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ABSTRACT 

FAST ADAPTIVE ALGORITHMS FOR 
SIGNAL SEPARATION 

by 
Robert A. Manzo 

LMS and RLS type algorithms are suggested for decorrelation of multi-channel 

systems outputs. These algorithms act as signal separators when applied to unknown 

linear combinations of the inputs. The performance of the suggested algorithms is 

compared with that of the conventional LMS and RLS algorithms that minimize 

the mean square error. It. is shown that the correlation matrix eigenvalue spread 

associated with the LMS decorrelator is always smaller than the eigenvalue spread 

corresponding to the conventional LMS. resulting in faster convergence speed for 

the decorrelator. A new RLS type decorrelator algorithm is suggested. The RLS 

decorrelator is shown to be faster than the LMS decorrelator. not affected by the 

eigenvalue spread, and comparable in speed with the conventional RLS algorithm.  

Convergence analysis by simulation shows that the RLS algorithms and the LMS 

decorrelator have wider regions of convergence than the conventional LMS. 
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CHAPTER 1 

INTRODUCTION 

In today's world, there is an ever increasing demand to process large amounts of infor-

mation accurately and efficiently. As a result, technology has to be pushed to 

accom-modate the need while still providing reliable results. At the heart of the technology 

are digital signal processing chips which perform the necessary functions required to 

process the information. These chips perform their tasks via algorithms designed to 

filter out unwanted signals while enhancing the desired signal. Additionally, these 

algorithms must be adaptive to combat the random characteristics of the trans-

mission medium. Increasing number of applications for such adaptive algorithms. 

such as detection in multiple-access communication systems, separating multiple 

speech signals and canceling cross-polarized interference in dual polarized systems. 

has led to the need for faster, more efficient adaptive algorithms to perform such 

tasks. In this thesis, we will analyze and compare existing algorithms with a newly 

developed algorithm and discuss the results. We will deal primarily with the issue of 

separation of recovered, unknown independent. sources from observations of a linear 

mixture of sources. Our system will be multi-channel input. multi-channel output 

where each output is an unknown linear combination of the inputs. 

Two approaches of addressing the problem of signal separation are considered 

here. The first is to treat the problem of undesired signals as interference and 

implement interference cancellation techniques. The signal-to-noise-and- interference 

ratio at each output channel is enhanced by suppressing co-channel interference. 

The mean-squared error (MSE) between the system output and a reference signal is 

minimized by a Wiener filter. This Weiner filter can be implemented using a variety 

of stochastic gradient algorithms, in particular the Least '\•lean Square (LMS) and 

Recursive Least. Squares (RLS). An example of such an application is the cross- 
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polarized sign.d separator in a dual-polarized Mary QAM system as suggested by 

Kavehard [21]. With this approach. however, the interference signal is indiscrimi-

nantly suppressed thus making this type of approach inadequate for systems trying, 

to isolate independent signals. 

The other approach treats the separation of superimposed signals directly. In 

the early eighties. a class of signal separators was proposed that in effect. estimates 

the parameters of the mixture between the sources [4]. A steady state analysis of 

three cross-coupled "noise cancelers" structures was detailed in [2], and a comparison 

with other methods was detailed in [10]. The signals to be separated were assumed 

to he uncorrelated and separation at the output. could be had provided that some 

reference was available by which the signal could be discriminated. The reference 

signal is comprised of the superimposition of the filtered out puts excluding the desired 

output. Since this structure successively improved the purity of the reference inputs 

and hence the corresponding out puts. the algorithm became known as t he bootstrap 

algorithm [3]. 

Later. similar structures and adaptive rules were proposed independently by 

other researchers. Since then, work has been clone on different structures and 

adaptive algorithms [12]. [1], [22]. The latter works implemented a supervised 

training signal. In [I]. Aazhang et  al., proposed a multi-layer neural network as 

a multiuser receiver. The adaptation of the weight values was performed with t he 

implementation of t he ba.ck-propagation algorithm. Their work was strictly empirical 

and suffered several disadvantages. The algorithm required supervised training. t he 

network size increased exponentially with the increase in the number of users and it 

lacked convergence under realistic situations. 

Mitra and Poor [22] proposed a single-layer perception scheme. with both 

linear and nonlinear adaptive algorithms for single user demodulation in a multiuser 

channel. 	In particular. they showed that the single-layer perceptron weight 
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converged to the optimal values for the noiseless multiuser case both in the 

synchronous and asynchronous transmission cases. In the presence of additive 

Gaussian noise, the neural network performed satisfactorily and was less susceptible 

to the noise compared to other linear algorithms. Two drawbacks were its slow rate 

of convergence and the need for supervised training. 

The one distinguishing feature of the previous two methods is the use of 

supervised learning for proper operation. In some applications, access to the known 

source signal is not possible. Consequently. a more desirable and pragmatic method 

of signal separation is the implementation of a unsupervised learning scheme through 

a mode known as the decision-directed mode. This is the method of choice and is 

implemented in a class of signal separators called blind signal separators and is 

studied by [18]. [24], [5]. [6]. In [18]. Jutten and Herault addressed the problem 

based on a linear feedback neural network. Their algorithm assumed the unknown 

sources to be statistically independent. Therefore. in order to have a good solution 

to the problem of source separation, the outputs had to be statistically independent 

and not just uncorrelated. Since it. was difficult to devise a criterion for testing 

statistical independence, a cost function for decorrelation of the outputs had to be 

designed. Thus, independence was not achieved directly but was approached by 

minimizing higher order cross moments utilizing stochastic gradient algorithms with 

cost functions defined by nonlinear functions of the outputs [19]. The algorithm 

did have its drawbacks in convergence and stability [28]. In [20], Jutten et. al. 

proposed an algorithm as an extension to the work in [18]. They generalized the 

algorithm to apply to a more interesting case of convolutive mixtures. In this case. 

the available information at the adaptive filter is a superposition of unknown sources 

after unknown filtering in unknown linear (FIR I filters which model the properties 

of the signals from sources to detectors. Thus. separation of unknown sources can 

be achieved by estimating an inverse FIR filter. '1 lie 	algorithm is implemented 
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to estimate the various coefficients of the FIR filters. Results proved satisfactory for 

simulated signals but clue to the simplicity of the model chosen. performance in real 

situations was insufficient. 

In [24]. Moreau and Macchi proposed two other structures, feedforward and 

mixed, in comparison to the one in [18). While [18] required implementation of 

constraints for realizability, the two structures in [24] did not. Also, utilizing the same 

adaptation rule as in [18], the feedforward structure exhibited a faster convergence 

for certain signal mixtures. However, drawbacks reported in [18] remain unsolved by 

these researchers. In [5], Burel proposed a new approach to the work of Jut ten and 

Herault based on the ideas of back propagation learning on neural networks. His 

contributions include the development. of an algorithm designed to minimize a cost 

function and a means of dealing with nonlinear mixtures. Satisfactory results were 

obtained for both the linear and nonlinear cases and his algorithm was resist ant to 

noise corruption. Convergence. however. was still not guaranteed. 

