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ABSTRACT 

NARROW-BAND INTERFERENCE REJECTION IN SPREAD 
SPECTRUM USING AN EIGENANALYSIS BASED APPROACH 

by 
Aparna Vadhri 

A new adaptive technique is suggested for rejecting narrow-band interferences 

in spread spectrum communications. When data is coded using a pseudo-noise 

code, the received signal consists of a wide-band signal with almost white spectral 

properties, thermal noise, and correlated narrow-band interferences. A new approach 

is proposed which exploits the statistical properties of the received signal via eigen-

analysis of the received data. While the energy of the wide-band signal is distributed 

over all the eigenvalues of the signal autocorrelation matrix, the energy of the inter-

ference is concentrated in a few large eigenvalues. Hence, the eigenvectors corre-

sponding to the large eigenvalues are termed the interference subspace. The proposed 

method derives a. weight vector residing in the subspace spanned by the rest of the 

eigenvectors termed the noise subspace. Consequently, it is orthogonal to the inter-

ference subspace. The eigenanalysis based interference cancellation is sub-optimal 

in a known signal environment, but is superior to the Wiener-Hopf filter when the 

signal statistics are estimated from a limited amount of data. A fast and effective 

adaptive algorithm is derived using the power method. 
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CHAPTER 1 

INTRODUCTION 

Spread spectrum systems are widely employed as signal modulators and transmitters 

in the military and mobile communications fields. Their payoffs are many; most 

notably, interference rejection, multipath suppression, low probability of interception, 

and random accessing by multiple users. 	Of these, the single most important 

inherent aspect of spread spectrum systems is interference rejection [211. This work 

focuses on the rejection of narrow-band interferences in spread spectrum systems. 

The spread spectrum system spreads a data signal over a much wider bandwidth 

than necessary to transmit the information. This, in turn, translates into a processing 

gain, so called because the signal achieves a gain in power over the interference 

during processing. Of the various spreading techniques, the direct-sequence (DS) 

system is considered in this work. In a DS system, each data bit is modulated by a 

pseudorandom or pseudonoise (PN) code. The resulting short pulses, called chips, 

form a sequence with white power spectral density. The wide-band data. is then 

transmitted. 

The data. is received at the destination, corrupted by thermal noise, commonly 

modeled as a.n additive white Gaussian noise. 	In addition to thermal noise, 

other interferences, both narrow-band and comparable in bandwidth to the spread 

spectrum bandwidth, may co-exist in the same portion of the frequency spectrum 

as the modulated signal. The degree of distortion caused in the received signal 

is proportional to the portion of the signal bandwidth the interferences occupy 

as well as their power. It is well known that the matched filter is the optimal 

processor for a known signal, in our case, the interferences, in white Gaussian noise. 

The received signal is subsequently demodulated, using the same PN code that 

was used to modulate the desired signal in the first place. 	The interference is 
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effectively decorrelated and assumes a white noise-like appearance. Consequently, 

the interference bandwidth is spread out over the entire spread spectrum system 

bandwidth, thereby mitigating the effect of the interference power throughout the 

spread spectrum bandwidth. Summing the output of the PN demodulator over 

the data bit time interval restores the original data and averages out the noise-

like interference, thereby removing the interference outside the signal bandwidth. 

In the process, the bandwidth of the desired signal collapses to the original data 

bandwidth. Consequently, only a fraction of the interference power, namely the 

ratio of the spread spectrum bandwidth over the signal bandwidth. termed as the 

compression ratio, serves to distort the desired signal. This is the matched filter, 

optimal for a known signal in white Gaussian noise, but effective against interference 

to the extent of the processing gain [10]. 

The spread spectrum system is inherently as effective in combating the wide-

band interferences as it is capable of handling the narrow-band interferences. In 

other words, the system rejects a wide-band interference of a certain power with 

the same effectiveness as it rejects a narrow-band interference of the same power. 

This is because the improvement in the signal-to-interference ratio (SIR) termed as 

the processing gain is equal to the compression ratio. Therefore, the processing 

gain of a spread spectrum receiver is independent of the interference bandwidth and 

power. Likewise, the resulting SIR at the output of the filter is independent of the 

interference bandwidth; however, it is dependent upon the power of the interference. 

When the power of the interference is so great that the increase in SIR due to 

the processing gain of the fixed matched filter is not satisfactory, it is necessary to use 

a matched filter for the noise and the interference. This work addresses the rejection 

of narrow-band interferences. Hence, the matched filter is implemented by processing 

the received signal through a narrow-band filter before demodulation. The narrow-

band filter is designed to notch the interference out. As a result, the frequency 
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components of the desired signal that occupy the same region as the interference are 

notched out as well. This distortion is negligible if the interference bandwidth is 

small compared to the spread spectrum bandwidth. 

If the interference power spectral density is fixed and known, then an optimal 

filter can he designed that estimates and removes the narrow-band interference from 

the data with minimum mean square error (MSE). The optimal filter is also known 

as the Wiener-Hopf filter. It is optimal because it operates under the assumption 

that the interference statistics are known and accordingly minimizes the power of 

the interference, given by the mean square (MS) at the output of the interference-

suppressant filter. The optimal filter calculates and removes the correlated portion 

of the received signal. Since the received signal consists of the wide-band spread 

spectrum signal, thermal noise, and the narrow-band interference, the correlation is 

mainly due to the interference. 

If the interference power spectral density, or equivalently, the correlation 

function, is not known, it can be estimated from the data. 	For a stationary 

environment, the estimate improves as the size of the data record is increased. 

When the interference cannot be represented by a stationary process, a recursive 

algorithm is required to update the coefficients of the optimal filter. 	Several 

recursive algorithms based on the Wiener-Hopf filter have been developed. 

One class of such algorithms is the Widrow-Hoff least mean squared (LMS). 

Widrow, et al. [25] provided an extensive review of the performance of the Widrow-

Hoff LMS algorithm implemented using a digital filter for the purpose of array 

processing. 	Compton [1] first introduced the Widrow LMS implemented in an 

adaptive filter in PN spread spectrum systems for the purpose of nulling the inter- 

ference. 	Iltis and Milstein [13] furthered the work in [1] by providing extensive 

analysis of the performance of the Widrow LMS algorithm implemented in a linear 

transversal filter in PN spread spectrum systems. 
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Another class of algorithms is based on minimizing the least-squares (LS) 

criterion. 	One particular member of this class developed by Godard [4] is the 

recursive least squares (RLS). Eleftheriou and Falconer [3] provided analysis of 

the performance of the RLS implemented in an adaptive filter to rapidly track an 

unknown signal. Another member of this class of LS-based algorithms is the linear 

least squares estimation (LLSE) algorithm. Iltis and Milstein [12] considered the 

application of the LLSE algorithm in DS spread spectrum systems to excise narrow- 

band interference. 	Milstein and Iltis [20] and Milstein [19] provided overviews 

of several of the popular algorithms implemented in linear transversal filters for 

excision of narrow-band interference in PN spread spectrum, including LMS and 

LLSE techniques. 

Both the LMS and the RLS algorithms are widely used in tracking signals in 

unknown environments. Therefore, they have been implemented in digital filters 

to estimate and cancel narrow-band interferences in spread spectrum. Hsu and 

Giordano [11] first used digital whitening filters in the form of linear prediction filters 

in PN spread spectrum systems to excise correlated portions of a signal, namely the 

interference, in a white Gaussian environment. Gaussian statistics were assumed to 

maintain the linearity of the filter. 

Ketchum and Proakis [15] provided extensive expressions for the performance 

of linear prediction filters in terms of the signal-to-noise-and-interference (SNIR) 

ratio and the probability of error, assuming Gaussian statistics given narrow-band 

interferences. Li and Milstein [16] provided closed-form analytic expressions for 

the performance of linear transversal filters in the presence of a tone interference 

in a white Gaussian environment. Masry [17] extended all work previously done 

in the area of narrow-band interference rejection in PN spread spectrum systems 

using linear prediction filters. 	He provided closed-form analytic expressions for 

the performance of such filters in various narrow-band interference environments, 
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including both deterministic and non-deterministic interferences. 	He further 

extended the work in [15] by providing exact closed form analytic expressions 

for the performance of linear prediction filters based on their length. Furthermore, 

he wrote an extended paper offering exact closed form analytic expressions for 

the performance of linear interpolation filters in PN spread spectrum systems [181. 

However, this work will deal exclusively with linear prediction filters. 

As noted before, the Wiener-Hopf and the Wiener-based algorithms estimate 

and cancel the interference by exploiting the correlation properties of the received 

signal. This work presents a new method and algorithm which exploit the eigen-

properties of the autocorrelation matrix of the received signal. It belongs to a class 

termed eigenfilters because these filters take advantage of the eigen-structure of the 

autocorrelation matrix of the received signal as opposed to other filters which examine 

the correlation properties of the signal. These eigenfilters have been implemented 

in adaptive array processing, e.g., as spectral estimators used to resolve spatially 

distributed signals [2]. An eigenfilter has also been proposed to separate the desired 

signal sources from background noise by resolving them into their respective eigen-

vector subspaces of the signal eigen-space. By designating the narrow-band inter-

ferences as the desired signal sources, they are cancelled if a. weight vector of the 

adaptive filter is placed in an eigen-subspace orthogonal to the interference [6]. 

This work seeks to implement this eigenfilter in DS spread spectrum systems, 

to take advantage of the noise-like appearance of the modulated wide-band signal, 

to resolve the correlated interference and the modulated signal and uncorrelated 

thermal noise into two mutually orthogonal eigen-subspaces. Hence, the modulated 

data and thermal noise are designated as the background noise sources. Then, a 

weight vector could be created residing in the noise subspace that would excise the 

interference while preserving most of the data. 
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The autocorrelation matrix can be represented in terms of its eigenvalues and 

their respective eigenvectors. Both the modulated signal and thermal noise are 

modeled as white processes, distributing the energy evenly over the eigenvalues of the 

received data correlation matrix. Conversely, the energy of the narrow-band inter-

ference is concentrated in only a few large eigenvalues. The eigenvectors associated 

with those eigenvalues span a subspace of the signal eigen-space termed the inter-

ference subspace. The rest of the eigenvectors span the noise subspace, so called 

because most of the white noise resides here. Since the 'eigenvectors of an autocor-

relation matrix are mutually orthogonal, the interference subspace is orthogonal to 

the noise subspace. 

