5 200 6 172 2 28 3 

# 43 Data Points 
1 -1 75 329 	22 	23 	2 67 4 53 1 36 163 302 

-1 73 329 	22 	22 	1 67 3 54 2 36 161 303 
0 74 329 	22 	23 	0 66 3 54 2 35 162 302 

2 1 78 324 	23 	34 	2 68 5 46 2 37 155 314 
0 78 325 	23 	32 	2 68 4 46 2 38 154 314 
0 78 325 	23 	34 	1 69 4 46 1 37 154 313 

3 -1 82 318 	25 	46 	2 71 5 36 2 38 147 323 
1 82 317 	25 	46 	1 70 6 36 2 39 147 323 
1 82 319 	25 	45 	2 70 5 37 2 38 147 324 

4 1 86 312 	27 	57 	1 71 6 28 3 39 140 333 
-1 87 312 	27 	57 	1 71 7 28 3 40 140 333 
1 86 311 	26 	56 	2 72 6 28 3 40 139 333 

5 2 91 306 	27 	66 	1 73 7 20 3 40 134 341 
-1 91 306 	27 	66 	2 73 8 21 3 39 135 342 
2 90 306 	27 	66 	1 72 9 20 3 40 136 341 

6 1 96 297 	30 	76 	2 73 9 12 3 41 129 347 
3 96 297 	29 	76 	3 73 9 13 3 41 129 348 
2 96 298 	29 	75 	1 73 9 12 3 42 129 348 

7 3 100 292 	31 	84 	2 73 11 7 4 42 125 355 
3 100 292 	31 	83 	1 73 10 7 3 42 126 354 
3 101 	291 	31 	83 	2 73 10 5 4 41 125 354 

8 3 106 281 	32 	94 	1 73 12 3 5 42 118 359 

continues... 
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Table BA Collected data for RUN067 (counts) 



...continued 

3 06 282 32 	93 3 	72 12 2 5 42 119 357 
3 05 282 32 	92 2 	73 11 3 5 40 119 359 

9 3 12 272 34 02 2 	72 13 4 5 41 115 359 
3 12 272 34 02 1 	72 12 4 5 41 114 360 
3 11 	272 34 02 2 	72 13 5 5 41 115 360 

10 4 17 264 36 08 2 	72 14 8 6 41 112 363 
4 16 264 36 09 3 	72 14 8 6 40 112 363 
4 16 264 35 08 2 	71 14 8 6 41 112 362 

11 6 23 252 38 17 3 	71 16 12 6 40 107 364 
4 24 253 36 16 2 	71 16 14 6 40 108 364 
5 23 252 37 17 2 	71 15 14 7 40 107 365 

12 4 28 241 39 26 3 	70 17 17 7 40 105 363 
4 28 242 39 25 3 	70 17 17 7 40(104 363 
4 28 241 39 25 2 	70 18 18 7 40 104 363 

13 6 35 231 40 32 3 	69 19 24 8 39 101 363 
6 35 231 41 32 3 	68 18 23 8 39 102 363 
6 35 231 41 32 3 	68 18 22 8 39 101 362 

14 6 42 223 43 36 5 	67 20 26 9 37 100 364 
6 43 224 44 37 4 	67 20 26 9 38 99 364 
6 42 223 44 36 4 	67 20 26 9 38 101 363 

15 7 49 215 44 40 5 	66 22 29 10 37 99 364 
8 51 	215 45 40 4 	65 22 29 11 38 98 364 
8 50 215 45 40 5 	65 21 29 10 36 99 364 

16 8 58 206 48 44 5 	63 24 34 11 35 97 362 
8 58 206 47 46 5 	63 23 35 12 36 97 363 
9 58 206 47 44 5 	63 23 33 11 36 97 362 

17 9 66 195 50 51 7 	61 24 36 13 33 96 359 
10 66 196 51 51 6 	62 24 36 13 34 98 359 
9 66 195 50 50 7 	61 24 36 13 34 96 359 

18 9 73 185 53 57 8 	59 26 39 14 33 95 351 
10 73 184 54 57 8 	60 26 40 14 32 95 352 
10 74 	185 53 57 8 	60 26 39 14 33 95 352 

19 11 82 175 55 61 9 	57 28 43 16 32 93 349 
11 82 176 54 60 8 	58 27 43 16 32 93 350 
11 82 176 55 61 9 	57 28 43 16 32 93 351 

20 11 92 169 58 63 1 	55 28 46 18 30 93 348 
12 92 169 57 63 1 	55 29 46 18 30 93 349 
12 92 168 56 63 0 	55 29 46 18 31 94 349 

21 14 202 160 59 66 1 	53 31 48 19 28 95 342 
12 202 	161 59 66 2 	53 30 48 20 27 95 342 
13 201 	160 59 67 2 	53 31 47 19 27 95 343 

22 14 211 	152 61 70 4 	51 32 50 22 25 95 336 
12 211 	151 61 71 4 	50 32 49 22 26 96 337 
13 211 	152 61 70 4 	51 32 50 22 26 95 336 

23 15 222 	144 64 73 5 	48 32 51 25 25 96 331 
15 221 	144 63 73 5 	48 33 51 25 24 96 331 
15 222 145 64 72 5 	48 33 52 25 25 94 332 

24 15 232 136 66 76 7 	46 34 52 28 22 97 324 
16 232 136 65 77 8 	46 34 53 27 21 97 323 
15 232 	136 65 77 7 	46 34 54 27 23 96 324 

25 16 243 128 67 80 20 	44 35 54 31 19 99 318 
16 243 128 66 79 	18 43 35 54 31 20 99 318 
17 243 127 67 79 19 	43 35 55 30 20 99 317 

continues... 
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...continued 

26 18 255 122 68 180 21 40 36 57 35 17 101 313 
18 255 123 67 180 22 39 36 56 34 17 102 314 
18 255 123 68 180 21 40 35 56 34 18 101 314 

27 19 268 115 67 182 24 37 36 58 39 14 104 305 
20 268 116 68 181 24 37 37 59 39 14 104 306 
18 268 115 68 183 23 36 37 58 39 14 104 306 

28 21 280 108 67 184 26 34 37 59 44 11 107 300 
21 279 109 68 184 25 34 38 59 43 11 107 299 
20 279 109 68 184 26 33 37 59 44 11 106 299 

29 22 292 102 66 185 30 30 37 59 48 7 111 294 
22 292 103 67 184 29 31 37 60 50 8 111 294 
21 293 103 67 184 28 31 37 60 49 7 111 293 

30 22 304 96 64 184 31 26 37 59 56 4'116 281 
22 305 95 64 186 31 27 36 59 56 4 115 282 
23 304 95 64 186 31 27 36 60 56 4 116 281 

31 24 317 91 61 185 34 24 36 61 63 2 124 276 
24 316 91 61 184 34 24 37 60 63 3 124 276 
24 316 91 60 184 34 24 36 62 63 2 123 275 

32 24 329 85 56 183 36 20 36 61 71 3 131 265 
25 329 84 56 184 37 20 36 61 71 3 131 266 
26 328 85 56 184 36 20 36 61 72 3 131 266 

33 27 342 80 50 182 39 16 35 61 81 8 142 259 
26 341 81 50 181 40 16 34 62 82 7 140 260 
26 342 80 51 182 39 16 35 61 82 8 142 258 

34 28 355 77 44 179 42 12 34 61 94 14 155 252 
28 354 77 44 179 42 12 34 62 93 13 154 252 
28 355 78 44 179 42 13 34 62 93 14 154 253 

35 31 368 71 34 175 46 8 32 61 107 21 171 243 
30 367 72 35 174 46 8 33 61 107 21 171 243 
30 367 72 34 174 46 8 32 60 107 21 171 244 

36 32 380 68 24 171 48 4 32 60 123 31 192 233 
32 380 68 24 170 48 3 31 60 123 30 192 235 
32 380 68 25 171 48 4 31 61 123 30 192 235 

37 34 392 64 13 165 50 0 29 61 140 39 217 226 
34 392 65 13 164 50 0 29 60 140 39 217 224 
34 392 64 13 165 51 0 29 61 139 39 216 226 

38 35 403 61 0 159 53 -4 27 59 159 51 249 216 
35 404 62 1 158 52 -4 28 61 159 52 249 216 
35 404 61 1 158 53 -4 27 60 160 51 249 216 

39 38 412 58 5 151 55 -4 25 60 178 63 285 206 
37 413 58 6 152 54 -4 26 60 178 64 286 205 
38 412 58 5 151 54 -4 26 59 177 63 286 205 

40 40 422 55 22 144 56 -1 23 61 199 75 327 195 
40 423 55 21 144 56 -2 24 60 198 75 326 195 
40 423 55 22 143 55 -1 23 61 199 76 327 195 

41 40 429 53 36 135 56 2 21 60 215 86 366 186 
41 429 52 36 136 56 2 21 59 214 87 367 185 
42 429 53 35 135 57 2 21 59 215 87 367 185 

42 44 435 50 51 126 57 4 19 59 229 98 404 175 
44 435 49 52 126 58 4 19 59 229 97 405 174 
43 436 49 52 126 57 4 19 59 229 98 404 174 

43 46 439 47 67 117 56 6 17 56 237 106 428 163 
46 439 46 67 117 57 6 16 57 237 105 427 164 
46 440 47 67 117 57 6 16 57 238 106 427 164 
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D.3 Effect of Initial Guess on Solution Trajectory 

Figure D.3 X-Calculations using two techniques. 

Figure D.4 Y-Calculations using two techniques. 
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Figure D.5 Z-Calculations using two techniques. 

Figure D.6 Alpha-Calculations using two techniques. 
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Figure D.7 Beta-Calculations using two techniques. 

Figure D.8 Gamma-Calculations using two techniques. 
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D.4 Solution to RUN067 Using the Perturbation Technique 

Figure D.9 X-Calculations using perturbation technique. 

Figure D.10 Y-Calculations using perturbation technique. 
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Figure D.11 Z-Calculations using perturbation technique. 

Figure D.12 Alpha-Calculations using perturbation technique. 
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Figure D.13 Beta-Calculations using perturbation technique. 

Figure D.14 Gamma-Calculations using perturbation technique. 
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D.5 RUN067 Solution Voltages 

The data in Figures D.14 - D.26 are the voltage solutions for RUN067 using the 

perturbation technique. There are 13 graphs corresponding to the 13 antennae used in 

that sample. Each graph has 3 plots. The first plot, labeled "Expected Voltage" is the 

theoretical voltage that is induced in the receiving antenna given the position and 

orientation of the tracking sphere. The second plot, labeled " Measured Voltage" is 

the antenna signal strength as recorded by the data acquisition system. The third plot, 

labeled "Computed Voltage" is the resulting plots from the inverse solution. Refer to 

section 4.3. 

Figure D.15 Solution voltages for antenna #1 
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Figure D.16 Solution voltages for antenna #2 

Figure D.17 Solutions voltages for antenna #3 
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Figure D.18 Solution voltages for antenna #4 

Figure D.19 Solution voltages for antenna #5 
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Figure 0.20 Solution voltages for antenna #6 

Figure D.21 Solution voltages for antenna #7 
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Figure D.22 Solution voltages for antenna #8 	 

Figure D.23 Solution voltages for antenna #9 



Figure D.24 Solution voltages for antenna #10  
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Figure D.25 Solution voltages for antenna #11 
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Figure D.26 Solution voltages for antenna #12 

Figure D.27 Solution voltages for antenna #13 
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D.6 RUN067 Iterations Listing 

Below is a complete listing of the iteration process that leads to the solution of 

RUN067. The perturbation technique is used. Refer to section 4.3. 

Table D.2 Listing or Iterations and Perturbation for RUN067. 

Data point t 1 

Perturbation 1 
Initial Approximation: X = 38.000000 Y = 0.000000 Z = 4.000000 A = 51.500000 B = 138.500000 G = 103.122049 
Initial residual: 0.000090 
Converges to: X = 37.475848 Y = 0.040007 Z = 3.190097 A = 51.844294 B = 136.603410 G = 107.495125 
Final Residual: 0.000039 

Perturbation 2 
Initial Approximation: X = 37.109071 Y = 1.444707 Z = 3.078077 A = 44.958586 B = 133.089761 G = 113.659891 
Initial residual: 0.012852 
Converges to: X = 37.481239 Y = 0.040757 Z = 3.200078 A = 51.847561 B = 136.622934 G = 107.464363 
Final Residual: 0.000039 

Perturbation 3 
Initial Approximation: X = 39.373011 Y = 0.876455 Z = 2.432940 A = 60.421380 B = 138.969927 0 = 95.917387 
Initial residual: 0.017676 
Converges to: X = 37.481204 Y = 0.040752 Z = 3.200015 A = 51.847533 B = 136.622811 G = 107.464526 
Final Residual: 0.000039 

Perturbation 4 
Initial Approximation: X = 37.582902 Y = 1.461594 Z = 6.051216 A = 54.547552 B = 173.108729 0 = 67.752055 
Initial residual: 0.046547 
Converges to: X = 38.317041 Y = 0.171232 Z = 7.409116 A = 51.574918 B = 140.822300 G = 83.482898 
Final Residual: 0.000093 

Perturbation  5 
Initial Approximation: X = 38.243639 Y = 0.324112 Z = 2.991103 A = 81.907377 B = 129.744290 0 = 83.137935 
Initial residual: 0.055732 
Converges to: X = 46.755265 Y = 2.745049 Z = 7.010665 A = -10.382015 B = 94.732984 G = 80.779125 
Final Residual: 0.000608 

Using perturbation #3 
Initial Approximation: X = 39.373011 Y = 0.876455 Z = 2.432940 A = 60.421380 13= 138.969927 G = 95.917387 

Initial residual: 0.017676 
Converges to: X = 37.481204 Y = 0.040752 Z = 3.200015 A = 51.847533 13 = 136.622811 0 = 107.464526 
Residual Vector = {0.000005 0.000015 0.000001 -0.0000l0 0.000002 -0.000007 -0.000015 0.000009 0.000003 -0.000026 0.000010 -0.000004 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000039 
Stopping Criterion: 1 
Number of function evaluations = 36 



Data point 2 

Perturbation 1 
Initial Approximation: X = 37.481204 Y = 0.040752 Z = 3.200015 A = 51.847533 B = 136.622811 0 = 107.464526 
Initial residual: 0.000105 
Converges to: X = 37.165093 Y = -0.023633 Z = 3.684299 A= 51.565466 B = 137.129898 0 = 106.051103 

Final Residual: 0.000042 

Perturbation 2 
Initial Approximation: X = 39.198695 Y = 0.774030 Z = 2.602562 A = 45.042656 B = 158.913189 G = 120.518289 
Initial residual: 0.062771 
Converges to: X = 38.021220 Y = 0.775754 Z = 1.559449 A = 53.392852 B = 124.585079 G = 124.584519 
Final Residual: 0.000076 

Perturbation 3 
Initial Approximation: X = 38.795424 Y = 1.049168 Z = 2.433927 A = 39.981745 B = 133.770419 G = 127.497941 
Initial residual: 0.043629 
Converges to: X = 38.028571 Y = 1.719538 Z = -0.517599 A = 55.275396 B = 113117137 G = 136.171586 
Final Residual: 0.000178 

Perturbation 4 
Initial Approximation: X = 36579634 Y = 2.071584 Z = 2.800076 A = 58A74678 B = 118.053430 . G = 129.543308 
Initial residual: 0.010033 
Converges to: X = 38.021129 Y = 0.775607 Z = 1.559577 A = 53.392387 B = 124.586510 G = 124.582608 
Final Residual: 0.000076 