Along similar lines. Compernolle and Van Gerven [8] and [7) developed a 

symmetric adaptive algorithm for noise cancellation and signal separation. The 

algorithm was derived from the interpretation of an adaptive noise canceler as 

a decorrelator between signal estimate and noise, where the noise reference was 

replaced with a. "signal free" noise estimate. Thus a. symmetric adaptive decor-

relator for signal separat ion was obtained. Convergence of the algorithm, however. 

to the desired solution could only he guaranteed for a subclass of signal separation 

problems. 

Finally, the structures introduced earlier by Bar-Ness in [2] for decorrelating 

the outputs of multi-channel systems can also he applied to multi-dimensional blind 

adaptive signal separation. The implementation was performed and analyzed in [13]. 

[14], [11], [15]. This adaptation operated on the premise that cross-correlations of the 

outputs or of nonlinear functions of the outputs, are used to control filter weights 
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of both feedforward and feedback structures. Simulations showed that this LMS 

decorrelating algorithm is faster. for any number• of channels. than the conventional 

LMS algorithm. 

In this thesis, we analyze and compare various blind separation algorithms 

based on two criteria: the Mean Squared Error (MSE) and decorrelation. Our focus. 

will be to (1) prove . by means of mathematical analysis and computer simulations. 

hat the eigenvalue spread associated with the LMS decorrelating algorithm is smaller 

than the eigenvalue spread associated with the LMS algorithm thus providing an 

explanation for previously reported results regarding the speed of convergence of 

the LMS decorrelating algorithm [11]. [15] and (2) introduce and analyze our new 

decorrelating RLS type algorithm. 

In Chapter 2. the system model is presented. In Chapter 3, we define the 

separation criteria and based on them compute the expressions for the steady state 

weight vector. In Chapter -1. t lie adaptive algorithms and convergence analysis of the 

LMS and LMS decorrelating algorithms are developed. The performance measures 

are defined in Chapter .5 and the various algorithms are compared via. computer 

simulations in Chapter 6. The conclusion of the thesis is given in Chapter 7. 



CHAPTER 2 

SYSTEM MODEL 

The model studied here reflects a multi-user communication system. such as CDMA. 

of N sources transmitted through N channels as shown in Figure 2.1. 

Figure 2.1 Multi-user communication system model 

Before proceeding. we make the following assumptions: 

1. The sources are independent. 

2. The outputs of the channels consist of a linear mixture of the inputs. 

3. The number of inputs is equal to the number of sources. 

4. The information bits from the N sources are transmitted simultaneously. 

5. The information bits are statistically independent and equiprobable. 

Define b (i) = lb! 	b2  (i), • • • , bN (i)]T  as a vector corresponding to the 

sources' information bits transmitted at the i-th time interval. where bn  E 

6 
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1 ≤  n ≤ N, is the n-th information bit at the i-th time interval. Each information bit 

has a duration time of Ts. Define h (1) = 	(I) h2  (I ) , • • • , hN  (i)] 1  as the vector 

corresponding to the signature waveforms of the N sources, where hn  (1), 1 ≤ n ≤ N. 

is the n-th signature waveform with its time interval between [0, Ts ). The energy of 

(1) is normalized to 1. i.e. ∫T0 , |hn (t)  1 2 th = 1. 

Each of the N sources has each of the information hits, bn  (i), encoded by the 

signature waveform lin  (t). Subsequently. all the N sources are transmitted through 

the same channel ever' i-th time interval where the channel is assumed to be nondis-

persive and possibly slowly. time varying. Define n (I) as the background channel 

additive white Gaussian noise with a. zero mean and a power density of σ2n In the 

case where all users int lie system are bit-synchronous. the signal r (1) received at the 

out put of the channel is the sum of all the A' signals and the noise n  (t), expressed 

as: 

The received signal r (t) is then demodulated by a bank of matched filters. The 

out put Xn  (1) is the result of the convolution of r (I) and hn (t), which results in 

for 1 < n < N. v (t) is Gaussian noise, possibly correlated. resulting from the 

additive white Gaussian noise, n. (t), passing through the matched filter bank. 4n  is 

the energy associated with the n-th user. The mixture cross-correlation coefficients 

clue to the matched filtering. aij, where i ≠ j. i.j = 1. 2. • • • 	are assumed to 

be less than unity in magnitude. The diagonal coefficients. aij, i = 1.2. • • • ..V. are 

assumed, without loss oh' generality, to be unity. Since all the users are assumed to be 

bit-synchronous, we can drop the time dependency for convenience of presentation 
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and represent the matched filter output. x (t) in vector form such as: 

where x = [x1..x2.....,xN]T 

v

 = 	v2....vN]T , A is the mixture matrix and E is 

a diagonal matrix, dia.gE = [vG, \TG. • • • , icy.] T. The sampled noise is has a zero 

mean and a covariance of 

where n is the vector representing the background additive white Gaussian noise 

and H is the known matrix of the noise cross-correlations between the outputs of the 

matched filters. 

The n-th user out put of the adaptive filter. represented by the weight vector 

is defined as: 

The adaptive filter structure of interest. in this work will be the feed-forward structure 

shown in Figure 2.2 for the case of two users. 

Figure 2.2 Feed-forward filter structure 

where wij  are the filter's adaptive weights. 
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For BPSK transmission, a nonlinear function can be used to detect the data 

bit bn defined as: 

where .1(•) can be either the signum function, sgn (•), for hard decisions or the 

hyperbolic tangent function, tanh (•), for soft decisions. 



CHAPTER 3 

SIGNAL SEPARATION CRITERIA 

The two signal separation criteria considered here are (1) the Mean Squared Error 

(MSE) separation and (2) signal decorrelation criteria. The criteria are used to 

develop control algorithms for adaptive filter weights. Our focus will he on separat ion 

of the n-th user signal from the rest. of the signals. other channels being treated 

similarly. 

3.1 MSE Separation Criterion 

The MSE signal separator minimizes the mean squared error between its output and 

a reference signal. Typically. the reference signal is initially supplied by a training 

signal. After the adaptive weights have converged and the errors between the training 

signal and the output are small. the detector is switched to operate in the decision-

directed mode. The reference signal is then supplied by the estimate output signal. 

The MSE separator is in effect an optimum linear detector for the n-th user. acting 

as a canceler for the co-channel interference from other users. 

Consider the system depicted in Figure 3.1. 

Figure 3.1 Adaptive MSE Signal Separator 

10 
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In the decision-directed mode, the MSE separator minimizes the error between 

the reference signal, in this case the estimated output. symbol denoted by bn  (k) and 

the output y„ (k) . The estimations error can then he expressed as: 

The MSE is correspondingly denoted by F. = E Lie (k) j2]. Since the signals a re 

assumed stationary, we can suppress the time dependency for convenience of presen-

tation. 

To establish the MSE criterion. we need to develop the steady state weight 

vector equation for separating the n-th user signal. Let V denote the gradient vector 

of the MSE. Differentiating the MSE. c, with respect to wTn  [17], we get 

Ignoring the scaling constant and minimizing (3.2) to obtain the optimum 

weight vector results in 

where Rx = E [xxT] is the input correlation matrix and rbnx, = E [bnx] is the cross-

correlation vector bet ween the input and t he est imated out put symbol. The resulting 

steady state weight vector equation is the well known Weiner-Hopf equation. 