If the adaptive tap-weights of the filter are chosen in the noise subspace, they 

are orthogonal to the interference subspace. Therefore, passing the received signal 

through this filter preserves most of the signal and noise while effectively canceling 

the interference; hence, this eigenanalysis based method is called an Eigencanceler 

[6]. 

The Eigencanceler differs from the Wiener-Hopf in two fundamental ways: 

1. Its design is not based on minimizing both the noise and the interference power 

at the output of the filter. It handles both signals separately. 

2. It has a constraint that its tap-weight vector resides in an eigen-subspace which 

is orthogonal to the interference subspace. 

As stated previously, the Wiener-Hopf filter is the optimal interference canceller in a 

known signal environment. As such, the Eigencanceler is sub-optimal to the Wiener-

Hopf under these conditions. In practical situations, however, the signal statistics 

are unknown and must he estimated, resulting in varying estimates of the eigenvalues 

and eigenvectors of the time-estimated autocorrelation matrix. The insensitivity to 

the inverse of the small, but fluctuating, noise eigenvalues allows the Eigencanceler 
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to deliver superior interference cancellation over the Wiener-Hopf given a relatively 

small batch of signal samples whose correlation properties are unknown. This is 

because the size of the data directly reflects on the measurement noise perturbation 

over the estimation of the interference. Measurement noise perturbation results from 

the estimation of the correlation statistics of the recieved signal, which vary from 

sample to sample of the incoming signal. The smaller the batch of signal samples, 

the more perturbation there exists. Also, the lower the interference power is, the 

greater the perturbation by the measurement noise, since the harder it is to detect 

the interference. Under such circumstances, the Eigencanceler will. offer superior 

interference cancellation over the Wiener-Hopf, while extracting the desired signal 

with a relatively high degree of fidelity. 

Where the interference cannot be represented by stationary processes, recursive 

algorithms are developed to update the weight vector of the filter at. every incoming 

signal sample. Practical implementations of the Wiener-Hopf are formed in the 

aforementioned recursive algorithms. The insensitivity of the Eigencanceler to the 

measurement noise allows for fast convergence to its optimal solution, as opposed 

to the Wiener-based algorithms, which are perturbed, in varying degrees, by the 

measurement noise. 	The usefulness of the Eigencanceler is therefore evident, 

especially when given highly non-stationary interferences. Such an environment 

would require that an interference-suppressant filter be able to adapt within a. few 

iterations to suppress a significant portion of the interference successfully. Conse-

quently, one can build a fast-tracking adaptive filter based on the Eigencanceler and 

suppress the interference effectively. 

The Eigencanceler approach proposed in this work will be developed with a 

block method and a recursive algorithm. The former is known as a block method, 

because data is collected over a period of time in a block format. The block of data 

yields the autocorrelation matrix which is subsequently subjected to eigenanalysis in 
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order to develop the Eigencanceler. The latter is a recursive algorithm, developed 

via the classical power method designed to derive the eigenvector(s) corresponding 

to the largest eigenvalues from the estimate of the autocorrelation matrix of the 

received signal [5]. 

The scope of this work is to test the algorithm based on the Eigencanceler 

against a good sample representative of the other existing algorithms used for the 

signal environment presented in this work. Two of the aforementioned Wiener-based 

algorithms, namely, the LMS and the RLS, will be used in this work. The algorithms 

are briefly introduced here: 

1. The LMS is simple to implement, i.e., it does not store the past data samples, 

only the updated filter tap weights, and it does not require matrix inversion 

[22]. The LMS attempts to minimize the MSE, with the error defined as the 

difference between the current sample of the signal and the output of the filter 

[24]. The error is used in the updating process of the filter tap weights to 

reduce the MSE with each successive iteration. Due to gradient noise, the 

LMS is said to converge to the Wiener solution in the mean. However, the 

main drawback of the LMS is its sensitivity to the eigenvalue spread. In an 

environment where the eigenvalue spread of the autocorrelation matrix of the 

received signal is greater than ten decibels (dB), it is well known that the 

convergence rate of the LMS slows down significantly, i.e., the LMS is highly 

sensitive to the eigenvalue spread [10]. 

2. The RLS algorithm is less sensitive to the eigenvalue spread than the LMS. 

given a high SNR, and it is known to produce zero excess mean squared error 

(MSE) in a stationary environment [10]. However, its chief drawback is its 

complexity. 
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The parameters of the problem—the signal model, the receiver, the Wiener-Hopf 

filter, and the LMS and the RLS algorithms—will be discussed in Chapter 2. The 

derivation of the Eigencanceler will be covered in Chapter 3. Chapter 4 will focus on 

the Eigencanceler algorithm. Simulation results based upon figures of merit derived 

in Chapters 3 and 4 are presented in Chapter 5. The conclusion and discussion of 

possible future work will be covered in Chapter 6. 



CHAPTER 2 

THE SYSTEM 

This chapter considers the following topics: 

1. The signal model, i.e., the generation of the received signal and its statistical 

properties; 

2. The workings of the receiver; 

3. The optimal receiver; 

4. The adaptive algorithms for the suppression of narrow-band interferences in a 

spread spectrum environment. 

2.1 The Signal Model 

The signal model consists of the data signal, the interference, and the thermal noise. 

Consider a data sequence, with each bit of duration T seconds. Assume bi-polar 

signalling so the data. takes on values [-1,+1]. This signal is passed through a PN 

modulator serially, where each hit is modulated by a PN code, as depicted in Figure 

2.1. 

The modulator generates L = T 
 
chips per data bit, where T is the duration of Tc 

each chip. Assume bi-polar signalling so the PN code takes on values [-1,+1], with 

equal probability, and has white spectral properties. Consequently, the modulated 

data signal is spread in frequency over the entire spread spectrum bandwidth. Let 

di be the i-th data. bit, and let c(kTc) be the k-th chip in the PN code. Then the 

modulated data signal µd  is given by: 

10 
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Figure 2.1 The signal model 
(a) The transmitter (b) The modulation of the data signal. 

For the sake of simplicity, the data has zero-mean and unity variance. Likewise, the 

PN code too has zero-mean and variance 1. Therefore, the modulated data signal 

µd  has zero-mean and variance 

The modulated signal is corrupted by additive white Gaussian noise and a 

narrow-band interference. More specifically, two types of narrow-band interference 

are considered: a tone interference and a. narrow-band Gaussian interference. The 

former is a sinusoidal signal with zero bandwidth, and the latter is a signal, whose 

bandwidth is narrow with respect to the spread spectrum bandwidth. The inter- 



for a tone interference 

for a narrow-band interference 

12 

ference tone is modeled by samples of a cosine signal of frequency w, power J, and 

random phase 0, which is uniformly distributed in the interval (0, 2π). Samples of 

the interference tone at the chip interval are then given by: 

The autocorrelation matrix of a narrow-band Gaussian interference is given by: 

where J and wj  are the power and the bandwidth of the interference, respectively. 

The thermal noise is modeled by random signals with Gaussian distribution 

with a spectral density of σ2n. 

Therefore, the received signal is given by: 

The data signal and the thermal noise have white spectra, whereas the tone and 

narrow-band Gaussian interferences are highly correlated. 	A brief derivation of 

their autocorrelation functions will demonstrate the degree of correlation for each of 

the signals. Since the three signals are mutually independent and the PN modulated 

data signal and thermal noise are white, all of the cross-correlation terms equal zero. 

Therefore, the ensemble-averaged autocorrelation sequence of the received signal is 

given by: 

where 
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The autocorrelation sequence of the received signal y is given by: 

13 

The ensemble-averaged autocorrelation matrix is given by the Toeplitz matrix 

generated using the ensemble-averaged autocorrelation sequence, consequently, it is 

represented by: 

for a tone interference, where M is the length of the filter at the receiver; hence, at 

any given time, the current sample of the received signal and M — 1 past samples 

are stored in the filter. 

Likewise, the ensemble-averaged autocorrelation of the received signal for the 

case of a narrow-band Gaussian interference is 

It is noted that the signal and thermal noise terms, namely d  and un, are located on 

the main diagonal, whereas the interference terms occupy every slot in the matrix. 

Now that all the statistical properties of the transmitted and received signals 

have been covered, the next step is to develop the receiver where the signal is 

processed. 

2.2 The Receiver 

The received signal consists of the modulated desired signal, the thermal noise, and 

the interference. The fixed matched filter will disperse the interference throughout 
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the spread spectrum system bandwidth. Note that the fixed matched filter delivers 

the same system performance, i.e., increase in SIR, for an interference of a fixed 

power, regardless of bandwidth size, as it operates independently from the bandwidth 

of the interference. Therefore, the filter is sensitive to the interference power, not 

the interference bandwidth. 

As noted previously, sometimes the fixed matched filter will offer a processing 

gain to the signal such that the output SIR is significantly positive. 	In other 

circumstances, however, the processing gain offered by the fixed matched filter may 

not counter a significantly negative SIR. Consequently, an adaptive, filter may be 

implemented before the PN demodulator to remove the interference from the signal, 

the drawback being that some of the data signal is distorted. 	The output of 

the interference-suppressant filter is passed through the demodulator, whereby the 

residual interference is spread over the spread spectrum system bandwidth. 

The system performance of the adaptive filter is sensitive to both the inter-

ference power and bandwidth because the filter notches out the interference estimate. 

The more power the interference has, the deeper the notch. The more spread 

spectrum bandwidth the interference occupies, the wider the notch in the region. 

As a result, the data signal is distorted even further, because the portion of the data 

signal that occupies the same frequency bandwidth occupied by the interference is 

notched out along with the interference. One way to compensate for this is to 

add more tap weights in the adaptive filter so as to increase the accuracy in the 

estimation of the interference. Another way is to increase the compression ratio, 

i.e., the number of PN code chips per data bit so that the interference bandwidth 

occupies a lesser portion of the spread spectrum bandwidth. 