 Perturbation 5 
Initial Approximation: X = 36.337045 Y = 0.510529 Z = 2.399798 A = 66.859020 B = 133.033944 G = 90.891531 
Initial residual'. 0.037968 
Converges to: X = 37.165072 Y = -0.023636 Z = 3.684257 A = 51.565441 B = 137.129811 G = 106.051215 
Final Residual: 0.000042 

Using perturbation #5 
Initial Approximation: X = 36.337045 Y = 0.510529 Z = 2.399798 A = 66.859020 B = 133.033944 G = 90.891531 
Initial residual: 0.037968 
Converges to: X = 37.165072 Y = -0.023636 Z = 3.684257 A = 51.565441 B = 137.129811 G = 106.051215 
Residual Vector = {0.000005 0.000012 0.000002 -0.000015 0.000004 -0.000011 -0.000018 0.000010 0.000008 -0.000027 0.0000004 -0.000004 
0.000000 0.000000 0.0000000.000000) 
Final residual: 0.000042 
Stopping Criterion: 1 
Number of function evaluations = 43 

Data point II 3 

Perturbation 1 
Initial Approximation: X = 37.165072 Y = -0.023636 Z = 3.684257 A = 51.565441 B = 137.129811 G = 106.051215 
Initial residual: 0.000119 
Converges to: X = 36.668648 Y = -0.047103 Z = 3.997662 A = 51.358196 B = 137.356141 G = 105.227550 
Final Residual: 0.000046 

Perturbation 2 
Initial Approximation: X = 36.806677 Y = 0.505444 Z = 2.295568 A = 63.717631 B = 106.859964 G = 90.826833 
Initial residual: 0.071966 
Converges to: X = -15.888624 Y = 105.991629 Z = -178.919390 A = 94.365455 B = 190.613072 G = 260.337615 
Final Residual: 0.001956 

Perturbation 3 
Initial Approximation: X = 35.691521 Y = 0.936465 Z = 2.301715 A = 67.783250 B = 119.618120 G = 108.294507 
Initial residual: 0.051431 
Converges to: X = 34.368631 Y = 0.677076 1 = 1.573737 A = 44.606708 B = 128.707084 G = 108.633661 
Final Residual: 0.000215 

 
Perturbation 4 
Initial Approximation: X = 39.121755 Y = 1.133139 Z = 3.453872 A = 77.365470 B = 142.235013 G = 138.838664 
Initial residual: 0.023976 
Converges to: X = 39.282400 Y = 8.592128 Z = 7.764423 A = 73.526276 B = 111.320100 G = 152.550212 
Final Residual: 0.000415 

Perturbation 5 
Initial Approximation: X = 37.955142 Y = 0.517409 Z = 3.512415 A = 46.532542 B = 122.996688 G = 91.694727 
Initial residual: 0.022941 
Converges to: X = 39.964757 Y = 1.379384 Z = 5.318910 A = 50.103001 B = 134.815642 G = 107.661994 
Final Residual: 0.000262 

Using perturbation #1 
Initial Approximation: X = 37.165072 Y = -0.023636 Z = 3.684257 A = 51.565441 B = 137.129811 G = 106.051215 
Initial residual: 0.000119 
Converges to: X = 36.668648 Y = -0.047103 Z = 3.997662 A = 51.358196 B = 137.356141 G = 105.227550 
Residual Vector = {0.000003 0.000014 0.000002 -0.000014 0.000005 -0.000010 -0.000020 0.000011 0.000009 -0.000030 0.000006 -0.000003 - 
0.000000 0.000000 0.0000000.000000) 
Final residual: 0.000046 
Stopping Criterion: I 
Number of function evaluations = 29 
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Data point # 4 

Perturbation I 
Initial Approximation: X = 36.668648 Y = -0.047103 Z = 3.997662 A = 51.358196 B = 137.356141 G = 105.227550 
Initial residual: 0.000109 
Converges to: X = 36.218334 Y = -0.083403 Z = 4.277666 A = 51.167434 B = 137.310236 G = 104.948090 
Final Residual: 0.000048 

Perturbation 2 
Initial Approximation: X = 36.112041 Y = 0.993055 Z = 3.576746 A = 55.09461i B = 160.524520 G = 137.590437 
Initial residual: 0.076148 
Converges to: X = 39.605505 Y = 8.247927 Z = 7.890088 A = 69.146446 B = 113.284559 0 = 147.862498 
Final Residual: 0.000489 

Perturbation 3 
Initial Approximation: X = 38.348674 Y = 0.829820 Z = 5.214604 A = 23.475013 B = 169.670529 0 = 121.921922 
Initial residual: 0.108881 
Converges to: X = 34.230655 Y = 0.448672 Z = 2.338166 A = 45.837193 B = 130.150518 G = 108.361745 
Final Residual: 0.000189 

Perturbation 4 
Initial Approximation: X = 35.180790 Y = 1.664432 Z = 2.277345 A = 61.310028 B = 118.708567 G = 96.279915 
Initial residual: 0.052686 
Converges to: X = 36.218334 Y = -0.083403 Z = 4.277666 A = 51.167434 B = 137.310237 G = 104.948088 
Final Residual: 0.000048 

Perturbation 5 
Initial Approximation: X = 35.101503 Y = 1.056265 Z = 2.748259 A = 45.592518 B = 108.182613 G = 68.372031 
Initial residual: 0.027760 
Converges to: X = 38.468645 Y = 0.892052 Z = 9.640783 A = 50.267577 B = 133.288734 G = 69.575413 
Final Residual: 0.000384 

Using perturbation NI 
Initial Approximation: X = 36.668648 Y = -0.047103 Z = 3.997662 A = 51.358196 B = 137.356141 G = 105.227550 
Initial residual: 0.000109 
Converges to: X = 36.218334 Y = -0.083403 Z = 4.277666 A = 51.167434 B = 137.310236 G = 104.948090 
Residual Vector = {-0.000002 0.000015 0.000001 -0.000015 0.000005 -0.000011 -0.000021 0.000007 0.000013 -0.000032 0.000000 -0.000000 

0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000048 
Stopping Criterion: 1 
Number of function evaluations = 29 

Data point N 5 

Perturbation I 
Initial Approximation: X = 36.218334 Y = -0.083403 Z = 4.277666 A = 51.167434 B = 137.310236 G = 104.948090 
Initial residual: 0.000098 
Converges to: X = 35.716702 Y = -0.061861 Z = 4.420974 A = 50.674170 B = 136.917108 G = 104.765087 
Final Residual: 0.000049 

Perturbation 2 
Initial Approximation: X = 34.377769 Y = 0.581834 Z = 3.620795 A = 66.708602 B = 139.662095 G = 119.483150 
Initial residual: 0.002193 
Converges to: X = 39.566994 Y = 5.707361 Z = 8.275620 A = 68.362145 B = 126.156165 G = 135.930994 
Final Residual: 0.000591 

Perturbation 3 
Initial Approximation: X = 37.750739 Y = 1.049137 Z = 4.233376 A = 62.109720 B = 132.812433 G = 119.782143 
Initial residual: 0.007279 
Converges to: X = 34.244575 Y = 0.347327 Z = 2.998091 A = 47.023262 B = 131.550423 G = 107.985781 
Final Residual: 0.000150 

Perturbation 4 
Initial Approximation: X = 35.130177 Y = 0.8033.18 Z = 3.867005 A = 23.872344 B = 135.802979 G = 91.992564 
Initial residual: 0.035157 
Converges to: X = 34.245164 Y = 0.347081 Z = 2.997889 A = 47.029416 B = 131.555577 0 = 107.987582 
Final Residual: 0.000150 

Perturbation 5 
Initial Approximation: X = 37.252708 Y = 1.590135 Z = 2.865276 A = 64.236404 B = 137.617269 G = 128.575294 
Initial residual: 0.012356 
Converges to: X = 34.555634 Y = 0.241205 Z = 2.959989 A = 48.544718 B = 132.495417 G = 109.028817 
Final Residual: 0.000182 

Using perturbation #1  
Initial Approximation: X = 36.218334 Y = -0.083403 Z = 4.277666 A = 51.167434 B = 137.310236 G = 104.948090 
Initial residual: 0.000098 
Converges to: X = 35.716702 Y = -0.061861 Z = 4.420974 A = 50.674170 B = 136.917108 G = 104.765087 
Residual Vector = {-0.000004 0.000014 -0.000000 -0.000012 0.000009 -0.000011 -0.000026 0.000011 0.000014 -0.000030 0.000000 -0.000001 - 

0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000049 
Stopping Criterion: 2 
Number of function evaluations = 29 
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Data point ti 6 

Perturbation 1 
Initial Approximation: X = 35.716702 Y = -0.061861 Z = 4.420974 A = 50.674170 B = 136.917108 G = 104.765087 
Initial residual: 0.000105 
Converges to: X = 35.268141 Y = M.082089 Z = 4.630406 A = 50.590972 B = 136.772620 G = 104.891581 
Final Residual: 0.000052 

Perturbation 2 
Initial Approximation: X = 36.278215 Y = 1.689662 Z = 4.548290 A = 64.984458 B = 108.036329 G = 93.094944 
Initial residual: 0.072245 
Converges to: X = 36.246556 Y = -4.551166 Z = -6.548164 A = 91.964217 B = 164.911924 G = 104.969124 
Final Residual: 0.001280 

Perturbation 3 
Initial. Approximation: X = 35.107924 Y = 0.895694 Z = 4.703185 A = 62.865523 B = 113.066946 G = 109.630008 
Initial residual: 0.052565 
Converges to: X = 34.279091 Y = 0.180200 Z = 3.687986 A = 48.333283 B = 133.191956 G = 107.415701 
Final Residual: 0.000115 

Perturbation 4 
Initial Approximation: X = 35.447468 Y = 0.682262 Z. = 3.786572 A = 69.978660 B = 147.677143 G = 134.377267 
Initial residual: 0.032058 
Converges to: X = 39.939809 Y = 6.676893 Z = 8.922292 A = 67.240708 B = 125.249923 G = 135.999159 
Final Residual: 0.000586 

Perturbation 5 
Initial Approximation: X = 35.305672 Y = 0.706197 Z = 4.890851 A = 13.177537 B = 160.534447 G = 89.719531 
Initial residual: 0.083709 
Converges to: X = 22.236821 Y = 0.056122 Z = 4.143176 A = 101.219680 B = 135.907379 G = 132.035667 
Final Residual: 0.001373 

Using perturbation #1 
Initial Approximation: X = 35.716702 Y = -0.061861 Z = 4.420974 A = 50.674170 B = 136.917108 G = 104.765087 
Initial residual: 0.000105 
Converges to: X = 35.268141 Y = -0.082089 Z = 4.630406 A = 50.590972 B = 136.772620 G = 104.891581 
Residual Vector = {-0.000006 0.000012 maw -0.000014 0.000000 -0.000007 -0.000026 0.000014 0.000012 -0.000034 0.000009 0.000006 0.000000 
0.000000 0.000000 0.000000} 
Final residual: 0.000052 
Stopping Criterion: 2 
Number of function evaluations = 29 

Data point 5 7 

Perturbation I 
Initial Approximation: X = 35.268141 Y = -0.082089 Z = 4.630406 A = 50.590972 B = 136.772620 G = 104.891581 
Initial residual: 0.000088 
Converges to: X = 34.847595 Y = -0.083500 1 = 4.777967 A = 50.177102 B = 136.353388 G = 104.915771 
Final Residual: 0.000056 

Perturbation 2 
Initial Approximation: X = 36.346384 Y = -0.120804 Z = 5.035561 A = 80.008988 B = 109.232567 G = 100.682378 
Initial residual: 0.082714 
Converges to: X = 44.660734 Y = -9.746835 Z = -3.112202 A = 77.596824 B = 145.612461 G = 121.497069 
Final Residual: 0.001158 

Perturbation 3 
Initial Approximation: X = 34.019133 Y = 1.276694 Z = 6.125735 A = 58.393278 B = 117.038651 G = 107.007720 
Initial residual: 0.043314 
Converges to: X = 34.847595 Y = -0.083501 Z = 4.777964 A = 50.177105 B = 136.353387 G = 104.915779 
Final Residual: 0.000056 

Perturbation 4 
Initial Approximation: X = 35.182704 Y = 0.101768 Z = 3.500607 A = 59.800031 13 = 128.442824 G = 68.191059 
Initial residual: 0.022292 
Converges to: X = 37.392609 Y = 1.680255 Z = 13.041259 A = 57.904161 B = 129.160515 G = 55.602531 
Final Residual: 0.000388 

Perturbation 5 
Initial Approximation: X = 33.866138 Y = 1.263452 Z = 6.161522 A = 26.375812 B = 169.408032 G = 91.767947 
Initial residual: 0.076985 
Converges to: X = 34.234309 Y = 0.084939 Z = 4.209655 A = 48.851425 13 = 134.149660 G = 106.625043 
Final Residual: 0.000087 

Using perturbation NI 
Initial Approximation: X = 35.268141 Y = -0.082089 Z = 4.630406 A = 50.590972 B = 136.772620 G = 104.891581 
Initial residual: 0.000088 
Converges to: X = 34.847595 Y = -0.083500 Z = 4.777967 A = 50.177102 B = 136.353388 G = 104.915771 
Residual Vector = {-0.000010 0.000010 -0.000001 -0.000011 0.000001 -0.000005 -0.0000290.000013 0.000012 -0.000036 0.000015 0.000008 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000056 
Stopping Criterion: 2 
Number of function evaluations = 29 
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Data point 8 8 

Perturbation 1 
Initial Approximation: X = 34.847595 Y = -0.083500 Z = 4.777967 A = 50.177102 13 = 136.353388 G = 104.915771 
Initial residual: 0.000098 
Converges to: X = 34.473929 Y = -0.122405 Z = 4.982405 A = 50.444470 B = 136.677171 G = 104.793598 
Final Residual: 0.000063 

Perturbation 2 
Initial Approximation: X = 35.950343 Y = 0.713743 2 = 3.648734 A = 37.636297 13= 124.914348 G = 79.546635 
Initial residual: 0.001918 
Converges to: X = 35.205755 Y = 0.482034 Z = 10.359570 A = 39.416397 B = 127.411761 G = 79.377653 
Final Residual: 0.000695 

Perturbation 3 
Initial Approximation: X = 33.396374 Y = 1.123805 Z = 6.008480 A = 30.650881 B = 119.622154 G = 87.721093 
Initial residual: 0.001609 
Converges to: X = 33.066984 Y = 0.820215 Z = 8.964241 A = 46.935913 B = 135.951425 G = 97.526769 
Final Residual: 0.000071 

Perturbation 4 
Initial Approximation: X = 35.162200 Y = 0.746282 Z = 4.230430 A = 87.904238 B = 117.62505 G = 93.312036 
Initial residual: 0.078049 
Converges to: X = 158.581119 Y = -17.557882 Z = 176.557303 A = 87.072453 B = 154.122405 G = 115.698796 
Final Residual: 0.001941 

Perturbation 5 
Initial Approximation: X = 34.432221 Y = 1.368940 2 = 3.793115 A = 82.574201 B = 162.906552 G = 86.592209 
Initial residual: 0.006775 
Converges to: X = 34.312583 Y = 6.875066 Z = -0.542321 A = 88.243714 B = 168.519299 0 = 78.586101 
Final Residual: 0.000609 

Using perturbation #1 
Initial Approximation: X = 34.847595 Y = -0.083500 Z = 4.777967 A = 50.177102 B = 136.353388 G = 104.915771 
Initial residual: 0.000098 
Converges to: X = 34.473929 Y = -0.122405 Z = 4.982405 A = 50.411470 B = 136.677171 G = 104.793598 
Residual Vector = {-0.000012 0.000011 -0.000001 -0.000017 0.000007 -0.000013 -0.000032 0.000007 0.000022 -0.000036 0.000014 0.000007 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000063 
Stopping Criterion: 2 
Number of function evaluations = 29 