Inserting the input vector given by (2.4) leads to the input correlation matrix 

written as: 
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Since it is assumed that. the sources and the additive Gaussian noise are uncorrelted. 

then E [vbT } = E [bvT ] = 0 which simplifies (3.4) to 

where E [bbT ] = I and H is the noise correlation matrix defined in Chapter 2. 

The cross-correlation vector is given by 

To simplify (3.6) further. we claim that in the decision-directed mode 

and 

where un  is a unit vector with the n.-th element equal to 1, 	is a constant defined 

as: 

and Q is a diagonal matrix. diagQ = 	. • • • qN]T  . T he proof of (3.7) and (3.) is 

given in Appendix A. 
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Substituting (3.7) back into (3.6). we get. 

In the absence of noise, the MSE criterion indeed does lead to complete signal 

separation. This can be shown by substituting (3.5) and (3.10) into (3.3) and getting 

The input vector is then applied to the filter and a scaled version of the information 

bit is recovered and given by: 

3.2 Decorrelation Signal Separation 

The decorrelation signal separator shown in Figure 3.2 differs from the MESE signal 

separator in the way the weight vector is controlled. The MSE weight. vector is 

controlled by the error derived solely from the out put corresponding to that user. 

The decorrelation weight vector, on the other hand, is controlled by the outputs of 

all the channels. In short. the separation process is the decorrelation of the output 

y„ from the other users. 

In a mode similar to the decision-directed mode of the MSE separator. t he  

decorrelation criterion is devised to decorrelate the output y„ from the rest of the 
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Figure 3.2 Decorrelating Signal Separator 

signals. Decorrelation is achieved when 

where cn  is a constant. 

To develop the criterion, we will first. define and optimize a cost function to 

compute the steady state decorrelating weight vector. We begin by examining the 

recursive equation based on the conventional LMS algorithm adapted for the decor-

relating signal separator [11] 

where 	is the estimated output vector of all but the n-th user defined as: 

where the n-th element is equal to zero. After examining (3.14). it is obvious that 

the algorithm converges when 
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or alternatively. when the correction term E [B̂ nyn] is equal to zero. This condition 

for convergence can be rewritten as: 

where RB̂  nx 

Twice 

minimization  

the input. 

the result calculated in (3.17) is equivalent to the result. of the 

of the cost function .1 with respect to wnT  denoted by 

is the correlation matrix of the other estimated bits and 

Subsequently, the cost function J is calculated to be 

However, Rh,  should be expressed in terms of the unaltered b vector as follows: 

where Rbx  = E [bxT]and is the correlation matrix of all the estimated bits and the 

input. Therefore the minimization of the cost function J = wTnRB̂ nxwn  is equivalent 

to the minimization of the cost function 	wTn 	— un unT) Rix. This is shown by 

considering, without loss of generality, the case where n=1 and defining the vector 

partitions 

Next. we can represent the 

correlation matrix RB̂ nx as: 
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where B̂ 'TXT is the principal submatrix and 

Similarly, we define the following vector partitions for the correlation matrix Rt. as: 

where the only difference is that all the estimated bits are included. Consequently. 

Rbx can be represented as: 

Since the n-th row of RB̂ nx consists of all zeroes. an  adaptive algorithm would 

have no control over w„„. Consequently. w„„ can be set. arbitrarily, for example 

let w„„ = 1. Therefore after analyzing both partitioned matrices. we can state that 

the minimization of (3.19) is equivalent to the minimization of 

subject to the constraint. wnTun  = 1. 

Indeed, the minimization of the cost function J given in (3.22) does satisfy the 

decorrelation condition defined in (3.13) as shown below: 
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The steady state clecorrelating weight. vector equation is calculated imple-

menting the method of Lagrange multipliers [27], 

where ᵦ  is the scaling factor necessary to meet. the linear constraint and is calculated 

as follows: 

For the noiseless case, we can show that the criterion in (3.13) indeed does lead 

to signal separation. Substituting the noiseless input vector into (3.13) results in 

Substituting (3.9) into (3.28) we get. 

which is equivalent to 



CHAPTER 4 

ADAPTIVE ALGORITHMS 

The MSE and decorrelation criteria were developed for a stationary environment. 

However, when the signal environment is nonstationary an adaptive algorithm is 

needed t.o obtain the optimum weight vector. In our case, we use steepest-descent 

type algorithms to calculate the weight vectors for the MSE and decorrelating 

separators. 

4.1 LMS Error Algorithm 

The LMS algorithm for updating the weight vector of the \ISE separator is given 

by: 

To distinguish it. from the LMS decorrelating algorithm or LMS decorrelator. we 

refer to this algorithm as the LMS error algorithm for obvious reasons. Since 1 he 

steepest-descent algorithm involves the presence of feedback. this type of algorithm is 

subject t.o the possibility of becoming unstable. From (4.1). the two possible sources 

of instability are (1) the step-size parameter p. and (2) the input vector x (k). The 

convergence analysis of the LMS error algorithm is well known [14 Consequently. 

since the eigenvalues of Rx are all real and positive, it follows that. the necessary 

condition for convergence of the LMS error algorithm is that the step-size parameter 

p satisfy the condition 

where Amax  (Rx ) is the largest. eigenvalue of R.,- Therefore. provided the step-sire 

parameter is set within the bounds defined by (4.2). the weight vector computed by 

18 



19 

using the LMS error algorithm converges the optimum solution, defined in (3.3). as 

the number of iterations approaches infinity. 

4.2 RLS Error Algorithm 

The RLS error algorithm for the MSE separator is based on a recursive imple-

mentation of the Weiner-Hopf equation. The requirement of unsupervised training 

resulted in the modification of the typical RLS recursive equations to an alternative 

weighting scheme that permits past data to be regarded either as less important or 

more important than the current data is [23], [s]. The estimated updates for the 

covariance matrix Rx and the cross-correlation vector rbnx  are expressed as follows: 

where a is the forgetting factor. To implement. (3.3). we first must determine the 

inverse of the covariance matrix using the Matrix Inversion Lemma On 

For convenience of computation, we define 

as the variable gain unique to the RLS error algorithm replacing the fixed-valued 

step-size parameter p in the LMS error algorithm. The variable gain is the essential 

reason for its fast adaptive nature. 

Using (4.6). we can rewrite (4.5) as 
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Then we substitute (4.4) into (3.3) and get. 

Next. we substitute (4.7) in the first. term on the right side of (4.8) and get 

Acknowledging the fact that RV (k) x (I.) equals the gain vector g (k). we get I he 

desired recursive equation as follows: 

where 

The algorithm is summarized below: 

4.3 LMS Decorrelator Algorithm 

The LMS decorrelator is a steepest-descent algorithm that seeks to null the instan-

taneous estimate of the gradient. of the cost function J reproduced here for conve-

nience 
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The instantaneous estimate of VI = Rb̂ xwn is given as 

According to our formulation. the constraint of wTnun = 1 sets wnn = 1. This results 

in the n-th component. of the input. to be transferred directly to the output which 

is the distinguishing feature of the decorrelator structure. In order to obtain this 

constraint., we premultiply the gradient. by Un = 	(I-unuTn) which zeros its n-th 

component. The decorrelator algorithm is then given simply by: 

4.3.1 Convergence Analysis of LMS Decorrelator Algorithm 

The LMS decorrelator has been shown to converge faster than the LMS error 

algorithm [11]. In this section we will prove. through the use of the eigenvalue 

spreads of both LMS algorithms. that the spread of the LMS decorrelator algorit Inn 

is smaller and converges faster than the LMS error algorithm. First. we determine 

the necessary and sufficient conditions for convergence of the LMS decorrelator. 