In summary, two types of receivers will be discussed: the fixed matched filter 

receiver and the receiver consisting of the adaptive interference-suppressant filter and 
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Figure 2.2 The fixed matched filter receiver. 	 

the PN demodulator. Both types of receivers will be evaluated in improvement in 

SNIR and probability of error. 

2.2.1 The Fixed Matched Filter 

The filter, depicted in Figure 2.2, consists of a PN code generator, matched to the 

one at the transmitter, which demodulates the received signal so that the desired 

signal is restored. 

The received signal is given by Equation 2.1: 

The signal is fed into the demodulator and summed over the number of PN code 

chips per data bit, L chips at a time, yielding the output signal: 
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The result is the restoration of the original data signal, an interference spread in 

frequency over the spread spectrum bandwidth, and thermal noise, each with a 

processing gain of L. The summation acts as a low-pass filter, thereby leaving 

the data signal intact. However, the portions of the thermal noise and whitened 

interference lying outside the bandpass filter bandwidth are effectively removed. The 

ratio of the spread spectrum bandwidth Bss to that of the data BT  is given by: 

Since the interference is spread in frequency over the entire spread spectrum 

bandwidth, the interference effect on the data signal is reduced by a factor of L. 

because the effective interference lies only within the original data signal bandwidth. 

Therefore, although the total power of the interference after demodulation is incre-

mented by L, the effective power of the interference on the data signal is marked 

down by a factor of L. The thermal noise is equally adversely affected by L. The 

power of the data signal after demodulation is incremented by a factor of L; thus, 

the SNIR is increased by a factor of L. 

To compute the SNIR of a particular bit at the output of the PN demodulator in 

an adaptive interference-suppressant filter, the mean and the variance of the bit. must 

be computed. Assumptions are made to the effect that the PN sequence is white, the 

interference has zero-mean with an autocorrelation sequence p j (k), and the thermal 

noise has white spectral properties with variance σ2n. Given these assumptions, the 

following equation defines the SNIR at the output of the fixed matched filter SNIR ƒ  

corresponding to the i-th data bit to be the square of its mean over its variance [15]: 
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Figure 2.3 The adaptive interference-suppressant filter. 

Given that the power of the modulated data signal o = 1, the SNIR. improvement 

factor η of the processed signal is given as: 

2.2.2 The Adaptive Interference-Suppressant Filter 

The adaptive interference-suppressant filter predicts the interference based upon past 

samples of the received signal and subtracts the interference estimate from the signal, 

a sample at a time. Linear prediction algorithms implemented by transversal filters 

may be used to estimate the interference signal [11]. An adaptive spread spectrum 

receiver consisting of a transversal filter followed by the spread spectrum demodulator 

is depicted in Figure 2.3. 

Once the statistical properties of the interference are known or estimated, the 

weights can be adapted such that the sum of the product. of each past sample with 

its respective tap-weight vector element yields an interference estimate. Subtracting 

this estimate from the current sample of an incoming signal on the first tap-weight 
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element of unity value removes the interference sample to a certain extent, thereby 

delivering a relatively interference-free signal. 

The output of the M-tap filter yk  at time k is given as follows: 

where uj  is the interference estimate. 

Let an and uk-n, be represented by A and U‘k, respectively, where A = 

Then, the output of the filter is fed 

to the demodulator. 

The SNIR at the output of a receiver consisting of an interference-suppressant 

filter and a PN demodulator is defined below [15]: 

where L is the size of the PN demodulator or the processing gain, pj is the autocorre-

lation sequence of the interference, σ2n is the variance or power of the thermal noise, 

and RI  is the autocorrelation matrix of the interference, given by the Toeplitz of p3. 
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Combining Equations 2.4 and 2.8, the SNIR improvement factor 	of the 

adaptive filter receiver over the fixed matched filter is given by: 

where SNIRout  is the SNIR at the output of demodulator in an adaptive filter receiver, 

and SNIRf  is the SNIR at the output of a fixed matched filter. Therefore, the SNIR 

improvement factor of the adaptive filter receiver over the input to the receiver is 

equal to Lη'.  

Another standard figure of merit in digital communications is the probability 

of error. At the output of the receiver, a decision has to be made regarding the 

transmitted signal bit based upon the processed data, e.g., in the case of a bi-

polar signal, if a hit of value +1 was sent, the decision making involves choosing 

between —1 and ±1. The probability of error yields the percentage of incorrect 

decisions made based upon the number of bits received. Assume the received bit 

has Gaussian statistics with mean squared and variance forming the numerator and 

the denominator of the SNIR at the output of the demodulator, respectively, as 

defined in Equation 2.8. Then, the probability of error Pe  may be defined in terms 

of the Q function as follows [15]: 

A standard figure of merit used to test the perturbation in the adaptive tap 

weights due to measurement noise is comparing the MS at the output of the filter to 

the minimum MS. defined by the MS at the input as follows: 
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Rearranging the equation given above yields the MS at the input of the filter uk  in 

terms of the desired minimum MS at the output of the filter: 

Therefore, the interference term is given by the second item on the RHS of the 

equation. Placing this definition of E[|uk|2] in the derivation of E{ 	yields: 

where the second term on the RHS of the equation represents the MS excess noise. In 

keeping with the format adopted for the convergence in the mean, the last equation 

may be rewritten as: 

where ,7,(k) is the excess MS beyond the minimum MS Jmin  which constitutes the 

MS of the output of the filter. 

Another figure of merit is the normalized variance of a weight vector. The 

expression for the normalized variance is based on the premise 7Z 	= us  where us  

varies from filter to filter. Let R = 7Z + AR, where ∆R is the perturbation in 

the autocorrelation matrix. Likewise, let W = W ∆W, where W is the optimal 

weight vector and ∆W is the perturbation in the weight vector. The normalized 

variance of a weight vector is given by, 

where the term in the numerator is the square of the norm of the weight vector 

perturbation and the term in the denominator is the square of the norm of the optimal 

weight. vector, alternatively the Wiener-Hopf or the Eigencanceler, as appropriate. 

In summary, the corrupted signal passes through an interference-suppressant 

filter and then through a PN demodulator matched to the one in the transmitter. 
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The filter exploits the coherence or correlation properties of the narrow-band inter-

ference in order to predict it and subtract it from the received signal [11]. The PN 

demodulator averages spread the interference over the entire spread spectrum and 

then reduce the interference contribution by averaging the noise-like signal. 

Now that the parameters of both the signal model and the receiver have been 

covered extensively, the next step is to examine the optimal solution for the excision 

of narrow-band interference in a white Gaussian environment. 

 2.3 The Wiener-Hopf 

The prediction error ek  is the difference between the actual interference sample uj,k  

and the interference estimate uj,k  at time k; then. 

The Wiener-Hopf filter minimizes the mean-square prediction error (MSE). The 

output yk  of the M-tap filter at time k is given by Equation 2.6: 

Due to the independence between the data signal, the interference, and the thermal 

noise, minimizing E[|ek|2] is equivalent to minimizng the mean-square (MS) at the 

output of the filter. Therefore, the output yk  may be re-written in terms of the 

prediction error ek: 

Therefore the MSE term may be expressed as: 
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We seek to minimize E [|ek|2] with respect to WH, with the constraint that. the 

reference tap-weight W(1) be equal to one because the current signal sample uk  on 

the first tap-weight element is the reference signal sample. Accordingly, using the 

Lagrange multiplier method, we solve for the following expression: 

where uo  = [1 0 ... 0]. 

The gradient J to be minimized is set up as follows: 

where λ1 is the Lagrange multiplier. Minimizing 	with respect to WH: 

Therefore, the weight vector is defined as follows: 

To solve for the Lagrange multiplier, the sole constraint is taken into account: 

Therefore, 

Thus, the optimal weight vector Wo that minimizes the MS at the output of the 

interference-suppressant filter is given by: 

Equation 2.14 is the optimal tap-weight vector for suppressing a band-limited inter-

ference when the autocorrelation matrix of the interference is known. 



The convergence rate of Ak  to A, is determined by the ratio E 
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2.4 The Widrow-Hoff LMS 

The LMS and RLS were introduced as Wiener-based recursive algorithms. Their 

derivation and their convergence rate to the Wiener-Hopf solution will be covered in 

this and the following section. 

The LMS algorithm updates the adaptive tap-weights Ak  of the weight vector 

at time k as follows: 

where it is a fixed step-size parameter and yk  = uk  — AHk-1  U is the output. of the 

un-updated filter. Ak-1  is the (k — 1)-th iteration of the adaptive tap-weights, and 

U'k is the vector of the (M — 1) past samples of the received signal on the filter 

tap-weights. 

The LMS minimizes the MS at the output of the filter, at each successive 

iteration, to converge to the minimum MS attained by the Wiener-Hopf filter. In 

order to converge to this point, the LMS must converge in the MS at the output. of 

the filter, and it must converge in the mean of the weight vector Ak  to the Wiener-

Hopf filter Ao [10]. To converge in the mean of Ak  to Ao, the step-size µ is limited 

to the following: 

where λ'max is the maximum eigenvalue of the autocorrelation matrix R' 

where ek  = Ak  — A0 . Accordingly, we derive the convergence rate from (9.74) of 

[10]: 

is the weight. vector error covariance matrix, and 	is the 

minimum MSE at the output of the filter. 



Both the ratio E and E NE132)  demonstrate a dependence on the length 
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Taking advantage of the definition E[||ɛk||2] 	tr [Kk], and R ' 	o I, where 

the trace of both 

sides of Equation 2.16 yields 

yields where Jmin is ignored. The minimization of the term 

the optimal rate of covergence for the LMS. Accordingly, Therefore, 

Equation 2.17 may be re-written as: 

where M is the length of the interference-suppressant filter. 

Given that the initial Ak=0 = 0, ɛ0  = —A,. Therefore, the convergence rate 

of Ax to A, at time k may be expressed as: 

M of the adaptive filter. The larger M is, the longer it takes the term E [|E42] to 

converge. 

