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ABSTRACT 

DECENTRALIZED OPTIMAL CONTROL 
IN DESCRIPTOR SYSTEMS 

by 
Hag-Yeon Park 

Application of Matrix Minimum Principle to a linear decentralized optimal control in 

descriptor systems is studied in this thesis. Linear-quadratic index of performance with 

Gaussian initial state is considered. The necessary and sufficient conditions for optimality 

are derived 

An additional constraint is imposed such that the controllers are linear function of 

output y(t)  rather than of the state vector x(t). The optimal gain matrix Gi*  is then 

specified by the necessary conditions. 

Two examples are developed to illustrate the concept. 
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CHAPTER 1 

INTRODUCTION  

Descriptor systems occur frequently in system theory, often as natural representations of 

physical or economic systems, or as the necessary conditions representing optimal control, 

optimal estimation, or dynamic economic equilibrium. Therefore, it is important to 

understand the structure of such systems and develop efficient methods for solving them. 

Recently, the optimal control problem for singular or descriptor systems has been of  

interest in the field of control systems. Larson [1] and others considered the discrete case 

by first applying Luenberger's double sweep method to get a state system and then 

derived several recursive matrix equations which needed to be solved. Pandolfi [2] 

considered the continuous case and derived a feedback control which stabilizes the system. 

He used an augmented state system which is equivalent to the descriptor system, but the 

impulse elimination problem was not considered. In [3], Cobb also considered the 

continuous case by applying several preliminary feedbacks and then solved the optimal 

control problem for a state space system. His closed-loop system was both stable and 

impulse free. Campbell [4] used the Drazin inverse to analyze the cheap optimal control 

problem for state variables and the approach generalizes singular systems, but he did not 

give the control in terms of a feedback. Bender [5] solved the continuous-time linear-

quadratic regulator problem for descriptor systems by using a singular value 

decomposition of E To solve a finite-horizon problem or to compute the Riccati equation 

solution P(t) required one transformation of the descriptor system in order to isolate the 
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dynamic portion. The dynamic portion of the system was the orthogonal complement of 

the part of the descriptor space contained in the kernel of E. He isolated it by performing 

a singular value decomposition of E, numerically quit robust way to determine the rank of 

a matrix. This approach yield with no undue difficulty the solution of the finite as well as 

infinite horizon problem. In this thesis approach, we use his method for computing the 

Riccati equation solution of P(i). 

In large-scale systems such as power systems, chemical processes, large space 

structures, and computer communication networks, a centralized control system or a 

single controller has access to all sensor measurements and generates all control 

commands for the entire system. However, as systems become more and more complex, it 

has been found that they cannot be handled by the centralized control method. As a result, 

decentralized control often arises as an important option in the design of strategies for 

controlling such systems, and the study of the stabilization of decentralized control 

systems has attracted much attention over the past few years[6] [7] [8]. These men 

motivated to do research in decentralized control because conventional modern control 

theory was not able to deal with certain issues of concern in large-scale systems. State 

feedback is a central idea in modern control theory. By combining the linear-quadratic 

optimal control technique and state feedback, it is possible to achieve improved system 

behavior. However, it is often impossible to design a system to the extent required for full 

state feedback. Therefore, many techniques including linear-quadratic Gaussian control 

were developed to overcome this difficulty. However, a central characteristic of all these 

techniques is that they result in a design in which every sensor output affects every 

actuator input. This situation is called centralized control. In large-scale systems, it is 
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impossible to put many feedback loops into the design [9]. Thus, decentralized feedback 

control has been applied to solve this problem. The basic characteristic of decentralized 

control is that there are restrictions of information transfer between certain groups of 

sensors and actuators. In addition, we will apply the Matrix Minimum Principle [10] to 

the design of optimal descriptor systems. As our model, we use a linear decentralized 

system with a quadratic performance and output-variable feedback. The goal is to 

determine an optimal set of feedback gains. 

Before we discuss the decentralized optimal control problem in descriptor systems 

which is stated in detail in chapter 2, let us look at the overall content of the thesis. The 

system model is first formulated in the framework of decentralized optimal control theory 

in descriptor systems. Then, we transform the problem into the framework required by 

the Matrix Minimum Principle. In Chapter 3, we drive the necessary conditions for 

optimality by using the Matrix Minimum Principle. We also prove that the necessary 

conditions for optimality are sufficient. In Chapter 4, we summarize the main result of this 

thesis. In addition, two examples are shown to support this thesis in chapter 5. In 

Chapter 6, we conclude this thesis. 