Define B̂   = 	(I - unuTn) b. we can rewrite (1.17) 

We define the weight-error vector for the LMS decorrelating algorithm as: 

similar to the one in [17]. Then rewriting (4.18) in terms of the weight-error vector 

results in 
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Recognizing that 

Taking the expected value of both sides of (4.21) results in 

Implementing the assumptions of independence made in [17] between the weight 

vector and the input vector and subsequently the weight-error vector and the input 

vector. we can simplify (4.22) as follows: 

where RB̂ nx = E [B̂ n (k) xT] . Comparing the expected value of the weight-error RB n̂x 

vector equation in [17] to (4.23), we observe that they both are of the same mat he-

mat ical form except for the constant µRB̂ nxwo. Therefore, the convergence condition 

of the LMS decorrelator would seem to be dependent on the eigenvalues of the 	. 

However, since the n-th row of the correlation matrix RBnx  consists of all zeros. 

the convergence condition is actually dependent on the eigenvalues of the correlation 

matrix RB̂ 'x  as defined in (3.21). Subsequently, the mean of the weight-error vector 

e (k) converges to zero as n  approaches infinity. provided that the following condition 

holds: 

where Amax  (RB̂ 'x) is the largest. eigenvalue of 

To analyze the convergence speed. we will estimate the eigenvalue spread for 

the LMS decorrelator and compare it. with the spread for the LMS error. Using 
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the assumptions stated in [17] for the LMS error algorithm analysis, we can rewrite 

(4.18) as: 

Then taking the expected value of both sides of (4.25). we get 

where we have defined Un = 	(I - unuTn) , the identity matrix with the n-th element 

zeroed, and used the relations 

For example, when N = 2. 	
= ( 0 0 ) 

0 1 	
. and the LMS decorrelator algorithm 

for controlling wT1 = [w11 . w12] consists of two scalar and uncoupled relations: the 

fixed weight. w11(k) = 1 and the equation 

Consequently. for this example. the LMS decorrelator algorithm is faster than its 

LMS error counterpart. 

Without loss of generality, consider the separation of source n = 1, from the 

other sources. Define the following matrix and vector partitions: 

where W = [w12,w13,  ..., w1N]T, is an (N — 1) x (N — 1) identity matrix. B'̂T = 

T 
[b̂2,b̂3 • • • b̂N] and X1 = [x2..x3... ,xN]T. Consequently we can write equation 

(4.18) as follows: 
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Taking expected value of both sides of (.1.31) we get 

We deduce that the convergence speed of the LMS decorrelator is controlled by the 

spread of the eigenvalues of RB̂ 'x.  

Proposition 1: The following relation exists between the largest eigenvalues of 

RB̂ 'x and Rbx: B̂  

Proof: The matrix RB̂ nx can be expressed as a partition of the matrix RB̂ nx : 

Define the ratio 

where z is the eigenvector of the eigenvalue 

Theorem [16]. 

According to the Courant-Fisher 



back into (4.36). we get 
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Expanding both numerator and denominator of (1.3.5). we get. 

and 

Then substituting (4.37) and (.1.40) 

Next.. we maximize the right. sick' of (4.41) over the restriction 	= 0 and get 

where Amax  (RB̂ 'x) is the maximum eigenvalue of the partition matrix 	Conse-

quently, we can rewrite (4.36) as: 

where ≥ is due to the restriction placed on z1 . 

Proposition 2: Thu following relation exists between the smallest eigenvalues of 

RB '̂x and 

Proof: According to a. corollary to the Courant-Fisher Theorem known as the  

Interlacing Property [14 and noting that RB̂ 'x  is the (N — 1) x (.V — 1) leading 
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principal submatrix of Rb̂ x, we have: 

Proposition .3: If the noise is negligible then the eigenvalues of R,. are equal to 

the square of the eigenvalues of Rb̂ x. 

Proof: We have the relation Rb̂ x= EAT, and for negligible noise we have 

Consequently. R,. = 	It follows that Ai (Rx) = 	(Rd for 

In particular. 

Proposition 4: The eigenvalue spread \ (RA associated with the LMS error 

algorithm, is larger than the square of the spread \ (RB '̂x ) associated with the LMS 

dccorrelator provided the noise is negligible. 

Proof: From Propositions 1.2 and 3 we have:  

Proposition 4 provides the explanation why the 	decorrelator algorithm is faster 

than the LMS error algorithm. 

Proposition 5: The upper bound of the LMS error algorithm step-size parameter 

µmax (Rx) is smaller than or equal to one half the square of the upper bound of the 

LMS decorrelator 	(RB '̂x): 

for the same values of the input vector x. 

Proof: From Proposition 1 and 3. ii follows that 
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4.4 RLS Decorrelator 

We introduce a new decorrelating RLS type algorithm referred to as the MS 

decor-relator. Paralleling the development of the RLS algorithm from the MSE weight 

vector in (3.3), we developed the following RLS algorithm for the decorrelator weight 

vector in (3.26). 

First we recall the optimum weight vector equation for the LMS decorrelat or 

given by: 

where /9 = 2 	x (uRZ1 u 	and the recursive equation for the cross-correlat ion n 	b 

matrix between the estimated output b and the input vector x is given by: 

where a is the forgetting factor. As in the case of the R LS error algorithm's 

derivation, we implement the Matrix Inversion Lemma and determine the inverse 

of Rb̂ x  (k) which results in 

where as before g (k) is the variable gain vector defined as: 



We can simplify (4.54) and obtain Recognizing the fact that 
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Then, we substitute (4.52) into the optimum weight vector equation and gel: 

the recursive equation for the weight vector as 

Additionally. we recall that the optimum weight vector equation was derived under 

the linear constraint that wTnun = 1. In order to adhere to this constraint. we 

normalize (4.55) and get 

The RLS decorrelating algorithm is summarized as follows: 

4.5 Soft Decision Detection 

The classical decision-directed approach to estimating the transmitted data bits b is 

to implement the signum function at. the output of the adaptive filter. This is known 

as hard decision. Nowlan and Hinton [25] proposed a more complicated nonlinearity 

known as soft decision. Their new soft decision-based algorithm would converge in 

channels with twice the initial hit error rate for which I he hard decision-based LMS 

algorithm was convergent. Consequently. we have applied this nonlinearity to the 

various algorithms studied above in order to see its effect on the convergence behavior 
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of the algorithms. While the derivation in [25] is lased on the application of MSE 

algorithms, we generalize the derivation and apply it to the decorrelating algorithms 

as well. The derivation is Performed in Appendix 13. 



are defined as the joint proba- where 

Since the data bits can take on one of two equiprobable values. 

CHAPTER 5 

PERFORMANCE MEASURES ANALYSIS 

In this chapter we analyze the measures used to evaluate the performance of the 

various algorithms. The main performance measures are the probability of error 

of detecting the transmitted data hits of the n-th user and the signal-to-noise and 

signal-to-signal ratios. 