Equations 2.11 and 2.12 present the convergence of an algorithm in the MS at. 

the output of the filter. Haykin gives the MS at the output of the filter in (9.81) of 

[10], re-written here: 

From Equations 2.17 and 2.19, Equation 2.20 may be re-written as: 

Equation 2.21 represents the convergence of the MS 1(k) at the output of the 

adaptive filter at every iteration k. Like the convergence of the weight vector pertur-

bation E k , 1(k) also demonstrates a dependence on. M. 



where 
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2.5 The RLS 

The RLS updates the adaptive tap-weights at time k as follows: 

Initialize the RLS: 

where Фk is the inverse of the time-averaged autocorrelation matrix 1Z of the (1M1) 

past samples of the received signal on the adaptive tap-weights at time k, S is a small 

positive constant, and I is the identity matrix. 

At every k-th iteration, the RLS updates the following parameters: 

The gain vector: 

where Gk  is the variable step-size, a.k.a. the gain vector, and 7 is the forgetting 

factor. 

The adaptive tap-weight vector: 

is the output of the un-updated filter. 

The inverse of the correlation matrix: 

Like the LMS, the RLS is to be evaluated at the convergence of the weight 

vector in the mean and in the MS at the output of the filter. For the RLS, the 

convergence rate of Ak to the Wiener-Hopf filter Ao is developed using the ratio 

E [||ɛk+1||2] 	. We use the expression (13.41) of [10] to establish the relation between ||ɛk||2 

Kk and Фk: 
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The equation given above may be re-written in terms of the ensemble-averaged 

autocorrelation matrix R' of the (M — 1) past signal samples, using the approxi- 

mation 7Z' 	1Ф-1  in (13.42) of [10]. Hence, 
k k 

where λ'min is the minimum eigenvalue of 7Z. Accordingly, 

Therefore, the convergence ratio is given by 

Employing the same initial conditions used in the LMS, the convergence rate of Ak 

to A, at time k is given by: 

Note that the convergence rate for the weight vector in the RLS algorithm depends 

on the k-th iteration, thereby giving the RLS a significant initial advantage over the 

LMS in Equation 2.19 in convergence to the optimal solution. Equally significantly, 

the convergence rate is independent of the length of the adaptive filter M. 

The MS at the output of the filter is 

Given the definitions derived in Section 2.4, Equation 2.27 may be written as: 

Like the convergence of the weight vector perturbation Ek, J(k) also demonstrates 

a dependence on the k-th iteration. 



CHAPTER 3 

THE EIGENCANCELER 

The previous chapters introduced the implementation of the Wiener-Hopf filter and 

the LMS and RLS algorithms in a spread spectrum system. However, the Wiener-

Hopf and the Wiener-Hopf based algorithms have demonstrated sensitivity to the 

measurement noise. Furthermore, the chief detraction of the LMS is its sensitivity 

to the eigenvalue-spread. The Eigencanceler offers a new approach in the excision of 

correlated information in a white Gaussian environment by using an 

eigenanalysis-based method, which will prove to be insensitive to measurement noise. 

The received signal may be represented in terms of the eigenvalues and eigen-

vectors of its autocorrelation matrix. As both the modulated data signal and thermal 

noise are white, their eigenvalue terms are small and spread throughout the entire 

signal eigen-space, i.e., they span all eigenvectors of the signal space. This does not 

apply to narrow-band interference, since the interference is entirely concentrated in 

a few eigenvectors of the signal eigen-space, termed the interference subspace. The 

high-power narrow-band interference may be located by examining the large eigen-

values it generates in the autocorrelation matrix of the received signal. Moreover, 

the interference subspace is orthogonal to the noise subspace where the majority of 

the modulated data signal and thermal noise are concentrated. Therefore, a tap-

weight vector residing in the noise subspace will effectively cancel the interference, 

leaving most of the modulated data signal and thermal noise untouched. 

Given an environment, where only a. finite set of samples of the received signal 

are given, with unknown correlation statistics, subsequent computations yield an 

estimate of the autocorrelation matrix of the received signal. 	In a stationary 

environment, as more data is collected and analyzed, the estimate of the autocor-

relation matrix improves, thereby yielding a better interference-suppressant filter. 
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However, in a highly non-stationary environment the data size is significantly limited. 

Given that the time-averaged autocorrelation matrix is an estimate of the ensemble-

averaged autocorrelation matrix, and given that the noise samples vary from set to 

set, the eigen-decomposition reveals that the noise eigenvalues constantly fluctuate 

and are uneven. This inconsistency masks the interference to a. significant extent, 

thereby slowing down the convergence of the Wiener-Hopf to the Wiener-Hopf 

solution based on known signal statistics. The Wiener-Hopf is dependent upon 

matrix inversion for estimation of the interference. The matrix inversion causes 

small eigenvalues to be inverted as well, thereby increasing the impact of the noise 

on the interference estimate. As the Eigencanceler does not employ eigenvalues, it is 

unaffected by fluctuations in the noise eigenvalues; hence, a rapid convergence to the 

optimal solution. Even with a few data, it is possible to perform an eigenanalysis of 

the received signal so as to determine the interference subspace. Consequently, the 

Eigencanceler algorithm is able to achieve a high degree of interference cancellation 

within relatively far fewer samples than is needed for the Wiener-Hopf, the LMS 

and the RLS to yield the same system performance. 

In conclusion, while the Wiener-Hopf is the optimal solution given the corre-

lation statistics of the received signal, the Eigencanceler proves to be superior, though 

sub-optimal, in the lack thereof. 

This chapter will be divided as follows: Section 3.1 covers the eigenanalysis 

of the received signal. Section 3.2 derives a filter which combines both the Wiener-

Hopf and Eigencanceler methods. Section 3.3 derives the Eigencanceler. Simulation 

results comparing the Eigencanceler method with the Wiener-Hopf are presented in 

Chapter 5. 
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3.1 Eigenanalysis of the Signal Model 

From Chapter 2, the ensemble-averaged autocorrelation matrices of the signal model 

with a single tone interference and with a single narrow-band Gaussian interference 

are given by Equations 2.2 and 2.3, respectively. The independence between the 

interferences and noise, i.e., the modulated data signal and thermal noise, allows for 

the separation of the autocorrelation matrices of interference and noise as follows: 

where RI and Rv are the autocorrelation matrices of the interference and noise, 

respectively. 

From [6], performing an eigenanalysis of the equation given above yields 

where QI  and Qv are matrices whose columns contain the interference and noise 

eigenvectors, respectively, and AI  and A.:, are the corresponding diagonal eigenvalue 

matrices. Since the noise is white, all of its eigenvalues are equal to σ2v, which is the 

power or variance of the noise; hence, the second term on the RHS of Equation 3.1. 

In practical situations, the correlation statistics of the received signal are 

unknown and have to be estimated. Hence, the autocorrelation matrix is time-

averaged and is given by: 

where \'s are the eigenvalues, 4's are the eigenvectors, p is the size of the interference 

subspace or number of degrees of freedom occupied by the interference, and Al is 

the total number of degrees of freedom occupied by the received signal. Note that 
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v

 contains small and uneven eigenvalues λn, n = p +1... M, in contrast to Ʌv in 

Equation 3.1 which contains small but equal eigenvalues of value σ2v. 

As the Wiener-Hopf and the algorithms based on the Wiener-Hopf rely upon 

the inversion of the autocorrelation matrix, the eigenvalues too are inverted, with the 

result that the large eigenvalues have little impact on the Wiener-Hopf whereas the 

small eigenvalues have a significant impact as shown below. Due to the orthonor-

mality property between QI  and Qv, the eigen-decomposition of the inverse of the 

ensemble-averaged autocorrelation matrix yields: 

The eigen-decomposition of the inverse of the time-averaged autocorrelation matrix 

yields: 

The second term on the RHS illustrates the impact of the inverse of the small eigen-

values on the development of the Wiener-Hopf. 

Let Q he the eigenvector matrix that comprises the signal space such that 

Q = [QI : Qv]. From [10] and the unitary property of Q, we find that QQH = I. 

Therefore, due to the orthonormality between QI  and Qv, we can deduce that 

Equation 3.5 represents the interference and the noise in terms of the respective 

subspaces they occupy, a trait of the received signal that shall prove useful in the 

derivation of the Eigencanceler in the Section 3.3. 

In light of the focus of this work, the weight vectors involved here are best 

dealt with from an eigenanalysis point of view. Hence, the Wiener-Hopf, given by 
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Equation 2.14, may be re-defined as follows: 

In a highly negative SIR environment, λn „,.1...p 	|n=p+1...M = σ2v.  Under such 

conditions, Equation 3.6 may be approximated by, 

The Wiener-Hopf filter minimizes the MS at the output 'of the filter, derived in the 

previous section. The following term is the minimum MS attained by the Wiener-

Hopf: 

Under highly negative SIR conditions, Equation 3.8 may be approximated by, 

The Wiener-Hopf based on the time-averaged autocorrelation matrix is given by, 

Again, in a highly negative SIR environment, Equation 3.10 may be approximated 

where Ʌv contains small but uneven noise eigenvalues pertaining to the time-averaged 

autocorrelation matrix of the received signal. 

The normalized variance of the Wiener-Hopf, defined by Equation 2.13, is given 

in [9]: 
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where ∆Wo = Wo  — Wo  is the weight vector perturbation. ∆Wo is thus dependent 

on the rank M, of R and, thereby, also the length of the interference-suppressant 

filter. The longer the filter, the better the estimation of the interference; hence, an 

increase in robustness to measurement noise. 

3.2 The Constrained Minimum Variance Filter 

The Wiener-Hopf minimizes the MS at the output of the filter with the constraint 

that the first tap-weight element be of unity value. The Eigencanceler is designed 

under different conditions, and it is subject to an additional constraint, namely, that 

it is orthogonal to the interference subspace. 