In this thesis approach, we consider that a general linear, descriptor system whose 

state vector x(t), control vector ui(t), and output vector yi (t) are related by the 

following vector differential equations: 
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We look for a linear feedback law of the form 

and substituting (1.2) into (1.3) gives 

where Gi(t) are gain matrices such that the quadratic cost functional 

is minimized.  

It is assumed that x(t0)  is a Gaussian random vector with known mean and 

covariance.  

Substituting (1.4) into (1.1) gives 

where the solution of x(t) is given as 

where Φ(t,t0 ) is defined by (2.8). Hence, ui(t) is also a Gaussian process. Therefore, 

the problem reduces to finding the gain matrices Gi (t), such that J in (1.5) is minimized 

with constraints (1.1), (1.2), and (1.3). 

Our approach is similar to that of Levine and Athans [11] which was used for 

solving a centralized linear quadratic problem. We begin by transforming the original 

performance, a function of both initial states and feedback controls (gain matrix), into a  
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new performance criterion. The problem is therefore converted into a parameter 

optimization problem and then the necessary conditions for optimality are derived with the 

Matrix Minimum Principle. 



CHAPTER 2 

PROBLEM FORMULATION 

2.1 System Dynamics  

Consider a descriptor system with state vector x(t) and control vector ui(t) 

i = 1, 2, 	, N related by the following vector differential equation: 

with state vector x(t)  ϵ Rn,  control vectors ui ϵ Rm, and output vectors yi ϵ Rr. A(t) 

is an n x n matrix, Bi(t) are n x mi  real matrices, Ci(t) are ri x n real matrices of full 

rank and E-1 does not exist. 

The performance index for all the control vectors is assumed to be 

where t ϵ[t0 , T]  and E is the expectation. We assume Q(t)  is an n x n symmetric semi-

positive definite real matrix and Ri(t) are m x m symmetric positive definite real matrices.  

At this time, we introduce the constraint that the controls ui (t) be generated via 

output linear feedback, i.e., 

6 



mean  

covariance 

and  defined by: 
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ui(t) = -Gi (t)yi(t), 

= —Gi(t)Ci(t)x(t) 	 (2.4) 

where the gains Gi(t) are mi  x ri  matrices. 

We assume x(t0 ) is a Gaussian random process with known 

So, the system satisfies the closed-loop equation 

and the cost functional J reduces to 

Thus, the choice of the gain matrices Gi(t ) obviously governs the closed-loop 

dynamics of the system. In fact, the response of the closed-loop system is given as: 

x(t) = Φ(t,t0)x(t0) 	 (2.7) 

where Φ(t,t0) is the n x n fundamental transition matrix associated with 
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	Φ(t0,t0) = I . 	(2.8) 

Substituting (2.7) into (2.4) gives 

	

ui(t) = —Gi(t)Ci(t)Φ(t,t0)x(t0) , 	 (2.9) 

= 1, 2, ....., N . 

Hence, ui(t) is also a Gaussian process so the problem reduces to finding the gain 

matrices Gi(t) which minimizes (2.3) subject to the constraints given by (2.1) and (2.2) 

In order to find the gain matrices Gi(t), the vector differential equations must be 

transformed into matrix differential equations which can be readily solved by the Matrix 

Minimum Principle. 

2.2 Matrix Minimum Principle 

The most common form of the minimum principle pertains to the optimal control of 

systems described like the following vector differential equation:  

ẋ(t) 	= f[x(t),u(t),t] 	(2.10) 

where x(t) is a column n-vector, u(t) is a column r-vector and f[t] is a vector-valued 

function. Plants described by equation (2.10) are very common. However, there are 

problems in which the evolution-in-time of their variables is most naturally described by 

means of matrix differential equations. To make this more precise, consider a system 

whose state variables are xij , with i = 1, 2, ... , n and j = 1, 2 	, .... , m, and whose control 

variables are uαβ  , with  α  = 1, 2,  ... , r and β  = 1, 2, ... , q. In such problems, we may 

think of the "state matrix" X(t), whose elements are the state variables xij(t), and of the 
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"control matrix" U(t), whose elements are the control variables uαβ(t); these are assumed 

to be related by the matrix differential equation 

	Ẋ(t)= F[X(t),U(t),t] 	(2.11) 

where F[t] is a matrix-valued function of its arguments. 

