
Copyright Warning & Restrictions 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 

Please Note: The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 

Printing note: If you do not wish to print this page, then select 
“Pages from: first page # to: last page #” on the print dialog screen 



The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty. 



ABSTRACT  

Sleep is a non-uniform biological state which has been subdivided into 

different stages. The basic criteria behind staging are the amplitude and 

frequency variations of sleep data. The sleep analysis is carried out by 

considering the characteristic variation of all three EEG, EOG and EMG signals. 

The polygraphic recording of nocturnal sleep is a method of research widely 

used in neurophysiology laboratories, both for the clinical study of sleep and for 

the evaluation of the therapeutic effectiveness of drugs acting on sleep. The 

analysis of this method is carried out by an expert individual whose depth of 

knowledge regarding the normal pattern of waveforms and the set of criteria 

used for staging reflects on the outcome of the analysis. With this approach there 

are always discrepancies among the individual 'scorers with respect to the 

method applied and as well as criteria considered. 

Visual analysis of the EEG remains necessary and appropriate, but it is 

time consuming and lacks quantification. The alternative would be to develop an 

Computerized System for scoring the sleep stage data. Over these years 

automatic scoring of sleep stage data has promised increased understanding of 

pathological as well as normal sleep patterns. Computerized systems also act as 

an essential tool in describing the sleep process and to reflect the dynamic 

organization of human sleep. 

The objective of the present work is to develop a Computerized System 

with an efficient algorithm to score the sleep stage data based on multiple set of 

criteria. The outcome of this study is then compared with the Visual Scoring data 

to find out the percentage of agreement between the human scorer and the 

computer algorithm. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

Significant advances have been made in sleep disorder medicine, especially 

during the past ten years. The polygraphic recording of the nocturnal sleep is a 

widely used method in neurophysiology laboratories, both for the clinical study 

of the sleep and for the evaluation of the therapeutic effects of drugs acting on 

sleep. From these polygraphic data, we can identify pattern changes relating the 

characterization of sleep stages visually. Homogeneity of results, costs incurred 

and the time spent with visual scoring have opened the doors for automatic 

scoring method in recent years. The automatic scoring has promised increased 

understanding of pathological as well as normal sleep patterns. Despite 

publications of a number of encouraging results, few systems have been devised 

for routine sleep staging in a clinical environment. Several computerized sleep 

analysis systems have been commercialized [1] without any precise evaluation of 

their quality or reliability. The objective of work done in this thesis is to develop 

a computerized system for sleep stage scoring using a set of multiple criteria. 

1.2 Clinical Sleep Disorders  

Thousands of miles of sleep BEG data have been accumulated, and countless 

hours of effort have been expended by sleep researchers around the globe. 

Considerable information has emerged from the sleep laboratories which can be 

useful to the physician [2]. Some of the common disorders known are listed 

below. 

1 
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a. Narcolepsy  

This describes a condition of recurring, uncontrollable episodes of brief sleep. 

This disorder usually begins in adolescence or young adulthood, it continues 

throughout life but is generally thought to improve in later years [3]. In 

narcoleptics REM occurs at, or soon after, the onset of sleep when compared to 

normal sleep pattern. Many stimulant and antidepressant medications have been 

used in the treatment of true narcolepsy, but nothing replaces an understanding 

discussion with the patient and his family about the illness and ways they can 

adjust themselves to it. 

b. Cataplexy  

Characterized by brief episodes of muscular weakness which are precipitated by 

laughter, anger, or other emotional excitement. The degree of disability may 

range in scope from a mere subjective feeling 'of weakness to almost total 

paralysis. 

c. Hypersomnia  

The subject will have tendency to sleep for excessively long periods, either as an 

extension of nocturnal sleep into the late morning or past noon, or at various 

times during normal hours of wakefulness. Unlike narcoleptics, patients with 

hypersomnia do not display the auxiliary symptoms of cataplexy and rarely 

complain of disturbed nocturnal sleep [2]. 

d. Insomnia  

Inability to fall asleep, frequent and prolonged awakenings, early morning 

awakenings, in the absence of gross physical or psychological pathology is 

probably one of the most common sleep disturbances. Sleep EEG studies indicate 

that there is a physiological basis for the insomniac's complaints and it has been 

found that these patients have significantly longer sleep latencies, shorter sleep 

times and less efficient sleep. 
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e. Sudden Infant Death Syndrome (SIDS)  

Is a sleep related phenomenon that has been strongly supported by the evidence 

of a high incidence of infant mortality during sleep [4]. The typical clinical 

syndrome is that of a generally healthy infant of 2 to 4 months of age who is put 

to sleep in its crib at night and is found dead shortly thereafter or in the morning, 

having died several hours before. Autopsy examination reveals no abnormalities 

recognized as cause for death. The automatic inspiratory-expiratory rhythmic 

cycle is disrupted by recurrent periods of apnea. It is suggested that NREM sleep 

stages in the infant might be more prone to be correlated with a prolonged apnea 

than the REM sleep stage. 

1.3 Automatic and Visual Scoring  

Sleep is a nonuniform biological state which has been subdivided into different 

stages. The stage concept leads to inaccuracies if the underlying processes are 

continuous and vary gradually in time. This insufficient representation of sleep 

characteristics forced to use computers in sleep analysis. Analysis of the transient 

activity, in the EEG almost impossible without a computer, seems to give a good 

index to evaluate the quality of a night, especially when the patient is under 

pharmacological drugs. Numerical analysis of these transients may be 

considered as a future approach to describe the sleep process and to reflect the 

dynamical organization of sleep. 

Large scale pharmacological screening of drug effects on EEG defined, 

sleep-waking behavior only becomes feasible when the normal laborious and 

time consuming visual scoring of sleep stages is circumvented by automatic 

analysis methods capable of unattended and reliable processing of many hours 

of data from large groups [5]. This also holds for systemic studies of general 

features of sleep-waking behavior, for which analysis of records from large 
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group of patients are required. The need to demonstrate the essential parameters 

and to simplify the interpretation of EEG data has led many investigators to 

intiate methods of analysis which opened the doors for Automatic Scoring. 