5.1 Probability of Error Analysis 

We first begin by evaluating the probability bit error for the system model detailed 

in Chapter 2. Without loss of generality, we consider the case of finding the proba-

bility of error in the first user given a two user N = 2 environment for presentation 

purposes. and then generalize the results for the n-th user in an N user environment. 

The probability of an error occurring at the estimated output b̂ 1 is written as: 

Applying Bayes Theorem to (5.1). we get 

30 
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and we can take the two terms in (5.1) to be equal and simplify the equation as 

follows: 

Substituting the value of h1  = sgn (y1). for hard decision detection, in (5.4) results in 

where y= wT1x. Expanding the term wT1x results in: 

where t11 and 112 are the two elements of the vector 

and n1  is the filtered Gaussian noise. 

Since n1 is a Gaussian random variable with a density function of 
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we can express (5.6) in terms of (5.7) which results in 

After some observation, we can express (5.8) in terms of the Q-function, which was 

defined earlier, as: 

Generalizing now for the probability of error of the nth user in an N user 

environment. results in: 

However, since the numerical analysis of the probability of error for the N user 

case is difficult to track, we will only consider the two and four user cases. 

5.2 SNR and SSR 

Two measures utilized frequently in evaluating a system are the input signal-to-

background noise ratio SNR. and the input signal-to-signal ratio SSR. We will also 

use these measures and define them below. The signal-to-noise ratio of the n-th user 

is defined as the bit energy of the n-th user to the energy of the background Gaussian 

noise such as: 

where ξn is the energy of the detected signal from the n-th user. gnn is the nn-th  

noise cross-correlation element of the noise matrix H defined between the outputs of 

the matched filters and σ2n is the power of the additive white Gaussian background 
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noise. The signal-to-signal ratio of the n-th user is defined as the bit energy of the 

n-th user to the bit energy of the rest 	the users such as: 

where 17 	m and aij is the cross-correlation coefficient.. 

5.3 Analysis of the Figure of Merit for the Convergence Plots 

Convergence regions for each algorithm are determined using the approach suggested 

in [25]. There a figure of merit γ is defined that relates the initial and final proba- 

bilities of error. Pei  and Pef  respectively. 	γ was defined as 

Pei is determined from the initial weight vector and Pef is determined from the 

resulting weight vector after a predetermined number of iterations. The SNR is 

varied from a. negative value to a. positive value so that the initial probabilities of 

error are indicated on the abscissa. The point of these curves is to demonstrate. after 

any given number of iterations and initial probabilities of error. where the algorithm 

stops converging. When Pef  < 	I and the algorithm always converges. 

When Pct  = 	, = 0, no convergence occurs. 



CHAPTER 6 

SIMULATION RESULTS 

In this chapter, we present the computer simulations performed to verify the 

theoretical performance of the RLS decorrelating algorithm in comparison to the 

other algorithms. In order to take into account all the variables discussed previously. 

we have performed simulations with two and four users to show how the algorithm's 

performance varies with the number of users. Also. we have implemented both 

hard and soft decisions to show how the decision device used in a decision-directed 

mode effects the algorithm's performance. We focus on three basic types of plots. 

First. the Learning Cum plots to demonstrate the speed of the various algorithms 

simultaneously at various levels of interference powers. Secondly. the Convergence 

Region. plots to demonstrate the regions at which the various algorithms cease to 

converge and their performance upto that point. Lastly. Probability of Error m 

SSR plots to demonstrate the performance of the various algorithms over a range 

of realistic operating SSR's. Additionally. we prove via computer simulations the 

theoretical results concerning the speed of convergence of the LMS decorrelator in 

comparison to the LMS error algorithm. 

In all simulations to follow. the initial n-th user weight vector wn  (0) for each 

algorithm was set so that. wnn = 1 and wnj = 0 for j ≠ n. Also. the inital value of 

the inverse correlation matrices for the RLS type algorithms was set. to RV (0) = 

II where h is a. small constant. Finally. the legend implemented in 

Figures 6.1 through 6.28 denoting the performance of the four algorithms .under 

various conditions is reproduced here to facilitate the analysis of the plots. 

34 
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Table 6.1 Legend corresponding to Figures 6.1 - 6.28. 

ALGORITHM NOTATION LINE TYPE 

R ES Decorrelator I 
LMS Decorrelator 
RLS Error 
LMS Error 

R LS-dec 
LMS-dec RLS-err 

LMS-err 

6.1 Learning Curves 

One important issue in the development of adaptive algorithms is their speed of 

convergence to their steady state value. Here, we utilized the probability of error of 

the first user in a two and four user environment to show the convergence rates of 

t lie various algorithms. 

6.1.1 Two Users-Hard Decision 

In this section, we analyze the two user environment implementing hard decision 

detection at three SSR's: -5.-10.-15dB. The SNR is set at 8dB. which is a practical 

and realistic setting for most applications. The adaptive process is performed over 

500 iterations and 10 independent. trials. From Figure 6.1 for a SSR=-5dB. we see 

that all four algorithms converge to the approximately the same steady state value 

with the two RLS type algorithms converging slightly faster. In Figure 6.2 with 

SSR=-10dB, we note that the two LMS type algorithms start. to converge slower. 

while the RLS type algorithms' behavior is unchanged. The increase in interference 

power has noticeably affected the two LMS type algorithms. 

In Figure 6.3. for a. SSR=-15dB, the LMS error algorithm completely diverges 

wit h further increases in the interference power making it. unreliable in high inter-

ference environments. The LMS decorrelator converges. but at a slower rate 

compared to the RLS type algorithms. 
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Figure 6.1 Learning curve of the probability of error of the first user (Hard 
Decision ,SN R=8dB,SSR=-5dB,N=2.aij=0.15) 

Figure 6.2 Learning curve of the probability of error of the first user ( Hard Decision,SNR=8dB,SSR=-10dB,N=2,aij=(0.15) 
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Figure 6.3 Learning curve of the probability of error of the first user (Hard 

Decision.SNR=8dB,SSR=-15dB.N=2.aij=0.15) 

6.1.2 Two Users-Soft Decision 

In this section, we perform the same simulations as in Section 6.1.1 hut implement ing 

soft. decision detection. For the SSR=-5dB. convergence speed has decreased for all 

four algorithms which implies that. for the two user case, hard decision detection is 

more efficient as can be seen in Figure 6.4. Additionally. the steady state converging 

point of the RLS error algorithm has been increased. This can be attributed to the 

already less than desired performance of the RLS error algorithm at lower levels of 

interference due to its dependence on the forgetting factor a. which introduces a bias 

in the estimations error equation [see Eq. (4.11)]. The forgetting factor was chosen 

to work optimally at higher interference levels. Similarly. in Figures 6.5 and 6.6. we 

notice little improvement in all but the I...NIS error algorithm which shows some signs 

of convergence. 
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Figure 6.4 Learning curve of the probability of error of the first. user (Soft Decision. 
SNR=8dB,SSR=-5dB.N=2,aij=0.15) 

Figure 6.5 Learning curve of the probability of error of the first user (Soft Decision. 

SNR=8dB.SSR=-10dB.N=2.aij=0.15) 
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Figure 6.6 Learning curve of the probability of error of I he first user (Soft Decision. 