In order to understand the fundamental differences between the two methods, it 

is necessary to develop an intermediate step, that of constructing a filter based on the 

Wiener-Hopf concept of minimizing the MS, i.e., WHRW and on the Eigencanceler 

concept of being orthogonal to the interference subspace. .As the environment is 

random white Gaussian, the means of both the input and the output are equal to zero. 

In addition, the adaptive filter is linear and transversal. Hence, the intermediate 

method may be characterized as a linearly constrained minimum variance (CMV) 

filter [10]. 

The objective of the CMV filter is to minimize the interference and the noise 

by applying several constraints via the Lagrange multiplier method as follows: 

where qI is a single interference eigenvector for an interference occupying a 1-D 

eigen-space and uo  = [1 0... 0]T. 

The gradient J to be minimized is set up as follows: 
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where [λ1, λ2] are the two Lagrange multipliers. Minimizing J with respect to W: 

Therefore, the weight vector is defined as follows: 

To solve for the two Lagrange multipliers, the first constraint is taken into account: 

Therefore, 

because, R-1 qI = 1/λI q1 where λI  is the interference eigenvalue, and qHI qI = 1. 

Therefore, λ2 = 

Solving for the second constraint: 

Solving for [λ1,λ2]: 

Therefore, 

Lastly, the CMV filter is derived below: 
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The weight vector defined above meets the two specified constraints: 

For the general case where there are p number of interference eigenvalues and eigen-

vectors, the CMV filter may be redefined as follows for an ensemble-averaged autocor-

relation matrix R: 

Defining the ensemble-averaged autocorrelation matrix R of the received signal in 

eigen-decomposition terms, the MS at the output of the filter may be defined as 

follows: 

For a time-averaged autocorrelation matrix 
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Taking into account Equation 3.5, *CM  may be re-written as follows: 

Under highly negative SIR conditions, note that we have re-derived, in essence, the 

Wiener-Hopf filter given in Equation 3.11, with the additional constraint WHQ1  = 

0. 

The normalized variances of the Wiener-Hopf and the Eigencanceler are derived 

in [9]. We performed some experiments evaluating the performance of the CMV 

filter against that of the Wiener-Hopf, and found both to yield similar results. Our 

conclusion is that the use of the eigenvalues, especially the noise eigenvalues, effects 

perturbation in the CMV filter on the same scale as in the Wiener-Hopf filter. In 

the interest of this work, then, we chose not to further pursue this venue. 

3.3 Derivation of the Eigencanceler 

Both the Wiener-Hopf and the CMV filters minimize the MSE term WHRW at 

the output of the linear prediction filters. 	As a result, they attempt to cancel 

both the interference and the noise simultaneously, without the separation of one 

from the other. Due to measurement noise that arises from the use of a time-

averaged autocorrelation matrix of the received signal, a. solution may be found in 

separating the noise from the interference, then minimizing the power of the former 

while imposing an orthogonality constraint on the latter. This solution lies in using 

a minimum, norm design, whereby the norm of the weight vector is minimized, as 

opposed to the MSE at the output of the filter. This design has been exploited in 

[6], [9] for the purposes of interference cancellation in array processing. We exploit 

the nature of the received signal in DS spread spectrum in the minimum norm design 
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in order to separate the noise from the interference, preserve the noise, namely the 

modulated data, and cancel the interference with robustness to measurement noise. 

The minimum norm method is outlined from [10] here: Let the autocorre- 

lation matrix of the signal be eigen-decomposed into two mutually orthogonal eigen- 

subspaces 	, where the weight vector C has the following conditions imposed 

on it: 

1. C lies in the range of V. Hence, 

2. The first element of C = 1. So, 

where uo  = [1 0 ... 0] . 

3. The Euclidean norm of C, namely CH C, is minimized, imposed with the two 

constraints specified above. 

Instead of minimizing WHTW, the Eigencanceler will be derived by minimizing 

WHW with the constraints WHuo  = 1 and WHqI  = 0. Accordingly: 

Minimizing the gradient with respect to WH , 

Therefore, 

The next step is to obtain the values for the two Lagrange multipliers, [λ1, λ2]. 

Applying the first constraint: 
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Applying the second constraint: 

Solving for [A,, 2]: 

Solving for the weight vector: 

The weight vector defined above meets the two specified constraints: 

The minimization of the term WHW is therefore given by: 

The MS at the output of the filter is then given by, 

In a highly negative SIR environment with known signal statistics, it is noted that the 

Eigencanceler performs quasi-optimally in reference to the Wiener-Hopf, comparing 

the weight vectors in Equations 3.18 and 3.7, respectively, and the MS term 5 in 

Equations 3.20 and 3.8, respectively. 
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Given a time-averaged autocorrelation matrix, the Eigencanceler is given by: 

Using Equation 2.13 to test the robustness of the Eigencanceler to the measurement 

noise, the normalized variance of the Eigencanceler is given by [9]: 

The perturbation of the Eigencanceler weight vector ∆We = We  — We, is 

smaller than that of the Wiener-Hopf weight vector by a factor of the inverse 

of the eigenvalue-spread. No eigenvalues are used and the noise eigenvectors are 

normalized; hence, there is no large-scale fluctuation in the formation of the tap- 

weights, as evidenced in Equation 3.22. 	In contrast, the Wiener-Hopf exhibits 

strong sensitivity to fluctuations in noise eigenvalues, as illustrated in Equation 

3.12. 



CHAPTER 4 

THE EIGENCANCELER ALGORITHM 

Chapter 3 focuses on the derivation of the Eigencanceler using blocks of data to 

estimate the autocorrelation matrix and subsequently derive the weight vector. This 

chapter deals with the development of the recursive Eigencanceler algorithm, using 

the classical power method to extract the eigenvectors corresponding to the largest 

eigenvalues in descending order [5). 

The algorithm is developed as follows: 

The parameters are initialized: 

where U0  is the first set of received signal samples, q0  is an initializing vector. P(l)  is a 

projection matrix, designed to maintain the orthogonality between each eigenvector, 

by projecting the l-th eigenvector in a subspace orthogonal to all the previously 

derived (1 — 1) eigenvectors. 

The following steps will derive the eigenvectors corresponding to the largest. 

eigenvalues in 74: 

1. The i-th iteration at time k of the 1-th eigenvector: 

where V!)  is the projection matrix. Note: Step 2 is run 2-3 times for accurate 

derivation of the eigenvectors. 
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2. The projection matrix is updated: 

3. Steps 2-3 are repeated until all interference eigenvectors have been resolved 

into an interference subspace Q1,k E[q1 	qp], where p < M is the number 

of degrees of freedom assigned to the interference subspace. 

4. The weight vector is updated: 

5. The estimate of the autocorrelation matrix given by [14]: 

The Eigencanceler algorithm is evaluated in its convergence rate to the Eigen-

canceler formed under known signal statistics and in the convergence rate of the MS 

at the output of the filter. Given a case where the interference is tone modeled as 

a complex exponential, it occupies only one degree of freedom. 

Proceeding in a manner similar to that expressed in [7], to simplify the analysis 

of the rate of convergence of the adaptive Eigencanceler we will consider the case that 

the interference subspace Q. = [q(1)] , i.e., it consists of a single eigenvector (this 

is true for a tone interference represented by a complex exponential). For brevity 

of notation let q = q(1) . The Eigencanceler's weight vector at the k-th iteration is 

given, up to scaling factor, by: Wk = 	- qkqTk u9. Then, the weight vector error 

is expressed by: 

The eigenvector qk  is estimated using the power method. We wish to focus on the 

speed of convergence due to the estimation of eigenvectors. Consequently, we will 
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assume that the correlation matrix Rk has converged to T. The initial estimate of 

q can be expressed in the basis formed by all the eigenvectors of R: 

At the k-th iteration of the power method we have: 

If c]  is chosen such that c1α1 Ai = 1, then we can express qk  as the sum of two 

orthogonal vectors: qk  = q + bk . Using this relation in Equation 4.3 results in 

Exploiting the orthogonality between q and bk, and the relation qTq = 1, we get: 

From Equation 4.5 it can be observed that this term decays as fast as (λ2/λ1)2. 

Hence we have 

For a strong interference the adaptive Eigencanceler will converge faster than either 

the LMS or RLS algorithms. 

Assuming the same initial conditions given for the LMS and the RLS, the 

convergence rate of We,k to We  at time k may be expressed by: 

Comparing Equations 2.21 and 2.28 to 4.9, it is duly noted that the Eigencanceler 

algorithm converges to its optimal solution faster than do the LMS and the RLS to 

the Wiener-Hopf. It is also noted that the larger the interference power, the faster 

the convergence of the Eigencanceler algorithm to its optimal solution. 
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The MS at the output of the filter is given by Equation 2.21, re-written here: 

where J'min  is the minimum MS attained by the Eigencanceler at the output of the 

filter, under known signal statistics. Combining Equations 4.9 and 4.10, the MS at 

the output of the filter may be expressed as: 

where Jmin  is the minimum MS at the output of the filter achieved by the Wiener- 

Hopf filter under known signal statistics. 	R-1I and R-1v are the inverse of the 

ensemble-averaged autocorrelation matrices of the interference and noise, respec-

tively. 

Under highly negative SIR conditions, the second term in Equation 4.11 

converges to zero, in effect. Therefore, comparing the MS at the k-th iteration due 

to the LMS and the RLS in Equations 2.21 and 2.28, respectively, to Equation 4.11, 

the Eigencanceler algorithm minimizes the MS at the output of the filter within far 

fewer iterations than either the LMS or the RLS. 

A final note on the practical consideration of the Eigencanceler algorithm: 

The LMS is well known to have order M complexity (0(M)), whereas the RLS has 

0(412 ) complexity. Since the Eigencanceler algorithm involves the multiplication 

of matrices upto M x M, the Eigencanceler has order 0(M 2 ) complexity [6]. In 

summary, the Eigencanceler proves to converge faster than the LMS and the RLS, 

even with an order 0(M2 ) complexity. 



subscript for brevity The 

Using these definitions, we have 

CHAPTER 5 

PERFORMANCE ANALYSIS 

5.1 Eigenanalysis 

In Chapter 3, the received data is represented in terms of the eigenvalues and eigen-

vectors of its autocorrelation matrix. We noted that the narrow-band interference 

occupies a few degrees of freedom in the signal eigen-space, marked by a few large 

eigenvalues. This section will cover the number of degrees of freedom to be assigned 

to the interference subspace, i.e., the number of eigenvalues which are to be termed 

interference eigenvalues. 