In recent years a number of sleep variables have been defined that 

characterize sleep. These variables basically explain both the measurements 

which describe the evolution of sleep and the duration of the different states of 

sleep [61. The physiological relationships between the various components of 

sleep are still largely unknown. Automatic Scoring helps in order to gain insight 

into the temporal and casual aspects of sleep mechanisms. 

In visual scoring an individual with a good physiological background on 

sleep characteries the polygraphic records (for 30 seconds epoch) based on 

criteria that have been standardized for sleep staging. The scoring entirely 

depends upon individual insight into records and the standard sleep stage 

criteria applied. The visual scoring as a recording from various scorers could be 

different due to both the different application of standardized rules and the real 

difficulty in scoring the data with the standardized rules. Table 1 displays the 

data of a Inter-rater agreement of sleep stage scoring. Automatic scoring also 

results in small differences when the test is repeated on the same data which 

could be due to difficulties to precisely calibrate the amplitude of the signal with 

the available interface and also exactly assigning the same starting and end 

points. Except during critical evaluation these differences are accepted. 

Automatic scoring demands very strict recording conditions in order to avoid a 

confusion of the records by extraneous frequencies due to cardiac or respiratory 

activity or other phenomena which are not directly related to EEG activity. An 

additional drawback with manual scoring is that quantitative information 

concerning the frequency and density of specific waveforms is lost. Such wave 

count data are useful in assessing specific experimental interventions when the 
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occurrence of dissociated or novel states render standard criteria for global 

assessment meaningless. 

Although conventional sleep-wake stage scoring yields less extensive data 

than what is possible with computerized processing, the former has been more 

broadly studied. Visual scoring is considered as a reference for Automatic 

Scoring. When an algorithm is developed to score the data automatically, it is 

generally compared with the results obtained through visual scoring to check the 

performance of the algorithm. Fig 1. shows a [1] of a Barchart which depicts the 

performance of a Automatic scoring technique with Visual Scoring. 

The edge that Automatic Scoring has over the Visual Scoring are the number 

of methods that are available for analysis. The Visual Scoring works only on the 

standard set of criteria that are defined, while Automatic Scoring employes 

methods like Period-Amplitude analysis, EEG power spectra analysis, amplitude 

analysis of EEG and EMG etc. The constant rhythmicity of the sleep cycle from 

day to day is a suitable physiological parameter for pharmacological studies. The 

use of Automatic data analysis of cortical or subcortical EEG recordings will 

provide a greater understanding of both physiological events and 

pharmacological effects. Keeping in mind the size of the test sample, the 

automated sleep analysis system has achieved a satisfactory performance level 

and may be considered as a useful alternative to visual sleep stage scoring for 

large scale investigation of sleep in man. 
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CHAPTER 2 

SCORING AND ITS CRITERIA 

2.1 Standard methods of data collection  

Data should be acquired from the subject for further analysis and one has to 

follow a method for the same. Different techniques have to be employed to 

acquire different parameters depending on their characteristics. Without some 

standard procedures it would be useless to analyze the data with respect to 

designation criteria and scoring criteria. The standard methods employed for the 

data collection are listed below [7]. 

2.1.1 EEG Recording  

With the polygraphic tracing to record EEG a minimum paper speed of 

10mm/sec is recommended as the slowest which will permit clear visual 

resolution of alpha and sleep spindle frequency. Time constants shorter than 0.3 

seconds should be avoided. A minimal pen deflection of 7.5 mm for 50 

microvolts is recommended; otherwise low amplitude sleep spindles may escape 

detection. Electrode resistance should not exceed 10K ohms at the beginning of 

recording. 

EEG patterns, and therefore the scoring stages, may vary according to 

electrode placement and derivation. Ideally, a standard array, might include a 

large number of placements which would yield comprehensive regional 

information. However, regional differences are not critical for the scoring of 

sleep stages, except in so far as certain critical types of activity, i.e., alpha, vertex 

sharp waves, sleep spindles, K complexes, and delta waves are adequately 

registered. EEG information is limited to one channel and the recommended 

8 
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derivation is C4/A1 or C3/A2 which is shown in Fig 2. Either the left or right 

side may be used, since the EEG patterns from homologous areas are generally 

synchronous. Sleep spindles, K complexes, and vertex shapes are clearly 

recorded from the C3 or C4 placements, and high voltage slow waves show 

maximal or nearly maximal if the referent maximizes interelectrode distance. 

Although alpha rhythm is better recorded from occipital areas, there is adequate 

registration at C3 or C4 to permit a precise evaluation of sleep onset according to 

EEG criteria. The opposite ear or mastoid placement is also used as the 

recommended reference for electrodes that record eye movement potentials. In 

addition to use of the ear or mastoid reference maximizes interelectrode distance 

and avoids mixing activity from two different scalp areas. 

Sleep stages may be adequately scored using EEG information obtained 

from the recommended derivation. If multiple channel of EEG information can 

be recorded, and special studies make additional derivations desirable, the 

results from the additional placements should be compared with the results from 

C3/A2 and the C3/A2 potentials should be considered as reference. The EEG 

criteria for scoring sleep stages should always be based on tracings obtained 

from C4/A1 or C3/A2. A schematic illustration of these electrode placements is 

also shown in Fig 2 [7]. 

2.1.2 Eye movement recording (EOG)  

To eliminate the confusion between eye movement potential and other signals 

which resemble them, at least two channels are necessary for recording eye 

movements. The recommended procedure is to record on one channel the 

potentials from an electrode approximately 1 cm above and slightly lateral to the 

outer canthus of one eye an a reference electrode on either the homolateral ear 

lobe or mastoid. On the second eye movement channel are recorded the 
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potentials from an electrode 1 cm below and slightly lateral to the outer canthus 

of the other eye referred to the contralateral ear or mastoid, i.e., both eyes are 

referred to the same ear or mastoid electrode. 