SNR=8dB,SSR.=-15dB.N=2,aij=0.15) 

6.1.3 Four Users-Hard Decision 

In this section. the number of users is increased to exploit. the robustness of the decor-

relating algorithms to larger interference levels. While four users is not necessarily a 

practical application. it does provide some insight on the behavior of the algorithms. 

Again. we take the same SNR and SSR's as the previous two cases: SNR= 8dB and 

SSR= —5,-10,-15dB. 

In Figure 6.7, we note the convergence for all four algorithms with the RLS type 

algorithms maintaining t heir edge in this measure of performance. In Figures 6.8 

and 6.9, the increase in interference power has minimal detrimental effect on the 

performance of the all but the LMS error which clearly. as seen in the two user 

case, cannot cope with such levels of interference. The RLS type algorithms still 

outperform the LMS decorrelator in convergence speed. increasingly so with increases 

in the interference power. Additionally. the decorrelating algorithms behave more 



40 

smoothly with increases in interference power which is due the fact that the increased 

interference power from other signals assists the algorithm in decorrelating the desired 

signal from the others. So the stronger the other signals are easier it becomes to 

decorrelate them from the desired signal. 

Figure 6.7 Learning curve of the probability of error of the firsi user (Hard 

Decision,SNR=8dB,SSR=-5dB,N=4,aj)=0.15) 
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Figure 6.8 Learning curve of the probability of error of the first user (1-lard 

Decision,SNR=8dB,SSR=-10dB.N=4,aij=0.15) 

Figure 6.9 Learning curve of the probability of error of the first user (Hard 
Decision,SNR=8dB,SSR=-15dB.N=4,aij=0.15) 
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6.1.4 Four Users-Soft Decision 

The soft. decision nonlinearity is applied to the four user case with all 01 her 

parameters kept the same. From Figure 6.10. we notice the convergence of all 

four algorithms similar to previous simulations. However, soft decision detection 

has. as in the two user case for the same parameters. increased the steady state 

converging point, of the RLS error algorithm. Again this is due to the selection of 

the forgetting factor a for optimization at high interference levels. 

Increases in the interference levels brings down the steady state probability of 

error point. for the R LS error algorithm. Additionally. two more observations can be 

made from Figures 6.11 and 6.12. The first is that the soft decision detection. as seen 

in Section 6.1.2, permits the convergence of the LMS error algorithm and secondly. 

it has minimal effect on the convergence of the ot her algorithms. 

Figure 6.10 Learning curve of the probability of error of the first user (Soft. Decision. 
SNR=8dB.SSR=-5dB.N=4.aij=0.15) 
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Figure 6.11 Learning curve of the probability of error of the first user (Soft. Decision. 

SNR=8dB.SSR=-10dB.N=4.aij=0.15) 

In comparing all the simulation results of I lie convergence rate over the various 

SSR's for both decision methods, we can make some final observations. First. 

the algorithm of choice for both speed and robustness in the midst of a changing 

interference environment. seems to he the RLS decorrelator. While the RLS error 

algorithm has comparables speed, in our unsupervised training version it responds 

uncharacteristically at lower interference levels mainly due to the choice of the 

forgetting factor a. Secondly. the LMS error algorithm is more sensitive to changes in 

the interference levels, or equivalently eigenvalue spread. than the LMS decorrelator 

which supports our claims made earlier. Finally, the use of soft. decision detection 

over hard decision detection proved to have minor improvement. on the convergence 

of the algorithms except for the LMS error. 
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Figure 6.12 Learning curve of the probability of error of the first user (Soft Decision. 

SNR=8dB,SSR=-15dB.N.4.aij=0.15) 

6.2 Convergence Plots 

The convergence plots are produced using the figure of merit analyzed in Section 3.3. 

In this case, 100 iterations and 10 independent. trials were used. The SIR was varied 

from -10dB to +10dB. Also as before. we look at how the soft decision nonlinearity 

and different number of users affect the performance of the algorithms at the same 

three SSR's: -5. -10 and -15dB. 

6.2.1 Two Users-Hard Decision 

In Figure 6.13. we notice that all four algorithms converge with the LMS error slightly 

behind the others. In Figure 6.14 the LMS error has fallen behind considerably in 

its convergence region while the others maintain comparable performance and show 

significant movement in light of increasing interference levels. In Figure 6.13. the 

LMS error diverges completely while the others continue to widen their convergence 

regions with increased interference. 



45 

Figure 6.13 Convergence regions after 100 iterations for the probability of error of 
the first. user (Hard Decision,SSR=-5dB.N=2.aij=0.15) 

Figure 6.14 Convergence regions after 100 iterations for the probability of error of 
the first user (Hard Decision,SSR=-10dB.N=2.aij=0.15) 
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Figure 6.15 Convergence regions after 100 iterations for the probability of error of 
the first. user (Hard Decision.SSR=-15dB,N=2.aij=0.15) 

6.2.2 Two Users-Soft Decision 

The two decorrelating and RLS error algorithms show similar performance as seen 

in Figures 6.16, 6.17 and 6.18. The LMS error, however, demonstrates wider regions 

of convergence and in the latter two figures continues to show convergence in cases 

where it. failed to do so with the hard decision. Here we can see the desired effects 

of the soft decision nonlinearity, at least. in the case of the LMS error algorithm. It 

allowed the algorithm to converge where it otherwise would not. 
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Figure 6.16 Convergence regions after 100 iterations for the probability of error of 
the first user (Soft Decision.SSR.=-5dB.N=2.aij=0.15) 

Figure 6.17 Convergence regions after 100 iterations for the probability of error of 
the first. user (Soft Decision.SSR=-10dB.N=2.aij=0.15) 
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Figure 6.18 Convergence regions after 100 iterations for the probability of error of 
the first. user (Soft. Decision.SSR.=-15dB.N=2.aij=0.15) 

6.2.3 Four Users-Hard Decision 

With the additional two users. we observe performance behavior similar to the 

two user case coupled with the widening of the convergence regions for all four 

algorithms at each of the three interference levels. In Figure 6.]9. all four algorithms 

converge with the LMS error again falling slightly behind. In the next two scenarios. 

Figures 6.20 and 6.21. the LMS error no longer converges while the others maintain 

their robustness. Additionally, we observe that the increase in the number of users 

has resulted in wider regions of convergence rather than smaller. This supports our 

claim that higher levels of distortion and interference aid the decorrelating algorithms 

in separating the desired signals from the others. The RLS error also demonstrates 

similar characteristics. 
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Figure 6.19 Convergence regions after 100 iterations for the probability of error of 

the first. user (Hard Decision.SSR=-5dB.N=4.aij=0.15) 

Figure 6.20 Convergence regions after 100 iterations for the probability of error of 
the first. user (Hard Decision,SSR=-10dB,N=4.aij=0.15) 
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Figure 6.21 Convergence regions after 100 iterations for the probability of error of 
the first user (Hard Decision.SSR=-15dB.N=4.aij=0.15) 

6.2.4 Four Users-Soft Decision 

Applying the soft decision nonlinearity to the four user case results in improved 

performance only for the LMS error algorithm as seen in Figures 6.22, 6.23 and 6.24. 