The eigenvalue decomposition of the correlation matrix of the received data 

reveals several interesting properties. 	Proceeding in a. manner similar to that 

expressed in [8], consider RI, the correlation matrix of the interference contributions 

present in the filter structure. 	For a tone interference, RI = E [jk 	where 

the expectation operation is over the random initial phase 0. Dropping the time 

interference vector can be expressed using the complex vectors , 

Since f and f*  are linearly independent, it follows that the interference correlation 

matrix, which is the sum of two rank one matrices, has rank two, i.e., only two 

non-zero eigenvalues. The eigenvalues of the data matrix R are determined by the 

combination of spread spectrum data, interference and thermal noise. The data 

and thermal noise are assumed white, and their effect is to add a. constant level 

(S + σ2n) to all the eigenvalues of RI. Consequently, the energy contributed by a 

tone interference is concentrated in the two largest eigenvalues of the correlation 

matrix T. 

43 
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As the bandwidth of the interference is increased, the number of eigenvalues in 

which most of the interference energy is contained is predicted by the Landau-Pollak 

theorem and is equal to, 

where B is the interference bandwidth and τ is its duration across the filter structure 

[23]. In the extreme wide-band case, the bandwidth is equal to half the sampling 

rate, BSS  = 1 / 2T,, and since T = (M — 1)Tc, N = M. Thus, the interference energy 

is spread across all the system eigenvalues. When the interference occupies only part 

of the bandwidth, B = A / 2Tc, where A is the fractional bandwidth with respect to 

BSS, and the number of interference contributed eigenvalues is 

M. The above analysis guarantees that the filter will utilize the smallest number of 

degrees of freedom required to reject the interference. 

In this work, we will assign a filter length of M = 5 for a tone interference 

and M  = 15 for a narrow-band Gaussian interference. Accordingly, the number 

of dominant eigenvalues predicted by the Landau-Pollak theorem for narrow-band 

Gaussian interference with fractional bandwidth 

Figure 5.1 depicts the eigenvalues of the ensemble-averaged autocorrelation 

matrices of the received signal, for both types of interference, each computed with 

two different SIR ratios, namely, SIR = -10 dB and SIR = -20 dB. While it 

ascertains the number of degrees of freedom assigned to a tone interference, it marks 

an additional significant eigenvalue for the narrow-band Gaussian interference with 

a fractional bandwidth of 0.1, making N = 4. We note that the Landau-Pollak 

theorem offers an approximation of the number of significant eigenvalues contained 

in the signal autocorrelation matrix. We also note that the number of significant 

eigenvalues predicted by the theorem becomes more accurate for the case where the 

time-bandwidth product Br is large, which is not our case. Therefore, we chose to 
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use the simulation results as a rule of thumb. We thus assign N = 4 significant 

eigenvalues to the narrow-band interference. 

The question arises as to whether the actual number of significant eigen-

values which determines the number of eigenvectors to he included in the inter-

ference subspace is affected by the interference power in addition to the interference 

bandwidth. We will look at two cases where SIR = -10 dB and SIR. = -20 dB. It 

is well known that increasing the power of the interference by a factor of 10 also 

increments only the interference eigenvalues by a factor of 10, evidenced by the 

increment in the trace of the autocorrelation matrix of the received signal [10], as 

depicted in Figure 5.2. Therefore, the interference eigenvalues corresponding to an 

SIR = -20 dB are larger than the interference eigenvalues corresponding to an SIR 

= -10 dB by a factor of 10. 

One way of looking at the problem is to calculate/simulate the percentage of 

the total power contained in each eigenvalue, most of which is attributed to the inter-

ference. The percentage of the total power of the received signal in each eigenvalue 

is determined by dividing the sum of all other successive eigenvalues by the trace of 

the autocorrelation matrix of the received signal. Figure 5.3 confirms that most. of 

power of the received signal, which is credited to the interference, lies in the first few 

eigenvalues. In addition, it shows that the percentage of power in each eigenvalue 

is not significantly altered by the change in SIR from -10 dB to -20 dB. In fact, 

when the interference power is incremented, the trace of the autocorrelation matrix 

is incremented as well; hence, although the eigenvalue spread is larger, the power is 

distributed more evenly over the entire eigenspace. Therefore, decreasing the SIR 

to -20 dB does not require that N be changed. 

Another way of looking at the problem is to evaluate the system performance 

of the Eigencanceler by varying N. We will determine whether increasing the value 

of N improves the system performance, noting that the sidelobes of the interference 
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increase in proportion to increase in the interference power. We use values of N = 4 

and N = 5 for both cases of SIR in the Eigencanceler and evaluate it in the probability 

of error. As depicted in Figure 5.4, changing N for both SIR'S does not significantly 

i mprove the system performance. Although we note that for an SIR of -10 dB, N = 4 

yields a lower probability of error and that for an SIR of -20 dB, N = 5 yields a lower 

probability of error, the improvements in themselves are not significant enough to 

implement them throughout the work. Therefore, in keeping with the original intent 

of letting AT = 4 for all SIR, we will evaluate the figures of merit on the Eigencanceler 

method and algorithm in the following sections. 	  



47 

Figure 5.1 Eigenvalues of theoretical 	Figure 5.2 Ratio of eigenvalues vs. 
sample covariance matrix. 	 eigenvalue number. 

Figure 5.3 Percentage of power 	Figure 5.4 Probability of error vs. 
contained in each eigenvalue vs. 	SNR for Eigencanceler for narrow-band 
eigenvalue number. 	 interference. 
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5.2 Performance of the Block Eigencanceler vs. the Wiener-Hopf 

The block Wiener-Hopf and Eigencanceler are evaluated in the normalized variance 

of the weight vector, in the improvement in SNIR 77, and in the probability of error 

The normalized variance of the weight vector is given by Equation 2.13, 

rewritten here for convenience: 

is the optimal weight vector, and W is the weight vector 

based on the estimate of the autocorrelation matrix of the received signal. 

The improvement in SNIR is given by Equations 2.8 and 2.9, 

The probability of error is given by Equation 2.10, also rewritten here for 

convenience: 

The following simulations are created using Matlab 4.0 on a Sun Workstation. 

The chief factors considered in the comparison of the performances of the Eigen-

canceler and the Wiener-Hopf are listed below: 

1. The number of iterations or samples of the received signal; 

2. The SIR and SNR in [dB]; 

3. The length of the interference-suppressant FIR filter. 
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5.2.1 Normalized Variance of the Weight Vectors 

This section considers the perturbation effected by the measurement noise in the 

weight vectors for the Wiener-Hopf and Eigencanceler filters. 	The normalized 

variance of the weight vectors, given by Equation 2.13, is plotted against the size K 

of the data block used in estimating the autocorrelation matrix 	and subsequently 

in creating the weight vector estimate W. The optimal weight vector is determined 

in the case where the signal statistics are known, and accordingly, the Wiener-Hopf 

and the Eigencanceler weight vectors are computed. Two cases are shown: tone 

interference and narrow-band Gaussian intereference. The filters are tested using 

SIR = -10 dB and SIR = -20 dB for both types of interference, with a constant SNR 

= 10 dB. Again, the filter length for the tone interference case is M = 5 whereas 

for the narrow-band interference case, M = 15. To maintain the non-singularity of 

the autocorrelation matrix, we assign a minimum block size of K = 52  = 25 to the 

tone interference, and likewise, K = 152  = 225 to the narrow-band interference. We 

also assign multiples of those blocks, namely A' = 50, 75,100, and 125 to the tone 

interference. Likewise, we assign K = 450,675,900, and 1125 to the narrow-band 

interference. 

Table 5.1 Normalized variances of weight vectors for tone interference 

SIR = -10 dB SIR = -20 dB 

K WEI EC WH EC 
25 6.2 0.0314 0.3324 0.0021 
50 0.3668 0.0153 0.2392 0.0012 
75 0.1695 0.0102 0.3597 0.0009 

100 0.1173 0.0076 0.2227 0.0007 

125 0.0827 0.0061 0.1616 0.0006 

Table 5.1 shows that with as few as K = 25 samples for the tone interference, 

the variance of the Eigencanceler (EC) is 0.0314 and 0.0021, for SIR = -10 dB and 

SIR = -20 dB, respectively. In comparison, for the Wiener-Hopf (WH), the variance 
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Table 5.2 Normalized variances of weight vectors for narrow-band interference 

 SIR = -10 dB SIR = -20 dB 
K WH EC WH EC 

225 78.10 0.0902 0.1795 0.0077 
450 0.7202 0.0358 0.1672 0.0047 
675 0.3526 0.0225 0.1535 0.0035 
900 0.2382 0.0156 0.1485 0.0027 

1125 0.1772 0.0123 0.1663 0.0022 

is 6.2 and 0.3324, for SIR = -10 dB and SIR = -20 dB, respectively. Similarly, 

Table 5.2 shows that with as few as K = 225 samples, the Eigencanceler is shown to 

have a much lower normalized variance than the Wiener-Hopf. Both tables reveal 

that the variance of the Eigencanceler is decreased approximately by a factor of 10 

from an SIR = -10 dB to an SIR = -20 dB. 'This is explained by Equation 3.22 for 

the normalized variance weight vector of the Eigencanceler, in which the variance is 

inversely proportional to the eigenvalue spread. Therefore, the greater the spread, 

the lower the variance. In contrast, for the Wiener-Hopf the variances do not change 

as drastically. The exception are the cases where K = 25 for the tone interference 

and K = 225 for the the narrow-band interference, both for the SIR = -10 dB. 