Data point # 9 

Perturbation 1 
Initial Approximation: X = 34.473929 Y = -0.122405 Z = 4.982405 A = 50.444470 B = 136.677171 G = 104.793598 
Initial residual: 0.000101 
Converges to: X = 34.250097 Y = -0.212657 Z = 5.267357 A = 50.864261 B = 137.430168 G = 104.090935 
Final Residual: 0.000082 

Perturbation 2 
Initial Approximation: X = 32.876044 Y = 1.471851 Z = 6.266812 A = 50.478408 B = 145.140038 G = 78.090278 
Initial residual: 0.012125 
Converges to: X = 36.847627 Y = -1.185873 Z = 13.670440 A = 47.687282 B = 126.737551 0 = 63.891135 
Final Residual: 0.000817 

Perturbation 3 
Initial Approximation: X = 34.049052 Y = 0.720811 Z = 4.197022 A = 55.503173 B = 152.037411 G = 114.756792 
Initial residual: 0.027632 
Converges to: X = 33.764518 Y = -0.069647 Z = 4.861186 A = 49.945599 B = 135.810953 G = 105.535633 
Final Residual: 0.000069 

Perturbation 4 
Initial Approximation: X = 34.143097 Y = 1.104905 2 = 4.856800 A = 44.710517 B = 125.113518 G = 86.398462 
Initial residual: 0.016035 
Converges to: X = 34.250097 Y = -0.212657 Z = 5.267357 A = 50.864261 B = 137.430168 G = 104.090934 
Final Residual: 0.000082 

Perturbation 5 
Initial Approximation: X = 34.038628 Y = 1.524103 Z = 4.953365 A = 18.555141 3 = 169.819584 G = 107.082671 
Initial residual: 0.095385 
Converges to: X = 35.586282 Y = -0.775379 Z = 3.774010 A = 57.183435 13 = 137.835406 G = 113.487862 
Final Residual: 0.000341 

Using perturbation #3 
Initial Approximation: X = 34.049052 Y = 0.720811 Z = 4.197022 A = 55.503173 B = 152.037411 G = 114.756792 
Initial residual: 0.027632 
Converges to: X = 33.764518 Y = -0.069647 Z = 4.861186 A = 49.945599 B = 135.810953 G = 105.535633 
Residual Vector = {-0.000028 0.000015 -0.000011 -0.000005 -0.000004 -0.000011 -0.000028 0.000014 0.000009 -0.000036 0.000022 0.000022 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000069 
Stopping Criterion: I 
Number of function evaluations = 36 
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Data point # 10 

Perturbation 1 
Initial Approximation: X = 33.764518 Y = -0.069647 Z = 4.861186 A = 49.945599 B = 135.810953 G = 105.535633 
Initial residual: 0.000089 
Converges to: X = 33.389392 Y = -0.063440 Z = 5.014358 A = 49.808383 13 = 135.723972 G = 105.441828 
Final Residual: 0.000069 

Perturbation 2 
Initial Approximation: X = 33.142973 Y = 1.173207 Z = 4.153550 A = 60.337983 B = 162.343184 0 = 116.642004 
Initial residual: 0.035408 
Converges to: X = 33.389368 Y = -0.063423 2 = 5.014428 A = 49.808339 B = 135.723976 G = 105441732 
Final Residual: 0.000069 

Perturbation 3 
Initial Approximation: X = 31.572614 Y = 1.356979 Z = 5.927553 A = 51.317481 B = 132.668645 G = 106.199869 
Initial residual: 0.007224 
Converges to: X = 33.389322 Y = -0.063392 1 = 5.014598 A = 49.808262 B = 135.724007 G = 105.441516 
Final Residual: 0.000069 

Perturbation 4 
Initial Approximation: X = 34.814270 Y = 1.100721 Z = 4.620032 A = 18.785499 B = 157.446089 G = 89.424726 
Initial residual: 0.074940 
Converges to: X = 33.389554 Y = -0.063551 Z = 5.013787 A = 49.808665 13 = 135.723884 G = 105.442568 
Final Residual: 0.000069 

Perturbation 5 
Initial Approximation: X = 34.221089 Y = 0.080454 Z = 3.247552 A = 78.263701 B = 118.375962 G = 131.084489 
Initial residual: 0.030115 
Converges to: X = 36.197710 Y = 1.678933 Z = 7.323136 A = 69.067644 B = 143.137388 G = 118.810357 
Final Residual: 0.000595 

Using perturbation 111 
Initial Approximation: X = 33.764518 Y = -0.069647 Z = 4.861186 A = 49.945599 B = 135.810953 G = 105.535633 
Initial residual: 0.000089 
Converges to: X = 33.389392 Y = -0.063440 Z = 5.014358 A = 49.808383 B = 135.723972 0 = 105441828 
Residual Vector = {-0.000028 0.000013 -0.000010 -0.000005 -0.000004 -0.000010 -0.000030 0.000011 0.000010 -0.000038 0.000019 0.000023 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000069 
Stopping Criterion: 1 
Number of function evaluations = 29 

Data point # 11 

Perturbation 1 
Initial Approximation: X = 33.389392 Y = -0.063440 Z = 5.014358 A = 49.808383 13 = 135.723972 G = 105.441828 
Initial residual: 0.000108 
Converges to: X = 32.897622 Y = -0.057870 Z = 5.170986 A = 49.911396 13 = 135.796474 G = 105.498324 
Final Residual: 0.000074 

Perturbation 2 
Initial Approximation: X = 33.096633 Y = 1.078201 Z = 5.734166 A = 65.627404 B = 160.494297 G = 107.267054 
Initial residual: 0.014708 
Converges to: X = 32.897638 Y = -0.057881 Z = 5.170940 A =49.911423 13 = 135.796474 G = 105.498378 
Final Residual: 0.000074 

Perturbation 3 
Initial Approximation: X = 34.199294 Y = 1.273159 Z = 3.516282 A = 61.877890 B = 150.488093 0 = 127.321154 
Initial residual: 0.034720 
Converges to: X = 35.270521 Y = 1.135324 Z = 6.781768 A = 67.693807 B = 142.455291 0 = 118.472637 
Final Residual: 0.000580 

Perturbation 4 
Initial Approximation: X = 31.685994 Y = 1.119820 Z = 3.864925 A = 50.628917 B = 145.849911 G = 102.521737 
Initial residual: 0.013432 
Converges to: X = 32.897673 Y = A.057905 Z = 5.170842 A = 49.911484 B = 135.796476 G = 105.498492 
Final Residual: 0.000074 

Perturbation 5 
Initial Approximation: X = 34.491246 Y = 1.037145 Z= 2.650819 A = 74.149924 B = 126.246185 G = 80.021378 
Initial residual: 0.054595 
Converges to: X = 32.897621 Y = -0.057869 Z= 5.170990 A = 49.911393 B = 135.796474 G = 105.498319 
Final Residual: 0.000074 

Using perturbation #4 
initial Approximation: X = 31.685994 Y = 1.119820 Z= 3.864925 A = 50.628917 13= 145.849911 G = 102.521737 
Initial residual: 0.013432 
Converges to: X = 32.897673 Y = -0.057905 Z = 5.170842 A = 49.911484 B = 135.796476 G = 105.498492 
Residual Vector = {-0.000030 0.000011 -0.000009 -0.000008 -0.000003 -0.000011 -0.000032 0.000014 0.000012 -0.000038 0.000022 0.000026 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000074 
Stopping Criterion: 1 
Number of function evaluations = 43 

107 



Data point # 12 

Perturbation I 
Initial Approximation: X = 32.897673 Y = -0.057905 Z = 5.170842 A = 49.911484 B = 135.796476 0 = 105.498492 
Initial residual: 0.000107 
Converges to: X = 32.469367 Y = -0.069411 Z = 5.414956 A = 50.201237 B = 136.139506 G = 105.386285 
Final Residual: 0.000082 

Perturbation 2 
Initial Approximation: X = 31.698357 Y = 1.080274 Z = 5.581645 A = 15.689997 B = 121.666148 G = 88.394615 
Initial residual: 0.020348 
Converges to: X = 42.552403 Y = -12.171663 Z = 8.148381 A = 37.278929 13 = 122.033777 G = 72.993045 
Final Residual: 0.000814 

Perturbation 3 
Initial Approximation: X = 34.473717 Y =0.713008 Z = 3.795671 A = 60.729919 B = 163.184588 0 = 106.559836 
Initial residual: 0.023665 
Converges to: X = 32.469598 Y = -0.069574 Z = 5.414357 A = 50.201632 B = 136.139576 G = 105.386913 
Final Residual: 0.000082 

Perturbation 4 
Initial Approximation: X = 34.761909 Y = 0.732407 Z = 5.552633 A = 50.426846 B = 127.379139 G = 114.323346 
Initial residual: 0.005617 
Converges to: X = 32.469166 Y = -0.069269 Z = 5.415477 A = 50.200893 B = 136.139444 G = 105.385739 
Final Residual: 0.000082 

Perturbation 5 
Initial Approximation: X = 31.542571 Y = 0.960324 Z = 2.815461 A = 36.381705 B = 137.285172 G = 107.860880 
Initial residual: 0.028211 
Converges to: X = 32.469711 Y = -0.069654 Z = 5.414064 A = 50.201826 B = 136.139611 G = 105.387220 
Final Residual: 0.000082 

Using perturbation 43 
Initial Approximation: X = 34.473717 Y = 0.713008 Z = 3.795671 A = 60.729919 B = 163.184588 G = 106.559836 
Initial residual: 0.023665 
Converges to: X = 32.469598 Y = -0.069574 Z = 5.414357 A = 50.201632 B = 136.139576 G = 105.386913 
Residual Vector = {-0.000032 0.000016 -0.000008 -0.000007 -0.000007 -0.000016.0.000036 0.000014 0.000010 -0.000040 0.000022 0.000032 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000082 
Stopping Criterion: 1 
Number of function evaluations = 57 

Data point # 13 

Perturbation 1 
Initial Approximation: X = 32.469598 Y = -0.069574 Z. = 5.414357 A = 50.201632 13= 136.139576 G = 105.386913 
Initial residual: 0.000114 
Converges to: X = 32.013209 Y = -0.107699 Z = 5.411770 A = 50.229541 B = 136.041906 G = 105.629581 
Final Residual: 0.000088 

Perturbation 2 
Initial Approximation: X = 34.170640 Y = 1.609376 Z = 5.262448 A = 33.078144 B = 157.639752 G = 126.722555 
Initial residual: 0.091501 
Converges to: X = 32.013309 Y = -0.107772 Z = 5.411514 A = 50.229700 B = 136.041951 G = 105.629796 
Final Residual: 0.000088 

Perturbation 3 
Initial Approximation: X = 3/290979 Y = 1.128041 Z = 5.873549 A = 33.289142 B = 134.704886 G = 70.881465 
Initial residual: 0.030115 
Converges to: X = 36.500872 Y = -5.232040 Z = 14.127563 A = 51.062986 B = 135.717512 G = 72.234131 
Final Residual: 0.000802 

Perturbation 4 
Initial Approximation: X = 34.058977 Y = -0.329744 Z = 4.926636 A = 74.258890 B = 134.597978 G = 121.863126 
Initial residual: 0.015491 
Converges to: X = 33.871999 Y = 0.510741 Z = 6.189309 A = 65.970164 B = 141.713021 G = 117.839172 
Final Residual: 0.000553 

Perturbation 5 
Initial Approximation: X = 34.032077 Y = 0.880014 Z = 3.952650 A = 65.664971 13 = 137.016098 G = 119.263837 
Initial residual: 0.005646 
Converges to: X = 31882645 Y = 0.506140 Z = 6.179267 A = 65.978531 13 = 141.700291 G = 117.861728 
Final Residual: 0.000553 

Using perturbation #1  
Initial Approximation: X = 32.469598 Y = -0.069574 Z = 5.414357 A = 50.201632 B = 136.139576 G = 105.386913 
Initial residual: 0.000114 
Converges to: X = 32.013209 Y = -0.107699 Z = 5.411770 A = 50.229541 B = 136.041906 G = 105.629581 
Residual Vector = {-0.000038 0.000010 -0.000010 -0.000006 -0.000008 -0.000022 -0.000034 0.000013 0.000010 4000040 0.000024 0.000038 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000088 
Stopping Criterion: 1 
Number of function evaluations = 36 
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Data point 8 14 

Perturbation I 
Initial Approximation: X = 32.013209 Y = -0.107699 Z = 5.411770 A = 50.229541 B = 136.041906 G = 105.629581 
Initial residual: 0.000106 
Converges to: X = 31.567366 Y = -0.086868 Z = 5.557476 A = 49.868630 B = 135.734270 G = 105.537119 
Final Residual: 0.000091 

Perturbation 2 
Initial Approximation: X = 31.890262 Y = 1.380257 Z = 5.013749 A = 40.118694 B = 105.281081 G = 136.191617 
Initial residual: 0.017551 
Converges to: X = 33.870811 Y = -1.187400 Z = 3.569387 A = 49.658942 B = 126.484192 0 = 118.653984 
Final Residual: 0.000584 

Perturbation 3 
Initial Approximation: X = 33.571246 Y = 0.949469 Z = 7.211216 A = 79.373913 B = 129.852437 G = 88.461850 
Initial residual: 0.055477 
Converges to: X = 36.807691 Y = -7.192644 Z = 14.675249 A = 57.705294 B = 147.508680 G = 86.159879 
Final Residual: 0.001297 

Perturbation 4 
Initial Approximation: X = 32.734133 Y = 1.223507 Z = 5.134473 A = 43.744925 B = 116.633165 G = 115.24877I 
Initial residual: 0.009541 
Converges to: X = 31.217467 Y = 0.198597 Z = 6.397609 A = 49.384315 B = 135.565205 G = 104.929628 
Final Residual: 0.000090 

Perturbation 5 
Initial Approximation: X = 31.857681 Y = 1.959145 2= 5.220781 A = 32.253626 B = 155.662207 G = 104.896225 
Initial residual: 0.061150 
Converges to: X = 31.575464 Y = -0.093179 Z = 5.537932 A =49.880818 B = 135.739017 G = 105.551227 
Final Residual: 0.000091 

Using perturbation #4  
Initial Approximation: X = 32.734133 Y = 1.223507 Z = 5.134473 A = 43.744925 B = 116.633165 G = 115.248771 
Initial residual: 0.009541 
Converges to: X = 30.685827 Y = 0.651336 Z = 7.813586 A = 48.486932 B = 135.173213 G = 103.897066 
Residual Vector = {-0.000027 0.000015 -0.000009 0.000006 -0.000005 -0.000030 -0.000036 0.000016 -0.000005 -0.000045 0.000020 0.000024 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000081 
Stopping Criterion: I 
Number of function evaluations = 92 

Data point # 15 

Perturbation 1 
Initial Approximation: X = 30.685827 Y = 0.651336 Z = 7.813586 A = 48.486932 B = 135.173213 G = 103.897066 
Initial residual: 0.000099 
Converges to: X = 30.358927 Y = 0.594910 Z = 7.743632 A = 48.435673 B = 134.911409 G = 104.342836 
Final Residual: 0.000082 

Perturbation 2 
Initial Approximation: X = 31.495608 Y = 2.279076 Z = 6.244488 A = 5.449682 B = 129.399815 G = 80.922522 
Initial residual: 0.041894 
Converges to: X = 33.912584 Y = -5.183422 Z = 13.557586 A = 99.558605 B = 170.731946 G = 92.068718 
Final Residual: 0.001095 