As an example of a system with this type of description, consider a linear system 

	ẋ(t) = A(t)x(t)+v(t) 	(2.12) 

where  v(t) is a white-noise process with zero mean and covariance 

	E{v(t)vT(τ)} = δ(t — τ )Q(t). 	(2.13) 

If we denote the covariance matrix of the state vector x(t) by Ʃ(t) , i.e., 

	Ʃ(t) = E{x(t)xT(t)}, 	(2.14) 

then it can be shown that Ʃ(t)  satisfies the linear matrix differential equation 

	Ʃ(t) =  A(t)Ʃ (t)+ Ʃ(t)AT (t)+Q(t) 	 (2.15) 

which is in the form of equation (2.11). Indeed, the Matrix Minimum Principle has been 

applied to problems of filtering, control and signal design. In these types of problems, we 

are interested in minimizing a scalar-valued function of the covariance matrix Ʃ(t)  while 

the "control variables" are some of the elements of the matrix A(t)  or Q(t). 

If the system equations are naturally given by (2.11), it is easy to visualize an 

optimization problem. For example, consider a fixed-terminal time-optimization problem 

with a cost functional 

where[T] and L[t] are scalar-valued functions of their argument. Now we seek the 

optimal control matrix U*(t), which is constrained by 
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which minimizes the cost function J(U). 

It should be clear that the tools are available to tackle this optimization problem. 

After all, equation (2.11) in component form can be written as 

and then we can proceed to apply the familiar minimum principle. However, an excessive 

number of equations result and it may become almost impossible to determine any 

structure and property of the solution. It is this complication which has provided the 

motivation for dealing with problems involving the time-evolution of matrices by 

constructing a systematic notational approach. 

The first step towards this goal is to realize that the set of all, say, nx m real 

matrices forms a linear vector space with well-defined operations of addition and 

multiplication. We denote this vector space by Snm. Then, it is possible to define an inner 

product in this space. Thus, if A and B are nxm matrices, i.e., AϵSnm  and Bϵ Snm, their 

inner product is defined by the trace operation 

Using this notation, we can form the Hamiltonian function for the optimization problem. 

First, note that if pij(t) is the costate variable associated with xij(t), then the Hamiltonian 

must take the form 

Using (2.20), it follows that the Hamiltonian can be written as 
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where P(t) is the costate matrix associated with the state matrix X(t), in the sense that the 

costate variable pij(t) is the ijth element of P(t). 

Using the notation of Athans and Falb [12], it is known that the costate variables 

satisfy the differential equations 

This type of equation leads to the definition of the so-called gradient matrix (see appendix 

A). 

A gradient matrix is defined as follows: suppose that f(X) is a scalar-valued 

function of the elements of X. Then the gradient matrix of f(X) is denoted by 

and it is a matrix whose ijth element is simply given by 

Using the notation of the gradient matrix, it is readily seen that (2.22) can be written as 

since the Hamiltonian H  is a scalar-valued function. 

Consider a system with "state matrix" X(1) and  "control matrix" U(t)ϵ  Ω  described 

by the matrix differential equation 

and the cost functional 
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where K[T] and L[t] are scalar-valued functions of their argument satisfying the usual 

differentiability conditions. 

Let P(t) denote the costate matrix. Define the scalar Hamiltonian function H  by 

H[X(t),P(t),t,U(t)] = L[X(t),U(t),t]+ tr[F(X(t),U(t),t,)P T (t)]. 	(2.27) 

If U*(t) is the optimal control in the sense that it minimizes J, and if X*(t) is the 

corresponding state, then there exists a costate matrix P*(t) such that the following 

conditions hold: 

(i) Canonical Equations 

(ii)Boundary Conditions 

At the initial time 

At the terminal time 

(iii) Minimization of the Hamiltonian 
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for every U  ϵ  Ω  and for each t ϵ [t0,T]. 

Note that if U(t) is unconstrained, then (2.32) implies the necessary condition 

i.e., the gradient matrix of the Hamiltonian with respect to the control matrix U must 

vanish. 