When a specific information about the size and direction of eye movements 

is required, a four channel arrangement is suggested where electrodes horizontal 

to the outer canthi as well as infraorbital and supraorbital electrodes are each 

paired with the same ear or mastoid electrode and accorded a separate channel. 

DC recording is preferred when eye position is required. Time constants less 

than 0.3 seconds and a minimum gain of 7.5 mm for 50 microvolt is 

recommended. 

2.1.3 EMG Recording 

EMG has a major role in scoring of stage REM and the data is collected from the 

muscle areas on and beneath the chin. A gain of 20 microvolt/cm is preferred as 

the tonic activity is low during sleep. To avoid the noise a time constant of 0.1 sec 

or faster should be used. The type of electrodes, their position and firm contact 

with the skin are the critical factors in obtaining a good EMG. 

2.2 Sleep Stages and their characteristics 

From the research it is evident that sleep is not a steady state and that the sleep 

stages follow a fairly orderly cyclic pattern. The conceptualization of sleep stages 

or stages is based on the assumption that different physiological signs appear 

simultaneously for a certain period of Erne, displaying a specific and 

recognizable pattern [8). This pattern is assumed to be unique and invariant for a 

certain time interval which lasts until a different unique pattern has been 

established. Since states or stages are conceptualized as discrete entities, they 

may successfully be used to represent the underlying physiological processes if 
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these processes consist of clearly discernible states with abrupt state changes. 

While knowledge of the significance of each stage of sleep is incomplete, specific 

physiological and behavioral correlates of the various have been found. These 

and other correlate may eventually provide more meaningful descriptions of 

sleep than the stages described in the following section [7] which emphasizes the 

EEG changes. 

1. Stage W corresponds to the waking state. It is characterized by alpha activity 

and or a low voltage, mixed frequency EEG. Certain subjects may show little or 

no alpha activity and others may display a continuous alpha record. In this stage 

one can notice a high tonic EMG and often REM's and eye blinks are present in 

the EOG's tracing. 

2. Stage 1  is defined by a relatively low voltage, mixed frequency EEG with a 

prominence activity in the 2-7 Cps range. The term relatively low voltage refers 

to no rhythmic activity above 10 microvolts and no activity above 20 microvolts. 

This is required as the same pattern appears in stage REM. Stage 1 occurs most 

often in the transition from wakefulness to the other sleep stages or following 

body movements during sleep. During nocturnal sleep stage 1 tends to be 

relatively short, ranging from about 1 to 7 min. High amplitude vertex sharp 

waves of the order of 200 microvolts do appear later portions of the stage. 

Scoring of stage 1 requires an absolute absence of K complexes and sleep 

spindles. Sleep spindles are the rhythmic bursts that are dearly visible for at least 

0.5 sec. Stage 1, especially following the wakefulness, is characterized by the 

presence of slow eye movements, each of several seconds duration, which are 

usually most prominent during the early portions of the stage. Rapid eye 

movements are absent. Tonic EMG levels are usually below those of relaxed 

wakefulness. The transition from an alpha record to stage 1 is characterized by 

decrease in the amount, amplitude, and frequency of alpha activity. When the 
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amount of record characterized by alpha activity combined with low voltage 

activity drops to less than 50% of the epoch and is replaced by relatively low 

voltage, mixed frequency activity, the epoch is scored as stage 1. 

3. Stage 2 is defined by the presence of K complexes and the absence of sufficient 

high amplitude, slow activity to define the presence of stages 3 and 4. The 

presence of a sleep spindle should not be defined unless it is of atleast 0,5 sec 

duration i.e., one should be able to count 6 or 7 distinct waves within the half-

second period. K complexes are defined as EEG waveforms having a well 

delineated negative sharp wave which is immediately followed by a positive 

component. The total duration of the complex should exceed 0.5 sec. K 

complexes can occur as a response to a sudden stimuli, but they also frequently 

occur in the absence of any detectable stimuli. If the interval without sleep 

spindles or K complexes lasts 3 min or longer, the interval is scored as stage 1. If 

movement arousals or increases in muscle tone do occur during the interval, the 

piece of record prior to them should be scored as stage 2. 

4. Stage 3 is defined by an EEG record in which at least 20% but not more than 

50% of the epoch consists of waves of 2 Cps or slower which have amplitudes 

greater than 75 microvolts from peak to peak. In actual practice, it will be 

necessary to make wave by wave measurements only for the epoches with 

borderline amounts of high amplitude, slow activity, i.e., about 20% and 50%. 

Differentiation between stage 3 and 4 can be made by comparison with the 

tracings shown in Fig 3 and Fig 4. 

5. Stage 4 is defined by an EEG record in which more than 50% of the epoch 

consists of waves of 2 Cps or slower which have amplitudes greater than 75 

microvolts peak to peak. Intervals of lower amplitude, faster activity rarely 

persist for more than a few seconds in stage 4, but are usually prominent in stage 

3 epoches. 
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6. Stage REM is defined by the concomitant appearance of relatively low voltage, 

mixed frequency EEG activity and episodic REMs. The EEG pattern resembles 

the one described for stage 1, except that vertex sharp waves are not prominent 

in stage REM. Alpha activity is usually somewhat more prominent during stage 

REM than during stage 1, and the 

frequency is generally 1-2 Cps slower than during wakefulness. Sleep spindles 

and K complexes are absent in this stage. 

Stage REM should not be not be scored in the presence of a relatively 

elevated tonic mental-submental EMG. EMG tonic levels reach their lowest levels 

during the stage REM. These low levels may not be reached during other stages, 

but they are reached during unambiguous REM periods. Therefore, a low 

amplitude EMG contributes little to the scoring of sleep stages, but the presence 

of relatively elevated tonic EMG contributes to scoring information by 

precluding the scoring of stage REM. 