Perturbation 3 
Initial Approximation: X = 29.764101 Y = 2.611793 Z = 8.506663 A = 70.180969 B = 161.563509 G = 105.345193 
Initial residual: 0.008540 
Converges to: X = 28.984207 Y = 2.657358 Z = 10.149550 A = 59.497159 B = 140.739239 G = 112.208641 
Final Residual: 0.000482 

Perturbation 4 
Initial Approximation: X = 30.915194 Y = 2.699895 Z = 8.878138 A = 13.156284 B = 127.076410 G = 108.394089 
Initial residual: 0.041131 
Converges to: X = 28.922721 Y = 2.598270 Z = 10.090583 A = 59.347663 13 = 140.504044 G = 112.350801 
Final Residual: 0.000482 

Perturbation 5 
Initial Approximation: X = 29.681208 Y = 0.668730 Z = 8.770771 A = 29.748387 B = 146.350577 G = 95.816120 
Initial residual: 0.045706 
Converges to: X = 30.358871 Y = 0.594962 Z = 7.743755 A= 48.435588 B = 134.911356 G = 104.342769 
Final Residual: 0.000082 

Using perturbation WI 
Initial Approximation: X = 30.685827 Y = 0.651336 Z = 7.813586 A = 48.486932 B = 135,173213 G = 103.897066 
Initial residual: 0.000099 
Converges to: X = 30.358927 Y = 0.594910 Z = 7.743632 A = 48.435673 B = 134.911409 G = 104.342836 
Residual Vector = {-0.000028 0.000010 -0.000008 0.000002 -0.000006 -0.000030 -0.000039 0.000014 -0.000003 -0.000044 0.000022 0.000027 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000082 
Stopping Criterion: 3 
Number of function evaluations = 36 
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Data point # 16 

Perturbation 1 
Initial Approximation: X = 30.358927 Y = 0.594910 Z = 7.743632 A = 48.435673 13= 134.911409 G = 104.342836 
Initial residual: 0.000116 
Converges to: X = 29.920381 Y = 0.563124 Z = 7.722089 A = 48.465388 B = 134.702400 G = 104.832097 
Final Residual: 0.000095 

Perturbation 2 
Initial Approximation: X = 32.394277 Y = 1.579433 Z = 9.955299 A = 72.752838 B = 134.198809 G = 83.429380 
Initial residual: 0.041313 
Converges to: X = 27.141212 Y = 3.738833 Z = 10.450107 A = 44.759809 B = 133.868177 G = 97.167422 
Final Residual: 0.000458 

Perturbation 3 
Initial Approximation: X = 29.011392 Y = 0.176144 Z = 8.773039 A = 21.388998 B = 96.879366 G = 111.142707 
Initial residual: 0.001536 
Converges to: X = 32.071366 Y = -9.585694 Z = 11.590443 A = 8.845134 B = 98.185098 G = 94.533229 
Final Residual: 0.000873 

Perturbation 4 
Initial Approximation: X = 31.456081 Y = 0.173623 Z = 7.221543 A = 25.640610 B = 130.554762 G = 106.155038 
Initial residual: 0.031296 
Converges to: X = 29.920254 Y = 0.563244 Z = 7.722277 A = 48.465255 13 = 134.702296 G = 104.832042 
Final Residual: 0.000095 

Perturbation 5 
Initial Approximation: X = 30.539882 Y = 2.117751 Z = 5.830805 A = 11.967674 B = 147.974567 G = 78.874168 
Initial residual: 0.071314 
Converges to: X = 34.243027 Y = -15.001191 Z = 13.571390 A = 97.978146 B = 187.861763 G = 88.133151 
Final Residual: 0.000819 

Using perturbation MI 
Initial Approximation: X = 30.358927 Y = 0.594910 Z = 7.743632 A = 48.435673 B = 134.911409 G = 104.342836 
Initial residual: 0.000116 
Converges to: X = 29.920381 Y = 0.563124 Z = 7.722089 A = 48.465388 B = 134.702400 G = 104.832097 
Residual Vector = {-0.000035 0.000010 -0.000010  0.000003 -0.000005 -0.000038 -0.000041 0.000016 -0.000003 -0.000047 0.000026 0.0000033 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000095 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point N 17 

Perturbation 1 
Initial Approximation: X = 29.920381 Y = 0.563124 Z = 7.722089 A = 48.465388 B = 134.702400 G = 104.832097 
Initial residual: 0.000114 
Converges to: X = 29.542003 Y = 0.464155 Z = 7.637686 A = 48.705968 B = 134.910523 G = 104.893771 
Final Residual: 0.000092 

Perturbation 2 
Initial Approximation: X = 31.338139 Y = 0.761704 Z = 6.026905 A = 21.199953 B = 158.854545 0 = 95.045900 
Initial residual: 0.074689 
Converges to: X = 36.529689 Y = -5.336388 Z = 13.479173 A = 53.227863 B = 133.090724 G = 65.130249 
Final Residual: 0.000807 

Perturbation 3 
Initial Approximation: X = 30.956071 Y = 0.276540 Z= 9.345094 A = 39.547045 B = 116.031468 G = 104.953700 
Initial residual: 0.014633 
Converges to: X = 29.541909 Y = 0.464244 Z = 7.637877 A = 48.705863 B = 134.910449 G = 104.893711 
Final Residual: 0.000092 

Perturbation 4 
Initial Approximation: X = 31.470591 Y = 0.831862 Z = 7.093911 A =49.529936 B = 169.064684 G = 121.793065 
Initial residual: 0.066291 
Converges to: X = 29.541237 Y = 0.464873 Z = 7.639814 A = 48.704825 B = 134.909812 G = 104.892901 
Final Residual: 0.000092 

Perturbation 5 
Initial Approximation: X = 28.970643 Y = 2.490204 Z = 7.349961 A = 31.351931 B = 147.132010 G = 102.108697 
Initial residual: 0.047882 
Converges to: X = 29.542022 Y = 0.464138 Z = 7.637641 A = 48.705993 B = 13-4.910539 G = 104.893788 
Final Residual: 0.000092 

Using perturbation N5 
Initial Approximation: X = 28.970643 Y = 2.490204 Z = 7.349961 A = 31.351931 B = 147.132010 G = 102.108697 
Initial residual: 0.047882 
Converges to: X = 29.542022 Y = 0.464138 Z = 7.637641 A = 48.705993 B = 134.910539 G = 104.893788 
Residual Vector = {-0.000037 0.000009 -0.000010 0.000003 -0.000003 -0.000035 -0.000038 0.000015 0.000000 -0.000052 0.000018 0.000032 - 
0.000000 0.000000 0000000 0.000000} 
Final residual: 0.000092 
Stopping Criterion: I 
Number of function evaluations = 36 
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Data point 8 18 

Perturbation 1 
Initial Approximation: X = 29.542022 Y = 0.464138 Z = 7.637641 A = 48.705993 B = 134.910539 G = 104.893788 
Initial residual: 0.000125 
Converges to: X = 29.139873 Y = 0.375497 Z = 7.624506 A = 49.281172 B = 135.381205 G = 105.091741 
Final Residual: 0.000104 

Perturbation 2 
Initial Approximation: X = 31.166139 Y = 1.425915 Z = 8.399163 A = 45.390265 B = 102.036892 G = 128.376300 
Initial residual: 0.007899 
Converges to: X = 27.421234 Y = 1.808173 1 = 9.457793 A = 59.846954 B = 139.559581 G = 114.231503 
Final Residual: 0.000485 

Perturbation 3 
Initial Approximation: X = 31.107908 Y = 1.156919 Z = 8.788539 A = 79.371570 B = 116.956802 G = 84.361354 
Initial residual: 0.075095 
Converges to: X = 34606216 Y = .16.894132 Z = 8.125974 A = 47.183484 B = 133.512739 G = 255.344149 
Final Residual: 0.001034 

Perturbation 4 
Initial Approximation: X = 30.021906 Y = 1.941021 Z = 6.385301 A = 13.813349 B = 98.929805 G = 67.453004 
Initial residual: 0.011532 
Converges to: X = 33.512076 Y = 1.454402 	= 16.697233 A = 16.277728 B = 95.241318 G = 74.630681 
Final Residual: 0.001260 

Perturbation 5 
Initial Approximation: X = 30.703879 Y = 1.424360 Z = 6.021668 A = 30.845673 B = 141.551019 G = 102.001673 
Initial residual: 0.039376 
Converges to: X = 29.939320 Y = -0.309491 Z = 5.490056 A = 50.174363 B = 136.064244 G = 105.481232 
Final Residual: 0.000117 

Using perturbation 
Initial Approximation: X = 29.542022 Y = 0.464138 Z = 7.637641 A = 48.705993 B = 134.910539 G = 104.893788 
Initial residual: 0.000125 
Converges to: X = 29.139873 Y = 0.375497 Z = 7.624506 A = 49.281172 B = 135.381205 G = 105.091741 
Residual Vector = {-0.000042 0.000009 -0.000008 0.000003 -0.000006 -0.000041 -0.000043 0.000017 0.000000 -0.000056 0.000013 0.000040 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000104 
Stopping Criterion: 
Number of function evaluations = 29 

Data point it 19 

Perturbation 1 
Initial Approximation: X = 29.139873 Y = 0.375497 Z = 7.624506 A =49.281172 B = 135.381205 G = 105.091741 
Initial residual: 0.000125 
Converges to: X = 28.724219 Y = 0.332444 Z = 7.649836 A = 49.395790 B = 135.240224 0 = 105.590055 
Final Residual: 0.000107 

Perturbation 2 
Initial Approximation: X = 28.191905 Y = 0.876015 Z = 6.148831 A = 26.080328 B = 164.584755 G = 140.854835 
Initial residual: 0.133763 
Converges to: X = 27.007337 Y = 1.596521 Z = 9.275433 A = 59.900087 B = 139.077033 0 = 114.923050 
Final Residual: 0.000478 

Perturbation 3 
Initial Approximation: X = 30.626427 Y = 1.612934 Z = 6.363988 A = 58.139972 B = 107.630123 G = 126.521341 
Initial residual: 0.027563 
Converges to: X = 28.724208 Y = 0.332455 Z = 7.650068 A = 49.395650 B = 135.240141 G = 105.589943 
Final Residual: 0.000107 

Perturbation 4 
Initial Approximation: X = 30.573207 Y = 0.905877 Z = 6.132101 A = 72.934410 B = 146.193159 G = 96.472796 
Initial residual: 0.021094 
Converges to: X = 34.721278 Y = -6.957283 Z = -1.028409 A = 55.478164 B = 141.156228 G = 105.595412 
Final Residual: 0.000799 

Perturbation 5 
Initial Approximation: X = 27.472566 Y = 2.287878 Z = 9.918193 A = 69.053057 B = 120.793757 G = 104.751753 
Initial residual: 0.054532 
Converges to: X = 26.995767 Y = 1.601700 Z = 9.274389 A = 59.907530 B = 139.074395 G = 114.934834 
Final Residual: 0.000478 

Using perturbation #1 
Initial Approximation: X = 29.139873 Y = 0.375497 Z = 7.624506 A =49.281172 B = 135.381205 G = 105.091741 
Initial residual: 0.000125 
Converges to: X = 28.724219 Y = 0.332444 Z = 7.649836 A = 49.395790 B = 135.240224 G = 105.590055 
Residual Vector = {-0.000044 0.000007 -0.000006 0.000002 -0.000008 -0.000044 -0.000045 0.0000140.000001 -0.000356 0.000015 0.000044 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000107 
Stopping Criterion: 1 
Number of function evaluations = 36 
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Data point if 20 

Perturbation I 
Initial Approximation: X = 28.724219 Y = 0.332444 Z = 7.649836 A = 49.395790 B = 135.240224 G = 105.590055 
Initial residual: 0.000126 
Converges to: X = 28.305640 Y = 0.315588 Z = 7.673011 A = 49.148168 B = 134.876773 G = 105.817578 
Final Residual: 0.000109 

Perturbation 2 
Initial Approximation: X = 27.394774 Y = 1.422468 Z = 6.769254 A = 78.139009 B = 135.002128 G = 78.719008 
Initial residual: 0.041966 
Converges to: X =41.254458 Y = -5.146055 Z = -0.852346 A = 68.774845 B = 158.122802 G = 83.615410 
Final Residual:  0.001422 

Perturbation 3 
Initial Approximation: X = 28.887127 Y = 1.273514 Z = 5.525826 A = 38.516345 B = 140.025736 G =97.364398 
Initial residual: 0.021598 
Converges to: X = 29.363495 Y = -0.615569 Z = 4.817605 A = 50.106052 B = 135.968238 G = 105.536812 
Final Residual: 0.000130 

Perturbation 4 
Initial Approximation: X = 30.045758 Y = 1.563487 Z = 6.886181 A = 51.332488 B = 115.198840 0 =94.482169 
Initial residual: 0.042230 
Converges to: X = 28.305470 Y = 0.315746 Z = 7.673221 A = 49.148150 B = 134.876729 G = 105.817628 
Final Residual: 0.000109 

Perturbation 5 
Initial Approximation: X = 29.932080 Y = 1.065151 Z = 9.302002 A = 53.814654 B = 143.861131 G = 107.993065 
Initial residual: 0.009629 
Converges to: X = 28.305286 Y = 0.315918 Z = 7.673496 A = 49.148097 B = 134.876660 G = 105.817660 
Final Residual: 0.000109 

Using perturbation #1 
Initial Approximation: X = 28.724219 Y = 0.332444 Z = 7.649836 A = 49.395790 B = 135.240224 G = 105.590055 
Initial residual: 0.000126 
Converges to: X = 28.305640 Y = 0.315588 Z = 7.673011 A = 49.148168 B = 134.876773 G = 105.817578 
Residual Vector = {-0.000046 0.000007 -0.000004 0.000003 -0.000008 -0.000045 -0.000043 0.000014 0.000002 -0.000058 0.000007 0.000047 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000109 
Stopping Criterion: I 
Number of function evaluations = 36 

Data point # 21 

Perturbation 1 
Initial Approximation: X = 28.305640 Y = 0.315588 Z = 7.673011 A = 49.148168 B = 134.876773 G = 105.817578 
Initial residual: 0.000132 
Converges to: X = 27.879039 Y = 0.292610 Z = 7.709786 A = 49.197567 B = 135.052583 G = 105.573857 
Final Residual: 0.000114 

Perturbation 2 
Initial Approximation: X = 28.708958 Y = 0.480957 Z = 9.790016 A = 33.857805 B = 109.717572 G = 130.502715 
Initial residual: 0.022562 
Converges to: X = 26.105512 Y = 1.279373 a = 9.015067 A = 60.389568 B = 138.663975 G = 115.994669 
Final Residual: 0.000502 

Perturbation 3 
Initial Approximation: X = 29.690090 Y = 0.909190 Z = 7.896584 A = 36.155984 13 = 111.259719 G = 97.374752 
Initial residual: 0.020026 
Converges to: .X = 27.878881 Y = 0.292749 Z = 7.709961 A = 49.197596 B = 135.052570 G = 105.573935 
Final Residual: 0.000114 

Perturbation 4 
Initial Approximation: X = 27.117995 Y = 0.824243 Z = 8.784265 A = 42.386857 8 = 156.272700 G = 110.790398 
Initial residual: 0.050963 
Converges to: X = 27.878884 Y = 0.292746 a = 7.709950 A = 49.197601 B = 135.052574 G = 105.573936 
Final Residual: 0.000114 

Perturbation 5 
Initial Approximation: X = 26.992657 Y = 1.262300 Z = 6.780406 A = 30.258641 13= 119.960468 G = 98.411583 
Initial residual: 0.001846 
Converges to: X = 27.879025 Y = 0.292634 Z = 7.709947 A = 49.197467 13= 135.052508 G = 105.573807 
Final Residual: 0.000114 