The others maintain their performance regardless of the nonlinearity used. 

The convergence region curves proved to be useful in answering the two 

quest ions about the decorrelating algorithms' performance. First.. the increase in t he 

number of users assisted the algorithms in performing the separation of signals as 

expected. Secondly, the application of the soft. decision nonlinearity does outperform 

the hard decision nonlinearity because it enabled the convergence of the LMS error 

algorithm in regions and interference levels it would not have converged otherwise. 
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Figure 6.22 Convergence regions after 100 iterations for the probability of error of 
the first user (Soft. Decision,SSR=-5dB,N=4.aij=0.15) 

Figure 6.23 Convergence regions after 100 iterations for the probability of error of 
the first. user (Soft Decision.SSR=-10dB.N=4.aij=0.15) 
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Figure 6.24 Convergence regions after 100 iterations for the probability of error of 
the first user (Soft, Decision,SSR=-15dB.N=4.aij=0.15) 

6.3 Probability of Error Comparison of Algorithms 

In this sect ion. we examine the effects of varying the SNR of the other users with 

respect to the first. user or in other words keeping the noise power constant and 

varying the SSR. Our main goal is to study further t he behavior of the four algorithms 

under varying SSR's. We vary the difference in SNR between the first user and the 

other users from -10 to +10dB. The probability of error as always is with respect 

to the first user taken after 500 iterations and 10 independent trials. Additionally. 

we can compare the responses of the various algorithms to the response of an ideal 

decorrelator where the weight matrix. composed of the N weight vectors. is equal 

to the inverse of the mixture matrix. i.e. 

response of the ideal decorrelator is constant throughout the variations in SSR. Also. 

to prevent further cluttering of the plots with an additional line. the probabilty of 
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error of the first user for the ideal decorrelator is given below for the two and four 

users cases: 

6.3.1 Two User Case 

We analyze the hard decision nonlinearity first. In Figure 6.25, we observe some inter-

esting behavior. First.. the two decorrelating algorithms show unequaled robustness 

throughout. the various SNR's as expected. Secondly. also as expected. the LMS 

error algorithm exhibits decreasing probability of error as SNR1  increases beyond 

SNR2. However. the RLS error algorithm shows uncharacteristic behavior at more 

positive SSR's. This can be attributed to the selection of the forgetting factor o to 

optimize performance at higher interference levels. The forgetting factor introduces 

a bias term into the estimations error equation of (1.1 I ) which adversely affects the 

performance of the algorit hat at more positive SSR's. This bias term is the disad-

vantage wi th our  unsupervised RLS algorithm. 

With the application of the soft. decision nonlinearity. the MSE algorithms 

behave similarly but with greater discrepancies between their performance and the 

decorrelating algorithms' performance as shown in Figure 6.26. 
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Figure 6.25 Probability of error of the first user of each of the four algorithms (Hard 

Decision.N=2,aij=0.15) 

Figure 6.26 Probability of error of the first. user of each of the four algorithms (Soft 
Decision,N=2,aij=0.15) 



6.3.2 Four User Case 

For the hard decision nonlinearity. two additional users detrimentally affect the 

performance of the MSE algorithms. Both show behavior similar to the two user 

case but with greater discrepancies between them and the decorrelating algorithms 

as shown in Figure 6.27. Furthermore, the lowest. probability of error for all the 

algorithms increased slightly from the two user case. a characteristic observed in 

learning curves as well. 

Implementing the soft. decision nonlinearity slightly improved the performance 

of the NNE algorithms having no expected effect on the decorrelating algorithms as 

shown in Figure 6.28. 

Figure 6.27 Probability of error of the first. user for each of the four algorithms 
(Hard Decision,N=4,aij=0.15) 
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Figure 6.28 Probability of error of the first user for each of the four algorithms 
(Soft Decision,N=4,aij=0.15) 

6.4 Probability of Error Comparison Among Users 

In this section, we analyze the extend to which each algorithm suppresses the other 

users with respect to the first.. The parameters are kept the same as in the previous 

section and only the more interesting case of a four user environment with both hard 

and soft decision detection is examined. For the hard decision nonlinearity, the four 

algorithms show significant suppression for negative SSR's as shown in Figures 6.29-

6.32. For positive SSR's, the suppression of the other users is no longer affective 

and now the other users contribute to the interference environment. However, each 

algorithm maintains a fairly constant probability of error for the first. user.  



57 

Figure 6.29 Probability of error of all four users for the RLS decorrelating algorithm 
(Hard Decision.N=4,aij=0.15) 

Figure 6.30 Probability of error of all four users for the LMS decorrelating algorithm 
(Hard Decision,N=4.aij=0.15) 
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Figure 6.31 Probability of error of all four users for the RLS error algorithm (Hard 
Decision,N=4,aij=0.15) 

Figure 6.32 Probability of error of all four users for the LMS error algorithm (Hard 
Decision, N =4,aij=0.15 
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Similarly for the application of the soft decision nonlinearity, the performance 

is unchanged except for die RLS error algorithm. 

Figure 6.33 Probability of error of all four users for the RLS decorrelating algorithm 
(Soft. Decision,N=4,aij=0.15) 

Figure 6.34 Probability of error of all four users for the LNIS decorrelat ing algorithm 
(Soft. Decision,N=4,aij=0.15) 
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Figure 6.35 Probability of error of all four users for the R LS error algorithm (Soft 
Decision.N=4.aij=0.15) 

Figure 6.36 Probability of error of all four users for the LMS error algorithm (Soft 
Decision.N =4 ,aij=0.15) 



equal to the square root. of To be more precise 
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Evaluating the probability of error comparison curves, we observed two inter-

esting features. First. the RLS error algorithm, as previously noted in the learning 

curves for an SSR=-5d13. behaves uncharacteristically at favorable SSR's with respect 

to the first. user. Again, we attribute this to the forgetting factor a. Secondly. 

the decorrelating algorithms are robust. and maintain a fairly constant response 

throughout the various scenarios. 

6.5 Eigenvalue Spread 

In this section. we verify the theoretical analysis performed in Section 4.3.1 pertaining 

to the eigenvalue spread of the LMS error. (RA. and LMS decorrelating, 

algorithms. We examine the more interesting case of a four user environment. 

In order to determine the eigenvalue spread of the algorithms, we implemented 

recursive equations to calculate the estimated correlation matrices as shown below: 

The estimated correlation matrix of the LMS decorrelator is a submatrix of RB̂ nx bx 

defined as: 

Therefore as the number of iterations increases, the estimated correlation matrices 

approach the actual correlation matrices. The eigenvalue spread is then calculated 

as the defined in (4.46). The recursive equations were calculated over 2500 iterations 

and 10 independent trials with negligible background noise. 