At some stage there are situations where in sleep spindles are interspersed 

with REMs. During these situations the record is scored as REM if the EEG has 

relatively low voltage and EMG is at the REM level. If the record displays mixed 

frequency EEG between two sleep spindles or K complexes it is scored as stage 2 

regardless of EMG level. 

The major problem in scoring the stage REM is the determination of the 

precise points at which REM periods begin and end. This problem arises 

primarily from the fact that three indicators, EEG, EOG, and EMG activity, which 

are used to define stage REM may or may not change simultaneously. Rules for 

starting of the stage REM are schematically illustrated in Fig 5. The starting of the 

stage REM are identified by the following. 

a. EEG changes to a relatively low voltage, Sleep spindles and K complexes stop. 
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Figure 5  Illustrations of rules for scoring the start of REM 
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b. EMG amplitude drops. The record is scored as REM only at the instance 

where both the above said changes are noticed. 

c. Whenever movement arousals appear the EMG activity is considered 

important as otherwise with high tonic EMGs those epoches are scored as stage 

1. 

The end of the stage REM is dictated by the following and it is 

schematically illustrated in Fig 6. 

a. An interval of relatively low voltage, mixed frequency EEGs with an elevated 

EMG when compared to REM value. 

b. There arises ambiguity when the movement arousals appear in the stage REM 

as to score the epoch as stage1 or REM stage. During these situations slow eye 

movements that are characteristic of stage 1 are considered as reference. 

The above explained stages and the criteria for scoring are used as a 

reference by all sleep researchers, and further criteria have been added over the 

years by researchers throughout the world. Today sleep researchers are still busy 

in finding new methods and criteria for scoring to understand the enigma of 

sleep as it opens doors for the future research. 

2.3 Scoring Methods  

Various methods have been designed to score the data according to the rules 

explained in section 2.2. The methods devised depends on the application and 

the extent of analysis. Following are some of the methods adopted by several 

researchers to score the signal. 

Paper Scoring  [9] uses 20 sec epoches and follows the scoring rules 

explained in the previous section. The results totally depend on the scorers 

indepth knowledge and the rules he is applying. Paper scoring required 3 

hours/polysomonogram, which averaged 8.4 h in length. 
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Figure 6  Illustrations of rules for scoring end of stage REM 
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Screen-by-Screen [9] scoring method closely paralleled for conventional 

paper scoring and involved scoring each individual 16-s epoch displayed bye the 

scanner. A sleep stage was assigned to each specific 16-s epoch. The scorer 

advanced the tape by paging forward, which advances the tape by 16-sec 

epoches. However, during periods in which the subject stayed in the same sleep 

stage for an extended period(e.g., during an extended awakening), the scorer 

reviewed the tape at 20 times the recorded speed and stopped the tape when the 

sleep stage has changed. The EEG signal amplitude used on the scanner is 

usually of the order of 5 microvolt/mm. Thus in scoring slow-wave sleep a 

deflection greater than 15 mm was required for scoring a delta wave. This 

scoring method required 3-4 h/polysomnogram. 

In Rapid Screen [9] scoring the scorer played the tape at 20 times the 

recorded speed and noted the time of occurrence of sleep stage changes. Changes 

in sleep stage less than one minute were ignored. The scorer was free to stop the 

tape and further review and/or reply any portion of the tape that proved 

difficult to score. Sleep parameters were calculated by hand based on the 

recorded time of sleep stage changes. Movement time is not scored here and is 

tallied as a brief arousal. Including stops, replays, and calculation of sleep 

parameters, rapid screen scoring required an average scoring time of 

lh/polysomnogram. 

Friedman and Jones [10] generated scoring rules through their Cluster 

analysis algorithm. It was based on amplitude analysis of EEG and EMG, along 

with PGO spike rates to stage the sleep. An advantage of this system is its ability 

to adjust amplitude and period windows to obtain maximal agreement between 

visual and computer counts of PGO waves. 



21 

Neural Networks [1] have also been employed for staging. Multilayer neural 

network has been applied to all-night sleep stage scoring. The learning set is built 

from 12,455 sleep epoches extracted from 12 all-night sleep recordings. 



CHAPTER 3 

MATERIALS AND METHODS 

3.1 Techniques of Signal Processing  

3.1.1 Random Process Variables  

A phenomenon is considered Random when each observation of the same is 

unique which cannot be described by an explicit mathematical relationship. In 

other words, any given observation will represent only one of many possible 

results which might have occurred. 

Random processes may be categorized as being either stationary or 

nonstationary. The random process is said to be nonstationary if the mean value 

and the joint moment values vary with time. For special cases when mean and 

the joint moment do not vary as time varies, the random process is said to be 

weakly stationary or stationary in a wide sense [11]. When all possible moments 

and joint moments are time invariant, the random process is said to be strongly 

stationary. Four main types of statistical functions are used to describe the basic 

properties of random data. 

1. Mean square value  

The mean square value tries to describe the intensity of data. It is simply the 

average of the squared values of the time history. The mean square value for a 

sample time history x(t) is given by 

ψx2 = lim 1/T 0 ∫ T x2(t) dt 
T->o 	 

Physical data is a combination of time-invariant component and a fluctuating 

component. The static component can be described by the mean value and 
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dynamic component by the variance which is the mean square value by the 

mean. 

2. Probability density function  

Probability density function furnishes the properties of data in the amplitude 

domain. It tries to describe the probability that the data will assume a value 

within some defined range at any instant of time. The probability that a sample 

time history x(t) assumes a value within the range between x and (x + dr) may 

be obtained by taking the ratio of Tx/T, where T is the total amount of time that 

x(t) falls inside the range (x, x + ∆x) during an observation time T. The 

probability density function p(x) can defined as 

p (x) = lim   lim 1  / T(Tx /∆x )  

∆x->0   T->oo 

 

The principal application for a probability density function measurement of 

physical data is to establish a probabilistic description for the instantaneous 

values of the data. 