Using perturbation 51 
Initial Approximation: X = 28.305640 Y = 0.315588 Z = 7.673011 A = 49.148168 B = 134.876773 G = 105.817578 
Initial residual: 0.000132 
Converges to: X = 27.879039 Y = 0.292610 Z.= 7.709786 A = 49.197567 B = 135.052583 G = 105.573857 
Residual Vector = {-0.000048 0.000005 -0.000002 0.000003 -0.000004 -0.000046 -0.000047 0.000020 0.000005 -0.000059 0.000009 0.000049 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000114 
Stopping Criterion: I 
Number of function evaluations = 36 
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Data point #  22 

Perturbation I 
Initial Approximation: X = 27.879039 Y = 0.292610 Z = 7.709786 A = 49.197567 B = 135.052583 G = 105.573857 
Initial residual: 0.000135 
Converges to: X = 27.445396 Y = 0.239184 1 = 7.772042 A = 49.397853 B = 135.214385 G = 105.643752 
Final Residual: 0.000117 

Perturbation 2 
Initial Approximation: X = 27.785004 Y = 1.404402 Z = 8.794286 A = 62.486318 B = 112.117191 G = 100.117102 
Initial residual: 0.061402 
Converges to: X = 27.445269 Y = 0.239294 Z = 7.772172 A = 49.397912 B = 135.214399 G = 105.643837 
Final Residual: 0.000117 

Perturbation 3 
Initial Approximation: X = 26.805470 Y = 0.250952 Z = 7.733973 A = 22.669263 B = 117.672443 G = 110.634920 
Initial residual: 0.019149 
Converges to: X = 27.445330 Y = 0.239242 Z = 7.772120 A = 49.397875 B = 135.214386 G = 105.643793 
Final Residual: 0.000117 

Perturbation 4 
Initial Approximation: X = 29.144387 Y = 2.112584 Z = 6.683702 A = 40.925067 B = 117.872456 G= 98.449627 
Initial residual: 0.018907 
Converges to: X = 27.445268 Y = 0.239293 Z = 7.772156 A = 49.397925 B = 135.214409 G = 105.643843 
Final Residual: 0.000117 

Perturbation 5 
Initial Approximation: X = 26.162639 Y = 0.673287 Z = 8.411428 A = 16.994206 B = 134.787329 G = 117.142297 
Initial residual: 0.061904 	 • 
Converges to: X = 25.714305 Y = 1.018340 Z = 8.831496 A = 60.853872 B = 138.625437 G = 116.543084 
Final Residual: 0.000508 

Using perturbation # I 
Initial Approximation: X = 27.879039 Y = 0.292610 Z = 7.709786 A =49.197567 B = 135.052583 G = 105.573857 
Initial residual: 0.000135 
Converges to: X = 27.445396 Y = 0.239184 Z = 7.772042 A = 49.397853 B = 135.214385 G = 105.643752 
Residual Vector = {-0.000049 0.000008 0.000001 0.000005 -0.000005 -0.000047 -0.000048 0.000018 0.000006 -0.000060 -0.000001 0.000052 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000117 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point # 23 

Perturbation 1 
Initial Approximation: X = 27.445396 Y = 0.239184 Z = 7.772042 A = 49.397853 B = 135.214385 G = 105.643752 
Initial residual: 0.000135 
Converges to: X = 27.045003 Y = 0.199041 Z = 7.905934 A = 49.373632 B = 135.081469 G = 105.852333 

'Final Residual: 0.000119 

Perturbation 2 
Initial Approximation: X = 27.616606 Y = 1.156283 Z = 8.515274 A = 62.014290 B = 143.936524 G = 75.016287 
Initial residual: 0.006061 
Converges to: X = 28.680088 Y = -1.844146 Z = 2.067214 A = 54.653841 B = 144.879646 G = 89.487989 
Final Residual: 0.000699 

Perturbation 3 
Initial Approximation: X = 27.859629 Y = 0.655798 Z = 7.165625 A = 21.156295 B = 167.445106 G = 82.417482 
Initial residual: 0.083998 
Converges to: X = 25.450806 Y = 1.372869 Z = 8.239886 A = 51.062101 B = 138.705948 G = 101.612622 
Final Residual: 0.000369 

Perturbation 4 
Initial Approximation: X = 26.077001 Y = 1.317897 Z = 6.409784 A = 40.385445 B = 129.513913 G = 113.437770 
Initial residual: 0.014336 
Converges to: X = 27.045271 Y = 0.198829 Z = 7.905766 A = 49.373367 B = 135.081337 G = 105.852090 
Final Residual: 0.000119 

Perturbation 5 
Initial Approximation: X = 29.030114 Y = 1.104930 Z = 9.535055 A = 32.482661 B = 140.126318 G = 103.367991 
Initial residual: 0.035407 
Converges to: X = 27.044877 Y = 0.199143 2 = 7.906034 A = 49.373738 B = 135.081517 G = 105.852440 
Final Residual: 0.000119 

Using perturbation #1 
Initial Approximation: X = 27.445396 Y = 0.239184 Z = 7.772042 A = 49.397853 B = 135.214385 G = 105.643752 
Initial residual: 0.000135 
Converges to: X = 27.045003 Y = 0.199041 Z = 7.905934 A = 49.373632 B = 135.081469 G = 105.852333 
Residual Vector = {-0.000048 0.000003 0.000006 0.000002 -0.000008 -0.000047 -0.000047 0.000014 0.000007 -0.000064 0.000001 0.000055 0.000000 
0.000000 0.000000 0.000000} 
Final residual: 0.000119 
Stopping Criterion: 1 
Number of function evaluations = 36 
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Data point # 24 

Perturbation 1 
Initial Approximation: X = 27.045003 Y = 0.199041 Z = 7.905934 A = 49.373632 B = 135.081469 G = 105.852333 
Initial residual: 0.000143 
Converges to: X = 26.604183 Y = 0.148311 Z = 7.917939 A = 49.726440 B = 135.487274 G = 105.742715 
Final Residual: 0.000123 

Perturbation 2 
Initial Approximation: X = 26.433176 Y = 1.931999 Z = 8.695594 A = 39.524495 B = 114.957967 0 = 90.997949 
Initial residual: 0.022680 
Converges to: X = 26.604071 Y = 0.148396 Z = 7.918016 A = 49.726570 B = 135.487342 G = 105.742828 
Final Residual: 0.000123 

Perturbation 3 
Initial Approximation: X = 27.819288 Y = 0.610350 Z = 6.166017 A = 32.029170 B = 107.693925 G = 116.324783 
Initial residual: 0.001192 
Converges to: X = 25.373919 Y = -0.811538 Z = 11.427737 A = 27.539333 B = 105.879665 G = 111.902318 
Final Residual: 0.000665 

Perturbation 4 
Initial Approximation: X = 25.086623 Y = 1.195334 Z = 7.696745 A = 12.867274 B = 144.336207 G = 101.892061 
Initial residual: 0.065302 
Converges to: X = 28.348492 Y = 5.126245 Z = 12.313292 A = 85.310776 B = 160.037154 G = 109.504991 
Final Residual: 0.000832 

 Perturbation 5 
Initial Approximation: X = 28.926271 Y = 0.502900 Z = 7.136757 A = 32.095852 B = 163.873892 G = 103.846282 
Initial residual: 0.069784 
Converges to: X = 26.604060 Y = 0.148403 Z = 7.918016 A = 49.726588 B = 135.487354 0= 105.742839 
Final Residual: 0.000123 

Using perturbation #1 
Initial Approximation: X = 27.045003 Y = 0.199041 Z = 7.905934 A = 49.373632 B = 135.081469 G = 105.852333 
Initial residual: 0.000143 
Converges to: X = 26.604183 Y = 0.148311 Z = 7.917939 A = 49.726440 B = 135.487274 G = 105.742715 
Residual Vector = {-0.000050 0.000005 0.000009 0.000002 -0.000007 -0.000047 -0.000048 0.000017 0.000009 -0.000065 -0.000006 0.000058 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0000123 
Stopping Criterion: 
Number of function evaluations = 36 

Data point # 25 

Perturbation I 
Initial Approximation: X = 26.604183 Y = 0.148311 Z = 7.917939 A = 49.726440 B = 135.487274 G = 105.742715 
Initial residual: 0.000142 
Converges to: X = 26.175091 Y = 0.104642 Z = 7.985020 A = 49.810070 B = 135.585207 G = 105.713090 
Final Residual: 0.000122 

Perturbation 2 
Initial Approximation: X = 27.443959 Y = 1.950947 Z = 9.539475 A = 58.678984 B = 168.906101 G = 106.934097 
Initial residual: 0.031813 
Converges to: X = 26.175010 Y = 0.104699 Z = 7.985067 A = 49.810189 B = 135.585274 G = 105.713183 
Final Residual: 0.000122 

Perturbation 3 
Initial Approximation: X = 28.731902 Y = 0.558699 Z = 7.975792 A = 46.981267 B = 145.009217 G = 96.985868 
Initial residual: 0.015150 
Converges to: X = 26.174989 Y = 0.104710 Z = 7.985055 A = 49.810242 B = 135.585312 G = 105.713210 
Final Residual: 0.000122 

Perturbation 4 	  
Initial Approximation: X = 25.572307 Y = 0.682607 Z = 7.702204 A = 67.698837 B = 149.801803 G = 144.807573 
Initial residual: 0.055897 
Converges to: X = 26.181338 Y = 0.101104 Z = 7.975721 A = 49.814062 B = 135.593716 G = 105.707762 
Final Residual: 0.000123 

Perturbation 5 
Initial Approximation: X = 27.155285 Y = 0.969115 Z = 6.577142 A = 55.939513 B = 171.704819 G = 116.546345 
Initial residual: 0.049267 
Converges to: X = 26.174938 Y = 0.104769 2 = 7.985228 A = 49.810188 B = 135.585237 G = 105.713249 
Final Residual: 0.000122 

Using perturbation #1 
Initial Approximation: X = 26.604183 Y = 0.148311 Z = 7.917939 A = 49.726440 B = 135.487274 0 = 105.742715 
Initial residual: 0.000142 
Converges to: X = 26.175091 Y = 0.104642 Z = 7.985020 A = 49.810070 B = 135.585207 G = 105.713090 
Residual Vector = {-0.000046 0.000004 0.000013 0.000003 -0.000008 -0.000047 -0.000048 0.000016 0.000009 -0.000065 -0.000007 0.000059 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0000122 
Stopping Criterion: 1 
Number of function evaluations = 36 
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Data point # 26 

Perturbation 1 
Initial Approximation: X = 26.175091 Y = 0.104642 Z = 7.985020 A = 49.810070 B = 135.585207 G = 105.713090 

Initial residual: 0.000146 
Converges to: X = 25.743842 Y = 0.102577 Z = 8.128432 A = 49.476469 B = 135.138552 G = 105.936775 

Final Residual: 0.000126 

Perturbation 2 
Initial Approximation: X = 27.407795 Y = 1.024873 Z = 7.827055 A = 18.877595 B = 118.029512 G = 81.677114 

Initial residual: 0.013760 
Converges to: X = 25.983938 Y = 0.056717 Z = 8.189096 A = 48.476382 B = 135.057638 G = 104.274751 

Final Residual: 0.000192 

Perturbation 3 
Initial Approximation: X = 24.638692 Y = 1.182843 Z = 6.430988 A = 65.721094 B = 147.300266 G = 142.784657 
Initial residual: 0.051153 
Converges to: X = 25.741791 Y = 0.105209 Z = 8.135207 A= 49.475746 B = 135.136864 G = 105.938547 
Final Residual: 0.000126 

Perturbation 4 
Initial Approximation: X = 26.582903 Y = 1.311905 Z = 9.769656 A =64.745216 13= 123.260610 G  = 131.264077 
Initial residual: 0.008296 
Converges to: X = 25.743760 Y = 0.102637 Z = 8.128498 A = 49.476592 B = 135.138617 G = 105.936880 
Final Residual: 0.000126 

Perturbation 5 
Initial Approximation: X = 24.973420 Y = 1.668388 Z = 8.428150 A = 82.176524 B = 160.144867 G = 73.751945 
Initial residual: 0.002413 
Converges to: X = 29.576688 Y = -5.508400 Z = 12.004908 A = 86.301561 B = 159.019772 G = 69.333418 
Final Residual: 0.000771 

Using perturbation 
Initial Approximation: X = 26.175091 Y = 0.104642 Z = 7.985020 A = 49.810070 B = 135.585207 G = 105.713090 
Initial residual: 0.000146 
Converges to: X = 25.743842 Y = 0.102577 Z = 8.128432 A = 49.476469 B = 135.138552 G = 105.936775 
Residual Vector = {-0.000048 0.000002 0.000015 0.000004 -0.000006 -0.000050 -0.000048 0.000017 0.000011 -0.000064 -0.000011 0.000062 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000126 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point 8 27 

Perturbation 1 
Initial Approximation: X = 25.743842 Y = 0.102577 Z = 8.128432 A = 49.476469 B = 135.138552 G = 105.936775 
Initial residual: 0.000154 
Converges to: X = 25.238785 Y = 0.084329 Z = 8.191956 A = 49.707693 B = 135.337393 G = 105.992379 
Final Residual: 0.000130 

Perturbation 2 
Initial Approximation: X = 23.678830 Y = 0.948759 Z = 9.721541 A = 51.027914 B = 95.302306 G = 96.613756 
Initial residual: 0.058269 
Converges to: X = 22.385279 Y = 0.810603 Z = 10.441754 A = 51.891744 B = 129.434493 G = 117.766710 
Final Residual: 0.000630 

Perturbation 3 
Initial Approximation: X = 23.763123 Y = 0.576781 1 = 7.584872 A = 38.704353 13= 114.670613 G = 75.938634 
Initial residual: 0.015838 
Converges to: X = 28.281946 Y = -4.848414 Z = -0.226039 A = 43.091741 B = 132.991711 G = 87.603401 
Final Residual: 0.000419 

Perturbation 4 
Initial Approximation: X = 26.764793 Y = 0.819947 Z = 8.022722 A = 55.136391 B = 112.176134 G = 128.381758 
Initial residual: 0.014559 
Converges to: X = 25.239555 Y = 0.083825 Z = 8.191437 A = 49.706276 B = 135.336625 G = 105.991227 
Final Residual: 0.000130 

Perturbation 5 
Initial Approximation: X = 27.102449 Y = 0.201698 Z = 7.622891 A = 46.814756 B = 118.697894 G = 124.591483 
Initial residual: 0.002321 
Converges to: X = 25.351379 Y = 0.077360 Z = 8.380238 A = 47.892517 B = 133.257176 G = 106.690362 
Final Residual: 0.000221 

Using perturbation #4 
Initial Approximation: X = 26.764793 Y = 0.819947 Z= 8.022722 A= 55.136391 13 = 112.176134 G = 128.381758 
Initial residual: 0.014559 
Converges to: X = 25.239555 Y = 0.083825 Z = 8.191437 A = 49.706276 B = 135.336625 G = 105.991227 
Residual Vector = {-0.000049 0.000002 0.000018 0.000003 -0.000005 -0.000052 -0.000049 0.000016 0.000013 -0.000062 -0.000012 0.000066 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000130 
Stopping Criterion: 1 
Number of function evaluations = 61 
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Data point 4 28 

Perturbation I 
Initial Approximation: X = 25.239555 Y = 0.083825 Z = 8.191437 A = 49.706276 B = 135.336625 G = 105.991227 
Initial residual: 0.000149 
Converges to: x = 24.817061 Y = 0.043975 Z = 8.269070 A = 49.858674 B = 135.462418 G = 106.037355 
Final Residual: 0.000128 