These values of K are the minimum size that may be collected for obtaining a full 

rank autocorrelation matrix. The noise perturbation is significant at this level, so it 

adversely affects the function of the Wiener-Hopf for an SIR = -10 dB. This is not the 

case, however, for an SIR = -20 dB. Since the interference power is sufficiently high, 

the noise perturbation is less effective. The Eigencanceler, due to its insensitivity 

to noise perturbation, may take advantage of the minimum required size of the data 

block to estimate and excise the interference. 

We plot the normalized variance of the weight vector as a function of the size of 

the block of data K to show how the perturbance is effected in the Wiener-Hopf and 

in the Eigencanceler as a function of K. Figure 5.5 depicts the normalized variance 
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of the weight vector simulations for the Eigencanceler and the Wiener-Hopf. The 

normalized variances of the weight vectors are plotted as a function of the size of the 

data block, given a tone interference and a narrow-band Gaussian interference. 
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Figure 5.5 Normalized variance of weight vectors vs. size of data block 
[A)Wiener-Hopf (SIR = -10 dB) [B]Wiener-Hopf (SIR = -20 dB) 
[C]Eigencanceler (SIR = -10 dB) [D]Eigencanceler (SIR = -20 dB) 
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Another way of showing the convergence of the weight vectors to their optimal 

solution is to simulate the frequency response plots of the weight vectors. The 

frequency response plots for the case of a tone interference do not reveal much infor-

mation; hence, we chose not to include nor discuss the frequency response plots for 

a tone interference. Accordingly, we generated four sets of plots for the case of a 

narrow-band Gaussian interference. Each plot depicts the frequency response of 

the Eigencanceler and the Wiener-Hopf filters. We include the bandwidth occupied 

by the interference in order to illustrate graphically the effectiveness of the notch 

created by the filter in the region. The simulations are generated for cases where 

the signal statistics are both known and unknown. For the unknown cases, we 

ran 1000 independent tests and averaged the resulting weight vectors for the Eigen-

canceler and the Wiener-Hopf filters. We used blocks of data of size A' = 225 for 

SIR = -10 dB and for SIR = -20 dB. The simulations agree well with the results 

presented in Table 5.2. 

We note that as the SIR is decreased from -10 dB to -20 dB, the third and 

fourth plots in Figure 5.6 show a deepening of the notch. The second plot shows 

that the Eigencanceler and Wiener-Hopf weight vectors are closer in shape than the 

fourth plot. This seemingly does not corroborate the statement made in Chapter 3 

to the effect that as the interference power is increased, the Wiener-Hopf approaches 

the Eigencanceler. This is verified numerically by comparing the normalized squared 

difference between the Eigencanceler and the Wiener-Hopf weights in a known signal 

environment, i.e., 

For SIR = -10 dB, the normalized squared difference is 0.2838. Whereas, for SIR = 

-20 dB, the normalized squared difference is at 0.5551 almost twice that for SIR = 

-10 dB. 
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The explanation lies in the use of narrow-band interference with finite 

bandwidth as opposed to a tone interference with zero bandwidth. 	The inter- 

ference energy in former is not completely contained within the prescribed number 

of degrees of freedom given to the interference subspace. There is residual inter-

ference energy residing in the noise subspace occupied by the weight vector for the 

Eigencanceler. This is more pronounced for a highly negative SIR. The statement 

made in Chapter 3 holds for an interference whose energy is entirely contained in 

the prescribed number of degrees of freedom given to the interference subspace, e.g., 

the tone interference whose entire energy is contained in the first two eigenvalues of 

the ensemble-averaged autocorrelation matrix of the received signal. However, this 

does not detract from the performance of the Eigencanceler, because the frequency 

response plots show that in an unknown signal environment, the Eigencanceler 

offers virtually the same depth in the notch in the interference bandwidth area. In 

addition, the Eigencanceler has lower sidelobes, in general, indicating its robustness 

to measurement noise, in contrast to the Wiener-Hopf filter. 

In summary, these results show that the Eigencanceler converges to its optimal 

solution, which, though sub-optimal to the Wiener-Hopf in a. known environment, 

will prove to be superior to the Wiener-Hopf in an unknown environment. Because 

of this insensitivity to perturbation, in the following sections the Eigencanceler will 

prove to offer superior performance given few data . 
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Frequency response of weight vectors 	Frequency response of weight vectors for 
for known signal statistics (SIR = -10 	unknown signal statistics (SIR = -10 
dB). 	 dB). 

Frequency response of weight vectors 	Frequency response of weight vectors for 
for known signal statistics (SIR = -20 	unknown signal statistics (SIR = -20 
dB). 	 dB). 

Figure 5.6 Frequency response plots of weight vectors for narrow-hand interference 
[Solid] Eigencanceler [Dashed] Wiener-Hopf. 
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5.2.2 SNIR Improvement Factor 

The improvement in the SNIR expresses the physical amount of interference power 

excised from the received signal. In Chapters 1 and 2, we discussed the fixed matched 

filter which offers a fixed processing gain. 	Therefore, any residual interference 

exiting the adaptive interference suppressant filter is suppressed to the extent of the 

processing gain L. We implement a processing gain of 

Any residual interference-plus-noise power will mask the desired signal; hence, the 

implementation of adaptive interference-suppressant filters. 

We will evaluate the performance of the Eigencanceler and the Wiener-Hopf 

by calculating the improvement in SNIR at the output of the PN demodulator as 

a function of the SNIR at the input of the receiver. The tables for the tone and 

narrow-band interferences show the gain offered by the adaptive filters at various 

data block sizes K at SIR = -10 dB and at SIR = -20 dB. They also show the 

difference in the gains offered by the filters. 

Table 5.3 SNIR improvement offered by adaptive filters vs. input SNIP. 
for tone interference. 

SNIR Gain [dB] Difference SNIRin  1  Gain [dB] Difference 
K [dB] WH EC EC-WH [dB] WH EC EC-WH 
25 -20 7.1 9.5 2.4 -10 3.5 6.9 3.4 
50 -20 11.5 12.2 0.65 -10 7.5 8.6 1.1 
75 -20 13.3 13.7 0.42 -10 8.7 9.3 0.63 

100 -20 14.4 14.8 0.37 -10 9.6 9.9 0.30 
125 -20 	 15.2 15.6 0.35 -10 9.9 10.2 0.28 

In the case of the tone interference, the Eigencanceler, by itself, offers a received signal 

with an input SNIR of -20 dB an advantage of 9.5 dB at K = 25. In combination 

with L = 11.76 dB, the SNIR at the output of the filter is 1.26 dB, an improvement 

of 21.26 dB. Likewise, for the narrow-band interference, a signal received with an 

input SNIR of -20 dB is offered a gain of 12.0 dB at K = 225 if processed by the 
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Table 5.4 SNIR improvement offered by adaptive filters vs. input SNIR 
for narrow-band interference. 

K SNIRin Gain [dB] Difference SNIRin  Gain [dB] Difference 

[dB]  WH EC EC-WH [dB] WH EC EC-WH 

225 -20 5.1 12.0 6.9 -10 -0.89 7.7 8.6 

450 -20 13.3 13.1 -0.16 -10 6.3 8.6 2.3 
675 -20 14.5 13.4 -1.1 -10 7.7 9.1 1.4 
900 -20 15.2 13.5 -1.6 -10 8.4 9.2 0.85 

1125 -20 15.5 13.5 -2.0 -10 8.8 9.3 0.52 

Eigencanceler. In combination with L = 11.76 dB, the received signal has an SNIR 

at the output of the filter of 3.76 dB, which is an improvement of 23.76 dB. 

The Wiener-Hopf, however, offers a gain of 7.1 dB under the same conditions 

for a tone interference and 5.1 dB for a narrow-band interference. These figures 

result in an SNIR at the output of the PN demodulator of -1.14 dB and -3.14 dB, 

respectively. Therefore, the desired signal will remain masked by the interference 

and noise based on K = 25 and K = 225 for the tone and narrow-band interferences, 

respectively. 

At K = 25, from SNIRin  = -4.4 to 0 dB, the Wiener-Hopf adversely affects 

the desired signal, by lowering the SNIR ratio at the output of the adaptive filter by 

factors ranging from -0.0577 dB to -3.7615 dB. Doubling the data size to K = 50 

improves the system performance offered by the Wiener-Hopf such that it offers a. 

positive advantage to the desired signal. 

Likewise, for a narrow-band interference, at K = 225, the Wiener-Hopf 

decreases the SNIR by factors ranging from -0.1509 dB to -9.7418 dB, for SNIR at 

the input ranging from -11.5264 dB to 0 dB. At this point, it is preferable to use the 

fixed matched filter alone to offer a processing gain of L = 11.76 dB. In this case, 

the SNIR at the output of the filter is positive for the input SNIR range specified 

above. The performance of the Wiener-Hopf improves when the number of samples 
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is doubled to K = 450, where the Wiener-Hopf adversely affects the desired signal 

with negative processing gains ranging from -0.5299 dB to -1.644 dB for input SNIR 

ranging from -1.793 dB to 0 dB. 

Five plots, depicted in Figure 5.7, are based on the size of the data. blocks. For 

the tone interference, the first plot in Figure 5.7 illustrates the superior performance 

of the Eigencanceler over the Wiener-Hopf with the minimum required size of data. 

blocks of K = 25. The third plot in Figure 5.7, corresponding to K = 75, shows 

that after an input SNIR ranging from -3.9253 to 0 dB, the Wiener-Hopf improves in 

performance and offers upto an 0.8318 dB improvement in gain over the Eigencanceler 

at. input SNIR = 0 dB. As the number of samples increases, the Wiener-Hopf edges 

close to the Eigencanceler in SNIR, and surpasses it in the low interference plus noise 

power region. 

For the case of the narrow-band interference, at K = 225, the Eigencanceler 

clearly demonstrates superior performance over the Wiener-Hopf, as depicted in the 

first plot in Figure 5.8. A notable difference between the results for this interference 

and the tone interference is that in the highly negative SIR region, the Wiener-Hopf 

surpasses the Eigencanceler for values of K greater than 675, inclusive. 