3. Autocorrelation Function 

The autocorrelation function for random data describes the general dependence 

of the values of the data at one time at the values at another. An estimate for the 

autocorrelation between the values of a sample time history record x(t) at times t 

and t + τ may be obtained by taking the product of the two values and averaging 

over the observation time T. The autocorrelation function can be represented 

mathematically as 

R

x

(x) = lim 1 / T 0 

 ∫ T x

(t)x (t+τ)dt 

∆x->0   T-> oo 

 

 

The autocorrelation function can be used to establish the influence of values at 

any time over values at a future time. Autocorrelation measurement clearly 
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provides a powerful tool for detecting deterministic data which might be masked 

in a random background. 

4. Power spectral density function  

Power spectral density function for random data describes the general frequency 

composition of the data in terms of the spectral density of its mean square value. 

A band-pass filter can be used to find the mean square value of a sample time 

history in a frequency range between f and f + af. The power spectral density 

function can be represented as 

ψx

2 [f, f+∆f] = lim 1/T 0 ∫ T x2(t, f, ∆f)dt  
T->∞ 	

 

Power spectral density function is used to establish the frequency composition of 

the data which inturn bears an important relationship to the basic characteristics 

of the physical system involved. 

The processing techniques and the statistical formulas normally don't 

apply when the data is nonstationary. Special considerations and procedures are 

required for such analysis. Electroencephalograms tends to be nonstationary. 

Physical occurrence of nonstationary data can be represented by three 

parameters. 

1. Time-varying mean value  

For a nonstationary data the mean values can be estimated using a computer. If 

N sample functions xi(t); i=1,2,3 	N represent a nonstationary process x(t), the 

estimate of mean value will vary over different choices of the N samples. One 

must investigate how closely an arbitrary estimate will approximate the true 

mean value. This can be done in two steps. The first step is to obtain mean value 

for each record 

xi(t) 

 as a function of t. After this has been done for N samples, the 

average is found out by adding the records together and dividing by N. 
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2. Time-varying mean square value 

The same analysis given for the time-varying mean is carried out to determine 

the variation of nonstationary mean square value. 

3. Time varying power spectra 

The time-averaged power spectrum can be used for describing the time varying 

spectral characteristics of an important special class of nonstationary random 

processes which possess the following characteristics [11]. 

1. The lack of stationarity is due to deterministic time trends which are 

represented in every sample function. 

2. The time trends are very slow relative to the instantaneous fluctuations of the 

data. 

3.1.2 Transforms and their Applications 

It is well known that when a quantity varies periodically with time it may be 

'Analyzed into its Harmonic components'. The variation in these quantities 

repeats itself at some basic frequency and the disturbances having repetition 

frequencies equal to the multiples of the basic frequency. Time and frequency 

appear as a related pair of variables in all these cases. Transformation is a 

technique used to change the representation of a parameter from one domain to 

another. 

a. Fourier & Fast Fourier transforms 

The basic essence of Fourier transform of a waveform is to decompose or 

separate the waveform into a sum of sinusoids of different frequencies. Figure 7 

illustrates this interpretation. The pictorial representation of the Fourier 

transform is a diagram which displays the amplitude and frequency of each of 

the determined sinusoids [12]. Mathematically, this relationship is stated as 
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Figure 7  Interpretation of the Fourier Transform 
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s(f) = ∫ ∞ s(t) e-j2πft dt  

-∞ 

 

where s(t) is the waveform to be decomposed into a sum of sinusoids,  S(f) is the 

fourier transform of s(t). 

If there are N data points of a function and if we desire to determine the 

amplitude of N separate sinusoids, then the computation time is proportional to 

square of N. Even for high speed computers, computation of the discrete Fourier 

transformation requires excessive machine time for large N. 

To reduce the computational time of discrete Fourier transformation a 

new mathematical algorithm known as Fast Fourier transformation was 

developed. This algorithm reduces the speed of computation to Nlog2N times. If 

a computer takes half an hour to do a Discrete fourier transformation on a data 

with N = 8192 samples, the calculation time required by Fast Fourier 

transformation is only about five seconds. 

b. Walsh transformation 

The complete set of Walsh functions are given by the following set of equations. 

wj(t) = 0 t<0 and t < 1 

w0(t) = 1  0 < t <1 

w2j(t) = w j(2t) (-1)j w j(2t-1) 

w2j+1(t) = w j(2t) (-1)j+1 w j(2t-1) 

j= 0, 1, 2..... 

The subscript j is the 'Sequency' which has the units of the number of zero 

crossings per unit time(z.p.$). The first eight functions are illustrated in Fig. 8. 

	

By analogy with the sine and cosine functions in Fourier analysis, the 

finite sal and cal transforms are given by [6] 

Fs(k) = 1/N ΣN-1 f(ti)sal(k,ti) 
i=0  



 

Figure 8  A set of walsh functions arranged in sequency order 
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Fc(k) = 1/N  i=0ΣN-1 f(ti) cal(k,ti) 

where 

sal(j,t) 

= w2j+1(t)  

cal(j,t) 

= w2j(t) 

Finally the Walsh power spectrum is written as 

s(j) 

= Fc2(j) + Fs2(j)..... 