Perturbation 2 
Initial Approximation: X = 25.827887 Y = 1.332972 Z = 7.420812 A = 62.421969 B = 134.292942 G = 71488326 
Initial residual: 0.019971 
Converges to: X = 24.804764 Y = 0.054055 Z = 8.285357 A = 49.876161 B = 135.474195 G = 106.055100 
Final Residual: 0.000129 

Perturbation 3 
Initial Approximation: X = 25.870471 Y = 2.021705 Z = 9.645751 A = 64.063772 B = 161.346921 G = 79.170567 
Initial residual: 0.012500 
Converges to: X = 24.817535 Y = 0.043772 Z = 8.269140 A = 49.857361 B = 135.461527 G = 106.036616 
Final Residual: 0.000128 

Perturbation 4 
Initial Approximation: X = 23.858613 Y = 2.196872 Z = 7.456978 A = 48.148883 B = 137.765718 G = 121.015325 
Initial residual: 0.025894 
Converges to: X = 24.816934 Y = 0.043973 Z = 8.268775 A = 49.859298 B = 135.462947 G = 106.037515 
Final Residual: 0.000128 

Perturbation 5 
Initial Approximation: X = 23.425031 Y = 1.135297 Z = 9.049601 A = 59.814214 B = 117.663208 G = 88.721980 
Initial residual: 0.053121 
Converges to: X = 24.817013 Y = 0.044018 Z  = 8.269163 A = 49.858719 B = 135.462412 G = 106.037447 
Final Residual: 0.000128 

Using perturbation #3 
Initial Approximation: X = 25.870471 Y = 2.021705 Z = 9.645751 A = 64.063772 B = 161.346921 G = 79.170567 
Initial residual: 0.012500 
Converges to: X = 24.817535 Y = 0.043772 Z = 8.269140 A = 49.857361 B = 135.461527 G = 106.036616 
Residual Vector = {-0.000048 -0.000001 0.000021 0.000003 -0.000002 -0.000050 -0.000051 0.000014 0.000017 -0.000061 -0.000012 0.000066 
0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000128 
Stopping Criterion: 
Number of function evaluations = 51 

Data point 4 29 

Perturbation 1 
Initial Approximation: X = 24.817535 Y = 0.043772 Z = 8.269140 A = 49.857361 B = 135.461527 G = 106.036616 
Initial residual: 0.000153 
Converges to: X = 24.355842 Y = 0.046020 Z = 8.343546 A = 49.918299 B = 135.495525 G = 106.085597 
Final Residual: 0.000126 

Perturbation 2 
Initial Approximation: X = 23.709031 Y = 1.928926 Z = 6.534408 A = 52.428358 B = 150.376395 G = 112.328717 
Initial residual: 0.027189 
Converges to: X= 24.355703 Y = 0.045981 Z = 8.343112 A = 49.919098 B = 135.496262 G = 106.085691 
Final Residual: 0.000126 

Perturbation 3 
Initial Approximation: X = 22.890352 Y = 0.765932 Z = 6.692605 A = 46.331113 B = 144.067028 G = 134.018678 
Initial residual: 0.061535 
Converges to: X = 24.355691 Y = 0.046011 Z = 8.343230 A = 49.919020 B = 135.496152 G = 106.085750 
Final Residual: 0.000126 

Perturbation 4 
Initial Approximation: X = 24.362057 Y = 1.459991 Z = 8.635667 A = 83.222842 B = 149.532819 G = 83.095176 
Initial residual: 0.022924 
Converges to: X = 21.007109 V = -1.708898 Z = -1.042499 A = 66.596855 B = 152.321456 G = 75.904366 
Final Residual: 0.000793 

Perturbation 5 
Initial Approximation: X = 23.596447 Y = 0.819113 Z = 8.069729 A = 24.756895 B = 112.596504 G = 136.743381 
Initial residual: 0.050282 
Converges to: X = 23.658590 Y = -0.084583 Z = 10.932289 A = 38.039958 B = 118.991364 G = 112.365293 
Final Residual: 0.000511 

Using perturbation #2 
Initial Approximation: X =23.709031 Y = 1.928926 Z = 6.534408 A = 52.428358 B = 150.376395 G = 112.328717 
Initial residual: 0.027189 
Converges to: X = 24.355703 Y = 0.045981 Z = 8.343112 A = 49.919098 B = 135.496262 G = 106.085691 
Residual Vector = {-0.000047 -0.000000 0.000023 0.000000 -0.000001 -0.000045 -0.000047 0.000014 0.000020 -0.000059 -0.000021 0.000066 
0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000126 
Stopping Criterion: 1 
Number of function evaluations = 43 
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Data point #  30 

Perturbation 1 
Initial Approximation: X = 24.355703 Y = 0.045981 Z = 8.343112 A = 49.919098 B = 135.496262 G = 106.085691 
Initial residual: 0.000158 
Converges to: X = 23.880401 Y = 0.004495 Z = 8.594262 A = 50.197012 B = 135.743827 G = 106.134610 
Final Residual: 0.000126 

Perturbation 2 
Initial Approximation: X = 24.500626 Y = 1.835714 Z = 9.839416 A = 67.251597 B = 161.499678 G = 128.290821 
Initial residual: 0.043297 
Converges to: X = 23.912139 Y = 0.037522 Z = 8.562187 A = 50.042351 B = 135.618989 G = 106.098071 
Final Residual: 0.000127 

Perturbation 3 
Initial Approximation: X = 25.205000 Y = 0.903180 Z = 9.280340 A = 58.965095 B = 150.311532 G = 119.171751 
Initial residual: 0.025823 
Converges to: X = 22.612318 Y = 0.050784 Z = 8.281390 A = 55.66846 B = 137.638861 G = 111.736646 
Final Residual: 0.000279 

Perturbation 4 
Initial Approximation: X = 23.094776 Y = 1.155042 Z = 6.297301 A = 63.091340 B = 107.435335 G = 113.670957 
Initial residual: 0.054427 
Converges to: X = 23.880390 Y = 0.004516 Z = 8.594358 A = 50.196958 B = 135.743742 G = 106.134669 
Final Residual: 0.000126 

Perturbation 5 
Initial Approximation: X = 24.578937 Y = 1.335410 Z = 7.452322 A = 21.470670 13 = 129.485699 G = 93.436767 
Initial residual: 0.027413 
Converges to: X = 23.880370 Y = 0.004509 Z = 8.594290 A = 50.197078 B = 135.743853 G = 106.134682 
Final Residual: 0.000126 

Using perturbation 
Initial Approximation: X = 24.355703 Y = 0.045981 Z = 8.343112 A = 49.919098 B = 135.496262 0 = 106.085691 
Initial residual: 0.000158 
Converges to: X = 23.880401 Y = 0.004495 Z = 8.594262 A = 50.197012 B = 135.743827 G = 106.134610 
Residual Vector = {-0.000043 0.000001 0.000025 -0.000002 -0.000002 -0.000048 -0.000049 0.00001 0.000021 -0.000055 -0.000020 0.000068 
0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000126 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point 8 31 

Perturbation 1 
Initial Approximation: X = 23.880401 Y = 0.004495 Z = 8.594262 A = 50.197012 B = 135.743827 G = 106.134610 
Initial residual: 0.000154 
Converges to: X = 23.498337 Y = -0.002483 Z = 8.636739 A = 50.042079 B = 135.472788 G = 106.355252 
Final Residual: 0.000129 

Perturbation 2 
Initial Approximation: X = 22.519037 Y = 0.286996 Z = 7.041637 A = 50.530083 B = 105.465240 G = 143.975114 
Initial residual: 0.012979 
Converges to: X = 20.741074 Y = 0.162611 Z = 12.420245 A = 55.998379 B = 121.189418 G = 130.396808 
Final. Residual: 0.000644 

Perturbation 3 
Initial Approximation: X = 23.160409 Y = 1.021611 Z = 7.069978 A = 83.426152 B = 115.626859 G = 86.754643 
Initial residual: 0.079677 
Converges to: X = 13.217088 Y = 7.907106 Z = 5.032295 A = 46.919410 13= 115.728580 G = 53.712779 
Final Residual: 0.001531 

Perturbation 4 
Initial Approximation: X = 22.683237 Y = 0.635420 Z = 7.873797 A = 23.772839 B = 128.014197 G = 98.726768 
Initial residual: 0.024004 
Converges to: X = 23.498373 Y = -0.002477 Z = 8.636835 A = 50.041882 B = 135.472603 G = 106.355236 
Final Residual: 0.000129 

Perturbation 5 
Initial Approximation: X = 24.749187 Y = 0.939457 Z = 8.517899 A = 56.807192 B = 114.437023 G = 128.338158 
Initial residual: 0.014472 
Converges to: X = 23.376399 Y = 0.048808 Z = 8.524630 A = 50.438327 B = 136.100505 G = 105.909693 
Final Residual: 0.000127 

Using perturbation #5 
Initial Approximation: X = 24.749187 Y = 0.939457 Z = 8.517899 A = 56.807192 B = 114.437023 G = 128.338158 
Initial residual: 0.014472 
Converges to: X = 23.376065 Y = 0.048728 Z = 8.523851 A = 50.439953 B = 136.102050 0 = 105.909785 
Residual Vector = {-0.000049 -0.000001 0.000025 -0.000002 -0.000006 -0.000048 -0.000046 0.000008 0.000027 -0.000052 -0.003016 0.000069 
0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000127 
Stopping Criterion: 1 
Number of function evaluations = 57 
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Data point # 32 

Perturbation 1 
Initial Approximation: X = 23.376065 Y = 0.048728 Z = 8.523851 A = 50.439953 B = 136.102050 G = 105.909785 
Initial residual: 0.000158 
Converges to: X = 22.992725 Y = -0.016917 Z = 8.766964 A = 50.360495 B = 135.751870 G = 106.418342 
Final Residual: 0.000128 

Perturbation 2 
Initial Approximation: X = 22.108601 Y = 1.123635 Z = 10.267925 A = 38.203588 B = 158.547498 G = 107.823900 
Initial residual: 0.057748 
Converges to: X = 22.992777 Y = -0.016904 Z = 8.767116 A = 50.360217 13 = 135.751589 G = 106.418355 
Final Residual: 0.000128 

Perturbation 3 
Initial Approximation: X = 24514183 Y = 0.839920 Z = 10.894055 A = 28.207479 B = 124.700400 G = 129.954054 
Initial residual: 0.051318 
Converges to: X = 20.968600 Y = 0.199505 Z = 12.934415 A = 53.520953 B = 129.782414 G = 119.142250 
Final Residual: 0.000554 

• 
Perturbation 4 
Initial Approximation: X = 23.765993 Y = 1.353532 Z = 8.677048 A = 48.879677 B = 103.117862 G  = 75.845250 
Initial residual: 0.045640 
Converges to: X = 22.994085 Y = -0.016637 Z = 8.770297 A = 50.353769 B = 135.745355 G = 106.418163 
Final Residual: 0.000128 

Perturbation 5 
Initial Approximation: X = 23.544551 Y = 1.534073 Z = 10.142371 A = 55.934275 B = 116.794244 G = 108.065753 
Initial residual: 0.038691 
Converges to: X = 22.992806 Y = -0.016898 Z = 8.767185 A = 50.360076 B = 135.751454 G = 106.418348 
Final Residual: 0.000128 

Using perturbation #1  
Initial Approximation: X = 23.376065 Y = 0.048728 Z = 8.523851 A = 50.439953 B = 136.102050 0 = 105.909785 
Initial residual: 0.000158 
Converges to: X = 22.992725 Y = -0.016917 Z = 8.766964 A = 50.360495 B = 135.751870 G = 106.418342 
Residual Vector = {-0.000040 -0.000001 0.000030 -0.000006 0.000015 -0.000051 -0.000052 0.000001 0.000016 -0.000042 -0.000022 0.000077 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000128 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point 8 33 

Perturbation 1 
Initial Approximation: X = 22.992725 Y = -0.016917 Z = 8.766964 A = 50.360495 B = 135.751870 G = 106.418342 
Initial residual: 0.000174 
Converges to: X = 22.504053 Y = -0.015998 Z = 8.878105 A = 50.357353 13 = 135.573662 G = 106.738460 
Final Residual: 0.000127 

Perturbation 2 
Initial Approximation: X = 21.743240 Y = -0.109197 Z = 10.955048 A = 47.865409 B = 123.211176 G = 105.067359 
Initial residual: 0.018244 
Converges to: X = 22.504037 Y = -0.016000 Z = 8.878085 A = 50.357416 B = 135.573712 G = 106.738481 
Final Residual: 0.000127 

Perturbation 3 
Initial Approximation: X = 22.048315 Y = 1.515967 Z= 10.789949 A = 68.715965 B = 153.515015 G = 108.233574 
Initial residual: 0.003224 
Converges to: X = 22.497725 Y = -0.015259 1 = 8.857588 A = 50.402331 B = 135.629648 G = 106.727923 
Final Residual: 0.000127 

Perturbation 4 
Initial Approximation: X = 22.956809 Y = 1.187227 Z = 7.765280 A = 73.938466 B = 129.937084 G = 118.679489 
Initial residual: 0.028126 
Converges to: X = 18.505149 Y = -7.260657 Z = 1.130155 A = 71.530270 B = 132.838529 G = 131.400598 
Final Residual: 0.000662 

Perturbation 5 
Initial Approximation: X = 23.082543 Y = 1.792778 Z= 10.438543 A = 26.195558 B = 138.233209 G = 111.491104 
Initial residual: 0.049569 
Converges to: X = 22.504089 Y = -0.015990 Z = 8.878194 A = 50.357185 B = 135.573488 0 = 106.738477 
Final Residual: 0.000127 

Using perturbation #1 
Initial Approximation: X = 22.992725 Y = -0.016917 Z = 8.766964 A = 50.360495 B = 135.751870 G = 106.418342 
Initial residual: 0.000174 
Converges to: X = 22.504053 Y = -0.015998 Z = 8.878105 A = 50.357353 B = 135.573662 G = 106.738460 
Residual Vector = {-0.000041 -0.000001 0.000030 -0.000006 0.000019 -0.000050 -0.000051 -0.000006 0.000014 -0.000036 -0.000023 0.000078 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000127 
Stopping Criterion: 1 
Number of function evaluations = 29 
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Data point 8 34 

Perturbation 1 
Initial Approximation: X = 22.504053 Y = -0.015998 Z = 8.878105 A = 50357353 B = 135.573662 G = 106.738460 
Initial residual: 0.000186 
Converges to: X = 22.018701 Y = -0.013756 Z = 8.953371 A = 50.270757 B = 135.412507 G = 106.875805 
Final Residual: 0.000128 

Perturbation 2 
Initial Approximation: X = 24.000141 Y = -0.208096 Z = 7.997085 A = 25.572643 B = 171.388340 G = 74.520312 
Initial residual: 0.086260 
Converges to: X = 22.018839 Y = -0.013721 Z = 8.953641 A = 50.270237 B = 135.411970 G = 106.875853 

Final Residual: 0.000128 

Perturbation 3 
Initial Approximation: X = 20.908559 Y = 1.932458 Z = 9.034187 A = 61.355435 B = 145.064545 G = 99.380040 
Initial residual: 0.007182 
Converges to: X = 22.018533 Y = -0.013797 Z = 8.953053 A = 50.271388 B = 135.413147 G = 106.875770 

Final Residual: 0.000128 

Perturbation 4 
Initial Approximation: X = 22.198606 Y = -0.471924 Z = 7.807051 A = 27.882006 B = 111 .714014 p = 127.934200 

Initial residual: 0.029626 
Converges to: X = 22.356734 Y = -0.298374 Z = 10.445898 A = 44.034028 B = 124.384267 G = 113.905006 
Final Residual: 0.000347 