In Figure 6.37. we note that. both 1  (Rx ) and \ (RB̂ 'x) settle to their steady 

state value after approximately 1500 iterations. Also. 	(RB̂ 'x) is approximately 
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the actual computer simulations values for the eigenvalue spreads of both algorithms. 

are: 

This is in accordance with Proposition 4. To further support. our claims, we examined 

the eigenvalue spread of RT  RB̂ nx x2 (Rb̂ x) in comparison with x (Rx) to verify 
b̂x  

Proposition 3. In Figure 6.38, we observe that \ 2  (Rb̂ x) and 	(Rx) do settle to 

approximately the same steady state value. The actual computer simulations value 

for the eigenvalue spread of 

Figure 6.37 Eigenvalue spread of the LMS decorrelating and LMS error algorithms 

(SNR=8dB,N=4,aij=0.15) 
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Figure 6.38 Eigenvalue spread of the LMS &correlating and LMS error algorithms 
(SNR=8dB,N=4,aij=0.15) 



CHAPTER 7 

CONCLUSIONS 

In this thesis, various algorithms were analyzed and compared. Our focus was to 

demonstrate the validity of a new RLS type decorrelating algorithm and to show 

how it performed in comparison t.o the other algorithms. Also, we analyzed further 

the convergence of the LMS decorrelator and LMS error algorithms and implemented 

a relatively new decision nonlinearity known as soft decision to all the algorithms. 

Our work resulted in some noteworthy contributions: 

• The LMS decorrelator algorithm is faster than the LMS error algorithm elue to 

a smaller eigenvalue spread. 

• The RLS decorrelator is faster than the LMS type algorithms and comparable 

to speed with the conventional RB̂ nx LS error algorithm. 

• The RLS decorrelator and LMS decorrelator have comparable regions of 

convergence wider than than the LMS error algorithm. 

• The LMS error algorithm's step-size parameter upper bound is smaller than or 

equal to one half the square of the LMS decorrelator's upper bound. 

• The soft decision nonlinearity only significantly improved the performance of 

the LMS error algorithm. allowing it to converge at higher levels of interference. 
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APPENDIX A 

PROOF OF THE JOINT STATISTICS OF b̂ nbn 

We will analyze and verify that the cross-correlation matrix between the estimated 

output. bits, b, and the transmitted information bits. b, is equal to the a diagonal 

matrix Q, diagQ = [q1,q2,...,qN ]T , where qn  is a constant defined as: 

and 

where n 	in. Without. loss of generality. we will evaluate only the two users case. 

N = 2, with respect to the first. user. Later we will generalize the results for the n-th 

user. 

We begin with 

Evaluating the first term. we get. 

Since b„ E {-1,1}, we expand (A.4) into 

Using Bayes Theorem [26] 
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where A and B are random variables, we can express (A.5) as: 

Noting that P (1), = 1) = P (bn = -1) = 0.5, (A.7) can be rewritten as: 

After examining (A.8). we can recognize that for b1  = 1 

and 

Similarly, for b1= -1 

and 
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Therefore. (A.8) can be rewritten as 

Furthermore, from the Total Probability Theorem [26] 

where A,B1,..., Bn are random variables. we can combine the first. and fourth terms 

and the second and third terms on the right side of (A.13) and get 

Also we note that. the complement of the probability of A is 1 minus the probability 

of .4, therefore 

and (A.15) can be rewritten as: 

To determine the value of P (E1 ), we evaluate the term 

Due to symmetry, both terms in (A.18) are equal and t hers: force 
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:Expanding the term on the right hand side by noting that for the hard decision case. 

where t11  and t12  are the elements of the vector ti defined as: 

and m is the filtered Gaussian noise defined as 

Therefore. we can express (A.19) as 

Again using the Total Probability Theorem on (A.22) over the two values of b2  results 

in 

where P (h2  = 1) = P (b2  = —1) = 0.5. Since n1 is a Gaussian random variable with 

a. density function equal to 
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where σ2n is the filtered noise power defined as σ2nwTnHwn. We can rewrite (A.23) .:in 

terms of the corresponding density function with the appropriate limits such as: 

After observing (A.25). we can state that. with some manipulation of the limits and 

the implementation of the Q-function defined as 

we can rewrite (A.2.5) as 

Consequently, we can insert (A.27) into (A.17) and obtain the joint statistic for b̂ 1b1. 

Following the same procedure, we can evaluate the joint statistic of E [b̂ 2b1]. 

Again using Bayes Theorem and noting that P (b1  = = P (hi  = —1) = 0.5. we get 
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Evaluating the first term in (A.30) we see that. 

We can recall from equations (A.9)-(A.12), and recognize that. 

\\!e can then rewrite (A.31) as 

Repeating these steps for the other three terms in (A.30) results in 



and 

7]. 

Gathering (A.34)-(A.36) and inserting them into (A.30) results in the cross-joint 

statistic of b̂ 2b1  given by: 

Therefore, the cross-joint statistics of the estimated out put bits and the transmitted 

information bits is zero without any constraining assumptions. 

Generalizing the results obtained above for the n-th user. results in 

where n ≠ m. 



APPENDIX B 

SOFT DECISION NONLINEARITY DERIVATION 

Here we derive the soft decision nonlinearity based on the work of Nowlan and Hinton 

[25]. Given the adaptive structure in Figure B.1, we obtain the fitered output. as: 

where b(k) is the information bit, discretely distributed with a zero mean and a 

unit. variance and v (k) is the sum contributions of residual multi-user interference 

and thermal noise. To make the analysis mathematically tractable. v (k) is modeled 

as white Gaussian noise with zero mean and a variance of a2. which is statistically 

independent of b(k). 

Figure B.1 The adaptive structure implemented to derive the soft decision nonlin-
earity. 

We derive a Bayes estimate of b(k) optimized in the mean-square sense. For 

convenience of presentation. we will suppress the time dependence. 

For the filtered output y. we write the conditional mean estimate b of the 

random variable b as E [b̂ |y].  We then let (bly) denote the conditional probability 

 density function of b given y or 
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Using a fundamental property of conditional probability, we can rewrite fb 

and consequently we can rewrite (B.2) as 

Next. we let 

where c is a scaling factor smaller than unity, included so as to keep E [y 2 ] = 1. 

Therefore keeping with the assumptions made earlier for the statistics of h and r• and 

the restriction on E [y2]. we can determine the value of c as follows: 

Furthermore, it follows from (B.5) that 

Accordingly, substituting (B.7) into (B.4) yields 

We then evaluate (B.8) as follows: 
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where fb (b) is defined as: 

where δ  (u) is the usual Kronecker delta function 

and b E {-1,1}. Next, we evaluate fy (y) as 

Substituting (B.9) and (B.10) into (B.8) yields 

Next. we define the density function of the Gaussian mixture fy  (y — 	as 

and substituting (B.12) back into (B.11) yields 

Therefore, the optimum nonlinear function available for decision-directed algorithms 

is the hyperbolic tangent function 

From (B.13), we can see that for 	>> 1. the tanh(• ) function approaches the 

characteristics of the sgn function. The weakness of the hard decision is apparent 
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when y is very close to zero. A decision based on the sign of y will most likely be 

incorrect., due to the effects of the random noise. Yet it is in these cases that the 

weights are changed the most. The soft decision nonlinearity has a much smaller 

magnitude when y is close t.o zero, so it, makes only small weight. changes in this 

highly ambiguous case. It smooths over the sharp discontinuity of the sgn function. 

The difference between the two nonlinearity will be most apparent when there are 

numerous incorrect decisions. i.e. high probability of error. Simulation reported in 

[25] suggest that the use of soft decision nonlinearity can lead to more rapid initial 

convergence than the hard decision in channels with moderate to severe noise and 

distorion. 
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