 

c. Haar Transform  

Haar Transform like the Fourier and Walsh Transforms, form an orthogonal set 

of functions consisting of rectangular functions whose amplitudes assume a 

limited set of values: 0, 1, ±√2, ± 2, ± 2√2, + 4....etc. The first eight Haar functions 

are illustrated in Fig 9. The essential characteristic of the Haar function as shown 

in Fig 9 is seen as a constant value every where except in one sub-interval where 

a double step occurs. A given time function f(t) within the interval 0 ≤ t ≤ 1 can 

be synthesized from the Haar series, by [13] 
∞  

f(t) = Σ  Cn  HAR(n,t) 
n = 0 

where 
1 

Cn  = ∫ f(t) . HAR(n, t) . dt 
t=0 

Haar(n, t) is illustrated in Fig 9. From these equations, the discrete Haar 

Transforms and its inverse are stated as 

N-1 
Fn  = 1/N Σ  fi  HAR(n,i/N) 

i=0 

and       

N-1 
Fn  =   Σ  Fn  HAR(n,i/N) 

n=0  

 

i,n = 0, 1, 2 	(N-1) 



 

Figure 9  The first eight Haar functions 
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The Haar transform satisfies the Parseval's Theorem that is 

f2(t) .dt = Σ ∞ Cn2  
n=0 

3.2 Experimental Setup  

3.2.1 Subject  

All-night EEGs, EOGs, and EMGs were recorded at the sleep laboratory of the 

Robertwood Johnson Research Center from a healthy 30-year old adult female. 

The recording was carried out in a sound-attenuated, ventilated, temperature-

controlled room. The data was recorded by Medilog eight channel recorder for a 

period of six hours. 

Two EEG channels (C3/A1 & C4/A1), two EOG channels (Al, one cm 

vertically upward from outer canthus of left eye; Al, one cm vertically 

downward from outer canthus of right eye), and one EMG channel (two 

electrodes placed on the jawbone) were used which is schematically illustrated in 

Fig 10. The five channel data obtained from the subject was amplified by Gould 

Universal amplifier with Band-pass filter across 0.3 to 100 Hz, and continuously 

digitized at 256 Hz by a Data Translation Board. Fig 11 shows the experimental 

set-up. 

3.2.2 Data Porting  

The digitized data had to be transferred from the recording center to the Sun 

workstation which had the requisite tools for analysis. The binary data file, the 

result of a six hour five channel recording was 66MB in size. Due to 

nonavailability of INTERNET access at the time of this work was carried out, 

other means for data transfer had to be thought of. An attempt to transfer the 

data through an optical disk failed due to the mismatch of optical reader formats. 



Figure 10  Electrode placement for data collection 

Figure 11  Experimental setup for data collection 
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Alternative ways of transferring were through Floppy Disks, Laptop with 

an ETHERNET card, Magnetic tapes etc. Storing onto floppy disks was not 

feasible considering the size of the data. Laplink, a package which supports the 

transfer of data between two computers, was used for this purpose. Laplink is a 

sophisticated package having capabilities to transfer any form of data. Data can 

be transferred to either a local or a remote machine. Local data transfer was 

achieved at a rate of 33Kb/sec. The data was loaded onto the Sun-Sparc Station 

using File Transfer Protocol. The binary file had to be converted into a readable 

form. The size of converted file was three times its counterpart which precluded 

its storage on the mainframe. Data Cartridge was employed to store the 200MB 

of readable data. 

3.2.3 Procedure  

Analysis of overnight recording of EEG, EMG, BOG was carried out on a Sun 

Sparc station. MATLAB was used as a tool for analysis since it was supported by 

sophisticated graphical and mathematical applications. Due to enormous size of 

the data and the computational problems, a smaller length of the signal was 

considered. 

The data analysis was carried out using the Fast Fourier Transformation. 

The use of other orthogonal functions such as the Harr and Walsh was also 

considered, but Fourier Transform was applied in the present studies. Intially the 

digitized and filtered data was preprocessed by removing the DC component. 

The DC component inherent in the signal can be removed in two ways 

depending upon the type of analysis. One way is to take the mean of the epoch 

considered and subtracting from the epoch amplitudes. The other method is to 

calculate the overall mean of a signal and subtracting the calculated value from 

each epoch amplitudes. The signal was reduced by an amplitude factor of by 
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1000 to get a realistic scale. Fig 12 shows a sample signal with the above 

procedure applied on it. 

While deciding the length of the epoch for the analysis few factors are 

important. The resolution one is looking for, computational capabilities, available 

memory space to store the results calculated etc. Considering the above factors 

and standardized techniques while analyzing a long stretch of data, an epoch 

length of thirty seconds is considered. 

During the first phase of analysis an epoch of five seconds was used. Fast 

Fourier Transfoim was applied on each epoch and the individual Power 

Spectrums were calculated. The Fig 13 shows a sample of one of the Power 

Spectrums. To observe the overall frequency variations for the whole length of 

the signal, the calculated five second epoch spectrums were stacked. They were 

then plotted on a three dimensional plane with suitable frequency and time axes 

as shown in Fig 14. 

In the real world of Fast Fourier Transforms the number of degree of 

freedom is a key factor in the analysis. With the first phase of analysis the Degree 

of Freedom was two and to increase the same to a higher number segmental 

averaging method was used. An epoch of thirty seconds in length was divided 

into fifteen segments and individual power spectrums were calculated. This 

resulted in the degree of freedom from two to thirty. While calculating the 

average Power Spectrum for an epoch the past segmental average is also 

considered. The calculated Power Spectrum was used as input to Scoring 

Algorithm. 

3.2.4 Algorithm  

The basic criterion used for the classification of an epoch as stage are the absolute 

magnitude of a sample signal and the calculated power spectrums of the epoch. 
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In an epoch a set of five samples were used to calculate the highest frequency 

component. They are then compared with the next set of five samples and the 

process is repeated for the whole 30 second epoch. 

The Algorithm is designed such that the computed highest frequency 

passes through conditional loops to score it as a stage. While deciding on the 

stages both the EEG & EMG absolute values and the percentage of occurrence of 

these values were considered, satisfying the basic criteria. The moving spectrum 

analysis was applied before concluding on the stages. 