Perturbation 5 
Initial Approximation: X = 24.167610 Y = 0.526639 Z = 7.864721 A = 34.089357 B = 136.056753 G = 68.189166 
Initial residual: 0.034264 
Converges to: X = 22.059397 Y = -0.000500 Z = 9.029533 A = 50.167915 B = 135.280107 G = 106.952017 
Final Residual: 0.000130 

Using perturbation #3 
Initial Approximation: X = 20.908559 Y = 1.932458 Z = 9.034187 A = 61.355435 B = 145.064545 G = 99.380040 
Initial residual: 0.007182 
Converges to: X = 22.018533 Y = -0.013797 Z = 8.953053 A = 50.271388 B = 135.413147 G = 106.875770 
Residual Vector = {-0.000046 -0.000001 0.000029 -0.000007 0.000019 -0.000050 -0.000052 -0.000016 0.000016 -0.000030 -0.000018 0.000078 
0.000000 0.000000 0.000000 0.000003} 
Final residual: 0.000128 
Stopping Criterion: I 
Number of function evaluations = 50 

Data point #  35 

Perturbation 1 
Initial Approximation: X = 22.018533 Y = -0.013797 Z = 8.953053 A = 50.271388 B = 135.413147 G = 106.875770 
Initial residual: 0.000209 
Converges to: X = 21.407771 Y = -0.012021 Z = 9.018661 A = 50.568966 B = 135.595110 G = 107.073344 
Final Residual: 0.000127 

Perturbation 2 
Initial Approximation: X = 19.873553 Y = 1.430266 Z = 9.836823 A = 29.658039 13= 133.799519 G = 126.572044 
Initial residual: 0.058937 
Converges to: X= 21.407805 Y = -0.012010 Z = 9.018715 A = 50.568871 B = 135.595004 G = 107.073368 
Final Residual: 0.000127 

• 
Perturbation 3 
Initial Approximation: X = 19.952017 Y = 1.585987 Z = 6.967251 A = 67.014883 B = 157.710651 G = 113.344548 
Initial residual: 0.016588 
Converges to: X = 21.428518 Y = -0.004505 Z = 9.050256 A = 50.517183 B = 135.532066 G = 107.099589 
Final Residual: 0.000127 

Perturbation 4 
Initial Approximation: X = 23.020888 Y = 1.267189 Z = 8.473755 A = 10.549938 B = 146.005966 G = 132.042883 
Initial residual: 0.110242 
Converges to: X = 22.242728 Y = 7.060283 Z = 13.391232 A = 93.220824 B = 173.725117 G = 95.439083 
Final Residual: 0.000908 

Perturbation 5 
Initial Approximation: X = 20.796397 Y = -0.153607 Z = 7.895804 A = 56.825411 B = 151.667358 G = 109.074136 
Initial residual: 0.018101 
Converges to: X = 21.407628 Y = -0.012067 Z = 9.018431 A = 50.569368 B = 135.595561 G = 107.073241 
Final Residual: 0.000127 

Using perturbation 85 
Initial Approximation: X = 20.796397 Y = -0.153607 Z = 7.895804 A = 56.825411 B = 151.667358 G = 109.074136 
Initial residual: 0.018101 
Converges to: X = 21.407628 Y = -0.012067 Z = 9.018431 A = 50.569368 B = 135.595561 0 = 107.073241 
Residual Vector = {-0.000046 -0.000003 0.000031 -0.000009 0.000022 -0.000043 -0.000054 -0.000022 0.000017 -0.000025 -0.000018 0.000077 
0.000000 0.000000 0.000000 0.000000) 
Final residual: 0.000127 
Stopping Criterion: 
Number of function evaluations = 50 
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Data point 8 36 

Perturbation 1 
Initial Approximation: X = 21.407628 Y = -0.012067 Z = 9.018431 A = 50.569368 B = 135.595561 0 = 107.073241 
Initial residual: 0.000229 
Converges to: X = 20.846301 Y = -0.065391 Z = 9.159704 A = 50.425210 B = 135.432115 G = 107.112263 
Final Residual: 0.000128 

Perturbation 2 
Initial Approximation: X = 22.479404 Y = 1.637415 Z = 10.031945 A = 92.112471 13 = 164.335049 G = 68.187227 

Initial residual: 0.006927 
Converges to: X = 19.538003 Y = -5.029307 Z = 11.703181 A = 116.603658 13 = 123.186205 0 = 44.900206 

Final Residual: 0.000709 

Perturbation 3 
Initial Approximation: X = 23.073957 Y = 1.409392 Z = 7,923158 A = 21.351668 13 = 107.382749 G = 81.311341 
Initial residual: 0.002329 
Converges to: X = 24.134806 Y = -0.689631 Z = 11.431772 A = 21.475410 B = 110.805654 G = 95.905003 

Final Residual: 0.000651 

Perturbation 4 
Initial Approximation: X = 21.414725 Y = 1.752778 Z= 8.445350 A = 62.127738 B = 112.252171 q = 115.809875 
Initial residual: 0.044858 
Converges to: X = 21.172033 Y = 0050178 Z = 9.538678 A = 48.724767 B = 133.053801 G = 108.466318 
Final Residual: 0.000213 

Perturbation 5 
Initial Approximation: X = 21.512215 Y = 1.048880 1 = 7.968508 A = 61.071873 B = 112.418323 G = 133.443643 
Initial residual: 0.014818 
Converges to: X = 19.860335 Y = -4.321725 Z = 7.297893 A = 71.817441 B = 107.506172 G = 154.345719 
Final Residual: 0.000898 

Using perturbation #1 
Initial Approximation: X = 21.407628 Y = -0.012067 Z = 9.018431 A = 50.569368 B = 135.595561 0 = 107.073241 
Initial residual: 0.000229 
Converges to: X = 20.846301 Y = -0.065391 Z = 9.159704 A = 50.425210 B = 135.432115 G = 107.112263 
Residual Vector = {-0.000049 -0.000001 0.000029 -0.000006 0.000013 -0.000049 -0.000059 -0.000030 0.000021 -0.000018 -0.000007 0.000072 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000128 
Stopping Criterion: .1 
Number of function evaluations = 29 

Data point 8 37 

Perturbation 1 
Initial Approximation: X = 20.846301 Y = -0.065391 Z = 9.159704 A = 50.425210 B = 135.432115 G = 107.112263 
Initial residual: 0.000241 
Converges to: X = 20.288784 Y = -0.102192 Z = 9.305320 A = 50.212872 B = 135.086686 G = 107.353908 
Final Residual: 0.000133 

Perturbation 2 
Initial Approximation: X = 20.595114 Y = 1.330051 Z = 8.338067 A = 90.275613 B = 113.906918 G = 104.732228 
Initial residual: 0.077132 
Converges to: X = 14.057467 Y = -0.162913 Z = 9.085932 A = 144.402127 13 = 78.503621 0 = 123.185946 
Final Residual: 0.001036 

Perturbation 3 
Initial Approximation: X = 19.846922 Y = 1.892346 Z= 9.027765 A = 30.799470 B = 118.897995 G = 100.136979 
Initial residual: 0.001094 
Converges to: X = 20.525196 Y = 0.110496 Z = 9.699298 A = 49.778790 B = 133.179646 G = 109.873843 
Final Residual: 0.000174 

Perturbation 4 
Initial Approximation: X = 20.556806 Y = 0.684714 Z= 10.530417 A = 67.642667 B = 155.274019 G = 88.332246 
Initial residual: 0.003084 
Converges to: X = 19.588380 Y = -0.371164 Z = 9.170436 A = 55.226652 B = 141.274055 G = 104.992765 
Final Residual: 0.000242 

Perturbation 5 
Initial Approximation: X = 20.981788 Y = 0.899571 Z = 9.610902 A = 45.763383 B = 123.210309 G = 110.905357 
Initial residual: 0.008605 
Converges to: X = 20.288780 Y = -0.102194 Z = 9.305315 A = 50.212874 B = 135.086690 G = 107.353904 
Final Residual: 0.000133 

Using perturbation #5 
Initial Approximation: X = 20.981788 Y = 0.899571 Z = 9.610902 A = 45.763383 B = 123.210309 G = 110.905357 
Initial residual: 0.008605 
Converges to: X = 20.288780 Y = -0.102194 Z = 9.305315 A = 50.212874 B = 135.086690 G = 107.353904 
Residual Vector = {-0.000050 -0.000001 0.000030 -0.000004 0.000014 -0.000060 -0.000060 -0.000035 0.000016 -0.000012 -0.000002 0.000071 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000133 
Stopping Criterion: 2 
Number of function evaluations = 50 
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Data point # 38 

Perturbation 1 
Initial Approximation: X = 20.238780 Y = -0.102194 Z = 9.305315 A = 50.212874 B = 135.086690 G = 107.353904 
Initial residual: 0.000288 
Converges to: X = 19.489953 Y = -0.242751 Z = 9.406935 A = 49.767463 B = 134.518886 G = 107.579375 
Final Residual 0.000134 

Perturbation 2 
Initial Approximation: X = 18.651122 Y = 0.355647 Z = 10.185660 A = 82.776650 B = 109.074975 G = 71.515774 
Initial residual: 0.077710 
Converges to: X = 19.312981 Y = -0.314560 Z = 9.284929 A = 50.202615 B = 134.937262 G = 107.598457 
Final Residual: 0.000139 

Perturbation 3 
Initial Approximation: X = 21.555137 Y = 0.779353 Z = 10.712392 A = 40.958935 B = 126.970294 G = 97.422937 
Initial residual: 0.005150 
Converges to: X= 19.489968 Y = -0.242741 Z = 9.406947 A = 49.767473 B = 134.518883 G = 107.579398 
Final Residual: 0.000134 

Perturbation 4 
Initial Approximation: X = 19.117589 Y = 1.18.4071 Z = 7.369644 A = 33.558724 B = 123.571147 0 = 119.282855 
Initial residual: 0.023959 
Converges to: X = 19.489252 Y = -0.243232 Z = 9.406389 A = 49.766983 B = 134.519037 G = 107.578275 
Final Residual: 0.000134 

Perturbation 5 
Initial Approximation: X = 18.953208 Y = 1.493847 Z = 9.946911 A = 82.631549 B = 137.392475 G = 96.319219 
Initial residual: 0.043012 
Converges to: X= 19.490110 Y = -0.242630 Z = 9.407057 A = 49.767585 B = 134.518857 G = 107.579638 
Final Residual: 0.000134 

Using perturbation #4 
Initial Approximation: X = 19.117589 Y = 1.184071 Z = 7.369644 A = 33.558724 B = 123.571147 G = 119.282855 
Initial residual: 0.023959 
Converges to: X = 19.489252 Y = -0.243232 Z = 9.406389 A = 49.766983 B = 134.519037 G = 107.578275 
Residual Vector = {-0.000058 0.000011 0.000025 0.000006 0.000004 -0.000068 -0.000067 -0.000028 0.000014 0.000002 0.000008 0_0000600.000000 
0.000000 0.000000 0.000000} 
Final residual: 0.000134 
Stopping Criterion: 1 
Number of function evaluations = 36 

Data point 8 39 

Perturbation 1 
Initial Approximation: X = 19.489252 Y = -0.243232 Z = 9.406389 A = 49.766983 B = 134.519037 G = 107.578275 
Initial residual: 0.000292 
Converges to: X = 19.251919 Y = -0.185211 Z = 9.815174 A = 49.232447 B = 134.584654 G= 106.519588 
Final Residual: 0.000147 

Perturbation 2 
Initial Approximation: X = 19.683222 Y = 0.687577 Z = 8.467319 A = 19.367131 B = 129.115457 G = 124.705618 
Initial residual: 0.061229 
Converges to: X = 19.251922 Y = -0.185202 Z = 9.815165 A = 49.232393 B = 134.584605 G = 106.519573 
Final Residual: 0.000147 

Perturbation 3 
Initial Approximation: X = 18.757543 Y = -0.133020 Z = 6.964969 A = 28.374349 B = 146.061539 G = 123.253931 
Initial residual: 0.076321 
Converges to: X = 19.252135 Y = -0.185259 Z = 9.815251 A = 49.232270 B = 134.584600 G = 106.519363 
Final Residual: 0.000147 

Perturbation 4 
Initial Approximation: X = 20.333633 Y = 1.121295 Z = 11.107569 A = 57.988151 B = 125.239327 G = 83.354963 
Initial residual: 0.037279 
Converges to: X = 19.251912 Y = -0.185209 Z = 9.815171 A = 49.232447 B = 134.584652 G = 106.519590 
Final Residual: 0.000147 

Perturbation 5 
Initial Approximation: X = 17.682170 Y = 1.070915 Z = 7.974712 A = 46.803405 B = 133.605529 G = 111.684593 
Initial residual: 0.008101 
Converges to: X = 19.251973 Y = -0.185225 Z = 9.815199 A = 49.232423 B = 134.584655 G = 106.519543 
Final Residual: 0.000147 

Using perturbation #3 
Initial Approximation: X = 18.757543 Y = -0.133020 Z = 6.964969 A = 28.374349 B = 146.061539 G = 123.253931 
Initial residual: 0.076321 
Converges to: X = 19.252135 Y = -0.185259 Z = 9.815251 A = 49.232270 B = 134.584600 G = 106.519363 
Residual Vector = {-0.000050 0.000004 0.000020 0.000013 0.000003 -0.000093 -0.000067 -0.000036 0.000009 0.000003 -0.000006 0.000055 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000147 
Stopping Criterion: 1 
Number of function evaluations = 36 
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Data point #  40 

Perturbation I 
Initial Approximation: X = 19.252135 Y = -0.185259 Z = 9.815251 A = 49.232270 B = 134.584600 G = 106.519363 
Initial residual: 0.000329 
Converges to: X = 18.753529 Y = -0.225197 Z = 10.135808 A = 48.709197 B = 134.138754 G = 106.386375 
Final Residual: 0.000167 

Perturbation 2 
Initial Approximation: X = 20.609254 Y = 1.081789 Z = 11.553021 A = 20.149441 B = 117.238577 G = 98.456916 
Initial residual: 0.011328 
Converges to: X = 18.753211 Y = -0.225343 Z = 10.135683 A = 48.708701 B = 134.138397 G = 106.386133 
Final Residual: 0.000167 

Perturbation 3 
Initial Approximation: X = 19.462903 Y = 1.464160 Z = 12.027580 A = 59.861189 B = 123.298092 G = 120.756302 
Initial residual: 0.018508 
Converges to: X = 18.753217 Y = -0.225331 7. = 10.135687 A = 48.708728 B = 134.138397 G = 106.386182 
Final Residual: 0.000167 

Perturbation 4 
Initial Approximation: X = 18.291689 Y = 1.399233 Z = 8.140558 A = 38.576292 B = 127.102619 G= 120.559353 
Initial residual: 0.023373 
Converges to: X = 18.754633 Y = -0.224277 Z = 10.136214 A = 48.711106 B = 134.138937 G = 106.389480 
Final Residual: 0.000167 

Perturbation 5 
Initial Approximation: X = 19.943456 Y = 0.534540 Z = 9.205397 A = 43.404081 13 = 159.013557 G = 133.332174 
Initial residual: 0.087055 
Converges to: X = 18.754260 Y = -0.224536 Z = 10.136227 A = 48.712012 B = 134.140774 G = 106.387808 
Final Residual: 0.000167 

Using perturbation #4 
Initial Approximation: X = 18.291689 Y = 1.399233 Z = 8.140558 A = 38.576292 B = 127.102619 G = 120.559353 
Initial residual: 0.023373 
Converges to: X = 18.754633 Y = -0.224277 Z = 10.136214 A = 48.711106 B = 134.138937 G = 106.389480 
Residual Vector = {-0.000049 0.000005 0.000012 0.000017 0.000011 -0.000122 -0.000070 -0.000029 -0.000004 -0.000014 -0.000015 0.000050 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000167 
Stopping Criterion: 3 
Number of function evaluations = 34 