2.3 System Transformation  

To complete the transformation of the problem into the framework required by the Matrix 

Minimum Principle, we define the nxn  "state matrix" X(t) as the outer vector product of 

the state vector x(t) with itself; i.e., 

multiplying both sides by E and ET  gives 

noting that 

It follows from. (2.5) and (2.35) that: 
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so that the state matrix X(t) satisfies the linear matrix differential equation. 

Taking expectation on both sides, using (2.37), the dynamic constraint is transformed to: 

with the initial condition 

Therefore, the state transition matrix follows: 

and differentiating (2.42) with respect to t gives 

where Φ(t,t0 ) is the n x n  transition matrix satisfying 

The cost functional J  reduces to 



with the initial condition 
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The system (2.40) and cost functional (2.44) are in the form required to use the 

Matrix Minimum Principle. Therefore, given the dynamic constraint, the original problem 

can be restated as follows: 

and the cost functional 

Find the gain matrices Gi(t) such that J in (2.46) is minimized. 



CHAPTER 3 

CONDITION FOR OPTIMALITY 

3.1 Necessary Conditions for Optimality 

We shall derive the necessary conditions for optimality by using the Matrix Minimum 

Principle. Let P(t) be the n x n costate matrix associated with X(t) The Hamiltonian 

function H for this problem is 

The Hamiltonian can be written as 

Now consider the functional equation, 

then substituting (3.1) into (3.3) gives 

where H is the Hamiltonian. 

16 



where 

where 
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Variation of the function of J gives 

So, (3.5) gives 

Integration by parts of the last term of (3.6) gives 

Substituting (3.7) into (3.6) gives 

The necessary conditions for the optimality of (3.8) requires δJ = 0  and gives 



18 

The canonical equations using (3.9), (3.10) and the gradient matrix formulae of 

Appendix A yields: 

with boundary conditions: 

and (3.11) yields: 

Note that both X*(t)  and P*(t) are symmetrical. The symmetry of both X(t)  and X(t0 )  

follows from equation (2.43). A similar argument can be used to establish the symmetry 

of P(t). These symmetrical properties and (3.16) yield: 

[Ri(t)Gi*(t)Ci(t)— BiT(t)P*(t)E]X*(t)CiT(t)= 0; 	 (3.17) 

if we assume Ci-1 exists, equation (3.17) reduces to 

Gi*(t) = Ri-1(t)BiT(t)P*(t)ECi-1(t). 	(3.18) 
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To completely specify the gain matrix Gi*(t), we must determine the costate 

matrix P(t) by substituting (3.18) into (3.14). We find that the costate matrix P(t) is 

similar to the solution of the familiar Riccati matrix differential equation 

ETP*(t)E = -ETP*(t)A(t)— AT(t)P*(t)E 

i = 1, 2, ..... , N  

with the boundary condition 

ETP*(T)E = 0. 	 (3.20) 

Thus, the optimal open loop control for the system (2.1) and (2.2) with the 

performance index defined in (2.3) is given by 

u,*(t)= -Gi*(t)Ci(t)Φ(t,t0)x(t0) 	(3.21) 

i = 1, 2, ..., N 

where Gi*

(t) 

 is defined in (3.18) with P(t) satisfying the Riccati matrix differential 

equation expressed by (3.19). 

	

The mean and covariance of the Gaussian process for ui*(t) can then be 

determined by taking expectation on both sides of (3.21) to give the mean of 

The covariance of ui*(t) is expressed by 



At Gi

(t)

= 

 Gi*(t) 

 from (3.25) we have 
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3.2 Sufficient Conditions for Optimality  

In order for 

 

Gi

(t) 

 at t ϵ [t0,T] to be an optimal gain matrix, it is sufficient that the 

following conditions hold: 

Sufficient conditions are proved as follows: 

Gi* (t) 

 calculated from (3.18) are functions of P*(t). We may denote it by 
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It follows from (3.24) that (3.1) may be written as: 

and substituting (3.31) into (3.30) gives: 

Integrating (3.34) from to  to T gives 

In view of (3.28) and (2.46), similarly it can be shown that 

Equation (3.26), (3.29) and (3.30) implies that 
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and conditions (3.35), (3.36) and (3.37) gives 

for all initial conditions 



CHAPTER 4 

THE MAIN RESULT  

The major result of this research is summarized below.  