The whole signal is scored as wake, REM and NREM(subdivided as stage 

1, 2, 3 and 4). The epoches which doesn't fit in any of the conditional statements 

are scored as stage 6. The absolute values were taken into account as the analysis 

demands peak-peak voltages. A time vector was generated corresponding to the 

number of epoches that were subjected to scoring which was used in the 

representation of stages on a two dimensional plane. Due to computational 

difficulties EOG could not be incorporated in the analysis. This Algorithm does 

not take in to account the appearance of K-complexes and the sleep spindles. Fig 

15 and Fig 16 shows the Algorithm output for whole length of the data and with 

the time scale expanded respectively. Table 2 shows a list of criteria considered 

for this analysis. A flowchart has been shown in Fig 17 which explains the whole 

process. The conditional loops have been clearly shown with the absolute 

magnitude values and the frequency at which signal has to be present to score it 

as a stage. The algorithm doesn't detect the presence of K-complexes and sleep 

spindles. The percent factor in the flow chart refers to percentage of the epoch 

which satisfies the necessary criteria for that stage. The Algorithm was 

developed using the combined features of MATLAB and the object oriented 

language C++. 
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3.3. Results and Discussion  

The EEG may be thought of as having two types of waveforms of interest. The 

first is the statistically regular waveform such as delta or theta rhythm which can 

be regarded as stationary and stoichiostic processes. The second are specific 

transients such as spindles, spikes or bursts. These latter, whole of major 

importance in human sleep EEG, have been studied by some researchers but in 

general use in sleep staging to a limited scope. 

The stationary processes are characterized by their spectral properties 

which can be examined by techniques such as Autocorrelation, Cross correlation, 

Spectral Density and continuous frequency analysis using band pass filters. Auto 

and cross correlation are time domain statistics, while spectral density and 

continuous frequency analysis are frequency domain techniques. Time domain 

statistics are used to determine whether a signal is stationary and periodic. 

Frequency domain statistics assume these characteristics and resolve the signal 

into fundamental orthogonal components specified only by a frequency 

parameter. Auto and cross correlation techniques relay upon integration of the 

product of the signal and a delay signal, either the same signal or a second one, 

respectively. Both processes are more readily and reliably achieved in software 

than hardware due mainly to the delay required for the second signal. 

Spectral density determines the power of a signal as a function of its 

frequency components without regard for either phase or temporal relationships. 

As the main parameter for scoring is frequency , spectral analysis was opted in 

this research. The spectral analysis determined by fourier analysis through FFT 

yielded very clear distinct variations in the power spectra for various sleep 

stages. Further in quantifying the effects of cerebral Ischemia on the EEG in a 

clinical setting, FFT proved superior to other methods, including period-

amplitude analysis. 
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The results of the analysis are shown in the Fig 15. The whole five hours of 

data was evaluated through the algorithm which yielded around six hundred 

points with an epoch length of thirty seconds. One cannot appreciate the scored 

data with a large scale of time but can see the clearly the agreement with respect 

to visual scoring when expanded as shown in Fig 16. The manual scoring in the 

present context has been carried out with a standard epoch length of thirty 

seconds. The column displayed as page no in the visual scoring table as shown in 

Table 3 refers to polysomnograph recording sheet numbers. Each sheet 

corresponds to an epoch of thirty seconds. The stage values are named as 1, 2, 3, 

4 ,REM as 5, and awake as A. The stage numbers display the onset of a stage and 

remain there till the next change. The individual pages of the polysomnograph 

record which represents 30sec epoch are represented as minutes in a separate 

column for the ready reference. The overall agreement between the visual and 

automatic scoring was satisfying for the whole length of the data. The correlation 

was the best for wake & NREM stages(for 1, 2, 3, and 4) and poor for REM sleep. 

Figure 18 shows sample power spectrums at the places where there is a match to 

prove the efficiency of the algorithm. The explanation for the above is discussed 

below. 

Most classification errors occur when there is a transition between sleep 

stages and the errors generally consist of an exchange of temporally related sleep 

stages, especially quiet sleep and deep sleep. This is not surprising since the 

sleep is a nonstationary, continuous process. The frequent and fuzzy transitions 

between the artificial, discrete sleep stages are difficult to classify both by the 

computer and visually. It is judged that for fragments with stage transitions the 

computer scoring should be preferred, as it is more consistent than visual 

scoring. 
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One shortcoming in this approach is that the automatic scoring algorithm 

cannot discriminate short bursts of phasic activity from tonic, more prolonged 

but less intense activity. Since the algorithm cannot discriminate brief bursts of 

EMG activity, the short bursts of EMG activity due to muscle twitches sometimes 

lead the algorithm to erroneously score as awake. The possible reason for poor 

REM scoring can be justified by applying the above fact to EEG, as sleep spindles 

do appear in stage 2 before switching on to REM. Fortunately such epoches are 

small in number resulting in a minor effect as scoring error. The irregularities 

that appear intermittently can be accounted for electrophysiological effects and 

movement artifacts. There could also be an error due to patient movement. 

Although spectral was best suited for this analysis it had drawbacks when 

compared to other methods. Averaging of spectra occurring over long intervals 

of time has the disadvantage of ignoring short term changes in the EEG. In 

addition power spectral analysis doesn't separate the relative contributions of 

changes in amplitude and incidence of a given wave form. If elevated power 

spectral density is identified, this may be secondary to an increase in the 

amplitude of the waveform, a greater incidence of that waveform, or a 

combination of both factors. 

3.3.1 Extensions and Improvements  

The analysis which was carried out only with analog filtering of 256 Hz 

can be improved considerably using an algorithm for artifact rejection. The 

algorithm should be able to detect the noise pattern and if the noise percentage is 

large in an epoch it should be discarded. If the staging algorithm is used on the 

data from which the noisy epoches have been eliminated, there will be an 

increment in the percentage of agreement between visual scoring and 

computerized scoring. 
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An attempt should be made to design an algorithm to detect the K-

Complexes and sleep spindles. The use of such an algorithm should help to 

achieve in attaining a higher percentage of agreement. The algorithm can be 

designed to find a typical K-Complex pattern to use it as a template for further 

matching through the signal. 