Data point # 41 

Perturbation 1 
Initial Approximation: X = 18.754633 Y = -0.224277 Z = 10.136214 A = 48.711106 B = 134138937 G = 106.389480 
Initial residual: 0.000315 
Converges to: X = 18.467129 Y = -0.110046 Z = 10.500275 A = 48.698117 B = 134.448686 G = 105.783859 
Final Residual: 0.000175 

Perturbation 2 
Initial Approximation: X = 19.321232 Y =0.553502 Z = 10.376636 A = 52.312950 B = 132.516069 G = 122.964435 
Initial residual: 0.012673 
Converges to: X = 18.467718 Y = -0.109011 Z= 10.500782 A = 48.704280 B = 134.453636 G = 105.786107 
Final Residual: 0.000175 

Perturbation 3 
Initial Approximation: X = 18.198976 Y = 1.267706 Z = 12.126528 A = 61.368547 B = 140.502627 G = 78.050500 
Initial residual: 0.013240 
Converges to: X = 18.855413 Y = -0.548434 Z = 10.839760 A = 53.833416 13 = 143.972709 G = 89.995612 
Final Residual: 0.000530 

Perturbation 4 
Initial Approximation: X = 17.633415 Y = 1.895622 Z = 9.395901 A = 34520849 B = 133.763562 G = 96.336336 
Initial residual: 0.016964 
Converges to: X = 18.465971 Y = -0.110577 Z = 10.500003 A = 48.695799 B = 134.446918 G = 105.782859 
Final Residual: 0.000175 

Perturbation 5 
Initial Approximation: X = 20.124170 Y = 1.138765 Z = 9.968453 A = 49.174969 B = 108.492282 G = 118.454229 
Initial residual: 0.024523 
Converges to: X = 18.465802 Y = -0.110658 Z = 10.499962 A = 48.695461 B = 134.446666 G = 105.782704 
Final Residual: 0.000175 

Using perturbation #1 
Initial Approximation: X = 18.754633 Y = -0.224277 Z = 10.136214 A = 48.711106 B = 134.138937 G = 106.389480 
Initial residual: 0.000315 
Converges to: X = 18.467129 Y = -0.110046 Z = 10.500275 A = 48.698117 B = 134.448686 G = 105.783859 
Residual Vector = {-0.000046 0.000002 0.000032 0.000018 0.000021 -0.000134 -0.000070 -0.000014 -0.000019 -0.000036 -0.000019 0.000046 -
0.000000 0.000000 0.000000 0.-000000} 
Final residual: 0.000175 
Stopping Criterion: 2 
Number of function evaluations = 40 
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Data point N 42 

Perturbation 1 
Initial Approximation: X = 18.467129 Y = -0.110046 Z = 10.500275 A = 48.698117 B = 134.448686 G = 105.783859 
Initial residual: 0.000317 
Converges to: X = 18.233088 Y = 0.062664 Z = 10.854362 A = 49.016208 B = 135.159554 G = 105.011242 
Final Residual: 0.000200 

Perturbation 2 
initial Approximation: X = 18.649256 Y = 0.500029 Z = 9.461556 A = 17.513881 B = 130.176773 G = 120.184999 
Initial residual: 0.057852 
Converges to: X = 18.228499 Y = 0.059671 Z = 10.853441 A = 48.997320 B = 135.147732 G = 104.997550 
Final Residual: 0.000200 

Perturbation 3 
Initial Approximation: X = 19.270707 Y = 0.898493 Z = 10.318772 A = 37.491837 B = 129.769859 0 = 119.005402 
Initial residual: 0.027395 
Converges to: X = 18.234612 Y = 0.063308 Z = 10.854037 A = 49.012880 B = 135.157278 G = 105.009197 
Final Residual: 0.000200 

Perturbation 4 
Initial Approximation: X = 19.027369 Y = 0.204313 Z = 9.088873 A = 59.946013 B = 99.226950 G = 106.221761 
Initial residual: 0.064561 
Converges to: X = 18.233469 Y = 0.061831 Z = 10.853765 A =49.007098 B = 135.153753 0 = 105.004771 
Final Residual: 0.000200 

Perturbation 5 
Initial Approximation: X = 18.723697 Y = 1.345294 Z = 8.573789 A = 22.178341 B = 160.123116 0 = 105.993520 
Initial residual: 0.081788 
Converges to: X = 18.234998 Y = 0.062439 Z = 10.853837 A = 49.010268 B = 135.155825 G =105.006896 
Final Residual: 0.000200 

Using perturbation #5  
Initial Approximation: X = 18.723697 Y = 1.345294 Z = 8.573789 A = 22.178341 B = 160.123116 G = 105.993520 
Initial residual: 0.081788 
Converges to: X = 18.234998 Y = 0.062439 Z = 10.853837 A = 49.010268 B = 135.155825 G = 105.006896 
Residual Vector = {-0.000040 -0.000010 -0.000004 0.000011 0.000029 -0.000152 -0.000071 -0.000002 -0.000032 -0.000069 -0.000025 0.000049 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000200 
Stopping Criterion: 2 
Number of function evaluations = 48 

Data point II 43 

Perturbation 1 
Initial Approximation: X = 18.234998 Y = 0.062439 Z = 10.853837 A = 49.010268 B = 135.155825 G = 105.006896 
Initial residual: 0.000268 
Converges to: X = 18.016987 Y = 0.178269 Z = 11.122625 A = 49.589354 B - 136.062528 G = 104.325337 
Final Residual: 0.000212 

Perturbation 2 
initial Approximation: X = 18.466037 Y = 1.187547 Z = 10.816093 A = 47.048282 B  = 96.370353 G = 81.002164 
Initial residual: 0.049899 
Converges to: X = 18.022708 Y = 0.179649 Z = 11.121487 A = 49.598514 B = 136.065889 G = 104.337131 
Final Residual: 0.000212 

Perturbation 3 
Initial Approximation: X = 18.541152 Y = 1,076727 Z = 11.017665 A = 26.146227 B = 138.404697 G = 121.397446 
Initial residual: 0.063664 
Converges to: X = 18.017327 Y = 0.179639 1 = 11.122693 A =49.594955 B = 136.064353 G = 104.333085 
Final Residual: 0.000212 

Perturbation 4 
Initial Approximation: X = 19.004193 Y = 2.194054 Z = 12.176859 A = 48.298753 13 = 138.992833 G = 63.419811 
Initial residual: 0.021327 
Converges to: X = 20.431585 Y = 0.182189 Z = 11.348368 A = 46.520633 B = 136.604420 G = 88.550463 
Final Residual: 0.000482 

Perturbation 5 
Initial Approximation: X = 16.067987 Y = 0.558518 Z = 10.871809 A = 71.435598 B = 143.847683 G = 85.776424 
Initial residual: 0.024239 
Converges to: X = 18.018215 Y = 0.178557 Z = 11.122405 A = 49.591126 B = 136.063151 G = 104.327670 
Final Residual: 0.000212 

Using perturbation #5  
Initial Approximation: X = 16.067987 Y = 0.558518 Z = 10.871809 A = 71.435598 B = 143.847683 G = 85.776424 
Initial residual: 0.024239 
Converges to: X = 18.018215 Y = 0.178557 Z = 11.122405 A = 49.591126 B = 136.063151 G = 104.327670 
Residual Vector = {-0.000036 -0.000020 -0.000001 -0.000001 0.000031 -0.000152 -0.000065 0.000013 -0.000039 -0.000100 -0.000017 0.000053 - 
0.000000 0.000000 0.000000 0.000000} 
Final residual: 0.000212 
Stopping Criterion: 2 
Number of function evaluations = 61 
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D.7 RUN067 With Motion Constraining Residual Add-on 

The plots below refer to the discussion of section 4.3.1.1. The computed X, Y and Z 

position of the tracking sphere using the data of RUN067 is presented below. The first set 

of plots are the X, Y and Z when 

These figures represent a minor "penalty" as the distance the tracking moves from iteration 

to iteration increases. No restriction is placed on the angular displacement because the run 

in angle invariant. We do not expect to see large angle variations. The second set of plots 

correspond to 

These figures represent a large "penalty" as the tracking sphere's displacement increases 

from iterate to iterate. 

Figures D.27 X-Solution, F1=2.0e-05  
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Figures D.28 Y-Solution, F1=2.0e-05  

Figures D.29 Z-Solution, F1=2.0e-05 
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Figures D.30 X-Solution, F1=3.5e-05  

Figures D.31 Y-Solution, F1=3.5e-05 
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Figures D.32 Z-Solution, F1=3.5e-05 



APPENDIX E 
Experimental Results 

The data presented in this appendix are the results of several trajectories taken in the 

development of this technique. Trajectories are selected for presentation if they are 

useful illustration tools for the arguments in the body of this text. However, the 

results presented are typical of the successes of the tracking system as it stands at the 

date of this document. 

E.1 Fixed-Angle Runs 

The following fixed-angle runs will be presented in the proceeding sections: 

• RUN038: 	Straight line 
• RUN068: 	Straight line 
• RUN251: 	Straight line 

E.1.1 Solution to RUN038 

The data of figures E.1 to E.4 are for the fixed-angle, straight-line trajectory RUN038. 

The starting and ending points of this trajectory are as follows: 

Start: 
End: 
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Figure E.1 X-Solution (RUN038). 

Figure E.2 Y-Solution (RUN038). 
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Figure E.3 Z-Solution (RUN038). 

Figure E.4 Alpha-Solution (RUN038). 
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E.1.2 Solution to RUN068 

The data of figures E.5 to E.8 are for the fixed-angle, straight-line trajectory RUN068. 

The starting and ending points of this trajectory are as follows: 

Start: 

End: 

Figure E.5 X-Solution (RUN068). 
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Figure E.6 Y-Solution (RUN068). 

Figure E.7 Z-Solution (RUN068). 
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Figure E.8 Alpha-Solution (RUN068). 
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E.1.3 Solution to RUN251 

The data of figures E.9 to E.12 are for the fixed-angle, straight-line trajectory 

RUN251 

The starting and ending points of this trajectory are as follows: 

Start: 
End: 

Figure E.9 X-Solution (RUN251) 
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Figure E.10 Y-Solution (RUN251) 

Figure E.11 Z-Solution (RUN251) 
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Figure E.12 Alpha-Solution (RUN251) 
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E.2 Simulated Roll 

The data in this section is representative of the "simulated roll" (RUN061) described in 
section 5.1.2. 

The starting and ending points of this trajectory are as follows: 

Start: 
End: 

Figure E.13 X-Solution (RUN061) 



138 

Figure E.14 Y-Solution (RUN061) 

Figure E.1.5 Z-Solution (RUN061) 
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 Figure E.16 Alpha-Solution (RUN061) 

Figure E.17 Beta-Solution (RUN061) 
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Figure E.18 Gamma-Solution (RUN061) 



APPENDIX F 
Materials, Equipment and Algorithms 

The contents of this appendix is a description of trade names and supplier names for 
the various materials and tools used in this research. 

Extren: Extren is a high-strength fiberglass reinforced thermalset polyester or vinyl 
ester resin. The Extren trade name is a registered trademark of Morrison Molded 
Fiber Glass Company, Bristol, Virginia. 

AT-MIO-16: The AT-MIO-16 is a high-performance multifunction analog, digital 
and timing input/output board for the IBM PC AT and compatibles. The AT-MIO-16 
is a product of the National Instruments Corporation, Austin, Texas. 

AT-MUX-64: The AMUX-64T is a front-end analog multiplexer that quadruples the 
number of analog input signals that can be digitized with a National Instruments AT-
MIO-16 board. The AMUX-64T is a product of National Instruments Corporation, 
Austin, Texas. 

Marconi Radio Communications Test Set: 2955R: The Marconi 2955R Radio 
Communications Test Set is an instruments capable of combining all the measurement 
facilities required for testing mobile radio transceivers in the range up to 1000MHz. It 
is a product of Marconi Instruments Ltd., United Kingdom. 

MINPACK: MINPACK refers to a FORTRAN package developed by Jorge More, 
Burt Garbow and Kell Hillstrom at Argonne National Laboratory used to solve 
systems of nonlinear equations and nonlinear least squares problems. The algorithms 
proceed either from an analytic specification of the Jacobian matrix or directly from 
the problem functions. The paths include facilities for systems of equations with a 
banded Jacobian matrix, for least squares problems with a large amount of data, and 
for checking the consistency of the Jacobian matrix with the functions. 

LMDIF: One of five principle algorithms from the MINPACK package. The purpose 
of lmdif is to minimize the sum of the squares of m  nonlinear functions in n variables 
by a modification of the levenberg-marquardt algorithm. the user must provide a 
subroutine which calculates the functions. The Jacobian is then calculated by a 
forward-difference approximation. 
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GLOSSARY 

background reading or background noise: the finite signal measured by the data 
acquisition system when all local transmitters are shut off 

backward model: the mathematics that allow us to compute the transmitter's position 
given the signal levels in a set of antennae. 

backward solution or inverse solution: the computed position and orientation of the 
transmitter(s) given the signal levels in a set of antennae. 

bulk solid or granular mass: class of substances characterized by a collection of 
discrete particles dispersed in a fluid continuum. 

count: trademark of National Instruments -- a count is a unit of measuring potential 
difference. 204.8 counts correspond to 1 volt. 

coupling: phenomenon whereby the receiver antennae with high signal levels behave 
as secondary transmitters. An adjacent antenna affected by the transmitting antenna is 
said to be coupled with the transmitting antenna. 

cubic tessellation: method arranging square antennae about the flow space such that 
the loop antennae form the outline of stacked cubes. 

DAQ System: Data AcQuisition System. The data acquisition in the composite 
multiplexer, analog to digital converter and PC-based data collecting system used to 
collect data from the band-pass amplifier system. 

decoupling: process of reversing the effect of antenna-to-antenna inductions. 

forward model: mathematics used to compute voltages induced in a loop antenna as 
a function of transmitter position and orientation. 

forward solution: Theoretical voltages computed for a given transmitter position 
and orientation. 

inverse solution or backward solution: the computed position and orientation of the 
transmitter(s) given the signal levels in a set of antennae. 

iteration: 	One step of the Levenberg-Marquardt algorithm, resulting in an 
advancement toward a local or global minimum. 
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orientation: orientation typically refers to the orientation of the transmitting coil in 
space. Because the transmitter is fixed in the tracking sphere, its orientation is an 
indication of the orientations of the orientation of the tracer particle. The parameters 
that define the transmitting coil's orientation are a, 13 and y as defined in the figure 
below. 

orthogonality condition: condition wherein the axis of the transmitter is 90° with 
respect to the axis of an antenna. The result of such an occurrence is typically a low 
reading in the orthogonal antenna. 

perturbation: process by which alternate initial-guesses are selected as a seed for the 
numerical algorithm. Once the numerical algorithm converges to a solution, the 

solution vector x = {x,y,z,α,β ,γ} T  is randomly perturbed such that a new initial 

guess x ̅ 0 = {x + ∆x, y+ ∆y, z + ∆z, α+ ∆α, β+ ∆β , γ+ ∆γ}T is selected and the iteration 

process is repeated. This is done any number of time. The iteration sequence resulting 
in the least residual is selected at the global minimum. 

tessellation: system or arranging antennae about the flow space. 

tracking sphere: the packaged transmitter. The tracking sphere is the powered 
transmitter embedded within a 1" acrylic sphere typical of those in the flowing mass. 

voltage model: Mathematical model that allows us to compute voltages given the 
position and orientation of the transmitting source. 
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