All simulations reveal that the SNIR improvement factor of the Eigencanceler 

converges to its optimal performance given a minimum size of data block. 	An 

increase in the number of iterations does not improve the system performance of 

the Eigencanceler to the extent that the Wiener-Hopf is affected. The effect of 

the number of data employed on the performance of the Wiener-Hopf indicates its 

sensitivity to noise perturbation, as opposed to the Eigencanceler. 
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Figure 5.7 SNIR improvement factor vs. input SNIR for tone interference 
[Solid] Eigencanceler [Dashed] Wiener-Hopf. 
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Figure 5.8 SNIR improvement factor vs. input SNIR for narrow-band interference 
[Solid] Eigencanceler [Dashed] Wiener-Hopf. 
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5.2.3 Probability of Error 

The probability of error indicates the probability of recovering the desired signal. To 

simplify matters, in our simulations, only hits of value ±1 are assumed to be sent. 

Therefore, any output of the filter which is negative is an error. The simulations 

are carried out on the Eigencanceler and the Wiener-Hopf, with SIR = -20 dB and 

SIR = -10 dB. The SNR is varied from -5 dB to 15 dB, and the probability of error 

is plotted against the SNR, accordingly. As a reference, the ideal BPSK is also 

plotted, to show the optimal probability of error at a given SNR. 

Figure 5.9 depicts five plots of probability of error vs. SNR for different sizes 

of data blocks. At K = 25, given an SIR = -10 dB, the Eigencanceler consistently 

yields lower probability of error for each SNR than the Wiener-Hopf. The Wiener-

Hopf yields a probability of error ranging from 1.2 to 16.5 times the probability of 

error yielded by the Eigencanceler. For an SIR = -20 dB, however, the performance 

of both systems is virtually identical throughout the SNR range. The similarity 

in the performances of both filters is consistent with SIR = -20 dB for all K. The 

difference in the performances of both filters is notable with SIR = -10 dB for K = 25 

and K = 50. Above A = 75, the measurement noise pertubation has less of an effect 

on the Wiener-Hopf, thereby allowing it to yield a system performance comparable 

to that offered by the Eigencanceler. Once again, this indicates that given a few 

data, the Eigencanceler will offer a superior interference cancellation over the Wiener-

Hopf. 

The overall drop in probability of error for the Eigencanceler from K = 25 to 

K = 125 ranges from 1.05 to 31.8 for an SIR = -20 dB and from 1.01 to 29.8 for an 

SIR = -10 dB. The overall drop in probability of error for the Wiener-Hopf ranges 

from 1.09 to 17.7 for an SIR = -20 dB and from 1.36 to 257 for an SIR = -10 dB. 

An analogous conclusion can be made to Figure 5.10 in that for SIR = -10 

dB, the Wiener-Hopf begins with higher probability of error for K = 225 and lowers 
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the probability of error for values of K higher than 450, inclusive. However, the 

Eigencanceler yields probability of error at K = 1125 which ranges from 1 to 5.7516 

times the probability of error at K = 225. Given an SIR = -20 dB, this factor ranges 

from 1.02 to 1.44, indicating that a five-fold increase in the size of the data block 

has little impact on the Eigencanceler, as opposed to the Wiener-Hopf. 
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Figure 5.9 Probability of error vs. SNR for tone interference 
[A]Wiener-Hopf (SIR = -10 dB) [B]Wiener-Hopf (SIR = -20 dB) 

[C]Eigencanceler (SIR = -10 dB) [D]Eigencanceler (SIR = -20 dB). 
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Figure 5.10 Probability of error vs. SNR for narrow-band interference 
[A]Wiener-Hopf (SIR = -10 dB) [B]Wiener-Hopf (SIR = -20 dB) 
[C]Eigencanceler (SIR = -1.0 dB) [D]Eigencanceler (SIR = -20 dB). 
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5.3 Performance of the Eigencanceler Algorithm vs. the LMS and the 
RLS 

The Eigencanceler, the LMS, and the RLS algorithms are evaluated in the normalized 

variance of the weight vector, in the MS at the output of the filter, in the improvement 

of in SNIR 77, and in the probability of error Pe . All evaluations are learning curves 

as they are plotted against time. Furthermore, 100 independent tests are run and 

Monte Carlo averaged for each plot. The algorithms are implemented in linear 

prediction error filters given a tone interference. 

There are two sets of simulations for a tone interference, given an SIR = -10 

dB and SIR = -20 dB. In order to evaluate the performance of the Eigencanceler in 

its robustness to the measurement noise, we use SNR. = 10 dB, which is indicative 

of a reasonably strong presence of noise in the signal environment. 

Figures 5.11-5.14 are plotted given an SIR = -10 dB. As the signal environment 

is stationary for our purposes, the forgetting factor γ used in the RLS algorithm is 

equal to unity. The small constant used to initialize the inverse of the correlation 

matrix Ф  is S = 0.01. The step-size in the LMS algorithm is µ  = 0.001. 

Figure 5.11 illustrates the rapid convergence of the Eigencanceler algorithm to 

its optimal solution, in contrast to the LMS and the RLS. In the first iteration, the 

normalized variance of the Eigencanceler is 214.7153; however, rapid convergence 

takes place within the second iteration, where the variance is 0.0738. In contrast, 

the normalized variances of the RLS at the first and second iterations are 0.2975 

and 0.2342, respectively. Likewise, the normalized variances of the LMS at the 

first and second iterations are 0.3043 and 0.2975, respectively. The similarity in 

the performances of the RLS and the LMS algorithms is attributed to a high noise 

environment, where SNR = 10 dB. It is well known that as the SNR increases, 

the RLS offers superior tracking performance to the LMS; however, in a low SNR 

environment, the two algorithms offer roughly the same performance. 
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Figure 5.12 depicts the MS at the output of the filter. After the initial spike 

in the MS at the output of the filter, the Eigencanceler rapidly converges to an MS 

of 4.5339 at the second iteration. Both the LMS and the RLS, to a lesser extent, 

fluctuate significantly until they converge at k = 48 and k = 15, respectively. Figures 

5.13 and 5.14 show that the Eigencanceler consistently yields a lower probability of 

error, and correspondingly, a higher SNIR at the output of the filter until k = 87, 

at which point the RLS offers superior performance. The Eigencanceler offers an 

SNIR ranging from 5.8725 to 3.0155 [dB] over that offered by the RLS in the time 

range k = 2 to k = 12. 

For the case where SIR. = -20 dB, -y = 1, 5 = 0.001, and it = 0.0001. Figures 

5.15-5.18 reflect the advantage the Eigencanceler takes of an increased eigenvalue 

spread, resulting from an increase in interference power given an SNR = 10 dB. Due 

to the increase in interference power by a factor of 10 dB, the eigenvalue spread is 

accordingly increased by a. factor of 10 dB. Hence, the convergence rate of both the 

LMS and the RLS algorithms to the Wiener-Hopf solution and in the MS at the 

output of the filter is significantly decreased. Accordingly, the performances of the 

two algorithms in the probability of error and the SNIR at the output of the filter 

are adversely affected. 

Figure 5.15 depicts the convergence of the algorithms in the normalized variance 

of their respective weight vectors. In the first iteration, the normalized variance of 

the Eigencanceler is 39.1061; however, rapid convergence takes place in the second 

iteration, where the variance is 0.0105. 	In contrast, the normalized variances 

of the RLS at the first and second iterations are 0.3184 and 0.2411, respectively. 

Furthermore, the normalized variances of the LMS at the first and second iterations 

are 0.3264 and 0.3169, respectively. Figure 5.12, depicting the MS at the output of 

the filter, reveals that the LMS and the RLS algorithms take longer to adapt to the 

signal environment in a highly negative SIR environment. In contrast, the MS at 
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the output of the Eigencanceler-based filter is 4.9861 at the second iteration, after 

the initial spike at the first iteration. Both the LMS and the RLS, to a lesser extent, 

fluctuate significantly until they converge at k = 106 and k = 39, respectively. Both 

the LMS and the RLS algorithms take roughly twice the amount of time to converge 

given SIR = -20 dB over SIR = -10 dB. 

Figures 5.17 and 5.18 show that the Eigencanceler yields a lower probability of 

error, and correspondingly, a higher SNIR at the output of the filter until k = 314, 

at. which point the RLS offers superior performance. The Eigencanceler offers an 

SNIR ranging from 15.6884 to 3.0435 [dB] over that offered by the RLS in the time 

range k = 2 to k = 57. Comparing these results to the ones obtained given SIR = 

-10 dB, we note that not only is significantly superior interference capability offered 

by the Eigencanceler, in contrast to the Wiener-based algorithms, the adaptation of 

the algorithm in a highly negative SIR environment is faster as well. 
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Figure 5.11 Normalized variance of the 	Figure 5.12 MS vs. time. 
weight vectors. 

Figure 5.13 Probability of error vs. 	Figure 5.14 SNIR vs. time. 
time. 

[Solid] Eigencanceler [Dashed] RLS [Dashed-Dotted] LMS 
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Figure 5.15 Normalized variance of the 	Figure 5.16 MS vs. time 
weight vectors. 

Figure 5.17 Probability of error vs. 	Figure 5.18 SNIR vs. time. 
time. 

[Solid] Eigencanceler [Dashed] RLS [Dashed-Dotted] LMS 



CHAPTER 6 

CONCLUSIONS 

A new approach to excising narrow-band interferences in spread spectrum systems 

was introduced in this work. The Eigencanceler exploits the eigen-properties of 

the received signal to separate the highly coherent interference from the relatively 

incoherent wide-band data. The following summarizes the evaluation of our method 

and algorithm: 

• The Eigencanceler was shown to be more robust to measurement noise than 

the Wiener-based algorithms. 

• Given few data in an unknown signal environment, the Eigencanceler method 

offers superior interference cancellation over the Wiener-Hopf filter. 

• Likewise, the Eigencanceler algorithm proves to be fastly converging, especially 

in highly negative SIR environments, in contrast to the LMS and the RLS 

algorithms. 

4,  The rapid convergence of the Eigencanceler algorithm is attributed to its 

robustness to measurement noise. 

• The complexity of the Eigencanceler is on the order 0(M2 ). 
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