This can be expanded to an on-line scoring system running on a personnel 

computer with the front-end developed using Microsoft Windows. This helps a 

physician to see the sleep stages when the subject is sleeping at the other end. To 

achieve the required speed for the real time system one can use the faster 

transformations like Haar and Walsh which are ideal for non-stationary signals. 



APPENDIX A 

MATLAB  

MATLAB is a technical computing environment for high performance numeric 

computation and visualization. MATLAB integrates numerical analysis, matrix 

computation, signal processing, and graphics in an easy-to-use environment 

where problems and solutions are expressed just as they are written 

mathematically - without traditional programming. 

The name MATLAB stands for Matrix laboratory. MATLAB was 

originally written to provide easy access to matrix software developed by 

UNPACK and EISPACK projects, which together represent the state of the art in 

software for matrix computation. 

MATLAB is an interactive system whose base data element is a matrix 

that does not require dimensioning. This allows you to solve many numerical 

problems in a fraction of time it would take to write a program in a language 

such as FORTRAN, Basic, or C. 

MATLAB has evolved over a period of years with input from many users. 

In university environments, it has become the standard instructional tool for 

introductory courses in applied linear algebra, as well as advanced courses in 

other areas. In industrial settings MATLAB is used for research and to solve 

practical engineering and mathematical problems. Typical uses include general 

purpose numeric computation, algorithm prototyping, and special purpose 

problem solving with matrix formulations that arise in disciplines such as 

automatic control theory, statistics, and digital signal processing. 

MATLAB also features a family of application-specific solutions that it 

calls as Toolboxes. Very important to most users of MATLAB, toolboxes are 
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comprehensive collections of MATLAB functions(M-files) that extend the 

MATLAB environment in order to solve particular classes of problems. Areas in 

which toolboxes are available include signal processing, control system design, 

dynamic systems simulation, systems identification, neural networks, and others. 

Probably the most important feature of MATLAB, and the one that 

MATLAB people took care to perfect, is its easy extensibility. This allows us to 

become a contributing author too, creating our own applications. In the years 

that MATLAB has been available, the company has enjoyed watching many 

scientists, mathematicians, and engineers develop new and interesting 

applications, all without writing a single line of low level code. 

External Interfaces to MATLAB  

Although MATLAB is a complete, self-contained environment for programming 

and working with data, it is often very useful to interact with data and programs 

external to MATLAB. Shell escape functions and MEX-files are the two methods 

for calling your own C or Fortran subroutines. 

a. Shell Escape Functions 

Shell escape functions use shell escape command ! to make external stand alone 

programs act like new MATLAB functions. A shell escape M-function is an M-

file that 

1. Saves the appropriate variables on disk. 

2. Runs an external program (which reads the external data file, processes the 

data, and writes the result back out to disk. 

3. Loads the processed file back into the workplace. Shell escape functions are 

less efficient than MEX- files because they incur the overhead associated with 

invoking an external program each time they are called and because their 

arguments are passed via disk files. In situations where relatively large amount 
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of processing is performed in the external program, this overhead can be 

negligible, and converting to MEX-files offer no real advantage. 

If the computation time of the external program is short compared to the 

time spent loading the program and passing the variables, MEX-files may be 

more suitable since the object code of a MEX-file is physically linked into 

MATLAB. 

b. Dynamically Linked Subroutines: MEX-Files  

One can also call C and Fortran subroutines from MATLAB as if they were built-

in functions. MATLAB-callable C and Fortran programs are referred to as MEX-

files. MEX-files are dynamically linked subroutines that the MATLAB interpreter 

can automatically load and execute. MEX-files have several applications: 

1. Large pre-existing Fortran and C programs can be called from MATLAB 

without having to be rewritten as M-files. 

2. Bottleneck computations (usually for-loops) that do not run fast enough in 

MATLAB can be recorded in C or Fortran for efficiency. 

3. A/D cards, D/A cards, and other hardware can be accessed directly for data 

acquisition and control applications. 

MEX-files are not appropriate for all applications. MEX-files offer an 

avenue that unsuspecting users may follow when they would be much better of 

programming in the MATLAB language. MATLAB is a high-productivity system 

whose specialty is eliminating time consuming, low-level programming in 

compiled languages like C and Fortran. 

Techniques for importing and exporting data to and from the MATLAB 

environment are also available. The most important approach is MAT-files-the 

file format that MA MATLAB uses for saving data to disk. MAT-files offer a simple 

and convenient mechanism for transporting our data between different 

platforms. 



APPENDIX B 

'SIGNA' SIGNAL PROCESSING PACKAGE 

The package supports a biomedical signals processing system. As a research tool 

the system offers the potential to acquire and analyze experimental and clinical 

data obtained in the form of photographs, polygraphic paper charts etc. In its 

role as an adjunct to biomedical education, several self-teaching features are 

implemented which enable the student of biomedical signals processing to gain 

hands-on experience in the application of signals processing methodologies to 

the analysis of clinical and experimental data. These features include a software 

function generator and a help option. The modular approach employed in the 

system design provides a great deal of flexibility to the investigator such that 

when a new analysis is desired one can simply add on the particular user-

developed module to the system without causing any undue system constraints. 

The types of analyses that are currently implemented include numerical 

integration, curve fitting, Fourier, Walsh and Haar transformations, spectral 

analysis and frequency response measurements. The system is being used for a 

wide range of applications which include the analysis of electrical signals 

generated at the neuromuscular junction, the  computation of input impedance of 

the arterial system, the analysis of pressure waveforms obtained during 

anesthesia and in the characterization of respiratory dynamics in studies 

pertinent to asthma. 
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