It specifies the properties of the optimal gain matrices Gi*

(t)

, t ϵ [t0,T] . 

	

To find the gain matrices Gi

(t) 

 such that J in (2.46) is minimized, 

we use the Hamiltonian function: 

where we assume Ci-1, exist. 

The costate matrix P(t) is similar to the solution of the familiar Riccati matrix 

differential equation: 

ETP*(t)

E = -ETP* (t)A(t)— AT (t)P* (t)E 

with the boundary condition 

E T P*(T)E = 0. 	 (3.20) 

The mean of the Gaussian process for ui*(t) has been determined as: 
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The covariance of the Gaussian process for ui*

(t) 

is expressed by 

Previously, the sufficient conditions for optimality were given: 



CHAPTER 5 

EXAMPLES 

5.1 Example 1 

Find the gain matrices such that J is minimized for the system 

to minimize the performance measure 

To solve this problem, the cost functional J reduces to 

and by using the necessary condition results in: 

Gi*(t) = Ri-1(t)BiT(t)P*(t)ECi-1(t), 	(5.5)  

25 
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and the boundary condition 

For this performance criterion, the weighting matrices are seen to be 

Let the costate matrix P*(t)  be:  

So to solve the P*(t), we apply the singular value decomposition of E  

where Ʃ2 = diag(σ1,σ2, ..., 0)  and U  and V  are unitary matrices [5]. 

In example 1, equation (5.6) has the following form 
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Thus, 

Now we can get pi(t) by solving the differential equation of pi(t)  with boundary 

condition of pi(T)  = 0. 

Figure 5.1 The solution of the Riccati equation for Gi*. 



From Figure 5.1, we can see that pi(t)  are constants for Therefore, from a 

28 

practical view point, it may be feasible to use the fixed gain matrix for processes of finite 

duration [13]. Therefore, the costate matrix Pi*(t)  has elements 

Now we substitute all matrices into (5.5) which gives the solution of optimal gain 

5.2 Example 2  

Find the gain matrices such that J  is minimized for the system 

to minimize the performance measure 
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To solve this problem, the cost functional J reduces to 

and by using the necessary condition results in: 

and the boundary condition 
ETP*(T)E = 0

. 	 (5.20) 

For this performance criterion, the weighting matrices are seen to be 

Let the costate matrix P*(t)  be: 

So to solve the 

P*(t)

, we apply the singular value decomposition of E 

where Ʃ2 = diag(σ1,σ2, ..., 0)  and  U and V  are unitary matrices. 

In example 1, equation (5.19) has the following form 
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Now we can get pi(t) by solving the differential equation of pi(t)  with boundary 

condition of pi(T)= 0. 
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Figure 5.2 The solution of the Riccati equation for Gi*  

From Figure 5.2, we can see that pi(t)  are constants for  Therefore, from a 

practical view point, it may be feasible to use the fixed gain matrix even for processes of 

finite duration. Therefore, the costate matrix Pi(t)  has elements 

Now we substitute all matrices into (5.18) which gives the solution of optimal gain 
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CONCLUSION  

In conclusion, the objective of this research paper was to consider the Decentralized 

Optimal Control in Descriptor systems using the Matrix Minimum Principle as stated in 

the introduction. In this thesis, we have presented a study of Decentralized Optimal 

Control in Descriptor systems which makes use of the linear-quadratic-Gaussian technique 

and output-variable feedback. Unlike the work done previously in Centralized Optimal 

Control Systems using output-variable feedback, our discussion is focused on a 

decentralized control approach. 

In addition, Riccati equations for costate matrix P(t) were derived which are 

analogous to the well-known Riccati equation of optimal control for state-space problems. 

However, the Riccati equation we derived was difficult to solve. So, in order to overcome 

this obstacle, we applied Bender's [5] method which uses the singular value 

decomposition of E. By applying this method, we solved the costate matrix P(t) which 

provided us with the required optimal gain matrices Gi*(t). Thus, we found a complete 

feedback solution for our linear decentralized control problem in descriptor systems. 

The contribution of this thesis was the application of the Matrix Minimum 

Principle to the design of the Decentralized Optimal Regulator in Descriptor Systems with 

the Gaussian random-vector initial state. 
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List of Gradient Matrices 
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